WO2015022988A1 - 有機エレクトロルミネッセンス素子、発光装置、照明装置、表示装置及び電子機器 - Google Patents

有機エレクトロルミネッセンス素子、発光装置、照明装置、表示装置及び電子機器 Download PDF

Info

Publication number
WO2015022988A1
WO2015022988A1 PCT/JP2014/071433 JP2014071433W WO2015022988A1 WO 2015022988 A1 WO2015022988 A1 WO 2015022988A1 JP 2014071433 W JP2014071433 W JP 2014071433W WO 2015022988 A1 WO2015022988 A1 WO 2015022988A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
organic
light
compound
group
Prior art date
Application number
PCT/JP2014/071433
Other languages
English (en)
French (fr)
Inventor
周穂 谷本
池水 大
田中 達夫
秀雄 ▲高▼
北 弘志
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015531834A priority Critical patent/JP6288092B2/ja
Priority to US14/911,941 priority patent/US20160197282A1/en
Publication of WO2015022988A1 publication Critical patent/WO2015022988A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • H10K50/121OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants for assisting energy transfer, e.g. sensitization
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/625Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing at least one aromatic ring having 7 or more carbon atoms, e.g. azulene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1022Heterocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1096Heterocyclic compounds characterised by ligands containing other heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons

Definitions

  • the present invention relates to an organic electroluminescence element.
  • the present invention relates to a light emitting device, a lighting device, a display device, and an electronic device provided with the organic electroluminescence element. More specifically, the present invention relates to an organic electroluminescence element with improved luminous efficiency.
  • Organic EL elements also referred to as “organic electroluminescent elements” using electroluminescence of organic materials (Electro Luminescence: hereinafter abbreviated as “EL”) have already been put into practical use as a new light emitting system that enables planar light emission.
  • EL Electro Luminescence
  • organic EL emission methods There are two types of organic EL emission methods: “phosphorescence emission” that emits light when returning from the triplet excited state to the ground state and “fluorescence emission” that emits light when returning from the singlet excited state to the ground state.
  • phosphorescence emission that emits light when returning from the triplet excited state to the ground state
  • fluorescence emission that emits light when returning from the singlet excited state to the ground state.
  • TTA triplet excitons
  • TTF triplet excitons
  • thermoly activated delayed fluorescence also referred to as “thermally activated delayed fluorescence”: hereinafter, abbreviated as “TADF” as appropriate
  • TADF thermally activated delayed fluorescence
  • the TADF mechanism is a material having a smaller difference ( ⁇ Est) between the singlet excitation energy level and the triplet excitation energy level ( ⁇ Est (TADF) in FIG.
  • ⁇ Est a difference between the singlet excitation energy level and the triplet excitation energy level ( ⁇ Est (TADF) in FIG.
  • This is a light emission mechanism using a phenomenon in which a reverse intersystem crossing from a triplet exciton to a singlet exciton occurs when ⁇ Est (F) is used.
  • a light-emitting layer containing a host compound and a light-emitting compound contains a compound exhibiting TADF properties as a third component (also referred to as a light-emitting auxiliary material or an assist dopant) in the light-emitting layer, it is effective for achieving high light emission efficiency. It is known (for example, refer nonpatent literature 8). By generating 25% singlet excitons and 75% triplet excitons on the compound acting as an assist dopant by electric field excitation, the triplet excitons are accompanied by reverse intersystem crossing (RISC). Can be generated.
  • RISC reverse intersystem crossing
  • the energy of the singlet exciton can be transferred to the luminescent compound by fluorescence resonance energy transfer (hereinafter abbreviated as “FRET” as appropriate), and light can be emitted by the energy transferred from the luminescent compound. It becomes. Therefore, theoretically, 100% exciton energy can be used to cause the luminescent compound to emit light, and high luminous efficiency can be realized.
  • FRET fluorescence resonance energy transfer
  • the host compound to be combined needs to be selected appropriately.
  • the interaction between the compounds greatly affects the light-emitting properties of the light-emitting material. Therefore, it is possible to improve device characteristics such as light-emitting performance, chromaticity, and device lifetime by combining with an appropriate host compound. There is sex. Therefore, in order to solve the above-mentioned problems, it is necessary to sufficiently study the precise molecular design of the blue light-emitting material and the matching of the host compound to be combined.
  • the present invention has been made in view of the above problems and situations, and the solution is to achieve both high luminous efficiency as a light emitting element and blue light emission with good chromaticity and to maintain the performance for a long time. It is to provide a possible organic electroluminescent device. Another object of the present invention is to provide a light-emitting device, a lighting device, a display device, and an electronic device each provided with the organic electroluminescence element.
  • blue light emission with good chromaticity in the present invention means that the shortest fluorescence emission peak is 470 nm or less. In other words, it is because it is difficult to obtain a high-purity blue color above 470 nm.
  • the lowest excited singlet energy S 1 is defined as 2.64 eV or more. It has also been found that good characteristics can be obtained particularly when a compound having a non-planar electron conjugated structure is used as a light emitting material. That is, the said subject which concerns on this invention is solved by the following means.
  • An organic electroluminescence device having at least one organic layer including a light emitting layer sandwiched between an anode and a cathode, An organic electroluminescence device, wherein the light emitting layer contains a light emitting compound having a Stokes shift in a range of 0 to 0.24 eV and a minimum excited singlet energy S 1 of 2.64 eV or more.
  • the organic electroluminescence device according to item 1, wherein the light emitting compound has a structure represented by the following general formula (1).
  • A, B and C each independently represent a single bond or a linking group containing a carbon atom, a silicon atom or an oxygen atom.
  • Ar 1 and Ar 2 are each independently a condensed group.
  • An aromatic hydrocarbon ring group or an aromatic heterocyclic group which may be optionally substituted Ar 1 and Ar 2 may be the same, k represents a natural number, and when k is 2 or more, each A is different M is 0 or a natural number, and when m is 2 or more, each B may be different, n represents 0 or a natural number, and when n is 2 or more, each B C may be different, A, B, and C may each independently connect Ar 1 and Ar 2 with a single bond, and form a condensed ring to connect Ar 1 and Ar 2. May be.
  • the organic light-emitting device according to any one of items 1 to 3, wherein the light-emitting compound has a structure represented by the following general formula (2).
  • Ar 1 ′, Ar 1 ′′, Ar 2 ′ and Ar 2 ′′ may be the same or different, and may be independently an aromatic hydrocarbon ring group which may be condensed. Or an aromatic heterocyclic group, which may further have a substituent.
  • Ar 1 ′ and Ar 1 ′′ and Ar 2 ′ and Ar 2 ′′ may be condensed with each other.
  • L 1 and L 2 represent Ar 1 ′ and Ar 1 'Ar 1 and .
  • Ar 1' represents a single bond or a divalent linking group connecting "is, L 1 and L 2 and optionally to form a condensed ring .L 3 and L 4, Ar '' and Ar 2 .
  • Ar 2 represents a single bond or a divalent linking group linked to "the Ar 2 '2 is, L 3 May also form a micro L 4 and condensed .a, b, when c and d is 2 or more, each of L 1, L 2, L 3, and L 4 may be the same or different.
  • k and m each represent 0 or a natural number, either k or m represents a natural number, A and B represent a single bond or a divalent linking group, and when k and m are 2 or more, Each A and B may be the same or different, Ar 1 ′, Ar 2 ′ and A may form a condensed ring, and Ar 1 ′′, Ar 2 ′′ and B form a condensed ring. You may do it.
  • the organic light-emitting device according to any one of items 1 to 4, wherein the light-emitting compound has a structure represented by the following general formula (3).
  • a and B each independently represent a single bond or a linking group containing a carbon atom or a silicon atom.
  • Two anthracene rings connected by A or B, or both, A condensed ring may be formed by R 1 , R 9 and A or R 7 , R 15 and B.
  • k represents a natural number, and when k is 2 or more, each A may be different.
  • R 1 ⁇ R 16 are each a substituted or unsubstituted aliphatic hydrocarbon group, or a substituted or unsubstituted aromatic hydrocarbon group, each may form a ring.
  • R 1 R 16 may be a heteroaromatic hydrocarbon group containing a nitrogen atom, an oxygen atom or a sulfur atom in each substituent, m represents 0 or a natural number, and when m is 2 or more, each B May be different: A or , Or two anthracene ring linked by both, independently, may have an electron conjugated structure of the non-planar, they may form a single aromatic ring as a whole.
  • the organic light-emitting device according to any one of items 1 to 4, wherein the light-emitting compound has a structure represented by the following general formula (4).
  • X represents boron, carbon, nitrogen, oxygen, sulfur or silicon. X may have a hydrogen atom or a substituent.
  • R 17 to R 28 are each independent. Represents a hydrogen atom or a substituent, and two aromatic rings connected by A or B, or both are R 17 to R 28 , A, and B, which can form a condensed ring.
  • a ring structure may be formed, k and m each represent 0 or a natural number, either k or m represents a natural number, and A and B each represent a single bond or a divalent linking group.
  • k or m is 2 or more, each A and B may be the same or different, and two aromatic rings connected by A or B or both are independently non-planar electrons. It may have a conjugated structure and forms one aromatic ring as a whole You may do it.
  • the organic light-emitting device according to any one of items 1 to 4, wherein the light-emitting compound has a structure represented by the following general formula (5).
  • X represents boron, carbon, nitrogen, oxygen, sulfur or silicon.
  • X may have a hydrogen atom or a substituent.
  • R 29 to R 40 are respectively Represents a hydrogen atom or a substituent, and two aromatic rings connected by A or B, or both, have a ring structure using R 29 to R 40 , A and B which can form a condensed ring.
  • k and m represent 0 or a natural number, either k or m represents a natural number, A and B represent a single bond or a divalent linking group, and k or m is 2 or more.
  • each A and B may be the same or different, and the two aromatic rings connected by A or B or both independently have a non-planar electron conjugated structure. Or may form one aromatic ring as a whole.
  • the carbazole derivative is a compound having a structure represented by the following general formula (SH).
  • Z 1 to Z 3 and R 41 to R 46 each independently represent a hydrogen atom or a substituent, provided that at least one of Z 1 to Z 3 and R 41 to R 46 Represents an aromatic ring group having a 14 ⁇ electron system or more, and adjacent substituents may be condensed with each other to form a ring structure.
  • a light-emitting device comprising the organic electroluminescence element according to any one of items 1 to 11.
  • An organic electroluminescence device according to any one of items 1 to 11 is provided.
  • a display device comprising the organic electroluminescence element according to any one of items 1 to 11.
  • An electronic apparatus comprising the organic electroluminescence element according to any one of items 1 to 11.
  • an organic electroluminescence device capable of achieving both high luminous efficiency as a light emitting device and blue light emission having good chromaticity and maintaining the performance for a long time.
  • a light-emitting device, a lighting device, a display device, and an electronic device each including the organic electroluminescence element can be provided.
  • the improvement of the luminous efficiency of the light emitting material has been addressed as a universal problem, but the compatibility with the element life that cannot be avoided for practical use is still a major problem.
  • the fact that organic electroluminescence devices cannot maintain the light emission performance immediately after fabrication due to driving means that the physical properties of the charge transfer thin film between the electrodes and, more microscopically, the constituent components themselves have changed due to energization. It is none other than.
  • the above-described changes that occur in the light emitting layer have a significant adverse effect on the light emitting performance of the organic EL element.
  • the excited blue light-emitting material has higher energy than the red and green light-emitting materials, and thus easily changes as described above. Therefore, it is considered that producing a light-emitting layer that is robust against energization greatly contributes to the improvement of the lifetime of an organic electroluminescence element that emits blue light.
  • the present inventors have clarified that the use of a luminescent material characterized by a small Stokes shift can suppress changes in the structure and aggregation state of excitons in the luminescent layer, thereby solving the above-described problems.
  • a compound having a small Stokes shift has remarkably suppressed molecular motion in an excited state, and can maintain a good state inside the thin film even when energized for a long time. As a result, the light emitting performance of the organic EL device Is well maintained for a long time.
  • the organic electroluminescence device of the present invention is an organic electroluminescence device having at least one organic layer including a light emitting layer sandwiched between an anode and a cathode, and has a Stokes shift of 0 to 0.24 eV in the light emitting layer. It is characterized by containing a luminescent compound within the range and having a lowest excited singlet energy S 1 of 2.64 eV or more. This feature is a technical feature common to the inventions according to claims 1 to 15.
  • the luminescent compound has a structure represented by the general formula (1) from the viewpoint of manifesting the effects of the present invention.
  • the fact that the luminescent compound has a non-planar electron conjugated structure weakens the planar interaction between molecules such as ⁇ stacking, and reduces the cohesiveness between the luminescent compounds, Since the effect which improves the light emission performance of an element and the stability of a thin film is acquired, it is preferable.
  • the luminescent compound has a structure represented by the general formula (2) in order to further enhance the effect of the present invention.
  • the luminescent compound has a structure represented by the general formula (3).
  • the rigid structure which has aromaticity is connected, and thereby the rigidity of the molecule is further increased, and the planarity of the whole molecule is reduced. Therefore, the effect of improving the light emitting performance of the device and the stability of the thin film can be obtained.
  • the luminescent compound has a structure represented by the general formula (4).
  • the rigid structure which has aromaticity is connected, and thereby the rigidity of the molecule is further increased, and the planarity of the whole molecule is reduced. Therefore, the effect of improving the light emitting performance of the device and the stability of the thin film can be obtained.
  • the luminescent compound has a structure represented by the general formula (5).
  • the rigid structure which has aromaticity is connected, and thereby the rigidity of the molecule is further increased, and the planarity of the whole molecule is reduced. Therefore, the effect of improving the light emitting performance of the device and the stability of the thin film can be obtained.
  • the light emitting layer contains a carbazole derivative
  • the carbazole derivative is a compound having two or more conjugated structure portions having 14 ⁇ electrons or more in order to further enhance the effect of the present invention.
  • the carbazole derivative is preferably a compound having a structure represented by the general formula (SH) in order to further enhance the effects of the present invention.
  • At least one of Z 1 to Z 3 is preferably a substituted or unsubstituted dibenzofuran ring in order to further enhance the effects of the present invention.
  • the organic electroluminescence element of the present invention can be suitably provided in a light emitting device. Thereby, a light emitting device with improved durability can be obtained.
  • the organic electroluminescence element of the present invention can be suitably provided in a lighting device. Thereby, the illuminating device with improved durability is obtained.
  • the organic electroluminescence element of the present invention can be suitably provided in a display device. Thereby, a display device with improved durability can be obtained.
  • the organic electroluminescence element of the present invention can be suitably provided in an electronic device. Thereby, an electronic device with improved durability can be obtained.
  • Organic EL emission methods There are two types of organic EL emission methods: “phosphorescence emission” that emits light when returning from the triplet excited state to the ground state, and “fluorescence emission” that emits light when returning from the singlet excited state to the ground state. is there.
  • phosphorescence emission that emits light when returning from the triplet excited state to the ground state
  • fluorescence emission that emits light when returning from the singlet excited state to the ground state.
  • TTA triplet-triplet annealing
  • the rate constant is usually small. That is, since the transition is difficult to occur, the exciton lifetime is increased from millisecond to second order, and it is difficult to obtain desired light emission.
  • the rate constant of the forbidden transition increases by 3 digits or more due to the heavy atom effect of the central metal. % Phosphorescence quantum yield can be obtained.
  • a rare metal called a white metal such as iridium, palladium, or platinum, which is a rare metal. The price of the metal itself is a major industrial issue.
  • a general fluorescent material there is no particular need for a general fluorescent material to be a heavy metal complex like a phosphorescent material, and so-called organic compounds composed of combinations of common elements such as carbon, oxygen, nitrogen and hydrogen are applied.
  • organic compounds composed of combinations of common elements such as carbon, oxygen, nitrogen and hydrogen are applied.
  • other non-metallic elements such as phosphorus, sulfur and silicon can be used, and complexes of typical metals such as aluminum and zinc can also be used.
  • the luminescent compound according to the present invention that can be used as a fluorescent luminescent material is characterized in that the Stokes shift is in the range of 0 to 0.24 eV and the lowest excited singlet energy S 1 is 2.64 eV or more. And That is, by using the light-emitting compound according to the present invention having the above-described characteristics, it emits blue fluorescence with good chromaticity by radiation deactivation from the lowest excited singlet energy level to the ground level. be able to.
  • “blue with good chromaticity” is defined as light represented as an emission wavelength of 470 nm or less in the CIE chromaticity diagram.
  • the Stokes shift is a wavelength difference between the excitation light wavelength and the emission wavelength when the light emitting material is excited to emit light.
  • the phosphorescence emission is also defined as the difference between the excitation light wavelength and the phosphorescence wavelength treated as a Stokes shift.
  • the Stokes shift reflects the difference between the energy absorbed by the molecule when the exciton is generated and the energy consumed by the light emission when the exciton returns to the ground state.
  • FIG. 2 and FIG. 3 schematically show the relationship between these energies. 2 and 3, ⁇ E 1 is energy absorbed when the compound is excited, and ⁇ E 3 is energy emitted when the exciton emits light.
  • energy differences ⁇ E 2 and ⁇ E 4 are energy consumed by a mechanism other than light emission among the energy absorbed by the light emitting material.
  • One of these consumption mechanisms is thermal energy emission due to a change in molecular conformation, and this phenomenon can also occur for excitons generated by electric field excitation.
  • the energy lost at this time (the sum of ⁇ E 2 and ⁇ E 4 ) is referred to as reorientation energy, and molecules with low reorientation energy consume the energy of the excited state almost as it is for light emission, and thus emit light having a short wavelength with large energy. This is advantageous.
  • a compound having a large reorientation energy thermally releases the energy absorbed at the time of excitation due to a change in molecular conformation and the like, and the Stokes shift increases because the energy cannot be efficiently converted into light emission. Therefore, the Stokes shift can be reduced by designing the molecule of the light emitting material to reduce the reorientation energy. This can be achieved mainly by giving the light-emitting material a rigid structure with little molecular conformational change. A compound having a rigid structure hardly consumes exciton energy due to a change in molecular conformation, and as a result, is advantageous for realizing short-wavelength and efficient light emission.
  • blue light emission is required to have an excitation singlet energy, that is, an energy difference between HOMO and LUMO larger than that of green or red light emission.
  • an excitation singlet energy that is, an energy difference between HOMO and LUMO larger than that of green or red light emission.
  • a band gap of at least 2.64 eV or more is required even for a sharp spectrum shape with a half width of about 20 nm, for example.
  • the HOMO level of the host material is deeper than the HOMO level of the light emitting material, and the LUMO level of the host material is shallower than the LUMO level of the light emitting material. Is desirable.
  • the emission energy ( ⁇ E 3 in FIG. 2) is 2.64 eV
  • the Stokes shift (loss of exciton energy, the sum of ⁇ E 2 and ⁇ E 4 in FIG. 2) is 0.5 eV.
  • the energy required for excitation ( ⁇ E 1 in FIG. 2) is larger by 0.5 eV than 2.64 eV. That is, in order to efficiently transfer energy from the host material to the light emitting material, the host material is required to have an energy difference of HOMO and LUMO of 3.14 eV or more. As a result, the HOMO and LUMO levels of the host material are close to the HOMO and LUMO levels of the adjacent electron transport layer or hole transport layer.
  • the organic EL element In the organic EL element, if the energy level difference between the organic layers is not appropriate, it becomes difficult to inject carriers into the light emitting layer, and the drive voltage increases. Alternatively, it is considered that carrier leakage from the light emitting layer to the adjacent layer is likely to occur, and the element efficiency is lowered. Therefore, as the energy difference between the HOMO and LUMO of the host material increases, the configuration of the other layers must be changed according to the host material, and the limitation on the host material limits the overall device configuration. Therefore, it is not preferable in the element design.
  • the energy difference between HOMO and LUMO required for light emission can be minimized because the energy loss of excitons is small. More specifically, for example, the emission energy ( ⁇ E 3 in FIG. 2) is 2.64 eV, and the Stokes shift (loss of exciton energy, the sum of ⁇ E 2 + ⁇ E 4 in FIG. 2) is 0.1 eV. Considering the case of such an ideal light emitting material, 2.74 eV is sufficient as the energy required for excitation ( ⁇ E 1 in FIG. 2). As a result, as shown in FIG.
  • the configuration other than the light-emitting layer is preferably limited in terms of device design because it is less restricted by the host material.
  • the excited triplet energy needs to be 2.64 eV or more for blue light emission. Therefore, in order to efficiently generate excitons of the light emitting material, it is necessary to combine a host material having a higher excited triplet energy than the light emitting material and having a HOMO level deeper than the HOMO level of the light emitting material. For example, when a compound having a large Stokes shift, that is, a large energy loss due to reorientation energy, is used as the light emitting material, a larger excitation energy is required for the desired emission wavelength. And the energy difference between HOMOs are required to increase as shown in FIG.
  • the energy difference between the HOMO and LUMO of the host material is required to be increased in conjunction with it.
  • the energy levels of the HOMO and LUMO of the host material are close to the HOMO and LUMO levels of the adjacent electron transport layer or hole transport layer.
  • the energy level difference between the organic layers is not appropriate, it becomes difficult to inject carriers into the light emitting layer, and the drive voltage increases. Alternatively, it is considered that carrier leakage from the light emitting layer to the adjacent layer is likely to occur, and the element lifetime is shortened. Therefore, as the energy difference between the HOMO and LUMO of the host material increases, the configuration of the other layers must be changed according to the host material, and the limitation on the host material limits the overall device configuration. Therefore, it is not preferable in the element design.
  • the excitation triplet energy and HOMO necessary for light emission can be minimized because the energy loss of excitons is small.
  • the energy difference between the excited triplet energy of the host and the HOMO can be suppressed to be small, the carrier balance of the entire organic EL element can be easily achieved, and the element characteristics can be improved.
  • the configuration other than the light-emitting layer is preferably limited in terms of device design because it is less restricted by the host material.
  • the excited singlet energy that contributes to the light emission.
  • the requirements for the host material are the same as those for the phosphorescent light emitting material.
  • the difference in energy between the excited triplet energy of the host and the HOMO can be kept small, and the entire organic EL element It is considered that the carrier balance becomes easier and the device characteristics are improved.
  • the configuration other than the light-emitting layer is preferably limited in terms of device design because it is less restricted by the host material.
  • a compound having a small Stokes shift has a small reorientation energy as described above.
  • a molecule having a small reorientation energy usually has a rigid structure in the molecule, and is in a state where rotational motion and interatomic vibration are suppressed. Therefore, a compound having a small Stokes shift is considered to have high stability of the molecule itself when subjected to electric field excitation. Furthermore, the compound is considered to suppress molecular motion in the thin film when a voltage is applied due to its structural rigidity. As a result, the morphological stability of the thin film is improved, and the current in the thin film during energization is increased. Changes in the existence state of molecules are suppressed, so there is little change over time in the ease of hole flow (hole current) and the ease of electron flow (electron current). Since it is small, it is considered that the lifetime of the element is improved.
  • a compound having a small Stokes shift has a device lifetime due to suppression of exciton energy deactivation due to change in molecular conformation, improvement of carrier balance as a whole organic EL device, and improvement of morphological stability of a thin film. Since improvement can be established, it can be used as an excellent blue light-emitting material.
  • One of the common rigid structures that have been developed as light emitting materials so far is a group of planar aromatic compounds.
  • introduction of an aromatic moiety having a condensed ring structure is effective for improving the rigidity of the whole molecule, and compounds having a skeleton such as anthracene, triphenylene, pyrene, and picene are typical.
  • the wider the condensed ring portion the higher the planarity of the molecule, and the tendency for the molecular cohesiveness to increase as the intermolecular interaction by ⁇ stacking increases.
  • Molecular agglomeration is a problem that must be avoided as much as possible as a light-emitting material of an organic EL element for the reasons described below.
  • concentration quenching In general, organic compounds are known to cause a phenomenon of concentration quenching, which is a compound exhibiting excellent luminous efficiency in a dilute solution state, but its luminous efficiency is remarkably lowered in a solid state.
  • concentration quenching is that excitons are quenched by the interaction between organic molecules accumulated at high density, and that other molecules in the vicinity absorb the light emitted by the excitons. Has been.
  • Concentration quenching is also an important issue in organic EL elements, and it is common to dilute a light emitting material by combining it with an appropriate host material to prevent concentration quenching.
  • the light emitting material aggregates, which causes local concentration quenching, and thus reduces the light emission efficiency of the organic EL element.
  • the aggregation of the light emitting material also causes a phenomenon such as excimer fluorescence in which excitons form a complex to emit light.
  • excimer fluorescence has a longer wavelength than light emission from a single molecule, and the quantum efficiency of light emission is low, which is an undesirable phenomenon for obtaining blue light emission.
  • the interaction causes singlet-triplet annihilation or the above-described triplet-triplet annihilation, and the excitons are quenched.
  • Singlet-triplet annihilation is a phenomenon in which a molecule in a second excited triplet state and a molecule in a ground state are generated by collision between a molecule in an excited singlet state and a molecule in an excited triplet state.
  • the light emitting material is preferably well dispersed in the host material, and molecular design and host selection that suppress the cohesiveness greatly affects the light emitting characteristics of the organic EL element.
  • the aggregation of the light emitting material greatly affects the decrease in light emission efficiency, the change in light emission wavelength, and the decrease in device lifetime. Therefore, suppressing aggregation of the light emitting material is an important issue in developing an excellent organic EL element.
  • an aromatic ring formed with a spiro ring such as bifluorene is also a rigid molecule with low planarity.
  • a structure in which a large number of aromatic compounds such as helicene are helically connected also has rigidity derived from a condensed ring structure, but does not have a planar structure due to intramolecular strain.
  • non-planar conjugation occurs in a structure in which a plurality of aromatic rings are connected, such as cyclophane.
  • Nakanishi, N .; Hitachisugi, S .; Shimada, Y .; Isobe, H.M. Chem. Asian. J. et al.
  • Disilane pillars have a very rigid structure and takes a step-terrace structure.
  • Disilane pillars are unique molecules that maintain aromaticity while having a step terrace type non-planar structure by conjugation called ⁇ - ⁇ conjugation.
  • Such a group of compounds partially has planar aromaticity but is not a planar molecule as a whole, and using a light emitting material having the above compound as a basic skeleton is effective in suppressing aggregation of the light emitting material. It can be said that there is.
  • the light emitting material has good carrier hopping characteristics.
  • holes radical cations of the light-emitting material or the host material
  • carrier recombination and light emission It occurs intensively at the interface.
  • the above phenomenon can occur at the interface between the electron transport layer and the light emitting layer. As described above, this phenomenon is usually not preferable from the viewpoint of luminous efficiency and device lifetime.
  • quenching due to interaction between excitons occurs, and thus the light emission efficiency is lowered.
  • examples of the quenching phenomenon include singlet-triplet annihilation and triplet-triplet annihilation described above.
  • Singlet-triplet annihilation in fluorescent light-emitting materials, and both singlet-triplet annihilation and triplet-triplet annihilation in phosphorescent light-emitting materials and delayed fluorescent light-emitting materials can lead to a decrease in light emission efficiency. .
  • an organic material transports holes and electrons is synonymous with the fact that the organic material causes an oxidation reaction and a reduction reaction, respectively. That is, local light emission occurs at the interface between the light-emitting layer and the layer adjacent to the light-emitting layer is a state in which only an organic material in the vicinity of the interface causes an electrochemical reaction, and a large amount is generated in a part of the light-emitting layer. The load is biased. Therefore, the organic material in the vicinity of the interface is likely to be deteriorated, and as a result, the device life is short.
  • an organic compound used as a light-emitting material has one or more electron-withdrawing groups and one or more electron-donating groups. Presence of the electron-donating group and the electron-withdrawing group on the same molecule is expected to cause spatial separation of HOMO and LUMO of the molecule.
  • the organic thin film electron transfer between molecules is transmitted by hopping conduction, and this hopping conduction is caused by the presence of HOMOs or LUMOs between two molecules existing in the vicinity. Therefore, it is considered that HOMO and LUMO are well separated and localized, so that the organic material has both electron transport properties and hole transport properties and exhibits excellent carrier transport properties. That is, it is considered that a light-emitting material having good carrier characteristics by separating HOMO and LUMO improves the morphological stability of the light-emitting layer and is therefore suitable for improving the lifetime of the device.
  • Non-Patent Document 2 discloses that a TADF compound having a remarkable separation of HOMO and LUMO has a sufficiently small ⁇ Est. Moreover, this subject can be achieved by providing an electron-accepting group and an electron-donating group to the light emitting material.
  • the material used as the light-emitting material is a compound having TADF properties
  • coexistence of an electron-accepting moiety and an electron-donating moiety in the molecule improves the hopping characteristics of the compound. It is also suitable for improving the TADF property of the compound.
  • the structure of the present invention is not limited by the light emission principle of the light emitting material.
  • the structure of the substituent or the binding site is introduced when the electron accepting group and the electron donating group are introduced into the molecule.
  • the planarity of the entire compound can be further reduced. For example, by introducing a branched alkyl or a substituent that generates a twisted biaryl structure, the planarity of the entire compound is lowered, and the cohesiveness of the compound can be reduced.
  • the present inventor has obtained excellent device characteristics particularly when a compound having a non-planar electron conjugated structure is used as a light emitting material. I found out that
  • TTA triplet-triplet annihilation
  • Thermal activation type delayed fluorescence (TADF) material is a method that can solve the problems of TTA.
  • fluorescent materials have the advantage that they can be designed indefinitely. That is, among the molecularly designed compounds, there is a compound in which the energy level difference between the triplet excited state and the singlet excited state (hereinafter referred to as ⁇ Est) is extremely close (see FIG. 1A). . Although such a compound does not have a heavy atom in the molecule, a reverse intersystem crossing from a triplet excited state to a singlet excited state, which cannot normally occur due to a small ⁇ Est, occurs.
  • TADF can ideally emit 100% fluorescence.
  • Non-Patent Document 1 by introducing an electron-withdrawing skeleton such as a cyano group, a sulfonyl group, or triazine and an electron-donating skeleton such as a carbazole or diphenylamino group, LUMO and HOMO Are localized. It is also effective to reduce the change in molecular structure between the ground state and triplet excited state of the compound. As a method for reducing the structural change, for example, making the compound rigid is effective.
  • Rigidity described here means that there are few sites that can move freely in the molecule, for example, by suppressing free rotation in the bond between rings in the molecule or by introducing a condensed ring with a large ⁇ conjugate plane. means. In particular, it is possible to reduce the structural change in the excited state by making the portion involved in light emission rigid.
  • TADF materials have various problems in terms of their light emission mechanism and molecular structure. The following describes some of the problems generally associated with TADF materials.
  • the electronic state of the molecule is a donor / acceptor type molecule in which the HOMO and LUMO sites are separated. It becomes a state close to the inner CT (intramolecular charge transfer state).
  • CT intramolecular charge transfer state
  • Such a stabilization state is not limited to the formation between two molecules, but can also be formed between a plurality of molecules such as three or five molecules. Therefore, the shape of the absorption spectrum and the emission spectrum is broad. In addition, even when a multimolecular assembly exceeding two molecules is not formed, various existence states can be taken depending on the direction and angle of interaction between the two molecules. The shape of the emission spectrum becomes broad.
  • the broad emission spectrum creates two major problems.
  • One problem is that the color purity of the emitted color is lowered. This is not a big problem when applied to lighting applications, but when used for electronic displays, the color gamut is small and the color reproducibility of pure colors is low. It becomes difficult.
  • fluorescence zero-zero band the rising wavelength (referred to as “fluorescence zero-zero band”) on the short wavelength side of the emission spectrum is shortened, that is, the S 1 is increased (the lowest excitation singlet energy is increased). It is to end.
  • the fluorescence zero-zero band is shortened, the phosphorescence zero-zero band derived from T 1 having lower energy than S 1 is also shortened (higher T 1 ). Therefore, the compound used in the host compound in order not to cause reverse energy transfer from the dopant, arises the need to 1 reduction and high T 1 of high S. This is a very big problem.
  • a host compound consisting essentially of an organic compound takes a plurality of active and unstable chemical species such as a cation radical state, an anion radical state, and an excited state in an organic EL device.
  • active and unstable chemical species such as a cation radical state, an anion radical state, and an excited state in an organic EL device.
  • the probability of reverse energy transfer from the triplet excited state of the light emitting material to the host compound due to the length of the existence time. Will increase.
  • the inverse reverse energy transfer from the triplet excited state to the singlet excited state of the originally intended TADF material does not occur sufficiently, and unfavorable reverse energy transfer to the host compound becomes the mainstream, resulting in sufficient luminous efficiency. Inconvenience that cannot be obtained.
  • the present invention includes, as a design philosophy, a light emitting material that suppresses a structural change in an excited state as described above and a light emitting material that has a short triplet excited state.
  • a design philosophy a light emitting material that suppresses a structural change in an excited state as described above and a light emitting material that has a short triplet excited state.
  • HOMO and LUMO are substantially separated in the molecule from the viewpoint of reducing ⁇ Est.
  • the distribution states of these HOMO and LUMO can be obtained from the electron density distribution when the structure is optimized by molecular orbital calculation.
  • the molecular optimization of the luminescent compound by molecular orbital calculation and the calculation of electron density distribution are performed by using molecular orbital calculation software using B3LYP as a functional and 6-31G (d) as a basis function. There is no particular limitation on the software, and any of them can be similarly calculated.
  • Gaussian 09 (Revision C.01, MJ Frisch, et al, Gaussian, Inc., 2010.) manufactured by Gaussian, USA was used as molecular orbital calculation software.
  • “HOMO and LUMO are substantially separated” means that the HOMO orbital distribution calculated by the above molecular calculation and the central part of the LUMO orbital distribution are separated, more preferably the HOMO orbital distribution and the LUMO orbital. This means that the distributions of do not overlap.
  • the separation state of HOMO and LUMO from the above-mentioned structure optimization calculation using B3LYP as the functional and 6-31G (d) as the basis function, the time-dependent density functional method (Time-Dependent DFT) is used.
  • ⁇ Est E (S 1 ) ⁇ E (T 1 ) It is.
  • ⁇ Est calculated using the same calculation method as described above is preferably 0.5 eV or less, more preferably 0.2 eV or less, and further preferably 0.1 eV or less.
  • the lowest excited singlet energy S 1 of the luminescent compound in the present invention is also defined in the present invention as calculated in the same manner as a normal method. That is, a sample to be measured is deposited on a quartz substrate to prepare a sample, and the absorption spectrum (vertical axis: absorbance, horizontal axis: wavelength) of this sample is measured at room temperature (300 K). A tangent line is drawn with respect to the rising edge of the absorption spectrum on the long wavelength side, and is calculated from a predetermined conversion formula based on the wavelength value at the intersection of the tangent line and the horizontal axis.
  • the lowest excited singlet energy S 1 in the present invention is light emission at room temperature (25 ° C.). The peak value of the maximum emission wavelength in the solution state of the active compound was used as an approximate value.
  • the solvent to be used may be a solvent that does not affect the aggregation state of the luminescent compound, that is, a solvent having a small influence of the solvent effect, for example, a nonpolar solvent such as cyclohexane or toluene.
  • the light emission efficiency of the organic EL element is the external extraction quantum efficiency when a constant current (for example, 2.5 mA / cm 2 constant current) is applied in a constant environment (for example, 23 ° C. in a dry nitrogen gas atmosphere). (%) was measured and used as an index of luminous efficiency.
