WO2020153792A1 - 화합물 및 이를 포함하는 유기 발광 소자 - Google Patents

화합물 및 이를 포함하는 유기 발광 소자 Download PDF

Info

Publication number
WO2020153792A1
WO2020153792A1 PCT/KR2020/001177 KR2020001177W WO2020153792A1 WO 2020153792 A1 WO2020153792 A1 WO 2020153792A1 KR 2020001177 W KR2020001177 W KR 2020001177W WO 2020153792 A1 WO2020153792 A1 WO 2020153792A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
formula
unsubstituted
compound
Prior art date
Application number
PCT/KR2020/001177
Other languages
English (en)
French (fr)
Inventor
한시현
김명곤
김경희
홍완표
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202080005754.XA priority Critical patent/CN112867723B/zh
Publication of WO2020153792A1 publication Critical patent/WO2020153792A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present specification relates to a compound and an organic light emitting device including the same.
  • the organic light emitting phenomenon refers to a phenomenon that converts electrical energy into light energy using an organic material.
  • An organic light emitting device using an organic light emitting phenomenon usually has a structure including an anode and a cathode and an organic material layer therebetween.
  • the organic material layer is often composed of a multi-layered structure composed of different materials, for example, may be formed of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like.
  • the present specification provides a compound and an organic light emitting device including the same.
  • the present invention provides a compound represented by Formula 1 below.
  • A is B or P
  • Y1 and Y2 are the same as or different from each other, and each independently NR, O, or S,
  • L is a direct bond, a substituted or unsubstituted divalent tetracene group, a substituted or unsubstituted divalent pyrene group, a substituted or unsubstituted divalent benzoanthracene group, or a substituted or unsubstituted divalent perylene group,
  • X is hydrogen, a phenyl group, a tetrasenyl group, a pyrenyl group, a benzoanthracenyl group, a perylene group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted arylamine group, a substituted or unsubstituted heteroaryl group, or the following Formula 2,
  • X is a tetrasenyl group, a pyrenyl group, a benzoanthracenyl group, or a perylenyl group,
  • Y1' and Y2' are the same as or different from each other, and each independently NR', O, or S, and R, R', R1 to R3 and R1' to R3' are the same as or different from each other, and each independently hydrogen, Nitrile group, halogen group, substituted or unsubstituted alkyl group, substituted or unsubstituted alkoxy group, substituted or unsubstituted silyl group, substituted or unsubstituted amine group, substituted or unsubstituted phosphine oxide group, substituted or unsubstituted A substituted aryl group or a substituted or unsubstituted heteroaryl group,
  • Adjacent groups may be combined with each other to form a substituted or unsubstituted ring
  • a, a'b and b' are each an integer from 0 to 4,
  • c and c' are each an integer from 0 to 2
  • the present invention is a first electrode; A second electrode provided opposite to the first electrode; And it provides an organic light emitting device comprising one or more layers of an organic material layer provided between the first electrode and the second electrode, wherein at least one layer of the organic material layer comprises the compound.
  • the compound according to an exemplary embodiment of the present specification may be used as a material of an organic material layer of an organic light emitting device, and by using this, it is possible to improve high color purity and/or life characteristics in the organic light emitting device.
  • Due to the fixed core structure including boron high color purity can be realized, and a polycyclic ring with low triplet energy is connected to the boron emitter in a single bond to prevent reverse-transition. Therefore, long life characteristics and high color purity can be realized.
  • due to the fixed core structure there is little Stoke's shift, which is a difference between absorption and emission wavelengths, so it is easy to select a host, and it uses a host with less triplet energy than other blue emitters to help improve lifespan. Can be.
  • FIG. 1 and 2 illustrate an organic light emitting device according to an exemplary embodiment of the present specification.
  • the boron light emitter having a narrow half-width has the advantages of high efficiency and high purity, but it has a limitation in application to a real device due to its high triplet energy and slow reverse-transition speed.
  • the compound of Formula 1 of the present invention has a triplet energy with a low triplet energy and a single bond to the boron emitter to lower the triplet energy of the whole compound and to provide a high planarity and rigid structure of the core structure including boron. Therefore, it has higher EQE and higher color purity than conventional phosphors. In addition, it shows extended life characteristics due to the stable structure of the compound.
  • Both HOMO and LUMO which determine the luminescence energy, are formed on the polycyclic ring including boron, so it is possible to realize high EQE characteristics due to the small Stokes change, narrow ring width, high color purity, and high flatness of the boron thermally active delayed fluorescent material. Do.
  • a polycyclic ring having a low triplet energy is a polycyclic ring having a low triplet energy, and may be a tetracene, pyrene, benzoanthracene, or perylene group, and a triphenylene group having a high triplet energy causes reverse-system transition and adversely affects lifespan. Is excluded.
  • the exciton which is not used in the boron core structure as the core structure of the existing blue fluorescent material is more likely to be used for light emission in the pyrene core, thereby increasing the luminous efficiency.
  • the light-emitting body of the present invention has a small change in Stokes, so it is possible to select a stable host having a relatively low triplet energy compared to a general blue fluorescent material, which leads to an extension of the life of the organic light-emitting device.
  • substitution means that the hydrogen atom bonded to the carbon atom of the compound is replaced with another substituent, and the position to be substituted is not limited to a position where the hydrogen atom is substituted, that is, a position where the substituent is substitutable, and when two or more are substituted , 2 or more substituents may be the same or different from each other.
  • substituted or unsubstituted in this specification is deuterium; Nitrile group; A substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; A substituted or unsubstituted silyl group; A substituted or unsubstituted alkoxy group; A substituted or unsubstituted arylamine group; A substituted or unsubstituted aryl group; And substituted or unsubstituted heterocyclic groups, substituted with 1 or 2 or more substituents selected from the group, or substituted with 2 or more substituents among the exemplified substituents, or having no substituents.
  • the "substituent to which two or more substituents are connected" may be an aryl group substituted with an aryl group, an aryl group substituted with a heteroaryl group, a heterocyclic group substituted with an aryl group, an aryl group substituted with an alkyl group, or the like.
  • the alkyl group may be a straight chain or a branched chain, and carbon number is not particularly limited, but is preferably 1 to 30. Specifically, it is preferable to have 1 to 20 carbon atoms. More specifically, it is preferable to have 1 to 10 carbon atoms.
  • Specific examples include methyl groups; Ethyl group; Propyl group; n-propyl group; Isopropyl group; Butyl group; n-butyl group; Isobutyl group; tert-butyl group; sec-butyl group; 1-methylbutyl group; 1-ethyl butyl group; Pentyl group; n-pentyl group; Isopentyl group; Neopentyl group; tert-pentyl group; Hexyl group; n-hexyl group; 1-methylpentyl group; 2-methylpentyl group; 4-methyl-2-pentyl group; 3,3-dimethylbutyl group; 2-ethylbutyl group; Heptyl group; n-heptyl group; 1-methylhexyl group; Cyclopentyl methyl group; Cyclohexylmethyl group; Octyl group; n-octyl group; tert-oct
  • the cycloalkyl group is not particularly limited, but is preferably 3 to 30 carbon atoms, and more preferably 3 to 20 carbon atoms.
  • the alkoxy group may be a straight chain, branched chain or cyclic chain.
  • the number of carbon atoms of the alkoxy group is not particularly limited, but is preferably 1 to 30 carbon atoms. Specifically, it is preferable to have 1 to 20 carbon atoms. More specifically, it is preferable to have 1 to 10 carbon atoms.
  • the amine group is -NH 2 ; Alkylamine groups; N-alkylarylamine group; Arylamine group; N-aryl heteroarylamine group; It may be selected from the group consisting of N-alkylheteroarylamine groups and heteroarylamine groups, and the number of carbon atoms is not particularly limited, but is preferably 1 to 30.
  • amine groups include methylamine groups; Dimethylamine group; Ethylamine group; Diethylamine group; Phenylamine group; Naphthylamine group; Biphenylamine group; Anthracenylamine group; 9-methyl anthracenylamine group; Diphenylamine group; N-phenyl naphthylamine group; Ditolylamine group; N-phenyltolylamine group; Triphenylamine group; N-phenylbiphenylamine group; N-phenyl naphthylamine group; N-biphenyl naphthylamine group; N-naphthylfluorenylamine group; N-phenylphenanthrenylamine group; N-biphenylphenanthrenylamine group; N-phenylfluorenylamine group; N-phenyl terphenylamine group; N-phenanthrenylfluorenylamine group; N-biphenyl fluoren
  • the silyl group may be represented by the formula of -SiRjRkRl, wherein Rj, Rk and Rl are the same as or different from each other, and each independently hydrogen; A substituted or unsubstituted alkyl group; Or it may be a substituted or unsubstituted aryl group.
  • the silyl group is specifically a trimethylsilyl group; Triethylsilyl group; t-butyldimethylsilyl group; Vinyl dimethyl silyl group; Propyl dimethyl silyl group; Triphenylsilyl group; Diphenylsilyl group; Phenylsilyl group, and the like, but is not limited thereto.
  • the aryl group is not particularly limited, but is preferably 6 to 30 carbon atoms, and more preferably 6 to 20 carbon atoms.
  • the aryl group may be monocyclic or polycyclic.
  • the aryl group is a monocyclic aryl group, the number of carbon atoms is not particularly limited, but is preferably 6 to 30 carbon atoms. More specifically, it is preferable that it has 6 to 20 carbon atoms.
  • a phenyl group; Biphenyl group; It may be a terphenyl group, but is not limited thereto.
  • the aryl group is a polycyclic aryl group, the number of carbon atoms is not particularly limited.
  • a polycyclic aryl group is a naphthyl group; Anthracenyl group; Phenanthryl group; Triphenyl group; Pyrenyl group; Phenenyl group; Perylenyl group; Chrysenyl group; It may be a fluorenyl group and the like, but is not limited thereto.
  • the “adjacent” group refers to a substituent substituted on an atom directly connected to an atom in which the substituent is substituted, a substituent positioned closest to the substituent and the other substituent substituted on the atom in which the substituent is substituted.
  • two substituents substituted in the ortho position on the benzene ring and two substituents substituted on the same carbon in the aliphatic ring may be interpreted as "adjacent" groups to each other.
  • the meaning of “couples with adjacent groups to form a ring” refers to a hydrocarbon ring substituted or unsubstituted by combining with adjacent groups; Or it means forming a substituted or unsubstituted heterocycle.
  • the ring is a substituted or unsubstituted hydrocarbon ring; Or substituted or unsubstituted heterocyclic ring.
  • the hydrocarbon ring may be an aromatic, aliphatic or aromatic and aliphatic condensed ring, and may be selected from the cycloalkyl group or the aryl group example, except for the non-monovalent, condensation of a cycloalkyl group and an aryl group. It can be a collar.
  • the aromatic ring may be monocyclic or polycyclic, and may be selected from examples of the aryl group, except that it is not monovalent.
  • the heterocycle is a non-carbon atom, and contains one or more heteroatoms.
  • the hetero atom may include one or more atoms selected from the group consisting of O, N, Se, and S.
  • the heterocycle may be monocyclic or polycyclic, and may be aromatic, aliphatic, or a condensed ring of aromatic and aliphatic, and may be selected from examples of heteroaryl groups below, except that it is not monovalent.
  • examples of the arylamine group include a substituted or unsubstituted monoarylamine group, a substituted or unsubstituted diarylamine group, or a substituted or unsubstituted triarylamine group.
  • the aryl group in the arylamine group may be a monocyclic aryl group or a polycyclic aryl group.
  • the arylamine group containing two or more aryl groups may include a monocyclic aryl group, a polycyclic aryl group, or a monocyclic aryl group and a polycyclic aryl group at the same time.
  • the aryl group in the arylamine group can be selected from the examples of the aryl group described above.
  • the heteroaryl group includes one or more non-carbon atoms, that is, heteroatoms, and specifically, the heteroatoms may include one or more atoms selected from the group consisting of O, N, Se, and S.
  • the number of carbon atoms is not particularly limited, preferably 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and the heteroaryl group may be monocyclic or polycyclic.
  • heteroaryl group examples include a thiophene group; Furanyl group; Pyrrol group; Imidazolyl group; Thiazolyl group; Oxazolyl group; Oxadiazolyl group; Pyridyl group; Bipyridyl group; Pyrimidyl group; Triazinyl group; Triazolyl group; Acridil group; Pyridazinyl group; Pyrazinyl group; Quinolinyl group; Quinazolinyl group; Quinoxalinyl group; Phthalazinyl group; Pyridopyrimidyl group; Pyrido pyrazinyl group; Pyrazino pyrazinyl group; Isoquinolinyl group; Indole group; Carbazolyl group; Benzoxazolyl group; Benzimidazole group; Benzothiazolyl group; Benzocarbazolyl group; Benzothiophene group; Dibenzothiophene group; Benzofuranyl group; Ph
  • Chemical Formula 1 is represented by any one of the following Chemical Formulas 1-1 to 1-6.
  • R1 and R2 are hydrogen.
  • one or more of the two or more R1 and two or more R2 may each independently combine with an adjacent group to form a substituted or unsubstituted ring.
  • At least one of the two or more R1 and the two or more R2 may each independently combine with an adjacent group to form a substituted or unsubstituted hydrocarbon ring.
  • At least one of the two or more R1 and two or more R2 may be independently bonded to an adjacent group to form a hydrocarbon ring.
  • one or more of the two or more R1, and two or more R2 are each independently, in combination with an adjacent group a benzene ring; Or it can form a cyclohexane ring.
  • Chemical Formula 1 is represented by any one of the following Chemical Formulas 3 to 5.
  • A is B.
  • A is P.
  • Y1 and Y2 are the same as or different from each other, and are each independently NR, O, or S.
  • Y1 and Y2 are NR.
  • Y1 and Y2 are O.
  • Y1 and Y2 are S.
  • L is a direct bond, a divalent tetracene group, a divalent pyrene group, a divalent benzoanthracene group, or a divalent perylene group.
  • L is any one selected from the following substituents.
  • the dotted line means a part connected to the core.
  • Rb to Rh are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Nitrile group; A substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; A substituted or unsubstituted silyl group; A substituted or unsubstituted alkoxy group; A substituted or unsubstituted arylamine group; A substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group.
  • bb is an integer from 0 to 10
  • cc and dd are each an integer from 0 to 4,
  • ee and ff are each an integer from 0 to 5
  • gg is an integer from 0 to 2
  • hh is an integer from 0 to 7
  • Rb to Rh are the same as or different from each other, and each independently hydrogen or deuterium.
  • Rb to Rh are hydrogen.
  • L is a divalent pyrene. Specifically, when L is a divalent pyrene, since excitons not used in the core structure including B or P of Formula 1 are used for light emission in pyrene, there is an effect of increasing light emission efficiency.
  • L is to be.
  • X is hydrogen, a phenyl group, a tetrasenyl group, a pyrenyl group, a benzoanthracenyl group, a perenyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted arylamine group, a substitution Or an unsubstituted heteroaryl group, or the formula (2).
  • X is hydrogen, a phenyl group, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, an arylamine group having 6 to 30 carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 30 carbon atoms. , Or the above formula (2).
  • X is hydrogen; Phenyl group; Methyl group; Ethyl group; Propyl group; Isopropyl group; Butyl group; Terbutyl group; An amine group substituted with a phenyl group, biphenyl group, terphenyl group, anthracene group, phenanthrene group, or pyrene group; Dibenzofuran group; Dibenzothiophene group; Benzonaphthofuran group; Benzonaphthothiophene group; Triazine group; Pyrimidine group; Pyridine group; A carbazole group unsubstituted or substituted with an alkyl group or an aryl group; Or Formula 2 above.
  • X is hydrogen, a methyl group, a terbutyl group, a phenyl group, an amine group substituted with a phenyl group, a benzonaphthofuran group, a benzonaphthothiophene group, a carbazole group substituted with a terbutyl group, or Carbazole group substituted with a phenyl group, or the above formula (2).
  • X is any one selected from the following substituents, or is represented by Chemical Formula 2.
  • the dotted line is the portion that joins L.
