JP6673203B2 - 有機エレクトロルミネッセンス素子 - Google Patents

有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
JP6673203B2
JP6673203B2 JP2016538395A JP2016538395A JP6673203B2 JP 6673203 B2 JP6673203 B2 JP 6673203B2 JP 2016538395 A JP2016538395 A JP 2016538395A JP 2016538395 A JP2016538395 A JP 2016538395A JP 6673203 B2 JP6673203 B2 JP 6673203B2
Authority
JP
Japan
Prior art keywords
group
ring
compound
organic
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016538395A
Other languages
English (en)
Other versions
JPWO2016017688A1 (ja
Inventor
池水 大
大 池水
威人 並川
威人 並川
周穂 谷本
周穂 谷本
鈴木 隆嗣
隆嗣 鈴木
康生 宮田
康生 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2016017688A1 publication Critical patent/JPWO2016017688A1/ja
Application granted granted Critical
Publication of JP6673203B2 publication Critical patent/JP6673203B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D473/00Heterocyclic compounds containing purine ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D473/00Heterocyclic compounds containing purine ring systems
    • C07D473/26Heterocyclic compounds containing purine ring systems with an oxygen, sulphur, or nitrogen atom directly attached in position 2 or 6, but not in both
    • C07D473/32Nitrogen atom
    • C07D473/34Nitrogen atom attached in position 6, e.g. adenine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/12Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains three hetero rings
    • C07D513/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Description

