WO2017146192A1 - 有機エレクトロルミネッセンス素子、及び電子機器 - Google Patents

有機エレクトロルミネッセンス素子、及び電子機器 Download PDF

Info

Publication number
WO2017146192A1
WO2017146192A1 PCT/JP2017/007024 JP2017007024W WO2017146192A1 WO 2017146192 A1 WO2017146192 A1 WO 2017146192A1 JP 2017007024 W JP2017007024 W JP 2017007024W WO 2017146192 A1 WO2017146192 A1 WO 2017146192A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
substituted
ring
unsubstituted
Prior art date
Application number
PCT/JP2017/007024
Other languages
English (en)
French (fr)
Inventor
雅俊 齊藤
圭 吉田
祐一郎 河村
俊成 荻原
圭 吉崎
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to JP2018501785A priority Critical patent/JP6754422B2/ja
Priority to KR1020187023046A priority patent/KR20180114033A/ko
Priority to EP17756627.0A priority patent/EP3422431B1/en
Priority to CN201780011348.2A priority patent/CN108701771B/zh
Priority to US16/079,328 priority patent/US20190081249A1/en
Publication of WO2017146192A1 publication Critical patent/WO2017146192A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/62Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/50Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton to carbon atoms of non-condensed six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/52Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton to carbon atoms of six-membered aromatic rings being part of condensed ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/94[b, c]- or [b, d]-condensed containing carbocyclic rings other than six-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/625Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing at least one aromatic ring having 7 or more carbon atoms, e.g. azulene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/54Ortho- or ortho- and peri-condensed systems containing more than five condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/58[b]- or [c]-condensed
    • C07D209/70[b]- or [c]-condensed containing carbocyclic rings other than six-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers

Definitions

  • the present invention relates to an organic electroluminescence element and an electronic device.
  • organic electroluminescence element When a voltage is applied to an organic electroluminescence element (hereinafter also referred to as “organic EL element”), holes are injected from the anode into the light emitting layer, and electrons are injected from the cathode into the light emitting layer. Then, in the light emitting layer, the injected holes and electrons are recombined to form excitons. At this time, singlet excitons are generated at a rate of 25% and triplet excitons are generated at a rate of 75% according to the statistical rule of electron spin. Fluorescent organic EL devices that use light emitted from singlet excitons are being applied to full-color displays such as mobile phones and televisions, but the internal quantum efficiency of 25% is said to be the limit. In addition to singlet excitons, triplet excitons are used, and organic EL devices are expected to emit light more efficiently.
  • TADF Thermally Activated Delayed Fluorescence, heat activated delayed fluorescence
  • ⁇ ST small energy difference
  • ⁇ ST small energy difference
  • the thermally activated delayed fluorescence is described in, for example, “Adachi Chinami, Ed.,“ Physical properties of organic semiconductor devices ”, Kodansha, issued April 1, 2012, pages 261-262”.
  • An organic EL element using this TADF mechanism is disclosed in Non-Patent Document 1, for example.
  • the organic EL device disclosed in Non-Patent Document 1 includes a TADF compound as an assist dopant, a perylene derivative (TBPe; 2,5,8,11-tetra-tert-butylperylene) as a light emitting material, and DPEPO as a host material.
  • TBPe perylene derivative
  • DPEPO DPEPO
  • a light emitting layer containing (bis- (2- (diphenylphosphino) phenyl) ether oxide) is provided. This light emitting layer emits blue light.
  • the organic electroluminescence device described in Non-Patent Document 1 emits blue light by using a TADF compound as a host material and a perylene derivative (compound TBPe) as a light emitting material, but the light emission efficiency is not sufficient. Therefore, there is a demand for an organic electroluminescence element that emits light in the blue wavelength region with high efficiency.
  • An object of the present invention is to provide an organic electroluminescence device that emits light in a blue wavelength region with high efficiency. Another object of the present invention is to provide an electronic device including the organic electroluminescence element.
  • an anode, a light emitting layer, and a cathode are included, and the light emitting layer includes a first compound and a second compound, and the first compound includes delayed fluorescence.
  • the second compound is a fluorescent compound, the emission peak wavelength of the toluene solution of the second compound is 430 nm or more and 480 nm or less, and the longest wavelength of the second compound
  • the molar extinction coefficient at the absorption peak located on the side is 29,000 L / (mol ⁇ cm) or more and 1,000,000 L / (mol ⁇ cm) or less, and the Stokes shift of the second compound is 1 nm or more and 20 nm.
  • the following organic electroluminescent element is provided.
  • an electronic apparatus including the organic electroluminescence element according to one aspect of the present invention.
  • an organic electroluminescence element that emits light in a blue wavelength region with high efficiency, and it is possible to provide an electronic device including the organic electroluminescence element.
  • the organic EL element according to this embodiment includes an organic layer between a pair of electrodes.
  • This organic layer includes at least one layer composed of an organic compound.
  • the organic layer is formed by laminating a plurality of layers composed of organic compounds.
  • the organic layer may further contain an inorganic compound.
  • at least one of the organic layers is a light emitting layer. Therefore, the organic layer may be composed of, for example, a single light emitting layer or may include a layer that can be employed in an organic EL element.
  • the layer that can be employed in the organic EL element is not particularly limited. For example, at least one selected from the group consisting of a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, and a barrier layer. Layer.
  • the structure of (d) is preferably used.
  • the “light emitting layer” is an organic layer having a light emitting function.
  • the “hole injection / transport layer” means “at least one of a hole injection layer and a hole transport layer”.
  • the “electron injection / transport layer” means “at least one of an electron injection layer and an electron transport layer”.
  • a hole injection layer is provided between the hole transport layer and the anode.
  • an organic EL element has an electron injection layer and an electron carrying layer, it is preferable that the electron injection layer is provided between the electron carrying layer and the cathode.
  • each of the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer may be composed of a single layer or a plurality of layers.
  • FIG. 1 shows a schematic configuration of an example of the organic EL element according to this embodiment.
  • the organic EL element 1 includes a translucent substrate 2, an anode 3, a cathode 4, and an organic layer 10 disposed between the anode 3 and the cathode 4.
  • the organic layer 10 includes a hole injection layer 6, a hole transport layer 7, a light emitting layer 5, an electron transport layer 8, and an electron injection layer 9.
  • a hole injection layer 6, a hole transport layer 7, a light emitting layer 5, an electron transport layer 8, and an electron injection layer 9 are laminated in this order from the anode 3 side.
  • the light emitting layer 5 of the organic EL element 1 contains a first compound and a second compound.
  • the light emitting layer 5 may contain a metal complex, but preferably does not contain a metal complex. It is preferable that the light emitting layer 5 does not contain a phosphorescent metal complex.
  • the first compound is also preferably a host material (sometimes referred to as a matrix material).
  • the second compound is also preferably a dopant material (sometimes referred to as a guest material, an emitter, or a light emitting material).
  • the second compound according to this embodiment is a fluorescent compound. Furthermore, the second compound according to the present embodiment is a fluorescent compound having a predetermined emission peak wavelength, molar extinction coefficient, and Stokes shift characteristics.
  • the emission peak wavelength of the toluene solution of the second compound is 430 nm or more and 480 nm or less.
  • the emission peak wavelength of the toluene solution of the second compound is preferably from 435 nm to 465 nm.
  • the emission peak wavelength of the toluene solution refers to the peak wavelength of the emission spectrum that maximizes the emission intensity in the measured emission spectrum of the toluene solution in which the measurement target compound is dissolved at a concentration of 5 ⁇ mol / L. .
  • the second compound preferably exhibits blue fluorescence.
  • the second compound is preferably a material having a high emission quantum yield.
  • the molar extinction coefficient at the absorption peak located on the longest wavelength side of the second compound is 29,000 L / (mol ⁇ cm) or more and 1,000,000 L / (mol ⁇ cm) or less, 30 50,000 L / (mol ⁇ cm) or more and 250,000 L / (mol ⁇ cm) or less, preferably 40,000 L / (mol ⁇ cm) or more and 150,000 L / (mol ⁇ cm) or less. preferable.
  • the absorption peak located on the longest wavelength side is an absorption peak that appears in the range of 350 nm or more and 500 nm or less, and among the peaks having an absorption intensity of 1/10 or more of the maximum absorption peak, It is the peak that appears on the longest wavelength side.
  • the Stokes shift of the second compound is 1 nm or more and 20 nm or less.
  • the Stokes shift of the second compound is preferably 4 nm or more and 18 nm or less, and more preferably 5 nm or more and 17 nm or less.
  • the Stokes shift ss is calculated by subtracting the absorption peak wavelength obtained from the molar absorption coefficient of the absorption spectrum from the emission peak wavelength of the emission spectrum.
  • the smaller the Stokes shift of the second compound and the larger the molar extinction coefficient the more energy loss can be suppressed when energy is transferred from the first compound to the second compound. As a result, an improvement in the light emission efficiency of the organic EL element can be expected.
  • the second compound is a fluorescent compound having the aforementioned emission peak wavelength, molar extinction coefficient, and Stokes shift characteristics. Since the fluorescence emission characteristic is almost determined by the mother skeleton of the compound, selection of the mother skeleton is important. Items to be considered when selecting the host skeleton include excitation singlet energy, transition probability, luminous efficiency, and effective cross section.
  • a mother skeleton having the conflicting properties of having an effective cross-sectional area and high excitation singlet energy is a necessary requirement.
  • a compound having a mother skeleton in which a condensed ring (the number of condensed rings is 5 or more and 15 or less) is bent while extending in one direction is preferable.
  • the number of condensed rings is preferably 7 or more and 13 or less, and the condensed ring preferably includes a 5-membered ring.
  • the ring constituting the condensed ring in the second compound include a 5-membered ring and a 6-membered ring.
  • the condensed ring shown below includes six 6-membered rings and two 5-membered rings, and the number of condensed rings is 8.
  • porphyrin compounds having 4 to 16 rings have a molar extinction coefficient of 200,000 L / (mol ⁇ cm) to 500,000 L / (mol ⁇ cm) (The Chemical Society of Japan, Vol. 1978 (1978)).
  • No. 2, P. 212 to 216) have a condensed ring shape with a small excitation singlet energy, and therefore emit light of 480 nm or more and do not emit blue light, and therefore cannot be used as the second compound.
  • an appropriate substituent may be selected in order to adjust the properties for practical use.
  • the second compound in the present embodiment is also preferably a hydrocarbon compound composed of only carbon atoms and hydrogen atoms.
  • the second compound in this embodiment is also preferably a substituted or unsubstituted aromatic hydrocarbon compound or a substituted or unsubstituted heteroaromatic compound.
  • the second compound in the present embodiment is preferably a substituted or unsubstituted condensed aromatic hydrocarbon compound or a substituted or unsubstituted condensed heteroaromatic compound.
  • the second compound in the present embodiment is a substituted or unsubstituted aromatic compound, and is selected from the group of hydrogen atoms and elements belonging to Groups 14, 15, and 16 of the periodic table.
  • An aromatic compound composed of a plurality of atoms is also preferred.
  • the second compound in the present embodiment is a substituted or unsubstituted aromatic compound from the viewpoint of the stability of the compound and the like, and is selected from the group consisting of a hydrogen atom, a carbon atom, a nitrogen atom, an oxygen atom, and a sulfur atom. It is more preferable that the aromatic compound is composed of a plurality of selected elements.
  • the aromatic compound includes an aromatic hydrocarbon compound and a heteroaromatic compound.
  • the second compound in the present embodiment is a substituted or unsubstituted aromatic compound, and preferably includes a condensed ring having 5 to 15 condensed rings.
  • the second compound in this embodiment is a substituted or unsubstituted aromatic compound, and is composed of a plurality of elements selected from the group consisting of a hydrogen atom, a carbon atom, a nitrogen atom, an oxygen atom, and a sulfur atom. It is also preferable to include a condensed ring having 5 or more and 15 or less condensed rings. It is more preferable that the second compound in the present embodiment includes a condensed ring having 7 or more and 13 or less condensed rings.
  • the light emitting layer may contain a plurality of types of second compounds.
  • Examples of the second compound according to this embodiment are shown below.
  • the second compound in the present invention is not limited to these specific examples.
  • the first compound is a delayed fluorescent compound.
  • the first compound is a compound represented by the following general formula (10).
  • A is a group having a partial structure selected from the group consisting of the following general formulas (a-1) to (a-7):
  • B is a group having a partial structure selected from the group consisting of the following general formulas (b-1) to (b-6):
  • the plurality of B are the same or different from each other, B binds to form a saturated or unsaturated ring, or does not form a ring, a, b, and d are each independently an integer of 1 to 5,
  • c is an integer from 0 to 5
  • a and B are bonded by a single bond or a spiro bond,
  • c is an integer from 1 to 5
  • L is A linking group selected from the group consisting of a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms and a substituted or unsub
  • R is each independently a hydrogen atom or a substituent, and R as a substituent is A substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, A group selected from the group consisting of a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms and a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms;
  • the plurality of R are the same or different from each other, Rs combine to form a saturated or unsaturated ring, or do not form a ring.
  • A is an acceptor (electron-accepting) site
  • B is a donor (electron-donating) site.
  • Examples of groups having a partial structure selected from the group consisting of the general formulas (a-1) to (a-7) are shown below.
  • the group having the partial structure of the general formula (a-3) includes a group represented by the following general formula (a-3-1).
  • X a is a single bond, an oxygen atom, a sulfur atom, or a carbon atom bonded to L or B in the general formula (10).
  • Examples of the group having the partial structure of the general formula (a-5) include a group represented by the following general formula (a-5-1).
  • Examples of groups having a partial structure selected from the group consisting of the general formulas (b-1) to (b-6) are shown below.
  • examples of the group having the partial structure represented by the general formula (b-2) include a group represented by the following general formula (b-2-1).
  • X b is a single bond, an oxygen atom, a sulfur atom, CR b1 R b2 , or a carbon atom bonded to L or A in the general formula (10).
  • the general formula (b-2-1) is a group represented by the following general formula (b-2-2) when Xb is a single bond, and when Xb is an oxygen atom, the following general formula (b) b-2-3), when X b is a sulfur atom, a group represented by the following general formula (b-2-4), and when X b is CR b1 R b2 , It is a group represented by the following general formula (b-2-5).
  • R b1 and R b2 are each independently a hydrogen atom or a substituent, and R b1 as a substituent and R b2 as a substituent are each independently a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms. And any substituent selected from the group consisting of a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms.
  • R b1 and R b2 are each independently selected from the group consisting of a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms and a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms.
  • the substituent is preferably a substituent selected from the group consisting of a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms.
  • A is preferably a group having a partial structure selected from the group consisting of the general formulas (a-1), (a-2), (a-3) and (a-5).
  • B is preferably a group having a partial structure selected from the group consisting of the general formulas (b-2), (b-3) and (b-4).
  • binding mode of the compound represented by the general formula (10) examples include the binding modes shown in Table 1 below.
  • B in the general formula (10) is also preferably represented by the following general formula (100).
  • R 101 to R 108 are each independently a hydrogen atom or a substituent, and R 101 to R 108 as a substituent are each independently A substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, A substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms, A substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, Substituted silyl groups, A substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms, A substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms, A substituted or unsubstituted alkylamino group having 2 to 30 carbon atoms, A substituted or unsubstituted arylamino group having 6 to 60 ring carbon atoms, Selected from the group consisting of a substituted or unsubstituted alkylthio group having 1 to 30 carbon
  • L 100 is a linking group selected from the group consisting of the following general formulas (111) to (117), s is an integer of 0 to 3, and the plurality of L 100 are the same or different from each other, X 100 is a linking group selected from the group consisting of the following general formulas (121) to (125).
  • R 109 is independently the same as R 101 to R 108 in the general formula (100). However, in the general formula (100), one of R 101 to R 108 or one of R 109 is a single bond bonded to L or A in the general formula (10). Combination of R 104 in the the R 109 formula (100), or the R 109 in combination with the general formula (100) R 105 in either substituent each other to form a saturated or unsaturated ring Or do not form a ring, The plurality of R 109 are the same as or different from each other.
  • R 110 is each independently a hydrogen atom or a substituent, and R 110 as a substituent is A substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, Selected from the group consisting of a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms and a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms;
  • the plurality of R 110 are the same as or different from each other.
  • S in the general formula (100) is preferably 0 or 1.
  • R 101 ⁇ R 108 are each the same meaning as X 100, R 101 ⁇ R 108 in the formula (100).
  • L 100 is preferably represented by any one of the general formulas (111) to (114), and more preferably represented by the general formula (113) or (114).
  • X 100 is preferably represented by any one of the general formulas (121) to (124), and more preferably represented by the general formula (123) or (124).
  • the first compound is also preferably a compound represented by the following general formula (11).
  • a in the general formula (10) is 1, b is 1, d is 1, A is Az, and B is Cz. It corresponds to the compound of
  • Az is a ring structure selected from the group consisting of a substituted or unsubstituted pyridine ring, a substituted or unsubstituted pyrimidine ring, a substituted or unsubstituted triazine ring, and a substituted or unsubstituted pyrazine ring;
  • c is an integer from 0 to 5
  • L is A linking group selected from the group consisting of a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms and a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms;
  • Cz and Az are bonded by a single bond, when c is an integer of 2 to 5, a plurality of Ls are bonded to each other to form a ring or not to form a ring;
  • the plurality of L are the same or different from each other, Cz is represented by the following general formula (12).
  • X 11 to X 18 are each independently a nitrogen atom or C—Rx, Rx each independently represents a hydrogen atom or a substituent, and Rx as a substituent is A substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, A substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms, A substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, A substituted or unsubstituted fluoroalkyl group having 1 to 30 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 30 ring carbon atoms, A substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, A substituted phosphoryl group, Substituted silyl groups, A cyano group, A group selected from the group consisting of a nitro group and a carboxy group, The plurality of Rx
  • X 11 to X 18 are also preferably C—Rx.
  • C in the general formula (11) is preferably 0 or 1.
  • the compound represented by the general formula (11) is also preferably a compound represented by the following general formula (11A).
  • Az, Cz, and L are synonymous with Az, Cz, and L in the general formula (11).
  • L in the general formula (11A) is preferably a linking group selected from the group consisting of substituted or unsubstituted aromatic hydrocarbon groups having 6 to 30 ring carbon atoms.
  • the compound represented by the general formula (11A) is also preferably a compound represented by the following general formula (11B).
  • Az and Cz have the same meanings as Az and Cz in the general formula (11), c3 is 4, R 10 is a hydrogen atom or a substituent, R 10 as a group is a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms, a substituted or unsubstituted carbon group having 1 to 30 carbon atoms.
  • the compound represented by the general formula (11A) is also preferably a compound represented by the following general formula (11C).
  • R 111 to R 114 are each independently a hydrogen atom or a substituent.
  • R 111 to R 114 as a group are each independently a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms, substituted or unsubstituted A substituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted fluoroalkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 30 ring carbon atoms, a substituted or unsubstituted carbon number
  • the substituent is any one selected from the group consisting of 7 to 30 aralkyl groups, substituted phosphoryl groups, substituted silyl groups, cyano groups, nitro groups
  • the Cz is also preferably represented by the following general formula (12a), general formula (12b), or general formula (12c).
  • X 11 to X 18 and X 41 to X 48 are each independently a nitrogen atom or C—Rx, However, the general formula (12a), among the X 15 ⁇ X 18, at least one is a carbon atom bonded with any of X 41 ⁇ X 44, among the X 41 ⁇ X 44, at least one , A carbon atom bonded to any one of X 15 to X 18 , In the general formula (12b), at least one of X 15 to X 18 is a carbon atom bonded to a nitrogen atom in the 5-membered ring of the nitrogen-containing condensed ring containing X 41 to X 48 , In the general formula (12c), * a and * b each represent a binding site to any one of X 11 to X 18 , and at least one of X 15 to X 18 is represented by * a.
  • X 15 to X 18 is a binding site represented by * b, n is an integer of 1 to 4, Rx each independently represents a hydrogen atom or a substituent, and Rx as a substituent is a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted ring atom having 5 to 30 ring atoms.
  • Heteroaryl groups substituted or unsubstituted alkyl groups having 1 to 30 carbon atoms, substituted or unsubstituted fluoroalkyl groups having 1 to 30 carbon atoms, substituted or unsubstituted cycloalkyl groups having 3 to 30 ring carbon atoms Any of the substituents selected from the group consisting of a substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, a substituted phosphoryl group, a substituted silyl group, a cyano group, a nitro group, and a carboxy group,
  • the plurality of Rx are the same or different from each other, When X 11 to X 18 are a plurality of C—Rx and Rx is a substituent, Rx may be bonded to each other to form a ring, or a ring may not be formed; When a plurality of X 41 to X 48 are C—Rx and Rx is a substituent, R
  • Z 11 is preferably NR 40 .
  • R 40 is preferably a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms.
  • X 41 to X 48 are preferably C—Rx, provided that at least one of X 41 to X 48 is a carbon bonded to the ring structure represented by the general formula (12). Is an atom.
  • Cz is represented by the general formula (12c), and n is preferably 1.
  • Cz is also preferably represented by the following general formula (12c-1).
  • the group represented by the following general formula (12c-1) is a binding site where X 16 in the general formula (12c) is represented by * a, and X 17 is a binding site represented by * b. This is a group illustrating the case.
  • X 11 to X 15 , X 18 and X 41 to X 44 are each independently a nitrogen atom or C—Rx, Rx each independently represents a hydrogen atom or a substituent, and Rx as a substituent is a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted ring atom having 5 to 30 ring atoms.
  • Heteroaryl groups substituted or unsubstituted alkyl groups having 1 to 30 carbon atoms, substituted or unsubstituted fluoroalkyl groups having 1 to 30 carbon atoms, substituted or unsubstituted cycloalkyl groups having 3 to 30 ring carbon atoms Any of the substituents selected from the group consisting of a substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, a substituted phosphoryl group, a substituted silyl group, a cyano group, a nitro group, and a carboxy group,
  • the plurality of Rx are the same or different from each other, When X 11 to X 15 and X 18 are C-Rx and Rx is a substituent, Rx may be bonded to each other to form a ring, or a ring may not be formed; When a plurality of X 41 to X 44 are C—Rx and Rx is a substituent, Rx
  • R 40 as a substituent and R 41 as a substituent are each independently a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted ring atom having 5 to 30 ring atoms.
  • a heteroaryl group a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted fluoroalkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 30 ring carbon atoms, Any substituent selected from the group consisting of a substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, a substituted phosphoryl group, a substituted silyl group, a cyano group, a nitro group, and a carboxy group; ,
  • the plurality of R 40 are the same as or different from each other,
  • the plurality of R 41 are the same as or different from each other; When a plurality of R 41 are substituents, R 41 are bonded to each other to form a ring or not to form a ring, * Represents a bonding site with a carbon atom in the ring structure represented
  • Cz is represented by the following general formula (12c-2), for example.
  • Cz represented by the following general formula (12c-2) is a binding site where X 12 in the general formula (12c) is represented by * b, and X 13 is a binding site represented by * a.
  • X 16 is a binding site represented by * a
  • X 17 is a binding site represented by * b.
  • X 11 , X 14 , X 15 , X 18 , X 41 to X 44 , Z 11 , and * represent X 11 in the general formula (12c-1), It is synonymous with X 14 , X 15 , X 18 , X 41 to X 44 , Z 11 , and *.
  • the plurality of X 41 are the same or different from each other, the plurality of X 42 are the same or different from each other, the plurality of X 43 are the same or different from each other, and the plurality of X 44 are the same from each other Or different.
  • the plurality of Z 11 are the same as or different from each other.
  • Az is preferably a ring structure selected from the group consisting of a substituted or unsubstituted pyrimidine ring and a substituted or unsubstituted triazine ring.
  • Az is a ring structure selected from the group consisting of a pyrimidine ring having a substituent and a triazine ring having a substituent, and the substituent of the pyrimidine ring and the triazine ring is a substituted or unsubstituted ring-forming carbon.
  • the number of carbon atoms forming the aryl group is preferably 6-20, and more preferably 6-14. More preferably, it is 6-12.
  • the substituent is a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted naphthyl group, substituted or unsubstituted Is preferably any substituent selected from the group consisting of a phenanthryl group, a substituted or unsubstituted terphenyl group, and a substituted or unsubstituted fluorenyl group.
  • a substituted or unsubstituted phenyl group, substituted or unsubstituted It is more preferably any substituent selected from the group consisting of a substituted biphenyl group and a substituted or unsubstituted naphthyl group.
  • Az has a substituted or unsubstituted heteroaryl group as a substituent, the substituent is a substituted or unsubstituted carbazolyl group, a substituted or unsubstituted dibenzofuranyl group, and a substituted or unsubstituted dibenzothienyl group. It is preferably any substituent selected from the group consisting of
  • Rx each independently represents a hydrogen atom or a substituent, and Rx as a substituent is a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms and a substituted or unsubstituted ring atom having 5 to 5 ring atoms. It is preferably any substituent selected from the group consisting of 30 heteroaryl groups.
  • Rx as a substituent is a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms
  • Rx as a substituent is a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, a substituted or It is preferably any substituent selected from the group consisting of an unsubstituted naphthyl group, a substituted or unsubstituted phenanthryl group, a substituted or unsubstituted terphenyl group, and a substituted or unsubstituted fluorenyl group.
  • Rx as a substituent is a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms
  • Rx as a substituent is a substituted or unsubstituted carbazolyl group, substituted or unsubstituted dibenzofuranyl group
  • R 40 as a substituent and R 41 as a substituent are each independently a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heteroaryl having 5 to 30 ring atoms. It is preferably any substituent selected from the group consisting of a group and a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms.
  • the first compound is also preferably a compound represented by the following general formula (13).
  • R 11 and R 12 are each independently a hydrogen atom or a monovalent substituent, and R 11 and R 12 as a substituent are each independently A substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, A substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms, A substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, A substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms, A substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, A group selected from the group consisting of a substituted or unsubstituted aryloxy group having 6 to
  • the first compound is represented by the following general formula (131).
  • c1, c2, A 11 , L 11 , L 12 , R 11 and R 12 are as defined above.
  • R 11 and R 12 are substituted or unsubstituted aryl groups having 6 to 30 ring carbon atoms, substituted or unsubstituted heteroaryl groups having 5 to 30 ring atoms, substituted or unsubstituted It is preferably any substituent selected from the group consisting of an unsubstituted alkyl group having 1 to 30 carbon atoms and a substituted silyl group, and a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, It is more preferably any substituent selected from the group consisting of a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms and a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms.
  • the first compound is represented by the following general formula (132).
  • c1, c2, A 11 , A 12 , L 11 , L 12 , R 11 and R 12 are as defined above.
  • R 11 and R 12 are a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
  • a linking group selected from the group consisting of a substituted silyl group, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, and a substituted or unsubstituted ring forming atom number 5 More preferred is a linking group selected from the group consisting of ⁇ 30 heterocyclic groups.
  • the first compound is also preferably a compound represented by the following general formula (14), for example.
  • R 11 and R 12 are each independently a hydrogen atom or a monovalent substituent, and R 11 as a substituent and R 12 as a substituent are each independently A substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, A substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms, A substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, A substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms, A substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, Selected from the group consisting of a substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms and a substituted silyl group
  • Examples of the compound represented by the general formula (14) include a compound represented by the following general formula (14A).
  • Examples of the compound represented by the general formula (13) or the general formula (14) include compounds represented by the following general formulas (10B) to (10E).
  • Z A is selected from the group consisting of ⁇ N L 11 -L 12 -A 11 , an oxygen atom, a sulfur atom, and a selenium atom.
  • R 11 , R 12 , A 11 , A 12 , L 11 , and L 12 are R 11 in the general formula (14).
  • R 12 , A 11 , A 12 , L 11 , and L 12 are synonymous with each other.
  • the compound represented by the general formula (131) is also preferably a compound represented by the following general formula (11F).
  • R 11, R 12, and L 11 is a R 11, R 12, and L 11 in the general formula (13), have the same meanings, a plurality of R 11 are identical to each other Or a plurality of R 12 are the same or different from each other, and a plurality of L 11 are the same or different from each other.
  • Delayed fluorescence (thermally activated delayed fluorescence) is explained on pages 261 to 268 of “Device properties of organic semiconductors” (edited by Chiba Adachi, published by Kodansha).
  • the energy difference ⁇ E 13 between the excited singlet state and the excited triplet state of the fluorescent material can be reduced, the reverse energy from the excited triplet state to the excited singlet state, which usually has a low transition probability. It is described that migration occurs with high efficiency, and thermally activated delayed fluorescence (TADF) is expressed.
  • FIG. 10.38 in this document explains the mechanism of delayed fluorescence generation.
  • the first compound in the present embodiment is a compound that exhibits thermally activated delayed fluorescence generated by such a mechanism.
  • the delayed fluorescence emission can be confirmed by transient PL (Photo Luminescence) measurement.
  • Transient PL measurement is a method of measuring the decay behavior (transient characteristics) of PL emission after irradiating a sample with a pulse laser and exciting it and stopping the irradiation.
  • PL emission in the TADF material is classified into a light emission component from a singlet exciton generated by the first PL excitation and a light emission component from a singlet exciton generated via a triplet exciton.
  • the lifetime of singlet excitons generated by the first PL excitation is on the order of nanoseconds and is very short. Therefore, light emitted from the singlet excitons is rapidly attenuated after irradiation with the pulse laser.
  • delayed fluorescence is gradually attenuated due to light emission from singlet excitons generated via a long-lived triplet exciton.
  • the emission intensity derived from delayed fluorescence can be obtained.
  • FIG. 2 shows a schematic diagram of an exemplary apparatus for measuring transient PL.
  • the transient PL measurement apparatus 100 of the present embodiment includes a pulse laser unit 101 that can irradiate light of a predetermined wavelength, a sample chamber 102 that houses a measurement sample, a spectrometer 103 that separates light emitted from the measurement sample, A streak camera 104 for forming a two-dimensional image and a personal computer 105 for capturing and analyzing the two-dimensional image are provided. Note that the measurement of the transient PL is not limited to the apparatus described in this embodiment.
  • the sample accommodated in the sample chamber 102 is obtained by forming a thin film in which a doping material is doped at a concentration of 12 mass% with respect to a matrix material on a quartz substrate.
  • the thin film sample accommodated in the sample chamber 102 is irradiated with a pulse laser from the pulse laser unit 101 to excite the doping material.
  • Light emission is extracted in a direction of 90 degrees with respect to the irradiation direction of the excitation light, the extracted light is dispersed by the spectroscope 103, and a two-dimensional image is formed in the streak camera 104.
  • a two-dimensional image in which the vertical axis corresponds to time, the horizontal axis corresponds to wavelength, and the bright spot corresponds to emission intensity.
  • an emission spectrum in which the vertical axis represents the emission intensity and the horizontal axis represents the wavelength can be obtained.
  • an attenuation curve in which the vertical axis represents the logarithm of the emission intensity and the horizontal axis represents time can be obtained.
  • a thin film sample A was prepared as described above using the following reference compound H1 as a matrix material and the following reference compound D1 as a doping material, and transient PL measurement was performed.
  • FIG. 3 shows attenuation curves obtained from the transient PL measured for the thin film sample A and the thin film sample B.
  • the transient PL measurement it is possible to obtain a light emission decay curve with the vertical axis representing the emission intensity and the horizontal axis representing the time. Based on this emission decay curve, the fluorescence intensity of fluorescence emitted from the singlet excited state generated by photoexcitation and delayed fluorescence emitted from the singlet excited state generated by reverse energy transfer via the triplet excited state The ratio can be estimated.
  • the ratio of the delayed fluorescence intensity that gradually attenuates to the fluorescence intensity that decays quickly is somewhat large.
  • the delayed fluorescence emission amount in this embodiment can be obtained using the apparatus of FIG.
  • the first compound is excited with pulsed light having a wavelength that is absorbed by the first compound (light irradiated from a pulse laser) and then promptly observed from the excited state. After the excitation, there is delay light emission (delayed light emission) that is not observed immediately but is observed thereafter.
  • the amount of delay light emission is preferably 5% or more with respect to the amount of Promp light emission (immediate light emission).
  • the amount of Prompt luminescence (immediate emission) and X P, the amount of Delay emission (delayed luminescence) is taken as X D, that the value of X D / X P is 0.05 or more preferable.
  • the amounts of Prompt light emission and Delay light emission can be obtained by a method similar to the method described in “Nature 492, 234-238, 2012”.
  • the apparatus used for calculation of the amount of Promp light emission and Delay light emission is not limited to the apparatus described in the said literature.
  • the sample used for the measurement of delayed fluorescence is, for example, co-evaporation of the first compound and the following compound TH-2 on a quartz substrate so that the ratio of the first compound is 12% by mass, A sample in which a thin film having a thickness of 100 nm is formed can be used.
  • the 1st compound is described in Chemical Communications, p. 10385-10387 (2013) and NATURE Photonics, p. 326-332 (2014). For example, it can manufacture by the method described in international publication 2013/180241, international publication 2014/092083, international publication 2014/104346, etc. Further, for example, the first compound can be produced by following a reaction described in Examples described later and using a known alternative reaction or a raw material that matches a target product.
  • the light emitting layer according to the present embodiment includes a first compound and a second compound, the first compound is a compound having delayed fluorescence, and the second compound has the above-described emission peak wavelength, It is a fluorescent compound having a molar extinction coefficient and Stokes shift characteristics.
  • the singlet energy S 1 (M1) of the first compound and the singlet energy S 1 (M2) of the second compound satisfy the relationship of the following mathematical formula (Formula 1).
  • the energy gap T 77K (M1) at 77 [K] of the first compound is preferably larger than the energy gap T 77K (M2) at 77 [K] of the second compound. That is, it is preferable to satisfy the relationship of the following mathematical formula (Formula 4).
  • the organic EL element 1 of the present embodiment When the organic EL element 1 of the present embodiment is caused to emit light, it is preferable that mainly the second compound emits light in the light emitting layer 5.
  • the energy gap at 77 [K] is different from the normally defined triplet energy.
  • the triplet energy is measured as follows. First, a sample in which a solution in which a compound to be measured is dissolved in an appropriate solvent is enclosed in a quartz glass tube is prepared.
  • a phosphorescence spectrum (vertical axis: phosphorescence emission intensity, horizontal axis: wavelength) is measured at a low temperature (77 [K]), and a tangent line is drawn with respect to the rising edge on the short wavelength side of the phosphorescence spectrum, Based on the wavelength value at the intersection of the tangent and the horizontal axis, triplet energy is calculated from a predetermined conversion formula.
  • the delayed fluorescent compound used in the present embodiment is preferably a compound having a small ⁇ ST. When ⁇ ST is small, intersystem crossing and reverse intersystem crossing easily occur even in a low temperature (77 [K]) state, and an excited singlet state and an excited triplet state are mixed.
  • the spectrum measured in the same manner as described above includes light emission from both the excited singlet state and the excited triplet state, and it is difficult to distinguish clearly from which state the light is emitted.
  • the triplet energy value is considered dominant. Therefore, in the present embodiment, the normal triplet energy T and the measurement method are the same, but in order to distinguish the difference in the strict meaning, the value measured as follows is referred to as an energy gap T 77K. .
  • a phosphorescence spectrum (vertical axis: phosphorescence emission intensity, horizontal axis: wavelength) is measured at a low temperature (77 [K]), and a tangent line is drawn with respect to the rising edge of the phosphorescence spectrum on the short wavelength side.
  • the energy amount calculated from the following conversion formula (F1) is defined as an energy gap T 77K at 77 [K].
  • Conversion formula (F1): T 77K [eV] 1239.85 / ⁇ edge
  • the tangent to the rising edge on the short wavelength side of the phosphorescence spectrum is drawn as follows. When moving on the spectrum curve from the short wavelength side of the phosphorescence spectrum to the maximum value on the shortest wavelength side among the maximum values of the spectrum, tangents at each point on the curve are considered toward the long wavelength side. The slope of this tangent line increases as the curve rises (that is, as the vertical axis increases). A tangent drawn at a point where the value of the slope takes a maximum value (that is, a tangent at the inflection point) is a tangent to the rising edge of the phosphorescence spectrum on the short wavelength side.
  • the maximum point having a peak intensity of 15% or less of the maximum peak intensity of the spectrum is not included in the above-mentioned maximum value on the shortest wavelength side, and has the maximum slope value closest to the maximum value on the shortest wavelength side.
  • the tangent drawn at the point where the value is taken is taken as the tangent to the rising edge of the phosphorescence spectrum on the short wavelength side.
  • an F-4500 type spectrofluorometer main body manufactured by Hitachi High-Technology Co., Ltd. can be used.
  • the measurement device is not limited to this, and the measurement may be performed by combining a cooling device and a cryogenic container, an excitation light source, and a light receiving device.
  • Examples of a method for measuring singlet energy S 1 using a solution include the following methods.
  • a 10 ⁇ mol / L toluene solution of the compound to be measured is prepared and placed in a quartz cell, and the absorption spectrum (vertical axis: emission intensity, horizontal axis: wavelength) of this sample is measured at room temperature (300 K).
  • a tangent line is drawn with respect to the fall of the absorption spectrum on the long wavelength side, and the singlet energy is calculated by substituting the wavelength value ⁇ edge [nm] at the intersection of the tangent line and the horizontal axis into the following conversion formula (F2).
  • Conversion formula (F2): S 1 [eV] 1239.85 / ⁇ edge
  • Examples of the absorption spectrum measuring device include a spectrophotometer (device name: U3310) manufactured by Hitachi, but are not limited thereto.
  • the tangent to the falling edge on the long wavelength side of the absorption spectrum is drawn as follows. When moving on the spectrum curve in the long wavelength direction from the maximum value on the longest wavelength side among the maximum values of the absorption spectrum, the tangent at each point on the curve is considered. This tangent repeats as the curve falls (ie, as the value on the vertical axis decreases), the slope decreases and then increases. The tangent drawn at the point where the slope value takes the minimum value on the long wavelength side (except when the absorbance is 0.1 or less) is taken as the tangent to the fall on the long wavelength side of the absorption spectrum. In addition, the maximum point whose absorbance value is 0.2 or less is not included in the maximum value on the longest wavelength side.
  • the content rate of the 1st compound contained in the light emitting layer 5, and the 2nd compound is the following ranges, for example.
  • the content of the first compound is preferably 90% by mass or more and 99.9% by mass or less, more preferably 95% by mass or more and 99.9% by mass or less, and 99% by mass or more and 99.9% by mass. % Or less is particularly preferable.
  • the content of the second compound is preferably 0.01% by mass to 10% by mass, more preferably 0.01% by mass to 5% by mass, and 0.01% by mass to 1% by mass. More preferably, it is% or less.
  • this embodiment does not exclude that the light emitting layer 5 contains materials other than the first compound and the second compound.
  • the film thickness of the light emitting layer 5 becomes like this. Preferably they are 5 nm or more and 50 nm or less, More preferably, they are 7 nm or more and 50 nm or less, More preferably, they are 10 nm or more and 50 nm or less. If the film thickness of the light emitting layer 5 is 5 nm or more, it is easy to form the light emitting layer 5 and adjust the chromaticity. Moreover, if the film thickness of the light emitting layer 5 is 50 nm or less, the drive voltage rise can be suppressed.
  • FIG. 4 is a figure which shows an example of the relationship of the energy level of the 1st compound in a light emitting layer, and a 2nd compound.
  • S0 represents a ground state.
  • S1 (M1) represents the lowest excited singlet state of the first compound.
  • T1 (M1) represents the lowest excited triplet state of the first compound.
  • S1 (M2) represents the lowest excited singlet state of the second compound.
  • T1 (M2) represents the lowest excited triplet state of the second compound.
  • the dashed arrow from S1 (M1) to S1 (M2) in FIG. 4 represents the Forster energy transfer from the lowest excited singlet state of the first compound to the second compound. As shown in FIG.
  • the substrate 2 is used as a support for the organic EL element 1.
  • the substrate 2 for example, glass, quartz, plastic, or the like can be used.
  • a flexible substrate may be used.
  • the flexible substrate is a substrate that can be bent (flexible), and examples thereof include a plastic substrate.
  • the material for forming the plastic substrate include polycarbonate, polyarylate, polyether sulfone, polypropylene, polyester, polyvinyl fluoride, polyvinyl chloride, polyimide, and polyethylene naphthalate.
  • an inorganic vapor deposition film can also be used.
  • anode For the anode 3 formed on the substrate 2, it is preferable to use a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a high work function (specifically, 4.0 eV or more). Specifically, for example, indium tin oxide (ITO), indium oxide-tin oxide containing silicon or silicon oxide, indium oxide-zinc oxide, indium oxide containing tungsten oxide and zinc oxide, And graphene.
  • ITO indium tin oxide
  • ITO indium oxide-tin oxide containing silicon or silicon oxide
  • indium oxide-zinc oxide indium oxide containing tungsten oxide and zinc oxide
  • graphene graphene.
  • gold Au
  • platinum Pt
  • nickel Ni
  • tungsten W
  • Cr chromium
  • Mo molybdenum
  • iron Fe
  • Co cobalt
  • Cu copper
  • palladium Pd
  • titanium Ti
  • nitrides of these metal materials for example, titanium nitride
  • indium oxide-zinc oxide can be formed by a sputtering method by using a target in which 1% by mass to 10% by mass of zinc oxide is added to indium oxide.
  • indium oxide containing tungsten oxide and zinc oxide has a target containing 0.5% by mass to 5% by mass of tungsten oxide and 0.1% by mass to 1% by mass of zinc oxide with respect to indium oxide.
  • the hole injection layer 6 formed in contact with the anode 3 is made of a composite material that facilitates hole injection regardless of the work function of the anode 3. It is formed.
  • Electrode materials for example, metals, alloys, electrically conductive compounds, mixtures thereof, and other elements belonging to Group 1 or Group 2 of the periodic table
  • An element belonging to Group 1 of the Periodic Table of Elements, an element belonging to Group 2 of the Periodic Table of Elements, a rare earth metal, an alloy containing these, and the like, which are materials having a low work function, can also be used as anode 3.
  • Examples of the element belonging to Group 1 of the periodic table include alkali metals.
  • the elements belonging to Group 2 of the periodic table include alkaline earth metals.
  • the alkali metal include lithium (Li) and cesium (Cs).
  • Examples of the alkaline earth metal include magnesium (Mg), calcium (Ca), strontium (Sr), and the like.
  • Examples of the rare earth metal include europium (Eu) and ytterbium (Yb).
  • Examples of alloys containing these metals include MgAg and AlLi.
  • a vacuum evaporation method and a sputtering method can be used.
  • coating method, the inkjet method, etc. can be used.
  • the hole injection layer 6 is a layer containing a substance having a high hole injection property.
  • substances having a high hole injection property include molybdenum oxide, titanium oxide, vanadium oxide, rhenium oxide, ruthenium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide, and silver oxide.
  • An oxide, a tungsten oxide, a manganese oxide, or the like can be used.
  • TDATA N-diphenylamino triphenylamine
  • MTDATA 4,4 ′, 4 ′′ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine
  • DPAB 4,4′-bis [N- (4-diphenylaminophenyl) -N -Phenylamino] biphenyl
  • DNTPD 1,3,5-tris [N- (4-diphenylaminophenyl) -N-phenylamino] benzen
  • a high molecular compound can also be used.
  • the polymer compound include oligomers, dendrimers, and polymers.
  • poly (N-vinylcarbazole) abbreviation: PVK
  • poly (4-vinyltriphenylamine) abbreviation: PVTPA
  • PVTPA poly (4-vinyltriphenylamine)
  • PTPDMA poly [N- (4- ⁇ N ′-[4- (4- Diphenylamino) phenyl] phenyl-N′-phenylamino ⁇ phenyl) methacrylamide]
  • PTPDMA poly [N, N′-bis (4-butylphenyl) -N, N′-bis (phenyl) benzidine ]
  • Poly-TPD Poly-TPD
  • a polymer compound to which an acid such as poly (3,4-ethylenedioxythiophene) / poly (styrenesulfonic acid) (PEDOT / PSS) and polyaniline / poly (styrenesulfonic acid) (PAni / PSS) is added can also be used.
  • the hole transport layer 7 is a layer containing a substance having a high hole transport property.
  • an aromatic amine compound, a carbazole derivative, an anthracene derivative, or the like can be used.
  • NPB 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • NPB N, N′-bis (3-methylphenyl) -N, N′— Diphenyl- [1,1′-biphenyl] -4,4′-diamine
  • BAFLP 4-phenyl-4 ′-(9-phenylfluoren-9-yl) triphenylamine
  • BAFLP 4-phenyl-4 ′-bis [N- (9,9-dimethylfluoren-2-yl) -N-phenylamino] biphenyl
  • DFLDPBi 4,4 ′, 4 ′′ -tris (N, N-diphenylamino)
  • TDATA 4,4 ′, 4 ′′ -tris [N- (3-methylphenyl) -N-phenyla
  • the substances mentioned here are mainly substances having a hole mobility of 10 ⁇ 6 cm 2 / (V ⁇ s) or more.
  • the hole transport layer 7 includes CBP, 9- [4- (N-carbazolyl)] phenyl-10-phenylanthracene (CzPA), and 9-phenyl-3- [4- (10-phenyl-9-anthryl).
  • a carbazole derivative such as phenyl] -9H-carbazole (PCzPA), an anthracene derivative such as t-BuDNA, DNA, and DPAnth may be used.
  • Polymer compounds such as poly (N-vinylcarbazole) (abbreviation: PVK) and poly (4-vinyltriphenylamine) (abbreviation: PVTPA) can also be used.
  • PVK poly (N-vinylcarbazole)
  • PVTPA poly (4-vinyltriphenylamine)
  • any substance other than these may be used as long as it has a property of transporting more holes than electrons.
  • the layer containing a substance having a high hole-transport property is not limited to a single layer, and may be a layer in which two or more layers containing the above substances are stacked. When two or more hole transport layers are arranged, it is preferable to arrange a layer containing a material having a larger energy gap on the side closer to the light emitting layer 5.
  • the electron transport layer 8 is a layer containing a substance having a high electron transport property.
  • the electron transport layer 8 includes (1) metal complexes such as aluminum complexes, beryllium complexes, and zinc complexes; (2) heteroaromatic compounds such as imidazole derivatives, benzimidazole derivatives, azine derivatives, carbazole derivatives, and phenanthroline derivatives; In addition, (3) a polymer compound can be used.
  • Alq tris (4-methyl-8-quinolinolato) aluminum (abbreviation: Almq 3 ), bis (10-hydroxybenzo [h] quinolinato) beryllium (abbreviation: BeBq 2 ), Metal complexes such as BAlq, Znq, ZnPBO, and ZnBTZ can be used.
  • a benzimidazole compound can be suitably used.
  • the substances described here are mainly substances having an electron mobility of 10 ⁇ 6 cm 2 / (V ⁇ s) or more.
  • a substance other than the above may be used as the electron transport layer 8 as long as the substance has a higher electron transport property than the hole transport property.
  • the electron transport layer 8 is not limited to a single layer, and may be a layer in which two or more layers made of the above substances are stacked.
  • a polymer compound can be used for the electron transport layer 8.
  • poly [(9,9-dihexylfluorene-2,7-diyl) -co- (pyridine-3,5-diyl)] (abbreviation: PF-Py)
  • poly [(9,9-dioctylfluorene- 2,7-diyl) -co- (2,2′-bipyridine-6,6′-diyl)] (abbreviation: PF-BPy) or the like can be used.
  • the electron injection layer 9 is a layer containing a substance having a high electron injection property.
  • the electron injection layer 9 includes lithium (Li), cesium (Cs), calcium (Ca), lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF 2 ), and lithium oxide (LiOx).
  • Alkali metals, alkaline earth metals, or compounds thereof can be used.
  • a substance in which an alkali metal, an alkaline earth metal, or a compound thereof is contained in a substance having an electron transporting property specifically, a substance in which magnesium (Mg) is contained in Alq may be used. In this case, electron injection from the cathode 4 can be performed more efficiently.
  • a composite material obtained by mixing an organic compound and an electron donor (donor) may be used for the electron injection layer 9.
  • a composite material is excellent in electron injecting property and electron transporting property because electrons are generated in the organic compound by the electron donor.
  • the organic compound is preferably a material excellent in transporting the generated electrons.
  • a substance (metal complex, heteroaromatic compound, etc.) constituting the electron transport layer 8 described above is used.
  • the electron donor may be any substance that exhibits an electron donating property to the organic compound.
  • an alkali metal, an alkaline earth metal, or a rare earth metal is preferable, and examples thereof include lithium, cesium, magnesium, calcium, erbium, and ytterbium.
  • an alkali metal oxide or an alkaline earth metal oxide as an electron donor, and examples thereof include lithium oxide, calcium oxide, and barium oxide.
  • a Lewis base such as magnesium oxide can also be used.