  • X is a phenyl group; Benzonaphthofuran group; Benzonaphthothiophene group; Or represented by the formula (2).
  • the structure of Chemical Formula 2 is the same as the core structure of Chemical Formula 1.
  • A′ in Chemical Formula 2 is the same as A in Chemical Formula 1.
  • Y1' and Y2' of Formula 2 are the same as Y1 and Y2 of Formula 1.
  • R1' to R3' in Formula 2 are the same as R1 to R3 in Formula 1.
  • a'to c'in Formula 2 are the same as a to c in Formula 1.
  • R and R1 to R3 are the same as or different from each other, and each independently hydrogen, nitrile group, halogen group, substituted or unsubstituted alkyl group, substituted or unsubstituted alkoxy group, substituted or It is an unsubstituted silyl group, a substituted or unsubstituted amine group, a substituted or unsubstituted phosphine oxide group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.
  • R1 to R3 are hydrogen.
  • R3 is hydrogen
  • R is hydrogen, a nitrile group, a halogen group, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, substituted or unsubstituted Silyl group having 1 to 10 carbon atoms, amine group substituted or unsubstituted with aryl group having 6 to 30 carbon atoms, phosphine oxide group substituted or unsubstituted with aryl group having 6 to 30 carbon atoms, substituted or unsubstituted 6 to 30 carbon atoms It is an aryl group or a substituted or unsubstituted heteroaryl group having 3 to 30 carbon atoms.
  • R, R1 and R2 are the same as or different from each other, and each independently hydrogen, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group.
  • R, R1, and R2 are the same as or different from each other, and each independently hydrogen, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, or a substituted or unsubstituted 6 to 30 carbon atom. It is an aryl group.
  • R, R1 and R2 are the same as or different from each other, and each independently hydrogen, methyl group, ethyl group, propyl group, butyl group, phenyl group, biphenyl group, terphenyl group, naphthyl group, anthracene group , Or phenanthrene,
  • methyl group, ethyl group, propyl group, butyl group, phenyl group, biphenyl group, terphenyl group, naphthyl group, anthracene group, or phenanthrene group is substituted or unsubstituted with an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 30 carbon atoms.
  • R, R1 and R2 are the same as or different from each other, and each independently hydrogen, methyl group, ethyl group, propyl group, isopropyl group, butyl group, terbutyl group, phenyl group, biphenyl group, A terphenyl group, a naphthyl group, an anthracene group, or a phenanthrene group,
  • the methyl group, ethyl group, propyl group, isopropyl group, butyl group, terbutyl group, phenyl group, biphenyl group, terphenyl group, naphthyl group, anthracene group, or phenanthrene group is an alkyl group having 1 to 10 carbon atoms, or 6 to 30 carbon atoms. It is substituted or unsubstituted with an aryl group.
  • R, R1 and R2 are the same as or different from each other, and each independently hydrogen, a methyl group, a terbutyl group, a phenyl group, a biphenyl group, or a terphenyl group,
  • methyl group, terbutyl group, phenyl group, biphenyl group, or terphenyl group is substituted or unsubstituted with an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 30 carbon atoms.
  • R, R1 and R2 are the same as or different from each other, and each independently hydrogen, a methyl group, a terbutyl group, a phenyl group, a phenyl group substituted with a phenyl group, a phenyl group substituted with a terbutyl group, or a biphenyl group Or a terphenyl group.
  • R and R1, or R and R2 combine with each other to form a ring containing N, O, or S.
  • Chemical Formula 1 is any one selected from the following compounds.
  • L and X are as defined in Chemical Formula 1.
  • the organic light emitting device of the present invention includes a first electrode; A second electrode provided opposite to the first electrode; And one or more organic material layers provided between the first electrode and the second electrode, wherein at least one layer of the organic material layer may include the aforementioned compound.
  • the structure of the organic light emitting device of the present invention may have a structure as shown in FIGS. 1 and 2, but is not limited thereto.
  • FIG. 1 a structure of an organic light emitting device in which the first electrode 2, the organic material layer 3, and the second electrode 4 are sequentially stacked on the substrate 1 is illustrated.
  • Figure 2 is a substrate (1), the first electrode (2), hole injection layer (5), the first hole transport layer (6), the second hole transport layer (7), the light emitting layer (8), electron injection and transport at the same time
  • the structure of the organic light emitting device in which the layers 9 and the second electrodes 4 are sequentially stacked is illustrated.
  • 1 and 2 illustrate an organic light emitting device and are not limited thereto.
  • the organic material layer includes a light emitting layer, and the light emitting layer includes a compound of Formula 1 above.
  • the organic material layer includes a light emitting layer, and the light emitting layer includes a host and a dopant in a weight ratio of 99:1 to 90:10.
  • the organic material layer includes a light emitting layer, and the light emitting layer includes a host and a dopant in a weight ratio of 97:3 to 95:5.
  • the organic material layer includes a light emitting layer, and the light emitting layer includes a host and a dopant in a weight ratio of 95:5.
  • the organic material layer includes a light emitting layer, and the light emitting layer includes the compound of Formula 1 as a dopant.
  • the organic material layer includes a light emitting layer, and the light emitting layer includes the compound of Formula 1 as a blue dopant.
  • the organic material layer includes a light emitting layer, and the light emitting layer further includes a host.
  • the organic material layer includes a light emitting layer, and the light emitting layer further includes a blue host.
  • the light emitting layer further includes a host compound, and the host compound is an anthracene-based compound.
  • the organic material layer may include a hole injection layer, a first hole transport layer, a second hole transport layer, a light emitting layer, or a layer simultaneously performing electron injection and transport.
  • the organic material layer includes a hole injection layer, a hole transport layer, or a layer that simultaneously performs hole injection and transport, and the hole injection layer, a hole transport layer, or a layer that simultaneously performs hole injection and transport
  • the compound of Formula 1 may be included.
  • the organic material layer includes an electron injection layer, an electron transport layer, or a layer that simultaneously performs electron injection and transport, and the electron injection layer, an electron transport layer, or a layer that simultaneously performs electron injection and transport is The compound of Formula 1 may be included.
  • the organic material layer includes an electron blocking layer or a hole blocking layer, and the electron blocking layer or the hole blocking layer may include the compound of Formula 1 above.
  • the organic light emitting device uses a metal vapor deposition (PVD) method, such as sputtering or e-beam evaporation, to have a metal or conductive metal oxide on the substrate or alloys thereof To form an anode, and then form an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an organic material layer containing the compound of Formula 1, and deposit a material that can be used as a cathode thereon. It can be prepared by.
  • an organic light emitting device may be made by sequentially depositing a cathode material, an organic material layer, and a cathode material on a substrate.
  • the positive electrode material is usually a material having a large work function to facilitate hole injection into the organic material layer.
  • Specific examples of the positive electrode material that can be used in the present invention include metals such as vanadium, chromium, copper, zinc, gold, or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); ZnO:Al or SnO 2 : Combination of metal and oxide, such as Sb; Conductive polymers such as poly(3-methyl compound), poly[3,4-(ethylene-1,2-dioxy) compound] (PEDT), polypyrrole and polyaniline, but are not limited thereto.
  • the cathode material is preferably a material having a small work function to facilitate electron injection into an organic material layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or alloys thereof;
  • a multilayer structure material such as LiF/Al or LiO 2 /Al, but is not limited thereto.
  • a hole injection material can be well injected from the anode at a low voltage, and it is preferable that a high-occupied molecular orbital (HOMO) of the hole injection material is between the work function of the cathode material and the HOMO of the surrounding organic layer.
  • HOMO high-occupied molecular orbital
  • Specific examples of the hole injection material include metal porphyrine, oligothiophene, arylamine-based organic substances, hexanitrile hexaazatriphenylene-based organic substances, quinacridone-based organic substances, and perylene-based substances.
  • a material capable of transporting holes from the anode or the hole injection layer to the light emitting layer is suitable as a material having high mobility for holes.
  • Specific examples include arylamine-based organic materials, conductive polymers, and block copolymers having a conjugated portion and a non-conjugated portion, but are not limited thereto.
  • a material capable of emitting light in the visible region by receiving and bonding holes and electrons from the hole transport layer and the electron transport layer, respectively is preferably a material having good quantum efficiency for fluorescence or phosphorescence.
  • Specific examples include 8-hydroxy-quinoline aluminum complex (Alq 3 ); Carbazole-based compounds; Dimerized styryl compounds; BAlq; 10-hydroxybenzo quinoline-metal compound; Benzoxazole, benzthiazole and benzimidazole compounds; Poly(p-phenylenevinylene) (PPV)-based polymers; Spiro compounds; Polyfluorene, rubrene, and the like, but are not limited to these.
  • the layer containing Formula 1 of the present invention is a light emitting layer
  • the light emitting material may be included in the light emitting layer containing Formula 1 or may be included in a light emitting layer other than the light emitting layer containing the compound of Chemical Formula 1.
  • the organic material layers may be formed of the same material or different materials.
  • the organic light emitting device of the present specification may be manufactured by materials and methods known in the art, except that at least one layer of the organic material layer is formed using the compound.
  • the present specification also provides a method for manufacturing an organic light emitting device formed using the compound.
  • dopant materials include aromatic compounds, strylamine compounds, boron complexes, fluoranthene compounds, and metal complexes.
  • the aromatic compound is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, such as pyrene, anthracene, chrysene, periplanene, etc.
  • arylamine, styryldiamine, styryltriamine, styryltetraamine, and the like but are not limited thereto.
  • metal complexes include, but are not limited to, iridium complexes, platinum complexes, and the like.
  • the electron transport layer is a layer that receives electrons from the electron injection layer and transports electrons to the light emitting layer.
  • the electron transport material a material capable of receiving electrons from the cathode and transferring them to the light emitting layer, a material having high mobility for electrons is suitable Do. Specific examples include Al complexes of 8-hydroxyquinoline; Complexes including Alq3; Organic radical compounds; Hydroxyflavone-metal complexes, and the like, but are not limited thereto.
  • the electron transport layer can be used with any desired cathode material as used according to the prior art.
  • suitable cathode materials are conventional materials that have a low work function and are followed by an aluminum or silver layer. Specifically, cesium, barium, calcium, ytterbium and samarium, followed by an aluminum layer or a silver layer in each case.
  • the electron injection layer is a layer for injecting electrons from an electrode, has the ability to transport electrons, has an electron injection effect from the cathode, has an excellent electron injection effect for a light emitting layer or a light emitting material, and injects holes generated in the light emitting layer A compound that prevents migration to the layer and has excellent thin film forming ability is preferred.
  • fluorenone anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone and the like and their derivatives, metal Complex compounds, nitrogen-containing 5-membered ring derivatives, and the like, but are not limited thereto.
  • the material of the electron injection and transport layer may include the above-described material of the electron transport layer or the material of the electron injection layer.
  • the layer that simultaneously performs the electron injection and transport may further include a metal complex.
  • the material for the electron injection and transport layer may include the above-described material for the electron transport layer or the material for the electron injection layer.
  • the layer that simultaneously performs the electron injection and transport may further include lithium quinolate.
  • Examples of the metal complex compound include lithium quinolate (Liq), 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato) zinc, bis(8-hydroxyquinolinato) copper, bis(8-hydroxy Manganese hydroxyquinolinato), tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10 -Hydroxybenzo[h]quinolinato)beryllium, bis(10-hydroxybenzo[h]quinolinato)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl- 8-quinolinato) (o-cresolato) gallium, bis(2-methyl-8-quinolinato) (1-naphtolato)aluminum, bis(2-methyl-8-quinolinato) (2-naphthol Lato) gallium and the like, but is not limited thereto.
  • Liq lithium quinolate
  • the hole blocking layer is a layer that prevents the cathode from reaching the cathode, and may be generally formed under the same conditions as the hole injection layer. Specifically, there are oxadiazole derivatives, triazole derivatives, phenanthroline derivatives, BCP, aluminum complex, and the like, but are not limited thereto.
  • the organic light emitting device may be a front emission type, a back emission type, or a double-sided emission type, depending on the material used.
  • B-2 was prepared in the same manner, except that B-1 was used instead of A-1.
  • D-1 is the same except that 5,6,7,8-tetrahydronaphthalen-1-ol (5,6,7,8-tetrahydronaphthalen-1-ol) is used instead of phenol. (47.5 g).
  • a glass substrate coated with a thin film of indium tin oxide (ITO) at a thickness of 1300 ⁇ was placed in distilled water in which detergent was dissolved and washed with ultrasonic waves.
  • Fischer Fischer Co.
  • distilled water filtered secondarily by a filter of Millipore Co. was used as distilled water.
  • ultrasonic washing was repeated 10 times with distilled water for 10 minutes.
  • ultrasonic cleaning was performed with a solvent of isopropyl alcohol, acetone, and methanol, followed by drying and transporting to a plasma cleaner.
  • the substrate was washed for 5 minutes using oxygen plasma, and then transferred to a vacuum evaporator.
  • the following compound HAT was thermally vacuum-deposited to a thickness of 50 Pa to form a hole injection layer. Then, the following compound HT-A 1000 ⁇ was vacuum-deposited as a first hole transport layer, followed by depositing the following compound HT-B 100 ⁇ as a second hole transport layer.
  • the host BH-A and the dopant Compound 1 were vacuum deposited at a weight ratio of 95: 5 to form a 200 mm thick light emitting layer.
  • the deposition rate of the organic material was maintained at 0.4 to 2.0 ⁇
  • the lithium fluoride of the negative electrode was maintained at a deposition rate of 0.3 ⁇ /sec
  • the aluminum was maintained at a deposition rate of 2 ⁇ /sec
  • the vacuum degree during deposition was 1 ⁇ 10 -7.
  • An organic light-emitting device was manufactured by maintaining 5 ⁇ 10 -8 torr.
  • An organic light emitting device was manufactured in the same manner as in Example 1, except that the dopant compound shown in Table 1 below was used instead of Compound 1 as the light emitting layer material in Example 1.
  • An organic light emitting device was manufactured in the same manner as in Example 1, except that the dopant compound shown in Table 1 below was used instead of Compound 1 as the light emitting layer material in Example 1.
  • Example 1 One 462 17 6.9 Example 2 2 462 16 7.1 Example 3 3 460 16 7.5 Example 4 4 460 16 7.3 Example 5 5 461 17 7.1 Example 6 6 462 18 6.8 Example 7 7 462 17 6.6 Example 8 8 462 17 6.8 Comparative Example 1 BD-1 465 19 5.9 Comparative Example 2 BD-2 465 19 6.0 Comparative Example 3 BD-3 467 19 7.0
  • the devices of Examples 1 to 8 using the compound having the structure of Formula 1 have relatively high efficiency, small half width (FWHM), and dark blue characteristics compared to those of Comparative Examples 1 to 3.
  • Comparative Examples 1 and 2 are compounds in which -LX of the present invention is a hydrogen or phenyl group, respectively, and L or X of the present invention has remarkable luminous efficiency compared to compounds having tetracene, pyrene, benzoanthracene and perylene. The decrease was confirmed.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 명세서는 화학식 1의 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.