本発明は、有機エレクトロルミネッセンス素子に関する。より詳しくは、発光効率が改良された有機エレクトロルミネッセンス素子に関する。
有機材料のエレクトロルミネッセンス(Electro Luminescence:以下「EL」と略記する。)を利用した有機EL素子(「有機電界発光素子」ともいう。)は、平面発光を可能とする新しい発光システムとして既に実用化されている技術である。有機EL素子は、電子ディスプレイはもとより、最近では照明機器にも適用され、その発展が期待されている。
有機ELの発光方式としては、三重項励起状態から基底状態に戻る際に光を発する「リン光発光」と、一重項励起状態から基底状態に戻る際に光を発する「蛍光発光」の二通りがある。
有機EL素子に電界をかけると、陽極と陰極からそれぞれ正孔と電子が注入され、発光層において再結合し励起子を生じる。このとき一重項励起子と三重項励起子とが25%:75%の割合で生成するため、三重項励起子を利用するリン光発光の方が、蛍光発光に比べ、理論的に高い内部量子効率が得られることが知られている。
しかしながら、リン光発光方式において実際に高い量子効率を得るためには、中心金属にイリジウムや白金などの希少金属を用いた錯体を用いる必要があり、将来的に希少金属の埋蔵量や金属自体の値段が産業上大きな問題となることが懸念される。
一方で、蛍光発光型においても発光効率を向上させるために様々な開発がなされており、近年新しい動きが出てきた。
例えば、特許文献1には、二つの三重項励起子の衝突により一重項励起子が生成する現象(以下、Triplet−Triplet Annihilation:以下、適宜「TTA」と略記する。また、Triplet−Triplet Fusion:「TTF」ともいう。)に着目し、TTAを効率的に起こして蛍光素子の高効率化を図る技術が開示されている。この技術により蛍光発光材料(以下、蛍光発光性材料、蛍光材料ともいう。)の発光効率は従来の蛍光発光材料の2〜3倍まで向上しているが、TTAにおける理論的な一重項励起子生成効率は40%程度にとどまるため、依然としてリン光発光に比べ高発光効率化の課題を有している。
さらに、近年では、安達らにより、熱活性化型遅延蛍光(「熱励起型遅延蛍光」ともいう:Thermally Activated Delayed Fluorescence:以下、適宜「TADF」と略記する。)機構を利用した蛍光発光材料と、有機EL素子への利用の可能性が報告されている(例えば、非特許文献1〜7、特許文献2参照。)。
TADF機構は、図1Aに示すように、通常の蛍光発光性化合物に比べ、一重項励起エネルギー準位と三重項励起エネルギー準位の差(ΔEst)が小さい化合物(図1Aでは、ΔEst(TADF)がΔEst(F)よりも小さい。)を用いた場合に、三重項励起子から一重項励起子への逆項間交差が生じる現象を利用した発光機構である。すなわち、ΔEstが小さいことによって、電界励起により75%の確率で発生する三重項励起子が、本来なら発光に寄与できないところ、有機EL素子駆動時の熱エネルギーなどで一重項励起状態に遷移し、その状態から基底状態へ輻射失活(「輻射遷移」又は「放射失活」ともいう。)し蛍光発光を起こすものである。このTADF機構による遅延蛍光を利用すると、蛍光発光においても、理論的には100%の内部量子効率が可能となると考えられている。
さらに、ホスト化合物と発光性化合物を含有する発光層に、TADF性を示す化合物を第三成分(発光補助材料、アシストドーパントともいう。)として発光層に含めると、高発光効率の発現に有効であることが知られている(例えば、非特許文献8参照。)。アシストドーパントとして働く化合物上に25%の一重項励起子と75%の三重項励起子を電界励起により発生させることによって、三重項励起子は逆項間交差(RISC)を伴って一重項励起子を生成することができる。
一重項励起子のエネルギーは、発光性化合物へエネルギー移動し、発光性化合物が発光することが可能となる。したがって、理論上100%の励起子エネルギーを利用して、発光性化合物を発光させることが可能となり、高発光効率を実現することができる。
しかしながら、TADF機構を利用した蛍光発光性化合物には、強い電子ドナー部位と強い電子アクセプター部位からなるその分子内CT性の強さから、一般的にLUMOの準位が深い傾向にある。
このような状態にある分子は、有機EL素子の発光層に使用した場合には、電子をトラップする傾向にあると考えられる。したがって、発光層内で正孔輸送性と電子輸送性のバランス、すなわち電荷輸送性のバランスが悪くなり、多くの場合は電子輸送層界面で発光すると考えられる。
電荷輸送性が悪い場合、発光層内では再結合の起こる範囲が狭かったり、経時での再結合の位置がずれるなどして、発光効率の低下や、経時での輝度の低下、すなわち素子寿命の劣化を招く原因となる。
蛍光発光性化合物の中で、含窒素芳香族化合物は、その電子欠乏性のために、電子求引性の高い材料(アクセプター)として古くから知られており、多くは電子輸送材料や発光ホストとして使用されている(例えば、特許文献3及び4参照。)。
また近年、安達らにより開発されたTADF分子にも含窒素芳香族化合物が採用されている。(例えば、特許文献5参照。)
しかしながら、これらの化合物の多くは、π共役系が広く、凝集しやすいという欠点を有している。加えて、窒素原子を多く含む化合物は分子のエネルギー準位が深くなりすぎる傾向にあり、そのため、有機EL素子で使用する場合には電子のトラップ傾向が強まり、電荷のバランスの調整が難しい点で不向きであった。
国際公開第2010/134350号 特開2013−116975号公報 特開2004−103576号公報 米国特許第8685543号明細書 国際公開第2013/133359号
「照明に向けた燐光有機EL技術の開発」応用物理 第80巻、第4号、2011年 H.Uoyama,et al.,Nature,2012,492,234−238 S.Y.Lee et al.,Applied Physics Letters,2012,101,093306−093309 Q.Zhang et al.,J.Am.Chem.Soc.,2012,134,14706−14709 T.Nakagawa et al.,Chem.Commun., 2012,48,9580−9582 A.Endo et al.,Adv.Mater.,2009,21,4802−4806 有機EL討論会 第10回例会予稿集 p11−12,2010 H.Nakanоtani,et al.,Nature Communicaion,2014,5,4016−4022.
本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、発光効率を向上させることが可能な有機エレクトロルミネッセンス素子を提供することである
本発明者は、上記課題を解決すべく、上記問題の原因等について検討した結果、アクセプター部位に特定構造を有する化合物が、有効な発光材料又は発光補助材料として、有機エレクトロルミネッセンス素子に適用できることを見出し本発明に至った。
すなわち、本発明に係る上記課題は、以下の手段により解決される。
1.陽極と陰極の間に、少なくとも一層の発光層を含む有機層を有する有機エレクトロルミネッセンス素子であって、
当該有機層の少なくとも一層が、分子内に電子のアクセプター部位とドナー部位とを有するπ共役系化合物と、蛍光発光性化合物及びリン光発光性化合物のうち少なくとも1種類と、ホスト化合物とを含有し、
当該アクセプター部位が、三環以下の縮合環で構成されており、14個以下のπ電子を含み芳香族性を有し、かつ、
当該縮合環が、1個又は2個の窒素原子を有する6員の芳香族複素環を含み、
前記ホスト化合物が、下記一般式(I)で表される構造を有することを特徴とする有機エレクトロルミネッセンス素子。
Figure 0006673203
(一般式(I)中、X 101 は、酸素原子、硫黄原子、CR 102 103 又はSiR 102 103 を表す。y 〜y は、各々CR 104 又は窒素原子を表す。R 101 〜R 104 は、各々水素原子又は置換基を表し、また互いに結合して環を形成してもよい。Ar 101 及びAr 102 は、各々芳香環を表し、それぞれ同一でも異なっていてもよい。n101及びn102は、各々0〜4の整数を表すが、R 101 が水素原子の場合は、n101は1〜4の整数を表す。)
2.前記一般式(I)中、X 101 が、酸素原子又は硫黄原子を表すことを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
3.前記ホスト化合物が、下記化合物群から選ばれる化合物であることを特徴とする請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子。
Figure 0006673203
.前記π共役系化合物のアクセプター部位が、10個のπ電子を含み、下記一般式(1)で表される構造を有することを特徴とする第1項から第3項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
Figure 0006673203
(式中、A〜Aは、各々独立に、C−R又は窒素原子を表すが、A〜Aのうち少なくとも1つは窒素原子を表す。Rは、水素原子又は置換基を表し、複数のRが存在する場合は、各々のRは同一でも異なっていてもよく、互いに結合して環を形成してもよい。環Bは、6員の芳香族炭化水素環基若しくは芳香族複素環基、又は5員の芳香族複素環基を表す。)
.前記π共役系化合物のアクセプター部位が、10個のπ電子を含み、下記一般式(2)で表される構造を有することを特徴とする第1項から第4項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
Figure 0006673203
(式中、A〜Aは、各々独立に、C−R又は窒素原子を表すが、A〜Aのうち2つは窒素原子を表す。Rは、水素原子又は置換基を表し、複数のRが存在する場合は、各々のRは同一でも異なっていてもよく、互いに結合して環を形成してもよい。環Bは5員の芳香族複素環基を表す。B〜Bは、炭素原子、窒素原子、酸素原子又はリン原子を表し、これらの原子は各々独立に水素原子又は置換基で置換されていてもよい。)
.前記π共役系化合物のアクセプター部位が、14個のπ電子を含み、下記一般式(4)で表される構造を有することを特徴とする第1項から第3項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
Figure 0006673203
(式中、A〜A14は、各々独立に、C−R又は窒素原子を表すが、A〜A14のうち少なくとも1つは窒素原子を表す。Rは、水素原子又は置換基を表し、複数のRが存在する場合は、各々のRは同一でも異なっていてもよく、互いに結合して環を形成してもよい。)
.前記π共役系化合物が、下記一般式(C)で表される構造を有することを特徴とする第1項から第項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
Figure 0006673203
(式中、A〜Aは、各々独立に、C−R又は窒素原子を表すが、A〜Aのうち少なくとも1つは窒素原子である。Rは、水素原子又は置換基を表し、複数のRが存在する場合は、各々のRは同一でも異なっていてもよく、互いに結合して環を形成してもよい。Rは、さらに前記置換基で置換されていてもよい。Rは、水素原子又は置換基を表し、複数のRが存在する場合は、各々のRは同一でも異なっていてもよく、互いに結合して環を形成してもよい。Rは、さらに前記置換基で置換されていてもよい。Dはドナー部位を表し、nは1〜4の整数を表す。環Bは、6員の芳香族炭化水素環基若しくは芳香族複素環基、又は5員の芳香族複素環基を表し、さらに縮合環を形成してもよい。)
.前記π共役系化合物の最低励起一重項準位と最低励起三重項準位とのエネルギー差の絶対値(ΔEst)が、0.5eV以下であることを特徴とする第1項から第項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
本発明の上記手段により、発光効率を向上させることが可能な有機エレクトロルミネッセンス素子を提供することができる
本発明の効果の発現機構又は作用機構については、明確にはなっていないが、以下のように推察している。
有機分子の中には、HOMOとLUMOがある一定の重なりをもち、それが発光の強度(振動子強度)と相関することは古くから知られている。しかしながら、有機分子の中には、HOMOとLUMOが分離しているものも多く見られる。
例えば、分子内にドナー部位とアクセプター部位を両方備える分子である。このような場合、HOMOはドナー部位、LUMOはアクセプター部位に局在化することが多く、特に、巨大分子の両末端にドナー、アクセプター部位を有する場合には、HOMOとLUMOは、分子の両末端に存在することになる。
このような場合、有機分子は、自身の持つ電荷をHOMO−LUMO遷移の間で行うことと同義となり、すなわち分子内電荷移動(CT)性が強いといえる。
このような現象は、ドナー部位のドナー性が強く、アクセプター部位のアクセプター性が強い場合に顕著に見られる。
アクセプター性の強さはその部位の電子求引性の強さを表しているため、分子に電子求引性基を有していない通常の化合物と比べてHOMO−LUMO準位が全体的に深くなり、特にLUMO準位がより深くなる傾向にある。
一方、電子供与性基として一般的に知られているアリールアミン、カルバゾールは、ホスト化合物の部分骨格として用いられることが知られている。すなわち、アリールアミンやカルバゾールをπ共役系化合物の部分骨格として導入した場合であっても、そのドナー性の強さから、HOMO−LUMO準位は通常のホスト化合物にアリールアミンやカルバゾールを部分骨格として導入した場合に比べ大きくは変化しない。
さらに、ドナー部位、アクセプター部位のバリエーションの観点から見れば、ドナー部位よりも圧倒的にアクセプター部位として用いられる部分骨格の種類が多いのが現状である。すなわち、LUMO準位はHOMO準位に比べ比較的深くなりやすいといえる。
このような場合、π共役系化合物を有機EL素子のような電子デバイスに使用すると、正孔は分子のHOMO準位を経由し(ホッピングし)円滑に移動できるが、LUMO準位が深く、トラップ性が強いために、正孔と比較すると電子のホッピングが妨げられ、結果として電荷輸送性に偏りが生じると考えられる。
以下の表1は、アクセプター部位としてよく知られているものについて、分子軌道計算法を用いて構造最適化計算を行った結果を示している。
π共役系化合物の分子軌道計算による構造最適化及び電子密度分布の算出は、計算手法として、汎関数としてM06−2X、基底関数として6−31G(d)を用いた分子軌道計算用ソフトウェアGaussian09を用いた。
Figure 0006673203
この表1から、アクセプター部位として、同じ環中に窒素原子の数が増えたり、縮合環が含まれると、エネルギー準位が深くなり、分子としての電子トラップ性が向上すると考えられ、アクセプター中の窒素の数や縮合環の環員数の調整が発光層における再結合領域の拡大に伴う発光効率や、寿命向上と大きく関係すると考えられる。
さらに、分子内のπ平面のコントロールも発光効率や寿命に大きく影響する。すなわち、分子内に大きなπ平面を有することで、分子同士がπスタッキングし凝集しやすいことはよく知られており、銅フタロシアニンがπスタックの凝集による長波化はよく知られるところである。
有機EL材料においても、πスタックの凝集により濃度消光が起こり、同時に長波化するケースが見られる。従って、これらを抑制するためには、π平面の大きさのコントロールと、立体障害又はねじれによる分子の非平面化が必要となってくる。技術の詳細は後述するπ共役系化合物にて記述する。
通常の蛍光発光性化合物及びTADF化合物のエネルギーダイヤグラムを示した模式図 アシストドーパントが存在する場合のエネルギーダイヤグラムを示した模式図 本発明のπ共役系化合物がホスト化合物として機能する場合のエネルギーダイヤグラムを示した模式図 有機EL素子から構成される表示装置の一例を示した模式図 アクティブマトリクス方式による表示装置の模式図 画素の回路を示した概略図 パッシブマトリクス方式による表示装置の模式図 照明装置の概略図 照明装置の模式図
本発明の有機エレクトロルミネッセンス素子は、陽極と陰極の間に、少なくとも一層の発光層を含む有機層を有する有機エレクトロルミネッセンス素子であって、当該有機層の少なくとも一層が、分子内に電子のアクセプター部位とドナー部位とを有するπ共役系化合物と、蛍光発光性化合物及びリン光発光性化合物のうち少なくとも1種類と、ホスト化合物とを含有し、当該アクセプター部位が、三環以下の縮合環で構成されており、14個以下のπ電子を含み芳香族性を有し、かつ、当該縮合環が、1個又は2個の窒素原子を有する6員の芳香族複素環を含み、前記ホスト化合物が、前記一般式(I)で表される構造を有することを特徴とする。この特徴は、本実施形態に係る発明に共通する又は対応する特徴である。
本発明の実施形態としては、前記π共役系化合物のアクセプター部位が、10個のπ電子を含み、前記一般式(1)で表される構造を有することが好ましい。これにより、化合物同士の凝集を抑制できるためである。
本発明の実施形態としては、前記π共役系化合物のアクセプター部位が、10個のπ電子を含み、前記一般式(2)で表される構造を有することが好ましい。これにより、更に化合物同士の凝集を抑制できるためである。
本発明の実施形態としては、前記π共役系化合物のアクセプター部位が、14個のπ電子を含み、前記一般式(4)で表される構造を有することが好ましい。これにより、更に化合物のアクセプター性を増強できるためである。
本発明の実施形態としては、前記π共役系化合物が、前記一般式(C)で表される構造を有することが好ましい。これにより、ドナー部位とアクセプター部位の分離が容易になり、ΔEstを小さくすることが可能になるためである。
本発明の実施形態としては、前記π共役系化合物の最低励起一重項準位と最低励起三重項準位とのエネルギー差の絶対値(ΔEst)が、0.5eV以下であることが好ましい。これにより、本来禁制であった最低励起三重項エネルギー準位から最低励起一重項エネルギー準位への項間交差が起こりうるためである。
本発明の実施形態としては、前記発光層が、前記π共役系化合物と、蛍光発光性化合物及びリン光発光性化合物のうち少なくとも1種類とを含有することが好ましい。これにより、π共役系化合物がホスト化合物として働き、蛍光発光性化合物又はリン光発光性化合物の発光が促進されるためである。
本発明の実施形態としては、前記発光層が、前記π共役系化合物と、蛍光発光性化合物及びリン光発光性化合物のうち少なくとも1種類と、ホスト化合物とを含有することが好ましい。これにより、蛍光発光性化合物又はリン光発光性化合物の発光が促進されるためである。
本発明の実施形態としては、前記ホスト化合物が、前記一般式(I)で表される構造を有することが好ましい。これにより、π共役系化合物、蛍光発光性化合物又はリン光発光性化合物と好ましい相互作用をすることで、発光効率の向上及び素子寿命の向上が可能になるためである。
本発明の実施形態としては、前記一般式(I)で表される構造を有するホスト化合物が、前記一般式(II)で表される構造を有することが好ましい。これにより、前記効果を更に促進するためである。
本発明の有機エレクトロルミネッセンス素子は、表示装置に好適に具備され得る。これにより、発光性の高い、長寿命な表示装置を提供することが可能になる。
本発明の有機エレクトロルミネッセンス素子は、照明装置に好適に具備され得る。これにより、発光性の高い、長寿命な照明装置を提供することが可能になる。
本発明のπ共役系化合物は、分子内に電子のアクセプター部位とドナー部位とを有し、当該アクセプター部位が、三環以下の縮合環で構成されており、14個以下のπ電子を含み芳香族性を有し、かつ、当該縮合環が、1個又は2個の窒素原子を有する6員の芳香族複素環部位を含むことを特徴とする。これにより、化合物同士の凝集性を抑制し、かつ素子の電荷バランスを調整することができる。
本発明のπ共役系化合物としては、前記アクセプター部位が、10個のπ電子を含み、前記一般式(1)で表される構造を有することが好ましい。これにより、化合物同士の凝集性をさらに抑制できるためである。
本発明のπ共役系化合物としては、前記アクセプター部位が、10個のπ電子を含み、前記一般式(2)で表される構造を有することが好ましい。これにより、化合物同士の凝集性をさらに好ましく抑制できるためである。
本発明のπ共役系化合物としては、前記アクセプター部位が、14個のπ電子を含み、前記一般式(4)で表される構造を有することが好ましい。これにより、化合物のアクセプター性をさらに好ましく増強できるためである。
本発明のπ共役系化合物としては、前記一般式(C)で表される構造を有することが好ましい。これにより、ドナー部位とアクセプター部位の分離が容易になり、ΔEstを小さくすることが可能になるためである。
本発明のπ共役系化合物としては、最低励起一重項準位と最低励起三重項準位とのエネルギー差の絶対値(ΔEst)が、0.5eV以下であることが好ましい。これにより、本来禁制であった最低励起三重項エネルギー準位から最低励起一重項エネルギー準位への項間交差が起こりうるためである。
本発明のπ共役系化合物が、発光性薄膜に好適に含有され得る。これにより、発光効率の高い、長寿命な発光性薄膜が得られるためである。
本発明の発光性薄膜が、表示装置に好適に用いられ得る。これにより、消費電力の低い表示装置が提供できるためである。
以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「〜」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
本論に入る前に、本発明の技術思想と関連する、有機ELの発光方式及び発光材料について述べる。
<有機ELの発光方式>
有機ELの発光方式としては三重項励起状態から基底状態に戻る際に光を発する「リン光発光」と、一重項励起状態から基底状態に戻る際に光を発する「蛍光発光」の二通りがある。
有機ELのような電界で励起する場合には、三重項励起子が75%の確率で、一重項励起子が25%の確率で生成するため、リン光発光の方が蛍光発光に比べ発光効率を高くすることが可能で、低消費電力化を実現するには優れた方式である。
一方、蛍光発光においても、75%の確率で生成してしまう、通常では、励起子のエネルギーが、無輻射失活により、熱にしかならない三重項励起子を、高密度で存在させることによって、二つの三重項励起子から一つの一重項励起子を発生させて発光効率を向上させるTTA(Triplet−Triplet Annihilation、また、Triplet−Triplet Fusion:「TTF」と略記する。)機構を利用した方式が見つかっている。
さらに、近年では、安達らの発見により一重項励起状態と三重項励起状態のエネルギーギャップを小さくすることで、発光中のジュール熱及び/又は発光素子が置かれる環境温度によりエネルギー準位の低い三重項励起状態から一重項励起状態に逆項間交差がおこり、結果としてほぼ100%に近い蛍光発光を可能とする現象(熱励起型遅延蛍光又は熱励起型遅延蛍光ともいう:「TADF」)とそれを可能にする蛍光物質が見いだされている(例えば、非特許文献1等参照。)。
<リン光発光性化合物>
前述のとおり、リン光発光は発光効率的には蛍光発光よりも理論的には3倍有利であるが、三重項励起状態から一重項基底状態へのエネルギー失活(=リン光発光)は禁制遷移であり、また同様に一重項励起状態から三重項励起状態への項間交差も禁制遷移であるため、通常その速度定数は小さい。すなわち、遷移が起こりにくいため、励起子寿命はミリ秒から秒オーダーと長くなり、所望の発光を得ることが困難である。
ただし、イリジウムや白金などの重金属を用いた錯体が発光する場合には、中心金属の重原子効果によって、前記の禁制遷移の速度定数が3桁以上増大し、配位子の選択によっては、100%のリン光量子収率を得ることも可能となる。
しかしながら、このような理想的な発光を得るためには、希少金属であるイリジウムやパラジウム、白金などのいわゆる白金属と呼ばれる貴金属を用いる必要があり、大量に使用されることになるとその埋蔵量や金属自体の値段が産業上大きな問題となってくる。
<蛍光発光性化合物>
一般的な蛍光発光性化合物は、リン光発光性化合物のような重金属錯体である必要性は特になく、炭素、酸素、窒素及び水素などの一般的な元素の組み合わせから構成される、いわゆる有機化合物が適用でき、さらに、リンや硫黄、ケイ素などその他の非金属元素を用いることも可能で、また、アルミニウムや亜鉛などの典型金属の錯体も活用できるなど、その多様性はほぼ無限と言える。
ただし、従来の蛍光化合物では前記のように励起子の25%しか発光に適用できないために、リン光発光のような高効率発光は望めない。
<遅延蛍光化合物>
[励起三重項−三重項消滅(TTA)遅延蛍光化合物]
蛍光発光性化合物の問題点を解決すべく登場したのが遅延蛍光を利用した発光方式である。三重項励起子同士の衝突を起源とするTTA方式は、下記のような一般式で記述できる。すなわち、従来、励起子のエネルギーが、無輻射失活により、熱にしか変換されなかった三重項励起子の一部が、発光に寄与しうる一重項励起子に逆項間交差できるメリットがあり、実際の有機EL素子においても従来の蛍光発光素子の約2倍の外部取り出し量子効率を得ることができている。
一般式: T* + T* → S* + S
(式中、T*は三重項励起子、S*は一重項励起子、Sは基底状態分子を表す。)
しかしながら、上式からもわかるように、二つの三重項励起子から発光に利用できる一重項励起子は一つしか生成しないため、この方式で100%の内部量子効率を得ることは原理上できない。
[熱活性型遅延蛍光(TADF)化合物]
もう一つの高効率蛍光発光であるTADF方式は、TTAの問題点を解決できる方式である。
蛍光発光性化合物は前記のごとく無限に分子設計できる利点を持っている。すなわち、分子設計された化合物の中で、特異的に三重項励起状態と一重項励起状態のエネルギー準位差の絶対値(以降、ΔEstと記載する。)が極めて近接する化合物が存在する(図1A参照)。
このような化合物は、分子内に重原子を持っていないにもかかわらず、ΔEstが小さいために通常では起こりえない三重項励起状態から一重項励起状態への逆項間交差が起こる。さらに、一重項励起状態から基底状態への失活(=蛍光発光)の速度定数が極めて大きいことから、三重項励起子はそれ自体が基底状態に熱的に失活(無輻射失活)するよりも、一重項励起状態経由で蛍光を発しながら基底状態に戻る方が速度論的に有利である。そのため、TADFでは理想的には100%の蛍光発光が可能となる。
<ΔEstに関する分子設計思想>
上記ΔEstを小さくするための分子設計について説明する。
ΔEstを小さくするためには、原理上分子内の最高被占軌道(Highest Occupied Molecular Orbital:HOMO)と最低空軌道(Lowest Unoccupied Molecular Orbital:LUMO)の空間的な重なりを小さくすることが最も効果的である。
一般に分子の電子軌道において、HOMOは電子供与性部位に、LUMOは電子求引性部位に分布することが知られており、分子内に電子供与性と電子求引性の骨格を導入することによって、HOMOとLUMOが存在する位置を遠ざけることが可能である。