  • a spectral radiance meter CS-1000 manufactured by Konica Minolta was used.
  • Impedance spectroscopy is a technique that can convert subtle changes in physical properties of organic EL into electrical signals or amplify and analyze them, and has high sensitivity resistance (R) and capacitance (C) without destroying organic EL. ) Can be measured.
  • R resistance
  • C capacitance
  • impedance spectroscopy analysis it is common to measure electrical characteristics using Z plot, M plot, and ⁇ plot, and the analysis method is described in “Thin Film Evaluation Handbook” published by Techno System, Inc., pages 423 to 425, etc. It is posted in detail.
  • Organic EL element for example, element configuration “ITO / HIL (hole injection layer) / HTL (hole transport layer) / EML (light emitting layer) / ETL (electron transport layer) / EIL (electron injection layer) / Al”
  • ITO / HIL hole injection layer
  • HTL hole transport layer
  • EML light emitting layer
  • ETL electron transport layer
  • EIL electro injection layer
  • FIG. 8 is an example of an M plot with a different thickness of the electron transport layer. An example in which the layer thickness is 30, 45 and 60 nm, respectively, is shown.
  • the resistance value (R) obtained from this plot is plotted against the ETL layer thickness in FIG. 9, and the resistance value at each layer thickness can be determined because it is on a substantially straight line.
  • FIG. 9 is an example showing the relationship between the ETL layer thickness and the resistance value. From the relationship between the ETL layer thickness and the resistance value (Resistance) in FIG. 9, the resistance value at each layer thickness can be determined because it is on a substantially straight line.
  • FIG. 11 shows the result of analyzing each layer using an organic EL element having an element configuration “ITO / HIL / HTL / EML / ETL / EIL / Al” as an equivalent circuit model (FIG. 10).
  • FIG. 11 is an example showing the resistance-voltage relationship of each layer.
  • FIG. 10 shows an equivalent circuit model of an organic EL element having an element configuration “ITO / HIL / HTL / EML / ETL / EIL / Al”.
  • FIG. 11 is an example of an analysis result of an organic EL element having an element configuration “ITO / HIL / HTL / EML / ETL / EIL / Al”.
  • FIG. 12 shows the respective values at a voltage of 1V.
  • FIG. 12 is an example showing the analysis result of the organic EL element after deterioration.
  • the organic EL device of the present invention is an organic electroluminescence device having at least one organic layer including a light emitting layer sandwiched between an anode and a cathode, and the Stokes shift is in the range of 0 to 0.24 eV in the light emitting layer. And a luminescent compound having a lowest excited singlet energy S 1 of 2.64 eV or more.
  • a luminescent compound having a lowest excited singlet energy S 1 of 2.64 eV or more Each layer and the compound contained in the layer will be described in detail below.
  • Anode / light emitting layer / cathode (2) Anode / light emitting layer / electron transport layer / cathode (3) Anode / hole transport layer / light emitting layer / cathode (4) Anode / hole transport layer / light emitting layer / electron Transport layer / cathode (5) anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (6) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode ( 7) Anode / hole injection layer / hole transport layer / (electron blocking layer /) luminescent layer / (hole blocking layer /) electron transport layer / electron injection layer / cathode Among the above, the configuration of (7) is preferable.
  • the light emitting layer according to the present invention is composed of a single layer or a plurality of layers, and when there are a plurality of light emitting layers, a non-light emitting intermediate layer may be provided between the light emitting layers.
  • a hole blocking layer also referred to as a hole blocking layer
  • an electron injection layer also referred to as a cathode buffer layer
  • An electron blocking layer also referred to as an electron barrier layer
  • a hole injection layer also referred to as an anode buffer layer
  • the electron transport layer according to the present invention is a layer having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. Moreover, you may be comprised by multiple layers.
  • the hole transport layer according to the present invention is a layer having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. Moreover, you may be comprised by multiple layers. In the above-described typical element configuration, the layer excluding the anode and the cathode is also referred to as “organic layer”.
  • the organic EL element according to the present invention may be an element having a so-called tandem structure in which a plurality of light emitting units including at least one light emitting layer are stacked.
  • tandem structure As typical element configurations of the tandem structure, for example, the following configurations can be given.
  • the first light emitting unit, the second light emitting unit and the third light emitting unit are all the same, May be different.
  • Two light emitting units may be the same, and the remaining one may be different.
  • a plurality of light emitting units may be laminated directly or via an intermediate layer, and the intermediate layer is generally an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, an intermediate layer.
  • a known material structure can be used as long as it is also called an insulating layer and has a function of supplying electrons to the anode-side adjacent layer and holes to the cathode-side adjacent layer.
  • Examples of materials used for the intermediate layer include ITO (indium tin oxide), IZO (indium zinc oxide), ZnO 2 , TiN, ZrN, HfN, TiO x , VO x , CuI, InN, GaN, Conductive inorganic compound layers such as CuAlO 2 , CuGaO 2 , SrCu 2 O 2 , LaB 6 , RuO 2 and Al, two-layer films such as Au / Bi 2 O 3 , SnO 2 / Ag / SnO 2 , ZnO / Multi-layer film such as Ag / ZnO, Bi 2 O 3 / Au / Bi 2 O 3 , TiO 2 / TiN / TiO 2 , TiO 2 / ZrN / TiO 2 , fullerenes such as C 60 , conductivity such as oligothiophene Examples include organic material layers, conductive organic compound layers such as metal phthalocyanines, metal-free phthalocyanines, metal porphy
  • tandem organic EL element examples include, for example, US Pat. No. 6,337,492, US Pat. No. 7,420,203, US Pat. No. 7,473,923, US Pat. No. 6,872,472, US Pat. No. 6,107,734. Specification, U.S. Pat. No. 6,337,492, International Publication No.
  • JP-A-2006-228712 JP-A-2006-24791, JP-A-2006-49393, JP-A-2006-49394 JP-A-2006-49396, JP-A-2011-96679, JP-A-2005-340187, JP-A-4711424, JP-A-34968681, JP-A-3884564, JP-A-42131169, JP-A-2010-192719.
  • Examples include constituent materials, but the present invention is not limited to these.
  • the light emitting layer according to the present invention is a layer that provides a field in which electrons and holes injected from an electrode or an adjacent layer are recombined to emit light via excitons, and the light emitting portion is a layer of the light emitting layer. Even within, it may be the interface between the light emitting layer and the adjacent layer.
  • the structure of the light emitting layer according to the present invention is not particularly limited as long as it satisfies the requirements defined in the present invention.
  • the total thickness of the light emitting layer is not particularly limited, but it prevents the uniformity of the film to be formed, the application of unnecessary high voltage during light emission, and the improvement of the stability of the emission color against the drive current.
  • each light emitting layer of the present invention is preferably adjusted to a range of 2 nm to 5 ⁇ m, more preferably adjusted to a range of 2 to 500 nm, and further preferably adjusted to a range of 5 to 200 nm.
  • the thickness of each light emitting layer of the present invention is preferably adjusted to a range of 2 nm to 1 ⁇ m, more preferably adjusted to a range of 2 to 200 nm, and further preferably adjusted to a range of 3 to 150 nm.
  • the light-emitting layer of the present invention contains the above-described light-emitting material as a light-emitting dopant (a light-emitting compound, a light-emitting dopant compound, a dopant compound, also simply referred to as a dopant), and further includes the host compound (matrix material, light-emitting host compound). And simply referred to as a host).
  • a light-emitting dopant a light-emitting compound, a light-emitting dopant compound, a dopant compound, also simply referred to as a dopant
  • the host compound matrix material, light-emitting host compound
  • Luminescent dopant As the luminescent dopant, a fluorescent luminescent dopant (also referred to as a fluorescent luminescent compound, a fluorescent dopant, or a fluorescent compound) and a phosphorescent dopant (phosphorescent compound, phosphorescent dopant, phosphorescence). It is also referred to as a functional compound).
  • a fluorescent luminescent dopant also referred to as a fluorescent luminescent compound, a fluorescent dopant, or a fluorescent compound
  • phosphorescent dopant phosphorescent compound, phosphorescent dopant, phosphorescence
  • It also referred to as a functional compound.
  • at least one light emitting layer contains the aforementioned light emitting material.
  • the concentration of the luminescent dopant in the luminescent layer can be arbitrarily determined based on the specific dopant used and the requirements of the device, and is contained at a uniform concentration in the thickness direction of the luminescent layer. It may also have an arbitrary concentration
  • the luminescent dopant which concerns on this invention may be used in combination of multiple types, and may use it combining the dopants from which a structure differs, and combining the fluorescent luminescent dopant and a phosphorescent luminescent dopant. Thereby, arbitrary luminescent colors can be obtained.
  • the luminescent compound which concerns on this invention acts as an assist dopant.
  • the light emitting layer contains the light emitting compound according to the present invention and a known light emitting compound and does not contain a host compound
  • the light emitting compound according to the present invention preferably acts as a host compound.
  • the mechanism for producing the effect is the same in any case, in that triplet excitons generated on the luminescent compound according to the present invention are converted into singlet excitons by reverse intersystem crossing (RISC). is there.
  • the energy levels of S 1 and T 1 of the light emitting compound according to the present invention are: lower than the energy level of the S 1 and T 1 of the host compound, it is preferably higher than the energy level of the S 1 and T 1 of the known luminescent compound.
  • the light emitting layer contains two components of the light emitting compound according to the present invention and a known light emitting compound
  • the energy levels of S 1 and T 1 of the light emitting compound according to the present invention are known. higher than the energy level of the S 1 and T 1 of the luminescent compound.
  • FIG. 1B and FIG. 1C are schematic views when the light-emitting compound according to the present invention acts as an assist dopant and a host compound, respectively.
  • FIGS. 1B and 1C are examples, and the generation process of triplet excitons generated on the light-emitting compound according to the present invention is not limited to electric field excitation. Electronic transfer and the like are also included.
  • a fluorescent compound is used as a light-emitting material, but the present invention is not limited to this, and a phosphorescent compound may be used, or a fluorescent compound and phosphorescent light emission may be used. Both of the functional compounds may be used.
  • the light emitting layer contains a host compound at a mass ratio of 100% or more with respect to the light emitting compound according to the present invention, and the fluorescent light emitting compound and / or phosphorescent light emission.
  • the luminescent compound is preferably contained in a mass ratio of 0.1 to 50% with respect to the luminescent compound according to the present invention. That is, when the luminescent compound according to the present invention is used as an assist dopant, fluorescence resonance energy transfer (FRET) can be efficiently performed to the fluorescent luminescent compound and / or the phosphorescent luminescent compound in this concentration range. .
  • FRET fluorescence resonance energy transfer
  • the light-emitting layer has a mass ratio of 0.1 to 50% of the fluorescent luminescent compound and / or the phosphorescent luminescent compound with respect to the luminescent compound according to the present invention. It is preferable to contain within the range. Within this concentration range, the luminescent compound according to the present invention can preferably interact with the fluorescent compound and / or the phosphorescent compound.
  • the light emission color of the organic EL device of the present invention and the compound of the present invention is shown in FIG. 14.16 on page 108 of “New Color Science Handbook” (Edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with a total of CS-1000 (manufactured by Konica Minolta Co., Ltd.) is applied to the CIE chromaticity coordinates.
  • the light emitting layer of one layer or a plurality of layers contains a plurality of light emitting dopants having different emission colors and emits white light.
  • the luminescent compound according to the present invention is preferably a compound having a structure represented by the following general formula (1).
  • the luminescent compound according to the present invention includes those that emit fluorescence, those that emit phosphorescence, and those that emit delayed fluorescence.
  • A, B and C each independently represent a single bond or a linking group containing a carbon atom, a silicon atom or an oxygen atom.
  • Ar 1 and Ar 2 each independently represent an aromatic hydrocarbon ring group or an aromatic heterocyclic group which may be condensed. Ar 1 and Ar 2 may be the same.
  • k represents a natural number, and when k is 2 or more, each A may be different.
  • m is 0 or a natural number, and when m is 2 or more, each B may be different.
  • n represents 0 or a natural number, and when n is 2 or more, each C may be different.
  • A, B, and C may each independently connect Ar 1 and Ar 2 with a single bond, or may form Ar 1 and Ar 2 by forming a condensed ring.
  • the luminescent compound has a non-planar electron conjugated structure, which weakens the planar interaction between molecules such as ⁇ stacking and reduces the cohesiveness between the luminescent compounds, thereby reducing the element. This is preferable because the effect of improving the light emission performance and the stability of the thin film can be obtained.
  • the luminescent compound according to the present invention is preferably a compound having a structure represented by the following general formula (2).
  • Ar 1 ′, Ar 1 ′′, Ar 2 ′ and Ar 2 ′′ may be the same or different and each independently an aromatic hydrocarbon ring group which may be condensed or Represents an aromatic heterocyclic group, and may further have a substituent.
  • Ar 1 ′ and Ar 1 ′′ and Ar 2 ′ and Ar 2 ′′ may be condensed.
  • a, b, c and d each represents 0 or a natural number. Either a or b represents a natural number. Either c or d represents a natural number.
  • Ar 1 represents a single bond or a divalent linking group linked to "Ar 1 and 'Ar 1 is to form a L 1 and L 2 and condensed Also good.
  • Ar 2 represents a single bond or a divalent linking group linking the "Ar 2 and 'Ar 2 is to form a condensed ring and L 3 and L 4 Also good.
  • each L 1 , L 2 , L 3 , and L 4 may be the same or different.
  • k and m each represents 0 or a natural number. Either k or m represents a natural number.
  • a and B represent a single bond or a divalent linking group.
  • k and m are 2 or more, each A and B may be the same or different.
  • Ar 1 ′, Ar 2 ′ and A may form a condensed ring, and Ar 1 ′′, Ar 2 ′′ and B may form a condensed ring.
  • the luminescent compound according to the present invention is preferably a compound having a structure represented by the following general formula (3).
  • a and B each independently represent a single bond or a linking group containing a carbon atom or a silicon atom.
  • Two anthracene rings connected by A or B, or both may form a condensed ring by R 1 , R 9 and A or R 7 , R 15 and B.
  • k represents a natural number. When k is 2 or more, each A may be different.
  • R 1 to R 16 each represent a substituted or unsubstituted aliphatic hydrocarbon group or a substituted or unsubstituted aromatic hydrocarbon group, and each may form a ring.
  • R 1 to R 16 may be a heteroaromatic hydrocarbon group containing a nitrogen atom, an oxygen atom or a sulfur atom in each substituent.
  • n 0 or a natural number, and when m is 2 or more, each B may be different.
  • Two anthracene rings connected by A, B, or both may each independently have a non-planar electron conjugated structure, and may form a single aromatic ring as a whole. Good.
  • the luminescent compound according to the present invention is preferably a compound having a structure represented by the following general formula (4).
  • X represents boron, carbon, nitrogen, oxygen, sulfur or silicon.
  • X may have a hydrogen atom or a substituent.
  • R 17 to R 28 each independently represents a hydrogen atom or a substituent.
  • Two aromatic rings connected by A or B, or both may form a ring structure using any of R 17 to R 28 , A, and B that can form a condensed ring.
  • k and m each represents 0 or a natural number. Either k or m represents a natural number.
  • a and B each represent a single bond or a divalent linking group. When k or m is 2 or more, each A and B may be the same or different.
  • Two aromatic rings connected by A and / or B may each independently have a non-planar electron conjugated structure, or may form a single aromatic ring as a whole. Good.
  • the luminescent compound according to the present invention is preferably a compound having a structure represented by the following general formula (5).
  • X represents boron, carbon, nitrogen, oxygen, sulfur or silicon.
  • X may have a hydrogen atom or a substituent.
  • R 29 to R 40 each represents a hydrogen atom or a substituent.
  • Two aromatic rings connected by A or B, or both may form a ring structure using R 29 to R 40 , A and B which can form a condensed ring.
  • k and m represent 0 or a natural number. Either k or m represents a natural number.
  • a and B represent a single bond or a divalent linking group. When k or m is 2 or more, each A and B may be the same or different.
  • Two aromatic rings connected by A and / or B may each independently have a non-planar electron conjugated structure, or may form a single aromatic ring as a whole. Good.
  • the phosphorescent dopant (hereinafter also referred to as “phosphorescent dopant”) used in the present invention will be described.
  • the phosphorescent dopant used in the present invention is a compound in which light emission from an excited triplet is observed, specifically, a compound that emits phosphorescence at room temperature (25 ° C.), and a phosphorescence quantum yield. Is defined as a compound of 0.01 or more at 25 ° C., but a preferable phosphorescence quantum yield is 0.1 or more.
  • the phosphorescence quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of Experimental Chemistry Course 4 of the 4th edition.
  • the phosphorescence dopant used in the present invention achieves the phosphorescence quantum yield (0.01 or more) in any solvent. Just do it.
  • the phosphorescent dopant can be appropriately selected from known materials used for the light emitting layer of the organic EL device. Specific examples of known phosphorescent dopants that can be used in the present invention include compounds described in the following documents. Nature 395, 151 (1998), Appl. Phys. Lett. 78, 1622 (2001), Adv. Mater. 19, 739 (2007), Chem. Mater. 17, 3532 (2005), Adv. Mater. 17, 1059 (2005), International Publication No. 2009/100991, International Publication No.
  • Patent Application Publication No. 2006/0263635 U.S. Patent Application Publication No. 2003/0138657, U.S. Patent Application Publication No. 2003/0152802, U.S. Patent No. 7090928, Angew. Chem. lnt. Ed. 47, 1 (2008), Chem. Mater. 18, 5119 (2006), Inorg. Chem. 46, 4308 (2007), Organometallics 23, 3745 (2004), Appl. Phys. Lett. 74, 1361 (1999), International Publication No. 2002/002714, International Publication No. 2006/009024, International Publication No. 2006/056418, International Publication No. 2005/019373, International Publication No. 2005/123873, International Publication No.
  • a preferable phosphorescent dopant includes an organometallic complex having Ir as a central metal. More preferably, a complex containing at least one coordination mode of metal-carbon bond, metal-nitrogen bond, metal-oxygen bond, and metal-sulfur bond is preferable.
  • the host compound used in the present invention is a compound mainly responsible for charge injection and transport in the light emitting layer, and its own light emission is not substantially observed in the organic EL device.
  • the host compound preferably has a mass ratio in the layer of 20% or more among the compounds contained in the light emitting layer.
  • a host compound may be used independently or may be used in combination of multiple types. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient.
  • the host compound that is preferably used in the present invention will be described below.
  • the host compound is responsible for carrier transport and exciton generation in the light emitting layer. Therefore, it can exist stably in all active species states such as cation radical state, anion radical state, and excited state, and does not cause chemical changes such as decomposition and addition reaction. It is preferable not to move at the angstrom level.
  • the light-emitting dopant used in combination exhibits TADF light emission
  • the T 1 energy of the host compound itself is high, and the host compounds are associated with each other.
  • the host compound does not have a low T 1 , such as not creating a low T 1 state
  • TADF material and the host compound do not form an exciplex, or the host compound does not form an electromer due to an electric field.
  • Appropriate design is required.
  • the host compound itself must have high electron hopping mobility, high hole hopping movement, and small structural change when it is in a triplet excited state. It is.
  • host compounds that satisfy these requirements include high ⁇ -energy conjugated skeletons with high T 1 energy, such as carbazole skeleton, azacarbazole skeleton, dibenzofuran skeleton, dibenzothiophene skeleton, or azadibenzofuran skeleton. What has as a partial structure is mentioned preferably.
  • the light-emitting layer contains a carbazole derivative, it is possible to promote appropriate carrier hopping and dispersion of the light-emitting material in the light-emitting layer, and the effect of improving the light-emitting performance of the device and the stability of the thin film can be obtained. Therefore, it is preferable.
  • aryl includes not only an aromatic hydrocarbon ring but also an aromatic heterocyclic ring. More preferably, it is a compound in which a carbazole skeleton and a 14 ⁇ -electron aromatic heterocyclic compound having a molecular structure different from that of the carbazole skeleton are directly bonded, and further a 14 ⁇ -electron aromatic heterocyclic compound is incorporated in the molecule.
  • a carbazole derivative having at least one is preferred.
  • the carbazole derivative is preferably a compound having two or more conjugated structures having 14 ⁇ electrons or more in order to further enhance the effects of the present invention.
  • the compound represented by the following general formula (I) is also preferable. This is because the compound represented by the following general formula (I) has a condensed ring structure, and therefore a ⁇ electron cloud spreads, the carrier transportability is high, and the glass transition temperature (Tg) is high. Further, generally, the condensed aromatic ring tends to have a small triplet energy (T 1 ), but the compound represented by the general formula (I) has a high T 1 and has a short emission wavelength (that is, T 1). and larger S 1) it can be suitably used also for the light emitting material.
  • X 101 represents NR 101 , an oxygen atom, a sulfur atom, CR 102 R 103 or SiR 102 R 103 .
  • y 1 to y 8 each represents CR 104 or a nitrogen atom.
  • R 101 to R 104 each represent a hydrogen atom or a substituent, and may be bonded to each other to form a ring.
  • Ar 101 and Ar 102 each represent an aromatic ring and may be the same or different.
  • n101 and n102 represents an each an integer of 0 to 4, when R 101 is a hydrogen atom, n101 represents 1-4.
  • R 101 to R 104 represent hydrogen or a substituent, and the substituent referred to here refers to what may be contained within a range that does not inhibit the function of the host compound of the present invention. In the case where the above substituent is introduced, the compound having the effect of the present invention is defined as being included in the present invention.
  • Examples of the substituent represented by each of R 101 to R 104 include linear or branched alkyl groups (for example, methyl group, ethyl group, propyl group, isopropyl group, t-butyl group, pentyl group, hexyl group, octyl group).
  • alkenyl group eg, vinyl group, allyl group, etc.
  • alkynyl group eg, ethynyl group, propargyl group, etc.
  • aromatic hydrocarbon ring group aromatic Also referred to as carbocyclic group, aryl group, etc.
  • benzene ring biphenyl, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, triphenylene ring, o-terphenyl ring, m- Terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, indene ring, fluorene ring A group derived from a fluoranthrene ring, a naphthacene ring, a pentacene ring, a perylene ring, a pentaphen ring, a picene ring, a pyrene ring, a pyrantolen ring, an anthraanthrene ring, tetralin, etc.), an aromatic heterocyclic group (for example, a furan
  • azacarbazole ring non-aromatic hydrocarbon ring group (eg, cyclopentyl group, cyclohexyl group, etc.), non-aromatic heterocyclic group (eg, pyrrolidyl group, imidazolidyl group, morpholyl group, oxazolidyl) Group), alkoxy group (for example, methoxy group, ethoxy group, propyloxy group, pentyloxy group, hexyloxy group, octyloxy group, dodecyloxy group, etc.), cycloalkoxy group (for example, cyclopentyloxy group, cyclohexyloxy group) Etc.), aryloxy group (for example, phenoxy group, naphthyloxy group) Etc.), alkylthio groups (eg, methylthio group, e
  • substituents may be further substituted with the above substituents.
  • a plurality of these substituents may be bonded to each other to form a ring.
  • y 1 to y 8 in the general formula (I) preferably at least three of y 1 to y 4 or at least three of y 5 to y 8 are represented by CR 102 , more preferably y 1 to y 8 are all CR 102 .
  • Such a skeleton is excellent in hole transport property or electron transport property, and can efficiently recombine and emit holes / electrons injected from the anode / cathode in the light emitting layer.
  • a compound in which X 101 is NR 101 , an oxygen atom, or a sulfur atom in general formula (I) is preferable as a structure having a shallow LUMO energy level and excellent electron transport properties. More preferably, the condensed ring formed with X 101 and y 1 to y 8 is a carbazole ring, an azacarbazole ring, a dibenzofuran ring or an azadibenzofuran ring.
  • R 101 is an aromatic hydrocarbon ring which is a ⁇ -conjugated skeleton among the substituents mentioned above. It is preferably a group or an aromatic heterocyclic group. Further, these R 101 may be further substituted with the substituents represented by R 101 to R 103 described above.
  • examples of the aromatic ring represented by Ar 101 and Ar 102 include an aromatic hydrocarbon ring and an aromatic heterocyclic ring. The aromatic ring may be a single ring or a condensed ring, and may be unsubstituted or may have a substituent similar to the substituents represented by R 101 to R 104 described above.
  • examples of the aromatic hydrocarbon ring represented by Ar 101 and Ar 102 include the aromatic hydrocarbon rings exemplified as the substituents represented by R 101 to R 104 described above. Examples include the same ring as the group.
  • examples of the aromatic heterocycle represented by Ar 101 and Ar 102 include the substituents represented by R 101 to R 104 described above. The same ring as an aromatic heterocyclic group is mentioned.
  • the aromatic ring itself represented by Ar 101 and Ar 102 preferably has a high T 1
  • the benzene ring (Including polyphenylene skeletons (biphenyl, terphenyl, quarterphenyl, etc.) with multiple benzene rings), fluorene ring, triphenylene ring, carbazole ring, azacarbazole ring, dibenzofuran ring, azadibenzofuran ring, dibenzothiophene ring, dibenzothiophene ring
  • each of the aromatic rings represented by Ar 101 and Ar 102 is preferably a condensed ring having three or more rings. .
  • these rings may further have the above substituent.
  • Specific examples of the aromatic heterocycle condensed with three or more rings include an acridine ring, a benzoquinoline ring, a carbazole ring, a carboline ring, a phenazine ring, a phenanthridine ring, a phenanthroline ring, a carboline ring, a cyclazine ring, Kindin ring, tepenidine ring, quinindrin ring, triphenodithiazine ring, triphenodioxazine ring, phenanthrazine ring, anthrazine ring, perimidine ring, diazacarbazole ring (any one of the carbon atoms constituting the carboline ring is a nitrogen atom Phenanthroline ring, dibenzofuran ring, dibenzothiophene ring, naphthofuran ring, naphthothiophene ring
  • n101 and n102 are each preferably 0 to 2, more preferably n101 + n102 is 1 to 3. Furthermore, since the R 101 is the n101 and n102 when the hydrogen atom is 0 at the same time, the general formula (I) only a low Tg small molecular weight of the host compounds represented by not achievable, when R 101 is a hydrogen atom N101 represents 1 to 4.
  • the carbazole derivative is preferably a compound having a structure represented by the general formula (II). This is because such a compound tends to have particularly excellent carrier transportability.
  • X 101, Ar 101, Ar 102, n102 have the same meanings as X 101, Ar 101, Ar 102 , n102 in the formula (I).
  • n102 is preferably 0 to 2, more preferably 0 or 1.
  • the condensed ring formed containing X 101 may further have a substituent other than Ar 101 and Ar 102 as long as the function of the host compound of the present invention is not inhibited.
  • the compound represented by the general formula (II) is preferably represented by the following general formula (III-1), (III-2) or (III-3).
  • X 101, Ar 102, n102 have the same meanings as X 101, Ar 102, n102 in the general formula (II).
  • the condensed ring, carbazole ring and benzene ring formed containing X 101 further have a substituent as long as the function of the host compound of the present invention is not inhibited. You may do it.
  • examples of the host compound used in the present invention include compounds represented by the general formulas (I), (II), (III-1) to (III-3) and other structures. It is not limited to these.
  • Z 1 to Z 3 and R 41 to R 46 each independently represent a hydrogen atom or a substituent. However, at least one of Z 1 to Z 3 and R 41 to R 46 represents an aromatic ring group having a 14 ⁇ electron system or more. Further, adjacent substituents may be condensed with each other to form a ring structure.
  • At least one of Z 1 to Z 3 is preferably a substituted or unsubstituted dibenzofuran ring in order to further enhance the effects of the present invention.
  • the preferred host compound used in the present invention may be a low molecular compound having a molecular weight that can be purified by sublimation or a polymer having a repeating unit.
  • a low molecular weight compound sublimation purification is possible, so that there is an advantage that purification is easy and a high-purity material is easily obtained.
  • the molecular weight is not particularly limited as long as sublimation purification is possible, but the preferred molecular weight is 3000 or less, more preferably 2000 or less.
  • the polymer used as the host compound of the present invention is not particularly limited as long as the desired device performance can be achieved, but preferably the general formulas (I), (II), (III-1) to (III-3) , (SH) having a main chain or a side chain is preferable.
  • the general formulas (I), (II), (III-1) to (III-3) , (SH) having a main chain or a side chain is preferable.
  • molecular weight Molecular weight 5000 or more is preferable or a thing with 10 or more repeating units is preferable.
  • the host compound has a hole transporting ability or an electron transporting ability, prevents the emission of light from being long-wavelength, and is stable with respect to heat generated when the organic EL element is driven at a high temperature or during the driving of the element.
  • Tg glass transition temperature
  • Tg is preferably 90 ° C. or higher, more preferably 120 ° C. or higher.
  • the glass transition point (Tg) is a value determined by a method based on JIS K 7121-2012 using DSC (Differential Scanning Colorimetry).
  • the electron transport layer is made of a material having a function of transporting electrons, and may have a function of transmitting electrons injected from the cathode to the light emitting layer.
  • the total thickness of the electron transport layer of the present invention is not particularly limited, but is usually in the range of 2 nm to 5 ⁇ m, more preferably 2 to 500 nm, and further preferably 5 to 200 nm.
  • the organic EL element when the light generated in the light emitting layer is extracted from the electrode, the light extracted directly from the light emitting layer interferes with the light extracted after being reflected by the electrode from which the light is extracted and the electrode located at the counter electrode. It is known to wake up.
  • the electron mobility of the electron transport layer is preferably 10 ⁇ 5 cm 2 / Vs or more.
  • the material used for the electron transport layer may be any of electron injecting or transporting properties and hole blocking properties, and can be selected from conventionally known compounds. Can be selected and used.
  • nitrogen-containing aromatic heterocyclic derivatives (carbazole derivatives, azacarbazole derivatives (one or more carbon atoms constituting the carbazole ring are substituted with nitrogen atoms), pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, pyridazine derivatives, Triazine derivatives, quinoline derivatives, quinoxaline derivatives, phenanthroline derivatives, azatriphenylene derivatives, oxazole derivatives, thiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, triazole derivatives, benzimidazole derivatives, benzoxazole derivatives, benzthiazole derivatives, etc.), dibenzofuran derivatives, Dibenzothiophene derivatives, silole derivatives, aromatic hydrocarbon ring derivatives (naphthalene derivatives, anthracene derivatives, triphenylene derivatives, etc.) It is.
  • a metal complex having a quinolinol skeleton or a dibenzoquinolinol skeleton as a ligand such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7- Dibromo-8-quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
  • a metal complex in which the central metal is replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as the electron transport material.
  • metal-free or metal phthalocyanine or those in which the terminal thereof is substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transport material.
  • the distyrylpyrazine derivative exemplified as the material for the light emitting layer can also be used as an electron transport material, and an inorganic semiconductor such as n-type-Si, n-type-SiC, etc. as in the case of the hole injection layer and the hole transport layer. Can also be used as an electron transporting material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • the electron transport layer may be doped with a doping material as a guest material to form an electron transport layer having a high n property (electron rich).
  • the doping material include n-type dopants such as metal complexes and metal compounds such as metal halides.
  • Specific examples of the electron transport layer having such a structure include, for example, JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J. Pat. Appl. Phys. , 95, 5773 (2004) and the like.
  • More preferable electron transport materials in the present invention include aromatic heterocyclic compounds containing at least one nitrogen atom.
  • aromatic heterocyclic compounds containing at least one nitrogen atom For example, pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, triazine derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, azadibenzofuran derivatives. , Azadibenzothiophene derivatives, carbazole derivatives, azacarbazole derivatives, benzimidazole derivatives, and the like.
  • the electron transport material may be used alone or in combination of two or more.
  • the hole blocking layer is a layer having a function of an electron transport layer in a broad sense, and is preferably made of a material having a function of transporting electrons while having a small ability to transport holes, and transporting electrons while transporting holes. The probability of recombination of electrons and holes can be improved by blocking.
  • the structure of the electron carrying layer mentioned above can be used as a hole-blocking layer concerning this invention as needed.
  • the hole blocking layer provided in the organic EL device of the present invention is preferably provided adjacent to the cathode side of the light emitting layer.
  • the layer thickness of the hole blocking layer according to the present invention is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
  • the material used for a hole-blocking layer the material used for the above-mentioned electron carrying layer is used preferably, and the material used as the above-mentioned host compound is also preferably used for a hole-blocking layer.
  • the electron injection layer (also referred to as “cathode buffer layer”) according to the present invention is a layer provided between the cathode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance. It is described in detail in Chapter 2 “Electrode Materials” (pages 123 to 166) of the second edition of “The Forefront of Industrialization (issued by NTT Corporation on November 30, 1998)”.
  • the electron injection layer may be provided as necessary, and may be present between the cathode and the light emitting layer or between the cathode and the electron transport layer as described above.
  • the electron injection layer is preferably a very thin film, and the layer thickness is preferably in the range of 0.1 nm to 5 nm, depending on the material. Moreover, the nonuniform layer (film
  • JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like Specific examples of materials preferably used for the electron injection layer are as follows. , Metals typified by strontium and aluminum, alkali metal compounds typified by lithium fluoride, sodium fluoride, potassium fluoride, etc., alkaline earth metal compounds typified by magnesium fluoride, calcium fluoride, etc., oxidation Examples thereof include metal oxides typified by aluminum, metal complexes typified by 8-hydroxyquinolinate lithium (Liq), and the like. Further, the above-described electron transport material can also be used. Moreover, the material used for said electron injection layer may be used independently, and may be used in combination of multiple types.
  • the hole transport layer is made of a material having a function of transporting holes and may have a function of transmitting holes injected from the anode to the light emitting layer.
  • the total thickness of the hole transport layer of the present invention is not particularly limited, but is usually in the range of 5 nm to 5 ⁇ m, more preferably 2 to 500 nm, and further preferably 5 to 200 nm.
  • a material used for the hole transport layer hereinafter referred to as a hole transport material
  • any material that has either a hole injection property or a transport property or an electron barrier property may be used. Any one can be selected and used.
  • porphyrin derivatives for example, porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkane derivatives, triarylamine derivatives, carbazole derivatives , Indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives, and polyvinyl carbazole, polymeric materials or oligomers with aromatic amines introduced into the main chain or side chain, polysilane, conductive And polymer (for example, PEDOT / PSS, aniline copolymer, polyaniline, polythiophene, etc.).
  • PEDOT / PSS aniline copolymer, poly
  • Examples of the triarylamine derivative include a benzidine type typified by ⁇ -NPD, a starburst type typified by MTDATA, and a compound having fluorene or anthracene in the triarylamine linking core part.
  • hexaazatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as hole transport materials.
  • a hole transport layer having a high p property doped with impurities can be used. Examples thereof include JP-A-4-297076, JP-A-2000-196140, and JP-A-2001-102175. Appl. Phys. 95, 5773 (2004), and the like.
  • JP-A-11-251067, J. Org. Huang et. al. It is also possible to use so-called p-type hole transport materials and inorganic compounds such as p-type-Si and p-type-SiC, as described in the literature (Applied Physics Letters 80 (2002), p. 139). Further, ortho-metalated organometallic complexes having Ir or Pt as the central metal as typified by Ir (ppy) 3 are also preferably used.
  • the above-mentioned materials can be used as the hole transport material, a triarylamine derivative, a carbazole derivative, an indolocarbazole derivative, an azatriphenylene derivative, an organometallic complex, or an aromatic amine is introduced into the main chain or side chain.
  • the polymer materials or oligomers used are preferably used.
  • the electron blocking layer is a layer having a function of a hole transport layer in a broad sense, and is preferably made of a material having a function of transporting holes and a small ability to transport electrons, and transporting electrons while transporting holes. The probability of recombination of electrons and holes can be improved by blocking.
  • the structure of the positive hole transport layer mentioned above can be used as an electron blocking layer according to the present invention, if necessary.
  • the electron blocking layer provided in the organic EL device of the present invention is preferably provided adjacent to the anode side of the light emitting layer.