Description

화합물 및 이를 포함하는 유기 발광 소자
본 명세서는 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.
본 출원은 2019년 1월 23일 한국특허청에 제출된 한국 특허 출원 제10-2019-0008585호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 통상 양극과 음극 및 이 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어 질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다.
상기와 같은 유기 발광 소자를 위한 새로운 재료의 개발이 계속 요구되고 있다. 그 중 청색 유기 발광 소자의 경우, 높은 색순도와 장수명 특성이 필수적이나 청색 물질의 높은 에너지로 인한 불안정성 때문에 이를 동시에 구현하는 기술이 부족하다. 최근, 보론을 포함한 코어구조를 가진 열활성지연형광물질이 새롭게 개발되어 높은 효율과 색순도로 주목 받았으나, 삼중항 에너지가 높고 역계간전이 속도가 느려 수명이 짧다는 단점이 있다. 따라서, 높은 색순도와 장수명 특성을 동시에 구현하는 청색 유기발광체의 개발이 요구되고 있다.
본 명세서는 화합물 및 이를 포함하는 유기 발광 소자를 제공한다.
본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다.
[화학식 1]
Figure PCTKR2020001177-appb-I000001
상기 화학식 1에 있어서,
A는 B 또는 P이고,
Y1 및 Y2는 서로 같거나 상이하고, 각각 독립적으로 NR, O, 또는 S이고,
L은 직접결합, 치환 또는 비치환된 2가의 테트라센기, 치환 또는 비치환된 2가의 파이렌기, 치환 또는 비치환된 2가의 벤조안트라센기, 또는 치환 또는 비치환된 2가의 페릴렌기이고,
X는 수소, 페닐기, 테트라세닐기, 파이레닐기, 벤조안트라세닐기, 페릴레닐기, 치환 또는 비치환된 알킬기, 치환 또는 비치환된 아릴아민기, 치환 또는 비치환된 헤테로아릴기, 또는 하기 화학식 2로 표시되고,
L이 직접결합인 경우, X는 테트라세닐기, 파이레닐기, 벤조안트라세닐기, 또는 페릴레닐기이고,
[화학식 2]
Figure PCTKR2020001177-appb-I000002
상기 화학식 2에 있어서,
Figure PCTKR2020001177-appb-I000003
은 화학식 1의 L과 결합하는 위치를 의미하며,
A'는 B 또는 P이고,
Y1' 및 Y2'는 서로 같거나 상이하고, 각각 독립적으로 NR', O, 또는 S이고,R, R',R1 내지 R3 및 R1' 내지 R3'은 서로 같거나 상이하고, 각각 독립적으로 수소, 니트릴기, 할로겐기, 치환 또는 비치환된 알킬기, 치환 또는 비치환된 알콕시기, 치환 또는 비치환된 실릴기, 치환 또는 비치환된 아민기, 치환 또는 비치환된 포스핀옥사이드기, 치환 또는 비치환된 아릴기, 또는 치환 또는 비치환된 헤테로아릴기이거나,
인접한기와 서로 결합하여 치환 또는 비치환된 고리를 형성할 수 있고,
a, a' b 및 b'는 각각 0 내지 4의 정수이고,
c 및 c'는 각각 0 내지 2의 정수이고,
상기 a, a', b 및 b'이 각각 2 이상인 경우, 상기 괄호안의 치환기는 서로 같거나 상이하고,
상기 c, 및 c'이 각각 2인 경우, 상기 괄호 안의 치환기는 서로 같거나 상이하다.
또한, 본 발명은 제1 전극; 상기 제1 전극에 대향하여 구비된 제2 전극; 및 상기 제1 전극과 제2 전극 사이에 구비된 1층 또는 2층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1 층 이상은 상기 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
본 명세서의 일 실시상태에 따른 화합물은 유기 발광 소자의 유기물층의 재료로서 사용될 수 있고, 이를 사용함으로써 유기 발광 소자에서 높은 색 순도 및/또는 수명 특성의 향상이 가능하다. 보론을 포함한 고정된 코어 구조로 인해 높은 색 순도의 구현이 가능하며, 삼중항 에너지가 낮은 다환고리가 보론 발광체에 단일 결합으로 연결되어 역계간전이를 막는다. 따라서, 장수명 특성과 높은 색 순도를 구현할 수 있다. 또한, 고정된 코어 구조로 인해 흡수와 발광 파장의 차이인 스톡스 변화(stoke's shift)가 적어 호스트의 선정에도 용이하며, 타 청색 발광체에 비해 적은 삼중항 에너지를 가진 호스트를 사용하여 수명 향상에 도움이 될 수 있다.
도 1 및 2는 본 명세서의 일 실시상태에 따르는 유기 발광 소자를 도시한 것이다.
[부호의 설명]
1: 기판
2: 제1 전극
3: 유기물층
4: 제2 전극
5: 정공주입층
6: 제1 정공수송층
7: 제2 정공수송층
8: 발광층
9: 전자 주입 및 수송을 동시에 하는 층
이하, 본 명세서에 대하여 더욱 상세하게 설명한다.
본 명세서는 상기 화학식 1로 표시되는 화합물을 제공한다.
좁은 반치폭을 가지는 보론 발광체는 고효율, 고순도의 장점을 가지지만, 삼중항 에너지가 높고, 역계간전이 속도가 느려 실제 소자에 적용하기에 한계가 있었다.
하지만, 본 발명의 화학식 1의 화합물은 삼중항 에너지가 낮은 다환고리를 보론 발광체에 단일 결합으로 연결하여 전체 화합물의 삼중항 에너지를 낮추고 보론을 포함한 코어구조의 높은 평면성과 고정된(rigid) 구조로 인해, 기존 형광체보다 높은 EQE와 높은 색 순도를 가진다. 또한, 이와 함께 안정된 화합물 구조로 인해 늘어난 수명 특성을 보인다.
발광 에너지를 결정하는 HOMO와 LUMO가 모두 보론을 포함한 다환고리에 형성되어, 보론 열활성지연형광 물질이 가지는 적은 스톡스 변화, 좁은 반지폭, 높은 색 순도, 높은 평면성으로 인한 높은 EQE특성의 구현이 가능하다.
또한, 삼중항 에너지가 낮은 다환고리를 보론 코어에 단일 결합으로 연결하여 수명에 악영향을 끼치는 역계간전이가 일어나지 않게 하여 수명의 연장이 가능하다. 이 때, 삼중항 에너지가 낮은 다환고리로, 테트라센, 파이렌, 벤조안트라센, 또는 페릴렌기가 될 수 있으며, 삼중항 에너지가 높은 트리페닐렌기는 역계간전이를 일어나게 하여 수명에 악영향을 끼치므로 제외한다.
특히, L 또는 X가 파이렌인 경우, 기존 청색 형광물질의 코어 구조로 보론 코어 구조에서 사용되지 않은 엑시톤이 파이렌 코어에서 발광에 이용될 가능성이 높아져서 발광효율이 증가한다.
본 발명의 발광체는 스톡스 변화가 적어 일반적인 청색 형광물질에 비하여 삼중항 에너지가 비교적 낮은 안정적인 호스트의 선정이 가능하며, 이는 유기 발광 소자의 수명의 연장을 야기한다.
본 명세서에 있어서 치환기의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.
상기 "치환"이라는 용어는 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치, 즉 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 니트릴기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴아민기; 치환 또는 비치환된 아릴기; 및 치환 또는 비치환된 헤테로고리기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환되었거나 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환기로 치환되거나, 또는 어떠한 치환기도 갖지 않는 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 아릴기로 치환된 아릴기, 헤테로아릴기로 치환된 아릴기, 아릴기로 치환된 헤테로고리기, 알킬기로 치환된 아릴기 등일 수 있다.
본 명세서에 있어서, 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 30인 것이 바람직하다. 구체적으로 탄소수 1 내지 20인 것이 바람직하다. 더 구체적으로는 탄소수 1 내지 10인 것이 바람직하다. 구체적인 예로는 메틸기; 에틸기; 프로필기; n-프로필기; 이소프로필기; 부틸기; n-부틸기; 이소부틸기; tert-부틸기; sec-부틸기; 1-메틸부틸기; 1-에틸부틸기; 펜틸기; n-펜틸기; 이소펜틸기; 네오펜틸기; tert-펜틸기; 헥실기; n-헥실기; 1-메틸펜틸기; 2-메틸펜틸기; 4-메틸-2-펜틸기; 3,3-디메틸부틸기; 2-에틸부틸기; 헵틸기; n-헵틸기; 1-메틸헥실기; 시클로펜틸메틸기; 시클로헥실메틸기; 옥틸기; n-옥틸기; tert-옥틸기; 1-메틸헵틸기; 2-에틸헥실기; 2-프로필펜틸기; n-노닐기; 2,2-디메틸헵틸기; 1-에틸프로필기; 1,1-디메틸프로필기; 이소헥실기; 2-메틸펜틸기; 4-메틸헥실기; 5-메틸헥실기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 시클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 30인 것이 바람직하며, 탄소수 3 내지 20인 것이 더 바람직하다. 구체적으로 시클로프로필기; 시클로부틸기; 시클로펜틸기; 3-메틸시클로펜틸기; 2,3-디메틸시클로펜틸기; 시클로헥실기; 3-메틸시클로헥실기; 4-메틸시클로헥실기; 2,3-디메틸시클로헥실기; 3,4,5-트리메틸시클로헥실기; 4-tert-부틸시클로헥실기; 시클로헵틸기; 시클로옥틸기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 알콕시기는 직쇄, 분지쇄 또는 고리쇄일 수 있다. 알콕시기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 30인 것이 바람직하다. 구체적으로 탄소수 1 내지 20인 것이 바람직하다. 더 구체적으로 탄소수 1 내지 10인 것이 바람직하다. 구체적으로, 메톡시기; 에톡시기; n-프로폭시기; 이소프로폭시기; i-프로필옥시기; n-부톡시기; 이소부톡시기; tert-부톡시기; sec-부톡시기; n-펜틸옥시기; 네오펜틸옥시기; 이소펜틸옥시기; n-헥실옥시기; 3,3-디메틸부틸옥시기; 2-에틸부틸옥시기; n-옥틸옥시기; n-노닐옥시기; n-데실옥시기; 벤질옥시기; p-메틸벤질옥시기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아민기는 -NH2; 알킬아민기; N-알킬아릴아민기; 아릴아민기; N-아릴헤테로아릴아민기; N-알킬헤테로아릴아민기 및 헤테로아릴아민기로 이루어진 군으로부터 선택될 수 있으며, 탄소수는 특별히 한정되지 않으나, 1 내지 30인 것이 바람직하다. 아민기의 구체적인 예로는 메틸아민기; 디메틸아민기; 에틸아민기; 디에틸아민기; 페닐아민기; 나프틸아민기; 바이페닐아민기; 안트라세닐아민기; 9-메틸안트라세닐아민기; 디페닐아민기; N-페닐나프틸아민기; 디톨릴아민기; N-페닐톨릴아민기; 트리페닐아민기; N-페닐바이페닐아민기; N-페닐나프틸아민기; N-바이페닐나프틸아민기; N-나프틸플루오레닐아민기; N-페닐페난트레닐아민기; N-바이페닐페난트레닐아민기; N-페닐플루오레닐아민기; N-페닐터페닐아민기; N-페난트레닐플루오레닐아민기; N-바이페닐플루오레닐아민기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 실릴기는 -SiRjRkRl의 화학식으로 표시될 수 있고, 상기 Rj, Rk 및 Rl은 서로 같거나 상이하고, 각각 독립적으로 수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기일 수 있다. 상기 실릴기는 구체적으로 트리메틸실릴기; 트리에틸실릴기; t-부틸디메틸실릴기; 비닐디메틸실릴기; 프로필디메틸실릴기; 트리페닐실릴기; 디페닐실릴기; 페닐실릴기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나, 탄소수 6 내지 30인 것이 바람직하며, 탄소수 6 내지 20인 것이 더 바람직하다. 상기 아릴기는 단환식 또는 다환식일 수 있다. 상기 아릴기가 단환식 아릴기인 경우 탄소수는 특별히 한정되지 않으나, 탄소수 6 내지 30인 것이 바람직하다. 더 구체적으로는 탄소수 6 내지 20인 것이 바람직하다. 구체적으로 단환식 아릴기로는 페닐기; 바이페닐기; 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 아릴기가 다환식 아릴기인 경우 탄소수는 특별히 한정되지 않으나. 탄소수 10 내지 30인 것이 바람직하고 더 구체적으로 탄소수 10 내지 20인 것이 바람직하다. 구체적으로 다환식 아릴기로는 나프틸기; 안트라세닐기; 페난트릴기; 트리페닐기; 파이레닐기; 페날레닐기; 페릴레닐기; 크라이세닐기; 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, "인접한" 기는 해당 치환기가 치환된 원자와 직접 연결된 원자에 치환된 치환기, 해당 치환기와 입체구조적으로 가장 가깝게 위치한 치환기, 또는 해당 치환기가 치환된 원자에 치환된 다른 치환기를 의미할 수 있다. 예컨대, 벤젠고리에서 오르토(ortho)위치로 치환된 2개의 치환기 및 지방족 고리에서 동일 탄소에 치환된 2개의 치환기는 서로 "인접한" 기로 해석될 수 있다.