例えば、前述の非特許文献1においては、シアノ基やスルホニル基、トリアジンなどの電子求引性の骨格と、カルバゾールやジフェニルアミノ基等の電子供与性の骨格とを導入することで、LUMOとHOMOとをそれぞれ局在化させている。
また、化合物の基底状態と三重項励起状態との分子構造変化を小さくすることも効果的である。構造変化を小さくするための方法としては、例えば、化合物を剛直にすることなどが効果的である。ここで述べる剛直とは、例えば、分子内の環と環との結合における自由回転を抑制したり、またπ共役面の大きい縮合環を導入するなど、分子内において自由に動ける部位が少ないことを意味する。特に、発光に関与する部位を剛直にすることによって、励起状態における構造変化を小さくすることが可能である。
<TADF化合物が抱える一般的な問題>
TADF化合物は、その発光機構及び分子構造の面から種々の問題を抱えている。
以下に、一般的にTADF化合物が抱える問題の一部について記載する。
TADF化合物においては、ΔEstを小さくするためにHOMOとLUMOの存在する部位をできるだけ離すことが必要であるが、このため、分子の電子状態はHOMO部位とLUMO部位が分離したドナー/アクセプター型の分子内CT(分子内電荷移動状態)に近い状態となってしまう。
このような分子は、複数存在すると一方の分子のドナー部分と他方の分子のアクセプター部分とを近接させると安定化が図られる。そのような安定化状態は2分子間での形成に限らず、3分子間若しくは5分子間であったりと、複数の分子間でも形成が可能であり、結果、広い分布を持った種々の安定化状態が存在することになり、吸収スペクトル及び発光スペクトルの形状はブロードとなる。また、2分子を超える多分子集合体を形成しない場合であっても、二つの分子の相互作用する方向や角度などの違いによって様々な存在状態を取り得るため、基本的にはやはり吸収スペクトル及び発光スペクトルの形状はブロードになる。
発光スペクトルがブロードになることは二つの大きな問題を発生する。
一つは、発光色の色純度が低くなってしまう問題である。照明用途に適用する場合にはそれほど大きな問題にはならないが、電子ディスプレイ用途に用いる場合には色再現域が小さくなり、また、純色の色再現性が低くなることから、実際に商品として適用するのは困難になる。
もう一つの問題は、発光スペクトルの短波長側の立ち上がり波長(「蛍光0−0バンド」と呼ぶ。)が短波長化、すなわち高S1化(最低励起一重項エネルギーの高エネルギー化)してしまうことである。
当然、蛍光0−0バンドが短波長化すると、S1よりもエネルギーの低いT1に由来するリン光0−0バンドも短波長化(高T1化)してしまう。そのため、ホスト化合物に用いる化合物はドーパントからの逆エネルギー移動を起こさないようにするために、高S1化かつ高T1化する必要が生じてくる。
これは非常に大きな問題である。基本的に有機化合物からなるホスト化合物は、有機EL素子中で、カチオンラジカル状態、アニオンラジカル状態及び励起状態という、複数の活性かつ不安定な化学種の状態を取るが、それら化学種は分子内のπ共役系を拡大することで比較的安定に存在させることができる。
しかしながら、高S1化かつ高T1化を達成するには、分子内のπ共役系を縮小するか若しくは断ち切ることが必要となり、安定性と両立させることが困難になって、結果的には発光素子の寿命を短くしてしまうことになる。
また、重金属を含まないTADF化合物においては、三重項励起状態から基底状態に失活する遷移は禁制遷移であるため、三重項励起状態での存在時間(励起子寿命)は数百μ秒からミリ秒オーダーと極めて長い。そのため、仮にホスト化合物のT1エネルギーが蛍光発光性化合物のそれよりも高いエネルギーレベルであったとしても、その存在時間の長さから蛍光発光性化合物の三重項励起状態からホスト化合物へと逆エネルギー移動を起こす確率が増大してしまう。その結果、本来意図するTADF化合物の三重項励起状態から一重項励起状態への逆項間交差が十分に起こらずに、ホスト化合物への好ましくない逆エネルギー移動が主流となって、十分な発光効率が得られないという不具合が生じてしまう。
上記のような問題を解決するためには、TADF化合物の発光スペクトル形状をシャープ化し、発光極大波長と発光スペクトルの立ち上がり波長の差を小さくすることが必要となる。そのためには、基本的には一重項励起状態及び三重項励起状態の分子構造の変化を小さくすることにより達成することが可能である。
また、ホスト化合物への逆エネルギー移動を抑制するためには、TADF化合物の三重項励起状態の存在時間(励起子寿命)を短くすることが効果的である。それを実現するには、基底状態と三重項励起状態との分子構造変化を小さくすること及び禁制遷移をほどくのに好適な置換基や元素を導入することなどの対策を講じることで、問題点を解決することが可能である。
本発明は、上記のように励起状態の構造変化を抑えたπ共役系化合物(蛍光発光性化合物を含む。)及び三重項励起状態の存在時間が短いπ共役系化合物も設計思想として含むものである。
以下に、本発明に係るπ共役系化合物に関する種々の測定方法について記載する。
[電子密度分布]
本発明に係るπ共役系化合物は、ΔEstを小さくするという観点から、分子内においてHOMOとLUMOが実質的に分離していることが好ましい。これらHOMO及びLUMOの分布状態については、分子軌道計算により得られる構造最適化した際の電子密度分布から求めることができる。
本発明におけるπ共役系化合物の分子軌道計算による構造最適化及び電子密度分布の算出は、計算手法として、汎関数としてB3LYP、基底関数として6−31G(d)を用いた分子軌道計算用ソフトウェアを用いて算出することができ、ソフトウェアに特に限定はなく、いずれを用いても同様に求めることができる。
本発明においては、分子軌道計算用ソフトウェアとして、米国Gaussian社製のGaussian09(Revision C.01,M.J.Frisch,et al,Gaussian,Inc.,2010.)を用いた。
また、「HOMOとLUMOが実質的に分離している」とは、上記分子計算により算出されたHOMO軌道分布及びLUMO軌道分布の中心部位が離れており、より好ましくはHOMO軌道の分布とLUMO軌道の分布がほぼ重なっていないことを意味する。
また、HOMOとLUMOの分離状態については、前述の汎関数としてB3LYP、基底関数として6−31G(d)を用いた構造最適化計算から、さらに時間依存密度汎関数法(Time−Dependent DFT)による励起状態計算を実施してS1、T1のエネルギー(それぞれE(S1)、E(T1))を求めてΔEst=|E(S1)−E(T1)|として算出することも可能である。算出されたΔEstが小さいほど、HOMOとLUMOがより分離していることを示す。本発明においては、前述と同様の計算手法を用いて算出されたΔEstが0.5eV以下であることが好ましく、より好ましくは0.2eV以下であり、さらに好ましくは0.1eV以下である。
[最低励起一重項エネルギーS1
本発明におけるπ共役系化合物の最低励起一重項エネルギーS1については、本発明においても通常の手法と同様にして算出されるもので定義される。すなわち、測定対象となる化合物を石英基板上に蒸着して試料を作製し、常温(300K)でこの試料の吸収スペクトル(縦軸:吸光度、横軸:波長とする。)を測定する。この吸収スペクトルの長波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値に基づいて、所定の換算式から算出される。
ただし、本発明において使用するπ共役系化合物の分子自体の凝集性が比較的高い場合、薄膜の測定においては凝集による誤差を生じる可能性がある。本発明におけるπ共役系化合物はストークスシフトが比較的小さいこと、さらに励起状態と基底状態の構造変化が小さいことを考慮し、本発明における最低励起一重項エネルギーS1は、室温(25℃)におけるπ共役系化合物の溶液状態の最大発光波長のピーク値を近似値として用いた。
ここで、使用する溶媒は、π共役系化合物の凝集状態に影響を与えない、すなわち溶媒効果の影響が小さい溶媒、例えばシクロヘキサンやトルエン等の非極性溶媒等を用いることができる。
[最低励起三重項エネルギーT1
本発明で用いられるπ共役系化合物の最低励起三重項エネルギー(T1)については、溶液若しくは薄膜のフォトルミネッセンス(PL)特性により算出した。例えば、薄膜における算出方法としては、希薄状態のπ共役系化合物の分散物を薄膜にした後に、ストリークカメラを用い、過渡PL特性を測定することで、蛍光成分とリン光成分の分離を行い、そのエネルギー差をΔEstとして最低励起一重項エネルギー準位から最低励起三重項エネルギー準位を求めることができる。
測定・評価にあたって、絶対PL量子収率の測定については、絶対PL量子収率測定装置C9920−02(浜松ホトニクス社製)を用いた。発光寿命は、ストリークカメラC4334(浜松ホトニクス社製)を用いて、サンプルをレーザー光で励起させながら測定した。
《有機EL素子の構成層》
本発明の有機EL素子における代表的な素子構成としては、以下の構成を挙げることができるが、これらに限定されるものではない。
(1)陽極/発光層/陰極
(2)陽極/発光層/電子輸送層/陰極
(3)陽極/正孔輸送層/発光層/陰極
(4)陽極/正孔輸送層/発光層/電子輸送層/陰極
(5)陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(6)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
(7)陽極/正孔注入層/正孔輸送層/(電子阻止層/)発光層/(正孔阻止層/)電子輸送層/電子注入層/陰極
上記の中で(7)の構成が好ましく用いられるが、これに限定されるものではない。
本発明に用いられる発光層は、単層又は複数層で構成されており、発光層が複数の場合は各発光層の間に非発光性の中間層を設けてもよい。
必要に応じて、発光層と陰極との間に正孔阻止層(正孔障壁層ともいう。)や電子注入層(陰極バッファー層ともいう。)を設けてもよく、また、発光層と陽極との間に電子阻止層(電子障壁層ともいう。)や正孔注入層(陽極バッファー層ともいう。)を設けてもよい。
本発明に用いられる電子輸送層とは、電子を輸送する機能を有する層であり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。また、複数層で構成されていてもよい。
本発明に用いられる正孔輸送層とは、正孔を輸送する機能を有する層であり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。また、複数層で構成されていてもよい。
上記の代表的な素子構成において、陽極と陰極を除いた層を「有機層」ともいう。
(タンデム構造)
また、本発明の有機EL素子は、少なくとも1層の発光層を含む発光ユニットを複数積層した、いわゆるタンデム構造の素子であってもよい。
タンデム構造の代表的な素子構成としては、例えば以下の構成を挙げることができる。
陽極/第1発光ユニット/中間層/第2発光ユニット/中間層/第3発光ユニット/陰極
ここで、上記第1発光ユニット、第2発光ユニット及び第3発光ユニットは全て同じであっても、異なっていてもよい。また二つの発光ユニットが同じであり、残る一つが異なっていてもよい。
複数の発光ユニットは直接積層されていても、中間層を介して積層されていてもよく、中間層は、一般的に中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれ、陽極側の隣接層に電子を、陰極側の隣接層に正孔を供給する機能を持った層であれば、公知の材料構成を用いることができる。
中間層に用いられる材料としては、例えば、ITO(インジウム・スズ酸化物)、IZO(インジウム・亜鉛酸化物)、ZnO2、TiN、ZrN、HfN、TiOx、VOx、CuI、InN、GaN、CuAlO2、CuGaO2、SrCu22、LaB6、RuO2、Al等の導電性無機化合物層や、Au/Bi23等の2層膜や、SnO2/Ag/SnO2、ZnO/Ag/ZnO、Bi23/Au/Bi23、TiO2/TiN/TiO2、TiO2/ZrN/TiO2等の多層膜、またC60等のフラーレン類、オリゴチオフェン等の導電性有機物層、金属フタロシアニン類、無金属フタロシアニン類、金属ポルフィリン類、無金属ポルフィリン類等の導電性有機化合物層等が挙げられるが、本発明はこれらに限定されない。
発光ユニット内の好ましい構成としては、例えば、上記の代表的な素子構成で挙げた(1)〜(7)の構成から、陽極と陰極を除いたもの等が挙げられるが、本発明はこれらに限定されない。
タンデム型有機EL素子の具体例としては、例えば、米国特許第6337492号、米国特許第7420203号、米国特許第7473923号、米国特許第6872472号、米国特許第6107734号、米国特許第6337492号、国際公開第2005/009087号、特開2006−228712号公報、特開2006−24791号公報、特開2006−49393号公報、特開2006−49394号公報、特開2006−49396号公報、特開2011−96679号公報、特開2005−340187号公報、特許第4711424号、特許第3496681号、特許第3884564号、特許第4213169号、特開2010−192719号公報、特開2009−076929号公報、特開2008−078414号公報、特開2007−059848号公報、特開2003−272860号公報、特開2003−045676号公報、国際公開第2005/094130号等に記載の素子構成や構成材料等が挙げられるが、本発明はこれらに限定されない。
以下、本発明の有機EL素子を構成する各層について説明する。
《発光層》
本発明に用いられる発光層は、電極又は隣接層から注入されてくる電子及び正孔が再結合し、励起子を経由して発光する場を提供する層であり、発光する部分は発光層の層内であっても、発光層と隣接層との界面であってもよい。本発明に用いられる発光層は、本発明で規定する要件を満たしていれば、その構成に特に制限はない。
発光層の層厚の総和は、特に制限はないが、形成する膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、かつ、駆動電流に対する発光色の安定性向上の観点から、2nm〜5μmの範囲に調整することが好ましく、より好ましくは2〜500nmの範囲に調整され、更に好ましくは5〜200nmの範囲に調整される。
また、本発明に用いられる個々の発光層の層厚としては、2nm〜1μmの範囲に調整することが好ましく、より好ましくは2〜200nmの範囲に調整され、更に好ましくは3〜150nmの範囲に調整される。
本発明に用いられる発光層には、発光ドーパント(発光性化合物、発光性ドーパント化合物、ドーパント化合物、単にドーパントともいう。)を含有し、さらに前述のホスト化合物(マトリックス材料、発光ホスト化合物、単にホストともいう。)を含有することが好ましい。
(1)発光ドーパント
発光ドーパントとしては、蛍光発光性ドーパント(蛍光発光性化合物、蛍光ドーパント、蛍光性化合物ともいう。)、遅延蛍光発光性ドーパント、リン光発光性ドーパント(リン光発光性化合物、リン光ドーパント、リン光性化合物ともいう。)が好ましく用いられる。本発明においては、少なくとも1層の発光層が、後述のπ共役系化合物を含有することが好ましい。
本発明においては、π共役系化合物が、蛍光発光性化合物として機能する場合、発光層がπ共役系化合物を5〜40質量%の範囲内で含有し、特に、10〜30質量%の範囲内で含有することが好ましい。
発光層中のπ共役系化合物の濃度については、使用される特定のπ共役系化合物及びデバイスの必要条件に基づいて、任意に決定することができ、発光層の層厚方向に対し、均一な濃度で含有されていてもよく、また任意の濃度分布を有していてもよい。
また、本発明で用いられる蛍光発光性化合物は、複数種を併用して用いてもよく、構造の異なる蛍光発光性化合物同士の組み合わせや、蛍光発光性化合物とリン光発光性化合物とを組み合わせて用いてもよい。これにより、任意の発光色を得ることができる。
さらに、本発明のπ共役系化合物は異なる蛍光発光性化合物やリン光発光性化合物の発光を補助するために使用することができる。その場合、発光層には本発明のπ共役系化合物に対し質量比で100%以上のホストが存在し、かつ、本発明のπ共役系化合物に対し質量比で0.1〜50%の範囲内で異なる蛍光発光性物質又はリン光発光性化合物が存在することが好ましい。
なお、本発明のπ共役系化合物を異なる蛍光発光性化合物やリン光発光性化合物の発光を補助するために使用する場合、発光層に含まれる物質はホスト化合物も含み3成分以上であることが好ましい。
具体的には、発光層中に、最低励起一重項エネルギー準位と最低励起三重項エネルギー準位の差の絶対値(ΔEst)が0.5eV以下であるπ共役系化合物と、蛍光発光性化合物及びリン光発光性化合物の少なくとも1種類とを含有することも、高発光効率発現の観点から好適である。当該発光層には、さらにホスト化合物が含有されていることがより好ましい。
π共役系化合物、発光性化合物及びホスト化合物は、発光層中に含有されるそれぞれの成分の数に制限はないが、3成分がそれぞれ少なくとも1種ずつ含有されていることがさらに好ましい。
発光層が、最低励起一重項エネルギー準位と最低励起三重項エネルギー準位の差の絶対値(ΔEst)が、0.5eV以下である本発明のπ共役系化合物と、発光性化合物と、ホスト化合物を含有する場合、本発明のπ共役系化合物はアシストドーパントとして作用する。一方、発光層が、本発明のπ共役系化合物と発光性化合物を含有し、ホスト化合物を含有しない場合、本発明のπ共役系化合物はホスト化合物として作用する。
効果が発現する機構としては、いずれの場合も同様であり、本発明のπ共役系化合物上に生成した三重項励起子を逆項間交差(RISC)で一重項励起子へと変換する点にある。
これにより、本発明のπ共役系化合物上に生成した理論上すべての励起子エネルギーを発光性化合物にエネルギー移動することができ、高発光効率の発現を可能にする。
したがって、発光層が、本発明のπ共役系化合物、発光性化合物及びホスト化合物の3成分を含有する場合は、π共役系化合物のS1とT1のエネルギー準位は、ホスト化合物のS1とT1のエネルギー準位よりも低く、発光性化合物のS1とT1のエネルギー準位よりも高い方が好ましい。
同様に、発光層が、本発明のπ共役系化合物と発光性化合物の2成分を含有する場合は、π共役系化合物のS1とT1のエネルギー準位は、発光性化合物のS1とT1のエネルギー準位よりも高い方が好ましい。
図1B及び図1Cに、本発明のπ共役系化合物がそれぞれアシストドーパント及びホスト化合物として作用する場合の模式図を示す。図1B及び図1Cは一例であって、本発明のπ共役系化合物上に生成する三重項励起子の生成過程は電界励起のみに限定されず、発光層内又は周辺層界面からのエネルギー移動や電子移動等も含まれる。
さらに、図1B及び図1Cでは、発光材料として蛍光発光性化合物を用いて示しているが、これに限定されず、リン光発光性化合物を用いてもよいし、蛍光発光性化合物とリン光発光性化合物の両者を用いてもよい。
本発明のπ共役系化合物をアシストドーパントとして用いる場合、発光層は、π共役系化合物に対し質量比で100%以上のホスト化合物を含有し、蛍光発光性化合物及び/又はリン光発光性化合物がπ共役系化合物に対して質量比0.1〜50%の範囲内で含有していることが好ましい。すなわち、本発明のπ共役系化合物をアシストドーパントとして用いる場合、この濃度範囲において、蛍光発光性化合物及び/又はリン光発光性化合物に効率よくエネルギー移動することができるためである。
本発明のπ共役系化合物をホスト化合物として用いる場合、発光層は、蛍光発光性化合物及び/又はリン光発光性化合物をπ共役系化合物に対して質量比0.1〜50%の範囲内で含有することが好ましい。この濃度範囲であれば、π共役系化合物が蛍光発光性化合物及び/又はリン光発光性化合物と好ましく相互作用することができる。
本発明のπ共役系化合物をアシストドーパント又はホスト化合物として用いる場合、本発明のπ共役系化合物の発光スペクトルと発光性化合物の吸収スペクトルが重なることが好ましい。これにより、π共役系化合物の得たエネルギーを効率よく発光性化合物に伝えることができるようになる。
本発明の有機EL素子や本発明に用いられる化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図3.16において、分光放射輝度計CS−1000(コニカミノルタ(株)製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
本発明においては、1層又は複数層の発光層が、発光色の異なる複数の発光ドーパントを含有し、白色発光を示すことも好ましい。
白色を示す発光ドーパントの組み合わせについては特に限定はないが、例えば青と橙や、青と緑と赤の組み合わせ等が挙げられる。
本発明の有機EL素子における白色とは、2度視野角正面輝度を前述の方法により測定した際に、1000cd/m2でのCIE1931表色系における色度がx=0.39±0.09、y=0.38±0.08の領域内にあることが好ましい。
(1.1.1)π共役系化合物
本発明のπ共役系化合物は、分子内に電子のアクセプター部位とドナー部位とを有し、当該アクセプター部位が、三環以下の縮合環で構成されており、14個以下のπ電子を含み芳香族性を有し、かつ、当該縮合環が、1個又は2個の窒素原子を含む6員の芳香族複素環を含むことを特徴とする。
ドナー部位は電子供与性の部位のことを指し、分子の電子遷移状態で記述すれば、HOMOはドナー部位に局在化することが多い。ここで、ドナー部位の「部位」とは、置換基又は原子群のことを指す。
ドナー部位の例としては、アリールアミン類、カルバゾール、フェノキサジン、9,10−ジヒドロアクリジン、フェノチアジン及びピロール類等が挙げられる。
アクセプター部位は前述の説明のとおり、電子欠乏性の電子求引性部位のことを指し、分子の電子遷移状態で記述すれば、LUMOはアクセプター部位に局在化することが多い。
芳香族性については、ヒュッケル則に従い、(4n+2)個のπ電子を有するものを、芳香族性を有すると定める。
本発明で用いられる化合物において、アクセプター部位は分子の平面性を抑制する観点から、三環以下の縮合環で構成されており、14個以下のπ電子を含む芳香族性を有することが必要である。
また、該縮合環は、1個又は2個の窒素原子を有する6員の芳香族複素環を含み、その例としては、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環が挙げられる。
本発明のπ共役系化合物は、下記一般式(A)で表すことができる。
Figure 0006673203
式中、Aは電子のアクセプター部位を表し、lは1〜4の整数を表す。Dは電子のドナー部位を表し、mは1から4の整数を表す。Lは二価の連結基又は単結合を表し、例えば、炭化水素基、芳香族炭化水素基、芳香族複素環基、単結合等を好ましく用いることができる。これらの連結基は、下記に示す置換基によってさらに置換されていてもよい。
置換基としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭化水素環基、芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4−トリアゾール−1−イル基、1,2,3−トリアゾール−1−イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2−エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2−ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2−エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2−エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ジフェニルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、ホスホノ基等が挙げられる。好ましくは、アルキル基、芳香族炭化水素基、芳香族複素環基、アルコキシ基、アミノ基、シアノ基が挙げられる。
更に、インドール環、インダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、ベンゾイミダゾール環、キノリン環、イソキノリン環、キナゾリン環、キノキサリン環、イソインドール環、ナフチリジン環、フタラジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(前記カルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す。)、アクリジン環、フェナントリジン環、フェナントロリン環、フェナジン環、アザジベンゾフラン環、アザジベンゾチオフェン環等の置換基も好適に用いることができる。これらの置換基は、電子求引性基すなわちアクセプター部位としても好適に用いることができる。
ここで、アクセプター部位の好ましい例は、下記一般式(1)で表される部分構造を有する。
Figure 0006673203
式中、A1〜A4は、各々独立に、C−R1又は窒素原子を表すが、A1〜A4のうち少なくとも1つは窒素原子である。R1は水素原子又は置換基を表し、置換基の例としては前述の置換基と同義である。
複数のR1が存在する場合は、各々のR1は同一でも異なっていてもよく、互いに結合して環を形成してもよい。また、このR1はさらに前述の置換基で置換されていてもよい。
環Bは6員の芳香族炭化水素環基若しくは芳香族複素環基、又は5員の芳香族複素環基を表し、前述の芳香族炭化水素環基、芳香族複素環基と同義である。
アクセプター部位である、一般式(1)で表される部分構造は、さらに好ましくは下記一般式(2)又は一般式(2a)で表される。
Figure 0006673203
Figure 0006673203
一般式(2)中、A1〜A4は、各々独立に、C−R1又は窒素原子を表すが、A1〜A4のうち2つは窒素原子を表す。R1は水素原子又は置換基を表し、置換基の例としては前述の置換基と同義である。複数のR1が存在する場合は、各々のR1は同一でも異なっていてもよく、互いに結合して環を形成してもよい。ただし、一般式(2)で表される部分構造は、合計で10個のπ電子を有している。環Bは5員の芳香族複素環基を表し、B1〜B3は炭素原子、窒素原子、酸素原子又はリン原子を表し、これらの原子は各々独立に水素原子や置換基で置換されていてもよい。
一般式(2a)中、A1〜A4は、各々独立に、C−R1又は窒素原子を表すが、A1〜A4のうち2つは窒素原子を表す。R1は水素原子又は置換基を表し、置換基の例としては前述の置換基と同義である。複数のR1が存在する場合は、各々のR1は同一でも異なっていてもよく、互いに結合して環を形成してもよい。ただし、一般式(2a)で表される部分構造は、合計で10個のπ電子を有している。環Bは6員の芳香族炭化水素環又は芳香族複素環基を表し、B1〜B4はC−R1又は窒素原子を表す。R1は水素原子又は置換基を表し、置換基の例としては前述の置換基と同義である。