  • the thickness of the electron blocking layer according to the present invention is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
  • the material used for the electron blocking layer the material used for the above-described hole transport layer is preferably used, and the material used as the above-described host compound is also preferably used for the electron blocking layer.
  • the hole injection layer (also referred to as “anode buffer layer”) according to the present invention is a layer provided between the anode and the light emitting layer for the purpose of lowering the driving voltage and improving the light emission luminance. It is described in detail in Volume 2, Chapter 2, “Electrode Materials” (pages 123 to 166) of “The Forefront of Industrialization (issued by NTT Corporation on November 30, 1998)”.
  • the hole injection layer may be provided as necessary, and may be present between the anode and the light emitting layer or between the anode and the hole transport layer as described above.
  • the details of the hole injection layer are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, etc.
  • materials used for the hole injection layer include: Examples include materials used for the hole transport layer described above. Among them, phthalocyanine derivatives typified by copper phthalocyanine, hexaazatriphenylene derivatives, metal oxides typified by vanadium oxide, amorphous carbon as described in JP-T-2003-519432 and JP-A-2006-135145, etc.
  • the materials used for the hole injection layer described above may be used alone or in combination of two or more.
  • the organic layer in the present invention described above may further contain other additives.
  • the additive include halogen elements such as bromine, iodine and chlorine, halogenated compounds, alkali metals such as Pd, Ca and Na, alkaline earth metals, transition metal compounds, complexes, and salts.
  • the content of the additive can be arbitrarily determined, but is preferably 1000 ppm or less, more preferably 500 ppm or less, and further preferably 50 ppm or less with respect to the total mass% of the contained layer. . However, it is not within this range depending on the purpose of improving the transportability of electrons and holes or the purpose of favoring the exciton energy transfer.
  • a method for forming the organic layer (hole injection layer, hole transport layer, light emitting layer, hole blocking layer, electron transport layer, electron injection layer, etc.) of the present invention will be described.
  • the method for forming the organic layer of the present invention is not particularly limited, and a conventionally known method such as a vacuum deposition method or a wet method (also referred to as a wet process) can be used.
  • a wet method also referred to as a wet process
  • the wet method include spin coating method, casting method, ink jet method, printing method, die coating method, blade coating method, roll coating method, spray coating method, curtain coating method, and LB method (Langmuir-Blodgett method).
  • a method with high roll-to-roll method suitability such as a die coating method, a roll coating method, an ink jet method and a spray coating method is preferable.
  • the liquid medium for dissolving or dispersing the organic EL material used in the present invention include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, Aromatic hydrocarbons such as mesitylene and cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane, and organic solvents such as DMF and DMSO can be used.
  • ketones such as methyl ethyl ketone and cyclohexanone
  • fatty acid esters such as ethyl acetate
  • halogenated hydrocarbons such as dichlorobenz
  • dispersion method it can disperse
  • the vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 to 450 ° C., a degree of vacuum of 10 ⁇ 6 to 10 ⁇ 2 Pa, and a vapor deposition rate of 0.01 to It is desirable to select appropriately within a range of 50 nm / second, a substrate temperature of ⁇ 50 to 300 ° C., and a layer (film) thickness of 0.1 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the organic layer of the present invention is preferably formed from the hole injection layer to the cathode consistently by a single evacuation, but may be taken out halfway and subjected to different film forming methods. In that case, it is preferable to perform the work in a dry inert gas atmosphere.
  • anode As the anode in the organic EL element, a material having a work function (4 eV or more, preferably 4.5 eV or more) of a metal, an alloy, an electrically conductive compound, or a mixture thereof is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • a thin film may be formed by vapor deposition or sputtering of these electrode materials, and a pattern of a desired shape may be formed by photolithography, or when pattern accuracy is not required (about 100 ⁇ m or more) A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • a wet film formation method such as a printing method or a coating method can also be used.
  • the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness of the anode depends on the material, it is usually selected in the range of 10 nm to 1 ⁇ m, preferably 10 to 200 nm.
  • cathode As the cathode, a material having a work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, aluminum, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the emission luminance is advantageously improved.
  • a transparent or translucent cathode can be produced by producing a conductive transparent material mentioned in the description of the anode on the cathode after producing the above metal with a thickness of 1 to 20 nm.
  • the support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention is not particularly limited in the type of glass, plastic, etc., and is transparent. Or opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefin resins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic, polyarylate, Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by J
  • the surface of the resin film may be formed with an inorganic film, an organic film, or a hybrid film of both, and the water vapor permeability (25 ⁇ 0.5 ° C.) measured by a method according to JIS K 7129-1992.
  • Relative humidity (90 ⁇ 2)% RH) is preferably 0.01 g / m 2 ⁇ 24 h or less, and further, oxygen permeability measured by a method according to JIS K 7126-1987.
  • it is preferably a high-barrier film having 1 ⁇ 10 ⁇ 3 ml / m 2 ⁇ 24 h ⁇ atm or less and a water vapor permeability of 1 ⁇ 10 ⁇ 5 g / m 2 ⁇ 24 h or less.
  • any material may be used as long as it has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
  • the method for forming the barrier film is not particularly limited.
  • vacuum deposition sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma polymerization
  • a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
  • the opaque support substrate examples include metal plates such as aluminum and stainless steel, films, opaque resin substrates, and ceramic substrates.
  • the external extraction quantum efficiency at room temperature (25 ° C.) of light emission of the organic EL device of the present invention is preferably 1% or more, and more preferably 5% or more.
  • external extraction quantum efficiency (%) number of photons emitted to the outside of the organic EL element / number of electrons flowed to the organic EL element ⁇ 100.
  • a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination.
  • sealing means used for sealing the organic EL element of the present invention include a method of bonding a sealing member, an electrode, and a support substrate with an adhesive.
  • a sealing member it should just be arrange
  • transparency and electrical insulation are not particularly limited. Specific examples include a glass plate, a polymer plate / film, and a metal plate / film. Examples of the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • polymer plate examples include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • metal plate examples include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • a polymer film and a metal film can be preferably used because the organic EL element can be thinned.
  • the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 ml / m 2 ⁇ 24 h or less, and measured by a method according to JIS K 7129-1992.
  • the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity 90 ⁇ 2%) is preferably 1 ⁇ 10 ⁇ 3 g / m 2 ⁇ 24 h or less.
  • the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to.
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • an organic EL element may deteriorate by heat processing, what can be adhesive-hardened from room temperature to 80 degreeC is preferable.
  • a desiccant may be dispersed in the adhesive.
  • coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
  • the electrode and the organic layer are coated on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film.
  • the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.
  • vacuum deposition sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma
  • a combination method a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase.
  • a vacuum can also be used.
  • a hygroscopic compound can also be enclosed inside. Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
  • metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.
  • perchloric acids eg perchloric acid Barium, magnesium perchlorate, and the like
  • anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
  • a protective film or a protective plate may be provided outside the sealing film or the sealing film on the side facing the support substrate with the organic layer interposed therebetween.
  • the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate.
  • the same glass plate, polymer plate / film, metal plate / film, etc. used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
  • An organic EL element emits light inside a layer having a refractive index higher than that of air (within a refractive index of about 1.6 to 2.1), and is about 15% to 20% of light generated in the light emitting layer. It is generally said that it can only be taken out. This is because light incident on the interface (interface between the transparent substrate and air) at an angle ⁇ greater than the critical angle causes total reflection and cannot be taken out of the device, This is because light is totally reflected between the light and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the side surface of the device.
  • a technique for improving the light extraction efficiency for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the transparent substrate and the air interface (for example, US Pat. No. 4,774,435), A method for improving efficiency by providing light condensing property (for example, Japanese Patent Laid-Open No. 63-134795), a method for forming a reflective surface on the side surface of an element (for example, Japanese Patent Laid-Open No. 1-220394), a substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the substrate and the light emitter (for example, Japanese Patent Laid-Open No.
  • these methods can be used in combination with the organic EL device of the present invention.
  • a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, transparent A method of forming a diffraction grating between any layers of the electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
  • by combining these means it is possible to obtain an element having higher luminance or durability.
  • the low refractive index layer include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally in the range of about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Furthermore, it is preferable that it is 1.35 or less.
  • the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave exuded by evanescent enters the substrate.
  • the method of introducing a diffraction grating into an interface that causes total reflection or in any medium has a feature that the effect of improving the light extraction efficiency is high.
  • This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction, such as first-order diffraction or second-order diffraction.
  • the light that cannot be emitted due to total internal reflection between layers is diffracted by introducing a diffraction grating into any layer or medium (in the transparent substrate or transparent electrode). , Trying to extract light out.
  • the introduced diffraction grating desirably has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. The light extraction efficiency does not increase so much. However, by making the refractive index distribution a two-dimensional distribution, light traveling in all directions is diffracted, and light extraction efficiency is increased.
  • the position where the diffraction grating is introduced may be in any of the layers or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.
  • the period of the diffraction grating is preferably in the range of about 1/2 to 3 times the wavelength of light in the medium.
  • the arrangement of the diffraction gratings is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb lattice.
  • the organic EL element of the present invention can be processed to provide a structure on a microlens array, for example, on the light extraction side of a support substrate (substrate), or combined with a so-called condensing sheet, for example, in a specific direction, for example, the element Condensing light in the front direction with respect to the light emitting surface can increase the luminance in a specific direction.
  • a microlens array quadrangular pyramids having a side of 30 ⁇ m and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate. One side is preferably within a range of 10 to 100 ⁇ m.
  • the condensing sheet for example, a sheet that is put into practical use in an LED backlight of a liquid crystal display device can be used.
  • a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used.
  • the shape of the prism sheet for example, a substrate may be formed with a ⁇ -shaped stripe having an apex angle of 90 degrees and a pitch of 50 ⁇ m, or the apex angle is rounded and the pitch is changed randomly. Other shapes may also be used.
  • a light-diffusion plate and a film together with a condensing sheet For example, a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
  • the organic EL element of the present invention can be used as an electronic device such as a display device, a display, and various light emitting devices.
  • light emitting devices include lighting devices (home lighting, interior lighting), clocks and backlights for liquid crystals, billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light Although the light source of a sensor etc. are mentioned, It is not limited to this, Especially, it can use effectively for the use as a backlight of a liquid crystal display device, and a light source for illumination.
  • patterning may be performed by a metal mask, an ink jet printing method, or the like as needed during film formation. In the case of patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned. In the fabrication of the element, a conventionally known method is used. Can do.
  • the light emission color of the organic EL device of the present invention and the compound of the present invention is shown in FIG. 14.16 on page 108 of “New Color Science Handbook” (Edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with a total of CS-1000 (manufactured by Konica Minolta Co., Ltd.) is applied to the CIE chromaticity coordinates.
  • the display device including the organic EL element of the present invention may be single color or multicolor, but here, the multicolor display device will be described.
  • a shadow mask is provided only at the time of forming a light emitting layer, and a film can be formed on one surface by vapor deposition, casting, spin coating, ink jet, printing, or the like.
  • vapor deposition there is no limitation on the method, but a vapor deposition method, an inkjet method, a spin coating method, and a printing method are preferable.
  • the configuration of the organic EL element included in the display device is selected from the above-described configuration examples of the organic EL element as necessary.
  • the manufacturing method of an organic EL element is as having shown in the one aspect
  • a DC voltage When a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode. Further, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Further, when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the-state.
  • the alternating current waveform to be applied may be arbitrary.
  • the multicolor display device can be used as a display device, a display, or various light emission sources.
  • a display device or display full-color display is possible by using three types of organic EL elements of blue, red, and green light emission.
  • Examples of the display device or display include a television, a personal computer, a mobile device, an AV device, a character broadcast display, and an information display in a car.
  • the display device or display may be used as a display device for reproducing still images and moving images
  • the driving method when used as a display device for reproducing moving images may be either a simple matrix (passive matrix) method or an active matrix method.
  • Light-emitting devices include household lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, optical storage media light sources, electrophotographic copying machine light sources, optical communication processor light sources, optical sensor light sources, etc.
  • the present invention is not limited to these.
  • FIG. 13 is a schematic view showing an example of a display device composed of organic EL elements. It is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
  • the display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, a wiring unit C that electrically connects the display unit A and the control unit B, and the like.
  • the control unit B is electrically connected to the display unit A via the wiring unit C, and sends a scanning signal and an image data signal to each of a plurality of pixels based on image information from the outside. Sequentially emit light according to the image data signal, scan the image, and display the image information on the display unit A.
  • FIG. 14 is a schematic diagram of a display device using an active matrix method.
  • the display unit A includes a wiring unit C including a plurality of scanning lines 5 and data lines 6, a plurality of pixels 3 and the like on a substrate.
  • the main members of the display unit A will be described below.
  • FIG. 14 shows a case where the light emitted from the pixel 3 is extracted in the direction of the white arrow (downward).
  • the scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions (details are illustrated) Not)
  • the pixel 3 receives an image data signal from the data line 6 and emits light according to the received image data.
  • Full-color display is possible by appropriately arranging pixels in the red region, the green region, and the blue region on the same substrate.
  • FIG. 15 is a schematic diagram showing a pixel circuit.
  • the pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like.
  • a full color display can be performed by using red, green, and blue light emitting organic EL elements as the organic EL elements 10 in a plurality of pixels, and juxtaposing them on the same substrate.
  • an image data signal is applied from the control unit B to the drain of the switching transistor 11 through the data line 6.
  • a scanning signal is applied from the control unit B to the gate of the switching transistor 11 via the scanning line 5
  • the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is supplied to the capacitor 13 and the driving transistor 12. Is transmitted to the gate.
  • the capacitor 13 is charged according to the potential of the image data signal, and the drive transistor 12 is turned on.
  • the drive transistor 12 has a drain connected to the power supply line 7 and a source connected to the electrode of the organic EL element 10, and the power supply line 7 connects to the organic EL element 10 according to the potential of the image data signal applied to the gate. Current is supplied.
  • the driving of the switching transistor 11 is turned off.
  • the driving of the driving transistor 12 is kept on and the next scanning signal is applied. Until then, the light emission of the organic EL element 10 continues.
  • the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
  • the organic EL element 10 emits light by the switching transistor 11 and the drive transistor 12 that are active elements for the organic EL element 10 of each of the plurality of pixels, and the light emission of the organic EL element 10 of each of the plurality of pixels 3. It is carried out.
  • Such a light emitting method is called an active matrix method.
  • the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or by turning on / off a predetermined light emission amount by a binary image data signal. Good.
  • the potential of the capacitor 13 may be held continuously until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
  • a passive matrix light emission drive in which the organic EL element emits light according to the data signal only when the scanning signal is scanned.
  • FIG. 16 is a schematic diagram of a passive matrix display device.
  • a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
  • the scanning signal of the scanning line 5 is applied by sequential scanning, the pixels 3 connected to the applied scanning line 5 emit light according to the image data signal.
  • the pixel 3 has no active element, and the manufacturing cost can be reduced.
  • the organic EL element of the present invention By using the organic EL element of the present invention, a display device with improved luminous efficiency was obtained.
  • the organic EL element of the present invention can also be used for a lighting device.
  • the organic EL element of the present invention may be used as an organic EL element having a resonator structure.
  • Examples of the purpose of use of the organic EL element having such a resonator structure include a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processing machine, and a light source of an optical sensor. It is not limited. Moreover, you may use for the said use by making a laser oscillation.
  • the organic EL element of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, or a type for directly viewing a still image or a moving image. It may be used as a display device (display).
  • the driving method when used as a display device for reproducing a moving image may be either a passive matrix method or an active matrix method.
  • a full-color display device can be manufactured by using two or more organic EL elements of the present invention having different emission colors.
  • the luminescent compound according to the present invention can be applied to an organic EL element that emits substantially white light as a lighting device.
  • white light emission can be obtained by simultaneously emitting a plurality of light emission colors and mixing the colors.
  • the combination of a plurality of emission colors may include three emission maximum wavelengths of three primary colors of red, green, and blue, or two of the complementary colors such as blue and yellow, blue green and orange, etc. The thing containing the light emission maximum wavelength may be used.
  • the method for forming the organic EL device of the present invention may be simply arranged by providing a mask only when forming a light emitting layer, a hole transport layer, an electron transport layer, or the like, and separately coating with the mask. Since the other layers are common, patterning of a mask or the like is unnecessary, and for example, an electrode film can be formed on one surface by a vapor deposition method, a cast method, a spin coating method, an ink jet method, a printing method, or the like, and productivity is improved. According to this method, unlike a white organic EL device in which light emitting elements of a plurality of colors are arranged in parallel in an array, the elements themselves are luminescent white.
  • FIG. 1 One Embodiment of Lighting Device of the Present Invention.
  • the non-light emitting surface of the organic EL device of the present invention is covered with a glass case, a 300 ⁇ m thick glass substrate is used as a sealing substrate, and an epoxy photocurable adhesive (LUX The track LC0629B) is applied, and this is overlaid on the cathode and brought into close contact with the transparent support substrate, irradiated with UV light from the glass substrate side, cured, sealed, and illuminated as shown in FIGS.
  • a device can be formed.
  • FIG. 1 An epoxy photocurable adhesive
  • FIG. 17 shows a schematic diagram of a lighting device, and the organic EL element of the present invention (organic EL element 101 in the lighting device) is covered with a glass cover 102 (note that the sealing operation with the glass cover is performed by lighting. This was performed in a glove box under a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more) without bringing the organic EL element 101 in the apparatus into contact with the air.
  • 18 shows a cross-sectional view of the lighting device.
  • 105 denotes a cathode
  • 106 denotes an organic layer
  • 107 denotes a glass substrate with a transparent electrode.
  • the glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
  • polystyrene sulfonate PEDOT / PSS, Bayer, Baytron P Al 4083
  • a thin film was formed by spin coating under conditions of 30 seconds and then dried at 200 ° C. for 1 hour to provide a first hole transport layer having a layer thickness of 20 nm.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vacuum deposition apparatus, while ⁇ -NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl) is attached to a resistance heating boat made of molybdenum. 200 mg of SH-11, 200 mg of SH-11 in another molybdenum resistance heating boat, 200 mg of Comparative Compound 1 in another molybdenum resistance heating boat, and BCP (2,9-dimethyl- 200 mg of 4,7-diphenyl-1,10-phenanthroline) was placed and attached to a vacuum deposition apparatus.
  • ⁇ -NPD 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • the vacuum chamber was then depressurized to 4 ⁇ 10 ⁇ 4 Pa, heated by energizing the heating boat containing ⁇ -NPD, and deposited on the hole injection layer at a deposition rate of 0.1 nm / sec.
  • the second hole transport layer was provided.
  • the heating boat containing SH-11 and the heating boat containing the comparative compound 1 were energized and heated, and deposited on the hole transport layer at a deposition rate of 0.1 nm / second and 0.010 nm / second, respectively. Co-evaporated to provide a 30 nm light emitting layer.
  • the heating boat containing BCP was energized and heated, and was deposited on the hole blocking layer at a deposition rate of 0.1 nm / second to provide an electron transport layer of 30 nm.
  • Organic EL elements 1 to 28 and 30 were prepared in the same manner as in the production of the organic EL element 29 except that SH-11 and Comparative Compound 1 were changed to the compounds shown in Table 3.
  • Example 2 In the preparation of the organic EL element 29 produced in Example 1, the a host compound used in the light-emitting layer emitting compound to those shown in Table 4, except that the BCP was used for the electron transporting layer was changed to Alq 3 is quite Similarly, organic EL elements 31 to 60 were produced.
  • Example 3 In the production of the organic EL element 29 produced in Example 1, the host compound and the luminescent compound used in the light emitting layer were changed to those shown in Table 5, and the ⁇ -NPD used in the second hole transport layer was changed to TPD. Except for the above, organic EL elements 61 to 90 were produced in the same manner.
  • Example 4 In the production of the organic EL element 29 produced in Example 1, the host compound and the luminescent compound used in the light emitting layer are shown in Table 6, and the ⁇ -NPD used in the second hole transport layer is used as the TPD. the BCP was used in the electron transport layer in the same manner except for changing the Alq 3, an organic EL element was manufactured from 91 to 113.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vacuum evaporation apparatus, and HAT-CN, ⁇ -NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino) is attached to a molybdenum resistance heating boat.
  • HAT-CN HAT-CN
  • ⁇ -NPD 4,4′-bis [N- (1-naphthyl) -N-phenylamino
  • SH-9, D-15, and BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • the vacuum chamber was then depressurized to 4 ⁇ 10 ⁇ 4 Pa, then heated by energizing the heating boat containing HAT-CN, and the transparent support substrate provided with the ITO transparent electrode at a deposition rate of 0.1 nm / second
  • the first hole transport layer having a thickness of 20 nm was provided by vapor deposition.
  • the heating boat containing ⁇ -NPD was energized and heated, and was deposited on the hole injection layer at a deposition rate of 0.1 nm / second to provide a second hole transport layer of 30 nm.
  • the second hole transport layer was heated by energizing the heated boat containing SH-9 and the heated boat containing D-15 at vapor deposition rates of 0.1 nm / second and 0.010 nm / second, respectively.
  • a 30 nm light emitting layer was provided by co-evaporation.
  • the heating boat containing BCP was energized and heated, and was deposited on the hole blocking layer at a deposition rate of 0.1 nm / second to provide an electron transport layer of 30 nm.
  • Organic EL elements 114 to 133, 135, and 136 were manufactured in exactly the same manner as the organic EL element 134 except that SH-9 and D-15 were changed to the compounds shown in Table 7.
  • Example 7 The organic EL device was manufactured in the same manner as in the production of the organic EL device 134, except that SH-9 and D-15 were changed to the compounds shown in Table 9 and ⁇ -NPD used for the second hole transport layer was changed to TPD. 160 to 182 were produced.
  • Table 2 shows that D-1 to D-28 according to the present invention have a singlet energy of 2.64 eV or more and a Stokes shift of 0.24 eV or less.
  • FIG. 17 shows a schematic diagram of a lighting device, and the organic EL element of the present invention (organic EL element 101 in the lighting device) is covered with a glass cover 102 (note that the sealing operation with the glass cover is performed by lighting. This was performed in a glove box under a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more) without bringing the organic EL element 101 in the apparatus into contact with the air.
  • a nitrogen atmosphere in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more
  • an epoxy photo-curing adhesive (Luxtrac LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealant around the glass cover side where the glass cover and the glass substrate on which the organic EL element is manufactured contact, This was stacked on the cathode side and brought into close contact with the transparent support substrate, and the portion excluding the organic EL element from the glass substrate side was irradiated with UV light and cured.
  • FIG. 18 shows a cross-sectional view of the lighting device.
  • 105 denotes a cathode
  • 106 denotes an organic EL layer
  • 107 denotes a glass substrate with a transparent electrode.
  • the glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
  • Luminous efficiency maintenance ratio before and after driving the organic EL element In order to evaluate the light emitting performance of the organic EL element, the organic EL element is driven at room temperature (25 ° C.) and a constant current of 2.5 mA / cm 2. The external extraction quantum efficiency (%) was measured and used as an index of luminous efficiency. For the measurement, a spectral radiance meter CS-1000 (manufactured by Konica Minolta) was used. The external extraction quantum efficiency was measured immediately after the production of the organic EL element and after 1000 hours of driving, and the maintenance ratio of the luminous efficiency was examined. Note that the maintenance rate of the luminous efficiency was expressed as a relative value when the maintenance rate of the luminous efficiency after driving the comparative element was 100.
  • the luminous efficiency maintenance ratio after driving the organic EL element of the comparative example is 40% of the initial value
  • the luminous efficiency maintenance ratio is the initial value.
  • the evaluation value of the organic EL element which was 100% of the value is 250.
  • Table 3 shows that D-1 to D-28, which are the light-emitting compounds according to the present invention, are higher than Comparative Compound 1 and Comparative Compound 2 when the host compound SH-11 (H-159) having a carbazole skeleton is used.
  • the host compound SH-11 having a carbazole skeleton is used as the luminescent compounds D-1 to D-28 according to the present invention, the luminous efficiency after voltage application is higher than that of the comparative compounds 1 and 2. It was found that the maintenance rate of the element was large, and the present invention was found to be effective in improving the device life.
  • D-1 to D-28 which are the light-emitting compounds according to the present invention
  • Comparative Compound 1 and Comparative Compound 2 after voltage application when the host compound SH-10 having a carbazole skeleton is used. It was possible to obtain an organic EL element having a small change rate of resistance value of the light emitting layer and a small change in physical properties of the thin film of the light emitting layer.
  • the host compound SH-10 having a carbazole skeleton is used as the luminescent compounds D-1 to D-28 according to the present invention, the luminous efficiency after voltage application is higher than that of the comparative compounds 1 and 2. It was found that the maintenance rate of the element was large, and the present invention was found to be effective in improving the device life.
  • the luminescent compound D-8 according to the present invention is converted into host compounds SH-1 to SH-9, H-4, H-10, H-13, H-22, H-24 having a carbazole skeleton
  • the organic EL device produced by combining with H-26, H-46, H-76, H-78, H-231, and H-232 is an organic EL device in which a host compound H-1 having no carbazole skeleton is combined. It was found that the change rate of the resistance value of the light emitting layer after voltage application was smaller than that of the device. From this, it was found that by using a host compound having a carbazole skeleton, an organic EL device having a smaller change in physical properties of the thin film of the light emitting layer can be obtained.
  • the luminescent compound D- it was found that the rate of change in resistance value of the light emitting layer after voltage application was smaller when 8 was used. Therefore, it was found that the present invention is effective in improving the device life even when a host compound having no carbazole skeleton is used for device preparation.
  • the luminescent compound D-8 according to the present invention is converted into host compounds SH-1 to SH-9, H-4, H-10, H-13, H-22, H-24, H—, which have a carbazole skeleton.
  • 26, H-46, H-76, H-78, H-231, and H-232 are each combined with an organic EL device that is a combination of a host compound H-1 that does not have a carbazole skeleton. It was also found that the maintenance rate of the luminous efficiency after voltage application was large. From this, it was found that by using a host compound having a carbazole skeleton, an organic EL device having a smaller change in physical properties of the thin film of the light emitting layer can be obtained.
  • the luminescent compound D-8 according to the present invention was prepared. It was found that the retention rate of the luminous efficiency after voltage application was larger when it was used. Therefore, it was found that the present invention is effective in improving the device life even when a host compound having no carbazole skeleton is used for device preparation.
  • the luminescent compound D-15 according to the present invention is converted into host compounds SH-1 to SH-9, H-4, H-10, H-13, H-22, H-24 having a carbazole skeleton
  • the organic EL device produced by combining with H-26, H-46, H-76, H-78, H-231, and H-232 is an organic EL device in which a host compound H-233 having no carbazole skeleton is combined. It was found that the change rate of the resistance value of the light emitting layer after voltage application was smaller than that of the device, and the maintenance rate of the light emission efficiency was large.
  • the luminescent compound D-26 according to the present invention is converted into host compounds SH-1 to SH-9, H-4, H-10, H-13, H-22, H-24 having a carbazole skeleton
  • the organic EL device produced by combining with H-26, H-46, H-76, H-78, H-231, and H-232 is an organic EL device in which a host compound H-1 having no carbazole skeleton is combined. It was found that the change rate of the resistance value of the light emitting layer after voltage application was smaller than that of the device, and the maintenance rate of the light emission efficiency was large.
  • the luminescent compound D-27 according to the present invention is converted into host compounds SH-1 to SH-9, H-4, H-10, H-13, H-22, H-24 having a carbazole skeleton
  • the organic EL device produced by combining with H-26, H-46, H-76, H-78, H-231, and H-232 is an organic EL device in which a host compound H-233 having no carbazole skeleton is combined. It was found that the change rate of the resistance value of the light emitting layer after voltage application was smaller than that of the device, and the maintenance rate of the light emission efficiency was large.
  • the change in the physical properties of the light emitting layer is small and the high light emitting performance is maintained with respect to the voltage application for a long time. I was able to. This is considered to be due to the high rigidity of the light-emitting compounds D-1 to D-28 according to the present invention, which suppresses molecular motion during voltage application and improves the morphological stability of the thin film. Further, since D-1 to D-28 have a highly non-planar molecular structure, intermolecular interactions such as ⁇ stacking are reduced. For this reason, it is considered that the stability of the thin film is improved by allowing the luminescent compound to maintain an appropriate dispersion state in the thin film and, as a result, avoiding localization of excitons during voltage application.
  • the combination of the light-emitting compound according to the present invention and the host compound having a carbazole skeleton makes the change in physical properties of the thin film smaller and maintains the light-emitting performance higher.
  • the host compound having a carbazole skeleton has a large ⁇ -electron conjugated structure, so that the luminescent compound having the same ⁇ -electron conjugated structure is appropriately dispersed in the light-emitting layer, and the above-described electron hopping is appropriately performed. It is considered that the localization of excitons is avoided, and the stability of the thin film against energization is improved.
  • the combination of the light-emitting compound according to the present invention and the host compound having a carbazole skeleton makes the change in physical properties of the thin film smaller and maintains the light-emitting performance higher.
  • the host compound having a carbazole skeleton has a large ⁇ -electron conjugated structure, so that the luminescent compound having the same ⁇ -electron conjugated structure is appropriately dispersed in the light-emitting layer, and the above-described electron hopping is appropriately performed. It is considered that the localization of excitons is avoided, and the stability of the thin film against energization is improved.
  • the actual device can be used as it is, and the phenomenon occurring therein can be compared as the resistance value. did it. Since this method itself is still a new technology, the magnitude of the error cannot be specifically specified.
  • a blue light emitting compound having a small Stokes shift and a specific carbazole incorporating the technical idea of the present invention in an organic EL element In the light-emitting layer that combines a host compound with a skeleton, the change in resistance value is clearly smaller than the resistance value shown by the comparative light-emitting layer, so accurately describe the phenomenon occurring in the actual device. It can be said that this is a valid verification method.
  • the element lifetime is regarded as a problem, which is a barrier to practical use. It can be said that the root cause of the device lifetime is, in the extreme case, all the change in the resistance value of the charge transfer thin film itself.
  • the resistance value change can be comprehensively evaluated not only by the decomposition of the compound, but also by changing the aggregation state, the change in the shape and size of the crystal grains, and the change in the presence state (interaction state) of the different molecules.
  • impedance spectroscopy it is possible to detect changes in the resistance value of only any specific film among the multi-layered films after making the actual element. It has the advantage that the causative substance and the causative part can be identified, and it can be said that it is an effective method because it is easy to take concrete measures for improving the performance.
  • a compound having a small Stokes shift that is, a compound having a small molecular structural change at the time of excitation is used as a light emitting material, and an appropriate host compound and a light emitting material are combined to form a light emitting layer.
  • an appropriate host compound and a light emitting material are combined to form a light emitting layer.
  • This technical idea is a technology that can be applied universally to films and objects through which charge transfer and current flow, in addition to those described in the embodiments of the present invention, and is advanced and worthy of supporting the future development of organic electronics. I am convinced that this is a general-purpose technology.
  • an organic electroluminescence element capable of achieving both high luminous efficiency and blue light emission with good chromaticity and maintaining the performance for a long time
  • a display device including the organic EL element, Display, home lighting, interior lighting, clock and LCD backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sources for optical sensors, and more It can be suitably used as a wide light-emitting light source for general household appliances that require a display device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 本発明の課題は、発光素子としての高い発光効率と色度の良い青色発光を両立し、かつ長時間その性能を維持することが可能な有機エレクトロルミネッセンス素子を提供することである。また、当該有機エレクトロルミネッセンス素子が具備された発光装置、照明装置、表示装置及び電子機器を提供することである。 本発明の有機エレクトロルミネッセンス素子は、陽極と陰極に挟まれた発光層を含む少なくとも1層の有機層を有する有機エレクトロルミネッセンス素子であって、当該発光層に、ストークスシフトが0~0.24eVの範囲内で、かつ最低励起一重項エネルギーSが2.64eV以上である発光性化合物を含有することを特徴とする。

