WO2014111385A1 - Verfahren und vorrichtung zum laserbasierten bearbeiten von flächigen substraten - Google Patents
Verfahren und vorrichtung zum laserbasierten bearbeiten von flächigen substraten Download PDFInfo
- Publication number
- WO2014111385A1 WO2014111385A1 PCT/EP2014/050610 EP2014050610W WO2014111385A1 WO 2014111385 A1 WO2014111385 A1 WO 2014111385A1 EP 2014050610 W EP2014050610 W EP 2014050610W WO 2014111385 A1 WO2014111385 A1 WO 2014111385A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- laser
- focal line
- laser beam
- glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B33/00—Severing cooled glass
- C03B33/09—Severing cooled glass by thermal shock
- C03B33/091—Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/0006—Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/0604—Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
- B23K26/0613—Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams having a common axis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/062—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
- B23K26/0622—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
- B23K26/0624—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/064—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
- B23K26/0648—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/067—Dividing the beam into multiple beams, e.g. multifocusing
- B23K26/0676—Dividing the beam into multiple beams, e.g. multifocusing into dependently operating sub-beams, e.g. an array of spots with fixed spatial relationship or for performing simultaneously identical operations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/073—Shaping the laser spot
- B23K26/0738—Shaping the laser spot into a linear shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/40—Removing material taking account of the properties of the material involved
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/50—Working by transmitting the laser beam through or within the workpiece
- B23K26/53—Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/50—Working by transmitting the laser beam through or within the workpiece
- B23K26/55—Working by transmitting the laser beam through or within the workpiece for creating voids inside the workpiece, e.g. for forming flow passages or flow patterns
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B33/00—Severing cooled glass
- C03B33/02—Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
- C03B33/0222—Scoring using a focussed radiation beam, e.g. laser
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/50—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
- Y02P40/57—Improving the yield, e-g- reduction of reject rates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24355—Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24355—Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
- Y10T428/24471—Crackled, crazed or slit
Definitions
- the present invention relates to a method for laser-based processing of preferably flat substrates according to the preamble of
- the method and the device have in particular the goal of separating flat substrates such as semiconductor wafers, glass elements, ... (in particular from brittle materials) into several parts (separating the wafers or glass elements).
- generally pulsed lasers having a wavelength for which the materials are substantially transparent are used.
- laser methods for cutting through brittle materials which function via a targeted, laser-induced cracking.
- a trace is first heated strongly on the surface by the laser and immediately thereafter this trace is cooled down so rapidly (eg by means of a water jet) that the thermal stresses achieved thereby lead to cracking, which can be propagated through the thickness of the material (mechanical stress) to sever the material.
- a laser is used at the wavelength of which the material is substantially transparent so that a focal point can be created inside the material.
- the intensity of the laser must be so high that internal damage takes place at this inner focal point in the material of the irradiated substrate.
- the method according to the invention generates for each laser pulse a laser focal line (as opposed to a focal point) by means of a suitable laser optics (hereinafter also referred to as optical arrangement).
- the focal line determines the zone of interaction between laser and material of the substrate. If the focal line falls into the material to be separated, so
- the laser parameters may be selected to interact with the material that produces a crack zone along the focal line in accordance with the invention.
- Important laser parameters here are the wavelength of the laser, the pulse duration of the laser, the pulse energy of the laser and possibly also the polarization of the laser.
- the pulse duration of the laser is preferably chosen such that within the
- the pulse energy of the laser is preferably selected such that the intensity in the interaction zone, ie in the focal line, produces an induced absorption which leads to local heating of the material along the focal line, which in turn leads to crack formation along the focal line of the thermal stress introduced into the material.
- the polarization of the laser influences both the surface interaction (reflectivity) and the type of interaction within the material in the induced absorption.
- the induced absorption can take place via induced, free charge carriers (typically electrons), either after thermal excitation, or via multiphoton absorption and internal photoionization, or via direct field ionization (field strength of the light breaks down electron binding directly).
- the manner of generating the charge carriers may be e.g. be judged by the so-called Keldysh parameter (reference), but this does not matter for the application of the method according to the invention.
- the polarization should be favorably selected by the user for the separation of the respective material via suitable optics (phase plates), eg simply in a heuristic manner.
- suitable optics phase plates
- the polarization and the orientation of the polarization vector can be chosen so that form as desired only one focal line and not two of them (ordinary and extraordinary rays). In optically isotropic materials, this does not matter.
- the intensity over the pulse duration, the pulse energy and the focal line diameter should be chosen so that no ablation or melting takes place, but only a cracking in the structure of the solid. This requirement is most easily met for typical materials such as glass or transparent crystals with pulsed lasers in the sub-nanosecond range, in particular with pulse durations of e.g. between 10 and 100 ps. See also Figure 1: Over scale lengths of about one micron (0.5 to 5.0 microns, see center) acts for poor heat conductors such as glasses, the heat conduction to the sub-microsecond range (see the area between the two lines), while for good heat conductors how crystals and semiconductors heat conduction is effective from nanoseconds.
- the essential process for the present invention extending to the substrate level cracking in the material is mechanical stress that exceeds the structural strength of the material (compressive strength in MPa).
- the mechanical stress is achieved here by rapid, inhomogeneous heating (thermally induced stress) by the laser energy.
- the cracking according to the invention starts, assuming a corresponding positioning of the substrate realtivly to the focal line (see below) naturally at the surface of the substrate, since there the deformation is highest. This is because there is no material in the half space above the surface which can absorb forces.
- This argument also applies to materials with hardened or tempered surfaces, as long as the thickness of the hardened or tempered layer is large compared to the diameter of the abruptly heated surface. material along the focal line. (See also FIG. 2 described below.)
- the type of interaction can be adjusted via the fluence (energy density in joules per cm 2 ) and the laser pulse duration with selected focal line diameter that 1) preferably no melt on the surface or in volume and 2) preferably no ablation with particle formation at the Surface takes place.
- fluence energy density in joules per cm 2
- laser pulse duration with selected focal line diameter that 1) preferably no melt on the surface or in volume and 2) preferably no ablation with particle formation at the Surface takes place.
- induced absorption are known: a) In semiconductors and insulators with a low band gap, for example, a low residual absorption (by traces of impurities in the material or by at the temperature before laser processing already thermally excited charge carriers) rapid warming within a first fraction of the laser pulse duration lead to thermal excitation of other charge carriers, which in turn leads to increased absorption and, as a result, to an avalanche-like increase in the laser absorption in the focal line.
- the interaction with the material according to the invention produces a single, continuous (in the direction perpendicular to the substrate surface) crack zone in the material along a focal line per laser pulse.
- a sequence of these crack zones per laser pulse is set so close to each other along the desired separation line that a lateral connection of the cracks to a desired crack surface / contour in the material results.
- the laser is pulsed at a certain repetition rate.
- the spot size and spacing are chosen such that a desired, directional crack pattern is applied to the surface along the line of laser spots. education.
- the distance of the individual crack zones along the desired separation surface results from the movement of the focal line relative to the material within the time span from laser pulse to laser pulse. See also Fig. 9 described below.
- either the pulsed laser light with a parallel to the substrate plane (and possibly also perpendicular thereto) movable optical arrangement can be moved over the stationary material, or the material itself with a movable cinnamon at the stationary optical Arrangement moved over so that the desired Trennline is formed.
- the orientation of the focal line to the surface of the material may be either fixed or via a rotatable optical arrangement (hereinafter also referred to simply as optics) and / or a rotatable beam path of the laser along the desired
- the focal line for forming the desired separation line in up to five separate movable axes are guided through the material: two spatial axes (x, y), which set the puncture point of the focal line in the material, two angular axes (theta, phi), the Determine orientation of the focal line from the piercing point into the material, and another spatial axis ( ⁇ ', not necessarily orthogonal to x, y), which determines how deep the focal line extends from the piercing point at the surface into the material.
- ⁇ ' not necessarily orthogonal to x, y
- the orientation of the angles in theta and phi can only be done as far as the refraction of the laser light in the material allows (smaller than the angle of total reflection in the material), and the penetration depth of the laser focal line is limited by the available laser pulse energy and the laser optics chosen accordingly, which only forms a focal line length which can generate the crack zone according to the invention with the available laser pulse energy.
- One possible embodiment for moving the focal lines in all five axes may be, for example, moving the material on a driven axis table in the coordinates x, y, while the focal line via a Galvo scanner and a non-telecentric F-theta lens in the Field of the lens is moved relative to the lens center in the coordinates x ', y' and tilted by the angle theta, phi.
- the coordinates x and x 'and y and y' can be calculated so that the focal line is directed to the desired impact point of the material surface.
- Galvoscanner and F-theta lens are further attached to a z-axis orthogonal to the x, y plane of the axis table, which determines the position of the focal line perpendicular to the material (depth of the focal line in the material).
- the separation of the material along the generated crack surface / contour takes place either by internal stress of the material, or by introduced forces, e.g. mechanical (tensile) or thermal (non-uniform heating / cooling). Since, according to the invention, no material is ablated, there is generally no continuous gap in the material at first, but only a highly disrupted fracture surface (micro-cracks), which interlocks with one another and may u.U. still connected by bridges. As a result of the subsequently introduced forces, the remaining bridges are separated via lateral (parallel to the substrate plane) crack growth and the toothing is overcome so that the material can be separated along the separating surface.
- mechanical tensile
- thermal non-uniform heating / cooling
- Claim 1 describes the essential features of a method according to the invention
- claim 11 describes the essential components of a trained for performing the method according to the invention device.
- the substrate is separated or singled out into the several parts by the crack formation according to the invention (induced absorption along the focal line extending perpendicular to the substrate plane) in the substrate plane.
- the crack formation according to the invention thus takes place perpendicular to the substrate plane into the substrate or into the interior of the substrate (longitudinal cracking).
- a multiplicity of individual laser beam focal lines must as a rule be introduced into the substrate along a line on the substrate surface, so that the individual parts of the substrate can be separated from one another.
- the substrate can be moved parallel to the substrate plane relative to the laser beam or to the optical arrangement or, conversely, the optical arrangement can be moved parallel to the substrate plane relative to the stationary substrate.
- the features of at least one of the dependent method or apparatus claims are additionally realized.
- the features of several dependent claims can be realized in any combination.
- the extended portion of induced absorption in the interior of the substrate extends from (or beyond) a surface of the substrate to a defined depth of the substrate.
- the extended portion of induced absorption may include the entire depth of the substrate from one surface to the other. It is also possible to generate elongated sections of the induced absorption only inside the substrate (without also including the surfaces of the substrate).
- the layer thickness d is in each case measured perpendicular to the two opposite substrate surfaces of the planar substrate (even with oblique irradiation of the laser radiation at an angle ß> 0 ° to the normal to the substrate surface, ie at oblique incidence).
- the induced absorption is advantageously produced according to claim 4. This is done by means of the setting of the already described, hereinafter explained in the context of examples and also in the dependent claims 5 to 7 mentioned laser parameters, the parameters of the optical arrangement and the geometric parameters of the arrangement of the individual elements of the device according to the invention. Basically, any combination of features of parameters, as they are called in the claims 5-7 possible.
- ⁇ « ⁇ 2 / means that ⁇ is less than 1%, preferably less than 1% o, of ⁇ 2 / ⁇ .
- the pulse duration! at 10 ps (or even below), between 10 and 100 ps or even over 100 ps.
- an Er: YAG laser having a wavelength between 1.5 and 1.8 ⁇ m is preferably used.
- a laser having a wavelength which is selected such that the photon energy is smaller than the band gap of the semiconductor is preferably used for semiconductor substrates.
- the additional process steps which may still be necessary for the final separation or for separating the substrate into its several parts are described in the dependent claims 9 and 10.
- either the substrate is relative to the optical arrangement (including laser) or the optical arrangement (including laser) moves relative to the substrate.
- the crack formation mentioned in claim 10 is (as opposed to the inventively essential, induced crack formation) to be understood as a transverse crack, ie as a lateral crack formation in a direction lying in the plane of the substrate (corresponding to the course of the line along which the substrate should be separated).
- An article of glass with one or more surface (s) (in particular: one or more surface ⁇ )). Along at least one of the one or more surface (s) is / are in each case a plurality of material modifications, each of the material modifications has a length in the range between 0.1 mm and 100 mm and an average diameter in the range between 0.5 ⁇ and 5 ⁇ has ,
- an article of glass with one or more surface (s) (in particular: one or more surface ⁇ )). Along each of at least one of the one or more surfaces is / are a plurality of material modifications.
- the present invention has a number of significant advantages over those known in the art on.
- the cut formation can be set either perpendicular (seen to the substrate plane) or at a desired angle ß by the user relative to the substrate normal. According to the invention, no very high average laser power is necessary, nevertheless comparatively high separation speeds can be achieved. It is essential that the invention generates one laser beam focal line per laser pulse (or per burst pulse) (and not only a focal point that is not or only very locally extended). For this purpose, the laser optics shown below are used in detail. The focal line thus determines the
- the laser parameters can be selected such that an interaction with the material takes place, which according to the invention has a crack zone along the entire focal line (or along the entire extended section) the laser beam focal line falling into the substrate) is generated.
- Selectable laser parameters are, for example, the wavelength of the laser, the pulse duration of the laser, the pulse energy of the laser and possibly also the polarization of the laser.
- the present invention has the particular advantage that a significantly higher Aspect ratio of the cut can be achieved. Problems of such known methods, which occur due to less directed cracking, especially with thicker substrates, are thus avoided.
- the processing speed is more punctiform, in particular in the case of thicker substrates (in which, at a defined position in the substrate plane, a multiple setting is more punctiform
- Burning line is adjusted relative to the substrate so that the inventive method from the surface of the substrate into the interior of the substrate for the inventive extended induced absorption and cracking ensures). In this case, therefore, the first (intentional) damage takes place directly on the surface and continues in a defined manner along the cracking zone by induced absorption into the substrate depth.
- different materials in particular glass panes, sapphire disks, semiconductor wafers
- Both individual layers of corresponding materials and layer composites can be processed.
- the focal line can be positioned and aligned so that only a defined layer is separated in the interior of a layer stack.
- Different sandwich constructions of layer stacks can be processed: glass-air-glass composites, glass-film-glass composites, glass-glass composites.
- the selective cutting of individual layers is also possible within a stack as well as the cutting of intermediate layers (for example, films or adhesive film).