본 명세서에 있어서, 치환기 중 "인접한 기와 서로 결합하여 고리를 형성한다"는 의미는 인접한 기와 서로 결합하여 치환 또는 비치환된 탄화수소고리; 또는 치환 또는 비치환된 헤테로고리를 형성하는 것을 의미한다.
본 명세서에 있어서, 고리는 치환 또는 비치환된 탄화수소고리; 또는 치환 또는 비치환된 헤테로고리를 의미한다.
본 명세서에 있어서, 탄화수소고리는 방향족, 지방족 또는 방향족과 지방족의 축합고리일 수 있으며, 상기 1가가 아닌 것을 제외하고 상기 시클로알킬기, 또는 아릴기예시 중에서 선택될 수 있으며, 시클로알킬기와 아릴기의 축합고리 일 수 있다.
본 명세서에 있어서, 방향족고리는 단환 또는 다환일 수 있으며, 1가가 아닌 것을 제외하고 상기 아릴기의 예시 중에서 선택될 수 있다.
본 명세서에 있어서, 헤테로고리는 탄소가 아닌 원자, 이종원자를 1 이상 포함하는 것으로서, 구체적으로 상기 이종 원자는 O, N, Se 및 S 등으로 이루어진 군에서 선택되는 원자를 1 이상 포함할 수 있다. 상기 헤테로고리는 단환 또는 다환일 수 있으며, 방향족, 지방족 또는 방향족과 지방족의 축합고리일 수 있으며, 1가가 아닌 것을 제외하고 하기 헤테로아릴기의 예시 중에서 선택될 수 있다.
본 명세서에 있어서, 아릴아민기의 예로는 치환 또는 비치환된 모노아릴아민기, 치환 또는 비치환된 디아릴아민기, 또는 치환 또는 비치환된 트리아릴아민기가 있다. 상기 아릴아민기 중의 아릴기는 단환식 아릴기일 수 있고, 다환식 아릴기일 수 있다. 상기 아릴기가 2 이상을 포함하는 아릴아민기는 단환식 아릴기, 다환식 아릴기, 또는 단환식 아릴기와 다환식 아릴기를 동시에 포함할 수 있다. 예컨대, 상기 아릴아민기 중의 아릴기는 전술한 아릴기의 예시 중에서 선택될 수 있다.
본 명세서에 있어서, 헤테로아릴기는 탄소가 아닌 원자, 즉 이종원자를 1 이상 포함하는 것으로서, 구체적으로 상기 이종원자는 O, N, Se 및 S 등으로 이루어진 군에서 선택되는 원자를 1 이상 포함할 수 있다. 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 30인 것이 바람직하며, 탄소수 2 내지 20인 것이 더 바람직하고, 상기 헤테로아릴기는 단환식 또는 다환식일 수 있다. 헤테로아릴기의 예로는 티오펜기; 퓨라닐기; 피롤기; 이미다졸릴기; 티아졸릴기; 옥사졸릴기; 옥사디아졸릴기; 피리딜기; 바이피리딜기; 피리미딜기; 트리아지닐기; 트리아졸릴기; 아크리딜기; 피리다지닐기; 피라지닐기; 퀴놀리닐기; 퀴나졸리닐기; 퀴녹살리닐기; 프탈라지닐기; 피리도 피리미딜기; 피리도 피라지닐기; 피라지노 피라지닐기; 이소퀴놀리닐기; 인돌릴기; 카바졸릴기; 벤즈옥사졸릴기; 벤즈이미다졸릴기; 벤조티아졸릴기; 벤조카바졸릴기; 벤조티오펜기; 디벤조티오펜기; 벤조퓨라닐기; 페난쓰롤리닐기(phenanthroline); 이소옥사졸릴기; 티아디아졸릴기; 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1은 하기 화학식 1-1 내지 1-6 중 어느 하나로 표시된다.
[화학식 1-1]
Figure PCTKR2020001177-appb-I000004
[화학식 1-2]
Figure PCTKR2020001177-appb-I000005
[화학식 1-3]
Figure PCTKR2020001177-appb-I000006
[화학식 1-4]
Figure PCTKR2020001177-appb-I000007
[화학식 1-5]
Figure PCTKR2020001177-appb-I000008
[화학식 1-6]
Figure PCTKR2020001177-appb-I000009
상기 화학식 1-1 내지 1-6에 있어서, 상기 L, X, R, R1 내지 R3, 및 a 내지 c는 상기 화학식 1에서 정의한 바와 같다.
본 명세서의 일 실시상태에 있어서, 상기 R1 및 R2는 수소이다.
본 명세서의 일 실시상태에 있어서, 상기 2 이상의 R1, 및 2 이상의 R2 중 1 이상은 각각 독립적으로, 인접하는기와 결합하여 치환 또는 비치환된 고리를 형성할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 2 이상의 R1, 및 2 이상의 R2 중 1이상은 각각 독립적으로, 인접하는 기와 결합하여 치환 또는 비치환된 탄화수소 고리를 형성할수 있다.
본 명세서의 일 실시상태에 있어서, 상기 2 이상의 R1, 및 2 이상의 R2 중 1 이상은 각각 독립적으로, 인접하는기와 결합하여 탄화수소 고리를 형성할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 2 이상의 R1, 및 2 이상의 R2 중 1 이상은 각각 독립적으로, 인접하는기와 결합하여 벤젠고리; 또는 시클로헥산고리를 형성할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1은 하기 화학식 3 내지 5 중 어느 하나로 표시된다.
[화학식 3]
Figure PCTKR2020001177-appb-I000010
[화학식 4]
Figure PCTKR2020001177-appb-I000011
[화학식 5]
Figure PCTKR2020001177-appb-I000012
상기 화학식 3 내지 5에 있어서, A, Y1, Y2, R3, c, L 및 X는 화학식 1에서의 정의와 같다.
본 명세서의 일 실시상태에 있어서, 상기 A는 B이다.
본 명세서의 일 실시상태에 있어서, 상기 A는 P이다.
본 명세서의 일 실시상태에 있어서, 상기 Y1 및 Y2는 서로 같거나 상이하고, 각각 독립적으로 NR, O, 또는 S이다.
본 명세서의 일 실시상태에 있어서, 상기 Y1 및 Y2는 NR이다.
본 명세서의 일 실시상태에 있어서, 상기 Y1 및 Y2는 O이다.
본 명세서의 일 실시상태에 있어서, 상기 Y1 및 Y2는 S이다.
본 명세서의 일 실시상태에 있어서, 상기 L은 직접결합, 2가의 테트라센기, 2가의 파이렌기, 2가의 벤조안트라센기, 또는 2가의 페릴렌기이다.
본 명세서의 일 실시상태에 있어서, 상기 L은 하기 치환기 중 선택되는 어느 하나이다.
Figure PCTKR2020001177-appb-I000013
상기 점선은 코어와 연결되는 부분을 의미한다.
상기 Rb 내지 Rh는 서로 같거나 상이하고, 각각 독립적으로, 수소; 중수소; 니트릴기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴아민기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이다.
bb는 0 내지 10의 정수이고,
cc 및 dd는 각각 0 내지 4의 정수이고,
ee 및 ff는 각각 0 내지 5의 정수이고,
gg는 0 내지 2의 정수이고,
hh는 0 내지 7의 정수이고,
cc+dd≤8이며,
ee+ff≤10이며,
gg+hh≤9이다.
본 명세서의 일 실시상태에 있어서, 상기 Rb 내지 Rh는 서로같거나 상이하고, 각각 독립적으로 수소 또는 중수소이다.
본 명세서의 일 실시상태에 있어서, 상기 Rb 내지 Rh는 수소이다.
본 명세서의 일 실시상태에 있어서, 상기 L은 2가의 파이렌이다. 구체적으로 L이 2가의 파이렌인 경우, 화학식 1의 B 또는 P를 포함하는 코어구조에서 사용되지 않은 엑시톤이 파이렌에서 발광에 이용되므로 발광 효율이 증가하는 효과가 있다.
본 명세서의 일 실시상태에 있어서, 상기 L은
Figure PCTKR2020001177-appb-I000014
이다.
본 명세서의 일 실시상태에 있어서, 상기 X는 수소, 페닐기, 테트라세닐기, 파이레닐기, 벤조안트라세닐기, 페릴레닐기, 치환 또는 비치환된 알킬기, 치환 또는 비치환된 아릴아민기, 치환 또는 비치환된 헤테로아릴기, 또는 상기 화학식 2이다.
본 명세서의 일 실시상태에 있어서, 상기 X는 수소, 페닐기, 치환 또는 비치환된 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 30의 아릴아민기, 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기, 또는 상기 화학식 2이다.
본 명세서의 일 실시상태에 있어서, 상기 X는 수소; 페닐기; 메틸기; 에틸기; 프로필기; 이소프로필기; 부틸기; 터부틸기; 페닐기, 비페닐기, 터페닐기, 안트라센기, 페난트렌기, 또는 파이렌기로 치환된 아민기; 디벤조퓨란기; 디벤조티오펜기; 벤조나프토퓨란기; 벤조나프토티오펜기; 트리아진기; 피리미딘기; 피리딘기; 알킬기 또는 아릴기로 치환 또는 비치환된 카바졸기; 또는 상기 화학식 2이다.
본 명세서의 일 실시상태에 있어서, 상기 X는 수소, 메틸기, 터부틸기, 페닐기, 페닐기로 치환된 아민기, 벤조나프토퓨란기, 벤조나프토티오펜기, 터부틸기로 치환된 카바졸기, 또는 페닐기로 치환된 카바졸기, 또는 상기 화학식 2이다.
본 명세서의 일 실시상태에 있어서, 상기 X는 하기 치환기에서 선택되는 어느 하나 이거나, 상기 화학식 2로 표시된다.
Figure PCTKR2020001177-appb-I000015
상기 점선은 L과 결합하는 부분이다.
본 명세서의 일 실시상태에 있어서, 상기 X는 페닐기; 벤조나프토퓨란기; 벤조나프토티오펜기; 또는 상기 화학식 2로 표시된다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 2의 구조는 화학식 1의 코어 구조와 동일하다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 2의 A'은 화학식 1의 A와 동일하다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 2의 Y1' 및 Y2'는 화학식 1의 Y1 및 Y2와 동일하다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 2의 R1' 내지 R3'은 화학식 1의 R1 내지 R3와 동일하다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 2의 a' 내지 c'은 화학식 1의 a 내지 c와 동일하다.
본 명세서의 일 실시상태에 있어서, 상기 R 및 R1 내지 R3은 서로 같거나 상이하고, 각각 독립적으로 수소, 니트릴기, 할로겐기, 치환 또는 비치환된 알킬기, 치환 또는 비치환된 알콕시기, 치환 또는 비치환된 실릴기, 치환 또는 비치환된 아민기, 치환 또는 비치환된 포스핀옥사이드기, 치환 또는 비치환된 아릴기, 또는 치환 또는 비치환된 헤테로아릴기이다.
본 명세서의 일 실시상태에 있어서, 상기 R1 내지 R3은 수소이다.
본 명세서의 일 실시상태에 있어서, 상기 R3은 수소이다.
본 명세서의 일 실시상태에 있어서, 상기 R은 수소, 니트릴기, 할로겐기, 치환 또는 비치환된 탄소수 1 내지 10의 알킬기, 치환 또는 비치환된 탄소수 1 내지 10의 알콕시기, 치환 또는 비치환된 탄소수 1 내지 10의 실릴기, 탄소수 6 내지 30의 아릴기로 치환 또는 비치환된 아민기, 탄소수 6 내지 30의 아릴기로 치환 또는 비치환된 포스핀옥사이드기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 또는 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기이다.
본 명세서의 일 실시상태에 있어서, 상기 R, R1 및 R2는 서로 같거나 상이하고, 각각 독립적으로 수소, 치환 또는 비치환된 알킬기, 또는 치환 또는 비치환된 아릴기이다.
본 명세서의 일 실시상태에 있어서, 상기 R, R1 및 R2는 서로 같거나 상이하고, 각각 독립적으로 수소, 치환 또는 비치환된 탄소수 1 내지 10의 알킬기, 또는 치환 또는 비치환된 탄소수 6 내지 30의 아릴기이다.
본 명세서의 일 실시상태에 있어서, 상기 R, R1 및 R2는 서로 같거나 상이하고, 각각 독립적으로 수소, 메틸기, 에틸기, 프로필기, 부틸기, 페닐기, 비페닐기, 터페닐기, 나프틸기, 안트라센기, 또는 페난트렌기이고,
상기 메틸기, 에틸기, 프로필기, 부틸기, 페닐기, 비페닐기, 터페닐기, 나프틸기, 안트라센기, 또는 페난트렌기는 탄소수 1 내지 10의 알킬기, 또는 탄소수 6 내지 30의 아릴기로 치환 또는 비치환된다.
본 명세서의 일 실시상태에 있어서, 상기 R, R1 및 R2는 서로 같거나 상이하고, 각각 독립적으로 수소, 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, 터부틸기, 페닐기, 비페닐기, 터페닐기, 나프틸기, 안트라센기, 또는 페난트렌기이고,
상기 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, 터부틸기, 페닐기, 비페닐기, 터페닐기, 나프틸기, 안트라센기, 또는 페난트렌기는 탄소수 1 내지 10의 알킬기, 또는 탄소수 6 내지 30의 아릴기로 치환 또는 비치환된다.
본 명세서의 일 실시상태에 있어서, 상기 R, R1 및 R2는 서로 같거나 상이하고, 각각 독립적으로 수소, 메틸기, 터부틸기, 페닐기, 비페닐기, 또는 터페닐기이고,
상기 메틸기, 터부틸기, 페닐기, 비페닐기, 또는 터페닐기는 탄소수 1 내지 10의 알킬기, 또는 탄소수 6 내지 30의 아릴기로 치환 또는 비치환된다.