Description

有機エレクトロルミネッセンス素子、発光装置、照明装置、表示装置及び電子機器
 本発明は、有機エレクトロルミネッセンス素子に関する。また、当該有機エレクトロルミネッセンス素子が具備された発光装置、照明装置、表示装置及び電子機器に関する。より詳しくは、発光効率が改良された有機エレクトロルミネッセンス素子等に関する。
 有機材料のエレクトロルミネッセンス(Electro Luminescence:以下「EL」と略記する。)を利用した有機EL素子(「有機電界発光素子」ともいう。)は、平面発光を可能とする新しい発光システムとして既に実用化されている技術である。有機EL素子は、電子ディスプレイはもとより、最近では照明機器にも適用され、その発展が期待されている。
 有機ELの発光方式としては、三重項励起状態から基底状態に戻る際に光を発する「リン光発光」と、一重項励起状態から基底状態に戻る際に光を発する「蛍光発光」の二通りがある。
 有機EL素子に電界をかけると、陽極と陰極からそれぞれ正孔と電子が注入され、発光層において再結合し励起子を生じる。このとき一重項励起子と三重項励起子とが25%:75%の割合で生成するため、三重項励起子を利用するリン光発光の方が、蛍光発光に比べ、理論的に高い内部量子効率が得られることが知られている。
 しかしながら、リン光発光方式において実際に高い量子効率を得るためには、中心金属にイリジウムや白金などの希少金属を用いた錯体を用いる必要があり、将来的に希少金属の埋蔵量や金属自体の値段が産業上大きな問題となることが懸念される。
 一方で、蛍光発光型においても発光効率を向上させるために様々な開発がなされており、近年新しい動きが出てきた。
 例えば、特許文献1には、二つの三重項励起子の衝突により一重項励起子が生成する現象(以下、Triplet-Triplet Annihilation:以下、適宜「TTA」と略記する。また、Triplet-Triplet Fusion:「TTF」ともいう。)に着目し、TTAを効率的に起こして蛍光素子の高効率化を図る技術が開示されている。この技術により蛍光発光材料(以下、蛍光発光性材料、蛍光材料ともいう。)の電力効率は従来の蛍光発光材料の2~3倍まで向上しているが、TTAにおける理論的な一重項励起子生成効率は40%程度にとどまるため、依然としてリン光発光に比べ高発光効率化の課題を有している。
 さらに、近年では、安達らにより、熱活性化型遅延蛍光(「熱励起型遅延蛍光」ともいう:Thermally Activated Delayed Fluorescence:以下、適宜「TADF」と略記する。)機構を利用した蛍光発光材料と、有機EL素子への利用の可能性が報告されている(例えば、非特許文献1~7参照。)。
 TADF機構は、図1Aに示すように、通常の蛍光発光材料に比べ、一重項励起エネルギー準位と三重項励起エネルギー準位の差(ΔEst)が小さい材料(図1Aでは、ΔEst(TADF)がΔEst(F)よりも小さい)を用いた場合に、三重項励起子から一重項励起子への逆項間交差が生じる現象を利用した発光機構である。すなわち、ΔEstが小さいことによって、電界励起により75%の確率で発生する三重項励起子が、本来なら発光に寄与できないところ、有機EL素子駆動時の熱エネルギーなどで一重項励起状態に遷移し、その状態から基底状態へ輻射失活(「輻射遷移」又は「放射失活」ともいう。)し蛍光発光を起こすものである。このTADF機構による遅延蛍光を利用すると、蛍光発光においても、理論的には100%の内部量子効率が可能となると考えられている。
 さらに、ホスト化合物と発光性化合物を含有する発光層に、TADF性を示す化合物を第三成分(発光補助材料、アシストドーパントともいう。)として発光層に含めると、高発光効率の発現に有効であることが知られている(例えば、非特許文献8参照。)。アシストドーパントとして働く化合物上に25%の一重項励起子と75%の三重項励起子を電界励起により発生させることによって、三重項励起子は逆項間交差(RISC)を伴って一重項励起子を生成することができる。
 一重項励起子のエネルギーは、発光性化合物へ蛍光共鳴エネルギー移動(Fluorescence Resonance Energy Transfer:以下、適宜、「FRET」と略記する。)し、発光性化合物が移動してきたエネルギーにより発光することが可能となる。したがって、理論上100%の励起子エネルギーを利用して、発光性化合物を発光させることが可能となり、高発光効率を実現することができる。
 また一方で、得られる発光色の点についても課題がある。これまで、発光方式に寄らず様々な発光色の発光性化合物が開発されているが、特に青色を示す発光性化合物はその技術的特徴から多くの課題を抱えている。青色発光、すなわち短波な発光波長を有するということは、高い一重項励起エネルギー又は三重項励起エネルギーを有する必要があり、一般的に高い励起エネルギーを示す材料は、励起状態が不安定化しやすく、有機EL素子に用いた場合においては素子寿命や発光効率の点でいまだ十分ではない。また、一般的にキャリア輸送性や、耐熱性観点ではπ電子共役系が大きく広がった構造を用いることが有利であるが、π電子共役系が広い構造は励起エネルギーが小さく短波な青色系発光性化合物には適用しにくいという課題がある。
 ゆえに、発光原理に関わらず従来の青色発光有機材料は、発光素子としての高い外部量子効率、実用的な素子寿命、そして色度の良い青色発光の鼎立という面でまだ課題を残している。特に、青色有機EL素子を駆動させた際の発光効率等の初期発光性能を長期間維持することは大きな課題となっている。
 また、発光材料の分子設計のみならず組み合わせるホスト化合物も適切に選択される必要がある。有機EL素子の薄膜中において、化合物間の相互作用は発光材料の発光特性に大きく影響することから、適切なホスト化合物との組み合わせによって発光性能、色度、素子寿命などの素子特性を改善できる可能性がある。そこで、上記課題を解決するためには青色発光材料の緻密な分子設計及び組み合わせるホスト化合物のマッチングについて十分な検討が必要である。
国際公開第2012/133188号
「照明に向けた燐光有機EL技術の開発」応用物理 第80巻、第4号、2011年 H.Uoyama,et al.,Nature,2012,492,234-238 S.Y.Lee et al.,Applied Physics Letters,2012,101,093306-093309 Q.Zhang et al.,J.Am.Chem.Soc.,2012,134,14706-14709 T.Nakagawa et al.,Chem.Commun., 2012,48,9580-9582 A.Endo et al.,Adv.Mater.,2009,21,4802-4806 有機EL討論会 第10回例会予稿集 p11-12,2010 H.Nakanоtani,et al.,Nature Communicaion,2014,5,4016-4022.
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、発光素子としての高い発光効率と色度の良い青色発光を両立し、かつ長時間その性能を維持することが可能な有機エレクトロルミネッセンス素子を提供することである。また、当該有機エレクトロルミネッセンス素子が具備された発光装置、照明装置、表示装置及び電子機器を提供することである。
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討した結果、ストークスシフトが小さく、最低励起一重項エネルギーSを2.64eV以上にすることにより発光素子としての高い発光効率と色度の良い青色発光を両立し、かつ実用的な素子寿命を実現できることを見いだし本発明に至った。
 ここで、本発明における色度の良い青色発光とは、最も短波な蛍光発光ピークが470nm以下のものを意味する。すなわち470nm超においては純度の高い青色を得ることが困難なためである。この470nmをエネルギー(電子ボルト)に換算すると約2.64eVとなるため、本発明においては最低励起一重項エネルギーSを2.64eV以上と定義した。
 なお、特に非平面型の電子共役系構造を有する化合物を発光材料として用いた場合に良好な特性が得られることも見いだした。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
 1.陽極と陰極に挟まれた発光層を含む少なくとも1層の有機層を有する有機エレクトロルミネッセンス素子であって、
 当該発光層に、ストークスシフトが0~0.24eVの範囲内で、かつ最低励起一重項エネルギーSが2.64eV以上である発光性化合物を含有することを特徴とする有機エレクトロルミネッセンス素子。
 2.前記発光性化合物が、下記一般式(1)で表される構造を有することを特徴とする第1項に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000007
(一般式(1)中、A、B及びCは、それぞれ独立に、単結合、又は炭素原子、ケイ素原子若しくは酸素原子を含む連結基を表す。Ar及びArは、それぞれ独立に、縮合していてもよい芳香族炭化水素環基又は芳香族複素環基を表す。Ar及びArは、同一でもよい。kは、自然数を表し、kが2以上の場合、各々のAは異なっていてもよい。mは、0又は自然数であり、mが2以上である場合、各々のBは異なっていてもよい。nは、0又は自然数を表し、nが2以上の場合、各々のCは異なっていてもよい。A、B、Cは、それぞれ独立に、単結合でArとArを連結していてもよく、縮環を形成することでArとArを連結していてもよい。)
 3.前記発光性化合物が、非平面型の電子共役系構造を有することを特徴とする第1項又は第2項に記載の有機エレクトロルミネッセンス素子。
 4.前記発光性化合物が、下記一般式(2)で表される構造を有することを特徴とする第1項から第3項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000008
(一般式(2)中、Ar′、Ar″、Ar′及びAr″は、それぞれ、同一でも異なっていてもよく、独立に、縮合していてもよい芳香族炭化水素環基又は芳香族複素環基を表し、さらに、置換基を有していてもよい。また、Ar′とAr″及びAr′とAr″は、それぞれ縮合していてもよい。a、b、c及びdは、それぞれ、0又は自然数を表す。a又はbのいずれかは、自然数を表す。c又はdのいずれかは、自然数を表す。L及びLは、Ar′とAr″を連結する単結合又は2価の連結基を表す。Ar′とAr″は、L及びLと縮環を形成していてもよい。L及びLは、Ar′とAr″を連結する単結合又は2価の連結基を表す。Ar′とAr″は、L及びLと縮環を形成していてもよい。a、b、c及びdが2以上の場合、各々のL、L、L、及びLは同一でも異なっていてもよい。k及びmは、それぞれ、0又は自然数を表す。k又はmのいずれかは、自然数を表す。A及びBは、単結合又は2価の連結基を表す。k及びmが2以上の場合、各々のA及びBは同一でも異なっていてもよい。Ar′、Ar′及びAとで縮環を形成していてもよく、Ar″、Ar″及びBとで縮環を形成してもよい。)
 5.前記発光性化合物が、下記一般式(3)で表される構造を有することを特徴とする第1項から第4項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000009
(一般式(3)中、A及びBは、それぞれ独立に、単結合、又は炭素原子若しくはケイ素原子を含む連結基を表す。A若しくはB、又はその両方によって連結される二つのアントラセン環は、R、R及びA又はR、R15及びBによって縮環を形成していてもよい。kは自然数を表し、kが2以上の場合、各々のAは異なっていてもよい。また、R~R16は、それぞれ、置換若しくは無置換の脂肪族炭化水素基、又は置換若しくは無置換の芳香族炭化水素基を表し、それぞれは環を形成していてもよい。また、R~R16は、それぞれの置換基中に窒素原子、酸素原子又は硫黄原子を含んだヘテロ芳香族炭化水素基でもよい。mは、0又は自然数を表し、mが2以上の場合、各々のBは異なっていてもよい。A若しくはB、又はその両方によって連結される二つのアントラセン環は、それぞれ独立に、非平面型の電子共役系構造を有していてもよく、全体で一つの芳香族環を形成していてもよい。)
 6.前記発光性化合物が、下記一般式(4)で表される構造を有することを特徴とする第1項から第4項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000010
(一般式(4)中、Xは、ホウ素、炭素、窒素、酸素、硫黄又はケイ素を表す。Xは、水素原子や置換基を有していてもよい。R17~R28は、それぞれ独立に、水素原子又は置換基を表す。A又はB、若しくはその両方によって連結される二つの芳香族環は、R17~R28、A、及びBのうち縮環を形成しうるものを使って環構造を形成してもよい。k及びmは、それぞれ、0又は自然数を表す。k又はmのいずれかは自然数を表す。A及びBは、それぞれ、単結合又は2価の連結基を表す。k又はmが2以上の場合、各々のA及びBは同一でも異なっていてもよい。A又はB、若しくはその両方によって連結される二つの芳香族環はそれぞれが独立に非平面型の電子共役系構造を有していてもよく、全体で一つの芳香族環を形成していてもよい。)
 7.前記発光性化合物が、下記一般式(5)で表される構造を有することを特徴とする第1項から第4項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000011
(一般式(5)中、Xは、ホウ素、炭素、窒素、酸素、硫黄又はケイ素を表す。Xは、水素原子や置換基を有していても良い。R29~R40は、それぞれ、水素原子又は置換基を表す。A又はB、若しくはその両方によって連結される二つの芳香族環は、R29~R40、A及びBのうち縮環を形成しうるものを使って環構造を形成してもよい。k及びmは、0又は自然数を表す。k又はmのいずれかは自然数を表す。A及びBは、単結合又は2価の連結基を表す。k又はmが2以上の場合、各々のA及びBは同一でも異なっていてもよい。A又はB、若しくはその両方によって連結される二つの芳香族環はそれぞれが独立に非平面型の電子共役系構造を有していてもよく、全体で一つの芳香族環を形成していてもよい。)
 8.前記発光層が、カルバゾール誘導体を含有することを特徴とする第1項から第7項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
 9.前記カルバゾール誘導体が、14π電子以上の共役系構造部分を二つ以上有する化合物であることを特徴とする第8項に記載の有機エレクトロルミネッセンス素子。
 10.前記カルバゾール誘導体が、下記一般式(SH)で表される構造を有する化合物であることを特徴とする第8項又は第9項に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000012
(一般式(SH)中、Z~Z及びR41~R46は、それぞれ独立に、水素原子又は置換基を表す。ただし、Z~Z及びR41~R46のうち少なくとも一つは14π電子系以上の芳香族環基を表す。また、隣接する置換基同士は、互いに縮合して環構造を形成してもよい。)
 11.前記一般式(SH)中、Z~Zのうち少なくとも一つが、置換又は無置換のジベンゾフラン環であることを特徴とする第10項に記載の有機エレクトロルミネッセンス素子。
 12.第1項から第11項までのいずれか一項に記載の有機エレクトロルミネッセンス素子が、具備されていることを特徴とする発光装置。
 13.第1項から第11項までのいずれか一項に記載の有機エレクトロルミネッセンス素子が、具備されていることを特徴とする照明装置。
 14.第1項から第11項までのいずれか一項に記載の有機エレクトロルミネッセンス素子が、具備されていることを特徴とする表示装置。
 15.第1項から第11項までのいずれか一項に記載の有機エレクトロルミネッセンス素子が、具備されていることを特徴とする電子機器。
 本発明の上記手段により、発光素子としての高い発光効率と色度の良い青色発光を両立し、かつ長時間その性能を維持することが可能な有機エレクトロルミネッセンス素子を提供することができる。また、当該有機エレクトロルミネッセンス素子が具備された発光装置、照明装置、表示装置及び電子機器を提供することができる。
 上記のように発光材料の発光効率向上は普遍的な課題として取り組まれてきたものの、実用化に向けて避けては通れない素子寿命との両立が現在も大きな課題となっている。有機エレクトロルミネッセンス素子が、駆動により作製直後の発光性能を維持できなくなるということは、通電により電極間の電荷移動性薄膜の物性や、より微視的には構成成分そのものが変化しているということに他ならない。特に発光層中において生じる上記のような変化は有機EL素子の発光性能に著しい悪影響を与える。
 特に励起状態の青色発光材料は赤色や緑色の発光材料よりも高いエネルギーを有しているため、上記のような変化を起こしやすい。したがって、通電に対して堅牢な発光層を作製することは、青色発光する有機エレクトロルミネッセンス素子の寿命改善に大きく寄与すると考えられる。
 本発明者らは、ストークスシフトが小さいことを特徴とする発光材料を用いることで発光層中における励起子の構造や凝集状態の変化を抑制し、上記の課題を解決できることを明らかにした。ストークスシフトが小さい化合物は、励起状態における分子運動が著しく抑制されており、長時間の通電に対しても薄膜内部での状態を良好に保持することができ、その結果として有機EL素子の発光性能は長時間良好に維持される。
一般的な蛍光発光性化合物及びTADF化合物のエネルギーダイヤグラムを示した模式図 アシストドーパントが存在する場合のエネルギーダイヤグラムを示した模式図 本発明に係る発光性化合物がホスト化合物として機能する場合のエネルギーダイヤグラムを示した模式図 大きなストークスシフトを有する発光材料の基底状態と励起状態におけるエネルギー遷移の一例を示した模式図 小さなストークスシフトを有する発光材料の基底状態と励起状態におけるエネルギー遷移の一例を示した模式図 HOMO-LUMO間のエネルギー差が大きいホスト化合物を用いる場合の各材料間のエネルギー準位を示した模式図 HOMO-LUMO間のエネルギー差が小さいホスト化合物を用いる場合の各材料間のエネルギー準位を示した模式図 三重項励起エネルギー準位とHOMOエネルギー準位との差が大きいホスト化合物を用いる場合の各材料間のエネルギー準位を示した模式図 三重項励起エネルギー準位とHOMOエネルギー準位との差が小さいホスト化合物を用いる場合の各材料間のエネルギー準位を示した模式図 インピーダンス分光法による電子輸送層のM plotの一例を示したグラフ 有機EL素子のETL層厚と抵抗値の関係の一例を示したグラフ 有機EL素子の等価回路モデルの一例を示した模式図 インピーダンス分光法による駆動前の有機EL素子の各層の抵抗-電圧の関係を示す一例を示したグラフ インピーダンス分光法による劣化後の有機EL素子の各層の抵抗-電圧の関係を示す一例を示したグラフ 有機EL素子から構成される表示装置の一例を示した模式図 アクティブマトリクス方式による表示装置の模式図 画素の回路を示した概略図 パッシブマトリクス方式による表示装置の模式図 照明装置の概略図 照明装置の模式図
 本発明の有機エレクトロルミネッセンス素子は、陽極と陰極に挟まれた発光層を含む少なくとも1層の有機層を有する有機エレクトロルミネッセンス素子であって、当該発光層に、ストークスシフトが0~0.24eVの範囲内で、かつ最低励起一重項エネルギーSが2.64eV以上である発光性化合物を含有することを特徴とする。この特徴は、請求項1から請求項15までの請求項に係る発明に共通する技術的特徴である。
 本発明の実施態様としては、本発明の効果発現の観点から、前記発光性化合物が、前記一般式(1)で表される構造を有することが好ましい。
 また、前記発光性化合物が、非平面型の電子共役系構造を有することが、πスタッキングのような分子間の平面的な相互作用を弱め、発光性化合物同士の凝集性を低減することにより、素子の発光性能や薄膜の安定性を向上させる効果が得られることから、好ましい。
 また、前記発光性化合物が、前記一般式(2)で表される構造を有することが、本発明の効果を一層高めるために好ましい。
 また、本発明においては、前記発光性化合物が、前記一般式(3)で表される構造を有することが好ましい。これにより、芳香族性を有する剛直な構造が連結されることにより、一層分子の剛直性が高まり、かつ分子全体としては平面性が低減する。そのため、素子の発光性能や薄膜の安定性を向上させる効果が得られる。
 また、本発明においては、前記発光性化合物が、前記一般式(4)で表される構造を有することが好ましい。これにより、芳香族性を有する剛直な構造が連結されることにより、一層分子の剛直性が高まり、かつ分子全体としては平面性が低減する。そのため、素子の発光性能や薄膜の安定性を向上させる効果が得られる。
 また、本発明においては、前記発光性化合物が、前記一般式(5)で表される構造を有することが好ましい。これにより、芳香族性を有する剛直な構造が連結されることにより、一層分子の剛直性が高まり、かつ分子全体としては平面性が低減する。そのため、素子の発光性能や薄膜の安定性を向上させる効果が得られる。
 また、前記発光層が、カルバゾール誘導体を含有することにより、発光層内における適度なキャリアホッピングや発光材料の分散を促すことができ、素子の発光性能や薄膜の安定性を向上させる効果が得られることから、好ましい。
 また、前記カルバゾール誘導体が、14π電子以上の共役系構造部分を二つ以上有する化合物であることが、本発明の効果を一層高めるために好ましい。
 また、前記カルバゾール誘導体が、前記一般式(SH)で表される構造を有する化合物であることが、本発明の効果を一層高めるために好ましい。
 また、前記一般式(SH)中、Z~Zのうち少なくとも一つが、置換又は無置換のジベンゾフラン環であることが、本発明の効果を一層高めるために好ましい。
 本発明の有機エレクトロルミネッセンス素子は、発光装置に好適に具備され得る。これにより、耐久性が改善された発光装置が得られる。
 本発明の有機エレクトロルミネッセンス素子は、照明装置に好適に具備され得る。これにより、耐久性が改善された照明装置が得られる。
 本発明の有機エレクトロルミネッセンス素子は、表示装置に好適に具備され得る。これにより、耐久性が改善された表示装置が得られる。
 本発明の有機エレクトロルミネッセンス素子は、電子機器に好適に具備され得る。これにより、耐久性が改善された電子機器が得られる。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
 本論に入る前に、本発明の技術思想と関連する、有機ELの発光方式及び発光材料について述べる。
 <有機ELの発光方式>
 有機ELの発光方式としては三重項励起状態から基底状態に戻る際に光を発する「リン光発光」と、一重項励起状態から基底状態に戻る際に光を発する「蛍光発光」の二通りがある。
 有機ELのような電界で励起する場合には、三重項励起子が75%の確率で、一重項励起子が25%の確率で生成するため、リン光発光の方が蛍光発光に比べ発光効率を高くすることが可能で、低消費電力化を実現するには優れた方式である。
 一方、蛍光発光においても、75%の確率で生成してしまう、通常では、励起子のエネルギーが、無輻射失活により、熱にしかならない三重項励起子を、高密度で存在させることによって、二つの三重項励起子から一つの一重項励起子を発生させて発光効率を向上させるTTA(Triplet-Triplet Annihilation、また、Triplet-Triplet Fusion:「TTF」と略記する。)機構を利用した方式が見つかっている。
 さらに、近年では、安達らの発見により一重項励起状態と三重項励起状態のエネルギーギャップを小さくすることで、発光中のジュール熱及び/又は発光素子が置かれる環境温度によりエネルギー準位の低い三重項励起状態から一重項励起状態に逆項間交差がおこり、結果としてほぼ100%に近い蛍光発光を可能とする現象(熱励起型遅延蛍光、又は熱励起型遅延蛍光ともいう:「TADF」)とそれを可能にする蛍光物質が見いだされている(例えば、非特許文献1等参照。)。
 <リン光発光材料>
 前述のとおり、リン光発光は発光効率的には蛍光発光よりも理論的には3倍有利であるが、三重項励起状態から一重項基底状態へのエネルギー失活(=リン光発光)は禁制遷移であり、また同様に一重項励起状態から三重項励起状態への項間交差も禁制遷移であるため、通常その速度定数は小さい。すなわち、遷移が起こりにくいため、励起子寿命はミリ秒から秒オーダーと長くなり、所望の発光を得ることは困難である。
 ただし、イリジウムや白金などの重金属を用いた錯体が発光する場合には、中心金属の重原子効果によって、前記の禁制遷移の速度定数が3桁以上増大し、配位子の選択によっては、100%のリン光量子収率を得ることも可能となる。
 しかしながら、このような理想的な発光を得るためには、希少金属であるイリジウムやパラジウム、白金などのいわゆる白金属と呼ばれる貴金属を用いる必要があり、大量に使用されることになるとその埋蔵量や金属自体の値段が産業上大きな問題となってくる。
 <蛍光発光材料>
 一般的な蛍光発光材料は、リン光発光材料のような重金属錯体である必要性は特になく、炭素、酸素、窒素、水素などの一般的な元素の組み合わせから構成される、いわゆる有機化合物が適用でき、さらに、リンや硫黄、ケイ素などその他の非金属元素を用いることも可能で、また、アルミニウムや亜鉛などの典型金属の錯体も活用できるなど、その多様性はほぼ無限と言える。
 蛍光発光材料として用いることができる、本発明に係る発光性化合物としては、ストークスシフトが0~0.24eVの範囲内で、かつ最低励起一重項エネルギーSが2.64eV以上であることを特徴とする。
 すなわち、上記のような特性を有する本発明に係る発光性化合物を用いることで、最低励起一重項エネルギー準位から基底準位に輻射失活させることにより、色度の良い青色の蛍光を発光させることができる。
 なお、ここでは、「色度の良い青色」を、CIE色度図において470nm以下の発光波長として表される光であると定義する。この470nmという発光波長λをエネルギーE(電子ボルト)に換算すると、発光が輝線スペクトルとなる場合で2.64eV程度の発光エネルギーが必要である。
 ここで、波長λとエネルギーEの関係は下記の式(1)で表されるものとする。h、c、eは、それぞれプランク定数、光速度、電気素量であり、以下の数値をとるものとする。
 式(1):E=hc/eλ
 h=6.626×10-34・kg/s
 c=2.998×10m/s
 e=1.602×10-19
 <ストークスシフト>
 ストークスシフトとは発光材料を光励起して発光させる際に、励起光波長と発光波長の間にある波長差のことである。また、本発明においては、リン光発光についても励起光波長とリン光波長の波長差もストークスシフトとして扱うものと定義する。ストークスシフトは励起子が生成する際に分子が吸収したエネルギーと励起子が基底状態に戻る際に発光によって消費するエネルギーの差分を反映している。これらエネルギーの関係について図2及び図3に模式図を示す。
 図2及び図3において、ΔEは化合物の励起の際に吸収するエネルギーであり、ΔEは励起子が発光の際に放射するエネルギーである。
 図2及び図3においてエネルギー差ΔE及びΔEは、発光材料が吸収したエネルギーの内、発光以外の機構で消費したエネルギーである。この消費機構のうちの一つは、分子配座の変化による熱的なエネルギーの放射であり、この現象は電界励起によって生じた励起子に対しても起こりうる。
 この時に失うエネルギー(ΔEとΔEの和)を再配向エネルギーと呼び、再配向エネルギーが小さい分子は励起状態のエネルギーをほぼそのまま発光に消費するため、エネルギーの大きい短波長な光を放出することにおいては有利となる。
 これに対して再配向エネルギーの大きい化合物は励起時に吸収したエネルギーを分子配座の変化などで熱的に放出してしまい、エネルギーを効率良く発光に変換できないためストークスシフトが大きくなる。
 そこで、再配向エネルギーを小さくするような発光材料の分子設計を行うことによりストークスシフトを小さくすることが可能となる。これは主に、分子の配座変化が乏しい剛直な構造を発光材料に与えることで実現できる。剛直な構造を有する化合物は励起子のエネルギーを分子配座の変化によって消費することが少ないために、結果として、短波かつ効率の良い発光を実現するには有利になる。
 <HOMO-LUMO間のエネルギー差>
 また、蛍光発光性材料について考えると、青色発光については励起一重項エネルギー、すなわちHOMOとLUMOのエネルギー差が緑色や赤色の発光よりも大きいことが要求される。色度の良い青色発光を得るには、その発光スペクトルの形状にもよるが、例えば半値幅が20nm程度のシャープなスペクトル形状であっても最低2.64eV以上のバンドギャップが必要となってくる。
 また、発光材料の励起子を効率よく生成するためには、ホスト材料のHOMO準位は発光材料のHOMO準位よりも深く、ホスト材料のLUMO準位は発光材料のLUMO準位よりも浅いことが望ましい。
 例えば、ここでストークスシフトが大きい、すなわち再配向エネルギーによるエネルギーロスが大きい化合物を発光材料として用いた場合求める発光波長に対してより大きな励起エネルギーが必要となるため、ホスト材料のHOMOとLUMOのエネルギー差も図4に示すように大きくなることが要求される。
 より具体的に説明すれば、例えば発光エネルギー(図2におけるΔE)が2.64eVであり、ストークスシフト(励起子エネルギーのロス、図2におけるΔEとΔEの和)が0.5eVであるような発光材料の場合を考えると、励起に必要なエネルギー(図2におけるΔE)は2.64eVよりも0.5eV分だけ大きなエネルギーが必要になる。
 すなわち、ホスト材料から発光材料に効率的なエネルギーの受け渡しが行われるために、ホスト材料はHOMOとLUMOのエネルギー差が3.14eV以上であることが要求される。その結果、ホスト材料のHOMO及びLUMOの準位は隣接する電子輸送層、又は正孔輸送層のHOMO及びLUMOの準位と接近することになる。
 有機EL素子においては各有機層間のエネルギー準位差が適正でないと、発光層へのキャリア注入が難しくなり、駆動電圧が上昇してしまう。または、発光層から隣接層へのキャリアの漏洩が起こりやすくなり、素子効率が低下すると考えられる。
 したがって、ホスト材料のHOMOとLUMOのエネルギー差が大きくなることによって、他の層の構成もホスト材料に合わせて変化させなくてはならず、ホスト材料に対する制限が素子構成全体に制限を与える結果になるために、素子設計上好ましくない。
 しかし、ストークスシフトが小さい化合物を発光材料として用いた場合は励起子のエネルギーロスが小さいため発光に必要なHOMOとLUMOのエネルギー差は最小限に抑えられる。より具体的に説明すれば、例えば発光エネルギー(図2におけるΔE)が2.64eVであり、ストークスシフト(励起子エネルギーのロス、図2におけるΔE+ΔEの和)が0.1eVであるような理想的な発光材料の場合を考えると、励起に必要なエネルギー(図2におけるΔE)は2.74eVで十分となる。その結果、図5に示すようにホストのHOMOとLUMOエネルギー差も小さく抑えられ、有機EL素子全体のキャリアバランスがとりやすくなり、素子特性が向上すると考えられる。また、発光層以外の構成がホスト材料によって受ける制限も少なくなるため、素子設計上好ましい。
 次に、リン光発光材料の場合には励起一重項エネルギーではなく励起三重項エネルギーが発光に関与する。したがって、青色発光のためには励起三重項エネルギーが2.64eV以上であることが必要である。
 そこで、発光材料の励起子を効率よく生成するために発光材料よりも励起三重項エネルギーが高く、かつ発光材料のHOMO準位よりも深いHOMO準位を有するホスト材料を組み合わせる必要がある。
 例えば、ここでストークスシフトが大きい、すなわち再配向エネルギーによるエネルギーロスが大きい化合物を発光材料として用いた場合、求める発光波長に対してより大きな励起エネルギーが必要となるため、ホスト材料の励起三重項エネルギーとHOMOのエネルギー差も図6に示すように大きくなることが要求される。
 また、LUMOのエネルギー準位は通常同一分子の励起三重項エネルギーよりも大きいため、ホスト材料のHOMOとLUMOのエネルギー差も連動して大きくなることを要求される。その結果、ホスト材料のHOMOとLUMOのエネルギー準位は隣接する電子輸送層、又は正孔輸送層のHOMO及びLUMOの準位と接近することになる。
 有機EL素子においては各有機層間のエネルギー準位差が適正でないと、発光層へのキャリア注入が難しくなり、駆動電圧が上昇してしまう。
 または、発光層から隣接層へのキャリアの漏洩が起こりやすくなり、素子寿命が低下すると考えられる。したがって、ホスト材料のHOMOとLUMOのエネルギー差が大きくなることによって、他の層の構成もホスト材料に合わせて変化させなくてはならず、ホスト材料に対する制限が素子構成全体に制限を与える結果になるために、素子設計上好ましくない。
 しかし、ストークスシフトが小さい化合物を発光材料として用いた場合は励起子のエネルギーロスが小さいため発光に必要な励起三重項エネルギーとHOMOは最小限に抑えられる。その結果、図7に示すようにホストの励起三重項エネルギーとHOMOのエネルギー差も小さく抑えられ、有機EL素子全体のキャリアバランスがとりやすくなり、素子特性が向上すると考えられる。また、発光層以外の構成がホスト材料によって受ける制限も少なくなるため、素子設計上好ましい。
 一方、遅延蛍光発光材料の場合には発光に関与するのは励起一重項エネルギーだが、一重項状態の励起子を数多く発生させるためには、励起三重項状態の励起子を効率よく形成させることが重要となってくる。
 したがって、ホスト材料に求められる要件はリン光発光材料の場合と同様であり、ストークスシフトの小さい発光材料を用いることでホストの励起三重項エネルギーとHOMOのエネルギー差も小さく抑えられ、有機EL素子全体のキャリアバランスがとりやすくなり、素子特性が向上すると考えられる。また、発光層以外の構成がホスト材料によって受ける制限も少なくなるため、素子設計上好ましい。
 また、ストークスシフトの小さい化合物は上記のとおり再配向エネルギーが小さい。そして再配向エネルギーが小さい分子は通常剛直な構造を分子内に有し、回転運動や原子間振動が抑制された状態にある。
 したがって、ストークスシフトの小さい化合物は電界励起を受けた際の分子そのものの安定性が高いと考えられる。さらに、当該化合物はその構造の剛直性ゆえに電圧を印加した時の薄膜内での分子運動も抑制されると考えられ、その結果、薄膜のモルフォロジー安定性が向上し、通電経時における薄膜の中の分子の存在状態変化が抑制されるため正孔の流れやすさ(ホール電流)と電子の流れやすさ(電子電流)の経時変化が少なく、すなわち発光初期と経時でのキャリア再結合確率の変動が小さいため、素子の寿命が改善すると考えられる。
 したがって、本発明者らは、ストークスシフトの小さい化合物は分子配座変化による励起子エネルギー失活の抑制、有機EL素子全体としてのキャリアバランス向上、そして薄膜のモルフォロジー安定性向上に起因する素子寿命の改善を鼎立できることから、優れた青色発光材料として用いることが可能であると考える。
 これまでに発光材料として開発されてきた剛直な構造として一般的なものの一つは平面型芳香族化合物群である。特に分子全体の剛直性の向上のためには縮環構造を取る芳香族部位の導入が有効であり、アントラセン、トリフェニレン、ピレン、ピセンといった骨格を有する化合物はその典型である。しかし、縮環部が広がれば広がるほど一般に分子の平面性は高くなり、πスタッキングによる分子間相互作用が強まることにより分子の凝集性も高くなる傾向にある。分子の凝集は以下に説明するような理由から有機EL素子の発光材料としては可能な限り避けなくてはならない問題である。
 <濃度消光>
 一般に有機物は、希薄溶液状態では優れた発光効率を示す化合物であっても固体状態においては著しくその発光効率が低下する、濃度消光という現象を起こすことが知られている。
 濃度消光の要因は、高密度に集積した有機分子同士の相互作用によって励起子が消光してしまうことや、励起子が放った発光を近傍にある別の分子が吸収してしまうことにあるとされている。
 有機EL素子においても濃度消光は重要な課題であり、適切なホスト材料と組み合わせることで発光材料を希釈し、濃度消光を防止するのが一般的である。
 しかし、発光材料分子同士の相互作用が強力な場合発光材料は凝集し、これは局所的な濃度消光を引き起こすので有機EL素子の発光効率を低下させる。
 また、発光材料の凝集は励起子同士が複合体を形成して発光するエキシマー蛍光等の現象も引き起こす。通常エキシマー蛍光は単分子からの発光よりも長波長であり、また、発光量子効率も低くなることから、青色発光を得るためには好ましくない現象である。
 さらに、励起子同士が近傍に存在すると相互作用によって一重項-三重項消滅や上記の三重項-三重項消滅を起こして励起子が消光してしまう。
 一重項-三重項消滅とは励起一重項状態の分子と励起三重項状態の分子が衝突することにより第二励起三重項状態の分子と基底状態の分子がそれぞれ生成する現象である。上記の理由から発光材料はホスト材料中において良く分散している状態が好ましく、凝集性を抑制するような分子設計やホスト選定は有機EL素子の発光特性に多大な影響を与える。
 上述のとおり、発光材料の凝集は発光効率の低下、発光波長の変化、素子寿命の低下に大きく影響する。したがって、発光材料の凝集を抑制することは優れた有機EL素子を開発する上で重要な課題である。
 このような課題を解決するために、剛直性が高くかつ非平面性を有する化合物を発光材料として用いることが好ましい。
 例えば、二つのアリール基の連結部においてねじれビアリール構造を導入することにより平面性を解消することができ、分子内における運動性に乏しい構造とすることもできる。
 また、ビフルオレンのようなスピロ環を形成した芳香族環も剛直で平面性の低い分子であるといえる。ヘリセンのような多数の芳香族化合物が螺旋状に連結した構造も、縮環構造に由来する剛直性を有する一方で分子内ひずみのために平面状構造とはならない。
 また、シクロファンのように複数の芳香族環が連結された構造についても同様に、非平面的な共役を起こすことが知られている。さらに、例えば、Nakanishi,N.Hitosugi,S.Shimada,Y.Isobe,H.,Chem.Asian.J.,2013,8,1177-1181にはジシランピラードと呼ばれる二つのケイ素で架橋されたアントラセンが極めて剛直な構造を有し、かつステップテラス型の構造を取ることが開示されている。
 ジシランピラードはσ-π共役と呼ばれる共役により、ステップテラス型の非平面構造でありながら芳香族性を維持している特異な分子である。
 このような化合物群は部分的には平面芳香族性を有しながら全体としては平面状の分子ではなく、上記化合物を基本骨格として有する発光材料を用いることは発光材料の凝集抑制に効果的であるといえる。
 <キャリアホッピング特性>
 また、素子の寿命を改善するという観点からは、発光材料が良好なキャリアホッピング特性を有することも重要である。例えば、発光材料又はホスト材料が正孔輸送性に乏しい場合、正孔輸送層と発光層の界面に正孔(発光材料又はホスト材料のラジカルカチオン)が蓄積し、キャリアの再結合及び発光は当該界面において集中的に起こる。
 また、発光材料又はホスト材料が電子輸送性に乏しい場合、上記の現象は電子輸送層と発光層の界面で同様に起こりうる。この現象は上記のとおり発光効率及び素子寿命の観点から通常好ましくない。
 発光層と発光層に隣接する層の界面という狭い領域に励起子が局在することにより、励起子同士の相互作用による消光が起こるため、発光効率が低下する。例えば、上記消光現象の例としては一重項-三重項消滅や上記の三重項-三重項消滅が挙げられる。
 蛍光性発光材料においては一重項-三重項消滅が、リン光性発光材料や遅延蛍光性発光材料においては一重項-三重項消滅及び三重項-三重項消滅の両方が発光効率の低下につながりうる。また、有機材料が正孔及び電子を輸送するということは、それぞれ有機材料が酸化反応及び還元反応を起こしているということと同義である。
 すなわち、発光層と発光層に隣接する層の界面で局所的な発光が起こるということは、当該界面付近の有機材料のみが電気化学的反応を起こしている状態であり、発光層の一部分に大きな負荷が偏ってかかっている状態である。したがって、当該界面付近の有機材料は劣化が進みやすくなり、結果として素子寿命は短いものとなる。
 上記のホッピング特性を改善するため分子設計の一様態は、発光材料として用いられる有機化合物が電子吸引性基と電子供与性基をそれぞれ一つ以上有することである。同一分子上に電子供与性基と電子吸引性基が存在することで、分子のHOMOとLUMOの空間的な分離が生じることが予想される。
 有機薄膜中において分子間の電子移動はホッピング伝導によって伝わり、このホッピング伝導は近傍に存在する2分子間のHOMO同士又はLUMO同士の存在によって生じるものである。
 したがって、HOMOとLUMOが良く分離、局在していることで有機材料は電子輸送性及び正孔輸送性を両立し、優れたキャリア輸送特性を発現するものと考えられる。すなわち、HOMOとLUMOを分離することによって良好なキャリア特性を有する発光材料は発光層のモルフォロジー安定性を向上させることから、素子の寿命改善に好適であると考えられる。
 ところで、発光材料としてTADF性を有する化合物を用いることを念頭に置いた場合、当該化合物が良好なTADF性を発現するためには当該化合物の励起一重項エネルギーと励起三重項エネルギーの差であるΔEstが十分に小さい必要がある。
 これを満足するためには分子上に分布しているHOMOとLUMOの分布領域同士が十分に分離していることが好ましいとされている。
 例えば、非特許文献2にはHOMOとLUMOの分離が著しいTADF性化合物が十分に小さいΔEstを有することが開示されている。また、この課題は電子受容性基と電子供与性基をそれぞれ発光材料に付与することで達成できる。
 したがって、発光材料として用いる材料がTADF性を有する化合物である場合は、分子内に電子受容性の部分と電子供与性の部分とを共存させることは、当該化合物のホッピング特性を改善する上でも、当該化合物のTADF性を優れたものにする上でも好適である。しかし、本発明の構成は発光材料の発光原理によって限定されるものではない。
 さらに、発光材料として上記に記載の平面型、非平面型のいずれの骨格を用いる場合においても、分子内に電子受容性基と電子供与性基を導入する際に、置換基の構造や結合部位の構造を適切に選択することによって化合物全体の平面性をさらに低下させることができる。
 例えば、分岐アルキルの導入やねじれビアリール構造を生じるような置換基の導入を行うことで化合物全体の平面性は低下し、当該化合物の凝集性を緩和することができる。
 なお、本発明者は、上述のような知見・仮説等に基づき鋭意検討を行った結果、特に非平面型の電子共役系構造を有する化合物を発光材料として用いた場合に良好な素子特性が得られることを見いだした。
 <遅延蛍光材料>
 [励起三重項-三重項消滅(TTA)遅延蛍光材料]
 蛍光発光材料の問題点を解決すべく登場したのが遅延蛍光を利用した発光方式である。三重項励起子同士の衝突を起源とするTTA方式は、下記のような一般式で記述できる。すなわち、従来、励起子のエネルギーが、無輻射失活により、熱にしか変換されなかった三重項励起子の一部が、発光に寄与しうる一重項励起子に逆項間交差できるメリットがあり、実際の有機EL素子においても従来の蛍光発光素子の約2倍の外部取り出し量子効率を得ることができている。
 一般式: T + T → S + S
(式中、Tは三重項励起子、Sは一重項励起子、Sは基底状態分子を表す。)
 しかしながら、上式からもわかるように、二つの三重項励起子から発光に利用できる一重項励起子は一つしか生成しないため、この方式で100%の内部量子効率を得ることは原理上できない。
 [熱活性型遅延蛍光(TADF)材料]
 もう一つの高効率蛍光発光であるTADF方式は、TTAの問題点を解決できる方式である。
 蛍光材料は前記のごとく無限に分子設計できる利点を持っている。すなわち、分子設計された化合物の中で、特異的に三重項励起状態と一重項励起状態のエネルギー準位差(以降、ΔEstと記載する。)が極めて近接する化合物が存在する(図1A参照)。
 このような化合物は、分子内に重原子を持っていないにもかかわらず、ΔEstが小さいために通常では起こりえない三重項励起状態から一重項励起状態への逆項間交差が起こる。さらに、一重項励起状態から基底状態への失活(=蛍光発光)の速度定数が極めて大きいことから、三重項励起子はそれ自体が基底状態に熱的に失活(無輻射失活)するよりも、一重項励起状態経由で蛍光を発しながら基底状態に戻る方が速度論的に有利である。そのため、TADFでは理想的には100%の蛍光発光が可能となる。
 <ΔEstに関する分子設計思想>
 上記ΔEstを小さくするための分子設計について説明する。
 ΔEstを小さくするためには、原理上分子内の最高被占軌道(Highest Occupied Molecular Orbital:HOMO)と最低空軌道(Lowest Unoccupied Molecular Orbital:LUMO)の空間的な重なりを小さくすることが最も効果的である。
 一般に分子の電子軌道において、HOMOは電子供与性部位に、LUMOは電子吸引性部位に分布することが知られており、分子内に電子供与性と電子吸引性の骨格を導入することによって、HOMOとLUMOが存在する位置を遠ざけることが可能である。
 例えば、前述の非特許文献1においては、シアノ基やスルホニル基、トリアジンなどの電子吸引性の骨格と、カルバゾールやジフェニルアミノ基等の電子供与性の骨格とを導入することで、LUMOとHOMOとをそれぞれ局在化させている。
 また、化合物の基底状態と三重項励起状態との分子構造変化を小さくすることも効果的である。構造変化を小さくするための方法としては、例えば、化合物を剛直にすることなどが効果的である。ここで述べる剛直とは、例えば、分子内の環と環との結合における自由回転を抑制したり、またπ共役面の大きい縮合環を導入するなど、分子内において自由に動ける部位が少ないことを意味する。特に、発光に関与する部位を剛直にすることによって、励起状態における構造変化を小さくすることが可能である。
 <TADF材料が抱える一般的な問題>
 TADF材料は、その発光機構及び分子構造の面から種々の問題を抱えている。
 以下に、一般的にTADF材料が抱える問題の一部について記載する。
 TADF材料においては、ΔEstを小さくするためにHOMOとLUMOの存在する部位をできるだけ離すことが必要であるが、このため、分子の電子状態はHOMO部位とLUMO部位が分離したドナー/アクセプター型の分子内CT(分子内電荷移動状態)に近い状態となってしまう。
 このような分子が複数存在する場合、一方の分子のドナー部分と他方の分子のアクセプター部分とを近接させると安定化が図られる。そのような安定化状態は2分子間での形成に限らず、3分子間又は5分子間であったりと、複数の分子間でも形成が可能であり、結果、広い分布を持った種々の安定化状態が存在することになり、吸収スペクトル及び発光スペクトルの形状はブロードとなる。また、2分子を超える多分子集合体を形成しない場合であっても、二つの分子の相互作用する方向や角度などの違いによって様々な存在状態を取り得るため、基本的にはやはり吸収スペクトル及び発光スペクトルの形状はブロードになる。
 発光スペクトルがブロードになることは二つの大きな問題を発生する。
 一つは、発光色の色純度が低くなってしまう問題である。照明用途に適用する場合にはそれほど大きな問題にはならないが、電子ディスプレイ用途に用いる場合には色再現域が小さくなり、また、純色の色再現性が低くなることから、実際に商品として適用するのは困難になる。
 もう一つの問題は、発光スペクトルの短波長側の立ち上がり波長(「蛍光ゼロ-ゼロバンド」と呼ぶ。)が短波長化、すなわち高S化(最低励起一重項エネルギーの高エネルギー化)してしまうことである。
 当然、蛍光ゼロ-ゼロバンドが短波長化すると、Sよりもエネルギーの低いTに由来するリン光ゼロ-ゼロバンドも短波長化(高T化)してしまう。そのため、ホスト化合物に用いる化合物はドーパントからの逆エネルギー移動を起こさないようにするために、高S化かつ高T化する必要が生じてくる。
 これは非常に大きな問題である。基本的に有機化合物からなるホスト化合物は、有機EL素子中で、カチオンラジカル状態、アニオンラジカル状態及び励起状態という、複数の活性かつ不安定な化学種の状態を取るが、それら化学種は分子内のπ共役系を拡大することで比較的安定に存在させることができる。
 しかしながら、高S化かつ高T化を達成するには、分子内のπ共役系を縮小するか又は断ち切ることが必要となり、安定性と両立させることが困難になって、結果的には発光素子の寿命を短くしてしまうことになる。
 また、重金属を含まないTADF材料においては、三重項励起状態から基底状態に失活する遷移は禁制遷移であるため、三重項励起状態での存在時間(励起子寿命)は数百μ秒からミリ秒オーダーと極めて長い。そのため、仮にホスト化合物のTエネルギーが発光材料のそれよりも高いエネルギーレベルであったとしても、その存在時間の長さから発光材料の三重項励起状態からホスト化合物へと逆エネルギー移動を起こす確率が増大してしまう。その結果、本来意図するTADF材料の三重項励起状態から一重項励起状態への逆項間交差が十分に起こらずに、ホスト化合物への好ましくない逆エネルギー移動が主流となって、十分な発光効率が得られないという不具合が生じてしまう。
 上記のような問題を解決するためには、TADF材料の発光スペクトル形状をシャープ化し、発光極大波長と発光スペクトルの立ち上がり波長の差を小さくすることが必要となる。そのためには、基本的には一重項励起状態及び三重項励起状態の分子構造の変化を小さくすることにより達成することが可能である。
 また、ホスト化合物への逆エネルギー移動を抑制するためには、TADF材料の三重項励起状態の存在時間(励起子寿命)を短くすることが効果的である。それを実現するには、基底状態と三重項励起状態との分子構造変化を小さくすること、及び、禁制遷移をほどくのに好適な置換基や元素を導入することなどの対策を講じることで、問題点を解決することが可能である。
 本発明は、上記のように励起状態の構造変化を抑えた発光材料、及び三重項励起状態の存在時間が短い発光材料も設計思想として含むものである。
 以下に、本発明に係る発光性化合物に関する種々の測定方法について記載する。
 <電子密度分布>
 本発明に係る発光性化合物は、ΔEstを小さくするという観点から、分子内においてHOMOとLUMOが実質的に分離していることが好ましい。これらHOMO及びLUMOの分布状態については、分子軌道計算により得られる構造最適化した際の電子密度分布から求めることができる。
 本発明における発光性化合物の分子軌道計算による構造最適化及び電子密度分布の算出は、計算手法として、汎関数としてB3LYP、基底関数として6-31G(d)を用いた分子軌道計算用ソフトウェアを用いて算出することができ、ソフトウェアに特に限定はなく、いずれを用いても同様に求めることができる。
 本発明においては、分子軌道計算用ソフトウェアとして、米国Gaussian社製のGaussian09(Revision C.01,M.J.Frisch,et al,Gaussian,Inc.,2010.)を用いた。
 また、「HOMOとLUMOが実質的に分離している」とは、上記分子計算により算出されたHOMO軌道分布及びLUMO軌道分布の中心部位が離れており、より好ましくはHOMO軌道の分布とLUMO軌道の分布がほぼ重なっていないことを意味する。