- Coated materials eg AR coated, TCO coated stratified
- unidirectionally non-transparently printed substrates are processed and separated according to the invention.
- cutting is possible virtually without a cutting gap: only a material damage is generated, which is generally in the range between 1 and 10 ⁇ m in extent. In particular, no loss of cut in relation to material or surface is generated. This is particularly advantageous when cutting semiconductor wafers since kerf losses would reduce the active area of the wafer.
- the inventive method of focal line cutting thus results in an increased area yield.
- the lack of material loss is also advantageous, in particular, when cutting gemstones (for example diamond): If the field of application of the present invention is preferably the cutting or cutting of flat substrates, non-planar substrates or workpieces can also be processed according to the invention.
- the method according to the invention can also be used in in-line operation of production processes. This is particularly advantageous in production processes that take place in a roll-to-roll process.
- single-pulse lasers can be used as well as lasers that generate burst pulses.
- the use of lasers in continuous wave mode is conceivable.
- the focal line is only partially inserted into the interior of the substrate material, so that it begins at the surface and stops in front of the taped film (on the back surface of the substrate remote from the laser): For example, about 10% of the material are not separated. The film thus remains intact because the focal line in front of the film "stops."
- the semiconductor wafer can then be separated by mechanical forces (or thermal forces, see example below with the C0 2 laser) over the remaining 10%.
- Cutting coated materials examples include Bragg reflectors (DBR) or metal-coated sapphire wafers. Processed silicon wafers to which the active metal or metal oxide layers have already been applied can also be cut according to the invention. Further examples are the processing of ITO or of AlZnO, with which substrates are coated, which are needed, for example, for the production of touch screens or smart windows. Because of the very extensive focal line (compared to its diameter), part of the focal line will remove the metal layer (or other layer), the remainder of the focal line will penetrate and cut into the transparent material. This has the particular advantage that correspondingly coated substrates can be separated in a one-step process, ie in a process in which the coating and substrate are separated in one process.
- Particularly advantageous according to the invention is the cutting of very thin materials (for example substrates made of glass with thicknesses of less than 300 ⁇ , less than 100 ⁇ or even less than 50 ⁇ ). These can only be processed with great difficulty using conventional mechanical methods. However, in the mechanical processes, edges, damage, cracks, spalling, which can either render the substrates unusable or involve costly reworking necessary. On the other hand, in thin materials, cutting in accordance with the present invention offers the advantages of avoiding edge damage and cracks, so that no post-processing is necessary, of very high cutting speeds (> 1 m / s) from a high yield and performing the process in one Step.
- the method according to the invention can also be used in particular in the production of thin film glasses which are produced with a continuous glass drawing process in order to trim the film edges.
- Figure 1 shows the relationship between the heat diffusion constant a, the linear expansion in the material (scale length, denoted here by d) and a period of time ⁇ such as the laser pulse duration for different materials.
- FIG. 2 shows the principle of the inventive positioning of a focal line, that is to say the processing of a material which is transparent to the laser wavelength on the basis of the induced absorption along the focal line.
- FIG. 3 a shows a first optical arrangement which can be used according to the invention.
- Figure 3b different ways of processing the substrate by different positioning of the laser beam focal line relative to the substrate.
- FIG. 4 shows a second optical arrangement which can be used according to the invention.
- FIGS. 5a and 5b show a third optical arrangement which can be used according to the invention.
- FIG. 6 shows a fourth optical arrangement which can be used according to the invention.
- Figure 7 shows a structure according to the invention for performing the method using the example of the first usable optical arrangement of Figure 3a (instead of this optical arrangement, the other shown opti see arrangements of Figures 4, 5 and 6 can be used in the context of the arrangement shown by the 7 is replaced by one of these arrangements).
- FIG. 8 shows the generation according to the invention of a focal line in detail.
- FIG. 9 shows a microscope image of the surface (top view of the substrate plane) of a glass pane processed according to the invention.
- FIG. 2 outlines the basic procedure of the machining method according to the invention.
- a laser beam 2 emitted from the laser 3, not shown here (see Fig. 7), which is designated at the beam input side of the optical device 6 by the reference numeral 2a, is irradiated to the optical device 6 of the invention (see the following embodiments thereto).
- the optical arrangement 6 forms an extended laser beam focal line 2b on the output side of the irradiated laser beam over a defined expansion region along the beam direction (length I of the focal line). At least in sections, overlapping the laser beam focal line 2b of the laser radiation 2, the substrate 1 to be processed, here flat, is positioned in the beam path after the optical arrangement.
- the reference numeral 1a denotes the surface of the planar substrate facing the optical arrangement 6 or the laser
- the reference symbol 1b the back surface lb of the substrate 1 which is usually parallel
- the substrate thickness (perpendicular to the surfaces 1a and 1b, that is to say Substrate level measured) is denoted by the reference numeral d.
- FIG. 2 a shows, here the substrate 1 is oriented perpendicular to the beam longitudinal axis and thus to the focal line 2 b generated in the space by the optical arrangement 6 behind the latter (the substrate is perpendicular to the plane of the drawing) and positioned relative to the focal line 2 b seen along the beam direction. that the focal line 2 b starts in the beam direction before the surface la of the substrate and in front of the surface 1 b of the substrate, ie still within the substrate, ends.
- the extended laser beam focal line 2b thus generates (with a suitable laser intensity along the laser beam focal line 2b, which is ensured by the focusing of the laser beam 2 on a section of length I, ie by a line focus of length I) in the coverage area of the laser beam focal line 2b with the substrate 1
- a suitable laser intensity along the laser beam focal line 2b which is ensured by the focusing of the laser beam 2 on a section of length I, ie by a line focus of length I
- the substrate 1 in the material of the substrate which is swept by the focal line 2b, viewed along the beam longitudinal direction extended section 2c, along which an induced absorption in the material of the substrate is generated, which induces cracking along the portion 2c in the material of the substrate.
- the cracking occurs not only locally, but over the entire length of the extended portion 2c of the induced absorption.
- the length of this section 2c (ie ultimately the length of the overlap of the laser beam focal line 2b with the substrate 1) is here provided with the reference symbol L.
- This average extent D corresponds here essentially to the mean diameter ⁇ of the laser beam focal line 2 b.
- FIG. 2 a shows, for the wavelength .lambda
- FIG. 2 b outlines that the heated material ultimately expands, so that a correspondingly induced voltage results in microcracking according to the invention, the stress on the surface 1 a being greatest.
- the individual focal lines to be positioned along the parting line 5 on the surface of the substrate be formed as described with the subsequent optical arrangements (Figs optical arrangement is alternatively referred to below as laser optics).
- the roughness results in particular from the spot size or the spot diameter of the focal line.
- certain requirements for the numerical aperture of the laser optical system 6 are generally required. These requirements are met by the laser optics 6 described below.
- the laser beam must illuminate the optics to the required opening, which is typically accomplished by beam expansion by means of telescopes telescope between laser and focusing optics.
- the spot size should not vary too much for a uniform interaction along the focal line. This can be ensured, for example, by the (see example below) that the focusing optics is illuminated only in a narrow, annular area by then naturally change the beam aperture and thus the numerical aperture only small percentage.
- the laser radiation 2a emitted by the laser 3 is first directed to a circular diaphragm 8, which is completely non-transparent to the laser radiation used.
- the aperture 8 is oriented perpendicular to the beam longitudinal axis and centered on the central beam of the beam 2a shown.
- the diameter of the diaphragm 8 is selected so that the near the center of the beam 2a and the central beam lying beam (here with 2aZ) impinge on the aperture and are completely absorbed by this. Only rays lying in the outer peripheral region of the radiation beam 2a (marginal rays, here denoted 2aR) are not absorbed due to the aperture size reduced in comparison to the beam diameter, but pass laterally through the diaphragm 8 and hit the edge regions of the bi-ground here. convex lens 7 trained focusing optical
- the centered on the central beam lens 6 is here consciously formed as uncorrected, bi-convex focusing lens in the form of a conventional spherically ground lens.
- the spherical aberration of such a lens is deliberately exploited.
- ideal-corrected systems may use different aspheres or multiple lenses that do not form an ideal focus point but rather a pronounced, elongated focus line of defined length (ie lenses or systems that no longer have a single focal point).
- the zones of the lens thus focus just as a function of the distance from the center of the lens along a focal line 2b.
- the diameter of the aperture 8 transverse to the beam direction here is about 90% of the diameter of the beam (beam diameter defined by the extent to the drop to 1 / e) and about 75% of the diameter of the lens of the optical assembly. 6
- the focal line 2b of a non-aberration-corrected spherical lens 7 is used, which was produced by hiding the beam in the middle. Shown is the section in a plane through the central ray, the complete three-dimensional bundle is obtained by rotating the rays shown around the focal line 2b.
- a disadvantage of this focal line is that the conditions (spot size, intensity of the laser) along the focal line, and thus along the desired depth in the material, change, and thus the desired type of interaction (no melting, induced absorption, thermo-plastic deformation until crack formation) may only occur within a part of the focal line leaves. Conversely, this means that if necessary only a part of the irradiated laser light is absorbed in the desired manner.
- the efficiency of the process is degraded
- laser light may be applied to undesired, deeper places (adhering to the substrate parts or
- FIG. 3 b shows (not only for the optical arrangement in FIG. 3 a but in principle also for all other usable optical arrangements 6) that the laser beam focal line 2 b is formed by suitable positioning and / or alignment of the optical arrangement 6 relative to the substrate 1 and by suitable choice of the Parameter of the optical assembly 6 can be positioned differently: As the first line outlined in Figure 3b, the
- Length I of the focal line 2b can be adjusted so that it exceeds the substrate thickness d (here by a factor of 2). If one places the substrate 1 centrally in the beam longitudinal direction to the focal line 2 b, then an extended portion of induced absorption 2 c is generated over the entire substrate thickness d.
- a focal length 2b of length I is generated which corresponds approximately to the extent of the substrate d. Since the substrate 1 is positioned relative to the line 2 so that the line 2b starts at a point in front of, ie, outside, the substrate, the length L of the extended induced absorption portion 2c (which is here derived from the surface of the substrate)
- Substrate extends into a defined substrate depth, but not to the back surface lb) here smaller than the length I of the focal line 2b.
- the fourth line in FIG. 3b shows the case in which the focal line length I produced is smaller than the substrate thickness d, so that when centric positioning of the substrate relative to the focal line in FIG
- the focal line positioning in such a way that at least one of the surfaces 1a, 1b is swept by the focal line, thus the portion of the induced absorption 2c begins on at least one surface.
- the portion of the induced absorption 2c begins on at least one surface.
- FIG. 4 shows another optical arrangement 6 that can be used according to the invention.
- the basic structure follows that described in FIG. 3 a, so that only the differences are described below.
- the optical arrangement shown is based on the idea of using a lens with a non-spherical free surface shaped to form the focal line 2 b so that a focal line of defined length I is formed.
- 6 aspheres can be used as optical elements of the optical arrangement.
- a so-called cone prism which is often referred to as axicon, used.
- An axicon is a special, conically ground lens that forms a point source along a line along the optical axis (or also transforms a laser beam into an annular shape).
- the structure of such an axicon is basically known to the person skilled in the art; the cone angle is here, for example, 10 °.
- the axicon designated here by the reference numeral 9 is aligned with its cone tip counter to the direction of irradiation and centered on the beam center. Since the focal line 2 b of the axicon 9 already begins within the same, the substrate 1 (which is arranged here perpendicular to the main beam axis) can be positioned in the beam path immediately after the axicon 9. As FIG. 4 shows, due to the optical properties of the axicon, a displacement of the substrate 1 along the beam direction is also possible without leaving the region of the focal line 2b. The extended portion of the induced absorption 2 c in the material of the substrate 1 thus extends over the entire substrate depth d.
- the structure shown has the following limitations: Since the focal line of the axicon 9 already begins within the lens, a finite working distance between the lens and the material makes up a significant part of the laser beam. Energy is not focused in the part 2c of the focal line 2b, which lies in the material. Furthermore, with the available refractive indices and cone angles of the axicon 9, the length I of the focal line 2b is linked to the beam diameter, which is why with relatively thin materials (a few millimeters) the focal line is too long in total, which in turn means that the laser energy can not be deliberately focused into the material ,
- an improved optical arrangement 6 can be used according to the invention if it comprises both an axicon and a focusing lens.
- FIG. 5a shows such an optical arrangement 6 in which, in the beam path of the laser 3 along the beam direction, first a first optical element with a non-spherical free surface, which is formed to form an extended laser beam focal line 2b, is positioned.
- this first optical element is a 5 ° cone angle axicon 10, which is positioned perpendicular to the beam direction and centered on the laser beam 3.
- the cone tip of the axicon points against the beam direction.
- a second, focusing optical element here a plano-convex lens 11 (the curvature pointing to the axicon) positioned.
- the distance z1 is chosen here with about 300 mm so that the laser radiation formed by the axicon 10 is incident annularly on the outer regions of the lens 11.
- the lens 11 focuses the radiation incident on the ring at the beam exit side at a distance z 2 from here about 20 mm from the lens 11 to a focal line 2 b of defined length of 1.5 mm here.
- the effective focal length of the lens 11 is here 25 mm.
- the annular transformation of the laser beam by the axicon 10 is provided here with the reference symbol SR.
- FIG. 5b shows the design of the focal line 2b or of the induced absorption 2c in the material of the substrate 1 according to FIG. 5a in detail.
- the optical properties of the two elements 10, 11 and the positioning of the same takes place here such that the extension I of the focal line 2 b exactly matches the thickness d of the substrate 1 in the beam direction. Accordingly, accurate positioning of the substrate 1 along the beam direction is necessary to, as shown in Figure 5b, the focal line 2b exactly between the two To position surfaces la and lb of the substrate 1.
- the focal line is formed at a certain distance from the laser optics, and the majority of the laser radiation is focused to a desired end of the focal line.
- This can be achieved as described by illuminating a mainly focusing element 11 (lens) only in a ring on a desired zone, whereby the desired numerical aperture and thus the desired spot size are realized on the one hand and the desired focal line on the other hand 2b, the circle of confusion loses intensity over a very short distance in the middle of the spot, as a substantially annular spot is formed.
- crack formation in the sense of the invention is stopped within a short distance at the desired depth of the substrate.