본 명세서의 일 실시상태에 있어서, 상기 R, R1 및 R2는 서로 같거나 상이하고, 각각 독립적으로 수소, 메틸기, 터부틸기, 페닐기, 페닐기로 치환된 페닐기, 터부틸기로 치환된 페닐기, 비페닐기, 또는 터페닐기이다.
본 명세서의 일 실시상태에 있어서, 상기 R 및 R1, 또는 R 및 R2는 서로 결합하여 N, O, 또는 S를 포함하는 고리를 형성한다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1은 하기 화합물 중에서 선택되는 어느 하나이다.
Figure PCTKR2020001177-appb-I000016
Figure PCTKR2020001177-appb-I000017
Figure PCTKR2020001177-appb-I000018
Figure PCTKR2020001177-appb-I000019
Figure PCTKR2020001177-appb-I000020
Figure PCTKR2020001177-appb-I000021
Figure PCTKR2020001177-appb-I000022
Figure PCTKR2020001177-appb-I000023
Figure PCTKR2020001177-appb-I000024
Figure PCTKR2020001177-appb-I000025
상기 구조식에 있어서, L 및 X는 상기 화학식 1의 정의와 같다.
본 명세서에 있어서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에 있어서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 발명의 유기 발광 소자는 제1 전극; 상기 제1 전극에 대향하여 구비된 제2 전극; 및 상기 제1 전극과 제2 전극 사이에 구비된 1층 또는 2층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1 층 이상은 전술한 화합물을 포함할 수 있다.
예컨대, 본 발명의 유기 발광 소자의 구조는 도 1 및 2에 나타낸 것과 같은 구조를 가질 수 있으나, 이에만 한정되는 것은 아니다.
도 1에는 기판(1) 위에 제1 전극(2), 유기물층(3), 및 제2 전극(4)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다.
도 2는 기판(1), 제1 전극(2), 정공주입층(5), 제1 정공수송층(6), 제2 정공수송층(7), 발광층(8), 전자 주입 및 수송을 동시에 하는 층(9) 및 제2 전극(4)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다.
상기 도 1 및 2은 유기 발광 소자를 예시한 것이며 이에 한정되지 않는다.
본 발명의 일 실시상태에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화학식 1의 화합물을 포함한다.
본 발명의 일 실시상태에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 호스트와 도펀트를 99:1 내지 90:10의 중량비로 포함한다.
본 발명의 일 실시상태에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 호스트와 도펀트를 97:3 내지 95:5의 중량비로 포함한다.
본 발명의 일 실시상태에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 호스트와 도펀트를 95:5의 중량비로로 포함한다.
본 발명의 일 실시상태에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화학식 1의 화합물를 도펀트로 포함한다.
본 발명의 일 실시상태에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화학식 1의 화합물를 청색도펀트로 포함한다.
본 발명의 일 실시상태에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 호스트를 더 포함한다.
본 발명의 일 실시상태에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 청색호스트를 더 포함한다.
본 발명의 일 실시상태에 있어서, 상기 발광층은 호스트 화합물을 더 포함하고, 상기 호스트 화합물은 안트라센계 화합물이다.
본 발명의 일 실시상태에 있어서, 상기 유기물층은 정공주입층, 제1 정공수송층, 제2 정공수송층, 발광층, 또는 전자주입 및 수송을 동시에 하는 층을 포함할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 유기물층은 정공주입층, 정공수송층, 또는 정공 주입 및 수송을 동시에 하는 층을 포함하고, 상기 정공주입층, 정공수송층, 또는 정공 주입 및 수송을 동시에 하는 층은 상기 화학식 1의 화합물을 포함할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 유기물층은 전자주입층, 전자수송층, 또는 전자 주입 및 수송을 동시에 하는 층을 포함하고, 상기 전자주입층, 전자수송층, 또는 전자 주입 및 수송을 동시에 하는 층은 상기 화학식 1의 화합물을 포함할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 유기물층은 전자저지층, 또는 정공저지층을 포함하고, 상기 전자저지층, 또는 정공저지층은 상기 화학식 1의 화합물을 포함할 수 있다.
예컨대, 본 발명에 따른 유기 발광 소자는 스퍼터링(sputtering)이나 전자빔 증발(e-beam evaporation)과 같은 PVD(physical vapor deposition) 방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층, 전자 수송층을 포함하는 유기물층 및 상기 화학식 1의 화합물을 포함하는 유기물층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수도 있다.
상기 양극 물질로는 통상 유기물층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 본 발명에서 사용될 수 있는 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2 : Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸화합물의), 폴리[3,4-(에틸렌-1,2-디옥시)화합물의](PEDT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공주입물질로는 낮은 전압에서 양극으로부터 정공을 잘 주입 받을 수 있는 물질로서, 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrine), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone) 계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리화합물의 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공수송물질로는 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로는 8-히드록시-퀴놀린 알루미늄 착물(Alq3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌등이 있으나, 이들에만 한정되는 것은 아니다.
본 발명의 화학식 1을 포함하는 층이 발광층인 경우, 상기 발광 물질은 화학식 1을 포함하는 발광층에 포함되거나, 상기 화삭식 1의 화합물을 포함하는 발광층 이외의 발광층에 포함될 수 있다.
상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다.
본 명세서의 유기 발광 소자는 유기물층 중 1층 이상이 상기 화합물을 이용하여 형성되는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다.
본 명세서는 또한, 상기 화합물을 이용하여 형성된 유기 발광 소자의 제조 방법을 제공한다.
도펀트 재료로는 방향족 화합물, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 화합물로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 시클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다.
상기 전자 수송층은 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로 전자 수송 물질로는 캐소드로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al착물; Alq3을 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다.
상기 전자 주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 캐소드로부터의 전자주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자 주입 효과를 가지며, 발광층에서 생성된 여기자의 정공 주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 함질소 5원환 유도체 등이 있으나, 이에 한정되지 않는다.
상기 전자 주입 및 수송을 동시에 하는 층의 물질로는 전술한 전자 수송층의 물질 또는 전자 주입층의 물질등이 포함될 수 있다. 또한, 상기 전자 주입 및 수송을 동시에 하는 층은 금속 착제를 더 포함할 수 있다.
상기 전자 주입 및 수송을 동시에 하는 층의 물질로는 전술한 전자 수송층의 물질, 또는 전자 주입층의 물질등이 포함될 수 있다. 또한, 상기 전자 주입 및 수송을 동시에 하는 층은 리튬 퀴놀레이트를 더 포함할 수 있다.
상기 금속 착체 화합물로서는 리튬퀴놀레이트(Liq), 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.
상기 정공저지층은 정공의 캐소드 도달을 저지하는 층으로, 일반적으로 정공주입층과 동일한 조건으로 형성될 수 있다. 구체적으로 옥사디아졸 유도체나 트리아졸 유도체, 페난트롤린 유도체, BCP, 알루미늄 착물 (aluminum complex) 등이 있으나, 이에 한정되지 않는다.
본 명세서에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
상기 화학식 1의 화합물의 제조방법 및 이들을 이용한 유기 발광 소자의 제조는 이하의 실시예에서 구체적으로 설명한다. 그러나, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.
<합성예>
합성예 1. 화합물 1의 합성
중간체 A-1의 합성
Figure PCTKR2020001177-appb-I000026
페놀 (24.6g, 0.260mol), 탄산 칼륨 (36.0g, 0.260mol) 및 N-메틸피롤리돈 (NMP, 500mL)에 질소 분위기 하에서 실온에서 2-브로모-5-클로로-1,3-디플로로벤젠 (29.6g, 0.130mol)을 첨가하여 120℃에서 24 시간 가열 교반하였다. 그 후, NMP를 감압 증류 한 후 톨루엔을 첨가 하였다. 실리카겔을 짧은 경로 컬럼을 이용하여 여과하고 용매를 감압 증류하여 A-1을 얻었다. (48.4g)
중간체 A-2의 합성
Figure PCTKR2020001177-appb-I000027
A-1 (8.2g, 21.9 mmol)을 o-자일렌 (o-xylene) 90mL에 녹이고, n-부틸리튬 9.2 mL (2.5 M)를 0 ℃에서 천천히 적가하였다. 70 ℃에서 4 시간 교반한 후, 삼브롬화붕소(borontribromide) (2.6 mL, 27.5 mmol)를 -40 ℃에서 투입하였다. 상온으로 1시간에 걸쳐 승온하며 교반한 후, N,N-디이소프로플에틸아민 (N,N-diisopropylethylamine) (9.0 mL, 45.8 mmol)을 0 ℃에서 적가하고, 120 ℃에서 5 시간 교반하였다. 디클로로메탄으로 추출한 후, 유기층을 황산마그네슘으로 건조, 여과 및 용매를 감압증류 하였다. 다음으로 헥산:에틸아세테이트로 1:1 전개액으로 컬럼크로마토그래피를 실시하여 A-2 (3.0g)을 얻었다. MS:[M+H]+ = 305.
화합물 1의 합성
Figure PCTKR2020001177-appb-I000028
A-2 (3.8 g), (6-페닐피렌-1-일)보론산 (3.5g), 아세트산 팔라듐 (0.066g), 인산 칼륨 (3.1g), 디시클로헥실(2',6'-디메톡시-[1,1'-비페닐]-2-일)포스핀 (0.24g), 시클로펜틸메틸에테르 (30mL) 및 물 (6mL)이 들어있는 플라스크를 환류 하고, 6 시간 교반 하였다. 디클로로메탄으로 추출한 후, 유기층을 황산마그네슘으로 건조, 여과하고, 용매를 감압증류 하였다. 다음으로 헥산:에틸아세테이트로 1:1 전개액으로 컬럼크로마토그래피를 실시하여 화합물 1 (3.0g)을 얻었다. MS:[M+H]+ = 547.
합성예 2. 화합물 2의 합성
Figure PCTKR2020001177-appb-I000029
화합물 1의 합성에서 (6-페닐피렌-1-일)보론산 (3.5g) 대신, (6-(나프토[2,3-b]벤조퓨란-3-일)피렌-1-일)보론산 (5.0g)을 사용한 것을 제외하고는 동일하게 제조하여 화합물 2를 얻었다. MS:[M+H]+ = 687.