 また、HOMOとLUMOの分離状態については、前述の汎関数としてB3LYP、基底関数として6-31G(d)を用いた構造最適化計算から、さらに時間依存密度汎関数法(Time-Dependent DFT)による励起状態計算を実施してS、Tのエネルギー(それぞれE(S)、E(T))を求めてΔEst=E(S)-E(T)として算出することも可能である。算出されたΔEstが小さいほど、HOMOとLUMOがより分離していることを示す。本発明においては、前述と同様の計算手法を用いて算出されたΔEstが0.5eV以下であることが好ましく、より好ましくは0.2eV以下であり、さらに好ましくは0.1eV以下である。
 <最低励起一重項エネルギーS
 本発明における発光性化合物の最低励起一重項エネルギーSについては、本発明においても通常の手法と同様にして算出されるもので定義される。すなわち、測定対象となる化合物を石英基板上に蒸着して試料を作製し、常温(300K)でこの試料の吸収スペクトル(縦軸:吸光度、横軸:波長とする。)を測定する。この吸収スペクトルの長波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値に基づいて、所定の換算式から算出される。
 ただし、本発明において使用する発光材料の、分子自体の凝集性が比較的高い場合においては、薄膜の測定においては凝集による誤差を生じる可能性がある。本発明における発光性化合物はストークスシフトが比較的小さいこと、さらに励起状態と基底状態の構造変化が小さいことを考慮し、本発明における最低励起一重項エネルギーSは、室温(25℃)における発光性化合物の溶液状態の最大発光波長のピーク値を近似値として用いた。ここで、使用する溶媒は、発光性化合物の凝集状態に影響を与えない、すなわち溶媒効果の影響が小さい溶媒、例えばシクロヘキサンやトルエン等の非極性溶媒等を用いることができる。
 <ストークスシフトの測定>
 発光性化合物の溶液(ジクロロメタン、クロロホルム等の適切な溶媒を使用)の励起(吸収)スペクトルと発光スペクトルとを、蛍光分光光度計(例えば、島津製作所製RF-5300型蛍光分光計、日立社製F-4500型蛍光分光計等)を用いて測定し、蛍光極大波長と励起(吸収)極大波長との差を「ストークスシフト」として求めることができる。
 <発光効率の評価>
 本願においては、有機EL素子の発光効率は、一定環境下(例えば、23℃、乾燥窒素ガス雰囲気下)で一定電流(例えば2.5mA/cm定電流)を印加した時の外部取り出し量子効率(%)を測定し、発光効率の指標とした。なお、測定には分光放射輝度計CS-1000(コニカミノルタ社製)を用いた。
 <インピーダンス分光測定による薄膜抵抗値の測定>
 インピーダンス分光法は、有機ELの微妙な物性変化を電気信号に変換したり、増幅して解析できる手法であり、有機ELを破壊することなく高感度の抵抗値(R)及び静電容量(C)を計測できることが特徴である。
 インピーダンス分光解析にはZ plot、M plot、ε plotを使って電気特性を計測するのが一般的であり、その解析方法は、『薄膜の評価ハンドブック』テクノシステム社刊423ページ~425ページ等に詳細に掲載されている。
 有機EL素子、例えば、素子構成「ITO/HIL(正孔注入層)/HTL(正孔輸送層)/EML(発光層)/ETL(電子輸送層)/EIL(電子注入層)/Al」に対してインピーダンス分光法を適用し、特定の層の抵抗値を求める手法を説明する。
 例えば、電子輸送層(ETL)の抵抗値を計測する場合、ETLの厚さだけを変更した素子を作製し、それぞれのM plotを比較することで、当該プロットにより描き出される曲線のどの部分がETLに相当するかを確定することができる。
 図8は電子輸送層の層厚違いのM plotの一例である。層厚が各々30、45及び60nmの場合の例を示す。
 このプロットから求めた抵抗値(R)をETLの層厚に対してプロットしたのが図9であり、ほぼ直線上に乗ることから、各層厚での抵抗値を決定することができる。
 図9はETL層厚と抵抗値の関係を示す一例である。図9のETL層厚と抵抗値(Resistannce)との関係より、ほぼ直線上に乗ることから、各層厚での抵抗値を決定することができる。
 素子構成「ITO/HIL/HTL/EML/ETL/EIL/Al」の有機EL素子を等価回路モデル(図10)として各層を解析した結果が図11である。図11は各層の抵抗-電圧の関係を示す一例である。
 図10は素子構成「ITO/HIL/HTL/EML/ETL/EIL/Al」の有機EL素子の等価回路モデルを示している。
 図11は素子構成「ITO/HIL/HTL/EML/ETL/EIL/Al」の有機EL素子の解析結果の一例である。
 これに対し、同じ有機EL素子を長時間発光させて劣化させた後に、同じ条件で測定し、それらを重ね合わせたのが図12であり、電圧1Vにおけるそれぞれの値を表1にまとめた。図12は劣化後の有機EL素子の解析結果を示す一例である。
Figure JPOXMLDOC01-appb-T000013
 劣化後の有機EL素子においては、ETLのみが劣化により抵抗値が大きく上昇し、DC電圧1Vにおいて、約30倍の抵抗値になっていることがわかる。
 以上の手法を用いることで、本発明の実施例に記載した通電前後の抵抗変化の計測が可能となる。
 《有機EL素子の構成層》
 本発明の有機EL素子は、陽極と陰極に挟まれた発光層を含む少なくとも1層の有機層を有する有機エレクトロルミネッセンス素子であって、当該発光層に、ストークスシフトが0~0.24eVの範囲内で、かつ最低励起一重項エネルギーSが2.64eV以上である発光性化合物を含有することを特徴とする。
 各層及び層に含有される化合物について以下に詳細に説明する。
 本発明の有機EL素子における代表的な素子構成としては、以下の構成を挙げることができるが、これらに限定されるものではない。
(1)陽極/発光層/陰極
(2)陽極/発光層/電子輸送層/陰極
(3)陽極/正孔輸送層/発光層/陰極
(4)陽極/正孔輸送層/発光層/電子輸送層/陰極
(5)陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(6)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
(7)陽極/正孔注入層/正孔輸送層/(電子阻止層/)発光層/(正孔阻止層/)電子輸送層/電子注入層/陰極
 上記の中で(7)の構成が好ましく用いられるが、これに限定されるものではない。
 本発明に係る発光層は、単層又は複数層で構成されており、発光層が複数の場合は各発光層の間に非発光性の中間層を設けてもよい。
 必要に応じて、発光層と陰極との間に正孔阻止層(正孔障壁層ともいう)や電子注入層(陰極バッファー層ともいう)を設けてもよく、また、発光層と陽極との間に電子阻止層(電子障壁層ともいう)や正孔注入層(陽極バッファー層ともいう)を設けてもよい。
 本発明に係る電子輸送層とは、電子を輸送する機能を有する層であり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。また、複数層で構成されていてもよい。
 本発明に係る正孔輸送層とは、正孔を輸送する機能を有する層であり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。また、複数層で構成されていてもよい。
 上記の代表的な素子構成において、陽極と陰極を除いた層を「有機層」ともいう。
 (タンデム構造)
 また、本発明に係る有機EL素子は、少なくとも1層の発光層を含む発光ユニットを複数積層した、いわゆるタンデム構造の素子であってもよい。
 タンデム構造の代表的な素子構成としては、例えば以下の構成を挙げることができる。
 陽極/第1発光ユニット/中間層/第2発光ユニット/中間層/第3発光ユニット/陰極
 ここで、上記第1発光ユニット、第2発光ユニット及び第3発光ユニットは全て同じであっても、異なっていてもよい。また二つの発光ユニットが同じであり、残る一つが異なっていてもよい。
 複数の発光ユニットは直接積層されていても、中間層を介して積層されていてもよく、中間層は、一般的に中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれ、陽極側の隣接層に電子を、陰極側の隣接層に正孔を供給する機能を持った層であれば、公知の材料構成を用いることができる。
 中間層に用いられる材料としては、例えば、ITO(インジウム・スズ酸化物)、IZO(インジウム・亜鉛酸化物)、ZnO、TiN、ZrN、HfN、TiO、VO、CuI、InN、GaN、CuAlO、CuGaO、SrCu、LaB、RuO、Al等の導電性無機化合物層や、Au/Bi等の2層膜や、SnO/Ag/SnO、ZnO/Ag/ZnO、Bi/Au/Bi、TiO/TiN/TiO、TiO/ZrN/TiO等の多層膜、またC60等のフラーレン類、オリゴチオフェン等の導電性有機物層、金属フタロシアニン類、無金属フタロシアニン類、金属ポルフィリン類、無金属ポルフィリン類等の導電性有機化合物層等が挙げられるが、本発明はこれらに限定されない。
 発光ユニット内の好ましい構成としては、例えば、上記の代表的な素子構成で挙げた(1)~(7)の構成から、陽極と陰極を除いたもの等が挙げられるが、本発明はこれらに限定されない。
 タンデム型有機EL素子の具体例としては、例えば、米国特許第6337492号明細書、米国特許第7420203号明細書、米国特許第7473923号明細書、米国特許第6872472号明細書、米国特許第6107734号明細書、米国特許第6337492号明細書、国際公開第2005/009087号、特開2006-228712号公報、特開2006-24791号公報、特開2006-49393号公報、特開2006-49394号公報、特開2006-49396号公報、特開2011-96679号公報、特開2005-340187号公報、特許第4711424号、特許第3496681号、特許第3884564号、特許第4213169号、特開2010-192719号公報、特開2009-076929号公報、特開2008-078414号公報、特開2007-059848号公報、特開2003-272860号公報、特開2003-045676号公報、国際公開第2005/094130号等に記載の素子構成や構成材料等が挙げられるが、本発明はこれらに限定されない。
 以下、本発明の有機EL素子を構成する各層について説明する。
 《発光層》
 本発明に係る発光層は、電極又は隣接層から注入されてくる電子及び正孔が再結合し、励起子を経由して発光する場を提供する層であり、発光する部分は発光層の層内であっても、発光層と隣接層との界面であってもよい。本発明に係る発光層は、本発明で規定する要件を満たしていれば、その構成に特に制限はない。
 発光層の層厚の総和は、特に制限はないが、形成する膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、かつ、駆動電流に対する発光色の安定性向上の観点から、2nm~5μmの範囲に調整することが好ましく、より好ましくは2~500nmの範囲に調整され、更に好ましくは5~200nmの範囲に調整される。
 また、本発明の個々の発光層の層厚としては、2nm~1μmの範囲に調整することが好ましく、より好ましくは2~200nmの範囲に調整され、更に好ましくは3~150nmの範囲に調整される。
 本発明の発光層には、前述の発光材料を発光ドーパント(発光性化合物、発光性ドーパント化合物、ドーパント化合物、単にドーパントともいう。)として含有し、さらに前述のホスト化合物(マトリックス材料、発光ホスト化合物、単にホストともいう。)とを含有することが好ましい。
 (1)発光ドーパント
 発光ドーパントとしては、蛍光発光性ドーパント(蛍光発光性化合物、蛍光ドーパント、蛍光性化合物ともいう。)と、リン光発光性ドーパント(リン光発光性化合物、リン光ドーパント、リン光性化合物ともいう。)が好ましく用いられる。本発明においては、少なくとも1層の発光層が前述の発光材料を含有することが好ましい。
 発光層中の発光ドーパントの濃度については、使用される特定のドーパント及びデバイスの必要条件に基づいて、任意に決定することができ、発光層の層厚方向に対し、均一な濃度で含有されていてもよく、また任意の濃度分布を有していてもよい。
 また、本発明に係る発光ドーパントは、複数種を併用して用いてもよく、構造の異なるドーパント同士の組み合わせや、蛍光発光性ドーパントとリン光発光性ドーパントとを組み合わせて用いてもよい。これにより、任意の発光色を得ることができる。
 また、本発明においては、発光層が、公知の発光性化合物と、ホスト化合物を含有する場合、本発明に係る発光性化合物はアシストドーパントとして作用することも好ましい。一方、発光層が、本発明に係る発光性化合物と公知の発光性化合物を含有し、ホスト化合物を含有しない場合、本発明に係る発光性化合物はホスト化合物として作用することも好ましい。
 効果が発現する機構としては、いずれの場合も同様であり、本発明に係る発光性化合物上に生成した三重項励起子を逆項間交差(RISC)で一重項励起子へと変換する点にある。
 これにより、本発明に係る発光性化合物上に生成した理論上すべての励起子エネルギーを発光性化合物に蛍光共鳴エネルギー移動(FRET)することができ、高発光効率の発現を可能にする。
 したがって、発光層が、本発明に係る発光性化合物、公知の発光性化合物及びホスト化合物の3成分を含有する場合は、本発明に係る発光性化合物のSとTのエネルギー準位は、ホスト化合物のSとTのエネルギー準位よりも低く、公知の発光性化合物のSとTのエネルギー準位よりも高い方が好ましい。
 同様に、発光層が、本発明に係る発光性化合物と公知の発光性化合物の2成分を含有する場合は、本発明に係る発光性化合物のSとTのエネルギー準位は、公知の発光性化合物のSとTのエネルギー準位よりも高い方が好ましい。
 図1B及び図1Cに、本発明に係る発光性化合物がそれぞれアシストドーパント及びホスト化合物として作用する場合の模式図を示す。図1B及び図1Cは一例であって、本発明に係る発光性化合物上に生成する三重項励起子の生成過程は電界励起のみに限定されず、発光層内又は周辺層界面からのエネルギー移動や電子移動等も含まれる。
 さらに、図1B及び図1Cでは、発光材料として蛍光発光性化合物を用いて示しているが、これに限定されず、リン光発光性化合物を用いてもよいし、蛍光発光性化合物とリン光発光性化合物の両者を用いてもよい。
 本発明に係る発光性化合物をアシストドーパントとして用いる場合、発光層は、本発明に係る発光性化合物に対し質量比で100%以上のホスト化合物を含有し、蛍光発光性化合物及び/又はリン光発光性化合物が本発明に係る発光性化合物に対して質量比0.1~50%の範囲内で含有していることが好ましい。すなわち、本発明に係る発光性化合物をアシストドーパントとして用いる場合、この濃度範囲において、蛍光発光性化合物及び/又はリン光発光性化合物に効率よく蛍光共鳴エネルギー移動(FRET)することができるためである。
 本発明に係る発光性化合物をホスト化合物として用いる場合、発光層は、蛍光発光性化合物及び/又はリン光発光性化合物を本発明に係る発光性化合物に対して質量比0.1~50%の範囲内で含有することが好ましい。この濃度範囲であれば、本発明に係る発光性化合物が蛍光発光性化合物及び/又はリン光発光性化合物と好ましく相互作用することができる。
 本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図14.16において、分光放射輝度計CS-1000(コニカミノルタ(株)製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
 本発明においては、1層又は複数層の発光層が、発光色の異なる複数の発光ドーパントを含有し、白色発光を示すことも好ましい。
 白色を示す発光ドーパントの組み合わせについては特に限定はないが、例えば青と橙や、青と緑と赤の組み合わせ等が挙げられる。
 本発明の有機EL素子における白色とは、2度視野角正面輝度を前述の方法により測定した際に、1000cd/mでのCIE1931表色系における色度がx=0.39±0.09、y=0.38±0.08の領域内にあることが好ましい。
 (1.1)発光性ドーパント
 以下に、本発明に係る発光性化合物は、下記の一般式(1)で表される構造を有する化合物であることが好ましい。本発明に係る発光性化合物は、蛍光を発光するもの、リン光を発光するもの、遅延蛍光を発光するものが含まれる。
Figure JPOXMLDOC01-appb-C000014
 一般式(1)中、A、B及びCは、それぞれ独立に、単結合、又は炭素原子、ケイ素原子若しくは酸素原子を含む連結基を表す。Ar及びArは、それぞれ独立に、縮合していてもよい芳香族炭化水素環基又は芳香族複素環基を表す。Ar及びArは、同一でもよい。kは、自然数を表し、kが2以上の場合、各々のAは異なっていてもよい。mは、0又は自然数であり、mが2以上である場合、各々のBは異なっていてもよい。nは、0又は自然数を表し、nが2以上の場合、各々のCは異なっていてもよい。A、B、Cは、それぞれ独立に、単結合でArとArを連結していてもよく、縮環を形成することでArとArを連結していてもよい。
 また、発光性化合物は、非平面型の電子共役系構造を有することが、πスタッキングのような分子間の平面的な相互作用を弱め、発光性化合物同士の凝集性を低減することにより、素子の発光性能や薄膜の安定性を向上させる効果が得られることから、好ましい。
 また、本発明に係る発光性化合物は、下記の一般式(2)で表される構造を有する化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000015
 一般式(2)中、Ar′、Ar″、Ar′及びAr″は、それぞれ、同一でも異なっていてもよく、独立に、縮合していてもよい芳香族炭化水素環基又は芳香族複素環基を表し、さらに、置換基を有していてもよい。また、Ar′とAr″及びAr′とAr″は、それぞれ縮合していてもよい。a、b、c及びdは、それぞれ、0又は自然数を表す。a又はbのいずれかは、自然数を表す。c又はdのいずれかは、自然数を表す。L及びLは、Ar′とAr″を連結する単結合又は2価の連結基を表す。Ar′とAr″は、L及びLと縮環を形成していてもよい。L及びLは、Ar′とAr″を連結する単結合又は2価の連結基を表す。Ar′とAr″は、L及びLと縮環を形成していてもよい。a、b、c及びdが2以上の場合、各々のL、L、L、及びLは同一でも異なっていてもよい。k及びmは、それぞれ、0又は自然数を表す。k又はmのいずれかは、自然数を表す。A及びBは、単結合又は2価の連結基を表す。k及びmが2以上の場合、各々のA及びBは同一でも異なっていてもよい。Ar′、Ar′及びAとで縮環を形成していてもよく、Ar″、Ar″及びBとで縮環を形成してもよい。
 また、本発明に係る発光性化合物は、下記の一般式(3)で表される構造を有する化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000016
 一般式(3)中、A及びBは、それぞれ独立に、単結合、又は炭素原子若しくはケイ素原子を含む連結基を表す。A若しくはB、又はその両方によって連結される二つのアントラセン環は、R、R及びA又はR、R15及びBによって縮環を形成していてもよい。kは自然数を表し、kが2以上の場合、各々のAは異なっていてもよい。また、R~R16は、それぞれ、置換若しくは無置換の脂肪族炭化水素基、又は置換若しくは無置換の芳香族炭化水素基を表し、それぞれは環を形成していてもよい。また、R~R16は、それぞれの置換基中に窒素原子、酸素原子又は硫黄原子を含んだヘテロ芳香族炭化水素基でもよい。mは、0又は自然数を表し、mが2以上の場合、各々のBは異なっていてもよい。A若しくはB、又はその両方によって連結される二つのアントラセン環は、それぞれ独立に、非平面型の電子共役系構造を有していてもよく、全体で一つの芳香族環を形成していてもよい。
 また、本発明に係る発光性化合物は、下記の一般式(4)で表される構造を有する化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000017
 一般式(4)中、Xは、ホウ素、炭素、窒素、酸素、硫黄又はケイ素を表す。Xは、水素原子や置換基を有していてもよい。R17~R28は、それぞれ独立に、水素原子又は置換基を表す。A又はB、若しくはその両方によって連結される二つの芳香族環は、R17~R28、A、及びBのうち縮環を形成しうるものを使って環構造を形成してもよい。k及びmは、それぞれ、0又は自然数を表す。k又はmのいずれかは自然数を表す。A及びBは、それぞれ、単結合又は2価の連結基を表す。k又はmが2以上の場合、各々のA及びBは同一でも異なっていてもよい。A又はB、若しくはその両方によって連結される二つの芳香族環はそれぞれが独立に非平面型の電子共役系構造を有していてもよく、全体で一つの芳香族環を形成していてもよい。
 また、本発明に係る発光性化合物は、下記の一般式(5)で表される構造を有する化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000018
 一般式(5)中、Xは、ホウ素、炭素、窒素、酸素、硫黄又はケイ素を表す。Xは、水素原子や置換基を有していても良い。R29~R40は、それぞれ、水素原子又は置換基を表す。A又はB、若しくはその両方によって連結される二つの芳香族環は、R29~R40、A及びBのうち縮環を形成しうるものを使って環構造を形成してもよい。k及びmは、0又は自然数を表す。k又はmのいずれかは自然数を表す。A及びBは、単結合又は2価の連結基を表す。k又はmが2以上の場合、各々のA及びBは同一でも異なっていてもよい。A又はB、若しくはその両方によって連結される二つの芳香族環はそれぞれが独立に非平面型の電子共役系構造を有していてもよく、全体で一つの芳香族環を形成していてもよい。
 以下に、本発明における発光性化合物として好ましく用いられる化合物を例示するが、一例であってこれに限定するものではない。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 (1.2)リン光発光性ドーパント
 本発明に用いられるリン光発光性ドーパント(以下、「リン光ドーパント」ともいう。)について説明する。
 本発明に用いられるリン光発光性ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
 上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に用いられるリン光ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。
 リン光ドーパントは、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。本発明に使用できる公知のリン光ドーパントの具体例としては、以下の文献に記載されている化合物等が挙げられる。
 Nature 395,151(1998)、Appl.Phys.Lett.78,1622(2001)、Adv.Mater.19,739(2007)、Chem.Mater.17,3532(2005)、Adv.Mater.17,1059(2005)、国際公開第2009/100991号、国際公開第2008/101842号、国際公開第2003/040257号、米国特許出願公開第2006/835469号明細書、米国特許出願公開第2006/0202194号明細書、米国特許出願公開第2007/0087321号明細書、米国特許出願公開第2005/0244673号明細書、Inorg.Chem.40,1704(2001)、Chem.Mater.16,2480(2004)、Adv.Mater.16,2003(2004)、Angew.Chem.lnt.Ed.2006,45,7800、Appl.Phys.Lett.86,153505(2005)、Chem.Lett.34,592(2005)、Chem.Commun.2906(2005)、Inorg.Chem.42,1248(2003)、国際公開第2009/050290号、国際公開第2002/015645号、国際公開第2009/000673号、米国特許出願公開第2002/0034656号明細書、米国特許第7332232号明細書、米国特許出願公開第2009/0108737号明細書、米国特許出願公開第2009/0039776号明細書、米国特許第6921915号明細書、米国特許第6687266号明細書、米国特許出願公開第2007/0190359号明細書、米国特許出願公開第2006/0008670号明細書、米国特許出願公開第2009/0165846号明細書、米国特許出願公開第2008/0015355号明細書、米国特許第7250226号明細書、米国特許第7396598号明細書、米国特許出願公開第2006/0263635号明細書、米国特許出願公開第2003/0138657号明細書、米国特許出願公開第2003/0152802号明細書、米国特許第7090928号明細書、Angew.Chem.lnt.Ed.47,1(2008)、Chem.Mater.18,5119(2006)、Inorg.Chem.46,4308(2007)、Organometallics 23,3745(2004)、Appl.Phys.Lett.74,1361(1999)、国際公開第2002/002714号、国際公開第2006/009024号、国際公開第2006/056418号、国際公開第2005/019373号、国際公開第2005/123873号、国際公開第2005/123873号、国際公開第2007/004380号、国際公開第2006/082742号、米国特許出願公開第2006/0251923号明細書、米国特許出願公開第2005/0260441号明細書、米国特許第7393599号明細書、米国特許第7534505号明細書、米国特許第7445855号明細書、米国特許出願公開第2007/0190359号明細書、米国特許出願公開第2008/0297033号明細書、米国特許第7338722号明細書、米国特許出願公開第2002/0134984号明細書、米国特許第7279704号明細書、米国特許出願公開第2006/098120号明細書、米国特許出願公開第2006/103874号明細書、国際公開第2005/076380号、国際公開第2010/032663号、国際公開第2008140115号、国際公開第2007/052431号、国際公開第2011/134013号、国際公開第2011/157339号、国際公開第2010/086089号、国際公開第2009/113646号、国際公開第2012/020327号、国際公開第2011/051404号、国際公開第2011/004639号、国際公開第2011/073149号、米国特許出願公開第2012/228583号明細書、米国特許出願公開第2012/212126号明細書、特開2012-069737号公報、特開2012-195554号公報、特開2009-114086号公報、特開2003-81988号公報、特開2002-302671号公報、特開2002-363552号公報等である。
 中でも、好ましいリン光ドーパントとしてはIrを中心金属に有する有機金属錯体が挙げられる。さらに好ましくは、金属-炭素結合、金属-窒素結合、金属-酸素結合、金属-硫黄結合の少なくとも一つの配位様式を含む錯体が好ましい。
 (2)ホスト化合物
 本発明に用いられるホスト化合物は、発光層において主に電荷の注入及び輸送を担う化合物であり、有機EL素子においてそれ自体の発光は実質的に観測されない。
 ホスト化合物は、発光層に含有される化合物の内で、その層中での質量比が20%以上であることが好ましい。
 ホスト化合物は、単独で用いてもよく、又は複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。
 以下に、本発明において好ましく用いられるホスト化合物について述べる。
 本発明における発光性化合物とともに用いられるホスト化合物としては特に制限はないが、逆エネルギー移動の観点から、本発明に係る発光性化合物の励起一重項エネルギーより大きな励起エネルギーをもつものが好ましく、さらに本発明に係る発光性化合物の励起三重項エネルギーより大きな励起三重項エネルギーをもつものがより好ましい。
 ホスト化合物は、発光層内においてキャリアの輸送及び励起子の生成を担う。そのため、カチオンラジカル状態、アニオンラジカル状態、及び励起状態の全ての活性種の状態において安定に存在でき、分解や付加反応などの化学変化を起こさないこと、さらに、層中において通電経時でホスト分子がオングストロームレベルで移動しないことが好ましい。
 また、特に併用する発光ドーパントがTADF発光を示す場合には、TADF材料の三重項励起状態の存在時間が長いことから、ホスト化合物自体のTエネルギーが高いこと、さらにホスト化合物同士が会合した状態で低T状態を作らないこと、TADF材料とホスト化合物とがエキサイプレックスを形成しないこと、ホスト化合物が電界によりエレクトロマーを形成しないことなど、ホスト化合物が低T化しないような分子構造の適切な設計が必要となる。
 このような要件を満たすためには、ホスト化合物自体が電子のホッピング移動性が高いこと、かつ、正孔のホッピング移動が高いこと、三重項励起状態となったときの構造変化が小さいことが必要である。このような要件を満たすホスト化合物の代表格としてカルバゾール骨格、アザカルバゾール骨格、ジベンゾフラン骨格、ジベンゾチオフェン骨格又はアザジベンゾフラン骨格などの、高Tエネルギーを有し、かつ14π電子系の拡張π共役骨格を部分構造として有するものが好ましく挙げられる。特に、発光層が、カルバゾール誘導体を含有することにより、発光層内における適度なキャリアホッピングや発光材料の分散を促すことができ、素子の発光性能や薄膜の安定性を向上させる効果が得られることから、好ましい。
 さらに、これらの環がビアリール及び/又はマルチアリール構造を取った化合物などが代表例として挙げられる。ここでいう「アリール」とは、芳香族炭化水素環だけでなく芳香族複素環も含む。
 より好ましくは、カルバゾール骨格と、カルバゾール骨格とは異なる分子構造を持つ14π電子系の芳香族複素環化合物とが直接結合した化合物であり、さらに14π電子系の芳香族複素環化合物を分子内に二つ以上持つカルバゾール誘導体が好ましい。特に、前記カルバゾール誘導体が、14π電子以上の共役系構造部分を二つ以上有する化合物であることが、本発明の効果を一層高めるために好ましい。
 また、本発明に用いられるホスト化合物としては、下記一般式(I)で表される化合物も好ましい。これは、下記一般式(I)で表される化合物は、縮環構造を有するためにπ電子雲が広がっておりキャリア輸送性が高く、高いガラス転移温度(Tg)を有するためである。さらに、一般に縮合芳香族環は三重項エネルギー(T)が小さい傾向があるが、一般式(I)で表される化合物は高いTを有しており、発光波長の短い(すなわちT及びSの大きい)発光材料に対しても好適に用いることができる。
Figure JPOXMLDOC01-appb-C000024
 上記一般式(I)において、X101は、NR101、酸素原子、硫黄原子、CR102103又はSiR102103を表す。y~yは、各々CR104又は窒素原子を表す。
 R101~R104は、各々水素原子又は置換基を表し、また互いに結合して環を形成してもよい。
 Ar101及びAr102は、各々芳香族環を表し、それぞれ同一でも異なっていても良い。
 n101及びn102は各々0~4の整数を表すが、R101が水素原子の場合は、n101は1~4を表す。
 一般式(I)におけるR101~R104は水素又は置換基を表し、ここにいう置換基は本発明のホスト化合物の機能を阻害しない範囲で有しても良いものを指し、例えば、合成スキーム上置換基が導入されてしまう場合で、本発明の効果を奏する化合物は本発明に包含される旨を規定するものである。
 R101~R104で各々表される置換基としては、例えば、直鎖又は分岐アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、t-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素環基(芳香族炭素環基、アリール基等ともいう。例えば、ベンゼン環、ビフェニル、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-ターフェニル環、m-ターフェニル環、p-ターフェニル環、アセナフテン環、コロネン環、インデン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環、テトラリン等から導出される基)、芳香族複素環基(例えば、フラン環、ジベンゾフラン環、チオフェン環、ジベンゾチオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭化水素環の炭素原子の一つが更に窒素原子で置換されている環等から導出される基。また、カルボリン環とジアザカルバゾール環を合わせて「アザカルバゾール環」と呼ぶ場合もある。)、非芳香族炭化水素環基(例えば、シクロペンチル基、シクロヘキシル基等)、非芳香族複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、チオール基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、重水素原子等が挙げられる。
 これらの置換基は、上記の置換基によって更に置換されていてもよい。また、これらの置換基は複数が互いに結合して環を形成していてもよい。
 一般式(I)におけるy~yとしては、好ましくは、y~yの内の少なくとも三つ、又はy~yの内の少なくとも三つがCR102で表され、より好ましくはy~yが全てCR102である。このような骨格は、正孔輸送性又は電子輸送性に優れ、陽極・陰極から注入された正孔・電子を効率よく発光層内で再結合・発光させることができる。
 中でも、LUMOのエネルギー準位が浅く、電子輸送性に優れる構造として、一般式(I)中でX101が、NR101、酸素原子又は硫黄原子である化合物が好ましい。より好ましくは、X101及びy~yとともに形成される縮合環が、カルバゾール環、アザカルバゾール環、ジベンゾフラン環又はアザジベンゾフラン環である。
 さらに、ホスト化合物を剛直にすることが好ましいという目的から考え、X101がNR101の場合においては、R101は前述で挙げられた置換基の内、π共役系骨格である芳香族炭化水素環基又は芳香族複素環基であることが好ましい。また、これらのR101は更に前述のR101~R103で表される置換基で置換されていてもよい。
 一般式(I)において、Ar101及びAr102により表される芳香族環としては、芳香族炭化水素環又は芳香族複素環が挙げられる。該芳香族環は単環でも縮合環でもよく、更に未置換でも、前述のR101~R104で表される置換基と同様の置換基を有してもよい。
 一般式(I)において、Ar101及びAr102により表される芳香族炭化水素環としては、例えば、前述のR101~R104で表される置換基の例として挙げられた芳香族炭化水素環基と同様の環が挙げられる。
 一般式(I)で表される部分構造において、Ar101及びAr102により表される芳香族複素環としては、例えば、前述のR101~R104で表される置換基の例として挙げられた芳香族複素環基と同様の環が挙げられる。
 一般式(I)で表されるホスト化合物が大きなTを有するという目的を考えた場合には、Ar101及びAr102で表される芳香族環自身のTが高いことが好ましく、ベンゼン環(ベンゼン環が複数連結したポリフェニレン骨格(ビフェニル、テルフェニル、クォーターフェニル等)も含む)、フルオレン環、トリフェニレン環、カルバゾール環、アザカルバゾール環、ジベンゾフラン環、アザジベンゾフラン環、ジベンゾチオフェン環、ジベンゾチオフェン環、ピリジン環、ピラジン環、インドロインドール環、インドール環、ベンゾフラン環、ベンゾチオフェン環、イミダゾール環又はトリアジン環等が好ましい。より好ましくはベンゼン環、カルバゾール環、アザカルバゾール環、ジベンゾフラン環である。
 Ar101及びAr102がカルバゾール環又はアザカルバゾール環の場合は、N位(又は9位ともいう)又は3位で結合していることがより好ましい。
 Ar101及びAr102がジベンゾフラン環の場合は、2位又は4位で結合していることがより好ましい。
 また、上記の目的とは別に、有機EL素子を車内に積載して使用する用途などを考えた場合においては、車内の環境温度が高くなることが想定されるため、ホスト化合物のTgが高いことも好ましい。そこで、一般式(I)で表されるホスト化合物を高Tg化するという目的から、Ar101及びAr102により表される芳香族環としては、各々3環以上の縮合環が好ましい一態様である。
 3環以上が縮合した芳香族炭化水素縮合環としては、具体的には、ナフタセン環、アントラセン環、テトラセン環、ペンタセン環、ヘキサセン環、フェナントレン環、ピレン環、ベンゾピレン環、ベンゾアズレン環、クリセン環、ベンゾクリセン環、アセナフテン環、アセナフチレン環、トリフェニレン環、コロネン環、ベンゾコロネン環、ヘキサベンゾコロネン環、フルオレン環、ベンゾフルオレン環、フルオランテン環、ペリレン環、ナフトペリレン環、ペンタベンゾペリレン環、ベンゾペリレン環、ペンタフェン環、ピセン環、ピラントレン環、コロネン環、ナフトコロネン環、オバレン環、アンスラアントレン環等が挙げられる。なお、これらの環は、更に上記の置換基を有していてもよい。
 また、3環以上が縮合した芳香族複素環としては、具体的には、アクリジン環、ベンゾキノリン環、カルバゾール環、カルボリン環、フェナジン環、フェナントリジン環、フェナントロリン環、カルボリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ジアザカルバゾール環(カルボリン環を構成する炭素原子の任意の一つが窒素原子で置き換わったものを表す)、フェナントロリン環、ジベンゾフラン環、ジベンゾチオフェン環、ナフトフラン環、ナフトチオフェン環、ベンゾジフラン環、ベンゾジチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、チオファントレン環(ナフトチオフェン環)等が挙げられる。なお、これらの環は更に置換基を有していてもよい。
 一般式(I)において、n101及びn102は各々0~2であることが好ましく、より好ましくはn101+n102が1~3である。また、R101が水素原子の場合にn101及びn102が同時に0であると、一般式(I)で表されるホスト化合物の分子量が小さく低いTgしか達成できないため、R101が水素原子の場合にはn101は1~4を表す。
 本発明で用いられるホスト化合物として、カルバゾール誘導体が、一般式(II)で表される構造を有する化合物であることが好ましい。このような化合物は、特にキャリア輸送性に優れる傾向があるためである。
Figure JPOXMLDOC01-appb-C000025
 一般式(II)において、X101、Ar101、Ar102、n102は、前記一般式(I)におけるX101、Ar101、Ar102、n102と同義である。
 n102は好ましくは0~2であり、より好ましくは0又は1である。
 一般式(II)において、X101を含んで形成される縮合環は、Ar101及びAr102以外にも本発明のホスト化合物の機能を阻害しない範囲でさらに置換基を有しても良い。
 さらに、一般式(II)で表される化合物が下記一般式(III-1)、(III-2)又は(III-3)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000026
 一般式(III-1)~(III-3)において、X101、Ar102、n102は、前記一般式(II)におけるX101、Ar102、n102と同義である。
 一般式(III-1)~(III-3)において、X101を含んで形成される縮合環、カルバゾール環及びベンゼン環は、本発明のホスト化合物の機能を阻害しない範囲でさらに置換基を有しても良い。
 以下に、本発明に用いられるホスト化合物として、一般式(I)、(II)、(III-1)~(III-3)で表される化合物及びその他の構造からなる化合物例を示すが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
 上記一般式(I)~(III-3)で表される化合物のうち、特に、一般式(SH)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000067
 一般式(SH)中、Z~Z及びR41~R46は、それぞれ独立に、水素原子又は置換基を表す。ただし、Z~Z及びR41~R46のうち少なくとも一つは14π電子系以上の芳香族環基を表す。また、隣接する置換基同士は、互いに縮合して環構造を形成してもよい。
 一般式(SH)中、Z~Zのうち少なくとも一つが、置換又は無置換のジベンゾフラン環であることが、本発明の効果を一層高めるために好ましい。
 なお、以下に具体例として示す化合物は、既に一般式(I)~(III-3)で表される化合物として示したものも含まれる。
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
 本発明に用いられる好ましいホスト化合物は、昇華精製が可能な程度の分子量をもった低分子化合物であっても、繰り返し単位を有するポリマーであってもよい。
 低分子化合物の場合、昇華精製が可能であるため精製が容易で、高純度の材料を得やすいという利点がある。分子量としては、昇華精製が可能な程度であれば特に制限はないが、好ましい分子量としては3000以下、より好ましくは2000以下である。
 繰り返し単位を有するポリマー又はオリゴマーの場合は、ウェットプロセスで成膜しやすいという利点があり、また一般にポリマーはTgが高いため耐熱性の点でも好ましい。本発明のホスト化合物として用いられるポリマーは、所望の素子性能が達成可能であれば特に制限はないが、好ましくは一般式(I)、(II)、(III-1)~(III-3)、(SH)の構造を主鎖若しくは側鎖に有するものが好ましい。分子量としては特に制限はないが、分子量5000以上が好ましく、若しくは繰り返し単位数が10以上のものが好ましい。
 また、ホスト化合物は、正孔輸送能又は電子輸送能を有しつつ、かつ、発光の長波長化を防ぎ、さらに、有機EL素子を高温駆動時や素子駆動中の発熱に対して安定して動作させる観点から、高いガラス転移温度(Tg)を有することが好ましい。好ましくはTgが90℃以上であり、より好ましくは120℃以上である。
 ここで、ガラス転移点(Tg)とは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS K 7121-2012に準拠した方法により求められる値である。
 《電子輸送層》
 本発明において電子輸送層とは、電子を輸送する機能を有する材料からなり、陰極より注入された電子を発光層に伝達する機能を有していればよい。
 本発明の電子輸送層の総層厚については特に制限はないが、通常は2nm~5μmの範囲であり、より好ましくは2~500nmであり、さらに好ましくは5~200nmである。
 また、有機EL素子においては発光層で生じた光を電極から取り出す際、発光層から直接取り出される光と、光を取り出す電極と対極に位置する電極によって反射されてから取り出される光とが干渉を起こすことが知られている。光が陰極で反射される場合は、電子輸送層の総層厚を数nm~数μmの間で適宜調整することにより、この干渉効果を効率的に利用することが可能である。
 一方で、電子輸送層の層厚を厚くすると電圧が上昇しやすくなるため、特に層厚が厚い場合においては、電子輸送層の電子移動度は10-5cm/Vs以上であることが好ましい。
 電子輸送層に用いられる材料(以下、電子輸送材料という)としては、電子の注入性又は輸送性、正孔の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。
 例えば、含窒素芳香族複素環誘導体(カルバゾール誘導体、アザカルバゾール誘導体(カルバゾール環を構成する炭素原子の一つ以上が窒素原子に置換されたもの)、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピリダジン誘導体、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、フェナントロリン誘導体、アザトリフェニレン誘導体、オキサゾール誘導体、チアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体等)、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、シロール誘導体、芳香族炭化水素環誘導体(ナフタレン誘導体、アントラセン誘導体、トリフェニレン誘導体等)等が挙げられる。
 また、配位子にキノリノール骨格やジベンゾキノリノール骨格を有する金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送材料として用いることができる。
 その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。
 また、これらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 本発明に係る電子輸送層においては、電子輸送層にドープ材をゲスト材料としてドープして、n性の高い(電子リッチ)電子輸送層を形成してもよい。ドープ材としては、金属錯体やハロゲン化金属など金属化合物等のn型ドーパントが挙げられる。このような構成の電子輸送層の具体例としては、例えば、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等の文献に記載されたものが挙げられる。
 本発明の有機EL素子に用いられる、公知の好ましい電子輸送材料の具体例としては、以下の文献に記載の化合物等が挙げられるが、本発明はこれらに限定されない。
 米国特許第6528187号明細書、米国特許第7230107号明細書、米国特許出願公開第2005/0025993号明細書、米国特許出願公開第2004/0036077号明細書、米国特許出願公開第2009/0115316号明細書、米国特許出願公開第2009/0101870号明細書、米国特許出願公開第2009/0179554号明細書、国際公開第2003/060956号、国際公開第2008/132085号、Appl.Phys.Lett.75,4(1999)、Appl.Phys.Lett.79,449(2001)、Appl.Phys.Lett.81,162(2002)、Appl.Phys.Lett.81,162(2002)、Appl.Phys.Lett.79,156(2001)、米国特許第7964293号明細書、米国特許出願公開第2009/030202号明細書、国際公開第2004/080975号、国際公開第2004/063159号、国際公開第2005/085387号、国際公開第2006/067931号、国際公開第2007/086552号、国際公開第2008/114690号、国際公開第2009/069442号、国際公開第2009/066779号、国際公開第2009/054253号、国際公開第2011/086935号、国際公開第2010/150593号、国際公開第2010/047707号、EP2311826号、特開2010-251675号公報、特開2009-209133号公報、特開2009-124114号公報、特開2008-277810号公報、特開2006-156445号公報、特開2005-340122号公報、特開2003-45662号公報、特開2003-31367号公報、特開2003-282270号公報、国際公開第2012/115034号等である。
 本発明におけるより好ましい電子輸送材料としては、少なくとも一つの窒素原子を含む芳香族複素環化合物が挙げられ、例えばピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、トリアジン誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、アザジベンゾフラン誘導体、アザジベンゾチオフェン誘導体、カルバゾール誘導体、アザカルバゾール誘導体、ベンズイミダゾール誘導体などが挙げられる。
 電子輸送材料は単独で用いてもよく、また複数種を併用して用いてもよい。
 《正孔阻止層》
 正孔阻止層とは広い意味では電子輸送層の機能を有する層であり、好ましくは電子を輸送する機能を有しつつ正孔を輸送する能力が小さい材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。
 また、前述する電子輸送層の構成を必要に応じて、本発明に係る正孔阻止層として用いることができる。
 本発明の有機EL素子に設ける正孔阻止層は、発光層の陰極側に隣接して設けられることが好ましい。
 本発明に係る正孔阻止層の層厚としては、好ましくは3~100nmの範囲であり、更に好ましくは5~30nmの範囲である。
 正孔阻止層に用いられる材料としては、前述の電子輸送層に用いられる材料が好ましく用いられ、また、前述のホスト化合物として用いられる材料も正孔阻止層に好ましく用いられる。
 《電子注入層》
 本発明に係る電子注入層(「陰極バッファー層」ともいう)とは、駆動電圧低下や発光輝度向上のために陰極と発光層との間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されている。
 本発明において電子注入層は必要に応じて設け、上記のごとく陰極と発光層との間、又は陰極と電子輸送層との間に存在させてもよい。
 電子注入層はごく薄い膜であることが好ましく、素材にもよるがその層厚は0.1nm~5nmの範囲が好ましい。また構成材料が断続的に存在する不均一な層(膜)であってもよい。
 電子注入層は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、電子注入層に好ましく用いられる材料の具体例としては、ストロンチウムやアルミニウム等に代表される金属、フッ化リチウム、フッ化ナトリウム、フッ化カリウム等に代表されるアルカリ金属化合物、フッ化マグネシウム、フッ化カルシウム等に代表されるアルカリ土類金属化合物、酸化アルミニウムに代表される金属酸化物、8-ヒドロキシキノリネートリチウム(Liq)等に代表される金属錯体等が挙げられる。また、前述の電子輸送材料を用いることも可能である。
 また、上記の電子注入層に用いられる材料は単独で用いてもよく、複数種を併用して用いてもよい。
 《正孔輸送層》
 本発明において正孔輸送層とは、正孔を輸送する機能を有する材料からなり、陽極より注入された正孔を発光層に伝達する機能を有していればよい。
 本発明の正孔輸送層の総層厚については特に制限はないが、通常は5nm~5μmの範囲であり、より好ましくは2~500nmであり、さらに好ましくは5~200nmである。
 正孔輸送層に用いられる材料(以下、正孔輸送材料という)としては、正孔の注入性又は輸送性、電子の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。
 例えば、ポルフィリン誘導体、フタロシアニン誘導体、オキサゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリアリールアルカン誘導体、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、イソインドール誘導体、アントラセンやナフタレン等のアセン系誘導体、フルオレン誘導体、フルオレノン誘導体、及びポリビニルカルバゾール、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー、ポリシラン、導電性ポリマー又はオリゴマー(例えばPEDOT/PSS、アニリン系共重合体、ポリアニリン、ポリチオフェン等)等が挙げられる。