- a combination of axicon 10 and focus lens 11 fulfills this requirement.
- the axicon 10 acts in two ways: through the axicon 10, a usually round laser spot is sent annularly onto the focusing lens 11 and the asphericity of the axicon 10 causes a focal line to form outside the focal plane instead of a focal point in the focal plane of the lens.
- the length I of the focal line 2b can be adjusted via the beam diameter on the axicon.
- the numerical aperture along the focal line in turn, can be adjusted via the distance zl axicon lens and the cone angle of the axicon. In this way, thus the entire laser energy can be concentrated in the focal line.
- the annular illumination still has the advantage that on the one hand the laser power is used optimally, since a large part of the laser light remains concentrated in the desired length of the focal line, on the other hand through the annular illuminated zone, together with the desired aberration set by the other optical functions, a uniform spot size along the focal line, and thus a uniform separation process according to the invention along the focal line can be achieved.
- a focusing meniscus lens or other higher corrected focusing lens may also be used (Asphere, Mehrlinser) are used.
- a collimating lens 12 (FIG. 6): through this further positive lens 12, the annular illumination of the focusing lens 11 can be set very narrow.
- the focal length f of the collimating lens 12 is chosen so that the desired ring diameter d r at a distance zla from the axicon to the collimating lens 12, which is equal to f, results.
- the desired width b r of the ring can be selected via the distance zlb (collimating lens 12 to focusing lens 11). Purely geometrically follows now from the small width of the annular lighting a short focal line. A minimum can be achieved in the
- the optical arrangement 6 shown in FIG. 6 is thus based on that shown in FIG. 5a, so that only the differences will be described below.
- axicon 10 which is here with its cone tip opposite to the beam direction
- plano-convex lens 11 on the other hand here also as a plano-convex lens (with its curvature opposite to the beam direction facing) trained collimating lens 12
- the distance of the collimating lens 12 from the axicon 10 is here designated zla, the distance from the focusing lens 11 of the collimating lens 12 with zlb and the distance of the focal line 2b generated by the focusing lens 11 with z2 (each viewed in the beam direction).
- FIG. 6 shows, the annular radiation SR incident on the collimating lens 12 and under the ring diameter d r , formed by the axicon 10 along the distance zlb at at least approximately constant annular diameter d r to the desired ring width b r at the location of Focusing lens 11 is set.
- a very short focal line 2 b is to be produced so that the ring width b r of approximately 4 mm at the location of the lens 12 is reduced by the focusing properties of the latter to approximately 0.5 mm at the location of the lens 11 (ring diameter d r here, for example 22) mm).
- a focal line length I of less than 0.5 mm can be achieved.
- Borosilicate or Sodalime glasses 1 without any other colorations are optically transparent from about 350 nm to about 2.5 ⁇ m. Glasses are generally poor heat conductors, which is why laser pulse durations of a few nanoseconds already allow no significant heat diffusion from a focal line 2b out. Nevertheless, even shorter laser pulse durations are advantageous because with sub-nanosecond or picosecond
- Pulse a desired induced absorption via non-linear effects is easier to achieve (intensity much higher).
- Suitable for the separation of flat glasses according to the invention is, for example, a commercially available picosecond laser 3, which has the following parameters: wavelength 1064 nm, pulse duration of 10 ps, pulse repetition frequency of 100 kHz, average power (measured directly after the laser) of up to 50 W.
- the laser beam initially has a beam diameter (measured at 13% of the peak intensity, ie l / e 2 diameter of a Gauss beam) of about 2 mm, the beam quality is at least M 2 ⁇ 1.2 (determined according to
- the theoretical diameter ⁇ of the focal line varies along the beam axis, therefore it is advantageous for the creation of a homogeneous crack surface if the substrate thickness d is less than about 1 mm (typical thicknesses for display glasses are 0.5 mm to 0.7 mm). With a spot size of about 2 ⁇ and a distance from spot to spot of 5 ⁇ results in a speed of 0.5 m / sec, with which the focal line on the substrate 1 out 5 (see Fig. 9) can be.
- burstpuls With 25 W average power on the substrate (measured after the focusing lens 7) results from the pulse repetition frequency of 100 kHz, a pulse energy of 250 ⁇ , which also in a structured pulse (rapid succession of individual pulses at a distance of only 20 ns, so-called. Burstpuls ) can be made from 2 to 5 sub-pulses.
- Unhardened glasses have essentially no internal stress, which is why the still entangled and connected with unseparated bridges fault zone holds without external action, the parts still together. If, however, a thermal stress is applied, the substrate separates completely and without further external force introduction along the loaded fracture surface 5.
- a C0 2 laser with up to 250 W average power is focused on a spot size of about 1 mm, and this spot with up to 0.5 m / s over the dividing line 5 out.
- the local thermal stress due to the introduced laser energy (5 J per cm of the dividing line 5) completely separates the workpiece 1.
- the threshold intensity for the process naturally has to be reached over a longer focal line I. Consequently follow higher required pulse energies and higher average power.
- the transection of approximately 3 mm thick glass succeeds.
- the annular aperture 8 is removed and, on the other hand, the distance lens 7 to substrate is corrected (increased in the direction of the nominal focal distance) so that a longer focal line is formed in the substrate.
- Sodium-containing glasses are hardened by exchanging sodium for potassium by immersion in liquid potassium salt baths on the glass surface. This leads to a considerable internal stress (compressive stress) in a 5-50 ⁇ m thick layer on the surfaces, which in turn leads to the higher stability.
- the process parameters when severing tempered glasses are similar to those for uncured glasses of comparable dimensions and composition.
- the tempered glass can burst much more easily due to the internal stress, namely due to undesired crack growth, which does not take place along the lasered predetermined breaking surface 5 but into the material. Therefore, the parameter field for the successful cutting of a particular tempered glass is narrower.
- the average laser power and the associated cutting speed must be kept fairly accurate, depending on the thickness of the cured layer. For a glass with 40 ⁇ thicker hardened layer and 0.7 mm total thickness results in the o.g. Construction e.g. the following parameters: cutting speed of Im / s at 100 kHz pulse repetition frequency, therefore a spot distance of 10 ⁇ , with an average power of 14 W.
- Very thin tempered glasses consist predominantly of strained material, ie front and back, for example, each 30 ⁇ depleted sodium and thus hardened, and only 40 ⁇ inside are uncured. This material shatters very easily and completely when one of the surfaces is injured. Such hardened glass sheets were previously unworkable in the prior art.
- the separation of this material by the method of the invention succeeds when a) the diameter of the focal line is very small, e.g. smaller than 1 ⁇ , b) the distance from spot to spot is small, e.g. between 1 and 2 ⁇ , and c) the separation speed is high enough that the crack growth can not precede the laser process (high laser pulse repetition frequency, for example 200 kHz at 0.2 to 0.5 m / s).
- sapphire crystals and sapphire glasses are visually similar (transparency and refractive index), they behave very differently mechanically and thermally. So sapphire is an excellent conductor of heat, is mechanically extremely resilient, and very hard and scratch resistant. Nevertheless, thin (0.3 mm to 0.6 mm) sapphire crystals and glasses can be cut through with the laser and optical assembly described above. Because of the high mechanical stability, it is particularly important that the remaining bridges between the parts to be separated are minimized, otherwise very high forces are required for final separation. The fault zone must be formed as completely as possible from entrance la to exit surface 1b of the substrate. As with thicker glasses, this can be achieved with higher pulse energy and thus higher average laser power. Furthermore, crystalline sapphire is birefringent.
- the cut surface must be perpendicular to the optical axis (so-called C-cut).
- C-cut For cutting through a crystalline sapphire wafer of 0.45 mm thickness, the following parameters can be used: an average laser power of 30 W at 100 kHz pulse repetition frequency, a spot size of 2 ⁇ , and a sports distance of 5 ⁇ , which a cutting speed of 0.5m / s in the mentioned Pulse repetition frequency corresponds.
- an average laser power of 30 W at 100 kHz pulse repetition frequency
- a spot size of 2 ⁇ a sports distance of 5 ⁇ , which a cutting speed of 0.5m / s in the mentioned Pulse repetition frequency corresponds.
- it can be required for complete separation to perform a subsequent heating of the cutting line 5, for example, with a C0 2 laser spot, so that forms the fault zone on the thermal stress crack growth to a complete, continuous, unhooked separation surface.
- FIG. 9 shows a microscope image of the surface of a glass pane processed according to the invention.
- the individual focal lines or extended sections of induced absorption 2c which are designated here by the reference symbols 2c-1, 2c-2... (In the depth of the substrate perpendicular to the illustrated surface), join along the line 5, along which the laser beam was passed over the surface 4 of the substrate, by cracking to a separation surface for the separation of the substrate parts.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Thermal Sciences (AREA)
- Toxicology (AREA)
- Health & Medical Sciences (AREA)
- Laser Beam Processing (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
- Processing Of Stones Or Stones Resemblance Materials (AREA)
- Dicing (AREA)
Priority Applications (8)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2015553060A JP6496248B2 (ja) | 2013-01-15 | 2014-01-14 | フラット基板のレーザベースの機械加工方法および装置 |
| LTEP14700411.3T LT2945769T (lt) | 2013-01-15 | 2014-01-14 | Būdas ir aparatas lazeriniu apdorojimu besiremiančiam plokščių substratų apdorojimui, panaudojant lazerio spindulių liniją; atitinkami stiklo produktai |
| KR1020157022066A KR102165804B1 (ko) | 2013-01-15 | 2014-01-14 | 평판 기판의 레이저-기반 기계가공을 위한 방법 및 장치 |
| EP14700411.3A EP2945769B1 (de) | 2013-01-15 | 2014-01-14 | Verfahren und vorrichtung zum laserbasierten bearbeiten von flächigen substraten unter verwendung einer laserstrahlbrennlinie ; entsprechende glasgegenstände |
| US14/761,275 US11028003B2 (en) | 2013-01-15 | 2014-01-14 | Method and device for laser-based machining of flat substrates |
| CN201480009759.4A CN105209218B (zh) | 2013-01-15 | 2014-01-14 | 对平坦衬底进行基于激光的加工的方法和设备 |
| CA2898256A CA2898256A1 (en) | 2013-01-15 | 2014-01-14 | Method and device for laser-based machining of flat substrates |