  • an organic compound such as tetrathiafulvalene (abbreviation: TTF) can be used.
  • the cathode 4 is preferably made of a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a low work function (specifically, 3.8 eV or less).
  • a cathode material include elements belonging to Group 1 of the periodic table, elements belonging to Group 2 of the periodic table, rare earth metals, and alloys containing these.
  • Examples of the element belonging to Group 1 of the periodic table include alkali metals.
  • Examples of the elements belonging to Group 2 of the periodic table include alkaline earth metals.
  • Examples of the alkali metal include lithium (Li) and cesium (Cs).
  • Examples of the alkaline earth metal include magnesium (Mg), calcium (Ca), and strontium (Sr).
  • Examples of the rare earth metal include europium (Eu) and ytterbium (Yb).
  • Examples of alloys containing these metals include MgAg and AlLi.
  • a vacuum evaporation method and sputtering method can be used.
  • a silver paste etc. the apply
  • various conductive materials such as Al, Ag, ITO, graphene, and indium oxide-tin oxide containing silicon or silicon oxide can be used regardless of the work function.
  • the cathode 4 can be formed. These conductive materials can be formed by a sputtering method, an inkjet method, a spin coating method, or the like.
  • the method for forming each layer of the organic EL element 1 of the present embodiment is not limited to those described above, and known methods such as a dry film forming method and a wet film forming method can be employed.
  • the dry film forming method include a vacuum deposition method, a sputtering method, a plasma method, and an ion plating method.
  • the wet film forming method include a spin coating method, a dipping method, a flow coating method, and an ink jet method.
  • the film thickness of each organic layer of the organic EL element 1 of the present embodiment is not limited except as specifically mentioned above.
  • the film thickness is preferably in the range of several nm to 1 ⁇ m in order to make it difficult for defects such as pinholes to occur and to prevent deterioration of efficiency due to the need for a high applied voltage.
  • the number of ring-forming carbon atoms constitutes the ring itself of a compound having a structure in which atoms are bonded cyclically (for example, a monocyclic compound, a condensed ring compound, a bridged compound, a carbocyclic compound, or a heterocyclic compound). Represents the number of carbon atoms in the atom.
  • the carbon contained in the substituent is not included in the number of ring-forming carbons.
  • the “ring-forming carbon number” described below is the same unless otherwise specified.
  • the benzene ring has 6 ring carbon atoms
  • the naphthalene ring has 10 ring carbon atoms
  • the pyridinyl group has 5 ring carbon atoms
  • the furanyl group has 4 ring carbon atoms.
  • the carbon number of the alkyl group is not included in the number of ring-forming carbons.
  • the carbon number of the fluorene ring as a substituent is not included in the number of ring-forming carbons.
  • the number of ring-forming atoms means a compound (for example, a monocyclic compound, a condensed ring compound, a bridging compound, a carbocyclic compound, a heterocycle) having a structure in which atoms are bonded in a cyclic manner (for example, a monocyclic ring, a condensed ring, or a ring assembly) Of the ring compound) represents the number of atoms constituting the ring itself. Atoms that do not constitute a ring or atoms included in a substituent when the ring is substituted by a substituent are not included in the number of ring-forming atoms.
  • the “number of ring-forming atoms” described below is the same unless otherwise specified.
  • the pyridine ring has 6 ring atoms
  • the quinazoline ring has 10 ring atoms
  • the furan ring has 5 ring atoms.
  • a hydrogen atom bonded to a carbon atom of a pyridine ring or a quinazoline ring or an atom constituting a substituent is not included in the number of ring-forming atoms.
  • Examples of the aryl group having 6 to 30 ring carbon atoms in this specification include, for example, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, an anthryl group, and a phenanthryl group.
  • the aryl group preferably has 6 to 20 ring carbon atoms, more preferably 6 to 14, and still more preferably 6 to 12.
  • aryl groups a phenyl group, a biphenyl group, a naphthyl group, a phenanthryl group, a terphenyl group, and a fluorenyl group are even more preferable.
  • the substituted or unsubstituted alkyl group having 1 to 30 carbon atoms in the present specification described later on the 9-position carbon atom A substituted or unsubstituted aryl group having 6 to 18 ring carbon atoms is preferably substituted.
  • a heteroaryl group having 5 to 30 ring-forming atoms (sometimes referred to as a heterocyclic group, a heteroaromatic cyclic group, or an aromatic heterocyclic group) includes nitrogen, sulfur, oxygen as a heteroatom.
  • it contains at least any atom selected from the group consisting of silicon, selenium atoms, and germanium atoms, and more preferably contains at least any atom selected from the group consisting of nitrogen, sulfur, and oxygen. preferable.
  • heterocyclic group having 5 to 30 ring atoms in the present specification examples include, for example, pyridyl group, pyrimidinyl group, pyrazinyl group, pyridazinyl group, triazinyl group, quinolyl group, isoquinolinyl group, naphthyridinyl group, phthalazinyl group, quinoxalinyl group, Quinazolinyl group, phenanthridinyl group, acridinyl group, phenanthrolinyl group, pyrrolyl group, imidazolyl group, pyrazolyl group, triazolyl group, tetrazolyl group, indolyl group, benzimidazolyl group, indazolyl group, imidazolpyridinyl group, benz Triazolyl group, carbazolyl group, furyl group, thienyl group, oxazolyl group, thiazolyl group, iso
  • the number of ring-forming atoms of the heterocyclic group is preferably 5 to 20, and more preferably 5 to 14.
  • 1-dibenzofuranyl group, 2-dibenzofuranyl group, 3-dibenzofuranyl group, 4-dibenzofuranyl group, 1-dibenzothienyl group, 2-dibenzothienyl group, 3-dibenzothienyl group Even more preferred are the group, 4-dibenzothienyl group, 1-carbazolyl group, 2-carbazolyl group, 3-carbazolyl group, 4-carbazolyl group, and 9-carbazolyl group.
  • the 9th-position nitrogen atom has a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms in the present specification, It is preferable that a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms is substituted.
  • the heterocyclic group may be a group derived from a partial structure represented by the following general formulas (XY-1) to (XY-18), for example.
  • X A and Y A are each independently a hetero atom, and an oxygen atom, a sulfur atom, a selenium atom, a silicon atom, or a germanium atom Is preferred.
  • the partial structures represented by the general formulas (XY-1) to (XY-18) have a bond at an arbitrary position to be a heterocyclic group, and this heterocyclic group has a substituent. Also good.
  • the substituted or unsubstituted carbazolyl group may include a group further condensed with a carbazole ring as represented by the following formula, for example. Such a group may also have a substituent. Also, the position of the joint can be changed as appropriate.
  • the alkyl group having 1 to 30 carbon atoms may be linear, branched or cyclic. Further, it may be a halogenated alkyl group.
  • the linear or branched alkyl group include a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-o
  • the linear or branched alkyl group preferably has 1 to 10 carbon atoms, and more preferably 1 to 6 carbon atoms.
  • methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, n-hexyl group Even more preferred are amyl groups, isoamyl groups, and neopentyl groups.
  • Examples of the cyclic alkyl group in the present specification include a cycloalkyl group having 3 to 30 ring carbon atoms.
  • Examples of the cycloalkyl group having 3 to 30 ring carbon atoms in the present specification include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a 4-methylcyclohexyl group, an adamantyl group, and a norbornyl group.
  • the number of carbon atoms forming the ring of the cycloalkyl group is preferably 3 to 10, and more preferably 5 to 8.
  • a cyclopentyl group and a cyclohexyl group are even more preferable.
  • halogenated alkyl group in which the alkyl group in the present specification is substituted with a halogen atom examples include a group in which the alkyl group having 1 to 30 carbon atoms is substituted with one or more halogen atoms, preferably a fluorine atom.
  • Specific examples of the halogenated alkyl group having 1 to 30 carbon atoms in the present specification include a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a fluoroethyl group, a trifluoromethylmethyl group, a trifluoroethyl group, A pentafluoroethyl group etc. are mentioned.
  • Examples of the substituted silyl group in the present specification include an alkylsilyl group having 3 to 30 carbon atoms and an arylsilyl group having 6 to 30 ring carbon atoms.
  • Examples of the alkylsilyl group having 3 to 30 carbon atoms in the present specification include a trialkylsilyl group having an alkyl group exemplified as the alkyl group having 1 to 30 carbon atoms, specifically, a trimethylsilyl group and a triethylsilyl group.
  • the three alkyl groups in the trialkylsilyl group may be the same as or different from each other.
  • Examples of the arylsilyl group having 6 to 30 ring carbon atoms in the present specification include a dialkylarylsilyl group, an alkyldiarylsilyl group, and a triarylsilyl group.
  • Examples of the dialkylarylsilyl group include a dialkylarylsilyl group having two alkyl groups exemplified as the alkyl group having 1 to 30 carbon atoms and one aryl group having 6 to 30 ring carbon atoms. .
  • the carbon number of the dialkylarylsilyl group is preferably 8-30.
  • alkyldiarylsilyl group examples include an alkyldiarylsilyl group having one alkyl group exemplified for the alkyl group having 1 to 30 carbon atoms and two aryl groups having 6 to 30 ring carbon atoms. .
  • the alkyldiarylsilyl group preferably has 13 to 30 carbon atoms.
  • Examples of the triarylsilyl group include a triarylsilyl group having three aryl groups having 6 to 30 ring carbon atoms.
  • the carbon number of the triarylsilyl group is preferably 18-30.
  • the aryl group in the aralkyl group (sometimes referred to as an arylalkyl group) is an aromatic hydrocarbon group or a heterocyclic group.
  • the aralkyl group having 5 to 30 carbon atoms is preferably an aralkyl group having 6 to 30 ring carbon atoms, and represented by —Z 3 —Z 4 .
  • Z 3 include an alkylene group corresponding to the alkyl group having 1 to 30 carbon atoms.
  • this Z 4 include the above-mentioned aryl groups having 6 to 30 ring carbon atoms.
  • This aralkyl group is an aralkyl group having 7 to 30 carbon atoms (the aryl moiety has 6 to 30, preferably 6 to 20, more preferably 6 to 12 carbon atoms), and the alkyl moiety has 1 to 30 carbon atoms (preferably 1 to 1 carbon atoms). 20, more preferably 1 to 10, and still more preferably 1 to 6).
  • Examples of the aralkyl group include benzyl group, 2-phenylpropan-2-yl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenylisopropyl group, 2-phenylisopropyl group, and phenyl-t-butyl.
  • ⁇ -naphthylmethyl group 1- ⁇ -naphthylethyl group, 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, 2- ⁇ -naphthylisopropyl group, ⁇ -naphthylmethyl group, 1- ⁇ - Examples include naphthylethyl group, 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, 2- ⁇ -naphthylisopropyl group, and the like.
  • the substituted phosphoryl group in this specification is represented by the following general formula (P).
  • Ar P1 and Ar P2 are each independently a substituent selected from the group consisting of an alkyl group having 1 to 30 carbon atoms and an aryl group having 6 to 30 ring carbon atoms. Any one of the substituents selected from the group consisting of an alkyl group having 1 to 10 carbon atoms and an aryl group having 6 to 20 ring carbon atoms is more preferable. And more preferably any substituent selected from the group consisting of an alkyl group having 1 to 6 carbon atoms and an aryl group having 6 to 14 ring carbon atoms.
  • an alkoxy group having 1 to 30 carbon atoms is represented as —OZ 1 .
  • Z 1 include the above alkyl groups having 1 to 30 carbon atoms.
  • the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentyloxy group, and a hexyloxy group.
  • the alkoxy group preferably has 1 to 20 carbon atoms.
  • Examples of the halogenated alkoxy group in which the alkoxy group is substituted with a halogen atom include a group in which the alkoxy group having 1 to 30 carbon atoms is substituted with one or more fluorine atoms.
  • the aryl group in the arylalkoxy group (sometimes referred to as an aryloxy group) includes a heteroaryl group.
  • an arylalkoxy group having 5 to 30 carbon atoms is represented by —OZ 2 .
  • Z 2 include, for example, the above aryl group having 6 to 30 ring carbon atoms.
  • the number of carbon atoms forming the arylalkoxy group is preferably 6-20.
  • the arylalkoxy group include a phenoxy group.
  • the substituted amino group in this specification is represented as —NHR V or —N (R V ) 2 .
  • RV include the alkyl group having 1 to 30 carbon atoms and the aryl group having 6 to 30 ring carbon atoms.
  • the alkenyl group having 2 to 30 carbon atoms is either a straight chain or branched chain, and examples thereof include a vinyl group, a propenyl group, a butenyl group, an oleyl group, an eicosapentaenyl group, and a docosahexaenyl group.
  • Examples of the C3-C30 cycloalkenyl group in the present specification include a cyclopentadienyl group, a cyclopentenyl group, a cyclohexenyl group, and a cyclohexadienyl group.
  • the alkynyl group having 2 to 30 carbon atoms is either linear or branched, and examples thereof include ethynyl, propynyl, and 2-phenylethynyl.
  • Examples of the C3-C30 cycloalkynyl group in the present specification include a cyclopentynyl group and a cyclohexynyl group.
  • Examples of the substituted sulfanyl group in the present specification include a methylsulfanyl group, a phenylsulfanyl group, a diphenylsulfanyl group, a naphthylsulfanyl group, and a triphenylsulfanyl group.
  • Examples of the substituted sulfinyl group in the present specification include a methylsulfinyl group, a phenylsulfinyl group, a diphenylsulfinyl group, a naphthylsulfinyl group, and a triphenylsulfinyl group.
  • Examples of the substituted sulfonyl group in the present specification include a methylsulfonyl group, a phenylsulfonyl group, a diphenylsulfonyl group, a naphthylsulfonyl group, and a triphenylsulfonyl group.
  • Examples of the substituted phosphanyl group in the present specification include a phenylphosphanyl group.
  • Examples of the substituted carbonyl group in the present specification include a methylcarbonyl group, a phenylcarbonyl group, a diphenylcarbonyl group, a naphthylcarbonyl group, and a triphenylcarbonyl group.
  • the alkoxycarbonyl group having 2 to 30 carbon atoms is represented as —COOY ′.
  • Examples of this Y ′ include the above alkyl groups.
  • Examples of the substituted carboxy group in the present specification include a benzoyloxy group.
  • an alkylthio group having 1 to 30 carbon atoms and an arylthio group having 6 to 30 ring carbon atoms are represented as —SR V.
  • Examples of RV include the alkyl group having 1 to 30 carbon atoms and the aryl group having 6 to 30 ring carbon atoms.
  • the alkylthio group preferably has 1 to 20 carbon atoms, and the arylthio group preferably has 6 to 20 ring carbon atoms.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom is preferable.
  • ring-forming carbon means a carbon atom constituting a saturated ring, an unsaturated ring, or an aromatic ring.
  • Ring-forming atom means a carbon atom and a hetero atom constituting a hetero ring (including a saturated ring, an unsaturated ring, and an aromatic ring).
  • the hydrogen atom includes isotopes having different neutron numbers, that is, light hydrogen (Protium), deuterium (Deuterium), and tritium (Tritium).
  • the substituent in the case of “substituted or unsubstituted” includes an aryl group having 6 to 30 ring carbon atoms, a heteroaryl group having 5 to 30 ring atoms, and an alkyl group having 1 to 30 carbon atoms.
  • Groups (straight chain or branched alkyl groups), cycloalkyl groups having 3 to 30 ring carbon atoms, halogenated alkyl groups having 1 to 30 carbon atoms, alkylsilyl groups having 3 to 30 carbon atoms, ring carbon atoms of 6
  • the substituent in the case of “substituted or unsubstituted” includes an aryl group having 6 to 30 ring carbon atoms, a heteroaryl group having 5 to 30 ring atoms, and an alkyl group having 1 to 30 carbon atoms.
  • Group straight chain or branched alkyl group
  • cycloalkyl group having 3 to 30 ring carbon atoms cycloalkyl group having 3 to 30 ring carbon atoms
  • halogenated alkyl group having 1 to 30 carbon atoms halogen atom
  • alkylsilyl group having 3 to 30 carbon atoms ring formation
  • At least one group selected from the group consisting of an arylsilyl group having 6 to 30 carbon atoms and a cyano group is preferable, and specific substituents preferable in the description of each substituent are preferable.
  • the substituent in the case of “substituted or unsubstituted” includes an aryl group having 6 to 30 ring carbon atoms, a heteroaryl group having 5 to 30 ring atoms, and an alkyl group having 1 to 30 carbon atoms. (Straight chain or branched alkyl group), a cycloalkyl group having 3 to 30 carbon atoms, a halogenated alkyl group having 1 to 30 carbon atoms, an alkylsilyl group having 3 to 30 carbon atoms, or a ring forming carbon group having 6 to 30 carbon atoms.
  • Arylsilyl group alkoxy group having 1 to 30 carbon atoms, aryloxy group having 5 to 30 carbon atoms, substituted amino group, alkylthio group having 1 to 30 carbon atoms, arylthio group having 6 to 30 ring carbon atoms, carbon number 5 A group consisting of -30 aralkyl groups, 2-30 alkenyl groups, 2-30 alkynyl groups, halogen atoms, cyano groups, hydroxyl groups, nitro groups, and carboxy groups It may be further substituted with at least one group selected. A plurality of these substituents may be bonded to each other to form a ring.
  • the substituent further substituted on the substituent in the case of “substituted or unsubstituted” includes an aryl group having 6 to 30 ring carbon atoms, a heteroaryl group having 5 to 30 ring atoms, It is preferably at least one group selected from the group consisting of an alkyl group having 1 to 30 carbon atoms (straight chain or branched chain alkyl group), a halogen atom, and a cyano group. More preferably, it is at least one group selected from the specific substituents described above.
  • unsubstituted in the case of “substituted or unsubstituted” means that a hydrogen atom is bonded without being substituted with the substituent.
  • carbon number XX to YY in the expression “substituted or unsubstituted ZZ group having XX to YY” represents the number of carbon atoms in the case where the ZZ group is unsubstituted and substituted. In this case, the number of carbon atoms in the substituent is not included.
  • atom number XX to YY in the expression “a ZZ group having a substituted or unsubstituted atom number XX to YY” represents the number of atoms when the ZZ group is unsubstituted and substituted. The number of atoms of the substituent in the case is not included.
  • the case of “substituted or unsubstituted” is the same as described above.
  • the structure of the ring is a saturated ring, an unsaturated ring, an aromatic hydrocarbon ring, or a heterocyclic ring.
  • examples of the aromatic hydrocarbon group and the heterocyclic group in the linking group include divalent or higher groups obtained by removing one or more atoms from the above-described monovalent group.
  • the organic EL element according to the present embodiment emits light in the blue wavelength region with high efficiency.
  • the organic EL element 1 can be used for electronic devices such as a display device and a light emitting device.
  • the display device include a display component (such as an organic EL panel module), a television, a mobile phone, a tablet, and a personal computer.
  • the light emitting device include lighting and a vehicular lamp.
  • the organic EL device according to the second embodiment is different from the organic EL device according to the first embodiment in that the light emitting layer further contains a third compound. Other points are the same as in the first embodiment.
  • the third compound may be a compound that exhibits delayed fluorescence or a compound that does not exhibit delayed fluorescence.
  • the third compound is also preferably a host material (sometimes referred to as a matrix material).
  • a host material sometimes referred to as a matrix material.
  • the first compound and the third compound are host materials, for example, one may be referred to as a first host material and the other may be referred to as a second host material.
  • the third compound is not particularly limited, but is preferably a compound other than an amine compound.
  • a carbazole derivative, a dibenzofuran derivative, and a dibenzothiophene derivative can be used as the third compound, but the third compound is not limited to these derivatives.
  • the third compound is also preferably a compound that contains at least one of a partial structure represented by the following general formula (31) and a partial structure represented by the following general formula (32) in one molecule. .
  • Y 31 to Y 36 are each independently a nitrogen atom or a carbon atom bonded to another atom in the molecule of the third compound; Provided that at least one of Y 31 to Y 36 is a carbon atom bonded to another atom in the molecule of the third compound;
  • Y 41 to Y 48 are each independently a nitrogen atom or a carbon atom bonded to another atom in the molecule of the third compound; Provided that at least one of Y 41 to Y 48 is a carbon atom bonded to another atom in the molecule of the third compound;
  • X 30 is a nitrogen atom, an oxygen atom, or a sulfur atom.
  • the partial structure represented by the general formula (32) includes the following general formula (321), general formula (322), general formula (323), general formula (324), general formula (325), and general formula. It is preferably any partial structure selected from the group consisting of the partial structures represented by (326).
  • X 30 is each independently a nitrogen atom, an oxygen atom, or a sulfur atom
  • Y 41 to Y 48 are each independently a nitrogen atom or a carbon atom bonded to another atom in the molecule of the third compound
  • X 31 is each independently a nitrogen atom, an oxygen atom, a sulfur atom, or a carbon atom
  • Y 61 to Y 64 are each independently a nitrogen atom or a carbon atom bonded to another atom in the molecule of the third compound.
  • the third compound preferably has a partial structure represented by the general formula (323) among the general formulas (321) to (326).
  • the partial structure represented by the general formula (31) is at least one group selected from the group consisting of a group represented by the following general formula (33) and a group represented by the following general formula (34). It is preferably contained in the third compound. It is also preferable that the third compound has at least one partial structure among the partial structures represented by the following general formula (33) and the following general formula (34). Since the bonding sites are located at the meta positions as in the partial structures represented by the following general formula (33) and the following general formula (34), the energy gap T 77K (M3) at 77 [K] of the third compound Can be kept high.
  • Y 31 , Y 32 , Y 34 , and Y 36 are each independently a nitrogen atom or CR 31 , R 31 is a hydrogen atom or a substituent, and R 31 as a substituent is independently A substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, A substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms, A substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, A substituted or unsubstituted fluoroalkyl group having 1 to 30 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 30 carbon atoms, A substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, A substituted or unsubstituted silyl group, Substituted germanium groups, Substituted phosphine oxide groups
  • the substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms in R 31 is preferably a non-condensed ring.
  • a wavy line portion represents a bonding position with another atom or another structure in the molecule of the third compound.
  • Y 31 , Y 32 , Y 34 and Y 36 are preferably each independently CR 31 , and the plurality of R 31 are the same or different from each other.
  • Y 32 , Y 34 and Y 36 are preferably each independently CR 31 , and the plurality of R 31 are the same or different from each other.
  • the substituted germanium group is preferably represented by —Ge (R 301 ) 3 .
  • R 301 is each independently a substituent.
  • Substituent R 301 is preferably a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms.
  • the plurality of R 301 are the same as or different from each other.
  • the partial structure represented by the general formula (32) has the following as at least one group selected from the group consisting of the groups represented by the following general formulas (35) to (39) and the following general formula (30a). It is preferably included in the three compounds.
  • Y 41 to Y 48 are each independently a nitrogen atom or CR 32 ;
  • Each R 32 is independently a hydrogen atom or a substituent;
  • R 32 as a substituent is A substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, A substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms, A substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, A substituted or unsubstituted fluoroalkyl group having 1 to 30 carbon atoms, A substituted or unsubstituted cycloalkyl group having 3 to 30 carbon atoms, A substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, A substituted or unsubstituted silyl group, Substituted germanium groups, Substituted phosphine oxide groups, A halogen atom, A cyan
  • the substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms in R 33 is preferably a non-condensed ring.
  • the wavy line part represents a bonding site with another atom or another structure in the molecule of the third compound.
  • Y 41 to Y 48 are preferably each independently CR 32.
  • Y 41 to Y 45 , Y 47 And Y 48 are preferably each independently CR 32.
  • Y 41 , Y 42 , Y 44 , Y 45 , Y 47 and Y 48 are each independently CR 32.
  • Y 42 to Y 48 are preferably each independently CR 32
  • in the general formula (30a) Y 42 to Y 47 are each independently
  • CR 32 is preferable, and the plurality of R 32 are the same as or different from each other.
  • X 30 is preferably an oxygen atom or a sulfur atom, and more preferably an oxygen atom.
  • R 31 and R 32 are each independently a hydrogen atom or a substituent, and R 31 as a substituent and R 32 as a substituent are each independently a fluorine atom or a cyano group.
  • R 31 and R 32 may be a hydrogen atom, a cyano group, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms. More preferred. However, when R 31 as a substituent and R 32 as a substituent are a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, the aryl group is preferably a non-condensed ring.
  • the third compound is preferably an aromatic hydrocarbon compound or an aromatic heterocyclic compound.
  • the third compound preferably does not have a condensed aromatic hydrocarbon ring in the molecule.
  • a 3rd compound can be manufactured by the method as described in international publication 2012/153780, international publication 2013/038650, etc., for example.
  • the third compound can be produced by using a known alternative reaction or raw material that matches the object.
  • aryl groups include phenyl, tolyl, xylyl, naphthyl, phenanthryl, pyrenyl, chrysenyl, benzo [c] phenanthryl groups.
  • chrysenyl group benzoanthryl group, triphenylenyl group, fluorenyl group, 9,9-dimethylfluorenyl group, benzofluorenyl group, dibenzofluorenyl group, biphenyl group, terphenyl group, quarterphenyl Group, fluoranthenyl group and the like, preferably phenyl group, biphenyl group, terphenyl group, quarterphenyl group, naphthyl group, triphenylenyl group, fluorenyl group and the like.
  • aryl group having a substituent examples include a tolyl group, a xylyl group, and a 9,9-dimethylfluorenyl group.
  • aryl groups include both fused and non-fused aryl groups.
  • a phenyl group, a biphenyl group, a terphenyl group, a quarterphenyl group, a naphthyl group, a triphenylenyl group, and a fluorenyl group are preferable.
  • heteroaryl group (sometimes referred to as a heterocyclic group, a heteroaromatic ring group, or an aromatic heterocyclic group) include a pyrrolyl group, a pyrazolyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, and a pyridyl group.
  • the heteroaryl group is preferably a dibenzofuranyl group, dibenzothienyl group, carbazolyl group, pyridyl group, pyrimidinyl group, triazinyl group, azadibenzofuranyl group, azadibenzothienyl group, dibenzofuranyl group, dibenzothienyl group, aza More preferred are a dibenzofuranyl group and an azadibenzothienyl group.
  • the substituted silyl group may be selected from the group consisting of a substituted or unsubstituted trialkylsilyl group, a substituted or unsubstituted arylalkylsilyl group, and a substituted or unsubstituted triarylsilyl group.
  • a substituted or unsubstituted trialkylsilyl group include a trimethylsilyl group and a triethylsilyl group.
  • Specific examples of the substituted or unsubstituted arylalkylsilyl group include a diphenylmethylsilyl group, a ditolylmethylsilyl group, and a phenyldimethylsilyl group.
  • Specific examples of the substituted or unsubstituted triarylsilyl group include a triphenylsilyl group and a tolylsilyl group.
  • the substituted phosphine oxide group is preferably a substituted or unsubstituted diarylphosphine oxide group.
  • Specific examples of the substituted or unsubstituted diarylphosphine oxide group include a diphenylphosphine oxide group and a ditolylphosphine oxide group.
  • first compound, second compound, and third compound in light-emitting layer ⁇ Relationship between first compound, second compound, and third compound in light-emitting layer> It is preferable that the first compound, the second compound, and the third compound in the light emitting layer satisfy the relationship of the mathematical formula (Formula 1) and the mathematical formula (Formula 2). That is, it is preferable to satisfy the relationship of the following mathematical formula (Formula 3).
  • the energy gap T 77K (M3) at 77 [K] of the third compound is preferably larger than the energy gap T 77K (M1) at 77 [K] of the first compound. That is, it is preferable to satisfy the relationship of the following mathematical formula (Formula 5). T 77K (M3)> T 77K (M1) ( Expression 5)
  • the first compound, the second compound, and the third compound in the light emitting layer satisfy the relationship of the mathematical formula (Formula 4) and the mathematical formula (Formula 5). That is, it is preferable to satisfy the relationship of the following mathematical formula (Formula 6).
  • the organic EL element of this embodiment is caused to emit light, it is preferable that the second compound mainly emits light in the light emitting layer.
  • the content rates of the 1st compound, the 2nd compound, and the 3rd compound which are contained in the light emitting layer are the following ranges, for example.
  • the content of the first compound is preferably 10% by mass to 80% by mass, more preferably 10% by mass to 60% by mass, and particularly preferably 20% by mass to 60% by mass. preferable.
  • the content of the second compound is preferably 0.01% by mass to 10% by mass, more preferably 0.01% by mass to 5% by mass, and 0.01% by mass to 1% by mass. More preferably, it is% or less.
  • the content of the third compound is preferably 10% by mass or more and 80% by mass or less.
  • the upper limit of the total content of the first compound, the second compound, and the third compound in the light emitting layer is 100% by mass.
  • this embodiment does not exclude that materials other than a 1st compound, a 2nd compound, and a 3rd compound are contained in a light emitting layer.
  • FIG. 5 is a diagram illustrating an example of the relationship between the energy levels of the first compound, the second compound, and the third compound in the light emitting layer.
  • S0 represents a ground state.
  • S1 (M1) represents the lowest excited singlet state of the first compound
  • T1 (M1) represents the lowest excited triplet state of the first compound.
  • S1 (M2) represents the lowest excited singlet state of the second compound
  • T1 (M2) represents the lowest excited triplet state of the second compound.
  • S1 (M3) represents the lowest excited singlet state of the third compound
  • T1 (M3) represents the lowest excited triplet state of the third compound.
  • the organic EL element according to the second embodiment emits light in the blue wavelength region with high efficiency.
  • the organic EL device of the second embodiment includes a first compound having delayed fluorescence, a second compound having fluorescence, and a third compound having a singlet energy larger than that of the first compound in the light emitting layer. And the luminous efficiency is improved. The reason why the luminous efficiency is improved is considered to be that the carrier balance of the light emitting layer is improved by including the third compound.
  • the organic EL element according to the second embodiment can be used for electronic devices such as a display device and a light emitting device, similarly to the organic EL element according to the first embodiment.
  • the light emitting layer is not limited to one layer, and a plurality of light emitting layers may be stacked.
  • the organic EL element has a plurality of light emitting layers, it is sufficient that at least one light emitting layer satisfies the conditions described in the above embodiment.
  • the other light-emitting layer may be a fluorescent light-emitting layer or a phosphorescent light-emitting layer that utilizes light emission by electron transition from a triplet excited state to a direct ground state.
  • these light emitting layers may be provided adjacent to each other, or a so-called tandem organic material in which a plurality of light emitting units are stacked via an intermediate layer. It may be an EL element.
  • a barrier layer may be provided adjacent to at least one of the anode side and the cathode side of the light emitting layer.
  • the barrier layer is preferably disposed in contact with the light emitting layer and blocks at least one of holes, electrons, and excitons.
  • the barrier layer transports electrons, and holes reach a layer on the cathode side of the barrier layer (for example, an electron transport layer).
  • an organic EL element contains an electron carrying layer, it is preferable to contain the said barrier layer between a light emitting layer and an electron carrying layer.
  • the barrier layer transports holes, and the electrons are directed to a layer on the anode side of the barrier layer (for example, a hole transport layer). Stop reaching.
  • the organic EL element includes a hole transport layer
  • a barrier layer may be provided adjacent to the light emitting layer so that excitation energy does not leak from the light emitting layer to the peripheral layer. The excitons generated in the light emitting layer are prevented from moving to a layer (for example, an electron transport layer or a hole transport layer) closer to the electrode than the barrier layer.
  • the light emitting layer and the barrier layer are preferably joined.
  • the separated organic layer was concentrated under reduced pressure, and the resulting residue was purified by silica gel column chromatography. A toluene solvent was used as a developing solvent. After purification, the obtained solid was suspended and washed with methanol to obtain Intermediate A as a white solid. The yield was 11.6 g, and the yield was 71%.
  • Synthesis Example 2 Synthesis of Compound BD-1 and Compound BD-2
  • Compound BD-1 was synthesized according to the method described in JP 2010-270103 A. As a result, Compound BD-1 was a mixture containing Compound BD-1a and Compound BD-1b.
  • Compound BD-2 was also synthesized according to the method described in JP 2010-270103 A. As a result, Compound BD-2 was a mixture containing Compound BD-2a and Compound BD-2b.
  • the separated organic layer was concentrated under reduced pressure, and the resulting residue was purified by silica gel column chromatography.
  • a mixed solvent of dichloromethane and n-hexane was used as a developing solvent.
  • the obtained solid was suspended and washed with methanol to obtain an intermediate (Int-1).
  • the yield was 2.1 g, and the yield was 100%.
  • the starting material (SM-1) is derived from an isomer mixture (a mixture containing SM-1a and SM-1b), and BD-3 is a mixture containing BD-3a and BD-3b. It was.
  • SM-1 represents only the structure of SM-1a as a representative
  • BD-3 represents only the structure of BD-3a as a representative.
  • Intermediates Int-1 and Int-2 are also representative of only intermediates obtained from SM-1a.
  • the obtained solid was dissolved in toluene, silica gel was added and stirred, then filtered and concentrated to obtain BD-4.
  • the yield was 0.62 g, and the yield was 52%.
  • the starting material (SM-1) is derived from an isomer mixture (a mixture containing SM-1a and SM-1b), and BD-4 is a mixture containing BD-4a and BD-4b. It was.
  • “SM-1” represents only the structure of SM-1a as a representative
  • BD-4 represents only the structure of BD-4a as a representative. .
  • the obtained solid was dissolved in toluene, silica gel was added and stirred, then filtered and concentrated to obtain BD-5.
  • the yield was 2.08 g, and the yield was 91%.
  • the starting material (SM-1) is derived from an isomer mixture (a mixture containing SM-1a and SM-1b), and BD-5 is a mixture containing BD-5a and BD-5b. It was. However, in the reaction formula of this synthesis example 5, only the structure of SM-1a is shown as a representative as “SM-1”, and only the structure of BD-5a is shown as a representative as “BD-5”. .
  • the obtained solid was suspended and washed with a toluene-methanol mixed solvent, and then suspended and washed with ethyl acetate to obtain the desired product (Compound BD-6).
  • the yield was 0.77 g, and the yield was 32%.
  • m / e 730 with respect to the molecular weight of 730.
  • the starting material (SM-1) is derived from an isomer mixture (a mixture containing SM-1a and SM-1b), and Compound BD-6 is a mixture containing BD-6a and BD-6b. there were.
  • SM-1a is shown as a representative as “SM-1”
  • BD-6a is shown as a representative as “BD-6”.
  • Int-72 was synthesized by changing the boronic acid in the method described in Synthesis Example 10 of WO 2011/086935 to p-cyanophenylboronic acid.
  • SM-72 isomer mixture
  • Int-72 was synthesized by changing the boronic acid in the method described in Synthesis Example 10 of WO 2011/086935 to p-cyanophenylboronic acid.
  • DME 1,2-dimethoxyethane
  • SM-72a is shown as a representative for “SM-72”
  • BD-7a is shown as a representative for “BD-7”.
  • -OTf is an abbreviation for trifluoromethanesulfonyloxy group (trifluoromethanesulfonate).
  • Amphos is an abbreviation for [4- (N, N-dimethylamino) phenyl] di-tert-butylphosphine.
  • Synthesis Example 8 Synthesis of Compound BD-8 Compound BD-8 synthesized as described below in Synthesis Example 8 was a mixture containing Compound BD-8a and Compound BD-8b.
  • the separated organic layer was concentrated under reduced pressure, and the resulting residue was purified by silica gel column chromatography. A mixed solvent of ethyl acetate and n-hexane was used as a developing solvent. After purification, the obtained solid was suspended and washed with methanol to obtain an intermediate (Int-81). The yield was 2.1 g, and the yield was 90%.
  • the starting material (SM-1) was derived from an isomer mixture (mixture of SM-1a and SM-1b), and BD-10 was a mixture of BD-10a and BD-10b.
  • the obtained solid was dissolved in chlorobenzene, added with silica gel, stirred, filtered, concentrated, and the obtained solid was suspended and washed with methanol to obtain BD-11.
  • the yield was 2.19 g and the yield was 81%.
  • the starting material (SM-1) was derived from an isomer mixture (a mixture of SM-1a and SM-1b), and BD-11 was a mixture of BD-11a and BD-11b.
  • “BD-11” represents only the structure of BD-11a as a representative
  • Intermediate 8B also represents only the structure of the intermediate obtained from SM-1a. Indicated.
  • the obtained solid was dissolved in toluene, silica gel was added and stirred, then filtered and concentrated to obtain BD-12.
  • the yield was 0.65 g, and the yield was 51%.
  • the starting material (SM-1) was derived from an isomer mixture (mixture of SM-1a and SM-1b), and BD-12 was a mixture of BD-12a and BD-12b.
  • SM-1a isomer mixture of SM-1a and SM-1b
  • BD-12 was a mixture of BD-12a and BD-12b.
  • only the structure of SM-1a is shown as a representative for “SM-1”
  • BD-12a is shown as a representative for “BD-12”.
  • the obtained solid was dissolved in toluene, silica gel was added and stirred, and then filtered and concentrated. The obtained solid was washed with ethanol to obtain BD-13.
  • the yield was 0.85 g and the yield was 33%.
  • the starting material (SM-1) was derived from an isomer mixture (mixture of SM-1a and SM-1b), and BD-13 was a mixture of BD-13a and BD-13b.
  • SM-1a isomer mixture of SM-1a and SM-1b
  • BD-13 was a mixture of BD-13a and BD-13b.
  • only the structure of SM-1a is shown as a representative for “SM-1”
  • BD-13a is shown as a representative for “BD-13”.
  • the delayed fluorescence was confirmed by measuring transient PL using the apparatus shown in FIG.
  • the compound TADF-1 and the compound TH-2 were co-evaporated on a quartz substrate so that the ratio of the compound TADF-1 was 12% by mass, and a thin film having a thickness of 100 nm was formed to prepare a sample.
  • Prompt light emission immediately observed from the excited state after being excited with pulsed light (light irradiated from a pulse laser) of a wavelength absorbed by the compound TADF-1, and immediately after the excitation Is not observed, and there is delay light emission (delayed light emission) observed thereafter.
  • the delayed fluorescence emission in this example means that the amount of delay emission (delayed emission) is 5% or more with respect to the amount of Promp emission (immediate emission). Specifically, the amount of Prompt luminescence (immediate emission) and X P, the amount of Delay emission (delayed luminescence) is taken as X D, that the value of X D / X P is 0.05 or more means. With respect to the compound TADF-1, it was confirmed that the amount of delay light emission (delayed light emission) was 5% or more with respect to the amount of Prompt light emission (immediate light emission). Specifically, it was confirmed that the value of X D / X P was 0.05 or more for the compound TADF-1.
  • the amounts of Prompt light emission and Delay light emission can be obtained by a method similar to the method described in “Nature 492, 234-238, 2012”.
  • the apparatus used for calculation of the amount of Promp light emission and Delay light emission is not limited to the apparatus of FIG. 2, or the apparatus described in literature.
  • the singlet energy of the compound DPEPO is 4.0 eV as described in the literature (APPLIED PHYSICS LETTERS 101, 093306 (2012)).
  • emission peak wavelength of compound (Emission spectrum)
  • the emission spectrum of the second compound was measured by the following method. A 5 ⁇ mol / L toluene solution of the compound to be measured was prepared and placed in a quartz cell, and the emission spectrum (vertical axis: emission intensity, horizontal axis: wavelength) of this sample was measured at room temperature (300 K). In this example, the emission spectrum was measured with a spectrophotometer manufactured by Hitachi (device name: F-7000). Note that the emission spectrum measuring apparatus is not limited to the apparatus used here. In the emission spectrum, the peak wavelength of the emission spectrum that maximizes the emission intensity was taken as the emission peak wavelength. The emission peak wavelength of Compound BD-1 was 445 nm.
  • the emission peak wavelength of Compound BD-2 was 455 nm.
  • the emission peak wavelength of Compound BD-3 was 448 nm.
  • the emission peak wavelength of Compound BD-4 was 452 nm.
  • the emission peak wavelength of Compound BD-5 was 452 nm.
  • the emission peak wavelength of Compound BD-6 was 462 nm.
  • the emission peak wavelength of Compound BD-7 was 459 nm.
  • the emission peak wavelength of Compound BD-8 was 449 nm.
  • the emission peak wavelength of Compound BD-9 was 438 nm.
  • the emission peak wavelength of Compound BD-10 was 462 nm.
  • the emission peak wavelength of Compound BD-11 was 460 nm.
  • the emission peak wavelength of Compound BD-12 was 454 nm.
  • the emission peak wavelength of Compound BD-13 was 463 nm.
  • the molar extinction coefficient ⁇ was calculated by dividing the absorption intensity of the absorption peak located on the longest wavelength side of the absorption spectrum by the solution concentration.
  • the unit of the molar extinction coefficient ⁇ was L / (mol ⁇ cm).
  • the absorption peak located on the longest wavelength side was the peak appearing on the longest wavelength side among the peaks having an absorption intensity of 1/10 or more of the maximum absorption peak appearing in the wavelength range of 350 nm or more and 500 nm or less.
  • the absorption spectrum of the second compound was measured by the following method. A 20 ⁇ mol / L toluene solution of the compound to be measured was prepared and placed in a quartz cell, and the absorption spectrum (vertical axis: absorption intensity, horizontal axis: wavelength) of this sample was measured at room temperature (300 K). In this example, the absorption spectrum was measured with a spectrophotometer manufactured by Hitachi (device name: U3310). Note that the absorption spectrum measuring apparatus is not limited to the apparatus used here.
  • the Stokes shift ss was calculated by subtracting the absorption peak wavelength obtained from the molar absorption coefficient of the absorption spectrum from the emission peak wavelength of the emission spectrum.
  • the unit of Stokes shift ss was nm.
  • Table 3 shows the molar extinction coefficient, emission peak wavelength, absorption peak wavelength, and Stokes shift of each compound.
  • Example 1 A glass substrate (manufactured by Geomat Co.) with an ITO transparent electrode (anode) having a thickness of 25 mm ⁇ 75 mm ⁇ 1.1 mm was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes. After this ultrasonic cleaning, UV ozone cleaning was performed for 30 minutes. The film thickness of ITO was 130 nm.
  • the glass substrate after the cleaning is mounted on a substrate holder of a vacuum deposition apparatus, and first, a compound HI is vapor-deposited so as to cover the transparent electrode on the surface on which the transparent electrode line is formed. A hole injection layer was formed.
  • the compound HT1 was vapor-deposited on the hole injection layer to form a first hole transport layer having a thickness of 80 nm.
  • Compound HT2 was vapor-deposited on the first hole transport layer to form a second hole transport layer having a thickness of 10 nm.
  • a compound mCP was deposited on the second hole transport layer to form an electron barrier layer having a thickness of 5 nm.
  • a compound TADF-1 as the first compound, a compound BD-1 as the second compound, and a compound DPEPO as the third compound are co-evaporated on the electron barrier layer, and the film A light emitting layer having a thickness of 25 nm was formed.
  • the concentration of Compound BD-1 in the light emitting layer was 1% by mass, the concentration of Compound TADF-1 was 24% by mass, and the concentration of Compound DPEPO was 75% by mass.
  • Compound ET-1 was vapor-deposited on this light emitting layer to form a hole blocking layer having a thickness of 5 nm.
  • a compound ET-2 was vapor-deposited on the hole barrier layer to form an electron transport layer having a thickness of 20 nm.
  • lithium fluoride (LiF) was vapor-deposited on the electron transport layer to form an electron injecting electrode (cathode) having a thickness of 1 nm.
  • a device arrangement of the organic EL device of Example 1 is schematically shown as follows. ITO (130) / HI (5) / HT1 (80) / HT2 (10) / mCP (5) / DPEPO: TADF-1: BD-1 (25, 24%, 1%) / ET-1 (5) / ET-2 (20) / LiF (1) / Al (80)
  • the numbers in parentheses indicate the film thickness (unit: nm). Also, in the parentheses, the number displayed in percent is the ratio of the first compound in the light emitting layer that is shown first, and the ratio of the second compound that is shown after, The unit of these ratios is mass%.
  • Example 2 The organic EL device of Example 2 was produced in the same manner as in Example 1 except that Compound BD-2 was used instead of Compound BD-1 in the light emitting layer of Example 1.
  • a device arrangement of the organic EL device of Example 2 is schematically shown as follows. ITO (130) / HI (5) / HT1 (80) / HT2 (10) / mCP (5) / DPEPO: TADF-1: BD-2 (25, 24%, 1%) / ET-1 (5) / ET-2 (20) / LiF (1) / Al (80)
  • Example 3 The organic EL device of Example 3 was produced in the same manner as in Example 1 except that Compound BD-3 was used instead of Compound BD-1 in the light emitting layer of Example 1.
  • a device arrangement of the organic EL device of Example 3 is schematically shown as follows. ITO (130) / HI (5) / HT1 (80) / HT2 (10) / mCP (5) / DPEPO: TADF-1: BD-3 (25, 24%, 1%) / ET-1 (5) / ET-2 (20) / LiF (1) / Al (80)
  • Example 4 The organic EL device of Example 4 was produced in the same manner as in Example 1 except that Compound BD-4 was used instead of Compound BD-1 in the light emitting layer of Example 1.
  • a device arrangement of the organic EL device of Example 4 is schematically shown as follows. ITO (130) / HI (5) / HT1 (80) / HT2 (10) / mCP (5) / DPEPO: TADF-1: BD-4 (25, 24%, 1%) / ET-1 (5) / ET-2 (20) / LiF (1) / Al (80)
  • Example 5 The organic EL device of Example 5 was produced in the same manner as Example 1 except that Compound BD-5 was used instead of Compound BD-1 in the light emitting layer of Example 1.
  • a device arrangement of the organic EL device of Example 5 is schematically shown as follows. ITO (130) / HI (5) / HT1 (80) / HT2 (10) / mCP (5) / DPEPO: TADF-1: BD-5 (25, 24%, 1%) / ET-1 (5) / ET-2 (20) / LiF (1) / Al (80)
  • Example 6 The organic EL device of Example 6 was produced in the same manner as in Example 1 except that Compound BD-6 was used instead of Compound BD-1 in the light emitting layer of Example 1.
  • a device arrangement of the organic EL device of Example 6 is schematically shown as follows. ITO (130) / HI (5) / HT1 (80) / HT2 (10) / mCP (5) / DPEPO: TADF-1: BD-6 (25, 24%, 1%) / ET-1 (5) / ET-2 (20) / LiF (1) / Al (80)
  • Example 7 The organic EL device of Example 7 was produced in the same manner as in Example 1 except that Compound BD-7 was used instead of Compound BD-1 in the light emitting layer of Example 1.
  • a device arrangement of the organic EL device of Example 7 is schematically shown as follows. ITO (130) / HI (5) / HT1 (80) / HT2 (10) / mCP (5) / DPEPO: TADF-1: BD-7 (25, 24%, 1%) / ET-1 (5) / ET-2 (20) / LiF (1) / Al (80)
  • Example 8 The organic EL device of Example 8 was produced in the same manner as in Example 1 except that Compound BD-8 was used instead of Compound BD-1 in the light emitting layer of Example 1.
  • a device arrangement of the organic EL device of Example 8 is schematically shown as follows. ITO (130) / HI (5) / HT1 (80) / HT2 (10) / mCP (5) / DPEPO: TADF-1: BD-8 (25, 24%, 1%) / ET-1 (5) / ET-2 (20) / LiF (1) / Al (80)
  • Example 9 The organic EL device of Example 9 was produced in the same manner as in Example 1 except that Compound BD-9 was used instead of Compound BD-1 in the light emitting layer of Example 1.
  • a device arrangement of the organic EL device of Example 9 is schematically shown as follows. ITO (130) / HI (5) / HT1 (80) / HT2 (10) / mCP (5) / DPEPO: TADF-1: BD-9 (25, 24%, 1%) / ET-1 (5) / ET-2 (20) / LiF (1) / Al (80)
  • Example 10 The organic EL device of Example 10 was produced in the same manner as in Example 1 except that Compound BD-10 was used instead of Compound BD-1 in the light emitting layer of Example 1.
  • a device arrangement of the organic EL device of Example 10 is schematically shown as follows. ITO (130) / HI (5) / HT1 (80) / HT2 (10) / mCP (5) / DPEPO: TADF-1: BD-10 (25, 24%, 1%) / ET-1 (5) / ET-2 (20) / LiF (1) / Al (80)
  • Example 11 The organic EL device of Example 11 was produced in the same manner as in Example 1 except that Compound BD-11 was used instead of Compound BD-1 in the light emitting layer of Example 1.
  • a device arrangement of the organic EL device of Example 11 is schematically shown as follows. ITO (130) / HI (5) / HT1 (80) / HT2 (10) / mCP (5) / DPEPO: TADF-1: BD-11 (25, 24%, 1%) / ET-1 (5) / ET-2 (20) / LiF (1) / Al (80)
  • Example 12 The organic EL device of Example 12 was produced in the same manner as in Example 1 except that Compound BD-12 was used instead of Compound BD-1 in the light emitting layer of Example 1.
  • a device arrangement of the organic EL device of Example 12 is schematically shown as follows. ITO (130) / HI (5) / HT1 (80) / HT2 (10) / mCP (5) / DPEPO: TADF-1: BD-12 (25, 24%, 1%) / ET-1 (5) / ET-2 (20) / LiF (1) / Al (80)
  • Example 13 The organic EL device of Example 13 was produced in the same manner as in Example 1 except that Compound BD-13 was used instead of Compound BD-1 in the light emitting layer of Example 1.
  • a device arrangement of the organic EL device of Example 13 is schematically shown as follows. ITO (130) / HI (5) / HT1 (80) / HT2 (10) / mCP (5) / DPEPO: TADF-1: BD-13 (25, 24%, 1%) / ET-1 (5) / ET-2 (20) / LiF (1) / Al (80)
  • Comparative Example 1 The organic EL device of Comparative Example 1 was produced in the same manner as in Example 1 except that Compound TBPe was used instead of Compound BD-1 in the light emitting layer of Example 1.
  • a device arrangement of the organic EL device of Comparative Example 1 is schematically shown as follows. ITO (130) / HI (5) / HT1 (80) / HT2 (10) / mCP (5) / DPEPO: TADF-1: TBPe (25, 24%, 1%) / ET-1 (5) / ET -2 (20) / LiF (1) / Al (80)
  • Comparative Example 2 The organic EL device of Comparative Example 2 was produced in the same manner as in Example 1 except that Compound Ref-1 was used instead of Compound BD-1 in the light emitting layer of Example 1.
  • a device arrangement of the organic EL device of Comparative Example 2 is schematically shown as follows. ITO (130) / HI (5) / HT1 (80) / HT2 (10) / mCP (5) / DPEPO: TADF-1: Ref-1 (25, 24%, 1%) / ET-1 (5) / ET-2 (20) / LiF (1) / Al (80)
  • Comparative Example 3 The organic EL device of Comparative Example 3 was produced in the same manner as in Example 1 except that Compound Ref-2 was used instead of Compound BD-1 in the light emitting layer of Example 1.
  • a device arrangement of the organic EL device of Comparative Example 3 is schematically shown as follows. ITO (130) / HI (5) / HT1 (80) / HT2 (10) / mCP (5) / DPEPO: TADF-1: Ref-2 (25, 24%, 1%) / ET-1 (5) / ET-2 (20) / LiF (1) / Al (80)
  • Comparative Example 4 The organic EL device of Comparative Example 4 was produced in the same manner as in Example 1 except that Compound Ref-3 was used instead of Compound BD-1 in the light emitting layer of Example 1.
  • a device arrangement of the organic EL device of Comparative Example 4 is schematically shown as follows. ITO (130) / HI (5) / HT1 (80) / HT2 (10) / mCP (5) / DPEPO: TADF-1: Ref-3 (25, 24%, 1%) / ET-1 (5) / ET-2 (20) / LiF (1) / Al (80)
  • Comparative Example 5 The organic EL device of Comparative Example 5 was produced in the same manner as in Example 1 except that Compound Ref-4 was used instead of Compound BD-1 in the light emitting layer of Example 1.
  • a device arrangement of the organic EL device of Comparative Example 5 is schematically shown as follows. ITO (130) / HI (5) / HT1 (80) / HT2 (10) / mCP (5) / DPEPO: TADF-1: Ref-4 (25, 24%, 1%) / ET-1 (5) / ET-2 (20) / LiF (1) / Al (80)
  • the organic EL devices of Examples 1 to 13 each including the first compound having delayed fluorescence and the second compound having fluorescence emission characteristics having the predetermined emission peak wavelength, molar extinction coefficient, and Stokes shift characteristics in the light emitting layer. According to this, light in the blue wavelength region was emitted with higher efficiency than the organic EL elements of Comparative Examples 1 to 5.
  • SYMBOLS 1 Organic EL element, 3 ... Anode, 4 ... Cathode, 5 ... Light emitting layer, 7 ... Hole transport layer, 8 ... Electron transport layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