 トリアリールアミン誘導体としては、α-NPDに代表されるベンジジン型や、MTDATAに代表されるスターバースト型、トリアリールアミン連結コア部にフルオレンやアントラセンを有する化合物等が挙げられる。
 また、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体も同様に正孔輸送材料として用いることができる。
 さらに不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
 また、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、いわゆるp型正孔輸送材料やp型-Si、p型-SiC等の無機化合物を用いることもできる。さらにIr(ppy)に代表されるような中心金属にIrやPtを有するオルトメタル化有機金属錯体も好ましく用いられる。
 正孔輸送材料としては、上記のものを使用することができるが、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、アザトリフェニレン誘導体、有機金属錯体、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー等が好ましく用いられる。
 本発明の有機EL素子に用いられる、公知の好ましい正孔輸送材料の具体例としては、上記で挙げた文献の他、以下の文献に記載の化合物等が挙げられるが、本発明はこれらに限定されない。
 例えば、Appl.Phys.Lett.69,2160(1996)、J.Lumin.72-74,985(1997)、Appl.Phys.Lett.78,673(2001)、Appl.Phys.Lett.90,183503(2007)、Appl.Phys.Lett.90,183503(2007)、Appl.Phys.Lett.51,913(1987)、Synth.Met.87,171(1997)、Synth.Met.91,209(1997)、Synth.Met.111,421(2000)、SID Symposium Digest,37,923(2006)、J.Mater.Chem.3,319(1993)、Adv.Mater.6,677(1994)、Chem.Mater.15,3148(2003)、米国特許出願公開第2003/0162053号明細書、米国特許出願公開第2002/0158242号明細書、米国特許出願公開第2006/0240279号明細書、米国特許出願公開第2008/0220265号明細書、米国特許第5061569号、国際公開第2007/002683号、国際公開第2009/018009号、EP650955、米国特許出願公開第2008/0124572号明細書、米国特許出願公開第2007/0278938号明細書、米国特許出願公開第2008/0106190号明細書、米国特許出願公開第2008/0018221号明細書、国際公開第2012/115034号、特表2003-519432号公報、特開2006-135145号公報、米国特許出願番号13/585981号公報等である。
 正孔輸送材料は単独で用いてもよく、また複数種を併用して用いてもよい。
 《電子阻止層》
 電子阻止層とは広い意味では正孔輸送層の機能を有する層であり、好ましくは正孔を輸送する機能を有しつつ電子を輸送する能力が小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。
 また、前述する正孔輸送層の構成を必要に応じて、本発明に係る電子阻止層として用いることができる。
 本発明の有機EL素子に設ける電子阻止層は、発光層の陽極側に隣接して設けられることが好ましい。
 本発明に係る電子阻止層の層厚としては、好ましくは3~100nmの範囲であり、更に好ましくは5~30nmの範囲である。
 電子阻止層に用いられる材料としては、前述の正孔輸送層に用いられる材料が好ましく用いられ、また、前述のホスト化合物として用いられる材料も電子阻止層に好ましく用いられる。
 《正孔注入層》
 本発明に係る正孔注入層(「陽極バッファー層」ともいう)とは、駆動電圧低下や発光輝度向上のために陽極と発光層との間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されている。
 本発明において正孔注入層は必要に応じて設け、上記のごとく陽極と発光層又は陽極と正孔輸送層との間に存在させてもよい。
 正孔注入層は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、正孔注入層に用いられる材料としては、例えば前述の正孔輸送層に用いられる材料等が挙げられる。
 中でも銅フタロシアニンに代表されるフタロシアニン誘導体、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体、酸化バナジウムに代表される金属酸化物、アモルファスカーボン、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子、トリス(2-フェニルピリジン)イリジウム錯体等に代表されるオルトメタル化錯体、トリアリールアミン誘導体等が好ましい。
 前述の正孔注入層に用いられる材料は単独で用いてもよく、また複数種を併用して用いてもよい。
 《添加物》
 前述した本発明における有機層は、更に他の添加物が含まれていてもよい。
 添加物としては、例えば臭素、ヨウ素及び塩素等のハロゲン元素やハロゲン化化合物、Pd、Ca、Na等のアルカリ金属やアルカリ土類金属、遷移金属の化合物や錯体、塩等が挙げられる。
 添加物の含有量は、任意に決定することができるが、含有される層の全質量%に対して1000ppm以下であることが好ましく、より好ましくは500ppm以下であり、さらに好ましくは50ppm以下である。
 ただし、電子や正孔の輸送性を向上させる目的や、励起子のエネルギー移動を有利にするための目的などによってはこの範囲内ではない。
 《有機層の形成方法》
 本発明の有機層(正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層、電子注入層等)の形成方法について説明する。
 本発明の有機層の形成方法は、特に制限はなく、従来公知の例えば真空蒸着法、湿式法(ウェットプロセスともいう)等による形成方法を用いることができる。
 湿式法としては、スピンコート法、キャスト法、インクジェット法、印刷法、ダイコート法、ブレードコート法、ロールコート法、スプレーコート法、カーテンコート法、LB法(ラングミュア-ブロジェット法)等があるが、均質な薄膜が得られやすく、かつ高生産性の点から、ダイコート法、ロールコート法、インクジェット法、スプレーコート法などのロール・ツー・ロール方式適性の高い方法が好ましい。
 本発明に用いられる有機EL材料を溶解又は分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。
 また、分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。
 更に層ごとに異なる製膜法を適用してもよい。製膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50~450℃、真空度10-6~10-2Pa、蒸着速度0.01~50nm/秒、基板温度-50~300℃、層(膜)厚0.1nm~5μm、好ましくは5~200nmの範囲で適宜選ぶことが望ましい。
 本発明の有機層の形成は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる製膜法を施しても構わない。その際は作業を乾燥不活性ガス雰囲気下で行うことが好ましい。
 《陽極》
 有機EL素子における陽極としては、仕事関数の大きい(4eV以上、好ましくは4.5eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。
 陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、又はパターン精度を余り必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。
 また、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。
 陽極の膜厚は材料にもよるが、通常10nm~1μm、好ましくは10~200nmの範囲で選ばれる。
 《陰極》
 陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、アルミニウム、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
 陰極はこれらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させることで作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。
 なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が透明又は半透明であれば発光輝度が向上し好都合である。
 また、陰極に上記金属を1~20nmの膜厚で作製した後に、陽極の説明で挙げる導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
 [支持基板]
 本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等ともいう。)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル、ポリアリレート類、アートン(商品名JSR社製)又はアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。
 樹脂フィルムの表面には、無機物、有機物の被膜又はその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/m・24h以下のバリア性フィルムであることが好ましく、更には、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3ml/m・24h・atm以下、水蒸気透過度が、1×10-5g/m・24h以下の高バリア性フィルムであることが好ましい。
 バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
 バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。
 不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
 本発明の有機EL素子の発光の室温(25℃)における外部取り出し量子効率は、1%以上であることが好ましく、5%以上であるとより好ましい。
 ここで、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。
 また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を、蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。
 [封止]
 本発明の有機EL素子の封止に用いられる封止手段としては、例えば、封止部材と、電極、支持基板とを接着剤で接着する方法を挙げることができる。封止部材としては、有機EL素子の表示領域を覆うように配置されていればよく、凹板状でも、平板状でもよい。また、透明性、電気絶縁性は特に限定されない。
 具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる1種以上の金属又は合金からなるものが挙げられる。
 本発明においては、有機EL素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。さらには、ポリマーフィルムはJIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3ml/m・24h以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度90±2%)が、1×10-3g/m・24h以下のものであることが好ましい。
 封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。
 接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
 なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
 また、有機層を挟み支持基板と対向する側の電極の外側に該電極と有機層を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。
 さらに該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。
 封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また、真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、ヨウ化バリウム、ヨウ化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。
 [保護膜、保護板]
 有機層を挟み支持基板と対向する側の前記封止膜又は前記封止用フィルムの外側に、素子の機械的強度を高めるために、保護膜又は保護板を設けてもよい。特に、封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。
 [光取り出し向上技術]
 有機EL素子は、空気よりも屈折率の高い(屈折率1.6~2.1程度の範囲内)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として、光が素子側面方向に逃げるためである。
 この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(例えば、米国特許第4774435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(例えば、特開昭63-314795号公報)、素子の側面等に反射面を形成する方法(例えば、特開平1-220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(例えば、特開昭62-172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(例えば、特開2001-202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11-283751号公報)などが挙げられる。
 本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、又は基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。
 本発明は、これらの手段を組み合わせることにより、更に高輝度又は耐久性に優れた素子を得ることができる。
 透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚さで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど、外部への取り出し効率が高くなる。
 低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマーなどが挙げられる。透明基板の屈折率は一般に1.5~1.7程度の範囲内であるので、低屈折率層は、屈折率がおよそ1.5以下であることが好ましい。またさらに1.35以下であることが好ましい。
 また、低屈折率媒質の厚さは、媒質中の波長の2倍以上となるのが望ましい。これは、低屈折率媒質の厚さが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。
 全反射を起こす界面又は、いずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は、回折格子が1次の回折や、2次の回折といった、いわゆるブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち、層間での全反射等により外に出ることができない光を、いずれかの層間若しくは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。
 導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは、発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な一次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。
 しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。
 回折格子を導入する位置としては、いずれかの層間、若しくは媒質中(透明基板内や透明電極内)でも良いが、光が発生する場所である有機発光層の近傍が望ましい。このとき、回折格子の周期は、媒質中の光の波長の約1/2~3倍程度の範囲内が好ましい。回折格子の配列は、正方形のラチス状、三角形のラチス状、ハニカムラチス状など、二次元的に配列が繰り返されることが好ましい。
 [集光シート]
 本発明の有機EL素子は、支持基板(基板)の光取出し側に、例えばマイクロレンズアレイ上の構造を設けるように加工したり、又は、いわゆる集光シートと組み合わせることにより、特定方向、例えば素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を二次元に配列する。一辺は10~100μmの範囲内が好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚さが厚くなり好ましくない。
 集光シートとしては、例えば液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして例えば、住友スリーエム社製輝度上昇フィルム(BEF)などを用いることができる。プリズムシートの形状としては、例えば基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であっても良い。
 また、有機EL素子からの光放射角を制御するために光拡散板・フィルムを、集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)などを用いることができる。
 [用途]
 本発明の有機EL素子は、電子機器、例えば、表示機器、ディスプレイ、各種発光装置として用いることができる。
 発光装置として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
 本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。
 本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図14.16において、分光放射輝度計CS-1000(コニカミノルタ(株)製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
 また、本発明の有機EL素子が白色素子の場合には、白色とは、2度視野角正面輝度を上記方法により測定した際に、1000cd/mでのCIE1931表色系における色度がX=0.33±0.07、Y=0.33±0.1の領域内にあることをいう。
 <表示装置>
 本発明の有機EL素子を具備する表示装置は単色でも多色でもよいが、ここでは多色表示装置について説明する。
 多色表示装置の場合は発光層形成時のみシャドーマスクを設け、一面に蒸着法、キャスト法、スピンコート法、インクジェット法又は印刷法等で膜を形成できる。
 発光層のみパターニングを行う場合、その方法に限定はないが、好ましくは蒸着法、インクジェット法、スピンコート法及び印刷法である。
 表示装置に具備される有機EL素子の構成は、必要に応じて上記の有機EL素子の構成例の中から選択される。
 また、有機EL素子の製造方法は、上記の本発明の有機EL素子の製造の一態様に示したとおりである。
 このようにして得られた多色表示装置に直流電圧を印加する場合には、陽極を+、陰極を-の極性として電圧2~40V程度を印加すると発光が観測できる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。更に交流電圧を印加する場合には、陽極が+、陰極が-の状態になったときのみ発光する。なお、印加する交流の波形は任意でよい。
 多色表示装置は、表示デバイス、ディスプレイ又は各種発光光源として用いることができる。表示デバイス又はディスプレイにおいて、青、赤及び緑発光の3種の有機EL素子を用いることによりフルカラーの表示が可能となる。
 表示デバイス又はディスプレイとしては、テレビ、パソコン、モバイル機器、AV機器、文字放送表示及び自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよく、動画再生用の表示装置として使用する場合の駆動方式は単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。
 発光装置としては、家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、本発明はこれらに限定されない。
 以下、本発明の有機EL素子を有する表示装置の一例を図面に基づいて説明する。
 図13は有機EL素子から構成される表示装置の一例を示した模式図である。有機EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図である。
 ディスプレイ1は複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像走査を行う制御部B、表示部Aと制御部Bとを電気的に接続する配線部C等を有する。
 制御部Bは表示部Aと配線部Cを介して電気的に接続され、複数の画素それぞれに外部からの画像情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線ごとの画素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部Aに表示する。
 図14はアクティブマトリクス方式による表示装置の模式図である。
 表示部Aは基板上に、複数の走査線5及びデータ線6を含む配線部Cと複数の画素3等とを有する。表示部Aの主要な部材の説明を以下に行う。
 図14においては、画素3の発光した光が白矢印方向(下方向)へ取り出される場合を示している。
 配線部の走査線5及び複数のデータ線6はそれぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示していない)。
 画素3は走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。
 発光の色が赤領域の画素、緑領域の画素、青領域の画素を適宜同一基板上に並置することによって、フルカラー表示が可能となる。
 次に、画素の発光プロセスを説明する。図15は画素の回路を示した概略図である。
 画素は、有機EL素子10、スイッチングトランジスタ11、駆動トランジスタ12、コンデンサー13等を備えている。複数の画素に有機EL素子10として、赤色、緑色及び青色発光の有機EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行うことができる。
 図15において、制御部Bからデータ線6を介してスイッチングトランジスタ11のドレインに画像データ信号が印加される。そして、制御部Bから走査線5を介してスイッチングトランジスタ11のゲートに走査信号が印加されると、スイッチングトランジスタ11の駆動がオンし、ドレインに印加された画像データ信号がコンデンサー13と駆動トランジスタ12のゲートに伝達される。
 画像データ信号の伝達により、コンデンサー13が画像データ信号の電位に応じて充電されるとともに、駆動トランジスタ12の駆動がオンする。駆動トランジスタ12は、ドレインが電源ライン7に接続され、ソースが有機EL素子10の電極に接続されており、ゲートに印加された画像データ信号の電位に応じて電源ライン7から有機EL素子10に電流が供給される。
 制御部Bの順次走査により走査信号が次の走査線5に移ると、スイッチングトランジスタ11の駆動がオフする。しかし、スイッチングトランジスタ11の駆動がオフしてもコンデンサー13は充電された画像データ信号の電位を保持するので、駆動トランジスタ12の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機EL素子10の発光が継続する。順次走査により次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電位に応じて駆動トランジスタ12が駆動して有機EL素子10が発光する。
 すなわち、有機EL素子10の発光は、複数の画素それぞれの有機EL素子10に対して、アクティブ素子であるスイッチングトランジスタ11と駆動トランジスタ12を設けて、複数の画素3それぞれの有機EL素子10の発光を行っている。このような発光方法をアクティブマトリクス方式と呼んでいる。
 ここで、有機EL素子10の発光は複数の階調電位を持つ多値の画像データ信号による複数の階調の発光でもよいし、2値の画像データ信号による所定の発光量のオン、オフでもよい。また、コンデンサー13の電位の保持は次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加される直前に放電させてもよい。
 本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査されたときのみデータ信号に応じて有機EL素子を発光させるパッシブマトリクス方式の発光駆動でもよい。
 図16は、パッシブマトリクス方式による表示装置の模式図である。図16において、複数の走査線5と複数の画像データ線6が画素3を挟んで対向して格子状に設けられている。
 順次走査により走査線5の走査信号が印加されたとき、印加された走査線5に接続している画素3が画像データ信号に応じて発光する。
 パッシブマトリクス方式では画素3にアクティブ素子が無く、製造コストの低減が計れる。
 本発明の有機EL素子を用いることにより、発光効率が向上した表示装置が得られた。
 <照明装置>
 本発明の有機EL素子は、照明装置に用いることもできる。
 本発明の有機EL素子は、共振器構造を持たせた有機EL素子として用いてもよい。このような共振器構造を有した有機EL素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザー発振をさせることにより上記用途に使用してもよい。
 また、本発明の有機EL素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。
 動画再生用の表示装置として使用する場合の駆動方式は、パッシブマトリクス方式でもアクティブマトリクス方式でもどちらでもよい。または、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。
 また、本発明に係る発光性化合物は、照明装置として、実質的に白色の発光を生じる有機EL素子に適用できる。例えば、複数の発光材料を用いる場合、複数の発光色を同時に発光させて、混色することで白色発光を得ることができる。複数の発光色の組み合わせとしては、赤色、緑色及び青色の3原色の三つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した二つの発光極大波長を含有したものでもよい。
 また、本発明の有機EL素子の形成方法は、発光層、正孔輸送層又は電子輸送層等の形成時のみマスクを設け、マスクにより塗り分ける等単純に配置するだけでよい。他層は共通であるのでマスク等のパターニングは不要であり、一面に蒸着法、キャスト法、スピンコート法、インクジェット法及び印刷法等で、例えば、電極膜を形成でき、生産性も向上する。
 この方法によれば、複数色の発光素子をアレー状に並列配置した白色有機EL装置と異なり、素子自体が発光白色である。
 [本発明の照明装置の一態様]
 本発明の有機EL素子を具備した、本発明の照明装置の一態様について説明する。
 本発明の有機EL素子の非発光面をガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止し、図17及び図18に示すような照明装置を形成することができる。
 図17は、照明装置の概略図を示し、本発明の有機EL素子(照明装置内の有機EL素子101)はガラスカバー102で覆われている(なお、ガラスカバーでの封止作業は、照明装置内の有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った。)。
 図18は、照明装置の断面図を示し、図18において、105は陰極、106は有機層、107は透明電極付きガラス基板を示す。なお、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。
 本発明の有機EL素子を用いることにより、発光効率が向上した照明装置が得られた。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。
 また、各実施例における化合物の体積%は、作製する層厚を水晶発振子マイクロバランス法により測定し、質量を算出することで、比重から求めている。
 [実施例1]
 ≪有機EL素子29の作製≫
 陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
 この透明支持基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を用いて3000rpm、30秒の条件下、スピンコート法により薄膜を形成した後、200℃にて1時間乾燥し、層厚20nmの第1正孔輸送層を設けた。
 この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方モリブデン製抵抗加熱ボートにα-NPD(4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル)を200mg入れ、別のモリブデン製抵抗加熱ボートにSH-11を200mg入れ、別のモリブデン製抵抗加熱ボートに比較化合物1を200mg入れ、別のモリブデン製抵抗加熱ボートにBCP(2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン)を200mg入れ真空蒸着装置に取り付けた。
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
 次いで真空槽を4×10-4Paまで減圧した後、α-NPDの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、前記正孔注入層上に蒸着し30nmの第2正孔輸送層を設けた。
 更にSH-11の入った前記加熱ボートと比較化合物1の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/秒、0.010nm/秒で、前記正孔輸送層上に共蒸着し30nmの発光層を設けた。
 更にBCPの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、前記正孔阻止層上に蒸着し30nmの電子輸送層を設けた。
 引き続き、陰極バッファー層としてフッ化リチウム0.5nmを蒸着し、更にアルミニウム110nmを蒸着して陰極を形成し、有機EL素子29を作製した。
 ≪有機EL素子1~28、30の作製≫
 有機EL素子29の作製において、SH-11及び比較化合物1を表3に記載の化合物に変えた以外は同様にして有機EL素子1~28及び30を作製した。
 [実施例2]
 実施例1で作製した有機EL素子29の作製において、発光層に用いたホスト化合物と発光性化合物を表4に示したものに、電子輸送層に用いたBCPをAlqに変えた以外は全く同様にして、有機EL素子31~60を作製した。
 [実施例3]
 実施例1で作製した有機EL素子29の作製において、発光層に用いたホスト化合物と発光性化合物を表5に示したものに、第2正孔輸送層に用いたα-NPDをTPDに変えた以外は全く同様にして、有機EL素子61~90を作製した。
 [実施例4]
 実施例1で作製した有機EL素子29の作製において、発光層に用いたホスト化合物と発光性化合物を表6に示したものに、第2正孔輸送層に用いたα-NPDをTPDに、電子輸送層に用いたBCPをAlqに変えた以外は全く同様にして、有機EL素子91~113を作製した。
 [実施例5]
 ≪有機EL素子134の作製≫
 陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
 この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、モリブデン製抵抗加熱ボートにHAT-CN、α-NPD(4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル)、SH-9、D-15、及びBCP(2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン)をそれぞれ200mg入れ、真空蒸着装置に取り付けた。
 次いで真空槽を4×10-4Paまで減圧した後、HAT-CNの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、前記ITO透明電極を設けた透明支持基板上に蒸着し20nmの第1正孔輸送層を設けた。
 α-NPDの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、前記正孔注入層上に蒸着し30nmの第2正孔輸送層を設けた。
 更にSH-9の入った前記加熱ボートとD-15の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/秒、0.010nm/秒で、前記第2正孔輸送層上に共蒸着し30nmの発光層を設けた。
 更にBCPの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、前記正孔阻止層上に蒸着し30nmの電子輸送層を設けた。
 引き続き、陰極バッファー層としてフッ化リチウム1.0nmを蒸着し、更にアルミニウム110nmを蒸着して陰極を形成し、有機EL素子134を作製した。
 ≪有機EL素子114~133、135、136の作製≫
 有機EL素子134の作製において、SH-9及びD-15を表7に記載の化合物に変えた以外は全く同様にして有機EL素子114~133及び135、136を作製した。
 [実施例6]
 有機EL素子134の作製において、SH-9及びD-15を表8に記載の化合物に、電子輸送層に用いたBCPをAlqに変えた以外は同様にして有機EL素子137~159を作製した。
 [実施例7]
 有機EL素子134の作製において、SH-9及びD-15を表9に記載の化合物に、第2正孔輸送層に用いたα-NPDをTPDに変えた以外は全く同様にして有機EL素子160~182を作製した。
 ≪発光性化合物と有機EL素子1~182の評価≫
 (1)発光性化合物の最低励起一重項エネルギーSの測定
 発光性化合物の溶液(溶媒としてジクロロメタンを使用)の室温(25℃)における発光スペクトルを、蛍光分光光度計(日立社製F-4500型蛍光分光計)を用いて測定し、最大の蛍光極大波長に対応するエネルギー値を最低励起一重項エネルギーSとして求めた。
 (2)発光性化合物のストークスシフトの算出
 発光性化合物の溶液(溶媒としてジクロロメタンを使用)の室温(25℃)における励起(吸収)スペクトルと発光スペクトルとを、蛍光分光光度計(日立社製F-4500型蛍光分光計)を用いて測定し、蛍光極大波長と励起(吸収)極大波長との差が有するエネルギーを「ストークスシフト」として求めた。
Figure JPOXMLDOC01-appb-T000072
 表2より、本発明に係るD-1~D-28は、2.64eV以上の一重項エネルギーを有し、0.24eV以下のストークスシフトを有することがわかった。
 (3)抵抗値の変化率及び発光効率の維持率
 得られた有機EL素子を評価するに際しては、図17、図18に示すような照明装置を形成して、インピーダンス分光測定装置による発光層の抵抗値の変化率の測定及びを発光性能の評価を実施した。
 図17は、照明装置の概略図を示し、本発明の有機EL素子(照明装置内の有機EL素子101)はガラスカバー102で覆われている(なお、ガラスカバーでの封止作業は、照明装置内の有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った。)。具体的には、ガラスカバーと有機EL素子が作製されたガラス基板とが接触するガラスカバー側の周囲にシール剤としてエポキシ系光硬化型接着剤(東亞合成社製ラクストラックLC0629B)を適用し、これを上記陰極側に重ねて前記透明支持基板と密着させ、ガラス基板側から有機EL素子を除いた部分にUV光を照射して硬化させた。
 図18は、照明装置の断面図を示し、図18において、105は陰極、106は有機EL層、107は透明電極付きガラス基板を示す。なお、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。
 (3-1)有機EL素子駆動前後の抵抗値の変化率
 『薄膜の評価ハンドブック』テクノシステム社刊423~425ページに記載の測定方法を参考に、Solartron社製1260型インピーダンスアナライザ及び1296型誘電体インターフェイスを使って、作製した有機EL素子の発光層のバイアス電圧1Vにおける抵抗値の測定を行った。
 具体的には、有機EL素子を室温(25℃)、2.5mA/cmの定電流条件下により1000時間駆動した後の駆動前後の発光層の抵抗値を各々測定し、測定結果を下記に示した計算式により計算し抵抗値の変化率を求めた。比較例の有機EL素子の抵抗値の変化率を100としたときの相対値を記載した。
 駆動前後の抵抗値の変化率=|(駆動後の抵抗値/駆動前の抵抗値)-1|×100
 値が0に近い方が駆動前後の変化率が小さいことを示す。
 なお、数値が小さい程、薄膜抵抗率の経時変化が小さいことを表す。
 (3-2)有機EL素子駆動前後の発光効率の維持率
 有機EL素子の発光性能を評価するため、有機EL素子を室温(25℃)、2.5mA/cmの定電流条件下で駆動させ、外部取り出し量子効率(%)を測定し、これを発光効率の指標とした。測定には、分光放射輝度計CS-1000(コニカミノルタ社製)を用いた。外部取り出し量子効率を有機EL素子の作製直後と1000時間駆動後でそれぞれ測定し、発光効率の維持率を調べた。
 なお、発光効率の維持率は、比較素子の駆動後における発光効率の維持率を100とした時の相対値で表した。したがって、数値が大きい程、発光効率の経時変化が小さいことを表し、例えば、比較例の有機EL素子の駆動後の発光効率維持率が初期値の40%であるとき、発光効率維持率が初期値の100%であった有機EL素子の評価値は250となる。
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000078
Figure JPOXMLDOC01-appb-T000079
 表3より、本発明に係る発光性化合物であるD-1~D-28はカルバゾール骨格を有するホスト化合物SH-11(H-159)を用いた場合において、比較化合物1及び比較化合物2よりも、電圧印加後の発光層の抵抗値変化率が小さく、発光層の薄膜の物性変化が小さい有機EL素子を得ることができた。また、本発明に係る発光性化合物であるD-1~D-28はカルバゾール骨格を有するホスト化合物SH-11を用いた場合において、比較化合物1及び比較化合物2よりも、電圧印加後の発光効率の維持率が大きいことがわかり、本発明は素子寿命の改善に効果的であることが分かった。
 表4より、本発明に係る発光性化合物であるD-1~D-28はカルバゾール骨格を有さないホスト化合物H-233を用いた場合においても、比較化合物1及び比較化合物2よりも電圧印加後の発光層の抵抗値変化率が小さく、発光層の薄膜の物性変化が小さい有機EL素子を得ることができた。また、本発明に係る発光性化合物であるD-1~D-28はカルバゾール骨格を有さないホスト化合物H-233を用いた場合においても、比較化合物1及び比較化合物2よりも、電圧印加後の発光効率の維持率が大きいことがわかり、本発明は素子寿命の改善に効果的であることが分かった。
 表5より、本発明に係る発光性化合物であるD-1~D-28はカルバゾール骨格を有するホスト化合物SH-10を用いた場合において、比較化合物1及び比較化合物2よりも、電圧印加後の発光層の抵抗値変化率が小さく、発光層の薄膜の物性変化が小さい有機EL素子を得ることができた。また、本発明に係る発光性化合物であるD-1~D-28はカルバゾール骨格を有するホスト化合物SH-10を用いた場合において、比較化合物1及び比較化合物2よりも、電圧印加後の発光効率の維持率が大きいことがわかり、本発明は素子寿命の改善に効果的であることが分かった。
 表6より、本発明に係る発光性化合物D-8を、カルバゾール骨格を有するホスト化合物SH-1~SH-9、H-4、H-10、H-13、H-22、H-24、H-26、H-46、H-76、H-78、H-231、H-232とそれぞれ組み合わせて作製した有機EL素子は、カルバゾール骨格を有さないホスト化合物H-1を組み合わせた有機EL素子よりも電圧印加後の発光層の抵抗値の変化率が小さいことがわかった。このことから、カルバゾール骨格を有するホスト化合物を用いることで、発光層の薄膜の物性変化がより小さい有機EL素子を得られることがわかった。さらに、比較化合物1及び本発明に係る発光性化合物D-8を、カルバゾール骨格を有さないホスト化合物であるH-1とそれぞれ組み合わせて作製した素子においては、本発明に係る発光性化合物D-8を用いた場合の方が、電圧印加後の発光層の抵抗値の変化率が小さいことが分かった。したがって、本発明はカルバゾール骨格を有さないホスト化合物を素子作製に用いた場合においても素子寿命の改善に効果的であることがわかった。
 また、本発明に係る発光性化合物D-8を、カルバゾール骨格を有するホスト化合物SH-1~SH-9、H-4、H-10、H-13、H-22、H-24、H-26、H-46、H-76、H-78、H-231、H-232とそれぞれ組み合わせて作製した有機EL素子は、カルバゾール骨格を有さないホスト化合物H-1を組み合わせた有機EL素子よりも電圧印加後の発光効率の維持率が大きいことがわかった。このことから、カルバゾール骨格を有するホスト化合物を用いることで、発光層の薄膜の物性変化がより小さい有機EL素子を得られることがわかった。さらに、比較化合物1及び本発明に係る発光性化合物D-8を、カルバゾール骨格を有さないホスト化合物H-1とそれぞれ組み合わせて作製した素子においては、本発明に係る発光性化合物D-8を用いた場合の方が、電圧印加後の発光効率の維持率が大きいことがわかった。したがって、本発明はカルバゾール骨格を有さないホスト化合物を素子作製に用いた場合においても素子寿命の改善に効果的であることがわかった。
 表7より、本発明に係る発光性化合物D-15を、カルバゾール骨格を有するホスト化合物SH-1~SH-9、H-4、H-10、H-13、H-22、H-24、H-26、H-46、H-76、H-78、H-231、H-232とそれぞれ組み合わせて作製した有機EL素子は、カルバゾール骨格を有さないホスト化合物H-233を組み合わせた有機EL素子よりも電圧印加後の発光層の抵抗値の変化率が小さく、発光効率の維持率が大きいことがわかった。このことから、カルバゾール骨格を有するホスト化合物を用いることで、発光層の薄膜の物性変化がより小さい有機EL素子を得られることがわかった。さらに、比較化合物2及び本発明に係る発光性化合物D-15を、カルバゾール骨格を有さないホスト化合物であるH-233とそれぞれ組み合わせて作製した素子においては、本発明に係る発光性化合物D-15の方が、電圧印加後の発光層の抵抗値の変化率が小さく、電圧印加後の発光効率の維持率が大きいことが分かった。したがって、本発明はカルバゾール骨格を有さないホスト化合物を素子作製に用いた場合においても素子寿命の改善に効果的であることがわかった。
 表8より、本発明に係る発光性化合物D-26を、カルバゾール骨格を有するホスト化合物SH-1~SH-9、H-4、H-10、H-13、H-22、H-24、H-26、H-46、H-76、H-78、H-231、H-232とそれぞれ組み合わせて作製した有機EL素子は、カルバゾール骨格を有さないホスト化合物H-1を組み合わせた有機EL素子よりも電圧印加後の発光層の抵抗値の変化率が小さく、発光効率の維持率が大きいことがわかった。このことから、カルバゾール骨格を有するホスト化合物を用いることで、発光層の薄膜の物性変化がより小さい有機EL素子を得られることがわかった。さらに、比較化合物2及び本発明に係る発光性化合物D-26を、カルバゾール骨格を有さないホスト化合物H-1とそれぞれ組み合わせて作製した素子においては、本発明に係る発光性化合物D-26の方が、電圧印加後の発光層の抵抗値の変化率が小さく、発光効率の維持率が大きいことが分かった。したがって、本発明はカルバゾール骨格を有さないホスト化合物を素子作製に用いた場合においても素子寿命の改善に効果的であることがわかった。
 表9より、本発明に係る発光性化合物D-27を、カルバゾール骨格を有するホスト化合物SH-1~SH-9、H-4、H-10、H-13、H-22、H-24、H-26、H-46、H-76、H-78、H-231、H-232とそれぞれ組み合わせて作製した有機EL素子は、カルバゾール骨格を有さないホスト化合物H-233を組み合わせた有機EL素子よりも電圧印加後の発光層の抵抗値の変化率が小さく、発光効率の維持率が大きいことがわかった。このことから、カルバゾール骨格を有するホスト化合物を用いることで、発光層の薄膜の物性変化がより小さい有機EL素子を得られることがわかった。さらに、比較化合物1及び本発明に係る発光性化合物D-27を、カルバゾール骨格を有さないホスト化合物であるH-233とそれぞれ組み合わせて作製した素子においては、本発明に係る発光性化合物D-27の方が、電圧印加後の発光層の抵抗値の変化率が小さく、発光効率の維持率が大きいことが分かった。したがって、本発明はカルバゾール骨格を有さないホスト化合物を素子作製に用いた場合においても素子寿命の改善に効果的であることがわかった。
 以上の結果から、本発明に係る発光性化合物D-1~D-28を用いた有機EL素子では、長時間の電圧印加に対して、発光層の物性変化が小さく、高い発光性能を維持することができた。
 これは、本発明に係る発光性化合物であるD-1~D-28の剛直性が高いことにより、電圧印加時の分子運動が抑制され、薄膜のモルフォロジー安定性が向上したものと考えられる。さらに、D-1~D-28は非平面性の高い分子構造を有することにより、πスタッキングのような分子間相互作用が軽減される。このため、発光性化合物が薄膜中で適当な分散状態を保てるようになり、結果として電圧印加時の励起子同士の局在が避けられることで、薄膜の安定性が向上したものと考えられる。
 加えて、本発明に係る発光性化合物と、カルバゾール骨格を有するホスト化合物の組み合わせにより、薄膜の物性変化はより小さくなり、発光性能はより高く維持されることがわかった。
 これはカルバゾール骨格を有するホスト化合物が大きなπ電子共役系構造を有することによって、同じくπ電子共役系構造を有する発光性化合物を適度に発光層中に分散したこと、及び上記電子ホッピングが適切に行われるようになり励起子の局在が回避され、通電に対する薄膜の安定性が向上したものと考えられる。
 加えて、本発明に係る発光性化合物と、カルバゾール骨格を有するホスト化合物の組み合わせにより、薄膜の物性変化はより小さくなり、発光性能はより高く維持されることがわかった。
 これはカルバゾール骨格を有するホスト化合物が大きなπ電子共役系構造を有することによって、同じくπ電子共役系構造を有する発光性化合物を適度に発光層中に分散したこと、及び上記電子ホッピングが適切に行われるようになり励起子の局在が回避され、通電に対する薄膜の安定性が向上したものと考えられる。
 本発明において、電荷移動性薄膜の状態変化をインピーダンス分光法と呼ばれる新しい非破壊計測法を適用することで、実際のデバイスをそのまま用い、その中で起こっている現象を抵抗値として比較することができた。この方法自体、まだ新しい技術であるため、その誤差の大きさは具体的に特定できないが、有機EL素子中において本発明の技術思想を盛り込んだ、ストークスシフトが小さい青色発光性化合物と特定のカルバゾール骨格を有するホスト化合物を組み合わせた発光層では、比較となる発光層が示した抵抗値よりも明らかに抵抗値の変化が少ないことから、実際のデバイス内で起こっている現象を的確に記述しているものと思われ、妥当な検証方法であるといえる。
 また、電荷移動性薄膜を用いた有機EL素子などでは、その素子寿命が問題視され、それが実用化への障壁となっている。素子寿命の根本原因は、極論すると、全てが電荷移動性薄膜自体の抵抗値変化であるといえる。抵抗値変化は、化合物の分解のみならず、凝集状態変化、結晶粒の形状やサイズの変化、異分子の存在状態(相互作用状態)の変化など、全てを総括して定量評価することができる。さらに、インピーダンス分光法を用いると、実際の素子を作った後で、非破壊で、多層存在する膜のうち任意の特定の膜のみについて抵抗値の変化を検出できるため、従来の素子寿命と違い原因物質や原因部位が特定できる利点があり、性能改良に向けて具体的な対策が打ちやすく、有効な手法であるといえる。
 本発明は、ストークスシフトが小さい、すなわち、励起時の分子の構造変化が少ない化合物を発光材料として用い、適切なホスト化合物と発光材料を組み合わせて発光層を形成している。これにより、発光材料の分散状態や発光層のキャリアホッピング特性を改善することができ電流や熱、光などの様々な外的阻害要因に対してロバストネスの高い、耐性の高い膜を形成することができる画期的な技術を提供すると考えている。この技術的思想は、本発明の実施例に記した以外にも、電荷移動や電流の流れる膜や物体においては普遍的に適用できる技術であり、今後の有機エレクトロニクスの発展を支えるに値する高度かつ汎用的な技術であると確信している。
 本発明により、高い発光効率と色度の良い青色発光を両立し、かつ長時間その性能を維持することが可能な有機エレクトロルミネッセンス素子を得ることができ、当該有機EL素子を備えた表示デバイス、ディスプレイや、家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源、さらには表示装置を必要とする一般の家庭用電気器具等の広い発光光源として好適に利用できる。
1 ディスプレイ
3 画素
5 走査線
6 データ線
7 電源ライン
10 有機EL素子
11 スイッチングトランジスタ
12 駆動トランジスタ
13 コンデンサー
101 照明装置内の有機EL素子
102 ガラスカバー
105 陰極
106 有機EL層
107 透明電極付きガラス基板
108 窒素ガス
109 捕水剤
A 表示部
B 制御部
C 配線部