| US16/527,986 US11345625B2 (en) | 2013-01-15 | 2019-07-31 | Method and device for the laser-based machining of sheet-like substrates |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201361752489P | 2013-01-15 | 2013-01-15 | |
| US61/752,489 | 2013-01-15 | ||
| EP13151296.4A EP2754524B1 (de) | 2013-01-15 | 2013-01-15 | Verfahren und Vorrichtung zum laserbasierten Bearbeiten von flächigen Substraten, d.h. Wafer oder Glaselement, unter Verwendung einer Laserstrahlbrennlinie |
| EP13151296.4 | 2013-01-15 |
Related Child Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/761,275 A-371-Of-International US11028003B2 (en) | 2013-01-15 | 2014-01-14 | Method and device for laser-based machining of flat substrates |
| US16/527,986 Continuation US11345625B2 (en) | 2013-01-15 | 2019-07-31 | Method and device for the laser-based machining of sheet-like substrates |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2014111385A1 true WO2014111385A1 (de) | 2014-07-24 |
Family
ID=47683528
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2014/050610 Ceased WO2014111385A1 (de) | 2013-01-15 | 2014-01-14 | Verfahren und vorrichtung zum laserbasierten bearbeiten von flächigen substraten |
| PCT/IB2014/000035 Ceased WO2014111794A1 (en) | 2013-01-15 | 2014-01-14 | Method of and device for the laser-based machining of sheet-like substrates using a laser beam focal line |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/IB2014/000035 Ceased WO2014111794A1 (en) | 2013-01-15 | 2014-01-14 | Method of and device for the laser-based machining of sheet-like substrates using a laser beam focal line |
Country Status (9)
| Country | Link |
|---|---|
| US (3) | US11028003B2 (enExample) |
| EP (3) | EP2754524B1 (enExample) |
| JP (3) | JP6496248B2 (enExample) |
| KR (2) | KR102165804B1 (enExample) |
| CN (2) | CN106170365A (enExample) |
| CA (2) | CA2898256A1 (enExample) |
| LT (2) | LT2945769T (enExample) |
| TW (2) | TWI639479B (enExample) |
| WO (2) | WO2014111385A1 (enExample) |
Cited By (52)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9517929B2 (en) | 2013-11-19 | 2016-12-13 | Rofin-Sinar Technologies Inc. | Method of fabricating electromechanical microchips with a burst ultrafast laser pulses |
| US9517963B2 (en) | 2013-12-17 | 2016-12-13 | Corning Incorporated | Method for rapid laser drilling of holes in glass and products made therefrom |
| DE102015110422A1 (de) | 2015-06-29 | 2016-12-29 | Schott Ag | Laserbearbeitung eines mehrphasigen transparenten Materials, sowie mehrphasiger Kompositwerkstoff |
| DE102015116846A1 (de) | 2015-10-05 | 2017-04-06 | Schott Ag | Verfahren zum Filamentieren eines Werkstückes mit einer von der Sollkontur abweichenden Form sowie durch Filamentation erzeugtes Werkstück |
| US9617180B2 (en) | 2014-07-14 | 2017-04-11 | Corning Incorporated | Methods and apparatuses for fabricating glass articles |
| US9676167B2 (en) | 2013-12-17 | 2017-06-13 | Corning Incorporated | Laser processing of sapphire substrate and related applications |
| US9687936B2 (en) | 2013-12-17 | 2017-06-27 | Corning Incorporated | Transparent material cutting with ultrafast laser and beam optics |
| CN106914704A (zh) * | 2015-10-13 | 2017-07-04 | 株式会社迪思科 | 光器件晶片的加工方法 |
| US9701563B2 (en) | 2013-12-17 | 2017-07-11 | Corning Incorporated | Laser cut composite glass article and method of cutting |
| US9701564B2 (en) | 2013-01-15 | 2017-07-11 | Corning Incorporated | Systems and methods of glass cutting by inducing pulsed laser perforations into glass articles |
| JP2017521877A (ja) * | 2014-07-15 | 2017-08-03 | イノラス ソリューションズ ゲーエムベーハー | 平面結晶性基板、特に半導体基板のレーザ加工方法及び装置 |
| US9757815B2 (en) | 2014-07-21 | 2017-09-12 | Rofin-Sinar Technologies Inc. | Method and apparatus for performing laser curved filamentation within transparent materials |
| US9815144B2 (en) | 2014-07-08 | 2017-11-14 | Corning Incorporated | Methods and apparatuses for laser processing materials |
| US9815730B2 (en) | 2013-12-17 | 2017-11-14 | Corning Incorporated | Processing 3D shaped transparent brittle substrate |
| CN107406293A (zh) * | 2015-01-12 | 2017-11-28 | 康宁股份有限公司 | 使用多光子吸收方法来对经热回火的基板进行激光切割 |
| US9850160B2 (en) | 2013-12-17 | 2017-12-26 | Corning Incorporated | Laser cutting of display glass compositions |
| US9938187B2 (en) | 2014-02-28 | 2018-04-10 | Rofin-Sinar Technologies Llc | Method and apparatus for material processing using multiple filamentation of burst ultrafast laser pulses |
| US10005152B2 (en) | 2013-11-19 | 2018-06-26 | Rofin-Sinar Technologies Llc | Method and apparatus for spiral cutting a glass tube using filamentation by burst ultrafast laser pulses |
| US10017410B2 (en) | 2013-10-25 | 2018-07-10 | Rofin-Sinar Technologies Llc | Method of fabricating a glass magnetic hard drive disk platter using filamentation by burst ultrafast laser pulses |
| US10047001B2 (en) | 2014-12-04 | 2018-08-14 | Corning Incorporated | Glass cutting systems and methods using non-diffracting laser beams |
| US10144088B2 (en) | 2013-12-03 | 2018-12-04 | Rofin-Sinar Technologies Llc | Method and apparatus for laser processing of silicon by filamentation of burst ultrafast laser pulses |
| US10173916B2 (en) | 2013-12-17 | 2019-01-08 | Corning Incorporated | Edge chamfering by mechanically processing laser cut glass |
| US10233112B2 (en) | 2013-12-17 | 2019-03-19 | Corning Incorporated | Laser processing of slots and holes |
| US10252507B2 (en) | 2013-11-19 | 2019-04-09 | Rofin-Sinar Technologies Llc | Method and apparatus for forward deposition of material onto a substrate using burst ultrafast laser pulse energy |
| US10280108B2 (en) | 2013-03-21 | 2019-05-07 | Corning Laser Technologies GmbH | Device and method for cutting out contours from planar substrates by means of laser |
| US10335902B2 (en) | 2014-07-14 | 2019-07-02 | Corning Incorporated | Method and system for arresting crack propagation |
| US10376986B2 (en) | 2013-08-02 | 2019-08-13 | Rofin-Sinar Technologies Llc | Method and apparatus for hybrid photoacoustic compression machining in transparent materials using filamentation by burst ultrafast laser pulses |
| US10391588B2 (en) | 2015-01-13 | 2019-08-27 | Rofin-Sinar Technologies Llc | Method and system for scribing brittle material followed by chemical etching |
| US10399184B2 (en) | 2010-07-12 | 2019-09-03 | Rofin-Sinar Technologies Llc | Method of material processing by laser filamentation |
| US10421683B2 (en) | 2013-01-15 | 2019-09-24 | Corning Laser Technologies GmbH | Method and device for the laser-based machining of sheet-like substrates |
| US10526234B2 (en) | 2014-07-14 | 2020-01-07 | Corning Incorporated | Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block |
| US10525657B2 (en) | 2015-03-27 | 2020-01-07 | Corning Incorporated | Gas permeable window and method of fabricating the same |
| US10611667B2 (en) | 2014-07-14 | 2020-04-07 | Corning Incorporated | Method and system for forming perforations |
| US11053156B2 (en) | 2013-11-19 | 2021-07-06 | Rofin-Sinar Technologies Llc | Method of closed form release for brittle materials using burst ultrafast laser pulses |
| US11062986B2 (en) | 2017-05-25 | 2021-07-13 | Corning Incorporated | Articles having vias with geometry attributes and methods for fabricating the same |
| US11078112B2 (en) | 2017-05-25 | 2021-08-03 | Corning Incorporated | Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same |
| US11114309B2 (en) | 2016-06-01 | 2021-09-07 | Corning Incorporated | Articles and methods of forming vias in substrates |
| US11130701B2 (en) | 2016-09-30 | 2021-09-28 | Corning Incorporated | Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots |
| US11186060B2 (en) | 2015-07-10 | 2021-11-30 | Corning Incorporated | Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same |
| US20210379695A1 (en) * | 2020-06-04 | 2021-12-09 | Corning Incorporated | Methods for laser processing transparent workpieces using modified pulse burst profiles |
| US11478874B2 (en) | 2019-04-05 | 2022-10-25 | Tdk Corporation | Method of processing inorganic material substrate, device, and method of manufacturing device |
| US11542190B2 (en) | 2016-10-24 | 2023-01-03 | Corning Incorporated | Substrate processing station for laser-based machining of sheet-like glass substrates |
| US11556039B2 (en) | 2013-12-17 | 2023-01-17 | Corning Incorporated | Electrochromic coated glass articles and methods for laser processing the same |
| US11554984B2 (en) | 2018-02-22 | 2023-01-17 | Corning Incorporated | Alkali-free borosilicate glasses with low post-HF etch roughness |
| EP4122633A1 (de) * | 2014-11-27 | 2023-01-25 | Siltectra GmbH | Festkörperteilung mittels stoffumwandlung |
| US11629088B2 (en) | 2018-06-19 | 2023-04-18 | Corning Incorporated | Actively controlled laser processing of transparent workpieces |
| US11648623B2 (en) | 2014-07-14 | 2023-05-16 | Corning Incorporated | Systems and methods for processing transparent materials using adjustable laser beam focal lines |
| US11774233B2 (en) | 2016-06-29 | 2023-10-03 | Corning Incorporated | Method and system for measuring geometric parameters of through holes |
| US11773004B2 (en) | 2015-03-24 | 2023-10-03 | Corning Incorporated | Laser cutting and processing of display glass compositions |
| US11904410B2 (en) | 2015-10-07 | 2024-02-20 | Corning Incorporated | Laser surface preparation of coated substrate |
| US12180108B2 (en) | 2017-12-19 | 2024-12-31 | Corning Incorporated | Methods for etching vias in glass-based articles employing positive charge organic molecules |
| US12242080B2 (en) | 2019-11-27 | 2025-03-04 | Hamamatsu Photonics K.K. | Laser processing device, and laser processing method |
Families Citing this family (143)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5905899B2 (ja) | 2010-11-30 | 2016-04-20 | コーニング インコーポレイテッド | ガラスに孔の高密度アレイを形成する方法 |
| TWI547454B (zh) * | 2011-05-31 | 2016-09-01 | 康寧公司 | 於玻璃中高速製造微孔洞的方法 |
| WO2014079478A1 (en) | 2012-11-20 | 2014-05-30 | Light In Light Srl | High speed laser processing of transparent materials |
| JP6121733B2 (ja) * | 2013-01-31 | 2017-04-26 | 浜松ホトニクス株式会社 | レーザ加工装置及びレーザ加工方法 |
| US9102007B2 (en) * | 2013-08-02 | 2015-08-11 | Rofin-Sinar Technologies Inc. | Method and apparatus for performing laser filamentation within transparent materials |
| DE102015000449A1 (de) | 2015-01-15 | 2016-07-21 | Siltectra Gmbh | Festkörperteilung mittels Stoffumwandlung |
| JP6262039B2 (ja) | 2014-03-17 | 2018-01-17 | 株式会社ディスコ | 板状物の加工方法 |
| JP6301203B2 (ja) * | 2014-06-02 | 2018-03-28 | 株式会社ディスコ | チップの製造方法 |
| MX2017000440A (es) * | 2014-07-11 | 2017-08-16 | Corning Inc | Sistemas y metodos para cortado de vidrio al inducir perforaciones por láser pulsado en artículos de vidrio. |
| EP3195706B2 (de) | 2014-09-16 | 2025-05-14 | LPKF Laser & Electronics SE | Verfahren zum einbringen mindestens einer ausnehmung oder einer durchbrechung in ein plattenförmiges werkstück |
| EP3216050B1 (en) | 2014-11-05 | 2021-09-08 | Corning Incorporated | Bottom-up electrolytic via plating method |
| KR102138964B1 (ko) * | 2014-11-19 | 2020-07-28 | 트룸프 레이저-운트 시스템테크닉 게엠베하 | 비대칭 광학 빔 정형을 위한 시스템 |
| DE102014116958B9 (de) | 2014-11-19 | 2017-10-05 | Trumpf Laser- Und Systemtechnik Gmbh | Optisches System zur Strahlformung eines Laserstrahls, Laserbearbeitungsanlage, Verfahren zur Materialbearbeitung und Verwenden einer gemeinsamen langgezogenen Fokuszone zur Lasermaterialbearbeitung |
| DE102014116957A1 (de) * | 2014-11-19 | 2016-05-19 | Trumpf Laser- Und Systemtechnik Gmbh | Optisches System zur Strahlformung |