電子のアクセプター部位である、一般式(2)で表される部分構造の最も好ましい例として、下記一般式(3)で表される部分構造を示す。
Figure 0006673203
式中、A1〜A4は、各々独立に、C−R1又は窒素原子を表すが、A1〜A4のうち2つは窒素原子である。R1は水素原子又は置換基を表し、置換基の例としては前述の置換基と同義である。複数のR1が存在する場合、各々のR1は同一でも異なっていてもよく、Ra及びRbは水素原子又は置換基を表し、置換基の例としては前述の置換基と同義である。
また、アクセプター部位の好ましい例として、14個のπ電子を含み、下記一般式(4)で表される構造も挙げられる。
Figure 0006673203
式中、A5〜A14は、各々独立に、C−R1又は窒素原子を表すが、A5〜A14のうち少なくとも1つは窒素原子を表す。R1は、水素原子又は置換基を表し、複数のR1が存在する場合は、各々のR1は同一でも異なっていてもよく、互いに結合して環を形成してもよい。
以下に、本発明のπ共役系化合物の構成要素である電子のドナー部位及びアクセプター部位の好ましい部分構造の例を挙げるが、これらの部位はさらに置換基で置換されていたり、構造異性体などが存在する場合もあり、本記述に限定されない。
《ドナー部位》
Figure 0006673203
《アクセプター部位》
Figure 0006673203
Figure 0006673203
本発明のπ共役系化合物の好ましい例は、下記一般式(B)で表すことができる。
Figure 0006673203
式中、A1〜A4は、各々独立に、C−R1又は窒素原子を表すが、A1〜A4のうち少なくとも1つは窒素原子である。R1は水素原子又は置換基を表し、置換基の例としては前述の置換基と同義である。
複数のR1が存在する場合は、各々のR1は同一でも異なっていてもよく、互いに結合して環を形成してもよい。また、このR1はさらに前述の置換基で置換されていてもよい。 環Bは、6員の芳香族炭化水素環基若しくは芳香族複素環基、又は5員の芳香族複素環基を表し、さらに縮合環を形成してもよい。また、環B中の芳香族炭化水素環基又は芳香族複素環基は、それぞれ前述の芳香族炭化水素環基又は芳香族複素環基と同義である。lは1〜4の整数を表す。
Dは電子のドナー部位を表し、mは1〜4の整数を表す。Lは二価の連結基又は単結合を表し、例えば、炭化水素基、芳香族炭化水素基又は芳香族複素環基、単結合等を好ましく用いることができる。これらの連結基は、上記に示す置換基によってさらに置換されていてもよい。なお、Lで表される二価の連結基又は単結合は、A1〜A4及び環Bのうちのいずれかの位置で連結されればよいことを表している。
本発明のπ共役系化合物のさらに好ましい例は、下記一般式(C)で表す構造を有する。
Figure 0006673203
式中、A1〜A4は、各々独立に、C−R1又は窒素原子を表すが、A1〜A4のうち少なくとも1つは窒素原子である。R1は水素原子又は置換基を表し、置換基の例としては前述の置換基と同義である。複数のR1が存在する場合は、各々のR1は同一でも異なっていてもよく、互いに結合して環を形成してもよい。また、このR1はさらに前述の置換基で置換されていてもよい。R2は水素原子又は置換基を表し、置換基の例としては前述の置換基と同義である。複数のR2が存在するとき、各々のR2は同一でも異なっていてもよく、互いに結合して環を形成してもよい。また、このR2はさらに前述の置換基で置換されていてもよい。Dはドナー部位を表し、nは1〜4の整数を表す。環Bは、6員の芳香族炭化水素環基若しくは芳香族複素環基、又は5員の芳香族複素環基を表し、さらに縮合環を形成してもよい。なお、ドナー部位Dを有するR2との連結基は、A1〜A4及び環Bのうちのいずれかの位置で連結されればよいことを表している。
以下に、本発明のπ共役系化合物の好ましい具体例を挙げるが、これらの化合物はさらに置換基で置換されていたり、構造異性体などが存在する場合もあり、本記述に限定されない。
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
これらの化合物を用いることで、上述のとおり、分子の凝集を抑制し、加えて、電子のトラップ傾向を抑制することで電荷のバランスを調整することができる。なお、これらの化合物は分子内のCT性が比較的高いものが多いため、TADF性を示してもよい。
さらに、これらの化合物は、バイポーラー性を有し、様々なエネルギー準位に対応できることから、発光ホストとしても使用できるのみならず、正孔輸送、電子輸送にも適した化合物として使用することができる。
また、これらのπ共役系化合物の最低励起一重項準位と最低励起三重項準位とのエネルギー差の絶対値(ΔEst)を求め、表2に示した。本発明の最低励起一重項準位と最低励起三重項準位とのエネルギー差の絶対値(ΔEst)は、0.5eV以下であることが好ましい。
Figure 0006673203
<合成方法>
上記π共役系化合物は、例えば、特許文献3、4及び5に記載の方法又はこれらの文献に記載の参照文献に記載の方法を参照することにより合成することができる。
(1.1.2)蛍光発光性化合物
本発明のπ共役系化合物と併用することのできる蛍光発光性化合物について説明する。
本発明のπ共役系化合物と併用可能な蛍光発光性化合物としては、特に制限はなく、例えば、ΔEstが0.5eVより大きい蛍光発光性化合物も好適に用いることができ、その他、アントラセン誘導体、ピレン誘導体、クリセン誘導体、フルオランテン誘導体、ペリレン誘導体、フルオレン誘導体、アリールアセチレン誘導体、スチリルアリーレン誘導体、スチリルアミン誘導体、アリールアミン誘導体、ホウ素錯体、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は希土類錯体系蛍光体等や、レーザー色素に代表される蛍光量子収率が高い化合物が挙げられる。
(1.2)リン光発光性ドーパント
本発明に用いられるリン光発光性ドーパントについて説明する。
本発明に用いられるリン光発光性ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に用いられるリン光ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。
リン光ドーパントは、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。本発明に使用できる公知のリン光ドーパントの具体例としては、以下の文献に記載されている化合物等が挙げられる。
Nature,395,151(1998)、Appl.Phys.Lett.,78,1622(2001)、Adv.Mater.,19,739(2007)、Chem.Mater.,17,3532(2005)、Adv.Mater.,17,1059(2005)、国際公開第2009/100991号、国際公開第2008/101842号、国際公開第2003/040257号、米国特許出願公開第2006/835469号明細書、米国特許出願公開第2006/0202194号明細書、米国特許出願公開第2007/0087321号明細書、米国特許出願公開第2005/0244673号明細書、Inorg.Chem.,40,1704(2001)、Chem.Mater.,16,2480(2004)、Adv.Mater.,16,2003(2004)、Angew.Chem.lnt.Ed.,2006,45,7800、Appl.Phys.Lett.,86,153505(2005)、Chem.Lett.,34,592(2005)、Chem.Commun.,2906(2005)、Inorg.Chem.,42,1248(2003)、国際公開第2009/050290号、国際公開第2002/015645号、国際公開第2009/000673号、米国特許出願公開第2002/0034656号明細書、米国特許第7332232号、米国特許出願公開第2009/0108737号明細書、米国特許出願公開第2009/0039776号明細書、米国特許第6921915号、米国特許第6687266号、米国特許出願公開第2007/0190359号明細書、米国特許出願公開第2006/0008670号明細書、米国特許出願公開第2009/0165846号明細書、米国特許出願公開第2008/0015355号明細書、米国特許第7250226号、米国特許第7396598号、米国特許出願公開第2006/0263635号明細書、米国特許出願公開第2003/0138657号明細書、米国特許出願公開第2003/0152802号明細書、米国特許第7090928号、Angew.Chem.lnt.Ed.,47,1(2008)、Chem.Mater.,18,5119(2006)、Inorg.Chem.,46,4308(2007)、Organometallics,23,3745(2004)、Appl.Phys.Lett.,74,1361(1999)、国際公開第2002/002714号、国際公開第2006/009024号、国際公開第2006/056418号、国際公開第2005/019373号、国際公開第2005/123873号、国際公開第2005/123873号、国際公開第2007/004380号、国際公開第2006/082742号、米国特許出願公開第2006/0251923号明細書、米国特許出願公開第2005/0260441号明細書、米国特許第7393599号、米国特許第7534505号、米国特許第7445855号、米国特許出願公開第2007/0190359号明細書、米国特許出願公開第2008/0297033号明細書、米国特許第7338722号、米国特許出願公開第2002/0134984号明細書、米国特許第7279704号、米国特許出願公開第2006/098120号明細書、米国特許出願公開第2006/103874号明細書、国際公開第2005/076380号、国際公開第2010/032663号、国際公開第2008140115号、国際公開第2007/052431号、国際公開第2011/134013号、国際公開第2011/157339号、国際公開第2010/086089号、国際公開第2009/113646号、国際公開第2012/020327号、国際公開第2011/051404号、国際公開第2011/004639号、国際公開第2011/073149号、米国特許出願公開第2012/228583号明細書、米国特許出願公開第2012/212126号明細書、特開2012−069737号公報、特願2011−181303号公報、特開2009−114086号公報、特開2003−81988号公報、特開2002−302671号公報、特開2002−363552号公報等である。
中でも、好ましいリン光ドーパントとしてはIrを中心金属に有する有機金属錯体が挙げられる。さらに好ましくは、金属−炭素結合、金属−窒素結合、金属−酸素結合、金属−硫黄結合の少なくとも一つの配位様式を含む錯体が好ましい。
(2)ホスト化合物
本発明に用いられるホスト化合物は、発光層において主に電荷の注入及び輸送を担う化合物であり、有機EL素子においてそれ自体の発光は実質的に観測されない。
ホスト化合物は、発光層に含有される化合物の内で、その層中での質量比が20%以上であることが好ましい。
ホスト化合物は、単独で用いてもよく、又は複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。
以下に、本発明において好ましく用いられるホスト化合物について述べる。
本発明で用いられる蛍光発光性化合物とともに用いられるホスト化合物としては特に制限はないが、逆エネルギー移動の観点から、本発明で用いられる蛍光発光性化合物の励起一重項エネルギー準位より高い励起エネルギー準位をもつものが好ましく、さらに本発明で用いられる蛍光発光性化合物の励起三重項エネルギーより高い励起三重項エネルギー準位をもつものがより好ましい。
ホスト化合物は、発光層内においてキャリアの輸送及び励起子の生成を担う。そのため、カチオンラジカル状態、アニオンラジカル状態、及び励起状態の全ての活性種の状態において安定に存在でき、分解や付加反応などの化学変化を起こさないこと、さらに、層中において通電経時でホスト分子がオングストロームレベルで移動しないことが好ましい。
また、特に併用する発光ドーパントがTADF発光を示す場合には、TADF化合物の三重項励起状態の存在時間が長いことから、ホスト化合物自体のT1エネルギー準位が高いこと、さらにホスト化合物同士が会合した状態で低T1状態を作らないこと、TADF化合物とホスト化合物とがエキサイプレックスを形成しないこと、ホスト化合物が電界によりエレクトロマーを形成しないことなど、ホスト化合物が低T1化しないような分子構造の適切な設計が必要となる。
このような要件を満たすためには、ホスト化合物自体が電子のホッピング移動性が高いこと、かつ、正孔のホッピング移動が高いこと、三重項励起状態となったときの構造変化が小さいことが必要である。このような要件を満たすホスト化合物の代表格としてカルバゾール骨格、アザカルバゾール骨格、ジベンゾフラン骨格、ジベンゾチオフェン骨格又はアザジベンゾフラン骨格などの、高T1エネルギー準位を有し、かつ14π電子系の拡張π共役骨格を部分構造として有するものが好ましく挙げられる。特に、発光層が、カルバゾール誘導体を含有することにより、発光層内における適度なキャリアホッピングや発光材料の分散を促すことができ、素子の発光性能や薄膜の安定性を向上させる効果が得られることから、好ましい。
さらに、これらの環がビアリール及び/又はマルチアリール構造を取った化合物などが代表例として挙げられる。ここでいう「アリール」とは、芳香族炭化水素環だけでなく芳香族複素環も含む。
より好ましくは、カルバゾール骨格と、カルバゾール骨格とは異なる分子構造を持つ14π電子系の芳香族複素環化合物とが直接結合した化合物であり、さらに14π電子系の芳香族複素環化合物を分子内に二つ以上持つカルバゾール誘導体が好ましい。特に、前記カルバゾール誘導体が、14π電子以上の共役系構造部分を二つ以上有する化合物であることが、本発明の効果を一層高めるために好ましい。
また、本発明に用いられるホスト化合物としては、下記一般式(I)で表される化合物も好ましい。これは、下記一般式(I)で表される化合物は、縮環構造を有するためにπ電子雲が広がっておりキャリア輸送性が高く、高いガラス転移温度(Tg)を有するためである。さらに、一般に縮合芳香族環は三重項エネルギー準位(T1)が低い傾向があるが、一般式(I)で表される化合物は高いT1を有しており、発光波長の短い(すなわちT1及びS1の大きい)発光材料に対しても好適に用いることができる。
Figure 0006673203
上記一般式(I)において、X101は、NR101、酸素原子、硫黄原子、CR102103又はSiR102103を表す。y1〜y8は、各々CR104又は窒素原子を表す。
101〜R104は、各々水素原子又は置換基を表し、また互いに結合して環を形成してもよい。
Ar101及びAr102は、各々芳香族環を表し、それぞれ同一でも異なっていてもよい。
n101及びn102は各々0〜4の整数を表すが、R101が水素原子の場合は、n101は1〜4の整数を表す。
一般式(I)におけるR101〜R104は水素又は置換基を表し、ここにいう置換基は本発明に用いられるホスト化合物の機能を阻害しない範囲で有してもよいものを指し、例えば、合成スキーム上置換基が導入されてしまう場合で、本発明の効果を奏する化合物は本発明に包含される旨を規定するものである。
101〜R104で各々表される置換基としては、例えば、直鎖又は分岐アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、t−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素環基(芳香族炭素環基、アリール基等ともいう。例えば、ベンゼン環、ビフェニル、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o−ターフェニル環、m−ターフェニル環、p−ターフェニル環、アセナフテン環、コロネン環、インデン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環、テトラリン等から導出される基)、芳香族複素環基(例えば、フラン環、ジベンゾフラン環、チオフェン環、ジベンゾチオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭化水素環の炭素原子の一つが更に窒素原子で置換されている環等から導出される基。また、カルボリン環とジアザカルバゾール環を合わせて「アザカルバゾール環」と呼ぶ場合もある。)、非芳香族炭化水素環基(例えば、シクロペンチル基、シクロヘキシル基等)、非芳香族複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2−エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2−ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2−エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2−エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、チオール基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、重水素原子等が挙げられる。
これらの置換基は、上記の置換基によって更に置換されていてもよい。また、これらの置換基は複数が互いに結合して環を形成していてもよい。
一般式(I)におけるy1〜y8としては、好ましくは、y1〜y4の内の少なくとも三つ、又はy5〜y8の内の少なくとも三つがCR102で表され、より好ましくはy1〜y8が全てCR102である。このような骨格は、正孔輸送性又は電子輸送性に優れ、陽極・陰極から注入された正孔・電子を効率よく発光層内で再結合・発光させることができる。
中でも、LUMOのエネルギー準位が浅く、電子輸送性に優れる構造として、一般式(I)中でX101が、NR101、酸素原子又は硫黄原子である化合物が好ましい。より好ましくは、X101及びy1〜y8とともに形成される縮合環が、カルバゾール環、アザカルバゾール環、ジベンゾフラン環又はアザジベンゾフラン環である。
さらに、ホスト化合物を剛直にすることが好ましいという目的から考え、X101がNR101の場合においては、R101は前述で挙げられた置換基の内、π共役系骨格である芳香族炭化水素環基又は芳香族複素環基であることが好ましい。また、これらのR101は更に前述のR101〜R104で表される置換基で置換されていてもよい。
一般式(I)において、Ar101及びAr102により表される芳香族環としては、芳香族炭化水素環又は芳香族複素環が挙げられる。該芳香族環は単環でも縮合環でもよく、更に未置換でも、前述のR101〜R104で表される置換基と同様の置換基を有してもよい。
一般式(I)において、Ar101及びAr102により表される芳香族炭化水素環としては、例えば、前述のR101〜R104で表される置換基の例として挙げられた芳香族炭化水素環基と同様の環が挙げられる。
一般式(I)で表される部分構造において、Ar101及びAr102により表される芳香族複素環としては、例えば、前述のR101〜R104で表される置換基の例として挙げられた芳香族複素環基と同様の環が挙げられる。
一般式(I)で表されるホスト化合物が大きなT1を有するという目的を考えた場合には、Ar101及びAr102で表される芳香族環自身のT1が高いことが好ましく、ベンゼン環(ベンゼン環が複数連結したポリフェニレン骨格(ビフェニル、テルフェニル、クォーターフェニル等)も含む。)、フルオレン環、トリフェニレン環、カルバゾール環、アザカルバゾール環、ジベンゾフラン環、アザジベンゾフラン環、ジベンゾチオフェン環、ジベンゾチオフェン環、ピリジン環、ピラジン環、インドロインドール環、インドール環、ベンゾフラン環、ベンゾチオフェン環、イミダゾール環又はトリアジン環等が好ましい。より好ましくはベンゼン環、カルバゾール環、アザカルバゾール環、ジベンゾフラン環である。
Ar101及びAr102がカルバゾール環又はアザカルバゾール環の場合は、N位(又は9位ともいう)又は3位で結合していることがより好ましい。
Ar101及びAr102がジベンゾフラン環の場合は、2位又は4位で結合していることがより好ましい。
また、上記の目的とは別に、有機EL素子を車内に積載して使用する用途などを考えた場合においては、車内の環境温度が高くなることが想定されるため、ホスト化合物のTgが高いことも好ましい。そこで、一般式(I)で表されるホスト化合物を高Tg化するという目的から、Ar101及びAr102により表される芳香族環としては、各々3環以上の縮合環が好ましい一態様である。
3環以上が縮合した芳香族炭化水素縮合環としては、具体的には、ナフタセン環、アントラセン環、テトラセン環、ペンタセン環、ヘキサセン環、フェナントレン環、ピレン環、ベンゾピレン環、ベンゾアズレン環、クリセン環、ベンゾクリセン環、アセナフテン環、アセナフチレン環、トリフェニレン環、コロネン環、ベンゾコロネン環、ヘキサベンゾコロネン環、フルオレン環、ベンゾフルオレン環、フルオランテン環、ペリレン環、ナフトペリレン環、ペンタベンゾペリレン環、ベンゾペリレン環、ペンタフェン環、ピセン環、ピラントレン環、コロネン環、ナフトコロネン環、オバレン環、アンスラアントレン環等が挙げられる。なお、これらの環は、更に上記の置換基を有していてもよい。
また、3環以上が縮合した芳香族複素環としては、具体的には、アクリジン環、ベンゾキノリン環、カルバゾール環、カルボリン環、フェナジン環、フェナントリジン環、フェナントロリン環、カルボリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ジアザカルバゾール環(カルボリン環を構成する炭素原子の任意の一つが窒素原子で置き換わったものを表す。)、フェナントロリン環、ジベンゾフラン環、ジベンゾチオフェン環、ナフトフラン環、ナフトチオフェン環、ベンゾジフラン環、ベンゾジチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、チオファントレン環(ナフトチオフェン環)等が挙げられる。なお、これらの環は更に置換基を有していてもよい。
一般式(I)において、n101及びn102は各々0〜2の整数であることが好ましく、より好ましくはn101+n102が1〜3の整数である。また、R101が水素原子の場合にn101及びn102が同時に0であると、一般式(I)で表されるホスト化合物の分子量が小さく低いTgしか達成できないため、R101が水素原子の場合にはn101は1〜4の整数を表す。
本発明で用いられるホスト化合物として、カルバゾール誘導体が、一般式(II)で表される構造を有する化合物であることが好ましい。このような化合物は、特にキャリア輸送性に優れる傾向があるためである。
Figure 0006673203
一般式(II)において、X101、Ar101、Ar102、n102は、前記一般式(I)におけるX101、Ar101、Ar102、n102と同義である。
n102は好ましくは0〜2の整数であり、より好ましくは0又は1である。
一般式(II)において、X101を含んで形成される縮合環は、Ar101及びAr102以外にも本発明に用いられるホスト化合物の機能を阻害しない範囲でさらに置換基を有してもよい。
さらに、一般式(II)で表される化合物が下記一般式(III−1)、(III−2)又は(III−3)で表されることが好ましい。
Figure 0006673203
一般式(III−1)〜(III−3)において、X101、Ar102、n102は、前記一般式(II)におけるX101、Ar102、n102と同義である。また、一般式(III−2)において、R104は、前記一般式(I)におけるR104と同義である。
一般式(III−1)〜(III−3)において、X101を含んで形成される縮合環、カルバゾール環及びベンゼン環は、本発明に用いられるホスト化合物の機能を阻害しない範囲でさらに置換基を有してもよい。
以下に、本発明に用いられるホスト化合物として、一般式(I)、(II)、(III−1)〜(III−3)で表される化合物及びその他の構造からなる化合物例を示すが、これらに限定されるものではない。
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
Figure 0006673203
本発明に用いられる好ましいホスト化合物は、昇華精製が可能な程度の分子量をもった低分子化合物であっても、繰り返し単位を有するポリマーであってもよい。
低分子化合物の場合、昇華精製が可能であるため精製が容易で、高純度の材料を得やすいという利点がある。分子量としては、昇華精製が可能な程度であれば特に制限はないが、好ましい分子量としては3000以下、より好ましくは2000以下である。
繰り返し単位を有するポリマー又はオリゴマーの場合は、ウェットプロセスで成膜しやすいという利点があり、また一般にポリマーはTgが高いため耐熱性の点でも好ましい。
本発明に用いられるホスト化合物として用いられるポリマーは、所望の素子性能が達成可能であれば特に制限はないが、好ましくは一般式(I)、(II)、(III−1)〜(III−3)の構造を主鎖若しくは側鎖に有するものが好ましい。分子量としては特に制限はないが、分子量5000以上が好ましく、若しくは繰り返し単位数が10以上のものが好ましい。
また、ホスト化合物は、正孔輸送能又は電子輸送能を有しつつ、かつ、発光の長波長化を防ぎ、さらに、有機EL素子を高温駆動時や素子駆動中の発熱に対して安定して動作させる観点から、高いガラス転移温度(Tg)を有することが好ましい。好ましくはTgが90℃以上であり、より好ましくは120℃以上である。
ここで、ガラス転移点(Tg)とは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS K 7121−2012に準拠した方法により求められる値である。
《電子輸送層》
本発明において電子輸送層とは、電子を輸送する機能を有する材料からなり、陰極より注入された電子を発光層に伝達する機能を有していればよい。
本発明で用いられる電子輸送層の総層厚については特に制限はないが、通常は2nm〜5μmの範囲であり、より好ましくは2〜500nmであり、さらに好ましくは5〜200nmである。
また、有機EL素子においては発光層で生じた光を電極から取り出す際、発光層から直接取り出される光と、光を取り出す電極と対極に位置する電極によって反射されてから取り出される光とが干渉を起こすことが知られている。光が陰極で反射される場合は、電子輸送層の総層厚を数nm〜数μmの間で適宜調整することにより、この干渉効果を効率的に利用することが可能である。
一方で、電子輸送層の層厚を厚くすると電圧が上昇しやすくなるため、特に層厚が厚い場合においては、電子輸送層の電子移動度は10-5cm2/Vs以上であることが好ましい。
電子輸送層に用いられる材料(以下、電子輸送材料という。)としては、電子の注入性又は輸送性、正孔の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。