합성예 3. 화합물 3의 합성
중간체 B-1의 합성
Figure PCTKR2020001177-appb-I000030
4-(tert-부틸)페놀 (39.1g, 0.260mol), 탄산 칼륨 (36.0g, 0.260mol) 및 N- 메틸피롤리돈 (NMP, 500mL)에 질소 분위기 하에서 실온에서 2-브로모-5-클로로-1,3-디플로로벤젠 (29.6g, 0.130mol)을 첨가하여 120 ℃에서 24 시간 가열 교반하였다. 그 후, NMP를 감압 증류 한 후 톨루엔을 첨가 하였다. 실리카겔을 짧은 경로 컬럼을 이용하여 여과하고 용매를 감압 증류하여 B-1을 얻었다. (49.6g)
중간체 B-2의 합성
Figure PCTKR2020001177-appb-I000031
중간체 A-2의 합성방법에서, A-1 대신 B-1을 사용한 것을 제외하고는 동일하게 B-2를 제조하였다.
화합물 3의 합성
Figure PCTKR2020001177-appb-I000032
B-2 (4.4 g), (6-페닐피렌-1-일)보론산 (3.5g), 아세트산 팔라듐 (0.066g), 인산 칼륨 (3.1g), 디시클로헥실 (2', 6'-디메톡시-[1,1'-비페닐]-2-일)포스핀 (0.24g), 시클로 펜틸 메틸 에테르 (30mL) 및 물 (6mL)이 들어있는 플라스크를 환류하고, 6 시간 교반 하였다. 디클로로메탄으로 추출한 후, 유기층을 황산마그네슘으로 건조, 여과하고, 용매를 감압증류 하였다. 다음으로 헥산:에틸아세테이트로 1:1 전개액으로 컬럼크로마토그래피를 실시하여 화합물 3 (3.0g)을 얻었다. MS:[M+H]+ = 659.
합성예 4. 화합물 4의 합성
Figure PCTKR2020001177-appb-I000033
화합물 3의 합성에서 (6-페닐피렌-1-일)보론산 (3.5g) 대신, (6-(나프토[2,3-b]벤조퓨란-3-일)피렌-1-일)보론산 (5.0g)을 사용한 것을 제외하고는 동일하게 제조하여 화합물 4를 얻었다. MS:[M+H]+ = 687
합성예 5. 화합물 5의 합성
Figure PCTKR2020001177-appb-I000034
A-2 (3.8 g), 파이렌-1,6-디일보론산 (pyrene-1,6-diyldiboronic acid) (1.8g), 아세트산 팔라듐 (0.066g), 인산 칼륨 (3.1g), 디시클로헥실 (2',6'- 디메톡시-[1,1'-비페닐]-2-일) 포스핀 (0.24g), 시클로 펜틸 메틸 에테르 (30mL) 및 물 (6mL)이 들어있는 플라스크를 환류하고, 6 시간 교반 하였다. 디클로로메탄으로 추출한 후, 유기층을 황산마그네슘으로 건조, 여과하고, 용매를 감압증류 하였다. 다음으로 헥산:에틸아세테이트로 1:1 전개액으로 컬럼크로마토그래피를 실시하여 화합물 5 (3.2g)을 얻었다. MS:[M+H]+ = 739.
합성예 6. 화합물 6의 합성
중간체 C-1의 합성
Figure PCTKR2020001177-appb-I000035
1-나프톨(37.5g, 0.260mol), 탄산 칼륨 (36.0g, 0.260mol) 및 N- 메틸피롤리돈 (NMP, 500mL)에 질소 분위기 하에서 실온에서 2-브로모-5-클로로-1,3-디플로로벤젠 (29.6g, 0.130mol)을 첨가하여 120 ℃에서 24 시간 가열 교반하였다. 그 후, NMP를 감압 증류 한 후 톨루엔을 첨가 하였다. 실리카겔 짧은 경로 컬럼을 이용하여 여과하고 용매를 감압 증류하여 C-1을 얻었다. (39.6g)
중간체 C-2의 합성
Figure PCTKR2020001177-appb-I000036
C-1 (10.4g, 21.9 mmol)을 o-자일렌(o-xylene) 90mL에 녹이고, n-부틸리튬 9.2 mL (2.5 M)를 0℃에서 천천히 적가하였다. 70 ℃에서 4 시간 교반한 후, 삼브롬화붕소(borontribromide) (2.6 mL, 27.5 mmol)를 -40 ℃에서 투입하였다. 상온으로 1시간에 걸쳐 승온하며 교반한 후, N,N-디이소프로필에틸아민 (N,N-diisopropylethylamine) (9.0 mL, 45.8 mmol)을 0 ℃에서 적가하고, 120 ℃에서 6 시간 교반하였다. 디클로로메탄으로 추출한 후, 유기층을 황산마그네슘으로 건조, 여과하고, 용매를 감압증류 하였다. 다음으로 헥산:에틸아세테이트를 1:1 전개액으로 컬럼크로마토그래피를 실시하여 C-2 (3.8g)을 얻었다. MS:[M+H]+ = 405.
화합물 6의 합성
Figure PCTKR2020001177-appb-I000037
C-2 (5.0 g), (6-페닐피렌-1-일)보론산 (3.5g), 아세트산 팔라듐 (0.066g), 인산 칼륨 (3.1g), 디시클로헥실 (2', 6'- 디메톡시-[1,1'-비페닐]-2-일)포스핀 (0.24g), 시클로펜틸메틸에테르 (30mL) 및 물 (6mL)이 들어있는 플라스크를 환류 하고, 6 시간 교반 하였다. 디클로로메탄으로 추출한 후, 유기층을 황산마그네슘으로 건조, 여과하고, 용매를 감압증류 하였다. 다음으로 헥산:에틸아세테이트로 1:1 전개액으로 컬럼크로마토그래피를 실시하여 화합물 6 (3.4g)을 얻었다. MS:[M+H]+ = 647.
합성예 7. 화합물 7의 합성
중간체 D-1의 합성
Figure PCTKR2020001177-appb-I000038
중간체 A-1의 합성에서, 페놀 대신 5,6,7,8-테트라하이드로나프탈렌-1-올 (5,6,7,8-tetrahydronaphthalen-1-ol)을 사용한 것을 제외하고 동일하게 D-1 (47.5g)을 얻었다.
중간체 D-2의 합성
Figure PCTKR2020001177-appb-I000039
D-1 (10.6g, 21.9 mmol)을 o-자일렌 90mL에 녹이고, n-부틸리튬 9.2 mL (2.5 M)를 0 ℃에서 천천히 적가하였다. 70 ℃에서 4 시간 교반한 후, 삼브롬화붕소(2.6 mL, 27.5 mmol)를 -40 ℃에서 투입하였다. 상온으로 1시간에 걸쳐 승온하며 교반한 후, N,N-디이소프로필에틸아민 (9.0 mL, 45.8 mmol)을 0 ℃에서 적가하고, 120 ℃에서 6 시간 교반하였다. 디클로로메탄으로 추출한 후, 유기층을 황산마그네슘으로 건조, 여과 및 용매를 감압증류 하였다. 다음으로 헥산:에틸아세테이트로 1:1 전개액으로 컬럼크로마토그래피를 실시하여 D-2 (4.0g)을 얻었다. MS:[M+H]+ = 413.
화합물 7의 합성
Figure PCTKR2020001177-appb-I000040
D-2 (5.0 g), (6-페닐피렌-1-일)보론산 (3.5g), 아세트산 팔라듐 (0.066g), 인산 칼륨 (3.1g), 디시클로헥실 (2', 6'-디메톡시-[1,1'-비페닐]-2-일)포스핀 (0.24g), 시클로펜틸메틸에테르 (30mL) 및 물 (6mL)이 들어있는 플라스크를 환류 하고, 6 시간 교반 하였다. 디클로로메탄으로 추출한 후, 유기층을 황산마그네슘으로 건조, 여과하고, 용매를 감압증류 하였다. 다음으로 헥산:에틸아세테이트로 1:1 전개액으로 컬럼크로마토그래피를 실시하여 화합물 7 (3.8g)을 얻었다. MS:[M+H]+ = 655.
합성예 8. 화합물 8의 합성
중간체 E-1의 합성
Figure PCTKR2020001177-appb-I000041
벤젠싸이올 (28.7g, 0.260mol), 탄산 칼륨 (36.0g, 0.260mol) 및 N- 메틸피롤리돈 (NMP, 500mL)에 질소 분위기 하에서 실온에서 2-브로모-5-클로로-1,3-디플로로벤젠 (29.6g, 0.130mol)을 첨가하여 120 ℃에서 24 시간 가열 교반하였다. 그 후, NMP를 감압 증류 한 후 톨루엔을 첨가 하였다. 실리카겔을 짧은 경로 컬럼을 이용하여 여과하고 용매를 감압 증류하여 E-1을 얻었다. (44.8g)
중간체 E-2의 합성
Figure PCTKR2020001177-appb-I000042
E-1 (8.9g, 21.9 mmol)을 o-자일렌 90mL에 녹이고, n-부틸리튬 9.2 mL (2.5 M)를 0 ℃에서 천천히 적가하였다. 70 ℃에서 4 시간 교반한 후, 삼브롬화붕소(2.6 mL, 27.5 mmol)를 -40 ℃에서 투입하였다. 상온으로 1시간에 걸쳐 승온하며 교반한 후, N,N-디이소프로필에틸아민 (9.0 mL, 45.8 mmol)을 0 ℃ 에서 적가하고, 120 ℃에서 5 시간 교반하였다. 디클로로메탄으로 추출한 후, 유기층을 황산마그네슘으로 건조, 여과하고, 용매를 감압증류 하였다. 다음으로 헥산:에틸아세테이트로 1:1 전개액으로 컬럼크로마토그래피를 실시하여 E-2 (3.2g)을 얻었다. MS:[M+H]+ = 337.
화합물 8의 합성
Figure PCTKR2020001177-appb-I000043
E-2 (3.4 g), 파이렌-1,6-디일보론산, 아세트산 팔라듐 (0.066g), 인산 칼륨 (3.1g), 디시클로헥실(2', 6'-디메톡시-[1,1'-비페닐]-2-일) 포스핀 (0.24g), 시클로 펜틸메틸에테르 (30mL) 및 물 (6mL)이 들어있는 플라스크를 환류 온도에서 6 시간 교반 하였다. 디클로로메탄으로 추출한 후, 유기층을 황산마그네슘으로 건조, 여과 및 용매를 감압증류 하였다. 다음으로 헥산:에틸아세테이트로 1:1 전개액으로 컬럼크로마토그래피를 실시하여 화합물 8 (1.0g)을 얻었다. MS:[M+H]+ = 803.
<실험예 1>
실시예 1
ITO(indium tin oxide)가 1300Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이 때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀리포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.
이렇게 준비된 ITO 투명 전극 위에 하기 화합물 HAT를 50Å의 두께로 열 진공 증착하여 정공주입층을 형성하였다. 그 위에 제1 정공수송층으로 하기 화합물 HT-A 1000Å을 진공 증착하고, 연이어 제2 정공수송층으로 하기 화합물 HT-B 100Å을 증착하였다. 호스트인 BH-A와 도펀트인 화합물 1을 95 : 5의 중량비로 진공 증착하여 200Å두께의 발광층을 형성하였다.
그 다음에 전자 주입 및 수송을 동시에 하는 층으로 하기 화합물 ET-A 와 하기 화합물 Liq를 1:1 비율(중량비)로 300Å을 증착하였고, 이 위에 순차적으로 10Å두께로 리튬 플루라이드(LiF)와 1,000Å두께로 알루미늄을 증착하여 음극을 형성하여, 유기 발광 소자를 제조하였다.
상기의 과정에서 유기물의 증착속도는 0.4 ~ 2.0 Å를 유지하였고, 음극의 리튬플루오라이드는 0.3 Å/sec, 알루미늄은 2 Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 1 Х 10-7 내지 5 Х 10-8 torr를 유지하여, 유기 발광 소자를 제작하였다.
Figure PCTKR2020001177-appb-I000044
실시예 2 내지 8
상기 실시예 1에서 발광층 물질로 화합물 1 대신 하기 표 1에 기재된 도펀트 화합물을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기 발광 소자를 제조했다.
Figure PCTKR2020001177-appb-I000045
비교예 1 내지 3
상기 실시예 1에서 발광층 물질로 화합물 1 대신 하기 표 1에 기재된 도펀트 화합물을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기 발광 소자를 제조했다.
Figure PCTKR2020001177-appb-I000046
상기 실시예 1 내지 8 및 비교예 1 내지 3에 의해 제작된 유기 발광 소자를 Keithley 2635B system source meter와 PR670 detector를 이용해 10 mA/cm2의 전류밀도에서 EL 스펙트럼의 최대 peak 위치, 반치전폭(FWHM), 발광효율을 측정하였고, 그 결과를 하기 표 1에 나타내었다.
도펀트(발광층) 10mA/cm2
EL max peak(nm) FWHM(nm) 발광효율(Cd/A)
실시예 1 1 462 17 6.9
실시예 2 2 462 16 7.1
실시예 3 3 460 16 7.5
실시예 4 4 460 16 7.3
실시예 5 5 461 17 7.1
실시예 6 6 462 18 6.8
실시예 7 7 462 17 6.6
실시예 8 8 462 17 6.8
비교예 1 BD-1 465 19 5.9
비교예 2 BD-2 465 19 6.0
비교예 3 BD-3 467 19 7.0
상기 표 1에서 보는 바와 같이, 화학식 1의 구조를 갖는 화합물을 사용한 실시예 1 내지 8의 소자는 비교예 1 내지 3의 소자보다 비교적 고효율, 작은 반치전폭(FWHM)을 가지고, 진한 청색의 특성을 가진다.
구체적으로 비교예 1 및 2는 본 발명의 -L-X가 각각 수소 또는 페닐기인 화합물로, 본 발명의 L 또는 X로 테트라센, 파이렌, 벤조안트라센, 페릴렌을 갖는 화합물과 비교하여 발광효율이 현저하게 감소한 것을 확인하였다.
또한, 본 발명의 실시예 1 내지 8의 L이 파이렌인 화합물은 비교예 3의 L이 안트라센인 화합물과 비교하여, EL 스펙트럼의 최대 peak가 낮은 파장에서 나타나고, 반치전폭이 좁으므로 비교예 3보다 고효율 및 고순도의 장점을 갖는다.