| KR102232168B1 (ko) * | 2014-11-25 | 2021-03-29 | 삼성디스플레이 주식회사 | 기판 커팅 장치 |
| EP3223994B1 (de) | 2014-11-27 | 2023-04-26 | Siltectra GmbH | Laserbasiertes trennverfahren |
| US9873628B1 (en) * | 2014-12-02 | 2018-01-23 | Coherent Kaiserslautern GmbH | Filamentary cutting of brittle materials using a picosecond pulsed laser |
| WO2016138054A1 (en) | 2015-02-27 | 2016-09-01 | Corning Incorporated | Optical assembly having microlouvers |
| DE102015104802A1 (de) | 2015-03-27 | 2016-09-29 | Schott Ag | Verfahren zum Trennen von Glas mittels eines Lasers, sowie verfahrensgemäß hergestelltes Glaserzeugnis |
| JP6472333B2 (ja) * | 2015-06-02 | 2019-02-20 | 株式会社ディスコ | ウエーハの生成方法 |
| KR20180011271A (ko) * | 2015-06-16 | 2018-01-31 | 일렉트로 싸이언티픽 인더스트리이즈 인코포레이티드 | 투명 물질들을 가공하기 위한 방법 및 장치 |
| DE102015008037A1 (de) * | 2015-06-23 | 2016-12-29 | Siltectra Gmbh | Verfahren zum Führen eines Risses im Randbereich eines Spendersubstrats |
| DE102015211999A1 (de) * | 2015-06-29 | 2016-12-29 | Trumpf Werkzeugmaschinen Gmbh + Co. Kg | Laserbearbeitungskopf und Laserbearbeitungsmaschine damit |
| DE102015111491A1 (de) | 2015-07-15 | 2017-01-19 | Schott Ag | Verfahren und Vorrichtung zum Abtrennen von Glas- oder Glaskeramikteilen |
| DE102015111490A1 (de) * | 2015-07-15 | 2017-01-19 | Schott Ag | Verfahren und Vorrichtung zum lasergestützten Abtrennen eines Teilstücks von einem flächigen Glaselement |
| CN105108331A (zh) * | 2015-07-28 | 2015-12-02 | 上海信耀电子有限公司 | 一种整形导光管及激光焊接工艺 |
| CN106601876A (zh) * | 2015-10-19 | 2017-04-26 | 映瑞光电科技(上海)有限公司 | 一种led芯片结构及其制作方法 |
| US20190009362A1 (en) * | 2015-12-22 | 2019-01-10 | Heraeus Deutschland GmbH & Co. KG | Method for producing a metal-ceramic substrate with picolaser |
| DE102016102768A1 (de) | 2016-02-17 | 2017-08-17 | Schott Ag | Verfahren zur Kantenbearbeitung von Glaselementen und verfahrensgemäß bearbeitetes Glaselement |
| JP2019511447A (ja) | 2016-03-09 | 2019-04-25 | コーニング インコーポレイテッド | 複雑に湾曲したガラス物品の冷間成形 |
| JP6703617B2 (ja) * | 2016-03-22 | 2020-06-03 | ジルテクトラ ゲゼルシャフト ミット ベシュレンクテル ハフツング | 分離されるべき固体物の複合レーザ処理 |
| KR101774290B1 (ko) * | 2016-04-25 | 2017-09-04 | 주식회사 아톤이엔지 | 레이저 핀 빔을 이용한 취성 소재 가공 방법 및 장치와 이를 위한 광학계 |
| MY194570A (en) | 2016-05-06 | 2022-12-02 | Corning Inc | Laser cutting and removal of contoured shapes from transparent substrates |
| JP6755705B2 (ja) * | 2016-05-09 | 2020-09-16 | 株式会社ディスコ | レーザー加工装置 |
| CN106102986B (zh) * | 2016-06-08 | 2018-06-12 | 大族激光科技产业集团股份有限公司 | 用于切割蓝宝石的方法及其装置 |
| TWI800484B (zh) | 2016-06-28 | 2023-05-01 | 美商康寧公司 | 層壓薄強化玻璃至用於裝飾及顯示器蓋應用的曲面模製塑膠表面 |
| JP6744624B2 (ja) * | 2016-06-28 | 2020-08-19 | 三星ダイヤモンド工業株式会社 | 管状脆性部材の分断方法並びに分断装置 |
| US10134657B2 (en) * | 2016-06-29 | 2018-11-20 | Corning Incorporated | Inorganic wafer having through-holes attached to semiconductor wafer |
| EP3482253B1 (en) | 2016-07-05 | 2021-05-05 | Corning Incorporated | Cold-formed glass article and assembly process thereof |
| CN109803934A (zh) | 2016-07-29 | 2019-05-24 | 康宁股份有限公司 | 用于激光处理的装置和方法 |
| WO2018044843A1 (en) * | 2016-08-30 | 2018-03-08 | Corning Incorporated | Laser processing of transparent materials |
| DE102017008619A1 (de) * | 2016-09-15 | 2018-03-15 | Asahi Glass Company, Limited | Verfahren zur Herstellung eines Glasgegenstands und ein Glasgegenstand |
| CN109982984B (zh) * | 2016-10-07 | 2022-10-04 | 康宁公司 | 电致变色涂布的玻璃物件和用于激光处理电致变色涂布的玻璃物件的方法 |
| US20180105455A1 (en) | 2016-10-17 | 2018-04-19 | Corning Incorporated | Silica test probe and other such devices |
| KR101736693B1 (ko) * | 2016-10-19 | 2017-05-29 | 전상욱 | 레이저 회절빔의 필라멘테이션을 이용한 취성 소재 가공 방법 및 이를 위한 레이저 가공 장치 |
| KR102429148B1 (ko) | 2016-10-25 | 2022-08-04 | 코닝 인코포레이티드 | 디스플레이에 냉간-성형 유리 적층 |
| US10752534B2 (en) | 2016-11-01 | 2020-08-25 | Corning Incorporated | Apparatuses and methods for laser processing laminate workpiece stacks |
| US20180118602A1 (en) * | 2016-11-01 | 2018-05-03 | Corning Incorporated | Glass sheet transfer apparatuses for laser-based machining of sheet-like glass substrates |
| US10668561B2 (en) * | 2016-11-15 | 2020-06-02 | Coherent, Inc. | Laser apparatus for cutting brittle material |
| EP3523083B1 (en) * | 2016-11-18 | 2023-08-09 | IPG Photonics Corporation | System and method for laser processing of materials. |
| DE102017100015A1 (de) * | 2017-01-02 | 2018-07-05 | Schott Ag | Verfahren zum Trennen von Substraten |
| US11016590B2 (en) | 2017-01-03 | 2021-05-25 | Corning Incorporated | Vehicle interior systems having a curved cover glass and display or touch panel and methods for forming the same |
| TWI839775B (zh) | 2017-01-03 | 2024-04-21 | 美商康寧公司 | 具有彎曲的覆蓋玻璃以及顯示器或觸控面板的車輛內部系統及其形成方法 |
| CN110177766B (zh) * | 2017-02-07 | 2021-12-10 | 日本电气硝子株式会社 | 玻璃膜的制造方法 |
| US10688599B2 (en) | 2017-02-09 | 2020-06-23 | Corning Incorporated | Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines |
| CN106695117A (zh) * | 2017-02-13 | 2017-05-24 | 武汉澳谱激光科技有限公司 | 一种实现轴向均匀线焦斑的光学器件 |
| CN106624355A (zh) * | 2017-02-23 | 2017-05-10 | 常州特尔玛枪嘴有限公司 | 一种可调节光斑能量密度分布的激光切割头 |
| WO2018189296A1 (en) | 2017-04-12 | 2018-10-18 | Saint-Gobain Glass France | Electrochromic structure and method of separating electrochromic structure |
| DE102017206461B4 (de) | 2017-04-13 | 2019-05-02 | Schott Ag | Vorrichtung und Verfahren zum laserbasierten Trennen eines transparenten, sprödbrechenden Werkstücks |
| EP3625179B1 (en) | 2017-05-15 | 2025-09-17 | Corning Incorporated | Contoured glass articles and method of making the same |
| DE102017208290A1 (de) | 2017-05-17 | 2018-11-22 | Schott Ag | Vorrichtung und Verfahren zum Bearbeiten eines Werkstücks entlang einer vorbestimmten Bearbeitungslinie |
| WO2018210519A1 (de) | 2017-05-19 | 2018-11-22 | Schott Ag | Bauteil, umfassend glas oder glaskeramik, mit entlang einer vorgegebenen trennlinie angeordneten vorschädigungen, verfahren und vorrichtung zur herstellung des bauteils und dessen verwendung |
| EP3412400A1 (en) * | 2017-06-09 | 2018-12-12 | Bystronic Laser AG | Beam shaper and use thereof, device for laser beam treatment of a workpiece and use thereof, method for laser beam treatment of a workpiece |
| US10626040B2 (en) | 2017-06-15 | 2020-04-21 | Corning Incorporated | Articles capable of individual singulation |
| GB201710813D0 (en) * | 2017-07-05 | 2017-08-16 | Univ Southampton | Method for fabricating an optical fibre preform |
| KR102512945B1 (ko) | 2017-07-11 | 2023-03-22 | 코닝 인코포레이티드 | 타일링된 디스플레이들 및 그 제조 방법들 |
| EP3655282B1 (en) | 2017-07-18 | 2023-02-15 | Corning Incorporated | Vehicle interior system comprising a cold formed complexly curved glass article |
| US10906832B2 (en) | 2017-08-11 | 2021-02-02 | Corning Incorporated | Apparatuses and methods for synchronous multi-laser processing of transparent workpieces |
| WO2019040854A1 (en) | 2017-08-25 | 2019-02-28 | Corning Incorporated | APPARATUS AND METHOD FOR LASER PROCESSING OF TRANSPARENT WORKPIECES USING AFOCAL BEAM ADJUSTMENT ASSEMBLY |
| CN111356662B (zh) | 2017-09-12 | 2022-10-04 | 康宁公司 | 用于装饰玻璃上的包括触摸面板的显示器的死前端及相关方法 |
| TWI873668B (zh) | 2017-09-13 | 2025-02-21 | 美商康寧公司 | 用於顯示器的基於光導器的無電面板、相關的方法及載具內部系統 |
| US11065960B2 (en) | 2017-09-13 | 2021-07-20 | Corning Incorporated | Curved vehicle displays |
| TWI888167B (zh) | 2017-10-10 | 2025-06-21 | 美商康寧公司 | 具有改善可靠性的彎曲的覆蓋玻璃的車輛內部系統及其形成方法 |
| EP3714316B1 (en) | 2017-11-21 | 2023-12-27 | Corning Incorporated | Aspheric mirror for head-up display system and methods for forming the same |
| EP3717958A4 (en) | 2017-11-30 | 2021-08-04 | Corning Incorporated | SYSTEMS AND METHODS FOR ASPHERIC VACUUM MIRRORS |
| US11550148B2 (en) | 2017-11-30 | 2023-01-10 | Corning Incorporated | Vacuum mold apparatus, systems, and methods for forming curved mirrors |
| US10917966B2 (en) | 2018-01-29 | 2021-02-09 | Corning Incorporated | Articles including metallized vias |
| CN108161250A (zh) * | 2018-01-30 | 2018-06-15 | 苏州德龙激光股份有限公司 | 多焦点动态分布激光加工脆性透明材料的方法及装置 |
| DE102018126381A1 (de) | 2018-02-15 | 2019-08-22 | Schott Ag | Verfahren und Vorrichtung zum Einfügen einer Trennlinie in ein transparentes sprödbrüchiges Material, sowie verfahrensgemäß herstellbares, mit einer Trennlinie versehenes Element |
| US11992894B2 (en) | 2018-02-23 | 2024-05-28 | Corning Incorporated | Method of separating a liquid lens from an array of liquid lenses |
| US12202759B2 (en) | 2018-02-26 | 2025-01-21 | Corning Incorporated | Methods for laser forming transparent articles from a transparent mother sheet and processing the transparent articles in-situ |
| EP3759530A1 (en) | 2018-03-02 | 2021-01-06 | Corning Incorporated | Anti-reflective coatings and articles and methods of forming the same |
| WO2019177952A1 (en) | 2018-03-13 | 2019-09-19 | Corning Incorporated | Vehicle interior systems having a crack resistant curved cover glass and methods for forming the same |
| US11401195B2 (en) * | 2018-03-29 | 2022-08-02 | Corning Incorporated | Selective laser processing of transparent workpiece stacks |
| US11152294B2 (en) | 2018-04-09 | 2021-10-19 | Corning Incorporated | Hermetic metallized via with improved reliability |
| US12011783B2 (en) | 2018-05-25 | 2024-06-18 | Corning Incorporated | Scribing thin ceramic materials using beam focal line |
| US11059131B2 (en) | 2018-06-22 | 2021-07-13 | Corning Incorporated | Methods for laser processing a substrate stack having one or more transparent workpieces and a black matrix layer |
| CN116312233B (zh) | 2018-07-12 | 2025-09-16 | 康宁公司 | 配置用于色彩比对的无电板 |
| JP2021531187A (ja) | 2018-07-16 | 2021-11-18 | コーニング インコーポレイテッド | 冷間曲げガラス基板を有する乗物内装システムおよびその形成方法 |
| US20210188691A1 (en) * | 2018-08-10 | 2021-06-24 | Nippon Electric Glass Co., Ltd. | Method for manufacturing glass sheet |
| US20200061750A1 (en) * | 2018-08-22 | 2020-02-27 | Coherent Munich GmbH & Co. KG | Mitigating low surface quality |
| KR20210064266A (ko) | 2018-09-20 | 2021-06-02 | 재단법인 공업기술연구원 | 얇은 유리 상의 유리-관통 비아를 위한 구리 금속화 |
| CN113056345B (zh) | 2018-09-28 | 2024-01-02 | 康宁股份有限公司 | 用于对透明基板改性的系统和方法 |
| CN113039040A (zh) | 2018-10-04 | 2021-06-25 | 康宁公司 | 用于形成多区段显示器的系统和方法 |
| CN109767973A (zh) * | 2018-12-14 | 2019-05-17 | 华南理工大学 | 一种利用深紫外激光对氧化物半导体薄膜进行退火的方法 |
| CN109702356A (zh) * | 2019-01-09 | 2019-05-03 | 蓝思智能机器人(长沙)有限公司 | 一种激光切割覆盖保护膜玻璃的方法 |
| CN113474311B (zh) | 2019-02-21 | 2023-12-29 | 康宁股份有限公司 | 具有铜金属化贯穿孔的玻璃或玻璃陶瓷制品及其制造过程 |
| EP3712717A1 (fr) * | 2019-03-19 | 2020-09-23 | Comadur S.A. | Methode pour marquer une glace de montre en saphir |
| US12296408B2 (en) | 2019-03-21 | 2025-05-13 | Corning Incorporated | Systems for and methods of forming micro-holes in glass-based objects using an annular vortex laser beam |
| US11054574B2 (en) | 2019-05-16 | 2021-07-06 | Corning Research & Development Corporation | Methods of singulating optical waveguide sheets to form optical waveguide substrates |
| CN114364484A (zh) | 2019-07-01 | 2022-04-15 | 康宁股份有限公司 | 使用弯曲准非衍射激光射束来激光加工透明工件的方法 |
| JP7364860B2 (ja) * | 2019-07-01 | 2023-10-19 | 日亜化学工業株式会社 | 発光素子の製造方法 |
| EP3771695A1 (en) | 2019-07-31 | 2021-02-03 | Corning Incorporated | Method and system for cold-forming glass |
| DE102019121827A1 (de) * | 2019-08-13 | 2021-02-18 | Trumpf Laser- Und Systemtechnik Gmbh | Laserätzen mit variierender Ätzselektivität |
| DE102019123239B4 (de) * | 2019-08-29 | 2023-05-04 | Trumpf Laser- Und Systemtechnik Gmbh | Verfahren und Vorrichtung zum Trennen eines Werkstücks mittels eines Laserstrahls |
| CN110435160A (zh) * | 2019-09-09 | 2019-11-12 | 广东利元亨智能装备股份有限公司 | 一种激光焊接头及激光焊接方法 |