例えば、含窒素芳香族複素環誘導体(カルバゾール誘導体、アザカルバゾール誘導体(カルバゾール環を構成する炭素原子の一つ以上が窒素原子に置換されたもの)、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピリダジン誘導体、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、フェナントロリン誘導体、アザトリフェニレン誘導体、オキサゾール誘導体、チアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体等)、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、シロール誘導体、芳香族炭化水素環誘導体(ナフタレン誘導体、アントラセン誘導体、トリフェニレン誘導体等)等が挙げられる。
また、配位子にキノリノール骨格やジベンゾキノリノール骨格を有する金属錯体、例えば、トリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送材料として用いることができる。
その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型−Si、n型−SiC等の無機半導体も電子輸送材料として用いることができる。
また、これらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
本発明で用いられる電子輸送層においては、電子輸送層にドープ材をゲスト材料としてドープして、n性の高い(電子リッチ)電子輸送層を形成してもよい。ドープ材としては、金属錯体やハロゲン化金属など金属化合物等のn型ドーパントが挙げられる。このような構成の電子輸送層の具体例としては、例えば、特開平4−297076号公報、同10−270172号公報、特開2000−196140号公報、同2001−102175号公報、J.Appl.Phys.,95,5773(2004)等の文献に記載されたものが挙げられる。
本発明の有機EL素子に用いられる、公知の好ましい電子輸送材料の具体例としては、以下の文献に記載の化合物等が挙げられるが、本発明はこれらに限定されない。
米国特許第6528187号、米国特許第7230107号、米国特許出願公開第2005/0025993号明細書、米国特許出願公開第2004/0036077号明細書、米国特許出願公開第2009/0115316号明細書、米国特許出願公開第2009/0101870号明細書、米国特許出願公開第2009/0179554号明細書、国際公開第2003/060956号、国際公開第2008/132085号、Appl.Phys.Lett.75,4(1999)、Appl.Phys.Lett.79,449(2001)、Appl.Phys.Lett.81,162(2002)、Appl.Phys.Lett.81,162(2002)、Appl.Phys.Lett.79,156(2001)、米国特許第7964293号、米国特許出願公開第2009/030202号明細書、国際公開第2004/080975号、国際公開第2004/063159号、国際公開第2005/085387号、国際公開第2006/067931号、国際公開第2007/086552号、国際公開第2008/114690号、国際公開第2009/069442号、国際公開第2009/066779号、国際公開第2009/054253号、国際公開第2011/086935号、国際公開第2010/150593号、国際公開第2010/047707号、EP2311826号、特開2010−251675号公報、特開2009−209133号公報、特開2009−124114号公報、特開2008−277810号公報、特開2006−156445号公報、特開2005−340122号公報、特開2003−45662号公報、特開2003−31367号公報、特開2003−282270号公報、国際公開第2012/115034号等である。
本発明で用いられるより好ましい電子輸送材料としては、少なくとも一つの窒素原子を含む芳香族複素環化合物が挙げられ、例えばピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、トリアジン誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、アザジベンゾフラン誘導体、アザジベンゾチオフェン誘導体、カルバゾール誘導体、アザカルバゾール誘導体、ベンズイミダゾール誘導体などが挙げられる。
電子輸送材料は単独で用いてもよく、また複数種を併用して用いてもよい。
《正孔阻止層》
正孔阻止層とは広い意味では電子輸送層の機能を有する層であり、好ましくは電子を輸送する機能を有しつつ正孔を輸送する能力が小さい材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。
また、前述する電子輸送層の構成を必要に応じて、本発明で用いられる正孔阻止層として用いることができる。
本発明の有機EL素子に設ける正孔阻止層は、発光層の陰極側に隣接して設けられることが好ましい。
本発明で用いられる正孔阻止層の層厚としては、好ましくは3〜100nmの範囲であり、更に好ましくは5〜30nmの範囲である。
正孔阻止層に用いられる材料としては、前述の電子輸送層に用いられる材料が好ましく用いられ、また、前述のホスト化合物として用いられる材料も正孔阻止層に好ましく用いられる。
《電子注入層》
本発明で用いられる電子注入層(「陰極バッファー層」ともいう)とは、駆動電圧低下や発光輝度向上のために陰極と発光層との間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されている。
本発明において電子注入層は必要に応じて設け、上記のごとく陰極と発光層との間、又は陰極と電子輸送層との間に存在させてもよい。
電子注入層はごく薄い膜であることが好ましく、素材にもよるがその層厚は0.1〜5nmの範囲が好ましい。また構成材料が断続的に存在する不均一な層(膜)であってもよい。
電子注入層は、特開平6−325871号公報、同9−17574号公報、同10−74586号公報等にもその詳細が記載されており、電子注入層に好ましく用いられる材料の具体例としては、ストロンチウムやアルミニウム等に代表される金属、フッ化リチウム、フッ化ナトリウム、フッ化カリウム等に代表されるアルカリ金属化合物、フッ化マグネシウム、フッ化カルシウム等に代表されるアルカリ土類金属化合物、酸化アルミニウムに代表される金属酸化物、8−ヒドロキシキノリネートリチウム(Liq)等に代表される金属錯体等が挙げられる。また、前述の電子輸送材料を用いることも可能である。
また、上記の電子注入層に用いられる材料は単独で用いてもよく、複数種を併用して用いてもよい。
《正孔輸送層》
本発明において正孔輸送層とは、正孔を輸送する機能を有する材料からなり、陽極より注入された正孔を発光層に伝達する機能を有していればよい。
本発明で用いられる正孔輸送層の総層厚については特に制限はないが、通常は5nm〜5μmの範囲であり、より好ましくは5〜500nmであり、さらに好ましくは5〜200nmである。
正孔輸送層に用いられる材料(以下、正孔輸送材料という)としては、正孔の注入性又は輸送性、電子の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。
例えば、ポルフィリン誘導体、フタロシアニン誘導体、オキサゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリアリールアルカン誘導体、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、イソインドール誘導体、アントラセンやナフタレン等のアセン系誘導体、フルオレン誘導体、フルオレノン誘導体、及びポリビニルカルバゾール、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー、ポリシラン、導電性ポリマー又はオリゴマー(例えばPEDOT/PSS、アニリン系共重合体、ポリアニリン、ポリチオフェン等)等が挙げられる。
トリアリールアミン誘導体としては、α−NPD(4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル)に代表されるベンジジン型や、MTDATAに代表されるスターバースト型、トリアリールアミン連結コア部にフルオレンやアントラセンを有する化合物等が挙げられる。
また、特表2003−519432号公報や特開2006−135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体も同様に正孔輸送材料として用いることができる。
さらに不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4−297076号公報、特開2000−196140号公報、同2001−102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
また、特開平11−251067号公報、J.Huang et.al.著文献(Applied Physics Letters,80(2002),p.139)に記載されているような、いわゆるp型正孔輸送材料やp型−Si、p型−SiC等の無機化合物を用いることもできる。さらにIr(ppy)3に代表されるような中心金属にIrやPtを有するオルトメタル化有機金属錯体も好ましく用いられる。
正孔輸送材料としては、上記のものを使用することができるが、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、アザトリフェニレン誘導体、有機金属錯体、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー等が好ましく用いられる。
本発明の有機EL素子に用いられる、公知の好ましい正孔輸送材料の具体例としては、上記で挙げた文献の他、以下の文献に記載の化合物等が挙げられるが、本発明はこれらに限定されない。
例えば、Appl.Phys.Lett.,69,2160(1996)、J.Lumin.,72−74,985(1997)、Appl.Phys.Lett.,78,673(2001)、Appl.Phys.Lett.,90,183503(2007)、Appl.Phys.Lett.,51,913(1987)、Synth.Met.,87,171(1997)、Synth.Met.,91,209(1997)、Synth.Met.,111,421(2000)、SID Symposium Digest,37,923(2006)、J.Mater.Chem.,3,319(1993)、Adv.Mater.,6,677(1994)、Chem.Mater.,15,3148(2003)、米国特許出願公開第2003/0162053号明細書、米国特許出願公開第2002/0158242号明細書、米国特許出願公開第2006/0240279号明細書、米国特許出願公開第2008/0220265号明細書、米国特許第5061569号、国際公開第2007/002683号、国際公開第2009/018009号、EP650955、米国特許出願公開第2008/0124572号明細書、米国特許出願公開第2007/0278938号明細書、米国特許出願公開第2008/0106190号明細書、米国特許出願公開第2008/0018221号明細書、国際公開第2012/115034号、特表2003−519432号公報、特開2006−135145号公報、米国特許出願番号13/585981号等である。
正孔輸送材料は単独で用いてもよく、また複数種を併用して用いてもよい。
《電子阻止層》
電子阻止層とは、広い意味では正孔輸送層の機能を有する層であり、好ましくは正孔を輸送する機能を有しつつ電子を輸送する能力が小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。
また、前述する正孔輸送層の構成を必要に応じて、本発明で用いられる電子阻止層として用いることができる。
本発明の有機EL素子に設ける電子阻止層は、発光層の陽極側に隣接して設けられることが好ましい。
本発明で用いられる電子阻止層の層厚としては、好ましくは3〜100nmの範囲内であり、更に好ましくは5〜30nmの範囲内である。
電子阻止層に用いられる材料としては、前述の正孔輸送層に用いられる材料が好ましく用いられ、また、前述のホスト化合物も電子阻止層に好ましく用いられる。
《正孔注入層》
本発明で用いられる正孔注入層(「陽極バッファー層」ともいう。)とは、駆動電圧低下や発光輝度向上のために陽極と発光層との間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されている。
本発明において正孔注入層は必要に応じて設け、上記のごとく陽極と発光層又は陽極と正孔輸送層との間に存在させてもよい。
正孔注入層は、特開平9−45479号公報、同9−260062号公報、同8−288069号公報等にもその詳細が記載されており、正孔注入層に用いられる材料としては、例えば前述の正孔輸送層に用いられる材料等が挙げられる。
中でも銅フタロシアニンに代表されるフタロシアニン誘導体、特表2003−519432号公報や特開2006−135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体、酸化バナジウムに代表される金属酸化物、アモルファスカーボン、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子、トリス(2−フェニルピリジン)イリジウム錯体等に代表されるオルトメタル化錯体、トリアリールアミン誘導体等が好ましい。
前述の正孔注入層に用いられる材料は単独で用いてもよく、また複数種を併用して用いてもよい。
《その他の添加物》
前述した本発明における有機層は、更に他の添加物が含まれていてもよい。
添加物としては、例えば臭素、ヨウ素及び塩素等のハロゲン元素やハロゲン化化合物、Pd、Ca、Na等のアルカリ金属やアルカリ土類金属、遷移金属の化合物や錯体、塩等が挙げられる。
添加物の含有量は、任意に決定することができるが、含有される層の全質量%に対して1000ppm以下であることが好ましく、より好ましくは500ppm以下であり、さらに好ましくは50ppm以下である。
ただし、電子や正孔の輸送性を向上させる目的や、励起子のエネルギー移動を有利にするための目的などによってはこの範囲内ではない。
《有機層の形成方法》
本発明に係る有機層(正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層、電子注入層等)の形成方法について説明する。
本発明に係る有機層の形成方法は、特に制限はなく、従来公知の例えば真空蒸着法、湿式法(ウェットプロセスともいう)等による形成方法を用いることができる。
湿式法としては、スピンコート法、キャスト法、インクジェット法、印刷法、ダイコート法、ブレードコート法、ロールコート法、スプレーコート法、カーテンコート法、LB法(ラングミュア−ブロジェット法)等があるが、均質な薄膜が得られやすく、かつ高生産性の点から、ダイコート法、ロールコート法、インクジェット法、スプレーコート法などのロール・ツー・ロール方式適性の高い方法が好ましい。
本発明に用いられる有機EL材料を溶解又は分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。
また、分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。
更に層ごとに異なる成膜法を適用してもよい。成膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50〜450℃、真空度10-6〜10-2Pa、蒸着速度0.01〜50nm/秒、基板温度−50〜300℃、層(膜)厚0.1nm〜5μm、好ましくは5〜200nmの範囲内で適宜選ぶことが望ましい。
本発明に係る有機層の形成は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる成膜法を施しても構わない。その際は作業を乾燥不活性ガス雰囲気下で行うことが好ましい。
《陽極》
有機EL素子における陽極としては、仕事関数の大きい(4eV以上、好ましくは4.5eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In23−ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。
陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、又はパターン精度を余り必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。
または、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。
陽極の膜厚は材料にもよるが、通常10nm〜1μm、好ましくは10〜200nmの範囲内で選ばれる。
《陰極》
陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、インジウム、リチウム/アルミニウム混合物、アルミニウム、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
陰極はこれらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させることで作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm〜5μm、好ましくは50〜200nmの範囲で選ばれる。
なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が透明又は半透明であれば発光輝度が向上し好都合である。
また、陰極に上記金属を1〜20nmの膜厚で作製した後に、陽極の説明で挙げる導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
[支持基板]
本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等ともいう。)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル若しくはポリアリレート類、アートン(商品名JSR社製)又はアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。
樹脂フィルムの表面には、無機物、有機物の被膜又はその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%)が0.01g/m2・24h以下のバリア性フィルムであることが好ましく、更には、JIS K 7126−1987に準拠した方法で測定された酸素透過度が、1×10-3ml/m2・24h・atm以下、水蒸気透過度が、1×10-5g/m2・24h以下の高バリア性フィルムであることが好ましい。
バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004−68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。
不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
本発明の有機EL素子の発光の室温(25℃)における外部取り出し量子効率は、1%以上であることが好ましく、5%以上であるとより好ましい。
ここで、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。
また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を、蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。
《その他の構成》
本発明に用いることができる封止手段、保護膜、保護板、光取り出し効率を向上させる技術及び集光シートとしては、特開2014−152151号公報等に記載の公知の技術を用いることができる。
[用途]
本発明の有機EL素子は、電子機器、例えば、表示装置、ディスプレイ、各種発光装置として用いることができる。
発光装置として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。
<表示装置>
本発明の有機EL素子を具備する表示装置は単色でも多色でもよいが、ここでは多色表示装置について説明する。
多色表示装置の場合は発光層形成時のみシャドーマスクを設け、一面に蒸着法、キャスト法、スピンコート法、インクジェット法又は印刷法等で膜を形成できる。
発光層のみパターニングを行う場合、その方法に限定はないが、好ましくは蒸着法、インクジェット法、スピンコート法及び印刷法である。
表示装置に具備される有機EL素子の構成は、必要に応じて上記の有機EL素子の構成例の中から選択される。
また、有機EL素子の製造方法は、上記の本発明の有機EL素子の製造の一態様に示したとおりである。
このようにして得られた多色表示装置に直流電圧を印加する場合には、陽極を+、陰極を−の極性として電圧2〜40V程度を印加すると発光が観測できる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。更に交流電圧を印加する場合には、陽極が+、陰極が−の状態になったときのみ発光する。なお、印加する交流の波形は任意でよい。
多色表示装置は、表示デバイス、ディスプレイ又は各種発光光源として用いることができる。表示デバイス又はディスプレイにおいて、青、赤及び緑発光の3種の有機EL素子を用いることによりフルカラーの表示が可能となる。
表示デバイス又はディスプレイとしては、テレビ、パソコン、モバイル機器、AV機器、文字放送表示及び自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよく、動画再生用の表示装置として使用する場合の駆動方式は単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。
発光装置としては、家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、本発明はこれらに限定されない。
以下、本発明の有機EL素子を有する表示装置の一例を図面に基づいて説明する。
図2は有機EL素子から構成される表示装置の一例を示した模式図である。有機EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図である。
ディスプレイ1は複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像走査を行う制御部B、表示部Aと制御部Bとを電気的に接続する配線部C等を有する。
制御部Bは表示部Aと配線部Cを介して電気的に接続され、複数の画素それぞれに外部からの画像情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線ごとの画素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部Aに表示する。
図3はアクティブマトリクス方式による表示装置の模式図である。
表示部Aは基板上に、複数の走査線5及びデータ線6を含む配線部Cと複数の画素3等とを有する。表示部Aの主要な部材の説明を以下に行う。
図3においては、画素3の発光した光(発光光L)が白矢印方向(下方向)へ取り出される場合を示している。
配線部の走査線5及び複数のデータ線6はそれぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示していない)。
画素3は走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。
発光の色が赤領域の画素、緑領域の画素、青領域の画素を適宜同一基板上に並置することによって、フルカラー表示が可能となる。
次に、画素の発光プロセスを説明する。図4は画素の回路を示した概略図である。
画素は、有機EL素子10、スイッチングトランジスタ11、駆動トランジスタ12、コンデンサー13等を備えている。複数の画素に有機EL素子10として、赤色、緑色及び青色発光の有機EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行うことができる。
図4において、制御部Bからデータ線6を介してスイッチングトランジスタ11のドレインに画像データ信号が印加される。そして、制御部Bから走査線5を介してスイッチングトランジスタ11のゲートに走査信号が印加されると、スイッチングトランジスタ11の駆動がオンし、ドレインに印加された画像データ信号がコンデンサー13と駆動トランジスタ12のゲートに伝達される。
画像データ信号の伝達により、コンデンサー13が画像データ信号の電位に応じて充電されるとともに、駆動トランジスタ12の駆動がオンする。駆動トランジスタ12は、ドレインが電源ライン7に接続され、ソースが有機EL素子10の電極に接続されており、ゲートに印加された画像データ信号の電位に応じて電源ライン7から有機EL素子10に電流が供給される。
制御部Bの順次走査により走査信号が次の走査線5に移ると、スイッチングトランジスタ11の駆動がオフする。しかし、スイッチングトランジスタ11の駆動がオフしてもコンデンサー13は充電された画像データ信号の電位を保持するので、駆動トランジスタ12の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機EL素子10の発光が継続する。順次走査により次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電位に応じて駆動トランジスタ12が駆動して有機EL素子10が発光する。
すなわち、有機EL素子10の発光は、複数の画素それぞれの有機EL素子10に対して、アクティブ素子であるスイッチングトランジスタ11と駆動トランジスタ12を設けて、複数の画素3それぞれの有機EL素子10の発光を行っている。このような発光方法をアクティブマトリクス方式と呼んでいる。
ここで、有機EL素子10の発光は複数の階調電位を持つ多値の画像データ信号による複数の階調の発光でもよいし、2値の画像データ信号による所定の発光量のオン、オフでもよい。また、コンデンサー13の電位の保持は次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加される直前に放電させてもよい。
本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査されたときのみデータ信号に応じて有機EL素子を発光させるパッシブマトリクス方式の発光駆動でもよい。
図5は、パッシブマトリクス方式による表示装置の模式図である。図5において、複数の走査線5と複数の画像データ線6が画素3を挟んで対向して格子状に設けられている。