陽極と、発光層と、陰極と、を有し、前記発光層は、第一の化合物、及び第二の化合物を含み、前記第一の化合物は、遅延蛍光性の化合物であり、前記第二の化合物は、蛍光発光性の化合物であり、前記第二の化合物のトルエン溶液の発光ピーク波長が430nm以上480nm以下であり、前記第二の化合物の最も長波長側に位置する吸収ピークにおけるモル吸光係数は、29,000L/(mol・cm)以上1,000,000L/(mol・cm)以下であり、前記第二の化合物のストークスシフトは、1nm以上20nm以下である、有機エレクトロルミネッセンス素子。

Description

有機エレクトロルミネッセンス素子、及び電子機器
 本発明は、有機エレクトロルミネッセンス素子、及び電子機器に関する。
 有機エレクトロルミネッセンス素子(以下、「有機EL素子」という場合がある。)に電圧を印加すると、陽極から発光層に正孔が注入され、陰極から発光層に電子が注入される。そして、発光層において、注入された正孔と電子とが再結合し、励起子が形成される。このとき、電子スピンの統計則により、一重項励起子が25%の割合で生成し、及び三重項励起子が75%の割合で生成する。
 一重項励起子からの発光を用いる蛍光型の有機EL素子は、携帯電話やテレビ等のフルカラーディスプレイへ応用されつつあるが、内部量子効率25%が限界といわれている。一重項励起子に加えて三重項励起子を利用し、有機EL素子をさらに効率的に発光させることが期待されている。
 このような背景から、遅延蛍光を利用した高効率の蛍光型の有機EL素子が提案され、研究がなされている。
 例えば、TADF(Thermally Activated Delayed Fluorescence、熱活性化遅延蛍光)機構が研究されている。このTADF機構は、一重項準位と三重項準位とのエネルギー差(ΔST)の小さな材料を用いた場合に、三重項励起子から一重項励起子への逆項間交差が熱的に生じる現象を利用する機構である。熱活性化遅延蛍光については、例えば、『安達千波矢編、「有機半導体のデバイス物性」、講談社、2012年4月1日発行、261-262ページ』に記載されている。このTADF機構を利用した有機EL素子が、例えば、非特許文献1に開示されている。
 非特許文献1に開示された有機EL素子は、アシストドーパントとしてのTADF化合物、発光材料としてのペリレン誘導体(TBPe;2,5,8,11-tetra-tert-butylperylene)、及びホスト材料としてのDPEPO(bis-(2-(diphenylphosphino)phenyl)ether oxide)を含んだ発光層を備える。この発光層は、青色に発光する。
Hajime Nakanotani et al,"High-efficiency organic light-emitting diodes with fluorescent emitters", NATURE COMMUNICATIONS, 5, 4016,2014
 非特許文献1に記載された有機エレクトロルミネッセンス素子は、ホスト材料としてTADF化合物を用い、発光材料としてペリレン誘導体(化合物TBPe)を用いたことで青色発光するが、発光効率が十分ではない。そのため、高効率で青色の波長領域の光を発する有機エレクトロルミネッセンス素子が要望されている。
 本発明の目的は、高効率で青色の波長領域の光を発する有機エレクトロルミネッセンス素子を提供することである。本発明の別の目的は、当該有機エレクトロルミネッセンス素子を備える電子機器を提供することである。
 本発明の一態様によれば、陽極と、発光層と、陰極と、を有し、前記発光層は、第一の化合物、及び第二の化合物を含み、前記第一の化合物は、遅延蛍光性の化合物であり、前記第二の化合物は、蛍光発光性の化合物であり、前記第二の化合物のトルエン溶液の発光ピーク波長が430nm以上480nm以下であり、前記第二の化合物の最も長波長側に位置する吸収ピークにおけるモル吸光係数は、29,000L/(mol・cm)以上1,000,000L/(mol・cm)以下であり、前記第二の化合物のストークスシフトは、1nm以上20nm以下である、有機エレクトロルミネッセンス素子が提供される。
 本発明の一態様によれば、前述の本発明の一態様に係る有機エレクトロルミネッセンス素子を備える電子機器が提供される。
 本発明によれば、高効率で青色の波長領域の光を発する有機エレクトロルミネッセンス素子を提供すること、並びに当該有機エレクトロルミネッセンス素子を備える電子機器を提供することができる。
一実施形態に係る有機エレクトロルミネッセンス素子の一例の概略構成を示す図である。 過渡PLを測定する装置の概略図である。 過渡PLの減衰曲線の一例を示す図である。 発光層における第一の化合物、及び第二の化合物のエネルギー準位、及びエネルギー移動の関係を示す図である。 発光層における第一の化合物、第二の化合物、及び第三の化合物のエネルギー準位、及びエネルギー移動の関係を示す図である。
〔第一実施形態〕
(有機EL素子の素子構成)
 本実施形態に係る有機EL素子は、一対の電極間に有機層を備える。この有機層は、有機化合物で構成される層を少なくとも一つ含む。あるいは、この有機層は、有機化合物で構成される複数の層が積層されてなる。有機層は、無機化合物をさらに含んでいてもよい。本実施形態の有機EL素子において、有機層のうち少なくとも一層は、発光層である。ゆえに、有機層は、例えば、一つの発光層で構成されていてもよいし、有機EL素子に採用され得る層を含んでいてもよい。有機EL素子に採用され得る層としては、特に限定されないが、例えば、正孔注入層、正孔輸送層、電子注入層、電子輸送層、及び障壁層からなる群から選択される少なくともいずれかの層が挙げられる。
 有機EL素子の代表的な素子構成としては、例えば、次の(a)~(f)等の構成を挙げることができる。
  (a)陽極/発光層/陰極
  (b)陽極/正孔注入・輸送層/発光層/陰極
  (c)陽極/発光層/電子注入・輸送層/陰極
  (d)陽極/正孔注入・輸送層/発光層/電子注入・輸送層/陰極
  (e)陽極/正孔注入・輸送層/発光層/障壁層/電子注入・輸送層/陰極
  (f)陽極/正孔注入・輸送層/障壁層/発光層/障壁層/電子注入・輸送層/陰極
 上記の中で(d)の構成が好ましく用いられる。ただし、本発明は、これらの構成に限定されない。なお、上記「発光層」とは、発光機能を有する有機層である。前記「正孔注入・輸送層」は「正孔注入層、及び正孔輸送層のうちの少なくともいずれか1つ」を意味する。前記「電子注入・輸送層」は「電子注入層、及び電子輸送層のうちの少なくともいずれか1つ」を意味する。有機EL素子が、正孔注入層、及び正孔輸送層を有する場合には、正孔輸送層と陽極との間に正孔注入層が設けられていることが好ましい。また、有機EL素子が電子注入層、及び電子輸送層を有する場合には、電子輸送層と陰極との間に電子注入層が設けられていることが好ましい。また、正孔注入層、正孔輸送層、電子輸送層、及び電子注入層のそれぞれは、一層で構成されていてもよいし、複数の層で構成されていてもよい。
 図1に、本実施形態に係る有機EL素子の一例の概略構成を示す。
 有機EL素子1は、透光性の基板2と、陽極3と、陰極4と、陽極3と陰極4との間に配置された有機層10と、を有する。有機層10は、正孔注入層6、正孔輸送層7、発光層5、電子輸送層8、及び電子注入層9を含む。有機層10は、陽極3側から順に、正孔注入層6、正孔輸送層7、発光層5、電子輸送層8、及び電子注入層9が、この順番で積層されている。
(発光層)
 有機EL素子1の発光層5は、第一の化合物、及び第二の化合物を含む。発光層5は、金属錯体を含んでもよいが、金属錯体を含まないことが好ましい。発光層5は、燐光発光性の金属錯体を含まないことが好ましい。
 第一の化合物は、ホスト材料(マトリックス材料と称する場合もある。)であることも好ましい。第二の化合物は、ドーパント材料(ゲスト材料、エミッター、発光材料と称する場合もある。)であることも好ましい。
<第二の化合物>
 本実施形態に係る第二の化合物は、蛍光発光性の化合物である。さらに、本実施形態に係る第二の化合物は、所定の発光ピーク波長、モル吸光係数、及びストークスシフトの特性を兼ね備えた蛍光発光性の化合物である。
・発光ピーク波長
 第二の化合物のトルエン溶液の発光ピーク波長は、430nm以上480nm以下である。
 第二の化合物のトルエン溶液の発光ピーク波長は、435nm以上465nm以下であることが好ましい。本明細書において、トルエン溶液の発光ピーク波長とは、測定対象化合物が5μmol/Lの濃度で溶解しているトルエン溶液について、測定した発光スペクトルにおける発光強度が最大となる発光スペクトルのピーク波長をいう。
 第二の化合物は、青色の蛍光発光を示すことが好ましい。
 第二の化合物は、発光量子収率の高い材料であることが好ましい。
・モル吸光係数
 第二の化合物の最も長波長側に位置する吸収ピークにおけるモル吸光係数は、29,000L/(mol・cm)以上1,000,000L/(mol・cm)以下であり、30,000L/(mol・cm)以上250,000L/(mol・cm)以下であることが好ましく、40,000L/(mol・cm)以上150,000L/(mol・cm)以下であることがより好ましい。
 本明細書において、最も長波長側に位置する吸収ピークとは、350nm以上500nm以下の範囲に出現する吸収ピークであって、最大吸収ピークの10分の1以上の吸収強度を持つピークのうち、最も長波長側に出現するピークのことである。
・ストークスシフト
 第二の化合物のストークスシフトは、1nm以上20nm以下である。
 第二の化合物のストークスシフトは、4nm以上18nm以下であることが好ましく、5nm以上17nm以下であることがより好ましい。本明細書において、ストークスシフトssは、発光スペクトルの発光ピーク波長から吸収スペクトルのモル吸光係数を求めた吸収ピーク波長を減じて算出される。
 本実施形態において、第二の化合物のストークスシフトが小さく、かつ、モル吸光係数が大きいほど、第一の化合物から第二の化合物へのエネルギー移動させる際のエネルギー損失を抑制できる。その結果、有機EL素子の発光効率の向上が期待できる。
 第二の化合物は、前述の発光ピーク波長、モル吸光係数、及びストークスシフトの特性を備えた蛍光発光性の化合物である。
 蛍光発光特性は、化合物の母骨格でほぼ決定されるため、母骨格の選択が重要である。母骨格を選択する際に考慮する事項としては、励起一重項エネルギー、遷移確率、発光効率、及び有効断面積などが挙げられる。本実施形態の第二の化合物としては、例えば、有効断面積を持ちながら、励起一重項エネルギーが大きいという、相反する特性を兼ね備えた母骨格が必要要件となる。このような第二の化合物としては、縮合環(縮合する環数が5以上15以下である。)が一方向に屈曲しながら伸張していくような形状の母骨格を持つ化合物が好ましく、当該縮合環の縮合する環数が7以上13以下であることがより好ましく、また、当該縮合環は、5員環を含むことが好ましい。第二の化合物における縮合環を構成する環としては、例えば、5員環及び6員環が挙げられる。
 例えば、以下に示す縮合環は、6つの6員環と、2つの5員環とを含み、縮合する環数が8である。
Figure JPOXMLDOC01-appb-C000006
 例えば、環数4以上16以下のポルフィリン化合物は、200,000L/(mol・cm)以上500,000L/(mol・cm)以下のモル吸光係数を持つ(日本化学会誌,Vol.1978(1978),No.2,P.212~216)が、励起一重項エネルギーの小さい縮合環形状であるため480nm以上の発光となり、青色で発光しないので、第二の化合物として用いることはできない。また、母骨格に置換する置換基は、実用に供する特性に調整するために適切な置換基を選択すればよい。
 本実施形態における第二の化合物は、炭素原子及び水素原子のみからなる炭化水素化合物であることも好ましい。
 本実施形態における第二の化合物は、置換または無置換の芳香族炭化水素化合物、又は置換または無置換の複素芳香族化合物であることも好ましい。
 本実施形態における第二の化合物は、置換または無置換の縮合芳香族炭化水素化合物、又は置換または無置換の縮合複素芳香族化合物であることも好ましい。
 本実施形態における第二の化合物は、置換または無置換の芳香族化合物であって、水素原子、並びに周期表の第14族、第15族、及び第16族に属する元素の群から選択される複数の原子で構成される芳香族化合物であることも好ましい。本実施形態における第二の化合物は、化合物の安定性の観点などから、置換または無置換の芳香族化合物であって、水素原子、炭素原子、窒素原子、酸素原子、及び硫黄原子からなる群から選択される複数の元素で構成される芳香族化合物であることもより好ましい。芳香族化合物は、芳香族炭化水素化合物及び複素芳香族化合物を含む。
 本実施形態における第二の化合物は、置換または無置換の芳香族化合物であって、縮合する環数が5以上15以下である縮合環を含むことも好ましい。
 本実施形態における第二の化合物は、置換または無置換の芳香族化合物であって、水素原子、炭素原子、窒素原子、酸素原子、及び硫黄原子からなる群から選択される複数の元素で構成され、縮合する環数が5以上15以下である縮合環を含むことも好ましい。
 本実施形態における第二の化合物は、縮合する環数が7以上13以下である縮合環を含むこともより好ましい。
 本実施形態において、発光層は、複数種の第二の化合物を含んでいても良い。
 本実施形態に係る第二の化合物の例を以下に示す。本発明における第二の化合物は、これらの具体例に限定されない。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
<第一の化合物>
 第一の化合物は、遅延蛍光性の化合物である。
 第一の化合物は、下記一般式(10)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000020
(前記一般式(10)において、
 Aは、下記一般式(a-1)~(a-7)からなる群から選ばれる部分構造を有する基であり、
 複数のAは、互いに同一であるか又は異なり、
 A同士が結合して飽和もしくは不飽和の環を形成するか又は環を形成せず、
 Bは、下記一般式(b-1)~(b-6)からなる群から選ばれる部分構造を有する基であり、
 複数のBは、互いに同一であるか又は異なり、
 B同士が結合して飽和もしくは不飽和の環を形成するか又は環を形成せず、
 a、b、及びdは、それぞれ独立に、1~5の整数であり、
 cは、0~5の整数であり、
 cが0のとき、AとBとは単結合又はスピロ結合で結合し、
 cが1~5の整数のとき、Lは、
 置換または無置換の環形成炭素数6~30の芳香族炭化水素基、及び
 置換または無置換の環形成原子数5~30の複素環基からなる群から選択される連結基であり、
 複数のLは、互いに同一であるか又は異なり、
 cが2~5の整数のとき、複数のL同士が結合して飽和もしくは不飽和の環を形成するか又は環を形成しない。)
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
(前記一般式(b-1)~(b-6)において、
 Rは、それぞれ独立に、水素原子または置換基であり、置換基としてのRは、
  置換または無置換の環形成炭素数6~30のアリール基、
  置換または無置換の環形成原子数5~30のヘテロアリール基、及び
  置換または無置換の炭素数1~30のアルキル基からなる群から選択される基であり、
 複数のRは、互いに同一であるか又は異なり、
 R同士が結合して飽和もしくは不飽和の環を形成するか又は環を形成しない。)
 前記一般式(10)において、Aは、アクセプター性(電子受容性)部位であり、Bは、ドナー性(電子供与性)部位である。
 前記一般式(a-1)~(a-7)からなる群から選ばれる部分構造を有する基について、例を次に示す。
 例えば、前記一般式(a-3)の部分構造を有する基として、下記一般式(a-3-1)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000023
 前記一般式(a-3-1)において、Xは、単結合、酸素原子、硫黄原子、または前記一般式(10)中のLもしくはBと結合する炭素原子である。
 前記一般式(a-5)の部分構造を有する基として、例えば、下記一般式(a-5-1)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000024
 前記一般式(b-1)~(b-6)からなる群から選ばれる部分構造を有する基について、例を次に示す。
 例えば、前記一般式(b-2)の部分構造を有する基として、下記一般式(b-2-1)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000025
 前記一般式(b-2-1)において、Xは、単結合、酸素原子、硫黄原子、CRb1b2、または前記一般式(10)中のLもしくはAと結合する炭素原子である。
 前記一般式(b-2-1)は、Xが単結合のとき、下記一般式(b-2-2)で表される基であり、Xが酸素原子のとき、下記一般式(b-2-3)で表される基であり、Xが硫黄原子のとき、下記一般式(b-2-4)で表される基であり、XがCRb1b2のとき、下記一般式(b-2-5)で表される基である。
Figure JPOXMLDOC01-appb-C000026
 Rb1及びRb2は、それぞれ独立に、水素原子または置換基であり、置換基としてのRb1及び置換基としてのRb2は、それぞれ独立に、置換または無置換の炭素数1~30のアルキル基、及び置換または無置換の環形成炭素数6~30のアリール基からなる群から選択されるいずれかの置換基である。
 Rb1及びRb2は、それぞれ独立に、置換または無置換の炭素数1~30のアルキル基、及び置換または無置換の環形成炭素数6~30のアリール基からなる群から選択されるいずれかの置換基であることが好ましく、置換または無置換の炭素数1~30のアルキル基からなる群から選択されるいずれかの置換基であることがより好ましい。
 Aは、前記一般式(a-1)、(a-2)、(a-3)及び(a-5)からなる群から選ばれる部分構造を有する基であることが好ましい。
 Bは、前記一般式(b-2)、(b-3)及び(b-4)からなる群から選ばれる部分構造を有する基であることが好ましい。
 前記一般式(10)で表される化合物の結合様式の一例として、例えば下記表1に示す結合様式が挙げられる。
Figure JPOXMLDOC01-appb-T000027
 前記一般式(10)におけるBは、下記一般式(100)で表されることも好ましい。
Figure JPOXMLDOC01-appb-C000028
 前記一般式(100)において、
 R101~R108は、それぞれ独立に、水素原子または置換基であり、置換基としてのR101~R108は、それぞれ独立に、
  置換または無置換の環形成炭素数6~30のアリール基、
  置換または無置換の環形成原子数5~30のヘテロアリール基、
  置換または無置換の炭素数1~30のアルキル基、
  置換シリル基、
  置換または無置換の炭素数1~30のアルコキシ基、
  置換または無置換の環形成炭素数6~30のアリールオキシ基、
  置換または無置換の炭素数2~30のアルキルアミノ基、
  置換または無置換の環形成炭素数6~60のアリールアミノ基、
  置換または無置換の炭素数1~30のアルキルチオ基、及び
  置換または無置換の環形成炭素数6~30のアリールチオ基からなる群から選択され、ただし、R101とR102との組み合わせ、R102とR103との組み合わせ、R103とR104との組み合わせ、R105とR106との組み合わせ、R106とR107との組み合わせ、並びにR107とR108との組み合わせからなる群から選択されるいずれかの組み合わせにおいて、置換基同士が飽和もしくは不飽和の環を形成するか又は環を形成せず、
 L100は、下記一般式(111)~(117)からなる群から選ばれる連結基であり、
 sは、0~3の整数であり、複数のL100は、互いに同一であるか又は異なり、
 X100は、下記一般式(121)~(125)からなる群から選ばれる連結基である。
Figure JPOXMLDOC01-appb-C000029
 前記一般式(113)~(117)において、R109は、それぞれ独立に、前記一般式(100)におけるR101~R108と同義である。
 ただし、前記一般式(100)において、R101~R108のうち一つまたはR109のうち一つは、前記一般式(10)中のLまたはAに対して結合する単結合である。
 R109と前記一般式(100)中のR104との組合せ、又はR109と前記一般式(100)中のR105との組合せにおいて、置換基同士が飽和もしくは不飽和の環を形成するか又は環を形成せず、
 複数のR109は、互いに同一であるか又は異なる。
Figure JPOXMLDOC01-appb-C000030
 前記一般式(123)~(125)において、
 R110は、それぞれ独立に、水素原子または置換基であり、置換基としてのR110は、
  置換または無置換の環形成炭素数6~30のアリール基、
  置換または無置換の環形成原子数5~30のヘテロアリール基、及び
  置換または無置換の炭素数1~30のアルキル基からなる群から選択され、
 複数のR110は、互いに同一であるか又は異なる。
 R110と前記一般式(100)中のR101との組み合せ、又はR110と前記一般式(100)中のR108との組み合せにおいて、置換基同士が飽和もしくは不飽和の環を形成するか又は環を形成しない。
 前記一般式(100)におけるsは、0又は1であることが好ましい。
 前記一般式(100)におけるsが0である場合、前記一般式(10)におけるBは、下記一般式(100A)で表される。
Figure JPOXMLDOC01-appb-C000031
 前記一般式(100A)におけるX100、R101~R108は、それぞれ、前記一般式(100)におけるX100、R101~R108と同義である。
 L100は、前記一般式(111)~(114)のいずれかで表されることが好ましく、前記一般式(113)または(114)で表されることがより好ましい。
 X100は、前記一般式(121)~(124)のいずれかで表されることが好ましく、前記一般式(123)または(124)で表されることがより好ましい。
 第一の化合物は、下記一般式(11)で表される化合物であることも好ましい。下記一般式(11)で表される化合物は、前記一般式(10)におけるaが1であり、bが1であり、dが1であり、AがAzであり、BがCzである場合の化合物に相当する。
Figure JPOXMLDOC01-appb-C000032
(前記一般式(11)において、
 Azは、置換または無置換のピリジン環、置換または無置換のピリミジン環、置換または無置換のトリアジン環、及び置換または無置換のピラジン環からなる群から選択される環構造であり、
 cは0~5の整数であり、
 Lは、
  置換または無置換の環形成炭素数6~30の芳香族炭化水素基、及び
  置換または無置換の環形成原子数5~30の複素環基からなる群から選択される連結基であり、
 cが0のとき、CzとAzとが単結合で結合し、
 cが2~5の整数のとき、複数のL同士が結合して環を形成するか又は環を形成せず、
 複数のLは、互いに同一であるか又は異なり、
 Czは、下記一般式(12)で表される。)
Figure JPOXMLDOC01-appb-C000033
(前記一般式(12)中、
 X11~X18は、それぞれ独立に、窒素原子又はC-Rxであり、
 Rxは、それぞれ独立に、水素原子又は置換基であり、置換基としてのRxは、
  置換または無置換の環形成炭素数6~30のアリール基、
  置換または無置換の環形成原子数5~30のヘテロアリール基、
  置換または無置換の炭素数1~30のアルキル基、
  置換または無置換の炭素数1~30のフルオロアルキル基、
  置換または無置換の環形成炭素数3~30のシクロアルキル基、
  置換または無置換の炭素数7~30のアラルキル基、
  置換ホスフォリル基、
  置換シリル基、
  シアノ基、
  ニトロ基、及び
  カルボキシ基からなる群から選択される基であり、
 複数のRxは、互いに同一であるか又は異なり、
 X11~X18の内、複数がC-Rxであって、Rxが置換基である場合、Rx同士が結合して環を形成するか又は環を形成せず、
 *は、Lで表される連結基の構造中の炭素原子との結合部位、又はAzで表される環構造中の炭素原子との結合部位を表す。)
 X11~X18は、C-Rxであることも好ましい。
 前記一般式(11)におけるcは、0又は1であることが好ましい。
 前記一般式(11)で表される化合物は、下記一般式(11A)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000034
 前記一般式(11A)における、Az、Cz、及びLは、前記一般式(11)におけるAz、Cz、及びLと同義である。
 前記一般式(11A)におけるLは、置換または無置換の環形成炭素数6~30の芳香族炭化水素基からなる群から選択される連結基であることが好ましい。
 前記一般式(11A)で表される化合物は、下記一般式(11B)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000035
 前記一般式(11A)における、Az、及びCzは、前記一般式(11)におけるAz、及びCzと同義であり、c3は、4であり、R10は、水素原子又は置換基であり、置換基としてのR10は、置換または無置換の環形成炭素数6~30のアリール基、置換または無置換の環形成原子数5~30のヘテロアリール基、置換または無置換の炭素数1~30のアルキル基、置換または無置換の炭素数1~30のフルオロアルキル基、置換または無置換の環形成炭素数3~30のシクロアルキル基、置換または無置換の炭素数7~30のアラルキル基、置換ホスフォリル基、置換シリル基、シアノ基、ニトロ基、及びカルボキシ基からなる群から選択されるいずれかの置換基であり、複数のR10は、同一であるか又は異なる。
 前記一般式(11A)で表される化合物は、下記一般式(11C)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000036
 前記一般式(11C)において、Az、及びCzは、前記一般式(11)におけるAz、及びCzと同義であり、R111~R114は、それぞれ独立に、水素原子又は置換基であり、置換基としてのR111~R114は、それぞれ独立に、置換または無置換の環形成炭素数6~30のアリール基、置換または無置換の環形成原子数5~30のヘテロアリール基、置換または無置換の炭素数1~30のアルキル基、置換または無置換の炭素数1~30のフルオロアルキル基、置換または無置換の環形成炭素数3~30のシクロアルキル基、置換または無置換の炭素数7~30のアラルキル基、置換ホスフォリル基、置換シリル基、シアノ基、ニトロ基、及びカルボキシ基からなる群から選択されるいずれかの置換基である。
 前記Czは、下記一般式(12a)、一般式(12b)又は一般式(12c)で表されることも好ましい。
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
 前記一般式(12a)、一般式(12b)及び一般式(12c)中、X11~X18、並びにX41~X48は、それぞれ独立に、窒素原子又はC-Rxであり、
 ただし、前記一般式(12a)中、X15~X18の内、少なくとも一つは、X41~X44のいずれかと結合する炭素原子であり、X41~X44の内、少なくとも一つは、X15~X18のいずれかと結合する炭素原子であり、
 前記一般式(12b)中、X15~X18の内、少なくとも一つは、X41~X48を含有する含窒素縮合環の5員環中の窒素原子と結合する炭素原子であり、
 前記一般式(12c)中、*a及び*bは、それぞれ、X11~X18の内のいずれかとの結合部位を表し、X15~X18の内、少なくとも一つは、*aで表される結合部位であり、X15~X18の内、少なくとも一つは、*bで表される結合部位であり、
 nは、1以上4以下の整数であり、
 Rxは、それぞれ独立に、水素原子又は置換基であり、置換基としてのRxは、置換または無置換の環形成炭素数6~30のアリール基、置換または無置換の環形成原子数5~30のヘテロアリール基、置換または無置換の炭素数1~30のアルキル基、置換または無置換の炭素数1~30のフルオロアルキル基、置換または無置換の環形成炭素数3~30のシクロアルキル基、置換または無置換の炭素数7~30のアラルキル基、置換ホスフォリル基、置換シリル基、シアノ基、ニトロ基、及びカルボキシ基からなる群から選択されるいずれかの置換基であり、
 複数のRxは、互いに同一であるか又は異なり、
 X11~X18の内、複数がC-Rxであって、Rxが置換基である場合、Rx同士が結合して環を形成するか、又は環を形成せず、
 X41~X48の内、複数がC-Rxであって、Rxが置換基である場合、Rx同士が結合して環を形成するか、又は環を形成せず、
 Z11は、酸素原子、硫黄原子、NR40、及びC(R41からなる群から選択されるいずれか一種であり、
 R40及びR41は、それぞれ独立に、水素原子又は置換基であり、置換基としてのR40及び置換基としてのR41は、それぞれ独立に、置換または無置換の環形成炭素数6~30のアリール基、置換または無置換の環形成原子数5~30のヘテロアリール基、置換または無置換の炭素数1~30のアルキル基、置換または無置換の炭素数1~30のフルオロアルキル基、置換または無置換の環形成炭素数3~30のシクロアルキル基、置換または無置換の炭素数7~30のアラルキル基、置換ホスフォリル基、置換シリル基、シアノ基、ニトロ基、及びカルボキシ基からなる群から選択されるいずれかの置換基であり、
 複数のR40は、互いに同一であるか又は異なり、
 複数のR41は、互いに同一であるか又は異なり、
 複数のR41が置換基である場合、R41同士が結合して環を形成するか又は環を形成せず、
 *は、Azで表される環構造中の炭素原子との結合部位を表す。
 Z11は、NR40であることが好ましい。
 Z11がNR40である場合、R40は、置換または無置換の環形成炭素数6~30のアリール基であることが好ましい。
 X41~X48は、C-Rxであることが好ましく、ただし、この場合、X41~X48の内、少なくともいずれかが、前記一般式(12)で表される環構造と結合する炭素原子である。
 Czは、前記一般式(12c)で表され、nは、1であることも好ましい。
 Czは、下記一般式(12c-1)で表されることも好ましい。下記一般式(12c-1)で表される基は、前記一般式(12c)中のX16が*aで表される結合部位であり、X17が*bで表される結合部位である場合を例示した基である。
Figure JPOXMLDOC01-appb-C000040
 前記一般式(12c-1)中、X11~X15、X18並びにX41~X44は、それぞれ独立に、窒素原子又はC-Rxであり、
 Rxは、それぞれ独立に、水素原子又は置換基であり、置換基としてのRxは、置換または無置換の環形成炭素数6~30のアリール基、置換または無置換の環形成原子数5~30のヘテロアリール基、置換または無置換の炭素数1~30のアルキル基、置換または無置換の炭素数1~30のフルオロアルキル基、置換または無置換の環形成炭素数3~30のシクロアルキル基、置換または無置換の炭素数7~30のアラルキル基、置換ホスフォリル基、置換シリル基、シアノ基、ニトロ基、及びカルボキシ基からなる群から選択されるいずれかの置換基であり、
 複数のRxは、互いに同一であるか又は異なり、
 X11~X15、並びにX18の内、複数がC-Rxであって、Rxが置換基である場合、Rx同士が結合して環を形成するか、又は環を形成せず、
 X41~X44の内、複数がC-Rxであって、Rxが置換基である場合、Rx同士が結合して環を形成するか、又は環を形成せず、
 Z11は、酸素原子、硫黄原子、NR40、及びC(R41からなる群から選択されるいずれか一種であり、R40及びR41は、それぞれ独立に、水素原子又は置換基であり、置換基としてのR40及び置換基としてのR41は、それぞれ独立に、置換または無置換の環形成炭素数6~30のアリール基、置換または無置換の環形成原子数5~30のヘテロアリール基、置換または無置換の炭素数1~30のアルキル基、置換または無置換の炭素数1~30のフルオロアルキル基、置換または無置換の環形成炭素数3~30のシクロアルキル基、置換または無置換の炭素数7~30のアラルキル基、置換ホスフォリル基、置換シリル基、シアノ基、ニトロ基、及びカルボキシ基からなる群から選択されるいずれかの置換基であり、
 複数のR40は、互いに同一であるか又は異なり、
 複数のR41は、互いに同一であるか又は異なり、
 複数のR41が置換基である場合、R41同士が結合して環を形成するか又は環を形成せず、
 *は、Azで表される環構造中の炭素原子との結合部位を表す。
 前記一般式(12c)におけるnが2である場合、Czは、例えば、下記一般式(12c-2)で表される。nが2である場合、添え字nが付された括弧内の構造が、2つ、前記一般式(12)で表される環構造に縮合する。下記一般式(12c-2)で表されるCzは、前記一般式(12c)中のX12が*bで表される結合部位であり、X13が*aで表される結合部位であり、X16が*aで表される結合部位であり、X17が*bで表される結合部位である場合の例示である。
Figure JPOXMLDOC01-appb-C000041
 前記一般式(12c-2)中、X11、X14、X15、X18、X41~X44、Z11、並びに*は、それぞれ、前記一般式(12c-1)中のX11、X14、X15、X18、X41~X44、Z11、並びに*と同義である。複数のX41は、互いに同一であるか又は異なり、複数のX42は、互いに同一であるか又は異なり、複数のX43は、互いに同一であるか又は異なり、複数のX44は、互いに同一であるか又は異なる。複数のZ11は、互いに同一であるか又は異なる。
 Azは、置換または無置換のピリミジン環、及び置換または無置換のトリアジン環からなる群から選択される環構造であることが好ましい。
 Azは、置換基を有するピリミジン環、及び置換基を有するトリアジン環からなる群から選択される環構造であり、これらピリミジン環、及びトリアジン環が有する置換基は、置換または無置換の環形成炭素数6~30のアリール基、及び置換または無置換の環形成原子数5~30のヘテロアリール基からなる群から選択される基であることがより好ましく、置換または無置換の環形成炭素数6~30のアリール基であることが更に好ましい。
 Azとしてのピリミジン環及びトリアジン環が、置換または無置換のアリール基を置換基として有する場合、当該アリール基の環形成炭素数は、6~20であることが好ましく、6~14であることがより好ましく、6~12であることがさらに好ましい。
 Azが、置換または無置換のアリール基を置換基として有する場合、当該置換基は、置換または無置換のフェニル基、置換または無置換のビフェニル基、置換または無置換のナフチル基、置換または無置換のフェナントリル基、置換または無置換のターフェニル基、及び置換または無置換のフルオレニル基からなる群から選択されるいずれかの置換基であることが好ましく、置換または無置換のフェニル基、置換または無置換のビフェニル基、及び置換または無置換のナフチル基からなる群から選択されるいずれかの置換基であることがより好ましい。
 Azが、置換または無置換のヘテロアリール基を置換基として有する場合、当該置換基は、置換または無置換のカルバゾリル基、置換または無置換のジベンゾフラニル基、及び置換または無置換のジベンゾチエニル基からなる群から選択されるいずれかの置換基であることが好ましい。
 Rxは、それぞれ独立に、水素原子又は置換基であり、置換基としてのRxは、置換または無置換の環形成炭素数6~30のアリール基、及び置換または無置換の環形成原子数5~30のヘテロアリール基からなる群から選択されるいずれかの置換基であることが好ましい。
 置換基としてのRxが置換または無置換の環形成炭素数6~30のアリール基である場合、置換基としてのRxは、置換または無置換のフェニル基、置換または無置換のビフェニル基、置換または無置換のナフチル基、置換または無置換のフェナントリル基、置換または無置換のターフェニル基、及び置換または無置換のフルオレニル基からなる群から選択されるいずれかの置換基であることが好ましく、置換または無置換のフェニル基、置換または無置換のビフェニル基、及び置換または無置換のナフチル基からなる群から選択されるいずれかの置換基であることがより好ましい。
 置換基としてのRxが置換または無置換の環形成原子数5~30のヘテロアリール基である場合、置換基としてのRxは、置換または無置換のカルバゾリル基、置換または無置換のジベンゾフラニル基、及び置換または無置換のジベンゾチエニル基からなる群から選択されるいずれかの置換基であることが好ましい。
 置換基としてのR40及び置換基としてのR41は、それぞれ独立に、置換または無置換の環形成炭素数6~30のアリール基、置換または無置換の環形成原子数5~30のヘテロアリール基、及び置換または無置換の炭素数1~30のアルキル基からなる群から選択されるいずれかの置換基であることが好ましい。
 第一の化合物は、下記一般式(13)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000042
(前記一般式(13)において、
 c2は、2であり、
 a2は、0または1であり、複数のa2は、互いに同一であるか又は異なり、
 c1は、1~5の整数であり、複数のc1は、互いに同一であるか又は異なり、
 a2が0のとき、R11及びR12は、それぞれ独立に、水素原子または1価の置換基であり、置換基としてのR11及びR12は、それぞれ独立に、
  置換または無置換の環形成炭素数6~30のアリール基、
  置換または無置換の環形成原子数5~30のヘテロアリール基、
  置換または無置換の炭素数1~30のアルキル基、
  置換または無置換の炭素数1~30のアルコキシ基、
  置換または無置換の炭素数7~30のアラルキル基、
  置換または無置換の環形成炭素数6~30のアリールオキシ基、及び
  置換シリル基からなる群から選択される基であり、
 a2が1のとき、R11及びR12は、それぞれ独立に、
  置換または無置換の環形成炭素数6~30の芳香族炭化水素基、
  置換または無置換の環形成原子数5~30の複素環基、
  置換または無置換の炭素数1~30のアルキル基、
  置換または無置換の炭素数1~30のアルコキシ基、
  置換または無置換の炭素数7~30のアラルキル基、
  置換または無置換の環形成炭素数6~30のアリールオキシ基、及び
  置換シリル基からなる群から選択される連結基であり、
 複数のR11は、互いに同一であるか又は異なり、
 複数のR12は、互いに同一であるか又は異なり、