| DE102019125124A1 (de) * | 2019-09-18 | 2021-03-18 | Rogers Germany Gmbh | Verfahren zum Bearbeiten eines Metall-Keramik-Substrats, Anlage für ein solches Verfahren und Metall-Keramik-Substrate hergestellt mit einem solchen Verfahren |
| DE102019215264A1 (de) * | 2019-10-02 | 2021-04-08 | Flabeg Deutschland Gmbh | Scheibenförmiges Glaselement und Verfahren zum Vereinzeln eines Glassubstrats in eine Mehrzahl von derartigen Glaselementen |
| US12466756B2 (en) | 2019-10-08 | 2025-11-11 | Corning Incorporated | Curved glass articles including a bumper piece configured to relocate bending moment from display region and method of manufacturing same |
| CN110967842B (zh) * | 2019-11-11 | 2021-08-06 | 长春理工大学 | 基于光镊技术的局域空心光束自由开闭系统 |
| DE102019217577A1 (de) * | 2019-11-14 | 2021-05-20 | Trumpf Laser- Und Systemtechnik Gmbh | Verfahren zur Laserbearbeitung eines Werkstücks, Bearbeitungsoptik und Laserbearbeitungsvorrichtung |
| KR20210059818A (ko) * | 2019-11-15 | 2021-05-26 | 삼성전자주식회사 | 스텔스 다이싱 장치 및 스텔스 다이싱 방법 |
| JP7782265B2 (ja) * | 2019-11-21 | 2025-12-09 | Agc株式会社 | ガラス板の加工方法 |
| CN111046535B (zh) * | 2019-11-25 | 2022-12-09 | 暨南大学 | 一种激光加工热分布计算方法 |
| JP2021088474A (ja) * | 2019-12-03 | 2021-06-10 | 日本電気硝子株式会社 | ガラス物品の製造方法、及びガラス物品 |
| US11726032B2 (en) * | 2019-12-13 | 2023-08-15 | Alcon Inc. | System and method of determining issues with optical components |
| EP4107513A4 (en) * | 2020-02-21 | 2024-05-29 | Tornado Spectral Systems, Inc. | OPTICAL SPECTROSCOPY PROBE CONFIGURATIONS TO FOCUS LIGHT ON A PART OF A SAMPLE |
| TWI794589B (zh) * | 2020-02-21 | 2023-03-01 | 海納光電股份有限公司 | 硬脆板材高溫環境加工裝置及方法 |
| EP3875436B1 (de) * | 2020-03-06 | 2024-01-17 | Schott Ag | Verfahren zum vorbereiten und/oder durchführen des trennens eines substratelements und substratteilelement |
| JP6787617B2 (ja) * | 2020-03-19 | 2020-11-18 | 三星ダイヤモンド工業株式会社 | 管状脆性部材の分断方法並びに分断装置 |
| US11772361B2 (en) | 2020-04-02 | 2023-10-03 | Corning Incorporated | Curved glass constructions and methods for forming same |
| TWI733604B (zh) * | 2020-06-10 | 2021-07-11 | 財團法人工業技術研究院 | 玻璃工件雷射處理系統及方法 |
| US12486197B2 (en) | 2020-09-04 | 2025-12-02 | Schott Ag | Method of surface structuring a substrate body and substrate body |
| KR102375235B1 (ko) * | 2020-09-08 | 2022-03-16 | 주식회사 필옵틱스 | 레이저 가공 시스템 및 방법 |
| DE102020123787A1 (de) | 2020-09-11 | 2022-03-17 | Trumpf Laser- Und Systemtechnik Gmbh | Verfahren zum Trennen eines transparenten Materials |
| DE102020127116B4 (de) | 2020-10-15 | 2022-07-14 | Trumpf Laser- Und Systemtechnik Gmbh | Vorrichtung und Verfahren zum Laserbearbeiten eines Werkstücks |
| DE102020132700A1 (de) | 2020-12-08 | 2022-06-09 | Trumpf Laser- Und Systemtechnik Gmbh | Hochenergieglasschneiden |
| DE102020134197A1 (de) * | 2020-12-18 | 2022-06-23 | Trumpf Laser- Und Systemtechnik Gmbh | Vorrichtung und Verfahren zum Trennen eines Materials |
| CN112606235B (zh) * | 2021-01-12 | 2022-12-20 | 盛吉盛精密制造(绍兴)有限公司 | 一种用于硅片线切割的切割设备 |
| US12304005B2 (en) | 2021-02-01 | 2025-05-20 | Corning Incorporated | Sacrificial layers to enable laser cutting of textured substrates |
| CN117355383A (zh) * | 2021-03-18 | 2024-01-05 | 戴弗根特技术有限公司 | 基于可变波束几何结构能量束的粉末床熔合 |
| DE102021112271A1 (de) * | 2021-05-11 | 2022-11-17 | Trumpf Laser- Und Systemtechnik Gmbh | Vorrichtung und Verfahren zur Bestimmung der Strahlgüte |
| CN113607092B (zh) * | 2021-07-21 | 2022-07-15 | 中国科学技术大学 | 一种光线小角度测量方法及系统 |
| EP4380902A1 (en) | 2021-08-06 | 2024-06-12 | Corning Incorporated | Anti-resonant hollow core optical fiber preform and methods of making |
| CN113732511B (zh) * | 2021-08-30 | 2023-01-06 | 中国科学院西安光学精密机械研究所 | 光纤表面包层微纳结构飞秒激光加工方法及装置 |
| JP7266348B1 (ja) * | 2021-10-01 | 2023-04-28 | 株式会社テックジェーピー | 細径ビーム生成装置 |
| WO2023096776A2 (en) | 2021-11-29 | 2023-06-01 | Corning Incorporated | Laser cutting methods for multi-layered glass assemblies having an electrically conductive layer |
| DE102021131812A1 (de) | 2021-12-02 | 2023-06-07 | Trumpf Laser- Und Systemtechnik Gmbh | Vorrichtung und Verfahren zum Trennen eines transparenten Werkstücks |
| EP4551535A1 (en) | 2022-07-07 | 2025-05-14 | Corning Incorporated | Methods for drilling features in a substrate using laser perforation and laser ablation |
| DE102022118491A1 (de) * | 2022-07-25 | 2024-01-25 | Trumpf Laser- Und Systemtechnik Gmbh | Optische Anordnung zur Umwandlung eines Eingangslaserstrahls in einen linienartigen Ausgangsstrahls |
| CN115755763A (zh) * | 2022-12-01 | 2023-03-07 | 北京工业大学 | 一种激光机器人加工自适应定位方法 |
| NL2036144B1 (en) * | 2023-10-27 | 2025-05-12 | Inphocal B V | Laser-based wafer dicing method and apparatus |
| DE102024103217A1 (de) * | 2024-02-06 | 2025-08-07 | TRUMPF Laser SE | Vorrichtung und Verfahren zum Bearbeiten eines Werkstücks aus einem doppelbrechenden Material |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050024743A1 (en) * | 2003-05-22 | 2005-02-03 | Frederic Camy-Peyret | Focusing optic for laser cutting |
| US20050098548A1 (en) * | 2003-11-06 | 2005-05-12 | Satoshi Kobayashi | Processing apparatus using laser beam |
| WO2012006736A2 (en) * | 2010-07-12 | 2012-01-19 | Filaser Inc. | Method of material processing by laser filamentation |
| KR101120471B1 (ko) * | 2011-08-05 | 2012-03-05 | (주)지엘코어 | 다중 초점 방식의 펄스 레이저를 이용한 취성 재료 절단 장치 |
| WO2012108052A1 (ja) * | 2011-02-10 | 2012-08-16 | 信越ポリマー株式会社 | 単結晶基板製造方法および内部改質層形成単結晶部材 |
| DE102011000768A1 (de) | 2011-02-16 | 2012-08-16 | Ewag Ag | Laserbearbeitungsvorrichtung mit umschaltbarer Laseranordnung und Laserbearbeitungsverfahren |
Family Cites Families (744)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1790397A (en) | 1931-01-27 | Glass workins machine | ||
| US1529243A (en) | 1924-01-30 | 1925-03-10 | Libbey Owens Sheet Glass Co | Flattening table for continuous sheet glass |
| US1626396A (en) | 1926-08-02 | 1927-04-26 | Libbey Owens Sheet Glass Co | Sheet-glass-drawing apparatus |
| US2754956A (en) | 1951-05-02 | 1956-07-17 | Sommer & Maca Glass Machinery | Conveyor structure for flat glass edging beveling and polishing apparatus |
| US2682134A (en) | 1951-08-17 | 1954-06-29 | Corning Glass Works | Glass sheet containing translucent linear strips |
| US2749794A (en) | 1953-04-24 | 1956-06-12 | Corning Glass Works | Illuminating glassware and method of making it |
| US2932087A (en) | 1954-05-10 | 1960-04-12 | Libbey Owens Ford Glass Co | Template cutting apparatus for bent sheets of glass or the like |
| GB1242172A (en) | 1968-02-23 | 1971-08-11 | Ford Motor Co | A process for chemically cutting glass |
| US3647410A (en) | 1969-09-09 | 1972-03-07 | Owens Illinois Inc | Glass ribbon machine blow head mechanism |
| US3729302A (en) | 1970-01-02 | 1973-04-24 | Owens Illinois Inc | Removal of glass article from ribbon forming machine by vibrating force |
| US3775084A (en) | 1970-01-02 | 1973-11-27 | Owens Illinois Inc | Pressurizer apparatus for glass ribbon machine |
| US3673900A (en) | 1970-08-10 | 1972-07-04 | Shatterproof Glass Corp | Glass cutting apparatus |
| US3695497A (en) | 1970-08-26 | 1972-10-03 | Ppg Industries Inc | Method of severing glass |
| US3695498A (en) | 1970-08-26 | 1972-10-03 | Ppg Industries Inc | Non-contact thermal cutting |
| DE2231330A1 (de) | 1972-06-27 | 1974-01-10 | Agfa Gevaert Ag | Verfahren und vorrichtung zur erzeugung eines scharfen fokus |
| US3947093A (en) * | 1973-06-28 | 1976-03-30 | Canon Kabushiki Kaisha | Optical device for producing a minute light beam |
| GB1500207A (en) | 1975-10-29 | 1978-02-08 | Pilkington Brothers Ltd | Breaking flat glass into cullet |
| JPS5318756A (en) | 1976-07-31 | 1978-02-21 | Izawa Seimen Koujiyou Yuugen | Production of boiled noodle with long preservetivity |
| DE2757890C2 (de) | 1977-12-24 | 1981-10-15 | Fa. Karl Lutz, 6980 Wertheim | Verfahren und Vorrichtung zum Herstellen von Behältnissen aus Röhrenglas, insbesondere Ampullen |
| JPS54136045A (en) | 1978-04-07 | 1979-10-22 | Inoue Gomu Kogyo Kk | Preparation of elastic bumper for automobile* to which ornamental lace body is integrally installed |
| JPS5713480A (en) | 1980-06-26 | 1982-01-23 | Hitachi Ltd | Crt display unit |
| US4441008A (en) | 1981-09-14 | 1984-04-03 | Ford Motor Company | Method of drilling ultrafine channels through glass |
| US4546231A (en) | 1983-11-14 | 1985-10-08 | Group Ii Manufacturing Ltd. | Creation of a parting zone in a crystal structure |
| US4618056A (en) | 1984-03-23 | 1986-10-21 | Omega Castings, Inc. | Link conveyor belt for heat treating apparatus |
| JPS6174794A (ja) | 1984-09-17 | 1986-04-17 | Mitsubishi Electric Corp | レ−ザ加工装置の加工ヘツド |
| US4623776A (en) | 1985-01-03 | 1986-11-18 | Dow Corning Corporation | Ring of light laser optics system |
| US4642439A (en) | 1985-01-03 | 1987-02-10 | Dow Corning Corporation | Method and apparatus for edge contouring lenses |
| JPS6246930A (ja) | 1985-08-21 | 1987-02-28 | Bandou Kiko Kk | ガラス板の割断装置 |
| US4646308A (en) | 1985-09-30 | 1987-02-24 | Spectra-Physics, Inc. | Synchronously pumped dye laser using ultrashort pump pulses |
| JPS6318756A (ja) | 1986-07-09 | 1988-01-26 | Fujiwara Jiyouki Sangyo Kk | 生物育成、微生物培養工程における制御温度の監視方法及びその装置 |
| US4749400A (en) | 1986-12-12 | 1988-06-07 | Ppg Industries, Inc. | Discrete glass sheet cutting |
| EP0272582B1 (en) | 1986-12-18 | 1994-05-18 | Sumitomo Chemical Company, Limited | Light control sheets |
| JP2691543B2 (ja) | 1986-12-18 | 1997-12-17 | 住友化学工業株式会社 | 光制御板およびその製造方法 |
| JPS63192561A (ja) | 1987-02-04 | 1988-08-09 | Nkk Corp | マルチ切断装置 |
| US5104523A (en) | 1987-05-29 | 1992-04-14 | Nippon Sheet Glass Co., Ltd. | Glass-plate sorting system |
| US4918751A (en) | 1987-10-05 | 1990-04-17 | The University Of Rochester | Method for optical pulse transmission through optical fibers which increases the pulse power handling capacity of the fibers |
| IL84255A (en) | 1987-10-23 | 1993-02-21 | Galram Technology Ind Ltd | Process for removal of post- baked photoresist layer |
| JPH01179770A (ja) | 1988-01-12 | 1989-07-17 | Hiroshima Denki Gakuen | 金属とセラミックスとの接合方法 |
| US4764930A (en) | 1988-01-27 | 1988-08-16 | Intelligent Surgical Lasers | Multiwavelength laser source |
| US4907586A (en) | 1988-03-31 | 1990-03-13 | Intelligent Surgical Lasers | Method for reshaping the eye |
| US4929065A (en) | 1988-11-03 | 1990-05-29 | Isotec Partners, Ltd. | Glass plate fusion for macro-gradient refractive index materials |
| US4891054A (en) | 1988-12-30 | 1990-01-02 | Ppg Industries, Inc. | Method for cutting hot glass |
| US5112722A (en) | 1989-04-12 | 1992-05-12 | Nippon Sheet Glass Co., Ltd. | Method of producing light control plate which induces scattering of light at different angles |
| US5104210A (en) | 1989-04-24 | 1992-04-14 | Monsanto Company | Light control films and method of making |
| US5035918A (en) | 1989-04-26 | 1991-07-30 | Amp Incorporated | Non-flammable and strippable plating resist and method of using same |
| US4951457A (en) | 1989-11-08 | 1990-08-28 | Deal Douglas O | Narrow pitch articulated chain and links therefor |
| US4997250A (en) | 1989-11-17 | 1991-03-05 | General Electric Company | Fiber output coupler with beam shaping optics for laser materials processing system |
| ES2096118T3 (es) | 1990-01-31 | 1997-03-01 | Bando Kiko Co | Maquina para trabajar una placa de cristal. |
| US5040182A (en) | 1990-04-24 | 1991-08-13 | Coherent, Inc. | Mode-locked laser |
| IE912667A1 (en) | 1991-07-29 | 1993-02-10 | Trinity College Dublin | Laser Profiling of Lens Edge |
| US5256853A (en) | 1991-07-31 | 1993-10-26 | Bausch & Lomb Incorporated | Method for shaping contact lens surfaces |