順次走査により走査線5の走査信号が印加されたとき、印加された走査線5に接続している画素3が画像データ信号に応じて発光する。
パッシブマトリクス方式では画素3にアクティブ素子が無く、製造コストの低減が計れる。
本発明の有機EL素子を用いることにより、発光効率が向上した表示装置が得られる。
<照明装置>
本発明の有機EL素子は、照明装置に用いることもできる。
本発明の有機EL素子は、共振器構造を持たせた有機EL素子として用いてもよい。このような共振器構造を有した有機EL素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザー発振をさせることにより上記用途に使用してもよい。
また、本発明の有機EL素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。
動画再生用の表示装置として使用する場合の駆動方式は、パッシブマトリクス方式でもアクティブマトリクス方式でもどちらでもよい。または、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。
また、本発明に用いられるπ共役系化合物は、実質的に白色の発光を生じる有機EL素子を具備する照明装置に適用できる。例えば、複数の発光材料を用いる場合、複数の発光色を同時に発光させて、混色することで白色発光を得ることができる。複数の発光色の組み合わせとしては、赤色、緑色及び青色の3原色の三つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した二つの発光極大波長を含有したものでもよい。
また、本発明の有機EL素子の形成方法は、発光層、正孔輸送層又は電子輸送層等の形成時のみマスクを設け、マスクにより塗り分ける等単純に配置するだけでよい。他層は共通であるのでマスク等のパターニングは不要であり、一面に蒸着法、キャスト法、スピンコート法、インクジェット法及び印刷法等で、例えば、電極膜を形成でき、生産性も向上する。
この方法によれば、複数色の発光素子をアレー状に並列配置した白色有機EL装置と異なり、素子自体が白色発光である。
[本発明の照明装置の一態様]
本発明の有機EL素子を具備した、本発明の照明装置の一態様について説明する。
本発明の有機EL素子の非発光面をガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止し、図6及び図7に示すような照明装置を形成することができる。
図6は、照明装置の概略図を示し、本発明の有機EL素子(照明装置内の有機EL素子101)はガラスカバー102で覆われている(なお、ガラスカバーでの封止作業は、照明装置内の有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った。)。
図7は、照明装置の断面図を示し、105は陰極、106は有機層、107は透明電極付きガラス基板を示す。なお、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。また、図6及び図7においては、発光した光が白矢印方向(下方向)へ取り出される場合(取出光L)を示している。
本発明の有機EL素子を用いることにより、発光効率が向上した照明装置が得られた。
<発光性薄膜>
本発明の発光性薄膜は、前記有機層の形成方法と同様に作製することができる。
本発明の発光性薄膜の形成方法は、特に制限はなく、従来公知の例えば真空蒸着法、湿式法(ウェットプロセスともいう)等による形成方法を用いることができる。
湿式法としては、スピンコート法、キャスト法、インクジェット法、印刷法、ダイコート法、ブレードコート法、ロールコート法、スプレーコート法、カーテンコート法、LB法(ラングミュア−ブロジェット法)等があるが、均質な薄膜が得られやすく、かつ高生産性の点から、ダイコート法、ロールコート法、インクジェット法、スプレーコート法などのロール・ツー・ロール方式適性の高い方法が好ましい。
本発明で用いられるπ共役系化合物を溶解又は分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。
また、分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。
更に層毎に異なる成膜法を適用してもよい。成膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度を50〜450℃の範囲内、真空度を10-6〜10-2Paの範囲内、蒸着速度0.01〜50nm/秒の範囲内、基板温度−50〜300℃の範囲内、層厚0.1nm〜5μmの範囲内、好ましくは5〜200nmの範囲内で適宜選ぶことが望ましい。
また、成膜にスピンコート法を採用する場合、スピンコーターを100〜1000rpmの範囲内、10〜120秒の範囲内で、乾燥不活性ガス雰囲気下で行うことが好ましい。
また、本発明の発光性薄膜を表示装置及び照明装置に用いることもできる。
これにより、発光効率が改善された表示装置及び照明装置が得られる。
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
[実施例1]
≪薄膜の作製≫
(薄膜1−1aの作製方法)
50mm×50mm、厚さ0.7mmの石英基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った後、この石英基板を市販の真空蒸着装置の基板ホルダーに固定した。
真空蒸着装置内の蒸着用るつぼの各々に、ホスト化合物H−46及びドーパントD−1を、各々薄膜作製に最適の量を充填した。蒸着用るつぼは、モリブデン製又はタングステン製の抵抗加熱用材料で作製されたものを用いた。
真空度1×10-4Paまで減圧した後、ホスト化合物H−46及びドーパントD−1の入った蒸着用るつぼに通電して加熱し、ホスト化合物H−46及びドーパントD−1が、それぞれ90%、10%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚40nmの薄膜を形成した。上記薄膜は、純度99.999%以上の高純度窒素ガスの雰囲気下で、缶状ガラスケースで覆うことで封止し、膜厚40nmの薄膜1−1aを作製した。
(薄膜1−1bの作製方法)
薄膜1−1bの作製は、ホスト化合物H−46及びドーパントD−1が、それぞれ75%、25%の体積%になるように変更した以外は、薄膜1−1aと同様にして、蒸着速度0.1nm/秒で共蒸着し、層厚40nmの薄膜を形成した。上記薄膜は、純度99.999%以上の高純度窒素ガスの雰囲気下で、缶状ガラスケースで覆うことで封止し、膜厚40nmの薄膜1−1bを作製した。
(薄膜1−2a〜1−8bの作製方法)
使用するドーパントを表3に示すように変えた以外は薄膜1−1a又は1−1bと同様の方法で薄膜1−2a〜1−8a及び1−2b〜1−8bを作製した。
Figure 0006673203
(薄膜の評価)
薄膜1−1a〜1−8b試料に対し、300nmの励起光を用いて、各薄膜のPLスペクトルを測定した。PL測定には絶対PL量子収率測定装置C9920−02(浜松ホトニクス社製)を用いた。
各薄膜について下記評価を行った。具体的には、薄膜1−1aと薄膜1−1bによって得られた結果を薄膜1−1の結果として示す。薄膜1−2〜1−8についても同様である。
(発光強度の比)
各薄膜の発光強度を相対比較した。すなわち、薄膜1−1については、
発光強度比=(薄膜1−1bの発光極大のPL強度/薄膜1−1aの発光極大のPL強度)で表される。
発光強度比の値が大きい方が、化合物の濃度依存性が低く、凝集しにくいことを示している。
(波長シフト)
各薄膜の波長シフト=(薄膜1−1bの発光極大波長−薄膜1−1a発光極大波長)
波長シフトの値(nm)が小さい方が、化合物の濃度依存性が低く、凝集しにくいことを示している。
薄膜1−2〜1−8についても同様に薄膜評価を行い、結果を表3に示す。
Figure 0006673203
(結果)
本発明のπ共役系化合物をドーパントとして用いた薄膜では、濃度上昇による発光強度の低下が抑えられ、同時に発光波長のレッドシフトも抑制されている。このことは、アクセプター部位のπ平面が小さく、同時に捻じれていることから、πスタックが起こりにくく、凝集が抑制されているためと考えられる。
[実施例2]
本実施例において、例示化合物T−124のトルエン溶液を調製して、窒素をバブリングしながら300Kで280nmの波長の光を照射したところ、514nmに発光を観測した。なお、この化合物には遅延蛍光が見られ、発光寿命の短い成分は15nm、発光寿命が長い成分は75μsの発光寿命であった。時間分解スペクトルを、浜松ホトニクス(株)製蛍光寿命測定装置Quantaurus−tauにて測定し、発光寿命の短い成分を蛍光、発光寿命が長い成分を遅延蛍光と判断した。
[実施例3]
(有機EL素子3−1の作製)
50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウム・スズ酸化物)を150nmの厚さで成膜し、パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った後、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
真空蒸着装置内の蒸着用るつぼの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。蒸着用るつぼはモリブデン製又はタングステン製の抵抗加熱用材料で作製されたものを用いた。
真空度1×10-4Paまで減圧した後、α−NPDの入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、層厚40nmの正孔注入輸送層を形成した。
次いで、ホスト化合物H−46及びドーパントD−6が、それぞれ94%、6%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚35nmの発光層を形成した。
その後、BCP(電子輸送材料)を蒸着速度0.1nm/秒で蒸着し、層厚30nmの電子輸送層を形成した。
さらに、フッ化リチウムを膜厚0.5nmで形成した後に、アルミニウム100nmを蒸着して陰極を形成した。
上記素子の非発光面側を、純度99.999%以上の高純度窒素ガスの雰囲気下で、缶状ガラスケースで覆い、電極取り出し配線を設置して、有機EL素子3−1を作製した。
(有機EL素子3−2〜3−13の作製)
ドーパント化合物を表4に示すように変えた以外は有機EL素子3−1と同様の方法で有機EL素子3−2から3−13を作製した。
Figure 0006673203
(評価)
有機EL素子3−1から3−13について、下記の評価を行った。
(外部量子収率(発光輝度)の評価)
上記作製した各有機EL素子を、室温(約25℃)で、2.5mA/cm2の定電流条件下で発光させ、発光開始直後の発光輝度を、分光放射輝度計CS−2000(コニカミノルタ社製)を用いて測定した。
次いで、比較例の有機EL素子3−1の発光輝度を100とした相対発光輝度を求め、これを発光効率(外部量子収率:EQE)の尺度とした。数値が大きいほど、発光効率が優れていることを表す。
(高輝度発光時のロールオフ特性)
上記作製した各有機EL素子を、室温(約25℃)で、ロールオフ特性を評価した。まず、各素子に電圧を印加し、0〜10000cd/Aまで発光させたときに得られた輝度−外部量子収率のグラフを作成した。発光輝度に関しては、分光放射輝度計CS−2000(コニカミノルタ社製)を用いて測定した。
ロールオフ特性Rは、各有機EL素子の外部量子収率の極大値が得られた発光輝度に対し、20%の外部量子収率の低下が観測された発光輝度を観察し、以下の式で求めることができる相対値とした。
ロールオフ特性R=(極大値から20%の外部量子収率の低下が観測された発光輝度の値)/(外部量子収率の極大値が得られた発光輝度の値)
値が大きいほどロールオフ特性が良好である(ロールオフが少ない)ことを示す。
(結果)
本発明のπ共役系化合物をドーパントとして用いた有機EL素子では、EQEの向上とロールオフ抑制が見られている。このことは、比較的アクセプター部位のπ平面が小さいことから、πスタックが起こりにくく、ドーパント同士の凝集が抑制されているためと考えられるのに加え、アクセプター内に存在する6員環の窒素原子数を調整することで、電荷バランスが安定化し、ロールオフを抑制しているものと考えられる。
[実施例4]
(有機EL素子4−1の作製)
50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウム・スズ酸化物)を150nmの厚さで成膜し、パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った後、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
真空蒸着装置内の蒸着用るつぼの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。蒸着用るつぼはモリブデン製又はタングステン製の抵抗加熱用材料で作製されたものを用いた。
真空度1×10-4Paまで減圧した後、α−NPDの入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、層厚40nmの正孔注入輸送層を形成した。
次いで、ホスト化合物H−46、ドーパントD−4が、それぞれ90%、10%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚35nmの発光層を形成した。
その後、DPEPOを蒸着速度0.1nm/秒で蒸着し、層厚10nmの正孔阻止層を形成した。更にその上にAlq3(電子輸送材料)を蒸着速度0.1nm/秒で蒸着し、層厚30nmの電子輸送層を形成した。
さらに、フッ化リチウムを膜厚0.5nmで形成した後に、アルミニウム100nmを蒸着して陰極を形成した。
上記素子の非発光面側を、純度99.999%以上の高純度窒素ガスの雰囲気下で、缶状ガラスケースで覆い、電極取り出し配線を設置して、有機EL素子4−1を作製した。
Figure 0006673203
(有機EL素子4−2〜4−24の作製)
ドーパント及びホスト化合物を表5に示すように変えた以外は有機EL素子4−1と同様の方法で有機EL素子4−2から4−24を作製した。
Figure 0006673203
(評価)
有機EL素子4−1から4−24について、下記の評価を行った。
(外部量子収率(発光輝度)の評価)
上記作製した各有機EL素子を、室温(約25℃)で、2.5mA/cm2の定電流条件下で発光させ、発光開始直後の発光輝度を、分光放射輝度計CS−2000(コニカミノルタ社製)を用いて測定した。
次いで、比較例の有機EL素子4−1の発光輝度を100とした相対発光輝度を求め、これを発光効率(外部量子収率:EQE)の尺度とした。数値が大きいほど、発光効率が優れていることを表す。
(半減寿命(連続駆動安定性)の評価)
各サンプルを初期輝度3000cd/m2で連続駆動させながら、上記分光放射輝度計CS−2000を用いて輝度を測定し、測定した輝度が半減する時間(LT50)を求めた。
比較例の有機EL素子4−1のLT50を100とした相対値を求め、これを連続駆動安定性の尺度とした。その評価結果を表に示す。表中、数値が大きいほど、連続駆動安定性に優れている(長寿命である)ことを表す。
(駆動時の電圧上昇)
有機EL素子駆動時の各サンプルの電圧上昇は下記測定を行うことにより評価した。
(A)初期駆動電圧の測定
各サンプルに対し、室温(約25℃)で、分光放射輝度計CS−2000(コニカミノルタ社製)を用いて、各サンプルの発光輝度を測定し、発光輝度1000cd/m2における初期駆動電圧を求めた。
(B)半減寿命後の電圧の測定
上記半減寿命評価が終了したサンプルに対し、室温(約25℃)で、分光放射輝度計CS−2000(コニカミノルタ社製)を用いて、各サンプルの発光輝度を測定し、発光輝度1000cd/m2における駆動電圧を求めた。
(駆動時の電圧上昇の評価)
駆動電圧の評価は下記式により算出した。
電圧上昇=[(B)半減寿命後の発光輝度1000cd/m2における駆動電圧の測定]/[(A)発光輝度1000cd/m2における初期駆動電圧]
表5では、電圧上昇の値は小さいほど良好なことを示している。
(結果)
有機EL素子4−7から4−24において、比較例の有機EL素子と比べて外部量子収率及び半減寿命に優れていることがわかる。
これは、前述のとおり本実施例で用いた例示化合物のアクセプター部位の窒素原子数を調整することで、HOMOエネルギー準位をコントロールできるため、従来の化合物でみられた電子トラップ性を抑制することができ、同時に、正孔注入性も向上し、結果として有機EL素子の駆動の際に電荷の再結合できる範囲が広くなったためであると考えられる。
これに伴い、各素子における駆動前後の電圧上昇も抑えられている。さらに、これらの効果は、本発明に係る好ましいホスト化合物を用いることによって増強される。これは、正確な理由は明らかでないが、ホスト化合物とドーパント間での好ましい相互作用によるものと推測される。
[実施例5]
(有機EL素子5−1の作製)
50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウム・スズ酸化物)を150nmの厚さで成膜し、パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った後、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
真空蒸着装置内の蒸着用るつぼの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。蒸着用るつぼはモリブデン製又はタングステン製の抵抗加熱用材料で作製されたものを用いた。
真空度1×10-4Paまで減圧した後、α−NPDの入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、層厚40nmの正孔注入輸送層を形成した。
次いで、ホスト化合物H−73、例示化合物T−126及びドーパントIr(piq)3が、それぞれ90%、9%、9.9%、0.1%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚35nmの発光層を形成した。
その後、BAlq(正孔阻止材料)を蒸着速度0.1nm/秒で蒸着し、層厚10nmの正孔阻止層を形成した。更にその上にAlq3(電子輸送材料)を蒸着速度0.1nm/秒で蒸着し、層厚30nmの電子輸送層を形成した。
さらに、フッ化リチウムを膜厚0.5nmで形成した後に、アルミニウム100nmを蒸着して陰極を形成した。
上記素子の非発光面側を、純度99.999%以上の高純度窒素ガスの雰囲気下で、缶状ガラスケースで覆い、電極取り出し配線を設置して、有機EL素子5−1を作製した。
(有機EL素子5−1の評価)
上記作製した各有機EL素子を、室温(約25℃)で、2.5mA/cm2の定電流条件になるよう電圧を印加したところ、白色の強い発光が得られた。
Ir(piq)3の代わりにD−5を用いた場合にも同様の白色光が得られることがわかった。
[実施例6]
(有機EL素子6−1の作製)
50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウム・スズ酸化物)を150nmの厚さで成膜し、パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った後、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
真空蒸着装置内の蒸着用るつぼの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。蒸着用るつぼはモリブデン製又はタングステン製の抵抗加熱用材料で作製されたものを用いた。
真空度1×10-4Paまで減圧した後、α−NPDの入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、層厚40nmの正孔注入輸送層を形成した。
次いで、ホスト化合物H−46及びドーパントD−7が、それぞれ93%、7%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚35nmの発光層を形成した。
その後、ホスト化合物H−42を蒸着速度0.1nm/秒で蒸着し、層厚30nmの正孔阻止層兼電子輸送層を形成した。
さらに、フッ化リチウムを膜厚0.5nmで形成した後に、アルミニウム100nmを蒸着して陰極を形成した。
上記素子の非発光面側を、純度99.999%以上の高純度窒素ガスの雰囲気下で、缶状ガラスケースで覆い、電極取り出し配線を設置して、有機EL素子6−1を作製した。
(有機EL素子6−2の作製)
真空度1×10-4Paまで減圧した後、α−NPDの入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、層厚40nmの正孔注入輸送層を形成した。
次いで、ホスト化合物(B):H−46、ドーパント(A):D−7及び併用化合物(C):D−1が、それぞれ69.0%、6.0%、25.0%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚35nmの発光層を形成した。
その後、ホスト化合物H−42を蒸着速度0.1nm/秒で蒸着し、層厚30nmの正孔阻止層兼電子輸送層を形成した。
さらに、フッ化リチウムを膜厚0.5nmで形成した後に、アルミニウム100nmを蒸着して陰極を形成した。
上記素子の非発光面側を、純度99.999%以上の高純度窒素ガスの雰囲気下で、缶状ガラスケースで覆い、電極取り出し配線を設置して、有機EL素子6−2を作製した。
(有機EL素子6−3〜6−12の作製)
ドーパント及びホスト化合物を表6に示すように変えた以外は有機EL素子6−2と同様の方法で有機EL素子6−3〜6−12を作製した。
Figure 0006673203
(評価)
有機EL素子6−1から6−12について、下記の評価を行った。
(外部量子収率(発光輝度)の評価)
上記作製した各有機EL素子を、室温(約25℃)で、2.5mA/cm2の定電流条件下で発光させ、発光開始直後の発光輝度を、分光放射輝度計CS−2000(コニカミノルタ社製)を用いて測定した。なお、発光スペクトルから、有機EL素子6−1〜6−6では、D−7のみが、有機EL素子6−7〜6−10では、D−2のみが、有機EL素子6−11〜6−12では、D−1のみが発光していることを確認した。
次いで、比較例の有機EL素子6−1の発光輝度を100とした相対発光輝度を求め、これを発光効率(外部量子収率)の尺度とした。数値が大きいほど、発光効率に優れていることを表す。
(半減寿命(連続駆動安定性)の評価)
各サンプルを初期輝度3000cd/m2で連続駆動させながら、上記分光放射輝度計CS−2000を用いて輝度を測定し、測定した輝度が半減する時間(LT50)を求めた。
比較例の有機EL素子6−1のLT50を100とした相対値を求め、これを連続駆動安定性の尺度とした。その評価結果を表に示す。表中、数値が大きいほど、連続駆動安定性に優れている(長寿命である)ことを表す。
(結果)
有機EL素子6−4から6−12において、比較例の有機EL素子と比べて外部量子収率及び半減寿命に優れていることが分かった。
これは、本発明に係る化合物が、他のドーパントの発光を補助している効果と考えられる。すなわち、発光物質よりエネルギー準位の高い本発明のπ共役系化合物が発光素子中で励起された時、そのエネルギーを発光物質が効率よく受け取ることにより、本発明に用いられる化合物自体が発光するのと遜色ない外部量子効率が得られるものと考えられる。
[実施例7]
(有機EL素子7−1の作製)
50mm×50mm×厚さ0.7mmのガラス基板上に、ITO(インジウム・スズ酸化物)を150nmの厚さで成膜した後、パターニングを行い、陽極であるITO透明電極を形成した。このITO透明電極が設けられた透明基板を、イソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥した後、UVオゾン洗浄を5分間行った。得られた透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
真空蒸着装置内の蒸着用の抵抗加熱ボートの各々に、各層の構成材料を各々素子作製に最適の量を充填した。前記抵抗加熱ボートはモリブデン製又はタングステン製を用いた。
真空蒸着装置内を真空度1×10-4Paまで減圧した後、HI−1の入った抵抗加熱ボートに通電して加熱し、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、厚さ15nmの正孔注入層を形成した。
次いで、α−NPD(4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル)を、蒸着速度0.1nm/秒で蒸着し、厚さ30nmの正孔輸送層を形成した。
次いで、ホスト材料としてD−2と、発光性化合物としてGD−1とが入った抵抗加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/秒、0.010nm/秒で正孔輸送層上に共蒸着し、厚さ40nmの発光層を形成した。
次いで、H−42を蒸着速度0.1nm/秒で蒸着し、厚さ5nmの第一電子輸送層を形成した。
さらに、その上に、ET−1を蒸着速度0.1nm/秒で蒸着し、厚さ45nmの第二電子輸送層を形成した。
その後、フッ化リチウムを厚さ0.5nmになるよう蒸着した後、アルミニウム100nmを蒸着して陰極を形成し、有機EL素子7−1を作製した。
(有機EL素子7−2〜7−9の作製)
ホスト材料を表3に示されるように変更した以外は有機EL素子7−1と同様にして発光層を形成し、有機EL素子7−2〜7−9を作製した。
Figure 0006673203
実施例6と同様にして、有機EL素子7−1の発光効率及び半減寿命を測定し、各有機EL素子の有機EL素子7−1の発光効率及び半減寿命に対する相対値を求めた。得られた測定結果を表7に示す。
Figure 0006673203
(結果)
有機EL素子7−3から7−9において、比較例の有機EL素子と比べて外部量子収率に優れていることが分かった。
これは、本発明に係る化合物が、ホスト材料としても効用があると考えられる。すなわち、本発明に係る化合物はキャリア輸送性に優れ、ドーパントの発光を補助できることによるためであると考えられる。
本発明は、液晶、プラズマ、有機エレクトロルミネッセンス、フィールドエミッションなど各種方式のディスプレイをはじめ、タッチパネルや携帯電話、電子ペーパー、各種太陽電池、各種エレクトロルミネッセンス調光素子など様々なオプトエレクトロニクスデバイスの分野において利用可能性がある。
1 ディスプレイ
3 画素
5 走査線
6 データ線
7 電源ライン
10 有機EL素子
11 スイッチングトランジスタ
12 駆動トランジスタ
13 コンデンサー
101 照明装置内の有機EL素子
102 ガラスカバー
105 陰極
106 有機層
107 透明電極付きガラス基板
108 窒素ガス
109 捕水剤
A 表示部
B 制御部
C 配線部
L 発光光