Claims (10)

  1. 하기 화학식 1로 표시되는 화합물:
    [화학식 1]
    Figure PCTKR2020001177-appb-I000047
    상기 화학식 1에 있어서,
    A는 B 또는 P이고,
    Y1 및 Y2는 서로 같거나 상이하고, 각각 독립적으로 NR, O, 또는 S이고,
    L은 직접결합, 치환 또는 비치환된 2가의 테트라센기, 치환 또는 비치환된 2가의 파이렌기, 치환 또는 비치환된 2가의 벤조안트라센기, 또는 치환 또는 비치환된 2가의 페릴렌기이고,
    X는 수소, 페닐기, 테트라세닐기, 파이레닐기, 벤조안트라세닐기, 페릴레닐기, 치환 또는 비치환된 알킬기, 치환 또는 비치환된 아릴아민기, 치환 또는 비치환된 헤테로아릴기, 또는 하기 화학식 2로 표시되고,
    L이 직접결합인 경우, X는 테트라세닐기, 파이레닐기, 벤조안트라세닐기, 또는 페릴레닐기이고,
    [화학식 2]
    Figure PCTKR2020001177-appb-I000048
    상기 화학식 2에 있어서,
    Figure PCTKR2020001177-appb-I000049
    은 화학식 1의 L과 결합하는 위치를 의미하며,
    A'는 B 또는 P이고,
    Y1' 및 Y2'는 서로 같거나 상이하고, 각각 독립적으로 NR', O, 또는 S이고,R, R',R1 내지 R3 및 R1' 내지 R3'은 서로 같거나 상이하고, 각각 독립적으로 수소, 니트릴기, 할로겐기, 치환 또는 비치환된 알킬기, 치환 또는 비치환된 알콕시기, 치환 또는 비치환된 실릴기, 치환 또는 비치환된 아민기, 치환 또는 비치환된 포스핀옥사이드기, 치환 또는 비치환된 아릴기, 또는 치환 또는 비치환된 헤테로아릴기이거나,
    인접한 기와 서로 결합하여 치환 또는 비치환된 고리를 형성할 수 있고,
    a, a' b 및 b'는 각각 0 내지 4의 정수이고,
    c 및 c'는 각각 0 내지 2의 정수이고,
    상기 a, a', b 및 b'이 각각 2 이상인 경우, 상기 괄호안의 치환기는 서로 같거나, 상이하고,
    상기 c, 및 c'이 각각 2인 경우, 상기 괄호 안의 치환기는 서로 같거나 상이하다.
  2. 청구항 1에 있어서, 상기 화학식 1은 하기 화학식 1-1 내지 1-6 중 어느 하나로 표시되는 것인 화합물:
    [화학식 1-1]
    Figure PCTKR2020001177-appb-I000050
    [화학식 1-2]
    Figure PCTKR2020001177-appb-I000051
    [화학식 1-3]
    Figure PCTKR2020001177-appb-I000052
    [화학식 1-4]
    Figure PCTKR2020001177-appb-I000053
    [화학식 1-5]
    Figure PCTKR2020001177-appb-I000054
    [화학식 1-6]
    Figure PCTKR2020001177-appb-I000055
    상기 화학식 1-1 내지 1-6에 있어서, 상기 L, X, R, R1 내지 R3, 및 a 내지 c는 상기 화학식 1에서 정의한 바와 같다.
  3. 청구항 1에 있어서, 상기 R, R1 및 R2는 서로 같거나 상이하고, 각각 독립적으로 수소, 치환 또는 비치환된 알킬기, 또는 치환 또는 비치환된 아릴기인 것인 화합물.
  4. 청구항 1에 있어서, 상기 X는 수소, 페닐기, 치환 또는 비치환된 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 30의 아릴아민기, 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기, 또는 상기 화학식 2인 것인 화합물.
  5. 청구항 1에 있어서, 상기 화학식 1은 하기 화합물 중에서 선택되는 어느 하나인 것인 화합물:
    Figure PCTKR2020001177-appb-I000056
    Figure PCTKR2020001177-appb-I000057
    Figure PCTKR2020001177-appb-I000058
    Figure PCTKR2020001177-appb-I000059
    Figure PCTKR2020001177-appb-I000060
    Figure PCTKR2020001177-appb-I000061
    Figure PCTKR2020001177-appb-I000062
    Figure PCTKR2020001177-appb-I000063
    Figure PCTKR2020001177-appb-I000064
    Figure PCTKR2020001177-appb-I000065
    상기 구조식에서 L 및 X는 상기 화학식 1에서 정의한 바와 같다.
  6. 제1 전극; 상기 제1 전극에 대향하여 구비된 제2 전극; 및 상기 제1 전극과 제2 전극 사이에 구비된 1층 또는 2층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1 층 이상은 청구항 1 내지 5 중 어느 한 항의 화합물을 포함하는 것인 유기 발광 소자.
  7. 청구항 6에 있어서, 상기 유기물층은 정공주입층, 정공수송층, 또는 정공주입 및 수송층을 포함하고, 상기 정공주입층, 정공수송층, 또는 정공주입 및 수송층은 상기 화합물을 포함하는 것인 유기 발광 소자.
  8. 청구항 6에 있어서, 상기 유기물층은 전자주입층, 전자수송층, 또는 전자주입 및 수송층을 포함하고, 상기 전자주입층, 전자수송층, 또는 전자주입 및 수송층은 상기 화합물을 포함하는 것인 유기 발광 소자.
  9. 청구항 6에 있어서, 상기 유기물층은 전자저지층 또는 정공저지층을 포함하고, 상기 전자저지층 또는 정공저지층은 상기 화합물을 포함하는 것인 유기 발광 소자.
  10. 청구항 6에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화합물을 포함하는 것인 유기 발광 소자.
PCT/KR2020/001177 2019-01-23 2020-01-23 화합물 및 이를 포함하는 유기 발광 소자 WO2020153792A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080005754.XA CN112867723B (zh) 2019-01-23 2020-01-23 化合物及包含其的有机发光二极管