| RU94030810A (ru) | 1991-11-06 | 1996-06-20 | Т.Лай Шуй | Импульсный лазерный аппарат, способ для обеспечения гладкой абляции вещества, лазерный аппарат и способ роговичной хирургии |
| US5265107A (en) | 1992-02-05 | 1993-11-23 | Bell Communications Research, Inc. | Broadband absorber having multiple quantum wells of different thicknesses |
| US5410567A (en) | 1992-03-05 | 1995-04-25 | Corning Incorporated | Optical fiber draw furnace |
| JPH05274085A (ja) | 1992-03-26 | 1993-10-22 | Sanyo Electric Co Ltd | 入力および表示装置 |
| JPH05300544A (ja) | 1992-04-23 | 1993-11-12 | Sony Corp | 映像表示装置 |
| JPH05323110A (ja) | 1992-05-22 | 1993-12-07 | Hitachi Koki Co Ltd | 多ビーム発生素子 |
| US5475197A (en) | 1992-06-17 | 1995-12-12 | Carl-Zeiss-Stiftung | Process and apparatus for the ablation of a surface |
| US6016223A (en) | 1992-08-31 | 2000-01-18 | Canon Kabushiki Kaisha | Double bessel beam producing method and apparatus |
| JP3553986B2 (ja) | 1992-08-31 | 2004-08-11 | キヤノン株式会社 | 2重ベッセルビーム発生方法及び装置 |
| CA2112843A1 (en) | 1993-02-04 | 1994-08-05 | Richard C. Ujazdowski | Variable repetition rate picosecond laser |
| DE69418248T2 (de) | 1993-06-03 | 1999-10-14 | Hamamatsu Photonics Kk | Optisches Laser-Abtastsystem mit Axikon |
| JP3293136B2 (ja) | 1993-06-04 | 2002-06-17 | セイコーエプソン株式会社 | レーザ加工装置及びレーザ加工方法 |
| US6489589B1 (en) | 1994-02-07 | 2002-12-03 | Board Of Regents, University Of Nebraska-Lincoln | Femtosecond laser utilization methods and apparatus and method for producing nanoparticles |
| JP3531199B2 (ja) * | 1994-02-22 | 2004-05-24 | 三菱電機株式会社 | 光伝送装置 |
| US5436925A (en) | 1994-03-01 | 1995-07-25 | Hewlett-Packard Company | Colliding pulse mode-locked fiber ring laser using a semiconductor saturable absorber |
| US5400350A (en) | 1994-03-31 | 1995-03-21 | Imra America, Inc. | Method and apparatus for generating high energy ultrashort pulses |
| US5778016A (en) | 1994-04-01 | 1998-07-07 | Imra America, Inc. | Scanning temporal ultrafast delay methods and apparatuses therefor |
| US5656186A (en) * | 1994-04-08 | 1997-08-12 | The Regents Of The University Of Michigan | Method for controlling configuration of laser induced breakdown and ablation |
| DE19513354A1 (de) | 1994-04-14 | 1995-12-14 | Zeiss Carl | Materialbearbeitungseinrichtung |
| JP2526806B2 (ja) | 1994-04-26 | 1996-08-21 | 日本電気株式会社 | 半導体レ―ザおよびその動作方法 |
| WO1995031023A1 (en) | 1994-05-09 | 1995-11-16 | Massachusetts Institute Of Technology | Dispersion-compensated laser using prismatic end elements |
| US5434875A (en) | 1994-08-24 | 1995-07-18 | Tamar Technology Co. | Low cost, high average power, high brightness solid state laser |
| US6016324A (en) | 1994-08-24 | 2000-01-18 | Jmar Research, Inc. | Short pulse laser system |
| US5776220A (en) | 1994-09-19 | 1998-07-07 | Corning Incorporated | Method and apparatus for breaking brittle materials |
| US5541774A (en) | 1995-02-27 | 1996-07-30 | Blankenbecler; Richard | Segmented axial gradient lens |
| US5696782A (en) | 1995-05-19 | 1997-12-09 | Imra America, Inc. | High power fiber chirped pulse amplification systems based on cladding pumped rare-earth doped fibers |
| AT402195B (de) | 1995-05-29 | 1997-02-25 | Lisec Peter | Vorrichtung zum fördern von glastafeln |
| DE19535392A1 (de) | 1995-09-23 | 1997-03-27 | Zeiss Carl Fa | Radial polarisationsdrehende optische Anordnung und Mikrolithographie-Projektionsbelichtungsanlage damit |
| US5854490A (en) | 1995-10-03 | 1998-12-29 | Fujitsu Limited | Charged-particle-beam exposure device and charged-particle-beam exposure method |
| JPH09106243A (ja) | 1995-10-12 | 1997-04-22 | Dainippon Printing Co Ltd | ホログラムの複製方法 |
| JP3125180B2 (ja) | 1995-10-20 | 2001-01-15 | 新東工業株式会社 | シート状樹脂成型設備 |
| US5715346A (en) | 1995-12-15 | 1998-02-03 | Corning Incorporated | Large effective area single mode optical waveguide |
| US5692703A (en) | 1996-05-10 | 1997-12-02 | Mcdonnell Douglas Corporation | Multiple application wheel well design |
| US5736709A (en) | 1996-08-12 | 1998-04-07 | Armco Inc. | Descaling metal with a laser having a very short pulse width and high average power |
| US5854751A (en) | 1996-10-15 | 1998-12-29 | The Trustees Of Columbia University In The City Of New York | Simulator and optimizer of laser cutting process |
| US7353829B1 (en) | 1996-10-30 | 2008-04-08 | Provectus Devicetech, Inc. | Methods and apparatus for multi-photon photo-activation of therapeutic agents |
| US6301932B1 (en) | 1996-11-13 | 2001-10-16 | Corning Incorporated | Method for forming an internally channeled glass article |
| US5781684A (en) | 1996-12-20 | 1998-07-14 | Corning Incorporated | Single mode optical waveguide having large effective area |
| CA2231096A1 (en) | 1997-03-25 | 1998-09-25 | Duane E. Hoke | Optical fiber dual spindle winder with automatic threading and winding |
| US6033583A (en) | 1997-05-05 | 2000-03-07 | The Regents Of The University Of California | Vapor etching of nuclear tracks in dielectric materials |
| US6156030A (en) | 1997-06-04 | 2000-12-05 | Y-Beam Technologies, Inc. | Method and apparatus for high precision variable rate material removal and modification |
| BE1011208A4 (fr) | 1997-06-11 | 1999-06-01 | Cuvelier Georges | Procede de decalottage de pieces en verre. |
| DE19728766C1 (de) | 1997-07-07 | 1998-12-17 | Schott Rohrglas Gmbh | Verwendung eines Verfahrens zur Herstellung einer Sollbruchstelle bei einem Glaskörper |
| JPH1179770A (ja) | 1997-07-10 | 1999-03-23 | Yamaha Corp | スクライブ装置及び劈開方法 |
| US6078599A (en) | 1997-07-22 | 2000-06-20 | Cymer, Inc. | Wavelength shift correction technique for a laser |
| US6003418A (en) | 1997-07-31 | 1999-12-21 | International Business Machines Corporation | Punched slug removal system |
| JP3264224B2 (ja) | 1997-08-04 | 2002-03-11 | キヤノン株式会社 | 照明装置及びそれを用いた投影露光装置 |
| US6520057B1 (en) | 1997-09-30 | 2003-02-18 | Eastman Machine Company | Continuous system and method for cutting sheet material |
| JP3185869B2 (ja) | 1997-10-21 | 2001-07-11 | 日本電気株式会社 | レーザ加工方法 |
| DE19750320C1 (de) | 1997-11-13 | 1999-04-01 | Max Planck Gesellschaft | Verfahren und Vorrichtung zur Lichtpulsverstärkung |
| AU3908099A (en) | 1997-12-05 | 1999-06-28 | Thermolase Corporation | Skin enhancement using laser light |
| US6501578B1 (en) | 1997-12-19 | 2002-12-31 | Electric Power Research Institute, Inc. | Apparatus and method for line of sight laser communications |
| JPH11197498A (ja) | 1998-01-13 | 1999-07-27 | Japan Science & Technology Corp | 無機材料内部の選択的改質方法及び内部が選択的に改質された無機材料 |
| US6272156B1 (en) | 1998-01-28 | 2001-08-07 | Coherent, Inc. | Apparatus for ultrashort pulse transportation and delivery |
| JPH11240730A (ja) | 1998-02-27 | 1999-09-07 | Nec Kansai Ltd | 脆性材料の割断方法 |
| JPH11269683A (ja) | 1998-03-18 | 1999-10-05 | Armco Inc | 金属表面から酸化物を除去する方法及び装置 |
| US6160835A (en) | 1998-03-20 | 2000-12-12 | Rocky Mountain Instrument Co. | Hand-held marker with dual output laser |
| DE69931690T2 (de) | 1998-04-08 | 2007-06-14 | Asml Netherlands B.V. | Lithographischer Apparat |
| EP0949541B1 (en) | 1998-04-08 | 2006-06-07 | ASML Netherlands B.V. | Lithography apparatus |
| US6256328B1 (en) | 1998-05-15 | 2001-07-03 | University Of Central Florida | Multiwavelength modelocked semiconductor diode laser |
| US6308055B1 (en) | 1998-05-29 | 2001-10-23 | Silicon Laboratories, Inc. | Method and apparatus for operating a PLL for synthesizing high-frequency signals for wireless communications |
| JPH11347861A (ja) | 1998-06-03 | 1999-12-21 | Amada Co Ltd | レーザ加工機における複合加工方法およびレーザ加工機における複合加工システム |
| JPH11347758A (ja) | 1998-06-10 | 1999-12-21 | Mitsubishi Heavy Ind Ltd | 超精密加工装置 |
| TW419867B (en) | 1998-08-26 | 2001-01-21 | Samsung Electronics Co Ltd | Laser cutting apparatus and method |
| DE19851353C1 (de) | 1998-11-06 | 1999-10-07 | Schott Glas | Verfahren und Vorrichtung zum Schneiden eines Laminats aus einem sprödbrüchigen Werkstoff und einem Kunststoff |
| JP3178524B2 (ja) | 1998-11-26 | 2001-06-18 | 住友重機械工業株式会社 | レーザマーキング方法と装置及びマーキングされた部材 |
| US6259058B1 (en) | 1998-12-01 | 2001-07-10 | Accudyne Display And Semiconductor Systems, Inc. | Apparatus for separating non-metallic substrates |
| US7649153B2 (en) | 1998-12-11 | 2010-01-19 | International Business Machines Corporation | Method for minimizing sample damage during the ablation of material using a focused ultrashort pulsed laser beam |
| US6445491B2 (en) | 1999-01-29 | 2002-09-03 | Irma America, Inc. | Method and apparatus for optical sectioning and imaging using time-gated parametric image amplification |
| JP2000225485A (ja) | 1999-02-04 | 2000-08-15 | Fine Machining Kk | レーザ加工装置のステージ |
| US6381391B1 (en) | 1999-02-19 | 2002-04-30 | The Regents Of The University Of Michigan | Method and system for generating a broadband spectral continuum and continuous wave-generating system utilizing same |
| JP2000247668A (ja) | 1999-02-25 | 2000-09-12 | Bando Kiko Kk | ガラス板の加工機械 |
| DE19908630A1 (de) | 1999-02-27 | 2000-08-31 | Bosch Gmbh Robert | Abschirmung gegen Laserstrahlen |
| WO2000053365A1 (en) | 1999-03-05 | 2000-09-14 | Mitsubishi Denki Kabushiki Kaisha | Laser machining apparatus |
| US6501576B1 (en) | 1999-03-24 | 2002-12-31 | Intel Corporation | Wireless data transfer using a remote media interface |
| US6484052B1 (en) | 1999-03-30 | 2002-11-19 | The Regents Of The University Of California | Optically generated ultrasound for enhanced drug delivery |
| TWI223581B (en) | 1999-04-02 | 2004-11-01 | Murata Manufacturing Co | Method for machining ceramic green sheet and apparatus for machining the same |
| US6137632A (en) | 1999-04-19 | 2000-10-24 | Iomega Corporation | Method and apparatus for lossless beam shaping to obtain high-contrast imaging in photon tunneling methods |
| JP2000327349A (ja) | 1999-05-24 | 2000-11-28 | China Glaze Co Ltd | 結晶化ガラス板の曲げ加工方法 |
| US6373565B1 (en) | 1999-05-27 | 2002-04-16 | Spectra Physics Lasers, Inc. | Method and apparatus to detect a flaw in a surface of an article |
| CN2388062Y (zh) | 1999-06-21 | 2000-07-19 | 郭广宗 | 一层有孔一层无孔双层玻璃车船窗 |
| US6449301B1 (en) | 1999-06-22 | 2002-09-10 | The Regents Of The University Of California | Method and apparatus for mode locking of external cavity semiconductor lasers with saturable Bragg reflectors |
| US6185051B1 (en) | 1999-06-23 | 2001-02-06 | Read-Rite Corporation | High numerical aperture optical focusing device for use in data storage systems |
| CN1100494C (zh) | 1999-07-06 | 2003-02-05 | 王仁丁 | 糊香风味均质豆腐的制备方法 |
| US6259151B1 (en) | 1999-07-21 | 2001-07-10 | Intersil Corporation | Use of barrier refractive or anti-reflective layer to improve laser trim characteristics of thin film resistors |
| US6573026B1 (en) | 1999-07-29 | 2003-06-03 | Corning Incorporated | Femtosecond laser writing of glass, including borosilicate, sulfide, and lead glasses |
| US6452117B2 (en) | 1999-08-26 | 2002-09-17 | International Business Machines Corporation | Method for filling high aspect ratio via holes in electronic substrates and the resulting holes |
| CN1144005C (zh) | 1999-09-24 | 2004-03-31 | 彼得·福瑞斯特·汤普森 | 热泵流体加热系统 |
| JP2001130921A (ja) | 1999-10-29 | 2001-05-15 | Mitsuboshi Diamond Industrial Co Ltd | 脆性基板の加工方法及び装置 |
| DE19952331C1 (de) | 1999-10-29 | 2001-08-30 | Schott Spezialglas Gmbh | Verfahren und Vorrichtung zum schnellen Schneiden eines Werkstücks aus sprödbrüchigem Werkstoff mittels Laserstrahlen |
| JP2001138083A (ja) | 1999-11-18 | 2001-05-22 | Seiko Epson Corp | レーザー加工装置及びレーザー照射方法 |
| JP4592855B2 (ja) | 1999-12-24 | 2010-12-08 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