Claims (8)

  1. 陽極と陰極の間に、少なくとも一層の発光層を含む有機層を有する有機エレクトロルミネッセンス素子であって、
    当該有機層の少なくとも一層が、分子内に電子のアクセプター部位とドナー部位とを有するπ共役系化合物と、蛍光発光性化合物及びリン光発光性化合物のうち少なくとも1種類と、ホスト化合物とを含有し、
    当該アクセプター部位が、三環以下の縮合環で構成されており、14個以下のπ電子を含み芳香族性を有し、かつ、
    当該縮合環が、1個又は2個の窒素原子を有する6員の芳香族複素環を含み、
    前記ホスト化合物が、下記一般式(I)で表される構造を有することを特徴とする有機エレクトロルミネッセンス素子。
    Figure 0006673203
    (一般式(I)中、X 101 は、酸素原子、硫黄原子、CR 102 103 又はSiR 102 103 を表す。y 〜y は、各々CR 104 又は窒素原子を表す。R 101 〜R 104 は、各々水素原子又は置換基を表し、また互いに結合して環を形成してもよい。Ar 101 及びAr 102 は、各々芳香環を表し、それぞれ同一でも異なっていてもよい。n101及びn102は、各々0〜4の整数を表すが、R 101 が水素原子の場合は、n101は1〜4の整数を表す。)
  2. 前記一般式(I)中、X 101 が、酸素原子又は硫黄原子を表すことを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
  3. 前記ホスト化合物が、下記化合物群から選ばれる化合物であることを特徴とする請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子。
    Figure 0006673203
  4. 前記π共役系化合物のアクセプター部位が、10個のπ電子を含み、下記一般式(1)で表される構造を有することを特徴とする請求項1から請求項3までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure 0006673203
    (式中、A〜Aは、各々独立に、C−R又は窒素原子を表すが、A〜Aのうち少なくとも1つは窒素原子を表す。Rは、水素原子又は置換基を表し、複数のRが存在する場合は、各々のRは同一でも異なっていてもよく、互いに結合して環を形成してもよい。環Bは、6員の芳香族炭化水素環基若しくは芳香族複素環基、又は5員の芳香族
    複素環基を表す。)
  5. 前記π共役系化合物のアクセプター部位が、10個のπ電子を含み、下記一般式(2)で表される構造を有することを特徴とする請求項1から請求項4までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure 0006673203
    (式中、A〜Aは、各々独立に、C−R又は窒素原子を表すが、A〜Aのうち2つは窒素原子を表す。Rは、水素原子又は置換基を表し、複数のRが存在する場合は、各々のRは同一でも異なっていてもよく、互いに結合して環を形成してもよい。環Bは5員の芳香族複素環基を表す。B〜Bは、炭素原子、窒素原子、酸素原子又はリン原子を表し、これらの原子は各々独立に水素原子又は置換基で置換されていてもよい。)
  6. 前記π共役系化合物のアクセプター部位が、14個のπ電子を含み、下記一般式(4)で表される構造を有することを特徴とする請求項1から請求項3までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure 0006673203
    (式中、A〜A14は、各々独立に、C−R又は窒素原子を表すが、A〜A14のうち少なくとも1つは窒素原子を表す。Rは、水素原子又は置換基を表し、複数のRが存在する場合は、各々のRは同一でも異なっていてもよく、互いに結合して環を形成してもよい。)
  7. 前記π共役系化合物が、下記一般式(C)で表される構造を有することを特徴とする請求項1から請求項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure 0006673203
    (式中、A〜Aは、各々独立に、C−R又は窒素原子を表すが、A〜Aのうち少なくとも1つは窒素原子である。Rは、水素原子又は置換基を表し、複数のRが存在する場合は、各々のRは同一でも異なっていてもよく、互いに結合して環を形成してもよい。Rは、さらに前記置換基で置換されていてもよい。Rは、水素原子又は置換基を表し、複数のRが存在する場合は、各々のRは同一でも異なっていてもよく、互いに結合して環を形成してもよい。Rは、さらに前記置換基で置換されていてもよい。Dはドナー部位を表し、nは1〜4の整数を表す。環Bは、6員の芳香族炭化水素環基若しくは芳香族複素環基、又は5員の芳香族複素環基を表し、さらに縮合環を形成してもよい。)
  8. 前記π共役系化合物の最低励起一重項準位と最低励起三重項準位とのエネルギー差の絶対値(ΔEst)が、0.5eV以下であることを特徴とする請求項1から請求項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
JP2016538395A 2014-07-31 2015-07-29 有機エレクトロルミネッセンス素子 Active JP6673203B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014156017 2014-07-31
JP2014156017 2014-07-31
PCT/JP2015/071492 WO2016017688A1 (ja) 2014-07-31 2015-07-29 有機エレクトロルミネッセンス素子、表示装置、照明装置、π共役系化合物及び発光性薄膜