 A11及びA12は、それぞれ独立に、前記一般式(a-1)~(a-7)から選ばれる部分構造を有する基であり、
 複数のA12は、互いに同一であるか又は異なり、
 L12は、単結合または連結基であり、連結基としてのL12は、
  置換または無置換の環形成炭素数6~30の芳香族炭化水素基、及び
  置換または無置換の環形成原子数5~30の複素環基からなる群から選択され、
 複数のL12は、互いに同一であるか又は異なり、
 L11は、単結合または連結基であり、連結基としてのL11は、
  置換または無置換の環形成炭素数6~30の芳香族炭化水素基、及び
  置換または無置換の環形成原子数5~30の複素環基からなる群から選択され、
 複数のL11は、互いに同一であるか又は異なる。)
 前記一般式(13)におけるa2が0のとき、第一の化合物は、下記一般式(131)で表される。下記一般式(131)におけるc1、c2、A11、L11、L12、R11及びR12は、前述と同義である。
Figure JPOXMLDOC01-appb-C000043
 前記一般式(131)において、R11及びR12は、置換または無置換の環形成炭素数6~30のアリール基、置換または無置換の環形成原子数5~30のヘテロアリール基、置換または無置換の炭素数1~30のアルキル基、及び置換シリル基からなる群から選択されるいずれかの置換基であることが好ましく、置換または無置換の環形成炭素数6~30のアリール基、置換または無置換の環形成原子数5~30のヘテロアリール基、及び置換または無置換の炭素数1~30のアルキル基からなる群から選択されるいずれかの置換基であることがより好ましい。
 前記一般式(13)におけるa2が1のとき、第一の化合物は、下記一般式(132)で表される。下記一般式(132)におけるc1、c2、A11、A12、L11、L12、R11及びR12は、前述と同義である。
Figure JPOXMLDOC01-appb-C000044
 前記一般式(132)において、R11及びR12は、置換または無置換の環形成炭素数6~30の芳香族炭化水素基、置換または無置換の環形成原子数5~30の複素環基、及び置換シリル基からなる群から選択される連結基であることが好ましく、置換または無置換の環形成炭素数6~30の芳香族炭化水素基、及び置換または無置換の環形成原子数5~30の複素環基からなる群から選択される連結基であることがより好ましい。
 第一の化合物は、例えば、下記一般式(14)で表される化合物であることも好ましい
Figure JPOXMLDOC01-appb-C000045
 前記一般式(14)において、
 a1は0または1であり、
 a2は0または1であり、
  ただし、a1+a2≧1であり、
 c1は、1~5の整数であり、
 a2が0のとき、R11及びR12は、それぞれ独立に、水素原子または1価の置換基であり、置換基としてのR11及び置換基としてのR12は、それぞれ独立に、
  置換または無置換の環形成炭素数6~30のアリール基、
  置換または無置換の環形成原子数5~30のヘテロアリール基、
  置換または無置換の炭素数1~30のアルキル基、
  置換または無置換の炭素数1~30のアルコキシ基、
  置換または無置換の炭素数7~30のアラルキル基、
  置換または無置換の環形成炭素数6~30のアリールオキシ基、及び
  置換シリル基からなる群から選択され、
 a2が1のとき、R11及びR12は、それぞれ独立に、
  置換または無置換の環形成炭素数6~30の芳香族炭化水素基、
  置換または無置換の環形成原子数5~30の複素環基、
  置換または無置換の炭素数1~30のアルキル基、
  置換または無置換の炭素数1~30のアルコキシ基、
  置換または無置換の炭素数7~30のアラルキル基、
  置換または無置換の環形成炭素数6~30のアリールオキシ基、及び
  置換シリル基からなる群から選択される連結基であり、
 複数のR11は、互いに同一であるか又は異なり、
 複数のR12は、互いに同一であるか又は異なり、
 A11及びA12は、それぞれ独立に、前記一般式(a-1)~(a-7)から選ばれる部分構造を有する基であり、
 複数のA12は互いに同一であるか又は異なり、
 a1が0のとき、L12は、水素原子、又は1価の置換基であり、
 1価の置換基としてのL12は、
  置換または無置換の環形成炭素数6~30のアリール基、及び
  置換または無置換の環形成原子数5~30のヘテロアリール基からなる群から選択され、
 a1が1のとき、L12は単結合、又は連結基であり、連結基としてのL12は、
  置換または無置換の環形成炭素数6~30の芳香族炭化水素基、及び
  置換または無置換の環形成原子数5~30の複素環基からなる群から選択され、
 L11は、単結合、又は連結基であり、連結基としてのL11は、
  置換または無置換の環形成炭素数6~30の芳香族炭化水素基、及び
  置換または無置換の環形成原子数5~30の複素環基からなる群から選択され、
 複数のL11は、互いに同一、又は異なる。
 前記一般式(14)で表される化合物としては、例えば、下記一般式(14A)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000046
 前記一般式(14A)において、a1、c1、A11、A12、L11、及びL12は、それぞれ、前記一般式(14)と同義である。
 前記一般式(13)、又は前記一般式(14)で表される化合物としては、例えば、下記一般式(10B)~(10E)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
 前記一般式(10D)において、Zは、=N-L11-L12-A11、酸素原子、硫黄原子、及びセレン原子からなる群から選択される。
 前記一般式(10B)、(10C)、(10D)、及び(10E)において、R11、R12、A11、A12、L11、及びL12は、前記一般式(14)におけるR11、R12、A11、A12、L11、及びL12と、それぞれ同義である。
 前記一般式(131)で表される化合物は、下記一般式(11F)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000051
 前記一般式(11F)において、R11、R12、及びL11は、前記一般式(13)におけるR11、R12、及びL11と、それぞれ同義であり、複数のR11は、互いに同一であるか又は異なり、複数のR12は、互いに同一であるか又は異なり、複数のL11は、互いに同一であるか又は異なる。
・遅延蛍光性
 遅延蛍光(熱活性化遅延蛍光)については、「有機半導体のデバイス物性」(安達千波矢編、講談社発行)の261~268ページで解説されている。その文献の中で、蛍光発光材料の励起一重項状態と励起三重項状態のエネルギー差ΔE13を小さくすることができれば、通常は遷移確率が低い励起三重項状態から励起一重項状態への逆エネルギー移動が高効率で生じ、熱活性化遅延蛍光(Thermally Activated delayed Fluorescence, TADF)が発現すると説明されている。さらに、当該文献中の図10.38で、遅延蛍光の発生メカニズムが説明されている。本実施形態における第一の化合物は、このようなメカニズムで発生する熱活性化遅延蛍光を示す化合物である。
 遅延蛍光の発光は過渡PL(Photo Luminescence)測定により確認できる。
 過渡PL測定から得た減衰曲線に基づいて遅延蛍光の挙動を解析することもできる。過渡PL測定とは、試料にパルスレーザーを照射して励起させ、照射を止めた後のPL発光の減衰挙動(過渡特性)を測定する手法である。TADF材料におけるPL発光は、最初のPL励起で生成する一重項励起子からの発光成分と、三重項励起子を経由して生成する一重項励起子からの発光成分に分類される。最初のPL励起で生成する一重項励起子の寿命は、ナノ秒オーダーであり、非常に短い。そのため、当該一重項励起子からの発光は、パルスレーザーを照射後、速やかに減衰する。
 一方、遅延蛍光は、寿命の長い三重項励起子を経由して生成する一重項励起子からの発光のため、ゆるやかに減衰する。このように最初のPL励起で生成する一重項励起子からの発光と、三重項励起子を経由して生成する一重項励起子からの発光とでは、時間的に大きな差がある。そのため、遅延蛍光由来の発光強度を求めることができる。
 図2には、過渡PLを測定するための例示的装置の概略図が示されている。
 本実施形態の過渡PL測定装置100は、所定波長の光を照射可能なパルスレーザー部101と、測定試料を収容する試料室102と、測定試料から放射された光を分光する分光器103と、2次元像を結像するためのストリークカメラ104と、2次元像を取り込んで解析するパーソナルコンピュータ105とを備える。なお、過渡PLの測定は、本実施形態で説明する装置に限定されない。
 試料室102に収容される試料は、マトリックス材料に対し、ドーピング材料が12質量%の濃度でドープされた薄膜を石英基板に成膜することで得られる。
 試料室102に収容された薄膜試料に対し、パルスレーザー部101からパルスレーザーを照射して、ドーピング材料を励起させる。励起光の照射方向に対して90度の方向へ発光を取り出し、取り出した光を分光器103で分光し、ストリークカメラ104内で2次元像を結像する。その結果、縦軸が時間に対応し、横軸が波長に対応し、輝点が発光強度に対応する2次元画像を得ることができる。この2次元画像を所定の時間軸で切り出すと、縦軸が発光強度であり、横軸が波長である発光スペクトルを得ることができる。また、当該2次元画像を波長軸で切り出すと、縦軸が発光強度の対数であり、横軸が時間である減衰曲線(過渡PL)を得ることができる。
 例えば、マトリックス材料として、下記参考化合物H1を用い、ドーピング材料として下記参考化合物D1を用いて上述のようにして薄膜試料Aを作製し、過渡PL測定を行った。
Figure JPOXMLDOC01-appb-C000052
 ここでは、前述の薄膜試料A、及び薄膜試料Bを用いて減衰曲線を解析した。薄膜試料Bは、マトリックス材料として下記参考化合物H2を用い、ドーピング材料として前記参考化合物D1を用いて、上述のようにして薄膜試料を作製した。
 図3には、薄膜試料A及び薄膜試料Bについて測定した過渡PLから得た減衰曲線が示されている。
Figure JPOXMLDOC01-appb-C000053
 上記したように過渡PL測定によって、縦軸を発光強度とし、横軸を時間とする発光減衰曲線を得ることができる。この発光減衰曲線に基づいて、光励起により生成した一重項励起状態から発光する蛍光と、三重項励起状態を経由し、逆エネルギー移動により生成する一重項励起状態から発光する遅延蛍光との、蛍光強度比を見積もることができる。遅延蛍光性の材料では、素早く減衰する蛍光の強度に対し、緩やかに減衰する遅延蛍光の強度の割合が、ある程度大きい。
 本実施形態における遅延蛍光発光量は、図2の装置を用いて求めることができる。前記第一の化合物は、当該第一の化合物が吸収する波長のパルス光(パルスレーザーから照射される光)で励起された後、当該励起状態から即座に観察されるPrompt発光(即時発光)と、当該励起後、即座には観察されず、その後観察されるDelay発光(遅延発光)とが存在する。本実施形態においては、Delay発光(遅延発光)の量がPrompt発光(即時発光)の量に対して5%以上であることが好ましい。具体的には、Prompt発光(即時発光)の量をXとし、Delay発光(遅延発光)の量をXとしたときに、X/Xの値が0.05以上であることが好ましい。
 Prompt発光とDelay発光の量は、“Nature 492, 234-238, 2012”に記載された方法と同様の方法により求めることができる。なお、Prompt発光とDelay発光の量の算出に使用される装置は、前記の文献に記載の装置に限定されない。
 また、遅延蛍光性の測定に用いられる試料は、例えば、第一の化合物と下記化合物TH-2とを、第一の化合物の割合が12質量%となるように石英基板上に共蒸着し、膜厚100nmの薄膜を形成した試料を使用することができる。
Figure JPOXMLDOC01-appb-C000054
・第一の化合物の製造方法
 第一の化合物は、例えば、Chemical Communications,p.10385-10387(2013)及びNATURE Photonics,p.326-332(2014)に記載された方法により製造できる。また、例えば、国際公開第2013/180241号、国際公開第2014/092083号、及び国際公開第2014/104346号等に記載された方法により製造できる。また、例えば、後述する実施例で説明する反応に倣い、目的物に合わせた既知の代替反応や原料を用いることで、第一の化合物を製造できる。
 本実施形態に係る第一の化合物の具体例を以下に示す。本発明における第一の化合物は、これらの具体例に限定されない。
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
<発光層における第一の化合物、及び第二の化合物の関係>
 本実施形態に係る発光層は、第一の化合物、及び第二の化合物を含んでおり、第一の化合物が遅延蛍光性を有する化合物であり、第二の化合物は、前述の発光ピーク波長、モル吸光係数、及びストークスシフトの特性を備えた蛍光発光性の化合物である。このような第二の化合物を第一の化合物と組み合わせて発光層に用いることにより、第二の化合物を効率的に発光させることができ、その結果、有機EL素子の発光効率を向上させることができる。
 第一の化合物の一重項エネルギーS(M1)と、第二の化合物の一重項エネルギーS(M2)とが、下記数式(数1)の関係を満たすことが好ましい。
   S(M1)>S(M2)       …(数1)
 第一の化合物の77[K]におけるエネルギーギャップT77K(M1)は、第二の化合物の77[K]におけるエネルギーギャップT77K(M2)よりも大きいことが好ましい。すなわち、下記数式(数4)の関係を満たすことが好ましい。
   T77K(M1)>T77K(M2)   …(数4)
 本実施形態の有機EL素子1を発光させたときに、発光層5において、主に第二の化合物が発光していることが好ましい。
・三重項エネルギーと77[K]におけるエネルギーギャップとの関係
 ここで、三重項エネルギーと77[K]におけるエネルギーギャップとの関係について説明する。本実施形態では、77[K]におけるエネルギーギャップは、通常定義される三重項エネルギーとは異なる点がある。
 三重項エネルギーの測定は、次のようにして行われる。まず、測定対象となる化合物を適切な溶媒中に溶解した溶液を石英ガラス管内に封入した試料を作製する。この試料について、低温(77[K])で燐光スペクトル(縦軸:燐光発光強度、横軸:波長とする。)を測定し、この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値に基づいて、所定の換算式から三重項エネルギーを算出する。
 ここで、本実施形態に用いる遅延蛍光性化合物としては、ΔSTが小さい化合物であることが好ましい。ΔSTが小さいと、低温(77[K])状態でも、項間交差、及び逆項間交差が起こりやすく、励起一重項状態と励起三重項状態とが混在する。その結果、上記と同様にして測定されるスペクトルは、励起一重項状態及び励起三重項状態の両者からの発光を含んでおり、いずれの状態から発光したのかについて峻別することは困難であるが、基本的には三重項エネルギーの値が支配的と考えられる。
 そのため、本実施形態では、通常の三重項エネルギーTと測定手法は同じであるが、その厳密な意味において異なることを区別するため、次のようにして測定される値をエネルギーギャップT77Kと称する。測定対象となる化合物をEPA(ジエチルエーテル:イソペンタン:エタノール=5:5:2(容積比))中に、濃度が10μmol/Lとなるように溶解し、この溶液を石英セル中に入れて測定試料とする。この測定試料について、低温(77[K])で燐光スペクトル(縦軸:燐光発光強度、横軸:波長とする。)を測定し、この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]に基づいて、次の換算式(F1)から算出されるエネルギー量を77[K]におけるエネルギーギャップT77Kとする。
  換算式(F1):T77K[eV]=1239.85/λedge
 燐光スペクトルの短波長側の立ち上がりに対する接線は以下のように引く。燐光スペクトルの短波長側から、スペクトルの極大値のうち、最も短波長側の極大値までスペクトル曲線上を移動する際に、長波長側に向けて曲線上の各点における接線を考える。この接線は、曲線が立ち上がるにつれ(つまり縦軸が増加するにつれ)、傾きが増加する。この傾きの値が極大値をとる点において引いた接線(すなわち変曲点における接線)が、当該燐光スペクトルの短波長側の立ち上がりに対する接線とする。
 なお、スペクトルの最大ピーク強度の15%以下のピーク強度をもつ極大点は、上述の最も短波長側の極大値には含めず、最も短波長側の極大値に最も近い、傾きの値が極大値をとる点において引いた接線を当該燐光スペクトルの短波長側の立ち上がりに対する接線とする。
 燐光の測定には、(株)日立ハイテクノロジー製のF-4500形分光蛍光光度計本体を用いることができる。なお、測定装置はこの限りではなく、冷却装置及び低温用容器と、励起光源と、受光装置とを組み合わせることにより、測定してもよい。
・一重項エネルギーS
 溶液を用いた一重項エネルギーSの測定方法(溶液法と称する場合がある。)としては、下記の方法が挙げられる。
 測定対象となる化合物の10μmol/Lトルエン溶液を調製して石英セルに入れ、常温(300K)でこの試料の吸収スペクトル(縦軸:発光強度、横軸:波長とする。)を測定する。この吸収スペクトルの長波長側の立ち下がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]を次に示す換算式(F2)に代入して一重項エネルギーを算出する。
  換算式(F2):S[eV]=1239.85/λedge
 吸収スペクトル測定装置としては、例えば、日立社製の分光光度計(装置名:U3310)が挙げられるが、これに限定されない。
 吸収スペクトルの長波長側の立ち下がりに対する接線は以下のように引く。吸収スペクトルの極大値のうち、最も長波長側の極大値から長波長方向にスペクトル曲線上を移動する際に、曲線上の各点における接線を考える。この接線は、曲線が立ち下がるにつれ(つまり縦軸の値が減少するにつれ)、傾きが減少しその後増加することを繰り返す。傾きの値が最も長波長側(ただし、吸光度が0.1以下となる場合は除く)で極小値をとる点において引いた接線を当該吸収スペクトルの長波長側の立ち下がりに対する接線とする。
 なお、吸光度の値が0.2以下の極大点は、上記最も長波長側の極大値には含めない。
・発光層における化合物の含有率
 発光層5に含まれている第一の化合物、及び第二の化合物の含有率は、例えば、以下の範囲であることが好ましい。
 第一の化合物の含有率は、90質量%以上99.9質量%以下であることが好ましく、95質量%以上99.9質量%以下であることがさらに好ましく、99質量%以上99.9質量%以下であることが特に好ましい。
 第二の化合物の含有率は、0.01質量%以上10質量%以下であることが好ましく、0.01質量%以上5質量%以下であることがより好ましく、0.01質量%以上1質量%以下であることがさらに好ましい。
なお、本実施形態は、発光層5に、第一の化合物、及び第二の化合物以外の材料が含まれることを除外しない。
・発光層の膜厚
 発光層5の膜厚は、好ましくは5nm以上50nm以下、より好ましくは7nm以上50nm以下、さらに好ましくは10nm以上50nm以下である。発光層5の膜厚が5nm以上であれば発光層5を形成し易く、色度を調整し易い。また、発光層5の膜厚が50nm以下であれば、駆動電圧の上昇を抑制できる。
・TADF機構
 図4は、発光層における第一の化合物、及び第二の化合物のエネルギー準位の関係の一例を示す図である。図4において、S0は、基底状態を表す。S1(M1)は、第一の化合物の最低励起一重項状態を表す。T1(M1)は、第一の化合物の最低励起三重項状態を表す。S1(M2)は、第二の化合物の最低励起一重項状態を表す。T1(M2)は、第二の化合物の最低励起三重項状態を表す。
 図4中のS1(M1)からS1(M2)へ向かう破線の矢印は、第一の化合物の最低励起一重項状態から第二の化合物へのフェルスター型エネルギー移動を表す。
 図4に示すように、第一の化合物としてΔST(M1)の小さな化合物を用いると、最低励起三重項状態T1(M1)は、熱エネルギーにより、最低励起一重項状態S1(M1)に逆項間交差が可能である。そして、第一の化合物の最低励起一重項状態S1(M1)から第二の化合物へのフェルスター型エネルギー移動が生じ、最低励起一重項状態S1(M2)が生成する。この結果、第二の化合物の最低励起一重項状態S1(M2)からの蛍光発光を観測することができる。このTADF機構による遅延蛍光を利用することによっても、理論的に内部効率を100%まで高めることができると考えられている。
(基板)
 基板2は、有機EL素子1の支持体として用いられる。基板2としては、例えば、ガラス、石英、及びプラスチック等を用いることができる。また、可撓性基板を用いてもよい。可撓性基板とは、折り曲げることができる(フレキシブル)基板のことであり、例えば、プラスチック基板等が挙げられる。プラスチック基板を形成する材料としては、例えば、ポリカーボネート、ポリアリレート、ポリエーテルスルフォン、ポリプロピレン、ポリエステル、ポリフッ化ビニル、ポリ塩化ビニル、ポリイミド、及びポリエチレンナフタレート等が挙げられる。また、無機蒸着フィルムを用いることもできる。
(陽極)
 基板2上に形成される陽極3には、仕事関数の大きい(具体的には4.0eV以上)金属、合金、電気伝導性化合物、及びこれらの混合物等を用いることが好ましい。具体的には、例えば、酸化インジウム-酸化スズ(ITO:Indium Tin Oxide)、珪素または酸化珪素を含有した酸化インジウム-酸化スズ、酸化インジウム-酸化亜鉛、酸化タングステン及び酸化亜鉛を含有した酸化インジウム、並びにグラフェン等が挙げられる。この他、金(Au)、白金(Pt)、ニッケル(Ni)、タングステン(W)、クロム(Cr)、モリブデン(Mo)、鉄(Fe)、コバルト(Co)、銅(Cu)、パラジウム(Pd)、チタン(Ti)、及びこれら金属材料の窒化物(例えば、窒化チタン)等が挙げられる。
 これらの材料は、通常、スパッタリング法により成膜される。例えば、酸化インジウム-酸化亜鉛は、酸化インジウムに対し1質量%以上10質量%以下の酸化亜鉛を加えたターゲットを用いることにより、スパッタリング法で形成することができる。また、例えば、酸化タングステン及び酸化亜鉛を含有した酸化インジウムは、酸化インジウムに対し酸化タングステンを0.5質量%以上5質量%以下、酸化亜鉛を0.1質量%以上1質量%以下含有したターゲットを用いることにより、スパッタリング法で形成することができる。その他、真空蒸着法、塗布法、インクジェット法、及びスピンコート法等により作製してもよい。
 陽極3上に形成される有機層の内、陽極3に接して形成される正孔注入層6は、陽極3の仕事関数に関係なく正孔(ホール)注入が容易である複合材料を用いて形成される。そのため、その他電極材料として使用可能な材料(例えば、金属、合金、電気伝導性化合物、及びこれらの混合物、その他、元素周期表の第1族または第2族に属する元素も含む)を陽極3として用いることもできる。
 仕事関数の小さい材料である、元素周期表の第1族に属する元素、元素周期表の第2族に属する元素、希土類金属、及びこれらを含む合金等を陽極3として用いることもできる。元素周期表の第1族に属する元素としては、アルカリ金属が挙げられる。元素周期表の第2族に属する元素としては、アルカリ土類金属が挙げられる。アルカリ金属としては、例えば、リチウム(Li)及びセシウム(Cs)等が挙げられる。アルカリ土類金属としては、例えば、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等が挙げられる。希土類金属としては、例えば、ユーロピウム(Eu)、及びイッテルビウム(Yb)等が挙げられる。これらの金属を含む合金としては、例えば、MgAg、及びAlLi等が挙げられる。
 なお、アルカリ金属、アルカリ土類金属、及びこれらを含む合金を用いて陽極3を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。さらに、銀ペースト等を用いる場合には、塗布法やインクジェット法等を用いることができる。
(正孔注入層)
 正孔注入層6は、正孔注入性の高い物質を含む層である。正孔注入性の高い物質としては、例えば、モリブデン酸化物、チタン酸化物、バナジウム酸化物、レニウム酸化物、ルテニウム酸化物、クロム酸化物、ジルコニウム酸化物、ハフニウム酸化物、タンタル酸化物、銀酸化物、タングステン酸化物、及びマンガン酸化物等を用いることができる。
 また、正孔注入性の高い物質としては、例えば、低分子の有機化合物である4,4’,4’’-トリス(N,N-ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’-ビス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ビフェニル(略称:DPAB)、4,4’-ビス(N-{4-[N’-(3-メチルフェニル)-N’-フェニルアミノ]フェニル}-N-フェニルアミノ)ビフェニル(略称:DNTPD)、1,3,5-トリス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ベンゼン(略称:DPA3B)、3-[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA1)、3,6-ビス[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA2)、及び3-[N-(1-ナフチル)-N-(9-フェニルカルバゾール-3-イル)アミノ]-9-フェニルカルバゾール(略称:PCzPCN1)等の芳香族アミン化合物等、並びにジピラジノ[2,3-f:20,30-h]キノキサリン-2,3,6,7,10,11-ヘキサカルボニトリル(HAT-CN)等も挙げられる。
 また、正孔注入性の高い物質としては、高分子化合物を用いることもできる。高分子化合物としては、例えば、オリゴマー、デンドリマー、及びポリマー等が挙げられる。具体的には、ポリ(N-ビニルカルバゾール)(略称:PVK)、ポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)、ポリ[N-(4-{N’-[4-(4-ジフェニルアミノ)フェニル]フェニル-N’-フェニルアミノ}フェニル)メタクリルアミド](略称:PTPDMA)、及びポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フェニル)ベンジジン](略称:Poly-TPD)等の高分子化合物が挙げられる。また、ポリ(3,4-エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(PEDOT/PSS)、及びポリアニリン/ポリ(スチレンスルホン酸)(PAni/PSS)等の酸を添加した高分子化合物を用いることもできる。
(正孔輸送層)
 正孔輸送層7は、正孔輸送性の高い物質を含む層である。正孔輸送層7には、例えば、芳香族アミン化合物、カルバゾール誘導体、及びアントラセン誘導体等を使用することができる。具体的には、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(略称:NPB)、N,N’-ビス(3-メチルフェニル)-N,N’-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミン(略称:TPD)、4-フェニル-4’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:BAFLP)、4,4’-ビス[N-(9,9-ジメチルフルオレン-2-イル)-N-フェニルアミノ]ビフェニル(略称:DFLDPBi)、4,4’,4’’-トリス(N,N-ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]トリフェニルアミン(略称:MTDATA)、及び4,4’-ビス[N-(スピロ-9,9’-ビフルオレン-2-イル)-N―フェニルアミノ]ビフェニル(略称:BSPB)等の芳香族アミン化合物等を用いることができる。ここに述べた物質は、主に10-6cm/(V・s)以上の正孔移動度を有する物質である。
 正孔輸送層7には、CBP、9-[4-(N-カルバゾリル)]フェニル-10-フェニルアントラセン(CzPA)、及び9-フェニル-3-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(PCzPA)のようなカルバゾール誘導体、並びにt-BuDNA、DNA、及びDPAnthのようなアントラセン誘導体等を用いてもよい。ポリ(N-ビニルカルバゾール)(略称:PVK)、及びポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)等の高分子化合物を用いることもできる。
 但し、電子よりも正孔の輸送性の高い物質であれば、これら以外の物質を用いてもよい。なお、正孔輸送性の高い物質を含む層は、単層だけでなく、上記物質からなる層が二層以上積層した層としてもよい。
 正孔輸送層を二層以上配置する場合、エネルギーギャップのより大きい材料を含む層を、発光層5に近い側に配置することが好ましい。
(電子輸送層)
 電子輸送層8は、電子輸送性の高い物質を含む層である。電子輸送層8には、(1)アルミニウム錯体、ベリリウム錯体、及び亜鉛錯体等の金属錯体、(2)イミダゾール誘導体、ベンゾイミダゾール誘導体、アジン誘導体、カルバゾール誘導体、及びフェナントロリン誘導体等の複素芳香族化合物、並びに(3)高分子化合物を使用することができる。具体的には低分子の有機化合物として、Alq、トリス(4-メチル-8-キノリノラト)アルミニウム(略称:Almq)、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(略称:BeBq)、BAlq、Znq、ZnPBO、及びZnBTZ等の金属錯体等を用いることができる。また、金属錯体以外にも、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称:PBD)、1,3-ビス[5-(ptert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7)、3-(4-tert-ブチルフェニル)-4-フェニル-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:TAZ)、3-(4-tert-ブチルフェニル)-4-(4-エチルフェニル)-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:p-EtTAZ)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)、及び4,4’-ビス(5-メチルベンゾオキサゾール-2-イル)スチルベン(略称:BzOs)等の複素芳香族化合物も用いることができる。本実施形態においては、ベンゾイミダゾール化合物を好適に用いることができる。ここに述べた物質は、主に10-6cm/(V・s)以上の電子移動度を有する物質である。なお、正孔輸送性よりも電子輸送性の高い物質であれば、上記以外の物質を電子輸送層8として用いてもよい。また、電子輸送層8は、単層だけでなく、上記物質からなる層が二層以上積層した層としてもよい。
 また、電子輸送層8には、高分子化合物を用いることもできる。例えば、ポリ[(9,9-ジヘキシルフルオレン-2,7-ジイル)-co-(ピリジン-3,5-ジイル)](略称:PF-Py)、及びポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-co-(2,2’-ビピリジン-6,6’-ジイル)](略称:PF-BPy)等を用いることができる。
(電子注入層)
 電子注入層9は、電子注入性の高い物質を含む層である。電子注入層9には、リチウム(Li)、セシウム(Cs)、カルシウム(Ca)、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF)、及びリチウム酸化物(LiOx)等のような、アルカリ金属、アルカリ土類金属、またはそれらの化合物を用いることができる。その他、電子輸送性を有する物質にアルカリ金属、アルカリ土類金属、またはそれらの化合物を含有させた物質、具体的にはAlq中にマグネシウム(Mg)を含有させた物質等を用いてもよい。なお、この場合には、陰極4からの電子注入をより効率よく行うことができる。
 あるいは、電子注入層9に、有機化合物と電子供与体(ドナー)とを混合してなる複合材料を用いてもよい。このような複合材料は、電子供与体によって有機化合物に電子が発生するため、電子注入性、及び電子輸送性に優れている。この場合、有機化合物としては、発生した電子の輸送に優れた材料であることが好ましく、具体的には、例えば上述した電子輸送層8を構成する物質(金属錯体や複素芳香族化合物等)を用いることができる。電子供与体としては、有機化合物に対し電子供与性を示す物質であればよい。具体的には、アルカリ金属、アルカリ土類金属、または希土類金属が好ましく、例えば、リチウム、セシウム、マグネシウム、カルシウム、エルビウム、及びイッテルビウム等が挙げられる。また、アルカリ金属酸化物、またはアルカリ土類金属酸化物を電子供与体として用いることも好ましく、例えば、リチウム酸化物、カルシウム酸化物、及びバリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることもできる。
(陰極)
 陰極4には、仕事関数の小さい(具体的には3.8eV以下)金属、合金、電気伝導性化合物、及びこれらの混合物等を用いることが好ましい。このような陰極材料の具体例としては、元素周期表の第1族に属する元素、元素周期表の第2族に属する元素、希土類金属、及びこれらを含む合金等が挙げられる。元素周期表の第1族に属する元素としては、アルカリ金属が挙げられる。元素周期表の第2族に属する元素としては、アルカリ土類金属が挙げられる。アルカリ金属としては、例えば、リチウム(Li)、及びセシウム(Cs)等が挙げられる。アルカリ土類金属としては、例えば、マグネシウム(Mg)、カルシウム(Ca)、及びストロンチウム(Sr)等が挙げられる。希土類金属としては、例えば、ユーロピウム(Eu)、及びイッテルビウム(Yb)等が挙げられる。これらの金属を含む合金としては、例えば、MgAg、及びAlLi等が挙げられる。
 なお、アルカリ金属、アルカリ土類金属、及びこれらを含む合金を用いて陰極4を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。また、銀ペースト等を用いる場合には、塗布法やインクジェット法等を用いることができる。
 なお、電子注入層9を設けることにより、仕事関数の大小に関わらず、Al、Ag、ITO、グラフェン、及び珪素または酸化珪素を含有した酸化インジウム-酸化スズ等、様々な導電性材料を用いて陰極4を形成することができる。これらの導電性材料は、スパッタリング法、インクジェット法、及びスピンコート法等を用いて成膜することができる。
(層形成方法)
 本実施形態の有機EL素子1の各層の形成方法としては、上記で特に言及した以外には制限されず、乾式成膜法、及び湿式成膜法等の公知の方法を採用できる。乾式成膜法としては、真空蒸着法、スパッタリング法、プラズマ法、イオンプレーティング法等が挙げられる。湿式成膜法としては、スピンコーティング法、ディッピング法、フローコーティング法、インクジェット法等が挙げられる。
(膜厚)
 本実施形態の有機EL素子1の各有機層の膜厚は、上記で特に言及した以外には制限されない。一般に、ピンホール等の欠陥を生じ難くするため、かつ高い印加電圧が必要となることによる効率の悪化を防止するため、通常、膜厚は、数nmから1μmの範囲が好ましい。
 本明細書において、環形成炭素数とは、原子が環状に結合した構造の化合物(例えば、単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子のうちの炭素原子の数を表す。当該環が置換基によって置換される場合、置換基に含まれる炭素は環形成炭素数には含まない。以下で記載される「環形成炭素数」については、特筆しない限り同様とする。例えば、ベンゼン環は環形成炭素数が6であり、ナフタレン環は環形成炭素数が10であり、ピリジニル基は環形成炭素数が5であり、フラニル基は環形成炭素数4である。また、ベンゼン環やナフタレン環に置換基として例えばアルキル基が置換している場合、当該アルキル基の炭素数は、環形成炭素数の数に含めない。また、フルオレン環に置換基として例えばフルオレン環が結合している場合(スピロフルオレン環を含む)、置換基としてのフルオレン環の炭素数は環形成炭素数の数に含めない。
 本明細書において、環形成原子数とは、原子が環状に結合した構造(例えば単環、縮合環、環集合)の化合物(例えば単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子の数を表す。環を構成しない原子や、当該環が置換基によって置換される場合の置換基に含まれる原子は環形成原子数には含まない。以下で記載される「環形成原子数」については、特筆しない限り同様とする。例えば、ピリジン環は、環形成原子数が6であり、キナゾリン環は、環形成原子数が10であり、フラン環は、環形成原子数が5である。ピリジン環やキナゾリン環の炭素原子にそれぞれ結合している水素原子や置換基を構成する原子については、環形成原子数の数に含めない。また、フルオレン環に置換基として例えばフルオレン環が結合している場合(スピロフルオレン環を含む)、置換基としてのフルオレン環の原子数は環形成原子数の数に含めない。
 次に前記一般式に記載の各置換基について説明する。
 本明細書における環形成炭素数6~30のアリール基(芳香族炭化水素基と称する場合がある。)としては、例えば、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、アントリル基、フェナントリル基、フルオレニル基、ピレニル基、クリセニル基、フルオランテニル基、ベンゾ[a]アントリル基、ベンゾ[c]フェナントリル基、トリフェニレニル基、ベンゾ[k]フルオランテニル基、ベンゾ[g]クリセニル基、ベンゾ[b]トリフェニレニル基、ピセニル基、及びペリレニル基等が挙げられる。