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190008585 2019-01-23
KR10-2019-0008585 2019-01-23

Publications (1)

Publication Number Publication Date
WO2020153792A1 true WO2020153792A1 (ko) 2020-07-30

Family

ID=71736433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/001177 WO2020153792A1 (ko) 2019-01-23 2020-01-23 화합물 및 이를 포함하는 유기 발광 소자

Country Status (3)

Country Link
KR (1) KR102342444B1 (ko)
CN (1) CN112867723B (ko)
WO (1) WO2020153792A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112225837A (zh) * 2020-10-12 2021-01-15 中国科学院长春应用化学研究所 含有硼/硫(硒、碲)杂化稠环单元的发光高分子及其电致发光器件
CN113651838A (zh) * 2021-02-04 2021-11-16 中国科学院长春应用化学研究所 一种含有多个硼-氧族原子杂化稠环单元的化合物及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160119683A (ko) * 2014-02-18 2016-10-14 가꼬우 호징 관세이 가쿠잉 다환 방향족 화합물
KR20170130434A (ko) * 2015-03-24 2017-11-28 가꼬우 호징 관세이 가쿠잉 유기 전계 발광 소자
US20180069182A1 (en) * 2016-09-07 2018-03-08 Kwansei Gakuin Educational Foundation Polycyclic aromatic compound
KR101876763B1 (ko) * 2017-05-22 2018-07-11 머티어리얼사이언스 주식회사 유기화합물 및 이를 포함하는 유기전계발광소자
WO2019009052A1 (ja) * 2017-07-07 2019-01-10 学校法人関西学院 多環芳香族化合物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10135513B4 (de) 2001-07-20 2005-02-24 Novaled Gmbh Lichtemittierendes Bauelement mit organischen Schichten

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160119683A (ko) * 2014-02-18 2016-10-14 가꼬우 호징 관세이 가쿠잉 다환 방향족 화합물
KR20170130434A (ko) * 2015-03-24 2017-11-28 가꼬우 호징 관세이 가쿠잉 유기 전계 발광 소자
US20180069182A1 (en) * 2016-09-07 2018-03-08 Kwansei Gakuin Educational Foundation Polycyclic aromatic compound
KR101876763B1 (ko) * 2017-05-22 2018-07-11 머티어리얼사이언스 주식회사 유기화합물 및 이를 포함하는 유기전계발광소자
WO2019009052A1 (ja) * 2017-07-07 2019-01-10 学校法人関西学院 多環芳香族化合物

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112225837A (zh) * 2020-10-12 2021-01-15 中国科学院长春应用化学研究所 含有硼/硫(硒、碲)杂化稠环单元的发光高分子及其电致发光器件
CN112225837B (zh) * 2020-10-12 2022-02-18 中国科学院长春应用化学研究所 含有硼/硫(硒、碲)杂化稠环单元的发光高分子及其电致发光器件
CN113651838A (zh) * 2021-02-04 2021-11-16 中国科学院长春应用化学研究所 一种含有多个硼-氧族原子杂化稠环单元的化合物及其制备方法和应用

Also Published As

Publication number Publication date
CN112867723B (zh) 2024-01-26
KR20200091827A (ko) 2020-07-31
CN112867723A (zh) 2021-05-28
KR102342444B1 (ko) 2021-12-23

Similar Documents

Publication Publication Date Title
WO2019164331A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2017131380A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2015152650A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2020171532A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2017061779A1 (ko) 아민 화합물 및 이를 포함하는 유기 발광 소자
WO2019160315A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2020149666A1 (ko) 유기 발광 소자
WO2020106098A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2020130511A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021049840A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2019147077A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2019013542A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2019088751A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2020149596A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020130528A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2020106102A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2022154283A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2019177393A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2020153792A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021091173A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021066351A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020149609A1 (ko) 유기 발광 소자
WO2020080714A1 (ko) 유기 화합물 및 이를 포함하는 유기 발광 소자
WO2020130529A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2022124594A1 (ko) 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자, 이의 제조방법 및 유기물층용 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20745032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20745032

Country of ref document: EP

Kind code of ref document: A1