Publications (2)

Publication Number Publication Date
JPWO2016017688A1 JPWO2016017688A1 (ja) 2017-05-18
JP6673203B2 true JP6673203B2 (ja) 2020-03-25

Family

ID=55217586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016538395A Active JP6673203B2 (ja) 2014-07-31 2015-07-29 有機エレクトロルミネッセンス素子

Country Status (2)

Country Link
JP (1) JP6673203B2 (ja)
WO (1) WO2016017688A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3255693B1 (en) 2015-02-06 2024-10-09 Idemitsu Kosan Co., Ltd Organic electroluminescence element and electronic device
EP3276697B1 (en) * 2015-03-27 2020-08-26 Idemitsu Kosan Co., Ltd Organic electroluminescent element, electronic device and compound
CN105859714A (zh) * 2016-05-09 2016-08-17 武汉大学 一种含有1,10菲啰啉单元的热激活延迟荧光材料及其应用
KR102641614B1 (ko) 2016-09-29 2024-02-27 엘지디스플레이 주식회사 유기발광다이오드 및 이를 포함하는 유기발광 표시장치
CN106831743B (zh) * 2016-12-30 2020-03-17 上海天马有机发光显示技术有限公司 一种有机电致发光材料以及有机光电装置
JP6355289B1 (ja) * 2017-12-01 2018-07-11 株式会社奥本研究所 有機エレクトロルミネッセンス素子
CN111875609A (zh) * 2019-08-08 2020-11-03 广州华睿光电材料有限公司 含吡咯基的化合物、高聚物、混合物、组合物及有机电子器件
CN111574505B (zh) * 2020-05-22 2021-08-03 西安瑞联新材料股份有限公司 一种以苯并[c]噌啉为受体的化合物及其应用
CN111943949B (zh) * 2020-08-03 2022-05-20 清华大学 一种有机化合物及其应用及包含该化合物的有机电致发光器件
CN116462665B (zh) * 2023-06-19 2023-10-10 季华实验室 一种有机发光材料、有机电致发光器件
CN116514778A (zh) * 2023-06-26 2023-08-01 季华实验室 一种有机电子传输材料、有机电致发光器件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2511360A4 (en) * 2009-12-07 2014-05-21 Nippon Steel & Sumikin Chem Co Organic light-emitting material and organic light-emitting element
CN103081153A (zh) * 2010-08-24 2013-05-01 E·I·内穆尔杜邦公司 光敏组合物和用所述组合物制得的电子装置
CN103848822A (zh) * 2014-03-10 2014-06-11 武汉尚赛光电科技有限公司 1,8-位咔唑衍生物、其制备方法及其在发光器件中的应用

Also Published As

Publication number Publication date
JPWO2016017688A1 (ja) 2017-05-18
WO2016017688A1 (ja) 2016-02-04

Similar Documents

Publication Publication Date Title
JP6627508B2 (ja) 有機エレクトロルミネッセンス素子、照明装置、表示装置及び蛍光発光性化合物
JP6673203B2 (ja) 有機エレクトロルミネッセンス素子
JP6705148B2 (ja) π共役系化合物、有機エレクトロルミネッセンス素子材料、発光材料、発光性薄膜、有機エレクトロルミネッセンス素子、表示装置及び照明装置
KR102137347B1 (ko) 유기 일렉트로루미네센스 소자, 발광성 박막, 표시 장치 및 조명 장치
JP6288092B2 (ja) 有機エレクトロルミネッセンス素子、発光装置、照明装置、表示装置及び電子機器
JP6439791B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び発光性組成物
JP6657895B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP6264001B2 (ja) 有機エレクトロルミネッセンス素子、発光性薄膜、表示装置及び照明装置
WO2014157610A1 (ja) 有機エレクトロルミネッセンス素子、照明装置、表示装置、有機ルミネッセンス素子用発光性薄膜と組成物及び発光方法
WO2016017514A1 (ja) 有機エレクトロルミネッセンス素子、発光性薄膜、表示装置及び照明装置
WO2016017741A1 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置、蛍光発光性化合物及び発光性薄膜
WO2017126370A1 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2016036025A (ja) 有機エレクトロルミネッセンス素子及びπ共役系化合物
JP6686748B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置、π共役系化合物
WO2015029964A1 (ja) 有機エレクトロルミネッセンス素子、発光材料、発光性薄膜、表示装置及び照明装置
JP2016092320A (ja) 有機エレクトロルミネッセンス素子及び照明装置
JP6115395B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子用金属錯体、並びに表示装置及び照明装置
JP6641948B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び芳香族複素環誘導体
JP6648434B2 (ja) 有機エレクトロルミネッセンス素子、照明装置、及びπ共役系化合物
JP6641947B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び芳香族複素環誘導体
WO2019163355A1 (ja) 有機エレクトロルミネッセンス素子、発光性薄膜、表示装置及び照明装置
JP6493202B2 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP6701649B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置、π共役系化合物、及び発光性薄膜
JP5994753B2 (ja) 有機エレクトロルミネッセンス素子、それに用いる蛍光発光性化合物、当該有機エレクトロルミネッセンス素子を具備する照明装置及び表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200217

R150 Certificate of patent or registration of utility model

Ref document number: 6673203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250