 本明細書におけるアリール基としては、環形成炭素数が6~20であることが好ましく、6~14であることがより好ましく、6~12であることがさらに好ましい。上記アリール基の中でもフェニル基、ビフェニル基、ナフチル基、フェナントリル基、ターフェニル基、フルオレニル基がさらにより好ましい。1-フルオレニル基、2-フルオレニル基、3-フルオレニル基及び4-フルオレニル基については、9位の炭素原子に、後述する本明細書における置換または無置換の炭素数1~30のアルキル基や、置換または無置換の環形成炭素数6~18のアリール基が置換されていることが好ましい。
 本明細書における環形成原子数5~30のヘテロアリール基(複素環基、ヘテロ芳香族環基、または芳香族複素環基と称する場合がある。)は、ヘテロ原子として、窒素、硫黄、酸素、ケイ素、セレン原子、及びゲルマニウム原子からなる群から選択される少なくともいずれかの原子を含むことが好ましく、窒素、硫黄、及び酸素からなる群から選択される少なくともいずれかの原子を含むことがより好ましい。
 本明細書における環形成原子数5~30の複素環基としては、例えば、ピリジル基、ピリミジニル基、ピラジニル基、ピリダジニル基、トリアジニル基、キノリル基、イソキノリニル基、ナフチリジニル基、フタラジニル基、キノキサリニル基、キナゾリニル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、ピロリル基、イミダゾリル基、ピラゾリル基、トリアゾリル基、テトラゾリル基、インドリル基、ベンズイミダゾリル基、インダゾリル基、イミダゾピリジニル基、ベンズトリアゾリル基、カルバゾリル基、フリル基、チエニル基、オキサゾリル基、チアゾリル基、イソキサゾリル基、イソチアゾリル基、オキサジアゾリル基、チアジアゾリル基、ベンゾフラニル基、ベンゾチエニル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、ベンゾイソキサゾリル基、ベンゾイソチアゾリル基、ベンゾオキサジアゾリル基、ベンゾチアジアゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、ピペリジニル基、ピロリジニル基、ピペラジニル基、モルホリル基、フェナジニル基、フェノチアジニル基、及びフェノキサジニル基等が挙げられる。
 本明細書における複素環基の環形成原子数は、5~20であることが好ましく、5~14であることがさらに好ましい。上記複素環基の中でも1-ジベンゾフラニル基、2-ジベンゾフラニル基、3-ジベンゾフラニル基、4-ジベンゾフラニル基、1-ジベンゾチエニル基、2-ジベンゾチエニル基、3-ジベンゾチエニル基、4-ジベンゾチエニル基、1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基、4-カルバゾリル基、及び9-カルバゾリル基がさらにより好ましい。1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基及び4-カルバゾリル基については、9位の窒素原子に、本明細書における置換または無置換の環形成炭素数6~30のアリール基や、置換または無置換の環形成原子数5~30の複素環基が置換していることが好ましい。
 また、本明細書において、複素環基は、例えば、下記一般式(XY-1)~(XY-18)で表される部分構造から誘導される基であってもよい。
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
 前記一般式(XY-1)~(XY-18)中、X及びYは、それぞれ独立に、ヘテロ原子であり、酸素原子、硫黄原子、セレン原子、ケイ素原子、またはゲルマニウム原子であることが好ましい。前記一般式(XY-1)~(XY-18)で表される部分構造は、任意の位置で結合手を有して複素環基となり、この複素環基は、置換基を有していてもよい。
 また、本明細書において、置換または無置換のカルバゾリル基としては、例えば、下記式で表されるような、カルバゾール環に対してさらに環が縮合した基も含み得る。このような基も置換基を有していてもよい。また、結合手の位置も適宜変更され得る。
Figure JPOXMLDOC01-appb-C000096
 本明細書における炭素数1~30のアルキル基としては、直鎖、分岐鎖または環状のいずれであってもよい。また、ハロゲン化アルキル基であってもよい。
 直鎖または分岐鎖のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、ネオペンチル基、アミル基、イソアミル基、1-メチルペンチル基、2-メチルペンチル基、1-ペンチルヘキシル基、1-ブチルペンチル基、1-ヘプチルオクチル基、及び3-メチルペンチル基等が挙げられる。
 本明細書における直鎖または分岐鎖のアルキル基の炭素数は、1~10であることが好ましく、1~6であることがさらに好ましい。上記直鎖または分岐鎖のアルキル基の中でもメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、アミル基、イソアミル基、及びネオペンチル基がさらにより好ましい。
 本明細書における環状のアルキル基としては、例えば、環形成炭素数3~30のシクロアルキル基が挙げられる。
 本明細書における環形成炭素数3~30のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、4-メチルシクロヘキシル基、アダマンチル基、及びノルボルニル基等が挙げられる。シクロアルキル基の環形成炭素数は、3~10であることが好ましく、5~8であることがさらに好ましい。上記シクロアルキル基の中でも、シクロペンチル基やシクロヘキシル基がさらにより好ましい。
 本明細書におけるアルキル基がハロゲン原子で置換されたハロゲン化アルキル基としては、例えば、上記炭素数1~30のアルキル基が1以上のハロゲン原子、好ましくはフッ素原子で置換された基が挙げられる。
 本明細書における炭素数1~30のハロゲン化アルキル基としては、具体的には、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、フルオロエチル基、トリフルオロメチルメチル基、トリフルオロエチル基、ペンタフルオロエチル基等が挙げられる。
 本明細書における置換シリル基としては、例えば、炭素数3~30のアルキルシリル基、及び環形成炭素数6~30のアリールシリル基が挙げられる。
 本明細書における炭素数3~30のアルキルシリル基としては、上記炭素数1~30のアルキル基で例示したアルキル基を有するトリアルキルシリル基が挙げられ、具体的にはトリメチルシリル基、トリエチルシリル基、トリ-n-ブチルシリル基、トリ-n-オクチルシリル基、トリイソブチルシリル基、ジメチルエチルシリル基、ジメチルイソプロピルシリル基、ジメチル-n-プロピルシリル基、ジメチル-n-ブチルシリル基、ジメチル-t-ブチルシリル基、ジエチルイソプロピルシリル基、ビニルジメチルシリル基、プロピルジメチルシリル基、及びトリイソプロピルシリル基等が挙げられる。トリアルキルシリル基における3つのアルキル基は、互いに同一でも異なっていてもよい。
 本明細書における環形成炭素数6~30のアリールシリル基としては、例えば、ジアルキルアリールシリル基、アルキルジアリールシリル基、及びトリアリールシリル基が挙げられる。
 ジアルキルアリールシリル基は、例えば、上記炭素数1~30のアルキル基で例示したアルキル基を2つ有し、上記環形成炭素数6~30のアリール基を1つ有するジアルキルアリールシリル基が挙げられる。ジアルキルアリールシリル基の炭素数は、8~30であることが好ましい。
 アルキルジアリールシリル基は、例えば、上記炭素数1~30のアルキル基で例示したアルキル基を1つ有し、上記環形成炭素数6~30のアリール基を2つ有するアルキルジアリールシリル基が挙げられる。アルキルジアリールシリル基の炭素数は、13~30であることが好ましい。
 トリアリールシリル基は、例えば、上記環形成炭素数6~30のアリール基を3つ有するトリアリールシリル基が挙げられる。トリアリールシリル基の炭素数は、18~30であることが好ましい。
 本明細書において、アラルキル基(アリールアルキル基と称する場合がある)におけるアリール基は、芳香族炭化水素基、又は複素環基である。
 本明細書における炭素数5~30のアラルキル基としては、環形成炭素数6~30のアラルキル基が好ましく、-Z-Zと表される。このZの例として、上記炭素数1~30のアルキル基に対応するアルキレン基等が挙げられる。このZの例として、例えば、上記環形成炭素数6~30のアリール基の例が挙げられる。このアラルキル基は、炭素数7~30のアラルキル基(アリール部分は炭素数6~30、好ましくは6~20、より好ましくは6~12)、アルキル部分は炭素数1~30(好ましくは1~20、より好ましくは1~10、さらに好ましくは1~6)であることが好ましい。このアラルキル基としては、例えば、ベンジル基、2-フェニルプロパン-2-イル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルイソプロピル基、2-フェニルイソプロピル基、フェニル-t-ブチル基、α-ナフチルメチル基、1-α-ナフチルエチル基、2-α-ナフチルエチル基、1-α-ナフチルイソプロピル基、2-α-ナフチルイソプロピル基、β-ナフチルメチル基、1-β-ナフチルエチル基、2-β-ナフチルエチル基、1-β-ナフチルイソプロピル基、及び2-β-ナフチルイソプロピル基等が挙げられる。
 本明細書における置換ホスフォリル基は、下記一般式(P)で表される。
Figure JPOXMLDOC01-appb-C000097
 前記一般式(P)中、ArP1及びArP2は、それぞれ独立に、置換基であり、炭素数1~30のアルキル基、及び環形成炭素数6~30のアリール基からなる群から選択されるいずれかの置換基であることが好ましく、炭素数1~10のアルキル基、及び環形成炭素数6~20のアリール基からなる群から選択されるいずれかの置換基であることがより好ましく、炭素数1~6のアルキル基、及び環形成炭素数6~14のアリール基からなる群から選択されるいずれかの置換基であることがさらに好ましい。
 本明細書における炭素数1~30のアルコキシ基は、-OZと表される。このZの例として、上記炭素数1~30のアルキル基が挙げられる。アルコキシ基は、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、及びヘキシルオキシ基等が挙げられる。アルコキシ基の炭素数は、1~20であることが好ましい。
 アルコキシ基がハロゲン原子で置換されたハロゲン化アルコキシ基としては、例えば、上記炭素数1~30のアルコキシ基が1以上のフッ素原子で置換された基が挙げられる。
 本明細書において、アリールアルコキシ基(アリールオキシ基と称する場合がある)におけるアリール基は、ヘテロアリール基も含む。
 本明細書における炭素数5~30のアリールアルコキシ基は、-OZと表される。このZの例として、例えば、上記環形成炭素数6~30のアリール基等が挙げられる。アリールアルコキシ基の環形成炭素数は、6~20であることが好ましい。このアリールアルコキシ基としては、例えば、フェノキシ基が挙げられる。
 本明細書における置換アミノ基は、-NHR、または-N(Rと表される。このRの例として、例えば、上記炭素数1~30のアルキル基、及び上記環形成炭素数6~30のアリール基等が挙げられる。
 本明細書における炭素数2~30のアルケニル基としては、直鎖または分岐鎖のいずれかであり、例えば、ビニル基、プロペニル基、ブテニル基、オレイル基、エイコサペンタエニル基、ドコサヘキサエニル基、スチリル基、2,2-ジフェニルビニル基、1,2,2-トリフェニルビニル基、及び2-フェニル-2-プロペニル基等が挙げられる。
 本明細書における炭素数3~30のシクロアルケニル基としては、例えば、シクロペンタジエニル基、シクロペンテニル基、シクロヘキセニル基、及びシクロヘキサジエニル基等が挙げられる。
 本明細書における炭素数2~30のアルキニル基としては、直鎖または分岐鎖のいずれかであり、例えば、エチニル、プロピニル、及び2-フェニルエチニル等が挙げられる。
 本明細書における炭素数3~30のシクロアルキニル基としては、例えば、シクロペンチニル基、及びシクロヘキシニル基等が挙げられる。
 本明細書における置換スルファニル基としては、例えば、メチルスルファニル基、フェニルスルファニル基、ジフェニルスルファニル基、ナフチルスルファニル基、及びトリフェニルスルファニル基等が挙げられる。
 本明細書における置換スルフィニル基としては、例えば、メチルスルフィニル基、フェニルスルフィニル基、ジフェニルスルフィニル基、ナフチルスルフィニル基、及びトリフェニルスルフィニル基等が挙げられる。
 本明細書における置換スルホニル基としては、例えば、メチルスルホニル基、フェニルスルホニル基、ジフェニルスルホニル基、ナフチルスルホニル基、及びトリフェニルスルホニル基等が挙げられる。
 本明細書における置換ホスファニル基としては、例えば、フェニルホスファニル基等が挙げられる。
 本明細書における置換カルボニル基としては、例えば、メチルカルボニル基、フェニルカルボニル基、ジフェニルカルボニル基、ナフチルカルボニル基、及びトリフェニルカルボニル基等が挙げられる。
 本明細書における炭素数2~30のアルコキシカルボニル基は、-COOY’と表される。このY’の例として、上記アルキル基が挙げられる。
 本明細書における置換カルボキシ基としては、例えば、ベンゾイルオキシ基等が挙げられる。
 本明細書における炭素数1~30のアルキルチオ基及び環形成炭素数6~30のアリールチオ基は、-SRと表される。このRの例として、上記炭素数1~30のアルキル基及び上記環形成炭素数6~30のアリール基が挙げられる。アルキルチオ基の炭素数は、1~20であることが好ましく、アリールチオ基の環形成炭素数は、6~20であることが好ましい。
 本明細書におけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子等が挙げられ、フッ素原子が好ましい。
 本明細書において、「環形成炭素」とは飽和環、不飽和環、または芳香環を構成する炭素原子を意味する。「環形成原子」とはヘテロ環(飽和環、不飽和環、及び芳香環を含む)を構成する炭素原子及びヘテロ原子を意味する。
 また、本明細書において、水素原子とは、中性子数の異なる同位体、すなわち、軽水素(Protium)、重水素(Deuterium)、三重水素(Tritium)を包含する。
 本明細書において、「置換または無置換の」という場合における置換基としては、環形成炭素数6~30のアリール基、環形成原子数5~30のヘテロアリール基、炭素数1~30のアルキル基(直鎖または分岐鎖のアルキル基)、環形成炭素数3~30のシクロアルキル基、炭素数1~30のハロゲン化アルキル基、炭素数3~30のアルキルシリル基、環形成炭素数6~30のアリールシリル基、炭素数1~30のアルコキシ基、炭素数5~30のアリールオキシ基、置換アミノ基、炭素数1~30のアルキルチオ基、環形成炭素数6~30のアリールチオ基、炭素数5~30のアラルキル基、炭素数2~30のアルケニル基、炭素数2~30のアルキニル基、ハロゲン原子、シアノ基、ヒドロキシル基、ニトロ基、及びカルボキシ基からなる群から選択される少なくとも一種の基が挙げられる。
 本明細書において、「置換または無置換の」という場合における置換基としては、環形成炭素数6~30のアリール基、環形成原子数5~30のヘテロアリール基、炭素数1~30のアルキル基(直鎖または分岐鎖のアルキル基)、環形成炭素数3~30のシクロアルキル基、炭素数1~30のハロゲン化アルキル基、ハロゲン原子、炭素数3~30のアルキルシリル基、環形成炭素数6~30のアリールシリル基、及びシアノ基からなる群から選択される少なくとも一種の基が好ましく、さらには、各置換基の説明において好ましいとした具体的な置換基が好ましい。
 本明細書において、「置換または無置換の」という場合における置換基は、環形成炭素数6~30のアリール基、環形成原子数5~30のヘテロアリール基、炭素数1~30のアルキル基(直鎖または分岐鎖のアルキル基)、炭素数3~30のシクロアルキル基、炭素数1~30のハロゲン化アルキル基、炭素数3~30のアルキルシリル基、環形成炭素数6~30のアリールシリル基、炭素数1~30のアルコキシ基、炭素数5~30のアリールオキシ基、置換アミノ基、炭素数1~30のアルキルチオ基、環形成炭素数6~30のアリールチオ基、炭素数5~30のアラルキル基、炭素数2~30のアルケニル基、炭素数2~30のアルキニル基、ハロゲン原子、シアノ基、ヒドロキシル基、ニトロ基、及びカルボキシ基からなる群から選択される少なくとも一種の基によってさらに置換されてもよい。また、これらの置換基は複数が互いに結合して環を形成してもよい。
 本明細書において、「置換または無置換の」という場合における置換基に、さらに置換する置換基としては、環形成炭素数6~30のアリール基、環形成原子数5~30のヘテロアリール基、炭素数1~30のアルキル基(直鎖または分岐鎖のアルキル基)、ハロゲン原子、及びシアノ基からなる群から選択される少なくとも一種の基であることが好ましく、各置換基の説明において好ましいとした具体的な置換基から選択される少なくとも一種の基であることがさらに好ましい。
 「置換または無置換の」という場合における「無置換」とは前記置換基で置換されておらず、水素原子が結合していることを意味する。
 なお、本明細書において、「置換または無置換の炭素数XX~YYのZZ基」という表現における「炭素数XX~YY」は、ZZ基が無置換である場合の炭素数を表し、置換されている場合の置換基の炭素数は含めない。
 本明細書において、「置換または無置換の原子数XX~YYのZZ基」という表現における「原子数XX~YY」は、ZZ基が無置換である場合の原子数を表し、置換されている場合の置換基の原子数は含めない。
 本明細書において説明する化合物、又はその部分構造において、「置換または無置換の」という場合についても、前記と同様である。
 本明細書において、置換基同士が互いに結合して環が構築される場合、当該環の構造は、飽和環、不飽和環、芳香族炭化水素環、又は複素環である。
 本明細書において、連結基における芳香族炭化水素基や複素環基等としては、上述した一価の基から、1つ以上の原子を除いて得られる二価以上の基が挙げられる。
 本実施形態に係る有機EL素子によれば、高効率で青色の波長領域の光を発する。
(電子機器)
 本発明の一実施形態に係る有機EL素子1は、表示装置や発光装置等の電子機器に使用できる。表示装置としては、例えば、表示部品(有機ELパネルモジュール等)、テレビ、携帯電話、タブレット、及びパーソナルコンピュータ等が挙げられる。発光装置としては、例えば、照明、及び車両用灯具等が挙げられる。
〔第二実施形態〕
 第二実施形態に係る有機EL素子の構成について説明する。第二実施形態の説明において第一実施形態と同一の構成要素は、同一符号や名称を付す等して説明を省略もしくは簡略化する。また、第二実施形態では、特に言及されない材料や化合物については、第一実施形態で説明した材料や化合物と同様の材料や化合物を用いることができる。
 第二実施形態に係る有機EL素子は、発光層が、第三の化合物をさらに含んでいる点で、第一実施形態に係る有機EL素子と異なる。その他の点については第一実施形態と同様である。
<第三の化合物>
 前記第三の化合物の一重項エネルギーS(M3)と、前記第一の化合物の一重項エネルギーS(M1)とが、下記数式(数2)の関係を満たすことが好ましい。
   S(M3)>S(M1)   …(数2)
 第三の化合物は、遅延蛍光性を示す化合物でもよいし、遅延蛍光性を示さない化合物でもよい。
 第三の化合物は、ホスト材料(マトリックス材料と称する場合もある。)であることも好ましい。第一の化合物及び第三の化合物がホスト材料である場合、例えば、一方を第一のホスト材料と称し、他方を第二のホスト材料と称する場合もある。
 第三の化合物としては、特に限定されないが、アミン化合物以外の化合物であることが好ましい。また、例えば、第三の化合物としては、カルバゾール誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体を用いることができるが、これら誘導体に限定されない。
 第三の化合物は、一つの分子中に下記一般式(31)で表される部分構造、及び下記一般式(32)で表される部分構造のうち少なくともいずれかを含む化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000098
 前記一般式(31)中、
 Y31~Y36は、それぞれ独立に、窒素原子、または第三の化合物の分子中における他の原子と結合する炭素原子であり、
 ただし、Y31~Y36のうち少なくともいずれかは、第三の化合物の分子中における他の原子と結合する炭素原子であり、
 前記一般式(32)において、
 Y41~Y48は、それぞれ独立に、窒素原子、または第三の化合物の分子中における他の原子と結合する炭素原子であり、
 ただし、Y41~Y48のうち少なくともいずれかは、第三の化合物の分子中における他の原子と結合する炭素原子であり、
 X30は、窒素原子、酸素原子、または硫黄原子である。
 前記一般式(32)において、Y41~Y48のうち少なくとも2つが第三の化合物の分子中における他の原子と結合する炭素原子であり、当該炭素原子を含む環構造が構築されていることも好ましい。
 例えば、前記一般式(32)で表される部分構造が、下記一般式(321)、一般式(322)、一般式(323)、一般式(324)、一般式(325)、及び一般式(326)で表される部分構造からなる群から選択されるいずれかの部分構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
 前記一般式(321)~(326)中、
 X30は、それぞれ独立に、窒素原子、酸素原子、または硫黄原子であり、
 Y41~Y48は、それぞれ独立に、窒素原子、または第三の化合物の分子中における他の原子と結合する炭素原子であり、
 X31は、それぞれ独立に、窒素原子、酸素原子、硫黄原子、または炭素原子であり、
 Y61~Y64は、それぞれ独立に、窒素原子、または第三の化合物の分子中における他の原子と結合する炭素原子である。
 本実施形態においては、第三の化合物は、前記一般式(321)~(326)のうち前記一般式(323)で表される部分構造を有することが好ましい。
 前記一般式(31)で表される部分構造は、下記一般式(33)で表される基及び下記一般式(34)で表される基からなる群から選択される少なくともいずれかの基として第三の化合物に含まれることが好ましい。
 第三の化合物は、下記一般式(33)及び下記一般式(34)で表される部分構造のうち少なくともいずれかの部分構造を有することも好ましい。下記一般式(33)及び下記一般式(34)で表される部分構造のように結合箇所が互いにメタ位に位置するため、第三の化合物の77[K]におけるエネルギーギャップT77K(M3)を高く保つことができる。
Figure JPOXMLDOC01-appb-C000102
 前記一般式(33)及び前記一般式(34)中、
 Y31、Y32、Y34、及びY36は、それぞれ独立に、窒素原子またはCR31であり、R31は、水素原子または置換基であり、置換基としてのR31は、それぞれ独立に、
  置換または無置換の環形成炭素数6~30のアリール基、
  置換または無置換の環形成原子数5~30のヘテロアリール基、
  置換または無置換の炭素数1~30のアルキル基、
  置換または無置換の炭素数1~30のフルオロアルキル基、
  置換または無置換の炭素数3~30のシクロアルキル基、
  置換または無置換の炭素数7~30のアラルキル基、
  置換または無置換のシリル基、
  置換ゲルマニウム基、
  置換ホスフィンオキシド基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、及び
  置換または無置換のカルボキシ基からなる群から選択される。
 ただし、前記R31における置換または無置換の環形成炭素数6~30のアリール基は、非縮合環であることが好ましい。
 前記一般式(33)及び前記一般式(34)中、波線部分は、第三の化合物の分子中における他の原子または他の構造との結合箇所を表す。
 前記一般式(33)において、Y31、Y32、Y34及びY36は、それぞれ独立に、CR31であることが好ましく、複数のR31は、互いに同一あるか、又は異なる。
 また、前記一般式(34)において、Y32、Y34及びY36は、それぞれ独立に、CR31であることが好ましく、複数のR31は、互いに同一あるか、又は異なる。
 置換ゲルマニウム基は、-Ge(R301で表されることが好ましい。R301は、それぞれ独立に、置換基である。置換基R301は、置換または無置換の炭素数1~30のアルキル基、または置換または無置換の環形成炭素数6~30のアリール基であることが好ましい。複数のR301は、互いに同一であるか又は異なる。
 前記一般式(32)で表される部分構造は、下記一般式(35)~(39)及び下記一般式(30a)で表される基からなる群から選択される少なくともいずれかの基として第三の化合物に含まれることが好ましい。
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
 前記一般式(35)~(39),及び(30a)中、
 Y41~Y48は、それぞれ独立に、窒素原子またはCR32であり、
 R32は、それぞれ独立に、水素原子または置換基であり、
 置換基としてのR32は、
  置換または無置換の環形成炭素数6~30のアリール基、
  置換または無置換の環形成原子数5~30のヘテロアリール基、
  置換または無置換の炭素数1~30のアルキル基、
  置換または無置換の炭素数1~30のフルオロアルキル基、
  置換または無置換の炭素数3~30のシクロアルキル基、
  置換または無置換の炭素数7~30のアラルキル基、
  置換または無置換のシリル基、
  置換ゲルマニウム基、
  置換ホスフィンオキシド基、
  ハロゲン原子、
  シアノ基、
  ニトロ基、及び
  置換または無置換のカルボキシ基からなる群から選択され、
 複数のR32は、互いに同一であるか又は異なり、
 前記一般式(35)及び(36)中、X30は、窒素原子であり、
 前記一般式(37)~(39),及び(30a)中、
 X30は、NR33、酸素原子、または硫黄原子であり、
 R33は、
  置換または無置換の環形成炭素数6~30のアリール基、
  置換または無置換の環形成原子数5~30のヘテロアリール基、
  置換または無置換の炭素数1~30のアルキル基、
  置換または無置換の炭素数1~30のフルオロアルキル基、
  置換または無置換の炭素数3~30のシクロアルキル基、
  置換または無置換の炭素数7~30のアラルキル基、
  置換または無置換のシリル基、
  置換ゲルマニウム基、
  置換ホスフィンオキシド基、
  フッ素原子、
  シアノ基、
  ニトロ基、及び
  置換若しくは無置換のカルボキシ基からなる群から選択され、
 複数のR33は、互いに同一であるか又は異なる。
 ただし、前記R33における置換または無置換の環形成炭素数6~30のアリール基は、非縮合環であることが好ましい。
 前記一般式(35)~(39),(30a)中、波線部分は、第三の化合物の分子中における他の原子または他の構造との結合箇所を表す。
 前記一般式(35)において、Y41~Y48は、それぞれ独立に、CR32であることが好ましく、前記一般式(36)及び前記一般式(37)において、Y41~Y45,Y47及びY48は、それぞれ独立に、CR32であることが好ましく、前記一般式(38)において、Y41,Y42,Y44,Y45,Y47及びY48は、それぞれ独立に、CR32であることが好ましく、前記一般式(39)において、Y42~Y48は、それぞれ独立に、CR32であることが好ましく、前記一般式(30a)において、Y42~Y47は、それぞれ独立に、CR32であることが好ましく、複数のR32は、互いに同一であるか又は異なる。
 第三の化合物において、前記X30は、酸素原子もしくは硫黄原子であることが好ましく、酸素原子であることがより好ましい。
 第三の化合物において、R31及びR32は、それぞれ独立に、水素原子または置換基であって、置換基としてのR31及び置換基としてのR32は、それぞれ独立に、フッ素原子、シアノ基、置換または無置換の炭素数1~30のアルキル基、置換または無置換の環形成炭素数6~30のアリール基、及び置換または無置換の環形成原子数5~30のヘテロアリール基からなる群から選択されるいずれかの基であることが好ましい。R31及びR32は、水素原子、シアノ基、置換または無置換の環形成炭素数6~30のアリール基、または置換または無置換の環形成原子数5~30のヘテロアリール基であることがより好ましい。ただし、置換基としてのR31及び置換基としてのR32が置換または無置換の環形成炭素数6~30のアリール基である場合、当該アリール基は、非縮合環であることが好ましい。
 第三の化合物は、芳香族炭化水素化合物、または芳香族複素環化合物であることも好ましい。また、第三の化合物は、分子中に縮合芳香族炭化水素環を有していないことが好ましい。
・第三の化合物の製造方法
 第三の化合物は、例えば、国際公開第2012/153780号及び国際公開第2013/038650号等に記載の方法により製造することができる。また、例えば、目的物に合わせた既知の代替反応や原料を用いることで、第三の化合物を製造できる。
 第三の化合物における置換基の例は、例えば、以下のとおりであるが、本発明は、これらの例に限定されない。
 アリ-ル基(芳香族炭化水素基と称する場合がある。)の具体例としては、フェニル基、トリル基、キシリル基、ナフチル基、フェナントリル基、ピレニル基、クリセニル基、ベンゾ[c]フェナントリル基、ベンゾ[g]クリセニル基、ベンゾアントリル基、トリフェニレニル基、フルオレニル基、9,9-ジメチルフルオレニル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、ビフェニル基、ターフェニル基、クォーターフェニル基、フルオランテニル基等が挙げられ、好ましくはフェニル基、ビフェニル基、ターフェニル基、クォーターフェニル基、ナフチル基、トリフェニレニル基、及びフルオレニル基等を挙げることができる。
 置換基を有するアリ-ル基としては、トリル基、キシリル基、及び9,9-ジメチルフルオレニル基等を挙げることができる。
 具体例が示すように、アリール基は、縮合アリール基及び非縮合アリール基の両方を含む。
 アリ-ル基としては、フェニル基、ビフェニル基、ターフェニル基、クォーターフェニル基、ナフチル基、トリフェニレニル基、及びフルオレニル基が好ましい。
 ヘテロアリール基(複素環基、ヘテロ芳香族環基、または芳香族複素環基と称する場合がある。)の具体例としては、ピロリル基、ピラゾリル基、ピラジニル基、ピリミジニル基、ピリダジニル基、ピリジル基、トリアジニル基、インドリル基、イソインドリル基、イミダゾリル基、ベンズイミダゾリル基、インダゾリル基、イミダゾ[1,2-a]ピリジニル基、フリル基、ベンゾフラニル基、イソベンゾフラニル基、ジベンゾフラニル基、アザジベンゾフラニル基、チエニル基、ベンゾチエニル基、ジベンゾチエニル基、アザジベンゾチエニル基、キノリル基、イソキノリル基、キノキサリニル基、キナゾリニル基、ナフチリジニル基、カルバゾリル基、アザカルバゾリル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基、オキサゾリル基、オキサジアゾリル基、フラザニル基、ベンズオキサゾリル基、チエニル基、チアゾリル基、チアジアゾリル基、ベンズチアゾリル基、トリアゾリル基、テトラゾリル基等が挙げられ、好ましくは、ジベンゾフラニル基、ジベンゾチエニル基、カルバゾリル基、ピリジル基、ピリミジニル基、トリアジニル基、アザジベンゾフラニル基、及びアザジベンゾチエニル基等を挙げることができる。
 ヘテロアリール基としては、ジベンゾフラニル基、ジベンゾチエニル基、カルバゾリル基、ピリジル基、ピリミジニル基、トリアジニル基、アザジベンゾフラニル基、アザジベンゾチエニル基が好ましく、ジベンゾフラニル基、ジベンゾチエニル基、アザジベンゾフラニル基、及びアザジベンゾチエニル基がさらに好ましい。
 第三の化合物において、置換シリル基は、置換または無置換のトリアルキルシリル基、置換または無置換のアリールアルキルシリル基、及び置換または無置換のトリアリールシリル基からなる群から選択されることも好ましい。
 置換または無置換のトリアルキルシリル基の具体例としては、トリメチルシリル基、及びトリエチルシリル基を挙げることができる。
 置換若しくは無置換のアリールアルキルシリル基の具体例としては、ジフェニルメチルシリル基、ジトリルメチルシリル基、及びフェニルジメチルシリル基等を挙げることができる。
 置換または無置換のトリアリールシリル基の具体例としては、トリフェニルシリル基、及びトリトリルシリル基等を挙げることができる。
 第三の化合物において、置換ホスフィンオキシド基は、置換または無置換のジアリールホスフィンオキシド基であることも好ましい。
 置換または無置換のジアリールホスフィンオキシド基の具体例としては、ジフェニルホスフィンオキシド基、及びジトリルホスフィンオキシド基等を挙げることができる。
<発光層における第一の化合物、第二の化合物、及び第三の化合物の関係>
 発光層における第一の化合物、第二の化合物、及び第三の化合物は、前記数式(数1)及び前記数式(数2)の関係を満たすことが好ましい。すなわち、下記数式(数3)の関係を満たすことが好ましい。
   S(M3)>S(M1)>S(M2)   …(数3)
 第三の化合物の77[K]におけるエネルギーギャップT77K(M3)は、第一の化合物の77[K]におけるエネルギーギャップT77K(M1)よりも大きいことが好ましい。すなわち、下記数式(数5)の関係を満たすことが好ましい。
   T77K(M3)>T77K(M1)   …(数5)
 発光層における第一の化合物、第二の化合物、及び第三の化合物は、前記数式(数4)及び前記数式(数5)の関係を満たすことが好ましい。すなわち、下記数式(数6)の関係を満たすことが好ましい。
   T77K(M3)>T77K(M1)>T77K(M2)   …(数6)
 本実施形態の有機EL素子を発光させたときに、発光層において、主に第二の化合物が発光していることが好ましい。
・発光層における化合物の含有率
 発光層に含まれている第一の化合物、第二の化合物、及び第三の化合物の含有率は、例えば、以下の範囲であることが好ましい。
 第一の化合物の含有率は、10質量%以上80質量%以下であることが好ましく、10質量%以上60質量%以下であることがさらに好ましく、20質量%以上60質量%であることが特に好ましい。
 第二の化合物の含有率は、0.01質量%以上10質量%以下であることが好ましく、0.01質量%以上5質量%以下であることがより好ましく、0.01質量%以上1質量%以下であることがさらに好ましい。
 第三の化合物の含有率は、10質量%以上80質量%以下であることが好ましい。
 発光層における第一の化合物、第二の化合物、及び第三の化合物の合計含有率の上限は、100質量%である。なお、本実施形態は、発光層に、第一の化合物、第二の化合物、及び第三の化合物以外の材料が含まれることを除外しない。
 図5は、発光層における第一の化合物、第二の化合物、及び第三の化合物のエネルギー準位の関係の一例を示す図である。図5において、S0は、基底状態を表す。S1(M1)は、第一の化合物の最低励起一重項状態を表し、T1(M1)は、第一の化合物の最低励起三重項状態を表す。S1(M2)は、第二の化合物の最低励起一重項状態を表し、T1(M2)は、第二の化合物の最低励起三重項状態を表す。S1(M3)は、第三の化合物の最低励起一重項状態を表し、T1(M3)は、第三の化合物の最低励起三重項状態を表す。図5中のS1(M1)からS1(M2)へ向かう破線の矢印は、第一の化合物の最低励起一重項状態から第二の化合物の最低励起一重項状態へのフェルスター型エネルギー移動を表す。
 図5に示すように、第一の化合物としてΔST(M1)の小さな化合物を用いると、最低励起三重項状態T1(M1)は、熱エネルギーにより、最低励起一重項状態S1(M1)に逆項間交差が可能である。そして、第一の化合物の最低励起一重項状態S1(M1)から第二の化合物へのフェルスター型エネルギー移動が生じ、最低励起一重項状態S1(M2)が生成する。この結果、第二の化合物の最低励起一重項状態S1(M2)からの蛍光発光を観測することができる。このTADF機構による遅延蛍光を利用することによっても、理論的に内部効率を100%まで高めることができると考えられている。
 第二実施形態に係る有機EL素子によれば、高効率で青色の波長領域の光を発する。
 第二実施形態の有機EL素子は、発光層に、遅延蛍光性の第一の化合物と、蛍光発光性の第二の化合物と、第一の化合物よりも大きな一重項エネルギーを有する第三の化合物と、を含んでおり、発光効率が向上する。発光効率が向上する理由としては、第三の化合物が含まれていることによって発光層のキャリアバランスが改善されるためと考えられる。
 第二実施形態に係る有機EL素子は、第一の実施形態に係る有機EL素子と同様に、表示装置や発光装置等の電子機器に使用できる。
〔実施形態の変形〕
 なお、本発明は、上述の実施形態に限定されず、本発明の目的を達成できる範囲での変更、改良等は、本発明に含まれる。
 例えば、発光層は、1層に限られず、複数の発光層が積層されていてもよい。有機EL素子が複数の発光層を有する場合、少なくとも1つの発光層が上記実施形態で説明した条件を満たしていればよい。例えば、その他の発光層が、蛍光発光型の発光層であっても、三重項励起状態から直接基底状態への電子遷移による発光を利用した燐光発光型の発光層であってもよい。
 また、有機EL素子が複数の発光層を有する場合、これらの発光層が互いに隣接して設けられていてもよいし、中間層を介して複数の発光ユニットが積層された、いわゆるタンデム型の有機EL素子であってもよい。
 また、例えば、発光層の陽極側、及び陰極側の少なくとも一方に障壁層を隣接させて設けてもよい。障壁層は、発光層に接して配置され、正孔、電子、及び励起子の少なくともいずれかを阻止することが好ましい。
 例えば、発光層の陰極側で接して障壁層が配置された場合、当該障壁層は、電子を輸送し、かつ正孔が当該障壁層よりも陰極側の層(例えば、電子輸送層)に到達することを阻止する。有機EL素子が、電子輸送層を含む場合は、発光層と電子輸送層との間に当該障壁層を含むことが好ましい。
 また、発光層の陽極側で接して障壁層が配置された場合、当該障壁層は、正孔を輸送し、かつ電子が当該障壁層よりも陽極側の層(例えば、正孔輸送層)に到達することを阻止する。有機EL素子が、正孔輸送層を含む場合は、発光層と正孔輸送層との間に当該障壁層を含むことが好ましい。