Claims (15)

  1.  陽極と陰極に挟まれた発光層を含む少なくとも1層の有機層を有する有機エレクトロルミネッセンス素子であって、
     当該発光層に、ストークスシフトが0~0.24eVの範囲内で、かつ最低励起一重項エネルギーSが2.64eV以上である発光性化合物を含有することを特徴とする有機エレクトロルミネッセンス素子。
  2.  前記発光性化合物が、下記一般式(1)で表される構造を有することを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、A、B及びCは、それぞれ独立に、単結合、又は炭素原子、ケイ素原子若しくは酸素原子を含む連結基を表す。Ar及びArは、それぞれ独立に、縮合していてもよい芳香族炭化水素環基又は芳香族複素環基を表す。Ar及びArは、同一でもよい。kは、自然数を表し、kが2以上の場合、各々のAは異なっていてもよい。mは、0又は自然数であり、mが2以上である場合、各々のBは異なっていてもよい。nは、0又は自然数を表し、nが2以上の場合、各々のCは異なっていてもよい。A、B、Cは、それぞれ独立に、単結合でArとArを連結していてもよく、縮環を形成することでArとArを連結していてもよい。)
  3.  前記発光性化合物が、非平面型の電子共役系構造を有することを特徴とする請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子。
  4.  前記発光性化合物が、下記一般式(2)で表される構造を有することを特徴とする請求項1から請求項3までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(2)中、Ar′、Ar″、Ar′及びAr″は、それぞれ、同一でも異なっていてもよく、独立に、縮合していてもよい芳香族炭化水素環基又は芳香族複素環基を表し、さらに、置換基を有していてもよい。また、Ar′とAr″及びAr′とAr″は、それぞれ縮合していてもよい。a、b、c及びdは、それぞれ、0又は自然数を表す。a又はbのいずれかは、自然数を表す。c又はdのいずれかは、自然数を表す。L及びLは、Ar′とAr″を連結する単結合又は2価の連結基を表す。Ar′とAr″は、L及びLと縮環を形成していてもよい。L及びLは、Ar′とAr″を連結する単結合又は2価の連結基を表す。Ar′とAr″は、L及びLと縮環を形成していてもよい。a、b、c及びdが2以上の場合、各々のL、L、L、及びLは同一でも異なっていてもよい。k及びmは、それぞれ、0又は自然数を表す。k又はmのいずれかは、自然数を表す。A及びBは、単結合又は2価の連結基を表す。k及びmが2以上の場合、各々のA及びBは同一でも異なっていてもよい。Ar′、Ar′及びAとで縮環を形成していてもよく、Ar″、Ar″及びBとで縮環を形成してもよい。)
  5.  前記発光性化合物が、下記一般式(3)で表される構造を有することを特徴とする請求項1から請求項4までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(3)中、A及びBは、それぞれ独立に、単結合、又は炭素原子若しくはケイ素原子を含む連結基を表す。A若しくはB、又はその両方によって連結される二つのアントラセン環は、R、R及びA又はR、R15及びBによって縮環を形成していてもよい。kは自然数を表し、kが2以上の場合、各々のAは異なっていてもよい。また、R~R16は、それぞれ、置換若しくは無置換の脂肪族炭化水素基、又は置換若しくは無置換の芳香族炭化水素基を表し、それぞれは環を形成していてもよい。また、R~R16は、それぞれの置換基中に窒素原子、酸素原子又は硫黄原子を含んだヘテロ芳香族炭化水素基でもよい。mは、0又は自然数を表し、mが2以上の場合、各々のBは異なっていてもよい。A若しくはB、又はその両方によって連結される二つのアントラセン環は、それぞれ独立に、非平面型の電子共役系構造を有していてもよく、全体で一つの芳香族環を形成していてもよい。)
  6.  前記発光性化合物が、下記一般式(4)で表される構造を有することを特徴とする請求項1から請求項4までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000004
    (一般式(4)中、Xは、ホウ素、炭素、窒素、酸素、硫黄又はケイ素を表す。Xは、水素原子や置換基を有していてもよい。R17~R28は、それぞれ独立に、水素原子又は置換基を表す。A又はB、若しくはその両方によって連結される二つの芳香族環は、R17~R28、A、及びBのうち縮環を形成しうるものを使って環構造を形成してもよい。k及びmは、それぞれ、0又は自然数を表す。k又はmのいずれかは自然数を表す。A及びBは、それぞれ、単結合又は2価の連結基を表す。k又はmが2以上の場合、各々のA及びBは同一でも異なっていてもよい。A又はB、若しくはその両方によって連結される二つの芳香族環はそれぞれが独立に非平面型の電子共役系構造を有していてもよく、全体で一つの芳香族環を形成していてもよい。)
  7.  前記発光性化合物が、下記一般式(5)で表される構造を有することを特徴とする請求項1から請求項4までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000005
    (一般式(5)中、Xは、ホウ素、炭素、窒素、酸素、硫黄又はケイ素を表す。Xは、水素原子や置換基を有していても良い。R29~R40は、それぞれ、水素原子又は置換基を表す。A又はB、若しくはその両方によって連結される二つの芳香族環は、R29~R40、A及びBのうち縮環を形成しうるものを使って環構造を形成してもよい。k及びmは、0又は自然数を表す。k又はmのいずれかは自然数を表す。A及びBは、単結合又は2価の連結基を表す。k又はmが2以上の場合、各々のA及びBは同一でも異なっていてもよい。A又はB、若しくはその両方によって連結される二つの芳香族環はそれぞれが独立に非平面型の電子共役系構造を有していてもよく、全体で一つの芳香族環を形成していてもよい。)
  8.  前記発光層が、カルバゾール誘導体を含有することを特徴とする請求項1から請求項7までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
  9.  前記カルバゾール誘導体が、14π電子以上の共役系構造部分を二つ以上有する化合物であることを特徴とする請求項8に記載の有機エレクトロルミネッセンス素子。
  10.  前記カルバゾール誘導体が、下記一般式(SH)で表される構造を有する化合物であることを特徴とする請求項8又は請求項9に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000006
    (一般式(SH)中、Z~Z及びR41~R46は、それぞれ独立に、水素原子又は置換基を表す。ただし、Z~Z及びR41~R46のうち少なくとも一つは14π電子系以上の芳香族環基を表す。また、隣接する置換基同士は、互いに縮合して環構造を形成してもよい。)
  11.  前記一般式(SH)中、Z~Zのうち少なくとも一つが、置換又は無置換のジベンゾフラン環であることを特徴とする請求項10に記載の有機エレクトロルミネッセンス素子。
  12.  請求項1から請求項11までのいずれか一項に記載の有機エレクトロルミネッセンス素子が、具備されていることを特徴とする発光装置。
  13.  請求項1から請求項11までのいずれか一項に記載の有機エレクトロルミネッセンス素子が、具備されていることを特徴とする照明装置。
  14.  請求項1から請求項11までのいずれか一項に記載の有機エレクトロルミネッセンス素子が、具備されていることを特徴とする表示装置。
  15.  請求項1から請求項11までのいずれか一項に記載の有機エレクトロルミネッセンス素子が、具備されていることを特徴とする電子機器。
PCT/JP2014/071433 2013-08-16 2014-08-14 有機エレクトロルミネッセンス素子、発光装置、照明装置、表示装置及び電子機器 WO2015022988A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015531834A JP6288092B2 (ja) 2013-08-16 2014-08-14 有機エレクトロルミネッセンス素子、発光装置、照明装置、表示装置及び電子機器
US14/911,941 US20160197282A1 (en) 2013-08-16 2014-08-14 Organic electroluminescent element, light emitting device, lighting device, display device and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013169078 2013-08-16
JP2013-169078 2013-08-16

Publications (1)

Publication Number Publication Date
WO2015022988A1 true WO2015022988A1 (ja) 2015-02-19

Family

ID=52468373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071433 WO2015022988A1 (ja) 2013-08-16 2014-08-14 有機エレクトロルミネッセンス素子、発光装置、照明装置、表示装置及び電子機器

Country Status (3)

Country Link
US (1) US20160197282A1 (ja)
JP (1) JP6288092B2 (ja)
WO (1) WO2015022988A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016175023A1 (ja) * 2015-04-28 2016-11-03 コニカミノルタ株式会社 電荷移動性薄膜用材料及び電荷移動性薄膜
WO2017146192A1 (ja) * 2016-02-24 2017-08-31 出光興産株式会社 有機エレクトロルミネッセンス素子、及び電子機器
WO2017164574A1 (ko) * 2016-03-21 2017-09-28 주식회사 엘지화학 유기 발광 소자
WO2018173600A1 (ja) * 2017-03-21 2018-09-27 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
WO2019088194A1 (ja) * 2017-11-02 2019-05-09 出光興産株式会社 新規化合物及び有機エレクトロルミネッセンス素子
US10566547B2 (en) 2016-07-11 2020-02-18 Universal Display Corporation Organic electroluminescent materials and devices
JP2021119135A (ja) * 2016-04-01 2021-08-12 株式会社半導体エネルギー研究所 有機金属錯体、発光素子用材料、発光素子、発光装置、電子機器、および照明装置
JP2022075698A (ja) * 2016-04-28 2022-05-18 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング π共役系化合物、有機エレクトロルミネッセンス素子材料、発光材料、電荷輸送材料、発光性薄膜、有機エレクトロルミネッセンス素子、表示装置及び照明装置
US11345687B2 (en) 2016-11-09 2022-05-31 Merck Patent Gmbh Materials for organic electroluminescent devices
US11555034B2 (en) * 2017-06-23 2023-01-17 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11814395B2 (en) 2018-06-22 2023-11-14 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101560102B1 (ko) * 2014-11-20 2015-10-13 주식회사 엘지화학 유기 발광 소자
KR101706752B1 (ko) 2015-02-17 2017-02-27 서울대학교산학협력단 호스트, 인광 도펀트 및 형광 도펀트를 포함하는 유기발광소자
CN106972111B (zh) * 2017-06-01 2018-11-20 上海天马有机发光显示技术有限公司 有机发光器件和显示装置
US10908289B2 (en) 2017-11-19 2021-02-02 Sensonica Limited Navigation system, navigation method and receivers
EP3553467A1 (en) * 2017-11-19 2019-10-16 Sensonica Limited Navigation system, navigation method and receivers
US10784458B1 (en) * 2019-03-15 2020-09-22 Yuan Ze University Organic light-emitting diode with enhanced light-emitting efficiency and color purity
KR20210026620A (ko) * 2019-08-30 2021-03-10 삼성전자주식회사 유기 발광 소자

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143791A1 (en) * 2007-05-17 2008-11-27 Eastman Kodak Company Hybrid fluorescent/phosphorescent oleds
JP2012104638A (ja) * 2010-11-10 2012-05-31 Konica Minolta Holdings Inc 有機エレクトロニクス素子用材料、有機エレクトロニクス素子、照明装置及び表示装置
WO2013031345A1 (ja) * 2011-09-02 2013-03-07 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143791A1 (en) * 2007-05-17 2008-11-27 Eastman Kodak Company Hybrid fluorescent/phosphorescent oleds
JP2012104638A (ja) * 2010-11-10 2012-05-31 Konica Minolta Holdings Inc 有機エレクトロニクス素子用材料、有機エレクトロニクス素子、照明装置及び表示装置
WO2013031345A1 (ja) * 2011-09-02 2013-03-07 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
B. X. MI ET AL.: "Reduction of molecular aggregation and its application to the high- pertormance blue perylene-doped organic electroluminescent device", APPLIED PHYSICS LETTERS, vol. 75, no. 26, 27 December 1999 (1999-12-27), pages 4055 - 4057 *
WAKA NAKANISHI ET AL.: "Disilanyl Double- Pillared Bisanthracene: A Bipolar Carrier Transport Material for Organic Light-Emitting Diode Devices", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 49, no. ISSUE, 24 September 2010 (2010-09-24), pages 7239 - 7242 *
WAKA NAKANISHI ET AL.: "Synthesis of Disilanyl Double-Pillared Bisdibenzofuran with a High Triplet Energy", ORGANIC LETTERS, vol. 14, no. 6, 3 June 2012 (2012-06-03), pages 1636 - 1639 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016175023A1 (ja) * 2015-04-28 2018-02-22 コニカミノルタ株式会社 電荷移動性薄膜用材料及び電荷移動性薄膜
WO2016175023A1 (ja) * 2015-04-28 2016-11-03 コニカミノルタ株式会社 電荷移動性薄膜用材料及び電荷移動性薄膜
WO2017146192A1 (ja) * 2016-02-24 2017-08-31 出光興産株式会社 有機エレクトロルミネッセンス素子、及び電子機器
JPWO2017146192A1 (ja) * 2016-02-24 2018-12-20 出光興産株式会社 有機エレクトロルミネッセンス素子、及び電子機器
US10916724B2 (en) 2016-03-21 2021-02-09 Lg Chem, Ltd. Organic light emitting device
WO2017164574A1 (ko) * 2016-03-21 2017-09-28 주식회사 엘지화학 유기 발광 소자
JP7154337B2 (ja) 2016-04-01 2022-10-17 株式会社半導体エネルギー研究所 有機金属錯体、発光素子用材料、発光素子、発光装置、電子機器、および照明装置
JP2021119135A (ja) * 2016-04-01 2021-08-12 株式会社半導体エネルギー研究所 有機金属錯体、発光素子用材料、発光素子、発光装置、電子機器、および照明装置
JP7253646B2 (ja) 2016-04-28 2023-04-06 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング π共役系化合物、有機エレクトロルミネッセンス素子材料、発光材料、電荷輸送材料、発光性薄膜、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2022075698A (ja) * 2016-04-28 2022-05-18 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング π共役系化合物、有機エレクトロルミネッセンス素子材料、発光材料、電荷輸送材料、発光性薄膜、有機エレクトロルミネッセンス素子、表示装置及び照明装置
US10566547B2 (en) 2016-07-11 2020-02-18 Universal Display Corporation Organic electroluminescent materials and devices
US10680184B2 (en) 2016-07-11 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US11345687B2 (en) 2016-11-09 2022-05-31 Merck Patent Gmbh Materials for organic electroluminescent devices
JPWO2018173600A1 (ja) * 2017-03-21 2020-01-23 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
JP7124818B2 (ja) 2017-03-21 2022-08-24 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
WO2018173600A1 (ja) * 2017-03-21 2018-09-27 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
US11555034B2 (en) * 2017-06-23 2023-01-17 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
WO2019088194A1 (ja) * 2017-11-02 2019-05-09 出光興産株式会社 新規化合物及び有機エレクトロルミネッセンス素子
US11814395B2 (en) 2018-06-22 2023-11-14 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same

Also Published As

Publication number Publication date
JP6288092B2 (ja) 2018-03-07
JPWO2015022988A1 (ja) 2017-03-02
US20160197282A1 (en) 2016-07-07

Similar Documents

Publication Publication Date Title
JP6304255B2 (ja) 有機エレクトロルミネッセンス素子、電子デバイス、発光装置及び発光材料
JP6288092B2 (ja) 有機エレクトロルミネッセンス素子、発光装置、照明装置、表示装置及び電子機器
JP6627508B2 (ja) 有機エレクトロルミネッセンス素子、照明装置、表示装置及び蛍光発光性化合物
JP6344382B2 (ja) 発光層形成用塗布液、有機エレクトロルミネッセンス素子とその製造方法及び照明・表示装置
JP6314974B2 (ja) 有機エレクトロルミネッセンス素子、照明装置、表示装置、有機ルミネッセンス素子用発光性薄膜と組成物及び発光方法
KR102137347B1 (ko) 유기 일렉트로루미네센스 소자, 발광성 박막, 표시 장치 및 조명 장치
JP6439791B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び発光性組成物
JP6264001B2 (ja) 有機エレクトロルミネッセンス素子、発光性薄膜、表示装置及び照明装置
JP6657895B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2016036025A (ja) 有機エレクトロルミネッセンス素子及びπ共役系化合物
JP6673203B2 (ja) 有機エレクトロルミネッセンス素子
WO2016017741A1 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置、蛍光発光性化合物及び発光性薄膜
JP7044108B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置
JP2016092280A (ja) 発光性薄膜、有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2020059326A1 (ja) ベンゾニトリル誘導体及びその製造方法、インク組成物、有機エレクトロルミネッセンス素子材料、発光材料、電荷輸送材料、発光性薄膜及び有機エレクトロルミネッセンス素子
WO2015029964A1 (ja) 有機エレクトロルミネッセンス素子、発光材料、発光性薄膜、表示装置及び照明装置
JP6115395B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子用金属錯体、並びに表示装置及び照明装置
JP6641947B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び芳香族複素環誘導体
JP6641948B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び芳香族複素環誘導体
JP6493202B2 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2020059520A1 (ja) ベンゾニトリル誘導体及びその製造方法、インク組成物、有機エレクトロルミネッセンス素子材料、発光材料、電荷輸送材料、発光性薄膜及び有機エレクトロルミネッセンス素子
JP5994753B2 (ja) 有機エレクトロルミネッセンス素子、それに用いる蛍光発光性化合物、当該有機エレクトロルミネッセンス素子を具備する照明装置及び表示装置
JP6264603B2 (ja) 銅錯体及び有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14836333

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015531834

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14911941

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14836333

Country of ref document: EP

Kind code of ref document: A1