 また、励起エネルギーが発光層からその周辺層に漏れ出さないように、障壁層を発光層に隣接させて設けてもよい。発光層で生成した励起子が、当該障壁層よりも電極側の層(例えば、電子輸送層や正孔輸送層)に移動することを阻止する。
 発光層と障壁層とは接合していることが好ましい。
 その他、本発明の実施における具体的な構造、及び形状等は、本発明の目的を達成できる範囲で他の構造等としてもよい。
 以下、本発明に係る実施例を説明する。本発明はこれらの実施例によって何ら限定されない。
<化合物>
 有機EL素子の製造に用いた化合物を以下に示す。
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
<化合物の合成>
・合成実施例1:化合物TADF-1の合成
(1)中間体Aの合成
Figure JPOXMLDOC01-appb-C000124
 三口フラスコに、2-フルオロフェニルボロン酸 7.0g(50mmol)、2-クロロ-4,6-ジフェニルトリアジン13.4g(50mmol)、2M炭酸ナトリウム水溶液62.5mL、1,2-ジメトキシエタン(DME)100mL、及びトルエン100mLを加えた。次いで、この三口フラスコに、テトラキス(トリフェニルホスフィン)パラジウム1.73(1.5mmol)をさらに加えて、アルゴン雰囲気下にて8時間、加熱還流攪拌した。加熱還流攪拌の後、有機層を分取した。分取した有機層を減圧下で濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーにより精製した。展開溶媒としてトルエン溶媒を用いた。精製後、得られた固体をメタノールを用いて懸濁洗浄し、中間体Aを白色固体として得た。収量は11.6g、収率は71%であった。
(2)化合物TADF-1の合成
Figure JPOXMLDOC01-appb-C000125
 三口フラスコに、カルバゾール7.3g(43.6mmol)、中間体A8.0g(24.4mmol)、炭酸カリウム7.4g(53.5mmol)、及びN-メチル-2-ピロリドン(NMP)50mLを加えて、アルゴン雰囲気下にて20時間、150℃で加熱撹拌した。加熱撹拌の後、反応溶液を水200mLに注ぎ、析出した固体を濾集した。次いで、この固体をエタノールを用いて繰り返し懸濁洗浄し、目的物(化合物TADF-1)を白色固体として得た。収量は6.3g、収率は54%であった。FD-MS(Field Desorption Mass Spectrometry)分析の結果、分子量474に対してm/e=474であった。
・合成実施例2:化合物BD-1及び化合物BD-2の合成
 化合物BD-1は、特開2010-270103号公報に記載の方法に従って合成した。その結果、化合物BD-1は、上記化合物BD-1aと上記化合物BD-1bとを含む混合物であった。
 化合物BD-2についても、特開2010-270103号公報に記載の方法に従って合成した。その結果、化合物BD-2は、上記化合物BD-2aと上記化合物BD-2bとを含む混合物であった。
・合成実施例3:化合物BD-3の合成
(1)中間体(Int-1)の合成
Figure JPOXMLDOC01-appb-C000126
 三口フラスコに、原料(SM-1:異性体混合物)2.0g(3.29mmol)、2-ホルミルフェニルボロン酸0.59g(3.95mmol)、炭酸ナトリウム0.87g(8.23mmol)、1,2-ジメトキシエタン(DME)10mL、及び水10mLを加え、次いで、テトラキス(トリフェニルホスフィン)パラジウム0.19g(0.17mmol)をさらに加えて、アルゴン雰囲気下にて8時間、加熱還流攪拌した。加熱還流攪拌の後、有機層を分取した。分取した有機層を減圧下で濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーにより精製した。展開溶媒としてジクロロメタンとn-ヘキサンの混合溶媒を用いた。精製後、得られた固体をメタノールで懸濁洗浄することにより、中間体(Int-1)を得た。収量は2.1g、収率は100%であった。
(2)中間体(Int-2)の合成
Figure JPOXMLDOC01-appb-C000127
 三口フラスコに、(メトキシメチル)トリフェニルホスホニウムクロリド1.7g(4.98mmol)、及びテトラヒドロフラン(THF)3.5mLを加え、次いで、カリウムt-ブトキシド0.61g(5.48mmol)を加え、赤色のイリド溶液を調製した。更に中間体(Int-1)2.1g(3.29mmol)のTHF溶液(5mL)を加えて、アルゴン雰囲気下にて2時間、攪拌した。水を加えて反応を停止した後、ジクロロメタンで有機層を抽出した。抽出した有機層を減圧下で濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーにより精製した。展開溶媒としてジクロロメタンとn-ヘキサンの混合溶媒を用いた。精製後、得られた固体をメタノールで懸濁洗浄することにより、中間体(Int-2)を得た。収量は1.8g、収率は82%であった。
(3)化合物BD-3の合成
Figure JPOXMLDOC01-appb-C000128
 三口フラスコに、中間体(Int-2)1.8g(2.72mmol)、ジクロロメタン25mLを加え、次いで、メタンスルホン酸0.26g(2.72mmol)を滴下し、0.5時間、撹拌した。炭酸水素ナトリウム水溶液を加えて反応を停止した後、ジクロロメタンで有機層を抽出した。抽出した有機層を減圧下で濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーにより精製した。展開溶媒としてジクロロメタンとn-ヘキサンの混合溶媒を用いた。精製後、得られた固体をメタノールで懸濁洗浄することにより、目的物(化合物BD-3)を黄色固体として得た。収量は0.84g、収率は49%であった。FD-MS(Field Desorption Mass Spectrometry)分析の結果、分子量628に対してm/e=628であった。なお、出発原料(SM-1)が異性体混合物(SM-1aとSM-1bとを含む混合物)であることに由来し、BD-3はBD-3aとBD-3bとを含む混合物であった。ただし、本合成実施例3の反応式中では、「SM-1」としてはSM-1aの構造のみを代表として示し、また「BD-3」としてはBD-3aの構造のみを代表として示した。中間体Int-1及びInt-2も、SM-1aから得られる中間体のみを代表として示したものである。
Figure JPOXMLDOC01-appb-C000129
・合成実施例4:化合物BD-4の合成
Figure JPOXMLDOC01-appb-C000130
 三口フラスコに、原料(SM-1:異性体混合物)1.0g(1.65mmol)、ジベンゾチオフェン-4-ボロン酸0.45g(1.98mmol)、2M炭酸ナトリウム水溶液2.5mL、及びトルエン20mLを加え、次いで、テトラキス(トリフェニルホスフィン)パラジウム0.08g(0.07mmol)をさらに加えて、窒素雰囲気下にて7時間、90℃で加熱攪拌した。加熱攪拌の後、室温に戻して、析出した固体を濾集した。得られた固体をトルエンに溶解し、シリカゲルを加えて攪拌した後、濾過及び濃縮して、BD-4を得た。収量は0.62g、収率は52%であった。
 FD-MS分析の結果、分子量710に対してm/e=710であった。なお、出発原料(SM-1)が異性体混合物(SM-1aとSM-1bとを含む混合物)であることに由来し、BD-4はBD-4aとBD-4bとを含む混合物であった。ただし、本合成実施例4の反応式中では、「SM-1」としてはSM-1aの構造のみを代表として示し、また「BD-4」としてはBD-4aの構造のみを代表として示した。
・合成実施例5:化合物BD-5の合成
Figure JPOXMLDOC01-appb-C000131
 三口フラスコに、原料(SM-1:異性体混合物)2.0g(3.29mmol)、ジベンゾフランン-4-ボロン酸0.84g(3.95mmol)、2M炭酸ナトリウム水溶液5mL、及びトルエン20mLを加え、次いで、テトラキス(トリフェニルホスフィン)パラジウム0.16g(0.14mmol)をさらに加えて、窒素雰囲気下にて7時間、90℃で加熱攪拌した。加熱攪拌の後、室温に戻して、析出した固体を濾集した。得られた固体をトルエンに溶解し、シリカゲルを加えて攪拌した後、濾過及び濃縮して、BD-5を得た。収量は2.08g、収率は91%であった。
 FD-MS分析の結果、分子量694に対してm/e=694であった。なお、出発原料(SM-1)が異性体混合物(SM-1aとSM-1bとを含む混合物)であることに由来し、BD-5はBD-5aとBD-5bとを含む混合物であった。ただし、本合成実施例5の反応式中では、「SM-1」としてはSM-1aの構造のみを代表として示し、また「BD-5」としてはBD-5aの構造のみを代表として示した。
・合成実施例6:化合物BD-6の合成
Figure JPOXMLDOC01-appb-C000132
 三口フラスコに、SM-1(異性体混合物)2.0g(3.29mmol)、ボロン酸(Int-61)1.31g(5.28mmol)、2M炭酸ナトリウム水溶液3.3mL、1,2-ジメトキシエタン(DME)22mL、及びトルエン11mLを加え、次いで、テトラキス(トリフェニルホスフィン)パラジウム0.08g(0.07mmol)をさらに加えて、窒素雰囲気下にて24時間、加熱還流攪拌した。加熱還流攪拌の後、反応溶液を室温まで冷却し、析出した固体を濾集した。得られた固体をトルエン-メタノール混合溶媒で懸濁洗浄し、次いで酢酸エチルで懸濁洗浄することにより、目的物(化合物BD-6)を得た。収量は0.77g、収率は32%であった。FD-MS分析の結果、分子量730に対してm/e=730であった。なお、出発原料(SM-1)が異性体混合物(SM-1aとSM-1bとを含む混合物)であることに由来し、化合物BD-6はBD-6aとBD-6bとを含む混合物であった。ただし、本合成実施例6の反応式中では、「SM-1」としてはSM-1aの構造のみを代表として示し、また「BD-6」としてはBD-6aの構造のみを代表として示した。
・合成実施例7:化合物BD-7の合成
Figure JPOXMLDOC01-appb-C000133
 Int-72は、国際公開第2011/086935号の合成例10に記載の方法におけるボロン酸をp-シアノフェニルボロン酸に変更することにより合成した。
 三口フラスコに、SM-72(異性体混合物)0.66g(1.00mmol)、Int-72 0.38g(1.00mmol)、2M炭酸ナトリウム水溶液1mL、及び1,2-ジメトキシエタン(DME)10mLを加え、次いで、PdCl(Amphos) 28mg(0.04mmol)をさらに加えて、窒素雰囲気下にて24時間、加熱還流攪拌した。加熱還流攪拌の後、反応溶液を室温まで冷却し、析出した固体を濾集した。得られた固体をシリカゲルカラムクロマトグラフィー(展開溶媒:トルエン)で精製し、精製後、得られた固体をメタノールで懸濁洗浄することにより、目的物(化合物BD-7)を得た。収量は0.61g、収率は80%であった。FD-MS分析の結果、分子量755に対してm/e=755であった。なお、出発原料(SM-72)が異性体混合物(SM-72aとSM-72bとを含む混合物)であることに由来し、化合物BD-7はBD-7aとBD-7bとを含む混合物であった。ただし、本合成実施例7の反応式中では、「SM-72」としてはSM-72aの構造のみを代表として示し、また「BD-7」としてはBD-7aの構造のみを代表として示した。-OTfは、トリフルオロメタンスルホニルオキシ基(トリフルオロメタンスルホネイト)を略記したものである。Amphosは、[4-(N,N-ジメチルアミノ)フェニル]ジ-tert-ブチルホスフィンを略記したものである。
Figure JPOXMLDOC01-appb-C000134
・合成実施例8:化合物BD-8の合成
 本合成実施例8において下記の通り合成した化合物BD-8は、化合物BD-8a及び化合物BD-8bを含む混合物であった。
(1)中間体(Int-81)の合成
Figure JPOXMLDOC01-appb-C000135
 アルゴン雰囲気下にて三口フラスコに、原料(SM-81)2.0g(4.46mmol)、2-アセチルフェニルボロン酸1.07g(5.35mmol)、炭酸ナトリウム1.18g(11.2mmol)、1,2-ジメトキシエタン(DME)10mL、及び水10mLを加え、次いで、テトラキス(トリフェニルホスフィン)パラジウム0.10g(0.089mmol)をさらに加えて、6.5時間、加熱還流攪拌した。加熱還流攪拌の後、有機層を分取した。分取した有機層を減圧下で濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーにより精製した。展開溶媒として酢酸エチルとn-ヘキサンの混合溶媒を用いた。精製後、得られた固体をメタノールで懸濁洗浄することにより、中間体(Int-81)を得た。収量は2.1g、収率は90%であった。
(2)中間体(Int-82)の合成
Figure JPOXMLDOC01-appb-C000136
 アルゴン雰囲気下にて三口フラスコに、中間体(Int-81)2.1g(4.02mmol)、及びテトラヒドロフラン(THF)60mLを加えた。次いで、三口フラスコ中の溶液を0℃まで冷却し、1Mのメチルリチウム(MeLi)のTHF溶液(4.82ml)を加えて、1時間、攪拌した。攪拌後、水を加えて反応を停止した後、ジクロロメタンで有機層を抽出した。抽出した有機層を減圧下で濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーにより精製した。展開溶媒としてジクロロメタンとn-ヘキサンの混合溶媒を用いた。精製後、得られた固体をメタノールで懸濁洗浄することにより、中間体(Int-82)を得た。収量は1.5g、収率は69%であった。
(3)化合物BD-8a及びBD-8bの合成
Figure JPOXMLDOC01-appb-C000137
 三口フラスコに、中間体(Int-82)1.5g(2.78mmol)、及びジクロロメタン300mLを加え、次いで、メタンスルホン酸0.27g(2.78mmol)を滴下し、1時間、撹拌した。撹拌後、炭酸水素ナトリウム水溶液を加えて反応を停止した後、ジクロロメタンで有機層を抽出した。抽出した有機層を減圧下で濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーにより精製した。展開溶媒としてジクロロメタンとn-ヘキサンの混合溶媒を用いた。精製後、得られた固体をメタノールで懸濁洗浄することにより、目的物(化合物BD-8aと化合物BD-8bとを含む混合物)を黄色固体として得た。収量は1.05g、収率は72%であった。FD-MS分析の結果、分子量520に対してm/e=520であった。なお、化合物BD-8a及び化合物BD-8bを含む混合物から化合物BD-8aを少量単離することができたので、当該混合物のトルエン溶液の発光スペクトルと、単離した化合物BD-8aのトルエン溶液の発光スペクトルとを比較したところ、同一のスペクトル形状であった。
・合成実施例9:化合物BD-10の合成
(1-1)中間体8Aの合成
Figure JPOXMLDOC01-appb-C000138
 三口フラスコに、アルゴン雰囲気下にて、原料(SM-1:異性体混合物)3.0g(4.94mmol)、2-ニトロフェニルボロン酸ピナコールエステル2.5g(9.88mmol)、及び1,2-ジメトキシエタン(DME)30mLを加え、次いで、PdCl(dppf)/CHCl0.16g(0.2mmol)を加えた後、2M炭酸ナトリウム水溶液7.4mLを加えてから、80℃で6時間加熱攪拌した。加熱攪拌の後、室温に戻して析出した固体を濾集した。得られた固体をトルエンに溶解し、シリカゲルを加えて攪拌した後、濾過、濃縮して、中間体8Aを得た。収量は2.74g、収率は85%であった。
 (1-2)中間体8Bの合成
Figure JPOXMLDOC01-appb-C000139
 三口フラスコに、中間体8A 2.1g(3.23mmol)、トリフェニルホスフィン(PPh)2.12g(8.08mmol)、及びオルトジクロロベンゼン(o-DCB)20mLを加えて、アルゴン雰囲気下にて、140℃で24時間加熱攪拌した。反応途中で、トリフェニルホスフィン2.11gを追加装入した。溶媒を減圧下で留去した後、得られた残渣をシリカゲルカラムクロマトグラフィー(移動相;ヘキサン:トルエン=2:1(体積比))で精製することにより、中間体8Bを得た。収量は1.59g、収率は75%であった。
 (3)化合物BD-10の合成
Figure JPOXMLDOC01-appb-C000140
 三口フラスコに、アルゴン雰囲気下にて、中間体8B1.57g(2.54mmol)、ブロモベンゼン0.6g(3.81mmol)、Pd(dba) 47mg(0.051mmol)、t-BuP-HBF0.13g(0.20mmol)、及びt-BuONa0.34g(3.56mmol)を加えた後、トルエン20mLを加えて、105℃で7時間加熱攪拌した。加熱攪拌の後、室温に戻して析出した固体を濾集した。得られた固体をクロロベンゼンに溶解し、シリカゲルを加えて攪拌した後、濾過、濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(移動相;ヘキサン:トルエン=2:1(体積比))で精製した。さらに、酢酸エチルで懸濁洗浄することにより、BD-10を得た。収量は0.78g、収率は44%であった。FD-MS分析の結果、分子量693に対してm/e=693であった。なお、出発原料(SM-1)が異性体混合物(SM-1aとSM-1bとの混合物)であることに由来し、BD-10はBD-10aとBD-10bとの混合物であった。ただし、本合成実施例9の反応式中では、「SM-1」としてはSM-1aの構造のみを代表として示し、また「BD-10」としてはBD-10aの構造のみを代表として示し、中間体8A及び中間体8Bも、SM-1aから得られる中間体のみを代表として示した。
・合成実施例10:化合物BD-11の合成
Figure JPOXMLDOC01-appb-C000141
 三口フラスコに、アルゴン雰囲気下にて、中間体8B2.33g(3.77mmol)、4-ブロモベンゾニトリル1.37g(7.53mmol)、Pd(dba)0.14g(0.15mmol)、XPhos0.29g(0.61mmol)、及びt-BuONa0.51g(5.27mmol)を加えた後、トルエン20mLを加えて、100℃で15時間加熱攪拌した。加熱攪拌の後、室温に戻して析出した固体を濾集した。得られた固体をクロロベンゼンに溶解し、シリカゲルを加えて攪拌した後、濾過、濃縮し、得られた固体をメタノールで懸濁洗浄することにより、BD-11を得た。収量は2.19g、収率は81%であった。FD-MS分析の結果、分子量718に対してm/e=718であった。なお、出発原料(SM-1)が異性体混合物(SM-1aとSM-1bとの混合物)であることに由来し、BD-11はBD-11aとBD-11bとの混合物であった。ただし、本合成実施例10の反応式中では、「BD-11」としてはBD-11aの構造のみを代表として示し、中間体8Bも、SM-1aから得られる中間体の構造のみを代表として示した。
・合成実施例11:化合物BD-12の合成
Figure JPOXMLDOC01-appb-C000142
 三口フラスコに、原料(SM-1:異性体混合物)1.0g(1.65mmol)、9-フェニルカルバゾール-4-ボロン酸0.57g(1.98mmol)、2M炭酸ナトリウム水溶液2.5mL、及びトルエン10mLを加え、次いで、テトラキス(トリフェニルホスフィン)パラジウム76mg(0.066mmol)をさらに加えて、アルゴン雰囲気下にて7時間、90℃で加熱攪拌した。加熱攪拌の後、室温に戻して析出した固体を濾集した。得られた固体をトルエンに溶解し、シリカゲルを加えて攪拌した後、濾過、濃縮して、BD-12を得た。収量は0.65g、収率は51%であった。FD-MS分析の結果、分子量769に対してm/e=769であった。なお、出発原料(SM-1)が異性体混合物(SM-1aとSM-1bとの混合物)であることに由来し、BD-12はBD-12aとBD-12bとの混合物であった。ただし、本合成実施例11の反応式中では、「SM-1」としてはSM-1aの構造のみを代表として示し、「BD-12」としてはBD-12aの構造のみを代表として示した。
・合成実施例12:化合物BD-13の合成
Figure JPOXMLDOC01-appb-C000143
 三口フラスコに、SM-1(異性体混合物)2.0g(3.29mmol)、9-フェニルカルバゾール-3-ボロン酸1.42g(4.94mmol)、2M炭酸ナトリウム水溶液5mL、及びトルエン20mLを加え、次いで、テトラキス(トリフェニルホスフィン)パラジウム0.15g(0.13mmol)をさらに加えて、アルゴン雰囲気下にて4時間、90℃で加熱攪拌した。加熱攪拌の後、室温に戻して析出した固体を濾集した。得られた固体をトルエンに溶解し、シリカゲルを加えて攪拌した後、濾過、濃縮した。得られた固体をエタノールで洗浄することにより、BD-13を得た。収量は0.85g、収率は33%であった。FD-MS分析の結果、分子量769に対してm/e=769であった。なお、出発原料(SM-1)が異性体混合物(SM-1aとSM-1bとの混合物)であることに由来し、BD-13はBD-13aとBD-13bとの混合物であった。ただし、本合成実施例12の反応式中では、「SM-1」としてはSM-1aの構造のみを代表として示し、「BD-13」としてはBD-13aの構造のみを代表として示した。
<化合物の評価>
 化合物の性質を測定する方法を以下に示す。
[遅延蛍光性]
 遅延蛍光性は図2に示す装置を利用して過渡PLを測定することにより確認した。前記化合物TADF-1と前記化合物TH-2とを、化合物TADF-1の割合が12質量%となるように石英基板上に共蒸着し、膜厚100nmの薄膜を形成して試料を作製した。前記化合物TADF-1が吸収する波長のパルス光(パルスレーザーから照射される光)で励起された後、当該励起状態から即座に観察されるPrompt発光(即時発光)と、当該励起後、即座には観察されず、その後観察されるDelay発光(遅延発光)とが存在する。本実施例における遅延蛍光発光とは、Delay発光(遅延発光)の量がPrompt発光(即時発光)の量に対して5%以上を意味する。具体的には、Prompt発光(即時発光)の量をXとし、Delay発光(遅延発光)の量をXとしたときに、X/Xの値が0.05以上であることを意味する。
 化合物TADF-1について、Delay発光(遅延発光)の量がPrompt発光(即時発光)の量に対して5%以上あることが確認された。具体的には、化合物TADF-1について、X/Xの値が0.05以上であることが確認された。
 Prompt発光とDelay発光の量は、“Nature 492, 234-238, 2012”に記載された方法と同様の方法により求めることができる。なお、Prompt発光とDelay発光の量の算出に使用される装置は、図2の装置や文献に記載された装置に限定されない。
・一重項エネルギーS
 化合物TADF-1、化合物BD-1、化合物BD-2、化合物BD-3、化合物BD-4、化合物BD-5、化合物BD-6、化合物BD-7、化合物BD-8、化合物BD-9、化合物BD-10、化合物BD-11、化合物BD-12、及び化合物BD-13の一重項エネルギーSを、前述の溶液法により測定した。
 測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000144
 化合物DPEPOの一重項エネルギーは、文献(APPLIED PHYSICS LETTERS 101, 093306 (2012))に記載されているように、4.0eVである。
[化合物の発光ピーク波長]
(発光スペクトル)
 第二の化合物の発光スペクトルは、次の方法で測定した。
 測定対象となる化合物の5μmol/Lトルエン溶液を調製して石英セルに入れ、常温(300K)でこの試料の発光スペクトル(縦軸:発光強度、横軸:波長とする。)を測定した。本実施例では、発光スペクトルを日立社製の分光光度計(装置名:F-7000)で測定した。なお、発光スペクトル測定装置は、ここで用いた装置に限定されない。
 発光スペクトルにおいて、発光強度が最大となる発光スペクトルのピーク波長を発光ピーク波長とした。
 化合物BD-1の発光ピーク波長は445nmであった。
 化合物BD-2の発光ピーク波長は455nmであった。
 化合物BD-3の発光ピーク波長は448nmであった。
 化合物BD-4の発光ピーク波長は452nmであった。
 化合物BD-5の発光ピーク波長は452nmであった。
 化合物BD-6の発光ピーク波長は462nmであった。
 化合物BD-7の発光ピーク波長は459nmであった。
 化合物BD-8の発光ピーク波長は449nmであった。
 化合物BD-9の発光ピーク波長は438nmであった。
 化合物BD-10の発光ピーク波長は462nmであった。
 化合物BD-11の発光ピーク波長は460nmであった。
 化合物BD-12の発光ピーク波長は454nmであった。
 化合物BD-13の発光ピーク波長は463nmであった。
[モル吸光係数ε]
 モル吸光係数εは、吸収スペクトルの最も長波長側に位置する吸収ピークの吸収強度を溶液濃度で除して算出した。モル吸光係数εの単位は、L/(mol・cm)とした。最も長波長側に位置する吸収ピークは、350nm以上500nm以下の波長範囲に出現する最大吸収ピークの10分の1以上の吸収強度を持つピークのうち、最も長波長側に出現するピークとした。
(吸収スペクトル)
 第二の化合物の吸収スペクトルは、次の方法で測定した。
 測定対象となる化合物の20μmol/Lトルエン溶液を調製して石英セルに入れ、常温(300K)でこの試料の吸収スペクトル(縦軸:吸収強度、横軸:波長とする。)を測定した。本実施例では、吸収スペクトルを日立社製の分光光度計(装置名:U3310)で測定した。なお、吸収スペクトル測定装置は、ここで用いた装置に限定されない。
[ストークスシフトss]
 ストークスシフトssは、発光スペクトルの発光ピーク波長から吸収スペクトルのモル吸光係数を求めた吸収ピーク波長を減じて算出した。ストークスシフトssの単位は、nmとした。
 表3に各化合物のモル吸光係数、発光ピーク波長、吸収ピーク波長、及びストークスシフトを示す。
Figure JPOXMLDOC01-appb-T000145
<有機EL素子の作製>
 有機EL素子を以下のように作製し、評価した。
(実施例1)
 25mm×75mm×1.1mm厚のITO透明電極(陽極)付きガラス基板(ジオマテック社製)を、イソプロピルアルコール中で、5分間、超音波洗浄を行なった。この超音波洗浄の後、UVオゾン洗浄を30分間行なった。ITOの膜厚は、130nmとした。
 これら洗浄後の前記ガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に透明電極を覆うようにして化合物HIを蒸着し、膜厚5nmの正孔注入層を形成した。
 次に、正孔注入層の上に、化合物HT1を蒸着し、膜厚80nmの第一正孔輸送層を形成した。
 次に、この第一正孔輸送層の上に、化合物HT2を蒸着し、膜厚10nmの第二正孔輸送層を形成した。
 次に、この第二正孔輸送層の上に、化合物mCPを蒸着し、膜厚5nmの電子障壁層を形成した。
 次に、この電子障壁層の上に、第一の化合物としての化合物TADF-1と、第二の化合物としての化合物BD-1と、第三の化合物としての化合物DPEPOとを共蒸着し、膜厚25nmの発光層を形成した。発光層における化合物BD-1の濃度を1質量%とし、化合物TADF-1の濃度を24質量%とし、化合物DPEPOの濃度を75質量%とした。
 次に、この発光層の上に、化合物ET-1を蒸着し、膜厚5nmの正孔障壁層を形成した。
 次に、この正孔障壁層の上に、化合物ET-2を蒸着し、膜厚20nmの電子輸送層を形成した。
 次に、この電子輸送層の上に、フッ化リチウム(LiF)を蒸着し、膜厚1nmの電子注入性電極(陰極)を形成した。
 そして、この電子注入性電極上に、金属アルミニウム(Al)を蒸着し、膜厚80nmの金属Al陰極を形成した。
 実施例1の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 ITO(130)/HI(5)/HT1(80)/HT2(10)/mCP(5)/DPEPO:TADF-1:BD-1(25, 24%, 1%)/ET-1(5)/ET-2(20)/LiF(1)/Al(80)
 なお、括弧内の数字は、膜厚(単位:nm)を示す。また、同じく括弧内において、パーセント表示された数字は、先に示されているのが発光層における第一の化合物の割合であり、後に示されているのが第二の化合物の割合であり、それら割合の単位は質量%である。
(実施例2)
 実施例2の有機EL素子は、実施例1の発光層における化合物BD-1に代えて、化合物BD-2を用いたこと以外、実施例1と同様にして作製した。
 実施例2の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 ITO(130)/HI(5)/HT1(80)/HT2(10)/mCP(5)/DPEPO:TADF-1:BD-2(25, 24%, 1%)/ET-1(5)/ET-2(20)/LiF(1)/Al(80)
(実施例3)
 実施例3の有機EL素子は、実施例1の発光層における化合物BD-1に代えて、化合物BD-3を用いたこと以外、実施例1と同様にして作製した。
 実施例3の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 ITO(130)/HI(5)/HT1(80)/HT2(10)/mCP(5)/DPEPO:TADF-1:BD-3(25, 24%, 1%)/ET-1(5)/ET-2(20)/LiF(1)/Al(80)
(実施例4)
 実施例4の有機EL素子は、実施例1の発光層における化合物BD-1に代えて、化合物BD-4を用いたこと以外、実施例1と同様にして作製した。
 実施例4の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 ITO(130)/HI(5)/HT1(80)/HT2(10)/mCP(5)/DPEPO:TADF-1:BD-4(25, 24%, 1%)/ET-1(5)/ET-2(20)/LiF(1)/Al(80)
(実施例5)
 実施例5の有機EL素子は、実施例1の発光層における化合物BD-1に代えて、化合物BD-5を用いたこと以外、実施例1と同様にして作製した。
 実施例5の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 ITO(130)/HI(5)/HT1(80)/HT2(10)/mCP(5)/DPEPO:TADF-1:BD-5(25, 24%, 1%)/ET-1(5)/ET-2(20)/LiF(1)/Al(80)
(実施例6)
 実施例6の有機EL素子は、実施例1の発光層における化合物BD-1に代えて、化合物BD-6を用いたこと以外、実施例1と同様にして作製した。
 実施例6の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 ITO(130)/HI(5)/HT1(80)/HT2(10)/mCP(5)/DPEPO:TADF-1:BD-6(25, 24%, 1%)/ET-1(5)/ET-2(20)/LiF(1)/Al(80)
(実施例7)
 実施例7の有機EL素子は、実施例1の発光層における化合物BD-1に代えて、化合物BD-7を用いたこと以外、実施例1と同様にして作製した。
 実施例7の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 ITO(130)/HI(5)/HT1(80)/HT2(10)/mCP(5)/DPEPO:TADF-1:BD-7(25, 24%, 1%)/ET-1(5)/ET-2(20)/LiF(1)/Al(80)
(実施例8)
 実施例8の有機EL素子は、実施例1の発光層における化合物BD-1に代えて、化合物BD-8を用いたこと以外、実施例1と同様にして作製した。
 実施例8の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 ITO(130)/HI(5)/HT1(80)/HT2(10)/mCP(5)/DPEPO:TADF-1:BD-8(25, 24%, 1%)/ET-1(5)/ET-2(20)/LiF(1)/Al(80)
(実施例9)
 実施例9の有機EL素子は、実施例1の発光層における化合物BD-1に代えて、化合物BD-9を用いたこと以外、実施例1と同様にして作製した。
 実施例9の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 ITO(130)/HI(5)/HT1(80)/HT2(10)/mCP(5)/DPEPO:TADF-1:BD-9(25, 24%, 1%)/ET-1(5)/ET-2(20)/LiF(1)/Al(80)
(実施例10)
 実施例10の有機EL素子は、実施例1の発光層における化合物BD-1に代えて、化合物BD-10を用いたこと以外、実施例1と同様にして作製した。
 実施例10の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 ITO(130)/HI(5)/HT1(80)/HT2(10)/mCP(5)/DPEPO:TADF-1:BD-10(25, 24%, 1%)/ET-1(5)/ET-2(20)/LiF(1)/Al(80)
(実施例11)
 実施例11の有機EL素子は、実施例1の発光層における化合物BD-1に代えて、化合物BD-11を用いたこと以外、実施例1と同様にして作製した。
 実施例11の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 ITO(130)/HI(5)/HT1(80)/HT2(10)/mCP(5)/DPEPO:TADF-1:BD-11(25, 24%, 1%)/ET-1(5)/ET-2(20)/LiF(1)/Al(80)
(実施例12)
 実施例12の有機EL素子は、実施例1の発光層における化合物BD-1に代えて、化合物BD-12を用いたこと以外、実施例1と同様にして作製した。
 実施例12の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 ITO(130)/HI(5)/HT1(80)/HT2(10)/mCP(5)/DPEPO:TADF-1:BD-12(25, 24%, 1%)/ET-1(5)/ET-2(20)/LiF(1)/Al(80)
(実施例13)
 実施例13の有機EL素子は、実施例1の発光層における化合物BD-1に代えて、化合物BD-13を用いたこと以外、実施例1と同様にして作製した。
 実施例13の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 ITO(130)/HI(5)/HT1(80)/HT2(10)/mCP(5)/DPEPO:TADF-1:BD-13(25, 24%, 1%)/ET-1(5)/ET-2(20)/LiF(1)/Al(80)
(比較例1)
 比較例1の有機EL素子は、実施例1の発光層における化合物BD-1に代えて、化合物TBPeを用いたこと以外、実施例1と同様にして作製した。
 比較例1の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 ITO(130)/HI(5)/HT1(80)/HT2(10)/mCP(5)/DPEPO:TADF-1:TBPe(25, 24%, 1%)/ET-1(5)/ET-2(20)/LiF(1)/Al(80)
(比較例2)
 比較例2の有機EL素子は、実施例1の発光層における化合物BD-1に代えて、化合物Ref-1を用いたこと以外、実施例1と同様にして作製した。
 比較例2の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 ITO(130)/HI(5)/HT1(80)/HT2(10)/mCP(5)/DPEPO:TADF-1:Ref-1(25, 24%, 1%)/ET-1(5)/ET-2(20)/LiF(1)/Al(80)
(比較例3)
 比較例3の有機EL素子は、実施例1の発光層における化合物BD-1に代えて、化合物Ref-2を用いたこと以外、実施例1と同様にして作製した。
 比較例3の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 ITO(130)/HI(5)/HT1(80)/HT2(10)/mCP(5)/DPEPO:TADF-1:Ref-2(25, 24%, 1%)/ET-1(5)/ET-2(20)/LiF(1)/Al(80)
(比較例4)
 比較例4の有機EL素子は、実施例1の発光層における化合物BD-1に代えて、化合物Ref-3を用いたこと以外、実施例1と同様にして作製した。
 比較例4の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 ITO(130)/HI(5)/HT1(80)/HT2(10)/mCP(5)/DPEPO:TADF-1:Ref-3(25, 24%, 1%)/ET-1(5)/ET-2(20)/LiF(1)/Al(80)
(比較例5)
 比較例5の有機EL素子は、実施例1の発光層における化合物BD-1に代えて、化合物Ref-4を用いたこと以外、実施例1と同様にして作製した。
 比較例5の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 ITO(130)/HI(5)/HT1(80)/HT2(10)/mCP(5)/DPEPO:TADF-1:Ref-4(25, 24%, 1%)/ET-1(5)/ET-2(20)/LiF(1)/Al(80)
<有機EL素子の評価>
 作製した有機EL素子について、以下の評価を行った。評価結果を表4に示す。
・外部量子効率EQE
 電流密度が0.1mA/cmとなるように素子に電圧を印加した時の分光放射輝度スペクトルを分光放射輝度計CS-1000(コニカミノルタ社製)で計測した。得られた分光放射輝度スペクトルから、ランバシアン放射を行なったと仮定し外部量子効率EQE(単位:%)を算出した。
Figure JPOXMLDOC01-appb-T000146
 遅延蛍光性の第一の化合物及び所定の発光ピーク波長、モル吸光係数、及びストークスシフトの特性を兼ね備えた蛍光発光性の第二の化合物を発光層に含む実施例1~13の有機EL素子によれば、比較例1~5の有機EL素子に比べて、高効率で青色の波長領域の光を発した。
 1…有機EL素子、3…陽極、4…陰極、5…発光層、7…正孔輸送層、8…電子輸送層。

Claims (21)

  1.  陽極と、
     発光層と、
     陰極と、を有し、
     前記発光層は、第一の化合物、及び第二の化合物を含み、
     前記第一の化合物は、遅延蛍光性の化合物であり、
     前記第二の化合物は、蛍光発光性の化合物であり、
     前記第二の化合物のトルエン溶液の発光ピーク波長が430nm以上480nm以下であり、
     前記第二の化合物の最も長波長側に位置する吸収ピークにおけるモル吸光係数は、29,000L/(mol・cm)以上1,000,000L/(mol・cm)以下であり、
     前記第二の化合物のストークスシフトは、1nm以上20nm以下である、
     有機エレクトロルミネッセンス素子。
  2.  請求項1に記載の有機エレクトロルミネッセンス素子において、
     前記第二の化合物のトルエン溶液の発光ピーク波長が435nm以上465nm以下である、
     有機エレクトロルミネッセンス素子。
  3.  請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子において、
     前記第二の化合物のストークスシフトは、4nm以上18nm以下である、
     有機エレクトロルミネッセンス素子。
  4.  請求項1から請求項3のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記第二の化合物のストークスシフトは、5nm以上17nm以下である、
     有機エレクトロルミネッセンス素子。
  5.  請求項1から請求項4のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記第二の化合物のモル吸光係数は、30,000L/(mol・cm)以上250,000L/(mol・cm)以下である、
     有機エレクトロルミネッセンス素子。
  6.  請求項1から請求項5のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記第二の化合物は、置換または無置換の芳香族化合物であって、縮合する環数が5以上15以下である縮合環を含む、
     有機エレクトロルミネッセンス素子。
  7.  請求項6に記載の有機エレクトロルミネッセンス素子において、
     前記第二の化合物の前記縮合環は、5員環を含む、
     有機エレクトロルミネッセンス素子。
  8.  請求項1から請求項7のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記第二の化合物は、水素原子、炭素原子、窒素原子、酸素原子、及び硫黄原子からなる群から選択される複数の元素で構成される芳香族化合物である、
     有機エレクトロルミネッセンス素子。
  9.  請求項1から請求項8のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記第一の化合物の一重項エネルギーS(M1)と、前記第二の化合物の一重項エネルギーS(M2)とが、下記数式(数1)の関係を満たす、
     有機エレクトロルミネッセンス素子。
       S(M1)>S(M2)   …(数1)
  10.  請求項1から請求項9のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記発光層は、さらに第三の化合物を含み、
     前記第一の化合物の一重項エネルギーS(M1)と、前記第三の化合物の一重項エネルギーS(M3)とが、下記数式(数2)の関係を満たす、
     有機エレクトロルミネッセンス素子。
       S(M3)>S(M1)   …(数2)
  11.  請求項10に記載の有機エレクトロルミネッセンス素子において、
     前記第三の化合物の77[K]におけるエネルギーギャップT77Kは、前記第二の化合物の77[K]におけるエネルギーギャップT77Kよりも大きい、
     有機エレクトロルミネッセンス素子。
  12.  請求項10又は請求項11に記載の有機エレクトロルミネッセンス素子において、
     前記第三の化合物の77[K]におけるエネルギーギャップT77Kは、前記第一の化合物の77[K]におけるエネルギーギャップT77Kよりも大きい、有機エレクトロルミネッセンス素子。
  13.  請求項10から請求項12のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記発光層における前記第一の化合物の含有率が、10質量%以上80質量%以下である
     有機エレクトロルミネッセンス素子。
  14.  請求項1から請求項13のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記第一の化合物の77[K]におけるエネルギーギャップT77Kは、前記第二の化合物の77[K]におけるエネルギーギャップT77Kよりも大きい、
     有機エレクトロルミネッセンス素子。
  15.  請求項1から請求項14のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記第一の化合物は、下記一般式(10)で表される化合物である、
     有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001

    (前記一般式(10)において、
     Aは、下記一般式(a-1)~(a-7)からなる群から選ばれる部分構造を有する基であり、
     複数のAは、互いに同一であるか又は異なり、
     A同士が結合して飽和もしくは不飽和の環を形成するか又は環を形成せず、
     Bは、下記一般式(b-1)~(b-6)からなる群から選ばれる部分構造を有する基であり、
     複数のBは、互いに同一であるか又は異なり、
     B同士が結合して飽和もしくは不飽和の環を形成するか又は環を形成せず、
     a、b、及びdは、それぞれ独立に、1~5の整数であり、
     cは、0~5の整数であり、
     cが0のとき、AとBとは単結合又はスピロ結合で結合し、
     cが1~5の整数のとき、Lは、
     置換または無置換の環形成炭素数6~30の芳香族炭化水素基、及び
     置換または無置換の環形成原子数5~30の複素環基からなる群から選択される連結基であり、
     複数のLは、互いに同一であるか又は異なり、
     cが2~5の整数のとき、複数のL同士が結合して飽和もしくは不飽和の環を形成するか又は環を形成しない。)
    Figure JPOXMLDOC01-appb-C000002

    Figure JPOXMLDOC01-appb-C000003

    (前記一般式(b-1)~(b-6)において、
     Rは、それぞれ独立に、水素原子または置換基であり、置換基としてのRは、
      置換または無置換の環形成炭素数6~30のアリール基、
      置換または無置換の環形成原子数5~30のヘテロアリール基、及び
      置換または無置換の炭素数1~30のアルキル基からなる群から選択される基であり、
     複数のRは、互いに同一であるか又は異なり、
     R同士が結合して飽和もしくは不飽和の環を形成するか又は環を形成しない。)
  16.  請求項15に記載の有機エレクトロルミネッセンス素子において、
     Aは、前記一般式(a-1)、(a-2)、(a-3)及び(a-5)からなる群から選ばれる部分構造を有する基である、
     有機エレクトロルミネッセンス素子。
  17.  請求項15又は請求項16に記載の有機エレクトロルミネッセンス素子において、
     Bは、前記一般式(b-2)、(b-3)及び(b-4)からなる群から選ばれる部分構造を有する基である、
     有機エレクトロルミネッセンス素子。
  18.  請求項1から請求項17のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記第一の化合物は、下記一般式(11)で表される化合物である、
     有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000004

    (前記一般式(11)において、
     Azは、置換または無置換のピリジン環、置換または無置換のピリミジン環、置換または無置換のトリアジン環、及び置換または無置換のピラジン環からなる群から選択される環構造であり、
     cは0~5の整数であり、
     Lは、
      置換または無置換の環形成炭素数6~30の芳香族炭化水素基、及び
      置換または無置換の環形成原子数5~30の複素環基からなる群から選択される連結基であり、
     cが0のとき、CzとAzとが単結合で結合し、
     cが2~5の整数のとき、複数のL同士が結合して環を形成するか又は環を形成せず、
     複数のLは、互いに同一であるか又は異なり、
     Czは、下記一般式(12)で表される。)
    Figure JPOXMLDOC01-appb-C000005

    (前記一般式(12)中、
     X11~X18は、それぞれ独立に、窒素原子又はC-Rxであり、
     Rxは、それぞれ独立に、水素原子又は置換基であり、置換基としてのRxは、
      置換または無置換の環形成炭素数6~30のアリール基、
      置換または無置換の環形成原子数5~30のヘテロアリール基、
      置換または無置換の炭素数1~30のアルキル基、
      置換または無置換の炭素数1~30のフルオロアルキル基、
      置換または無置換の環形成炭素数3~30のシクロアルキル基、
      置換または無置換の炭素数7~30のアラルキル基、
      置換ホスフォリル基、
      置換シリル基、
      シアノ基、
      ニトロ基、及び
      カルボキシ基からなる群から選択される基であり、
     複数のRxは、互いに同一であるか又は異なり、
     X11~X18の内、複数がC-Rxであって、Rxが置換基である場合、Rx同士が結合して環を形成するか又は環を形成せず、
     *は、Lで表される連結基の構造中の炭素原子との結合部位、又はAzで表される環構造中の炭素原子との結合部位を表す。)
  19.  請求項1から請求項18のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記陽極と前記発光層との間に正孔輸送層を含む、
     有機エレクトロルミネッセンス素子。
  20.  請求項1から請求項19のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記陰極と前記発光層との間に電子輸送層を含む、
     有機エレクトロルミネッセンス素子。
  21.  請求項1から請求項20のいずれか一項に記載の有機エレクトロルミネッセンス素子を備える電子機器。
PCT/JP2017/007024 2016-02-24 2017-02-24 有機エレクトロルミネッセンス素子、及び電子機器 WO2017146192A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018501785A JP6754422B2 (ja) 2016-02-24 2017-02-24 有機エレクトロルミネッセンス素子、及び電子機器
KR1020187023046A KR20180114033A (ko) 2016-02-24 2017-02-24 유기 일렉트로루미네센스 소자 및 전자 기기
EP17756627.0A EP3422431B1 (en) 2016-02-24 2017-02-24 Organic electroluminescent element and electronic device
CN201780011348.2A CN108701771B (zh) 2016-02-24 2017-02-24 有机电致发光元件和电子设备
US16/079,328 US20190081249A1 (en) 2016-02-24 2017-02-24 Organic electroluminescent element and electronic device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016-033672 2016-02-24
JP2016033672 2016-02-24
JP2016-196045 2016-10-03
JP2016196045 2016-10-03
JP2016219254 2016-11-09
JP2016-219254 2016-11-09

Publications (1)

Publication Number Publication Date
WO2017146192A1 true WO2017146192A1 (ja) 2017-08-31

Family

ID=59685566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007024 WO2017146192A1 (ja) 2016-02-24 2017-02-24 有機エレクトロルミネッセンス素子、及び電子機器

Country Status (6)

Country Link
US (1) US20190081249A1 (ja)
EP (1) EP3422431B1 (ja)
JP (1) JP6754422B2 (ja)
KR (1) KR20180114033A (ja)
CN (1) CN108701771B (ja)
WO (1) WO2017146192A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186462A1 (ja) * 2017-04-07 2018-10-11 コニカミノルタ株式会社 蛍光発光性化合物、有機材料組成物、発光性膜、有機エレクトロルミネッセンス素子材料及び有機エレクトロルミネッセンス素子
WO2019194298A1 (ja) * 2018-04-05 2019-10-10 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
WO2020040298A1 (ja) * 2018-08-23 2020-02-27 学校法人関西学院 有機電界発光素子、表示装置、照明装置、発光層形成用組成物、および化合物
WO2020101001A1 (ja) * 2018-11-15 2020-05-22 学校法人関西学院 有機電界発光素子、表示装置、および照明装置
CN111269170A (zh) * 2018-12-05 2020-06-12 乐金显示有限公司 有机化合物、具有该化合物的有机发光二极管和有机发光装置
US11271164B2 (en) * 2016-10-03 2022-03-08 Idemitsu Kosan Co., Ltd Compound, composition, organic electroluminescent element and electronic device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10446778B2 (en) * 2017-10-16 2019-10-15 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. OLED panel, OLED display and manufacturing method of OLED panel
KR20200072546A (ko) 2017-11-02 2020-06-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 표시 장치, 전자 기기, 및 조명 장치
US11217762B2 (en) * 2018-11-30 2022-01-04 Universal Display Corporation Surface-plasmon-pumped light emitting devices
US20210257575A1 (en) * 2020-01-30 2021-08-19 Samsung Display Co., Ltd. Light-emitting device and electronic apparatus
CN113321677B (zh) * 2021-06-30 2023-05-05 京东方科技集团股份有限公司 一种热活化延迟荧光材料、有机发光器件及显示装置
FR3142651A1 (fr) 2022-12-02 2024-06-07 Loïc CHARUEL Procédé de fabrication d'un élément de guidage d'une ligne de canne à pêche

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008867A (ja) * 2000-04-21 2002-01-11 Tdk Corp 有機el素子
JP2008530063A (ja) * 2005-02-15 2008-08-07 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) 不飽和ジピロメテン−ボロンホウ素炭素
JP2010270103A (ja) 2009-04-23 2010-12-02 Canon Inc 新規有機化合物および発光素子および画像表示装置
WO2011086935A1 (ja) 2010-01-15 2011-07-21 出光興産株式会社 含窒素複素環誘導体及びそれを含んでなる有機エレクトロルミネッセンス素子
JP2011231086A (ja) * 2010-04-30 2011-11-17 Canon Inc 新規有機化合物およびそれを有する有機発光素子
WO2012153780A1 (ja) 2011-05-11 2012-11-15 出光興産株式会社 新規化合物、有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
JP2013503152A (ja) * 2009-08-27 2013-01-31 イエダ リサーチ アンド ディベロップメント カンパニー リミテッド オリゴフラン類、ポリフラン類、それらの作製および使用
WO2013038650A1 (ja) 2011-09-13 2013-03-21 出光興産株式会社 縮合複素芳香族誘導体、有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2013180241A1 (ja) 2012-06-01 2013-12-05 出光興産株式会社 有機エレクトロルミネッセンス素子および有機エレクトロルミネッセンス素子用材料
WO2014092083A1 (ja) 2012-12-10 2014-06-19 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2014104346A1 (ja) 2012-12-28 2014-07-03 出光興産株式会社 有機エレクトロルミネッセンス素子
JP2014232861A (ja) * 2013-04-30 2014-12-11 キヤノン株式会社 有機発光素子
WO2015022988A1 (ja) * 2013-08-16 2015-02-19 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、発光装置、照明装置、表示装置及び電子機器
JP2015144224A (ja) * 2013-12-26 2015-08-06 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
JP2015173263A (ja) * 2014-02-21 2015-10-01 株式会社半導体エネルギー研究所 有機化合物、発光素子、ディスプレイモジュール、照明モジュール、発光装置、表示装置、電子機器及び照明装置
JP2016006033A (ja) * 2014-04-23 2016-01-14 シャープ株式会社 化合物、標識剤、太陽電池モジュール、太陽光発電装置、有機薄膜太陽電池、表示装置及び有機el素子
WO2016158540A1 (ja) * 2015-03-27 2016-10-06 出光興産株式会社 有機エレクトロルミネッセンス素子、電子機器、および化合物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070126347A1 (en) * 2005-12-01 2007-06-07 Eastman Kodak Company OLEDS with improved efficiency
JP5777408B2 (ja) * 2011-05-30 2015-09-09 キヤノン株式会社 縮合多環化合物及びこれを用いた有機発光素子
JP6021389B2 (ja) * 2012-04-05 2016-11-09 キヤノン株式会社 有機発光素子
JP6342419B2 (ja) * 2012-12-21 2018-06-13 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセント素子のための材料
WO2014104315A1 (ja) * 2012-12-28 2014-07-03 出光興産株式会社 有機エレクトロルミネッセンス素子

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008867A (ja) * 2000-04-21 2002-01-11 Tdk Corp 有機el素子
JP2008530063A (ja) * 2005-02-15 2008-08-07 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) 不飽和ジピロメテン−ボロンホウ素炭素
JP2010270103A (ja) 2009-04-23 2010-12-02 Canon Inc 新規有機化合物および発光素子および画像表示装置
JP2013503152A (ja) * 2009-08-27 2013-01-31 イエダ リサーチ アンド ディベロップメント カンパニー リミテッド オリゴフラン類、ポリフラン類、それらの作製および使用
WO2011086935A1 (ja) 2010-01-15 2011-07-21 出光興産株式会社 含窒素複素環誘導体及びそれを含んでなる有機エレクトロルミネッセンス素子
JP2011231086A (ja) * 2010-04-30 2011-11-17 Canon Inc 新規有機化合物およびそれを有する有機発光素子
WO2012153780A1 (ja) 2011-05-11 2012-11-15 出光興産株式会社 新規化合物、有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
WO2013038650A1 (ja) 2011-09-13 2013-03-21 出光興産株式会社 縮合複素芳香族誘導体、有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2013180241A1 (ja) 2012-06-01 2013-12-05 出光興産株式会社 有機エレクトロルミネッセンス素子および有機エレクトロルミネッセンス素子用材料
WO2014092083A1 (ja) 2012-12-10 2014-06-19 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2014104346A1 (ja) 2012-12-28 2014-07-03 出光興産株式会社 有機エレクトロルミネッセンス素子
JP2014232861A (ja) * 2013-04-30 2014-12-11 キヤノン株式会社 有機発光素子
WO2015022988A1 (ja) * 2013-08-16 2015-02-19 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、発光装置、照明装置、表示装置及び電子機器
JP2015144224A (ja) * 2013-12-26 2015-08-06 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
JP2015173263A (ja) * 2014-02-21 2015-10-01 株式会社半導体エネルギー研究所 有機化合物、発光素子、ディスプレイモジュール、照明モジュール、発光装置、表示装置、電子機器及び照明装置
JP2016006033A (ja) * 2014-04-23 2016-01-14 シャープ株式会社 化合物、標識剤、太陽電池モジュール、太陽光発電装置、有機薄膜太陽電池、表示装置及び有機el素子
WO2016158540A1 (ja) * 2015-03-27 2016-10-06 出光興産株式会社 有機エレクトロルミネッセンス素子、電子機器、および化合物

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
APPLIED PHYSICS LETTERS, vol. 101, 2012, pages 093306
BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, vol. 1978, no. 2, 1978, pages 212 - 216
CHEMICAL COMMUNICATIONS, 2013, pages 10385 - 10387
HAJIME NAKANOTANI ET AL.: "High-efficiency organic light-emitting diodes with fluorescent emitters", NATURE COMMUNICATIONS, vol. 5, 2014, pages 4016
NATURE PHOTONICS, 2014, pages 326 - 332
NATURE, vol. 492, 2012, pages 234 - 238
See also references of EP3422431A4
YUKI HANDO-TAI; DEBAISU BUSSEI: "Device Physics of Organic Semiconductors", 1 April 2012, KODANSHA, pages: 261 - 268
YUKI HANDO-TAI; DEBAISU BUSSEI: "Device Physics of Organic Semiconductors", KODANSHA, pages: 261 - 268

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11271164B2 (en) * 2016-10-03 2022-03-08 Idemitsu Kosan Co., Ltd Compound, composition, organic electroluminescent element and electronic device
WO2018186462A1 (ja) * 2017-04-07 2018-10-11 コニカミノルタ株式会社 蛍光発光性化合物、有機材料組成物、発光性膜、有機エレクトロルミネッセンス素子材料及び有機エレクトロルミネッセンス素子
WO2019194298A1 (ja) * 2018-04-05 2019-10-10 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
CN112020778A (zh) * 2018-04-05 2020-12-01 出光兴产株式会社 有机电致发光元件和电子设备
WO2020040298A1 (ja) * 2018-08-23 2020-02-27 学校法人関西学院 有機電界発光素子、表示装置、照明装置、発光層形成用組成物、および化合物
CN113169285A (zh) * 2018-08-23 2021-07-23 学校法人关西学院 有机电致发光元件、显示装置、照明装置、发光层形成用组合物和化合物
JPWO2020040298A1 (ja) * 2018-08-23 2021-09-24 学校法人関西学院 有機電界発光素子、表示装置、照明装置、発光層形成用組成物、および化合物
JP7388658B2 (ja) 2018-08-23 2023-11-29 学校法人関西学院 有機電界発光素子、表示装置、照明装置、発光層形成用組成物、および化合物
WO2020101001A1 (ja) * 2018-11-15 2020-05-22 学校法人関西学院 有機電界発光素子、表示装置、および照明装置
CN111269170A (zh) * 2018-12-05 2020-06-12 乐金显示有限公司 有机化合物、具有该化合物的有机发光二极管和有机发光装置
US11641776B2 (en) 2018-12-05 2023-05-02 Lg Display Co., Ltd. Organic compound, organic light emitting diode and organic light emitting device having the compound
CN111269170B (zh) * 2018-12-05 2024-03-05 乐金显示有限公司 有机化合物、具有该化合物的有机发光二极管和有机发光装置

Also Published As

Publication number Publication date
KR20180114033A (ko) 2018-10-17
EP3422431B1 (en) 2021-11-03
EP3422431A4 (en) 2019-09-18
CN108701771A (zh) 2018-10-23
EP3422431A1 (en) 2019-01-02
JP6754422B2 (ja) 2020-09-09
JPWO2017146192A1 (ja) 2018-12-20
CN108701771B (zh) 2021-09-10
US20190081249A1 (en) 2019-03-14

Similar Documents

Publication Publication Date Title
JP6761796B2 (ja) 有機エレクトロルミネッセンス素子、電子機器、および化合物
JP7252959B2 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、および電子機器
JP6754422B2 (ja) 有機エレクトロルミネッセンス素子、及び電子機器
WO2018181188A1 (ja) 有機エレクトロルミネッセンス素子および電子機器
JP6742236B2 (ja) 有機エレクトロルミネッセンス素子および電子機器
WO2018088472A1 (ja) 化合物、組成物、有機エレクトロルミネッセンス素子、及び電子機器
JP6378106B2 (ja) 化合物、有機エレクトロルミネッセンス素子および電子機器
JP2016115940A (ja) 有機エレクトロルミネッセンス素子および電子機器
WO2015198988A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子用材料、および電子機器
WO2017146191A1 (ja) 有機エレクトロルミネッセンス素子、及び電子機器
JP6829583B2 (ja) 化合物、組成物、有機エレクトロルミネッセンス素子、及び電子機器
WO2018066536A1 (ja) 化合物、組成物、有機エレクトロルミネッセンス素子、及び電子機器
WO2017115788A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
KR20220038370A (ko) 유기 일렉트로루미네센스 소자 및 전자 기기
JP2020050650A (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、および電子機器
JP6387311B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子用材料、および電子機器
JP2020158425A (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
CN113892194A (zh) 有机电致发光元件以及电子设备
JP2021020857A (ja) 化合物、有機エレクトロルミネッセンス素子及び電子機器
WO2017065295A1 (ja) 有機エレクトロルミネッセンス素子および電子機器
WO2018180830A1 (ja) 有機エレクトロルミネッセンス素子、電子機器、及び化合物
JP2019137617A (ja) 化合物、有機エレクトロルミネッセンス素子、及び電子機器
JP6433935B2 (ja) 有機エレクトロルミネッセンス素子および電子機器
JP2018076260A (ja) 化合物、組成物、有機エレクトロルミネッセンス素子、及び電子機器
JP2018139275A (ja) 有機エレクトロルミネッセンス素子、化合物、組成物、および電子機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018501785

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017756627

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017756627

Country of ref document: EP

Effective date: 20180924

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756627

Country of ref document: EP

Kind code of ref document: A1