| CN1291224C (zh) | 1999-12-28 | 2006-12-20 | 康宁股份有限公司 | 光纤抽拉过程中筛选光纤的方法、光纤抽拉设备及对光纤进行拉伸筛选检验的方法 |
| US6339208B1 (en) | 2000-01-19 | 2002-01-15 | General Electric Company | Method of forming cooling holes |
| US6552301B2 (en) | 2000-01-25 | 2003-04-22 | Peter R. Herman | Burst-ultrafast laser machining method |
| JP2001236673A (ja) | 2000-02-17 | 2001-08-31 | Minolta Co Ltd | 光ヘッド及び光記録・再生装置 |
| DE10010131A1 (de) | 2000-03-03 | 2001-09-06 | Zeiss Carl | Mikrolithographie - Projektionsbelichtung mit tangentialer Polarisartion |
| DE60136703D1 (de) | 2000-05-04 | 2009-01-08 | Schott Donnelly Llc | Verfahren zur Herstellung einer electrochromen Tafel |
| JP3530114B2 (ja) | 2000-07-11 | 2004-05-24 | 忠弘 大見 | 単結晶の切断方法 |
| JP2002040330A (ja) | 2000-07-25 | 2002-02-06 | Olympus Optical Co Ltd | 光学素子切換え制御装置 |
| JP4659300B2 (ja) | 2000-09-13 | 2011-03-30 | 浜松ホトニクス株式会社 | レーザ加工方法及び半導体チップの製造方法 |
| JP4964376B2 (ja) | 2000-09-13 | 2012-06-27 | 浜松ホトニクス株式会社 | レーザ加工装置及びレーザ加工方法 |
| JP3626442B2 (ja) * | 2000-09-13 | 2005-03-09 | 浜松ホトニクス株式会社 | レーザ加工方法 |
| KR100673073B1 (ko) | 2000-10-21 | 2007-01-22 | 삼성전자주식회사 | 레이저 빔을 이용한 비금속 기판의 절단 방법 및 장치 |
| SE0004096D0 (sv) | 2000-11-08 | 2000-11-08 | Nira Automotive Ab | Positioning system |
| US20020110639A1 (en) | 2000-11-27 | 2002-08-15 | Donald Bruns | Epoxy coating for optical surfaces |
| US6611647B2 (en) | 2000-12-12 | 2003-08-26 | Corning Incorporated | Large effective area optical fiber |
| US20020082466A1 (en) | 2000-12-22 | 2002-06-27 | Jeongho Han | Laser surgical system with light source and video scope |
| JP4880820B2 (ja) | 2001-01-19 | 2012-02-22 | 株式会社レーザーシステム | レーザ支援加工方法 |
| DE10103256A1 (de) | 2001-01-25 | 2002-08-08 | Leica Microsystems | Sicherheitsvorrichtung für Mikroskope mit einem Laserstrahl als Beleuchtungsquelle |
| JP2002228818A (ja) | 2001-02-05 | 2002-08-14 | Taiyo Yuden Co Ltd | レーザー加工用回折光学素子、レーザー加工装置及びレーザー加工方法 |
| JP3445250B2 (ja) | 2001-02-20 | 2003-09-08 | ゼット株式会社 | 靴 底 |
| EA004167B1 (ru) | 2001-03-01 | 2004-02-26 | Общество С Ограниченной Ответственностью "Лазтекс" | Способ резки стекла |
| DE10124803A1 (de) | 2001-05-22 | 2002-11-28 | Zeiss Carl | Polarisator und Mikrolithographie-Projektionsanlage mit Polarisator |
| US7015491B2 (en) | 2001-06-01 | 2006-03-21 | Asml Netherlands B.V. | Lithographic apparatus, device manufacturing method and device manufactured thereby, control system |
| JP4401060B2 (ja) | 2001-06-01 | 2010-01-20 | エーエスエムエル ネザーランズ ビー.ブイ. | リトグラフ装置、およびデバイス製造方法 |
| JP3725805B2 (ja) | 2001-07-04 | 2005-12-14 | 三菱電線工業株式会社 | ファイバ配線シートおよびその製造方法 |
| SG108262A1 (en) | 2001-07-06 | 2005-01-28 | Inst Data Storage | Method and apparatus for cutting a multi-layer substrate by dual laser irradiation |
| US6754429B2 (en) | 2001-07-06 | 2004-06-22 | Corning Incorporated | Method of making optical fiber devices and devices thereof |
| SE0202159D0 (sv) | 2001-07-10 | 2002-07-09 | Coding Technologies Sweden Ab | Efficientand scalable parametric stereo coding for low bitrate applications |
| TWI224382B (en) | 2001-07-12 | 2004-11-21 | Hitachi Ltd | Wiring glass substrate and manufacturing method thereof, conductive paste and semiconductor module used for the same, and conductor forming method |
| JP3775250B2 (ja) | 2001-07-12 | 2006-05-17 | セイコーエプソン株式会社 | レーザー加工方法及びレーザー加工装置 |
| JP3823108B2 (ja) | 2001-08-10 | 2006-09-20 | 三星ダイヤモンド工業株式会社 | 脆性材料基板の面取り方法 |
| JP3795778B2 (ja) | 2001-08-24 | 2006-07-12 | 株式会社ノリタケカンパニーリミテド | 水添ビスフェノールa型エポキシ樹脂を用いたレジノイド研削砥石 |
| JP4397571B2 (ja) * | 2001-09-25 | 2010-01-13 | 株式会社半導体エネルギー研究所 | レーザ照射方法およびレーザ照射装置、並びに半導体装置の作製方法 |
| JP2003114400A (ja) | 2001-10-04 | 2003-04-18 | Sumitomo Electric Ind Ltd | レーザ光学システムおよびレーザ加工方法 |
| JP2003124491A (ja) | 2001-10-15 | 2003-04-25 | Sharp Corp | 薄膜太陽電池モジュール |
| EP1306196A1 (de) | 2001-10-24 | 2003-05-02 | Telsonic AG | Haltevorrichtung, Vorrichtung zum Verschweissen von Werkstücken und Verfahren zum Bereitstellen einer Haltevorrichtung |
| JP2003154517A (ja) | 2001-11-21 | 2003-05-27 | Seiko Epson Corp | 脆性材料の割断加工方法およびその装置、並びに電子部品の製造方法 |
| US6720519B2 (en) | 2001-11-30 | 2004-04-13 | Matsushita Electric Industrial Co., Ltd. | System and method of laser drilling |
| US6973384B2 (en) | 2001-12-06 | 2005-12-06 | Bellsouth Intellectual Property Corporation | Automated location-intelligent traffic notification service systems and methods |
| JP2003238178A (ja) | 2002-02-21 | 2003-08-27 | Toshiba Ceramics Co Ltd | ガス導入用シャワープレート及びその製造方法 |
| AU2003211581A1 (en) | 2002-03-12 | 2003-09-22 | Hamamatsu Photonics K.K. | Method of cutting processed object |
| US6744009B1 (en) | 2002-04-02 | 2004-06-01 | Seagate Technology Llc | Combined laser-scribing and laser-breaking for shaping of brittle substrates |
| US6787732B1 (en) | 2002-04-02 | 2004-09-07 | Seagate Technology Llc | Method for laser-scribing brittle substrates and apparatus therefor |
| US7565820B2 (en) | 2002-04-30 | 2009-07-28 | Corning Incorporated | Methods and apparatus for forming heat treated optical fiber |
| DE10219514A1 (de) | 2002-04-30 | 2003-11-13 | Zeiss Carl Smt Ag | Beleuchtungssystem, insbesondere für die EUV-Lithographie |
| FR2839508B1 (fr) | 2002-05-07 | 2005-03-04 | Saint Gobain | Vitrage decoupe sans rompage |
| JP3559827B2 (ja) | 2002-05-24 | 2004-09-02 | 独立行政法人理化学研究所 | 透明材料内部の処理方法およびその装置 |
| US7116283B2 (en) | 2002-07-30 | 2006-10-03 | Ncr Corporation | Methods and apparatus for improved display of visual data for point of sale terminals |
| CA2396831A1 (en) * | 2002-08-02 | 2004-02-02 | Femtonics Corporation | Microstructuring optical wave guide devices with femtosecond optical pulses |
| DE10240033B4 (de) | 2002-08-28 | 2005-03-10 | Jenoptik Automatisierungstech | Anordnung zum Einbringen von Strahlungsenergie in ein Werkstück aus einem schwach absorbierenden Material |
| US6737345B1 (en) | 2002-09-10 | 2004-05-18 | Taiwan Semiconductor Manufacturing Company | Scheme to define laser fuse in dual damascene CU process |
| US20040051982A1 (en) | 2002-09-13 | 2004-03-18 | Perchak Robert M. | Wide angle surface generator & target |
| JP3929393B2 (ja) | 2002-12-03 | 2007-06-13 | 株式会社日本エミック | 切断装置 |
| JP2004209675A (ja) | 2002-12-26 | 2004-07-29 | Kashifuji:Kk | 押圧切断装置及び押圧切断方法 |
| KR100497820B1 (ko) | 2003-01-06 | 2005-07-01 | 로체 시스템즈(주) | 유리판절단장치 |
| TWI319412B (en) | 2003-01-15 | 2010-01-11 | Sumitomo Rubber Ind | Polymeric-type antistatic agent and antistatic polymer composition and fabricating method thereof |
| JP2004217492A (ja) | 2003-01-17 | 2004-08-05 | Murakami Corp | ガラス板材の切抜方法 |
| EP1586407A4 (en) | 2003-01-21 | 2008-08-06 | Toyota Steel Ct Co Ltd | LASER CUTTING DEVICE, LASER CUTTING METHOD AND LASER CUTTING SYSTEM |
| JP3775410B2 (ja) | 2003-02-03 | 2006-05-17 | セイコーエプソン株式会社 | レーザー加工方法、レーザー溶接方法並びにレーザー加工装置 |
| WO2004080643A1 (ja) | 2003-03-12 | 2004-09-23 | Hamamatsu Photonics K.K. | レーザ加工方法 |
| US7617167B2 (en) | 2003-04-09 | 2009-11-10 | Avisere, Inc. | Machine vision system for enterprise management |
| ATE496012T1 (de) | 2003-04-22 | 2011-02-15 | Coca Cola Co | Verfahren und vorrichtung zur verfestigung von glas |
| US6952519B2 (en) | 2003-05-02 | 2005-10-04 | Corning Incorporated | Large effective area high SBS threshold optical fiber |
| US6904218B2 (en) | 2003-05-12 | 2005-06-07 | Fitel U.S.A. Corporation | Super-large-effective-area (SLA) optical fiber and communication system incorporating the same |
| DE10322376A1 (de) | 2003-05-13 | 2004-12-02 | Carl Zeiss Smt Ag | Axiconsystem und Beleuchtungssystem damit |
| US7511886B2 (en) | 2003-05-13 | 2009-03-31 | Carl Zeiss Smt Ag | Optical beam transformation system and illumination system comprising an optical beam transformation system |
| JP2005000952A (ja) | 2003-06-12 | 2005-01-06 | Nippon Sheet Glass Co Ltd | レーザー加工方法及びレーザー加工装置 |
| US7492948B2 (en) | 2003-06-26 | 2009-02-17 | Denmarks Tekniske Universitet | Generation of a desired wavefront with a plurality of phase contrast filters |
| EP2332687B1 (en) | 2003-07-18 | 2015-02-18 | Hamamatsu Photonics K.K. | Method of laser beam machining a machining target using pulsed laser beam and expanded tape for cutting a machining target |
| WO2005024516A2 (de) | 2003-08-14 | 2005-03-17 | Carl Zeiss Smt Ag | Beleuchtungseinrichtung für eine mikrolithographische projektionsbelichtungsanlage |
| JP2005104819A (ja) | 2003-09-10 | 2005-04-21 | Nippon Sheet Glass Co Ltd | 合せガラスの切断方法及び合せガラス切断装置 |
| US7408616B2 (en) | 2003-09-26 | 2008-08-05 | Carl Zeiss Smt Ag | Microlithographic exposure method as well as a projection exposure system for carrying out the method |
| US20050205778A1 (en) | 2003-10-17 | 2005-09-22 | Gsi Lumonics Corporation | Laser trim motion, calibration, imaging, and fixturing techniques |
| JP2005135964A (ja) * | 2003-10-28 | 2005-05-26 | Disco Abrasive Syst Ltd | ウエーハの分割方法 |
| US7172067B2 (en) | 2003-11-10 | 2007-02-06 | Johnson Level & Tool Mfg. Co., Inc. | Level case with positioning indentations |
| JP2005144487A (ja) | 2003-11-13 | 2005-06-09 | Seiko Epson Corp | レーザ加工装置及びレーザ加工方法 |
| JP3962718B2 (ja) | 2003-12-01 | 2007-08-22 | キヤノン株式会社 | 情報処理装置及びその制御方法、プログラム |
| US7057709B2 (en) | 2003-12-04 | 2006-06-06 | International Business Machines Corporation | Printing a mask with maximum possible process window through adjustment of the source distribution |
| EP1690660A1 (en) | 2003-12-04 | 2006-08-16 | Mitsuboshi Diamond Industrial Co., Ltd. | Substrate machining method, substrate machining device, substrate carrying method, and substrate carrying mechanism |
| JP2005179154A (ja) | 2003-12-22 | 2005-07-07 | Shibuya Kogyo Co Ltd | 脆性材料の割断方法およびその装置 |
| US7633033B2 (en) | 2004-01-09 | 2009-12-15 | General Lasertronics Corporation | Color sensing for laser decoating |
| US8270077B2 (en) | 2004-01-16 | 2012-09-18 | Carl Zeiss Smt Gmbh | Polarization-modulating optical element |
| US20070019179A1 (en) | 2004-01-16 | 2007-01-25 | Damian Fiolka | Polarization-modulating optical element |
| CN101793993B (zh) | 2004-01-16 | 2013-04-03 | 卡尔蔡司Smt有限责任公司 | 光学元件、光学布置及系统 |
| JP4951241B2 (ja) | 2004-01-16 | 2012-06-13 | 独立行政法人科学技術振興機構 | 微細加工方法 |
| JP4074589B2 (ja) | 2004-01-22 | 2008-04-09 | Tdk株式会社 | レーザ加工装置及びレーザ加工方法 |
| TWI395068B (zh) | 2004-01-27 | 2013-05-01 | 尼康股份有限公司 | 光學系統、曝光裝置以及曝光方法 |
| JP2005219960A (ja) | 2004-02-05 | 2005-08-18 | Nishiyama Stainless Chem Kk | ガラスの切断分離方法、フラットパネルディスプレイ用ガラス基板、フラットパネルディスプレイ |
| EP1721695A4 (en) | 2004-03-05 | 2009-04-01 | Olympus Corp | LASER PROCESSING FACILITY |
| JP5074658B2 (ja) | 2004-03-15 | 2012-11-14 | キヤノン株式会社 | 最適化方法、最適化装置、及びプログラム |
| JP2005271563A (ja) * | 2004-03-26 | 2005-10-06 | Daitron Technology Co Ltd | 硬脆材料板体の分割加工方法及び装置 |
| JP4418282B2 (ja) * | 2004-03-31 | 2010-02-17 | 株式会社レーザーシステム | レーザ加工方法 |
| US7486705B2 (en) * | 2004-03-31 | 2009-02-03 | Imra America, Inc. | Femtosecond laser processing system with process parameters, controls and feedback |
| US20050231651A1 (en) | 2004-04-14 | 2005-10-20 | Myers Timothy F | Scanning display system |
| US7187833B2 (en) | 2004-04-29 | 2007-03-06 | Corning Incorporated | Low attenuation large effective area optical fiber |
| KR100626554B1 (ko) | 2004-05-11 | 2006-09-21 | 주식회사 탑 엔지니어링 | 비금속재 절단장치 및 비금속재 절단시의 절단깊이 제어방법 |
| US7123348B2 (en) | 2004-06-08 | 2006-10-17 | Asml Netherlands B.V | Lithographic apparatus and method utilizing dose control |
| GB0412974D0 (en) | 2004-06-10 | 2004-07-14 | Syngenta Participations Ag | Method of applying active ingredients |
| JP4890746B2 (ja) * | 2004-06-14 | 2012-03-07 | 株式会社ディスコ | ウエーハの加工方法 |
| US7804043B2 (en) * | 2004-06-15 | 2010-09-28 | Laserfacturing Inc. | Method and apparatus for dicing of thin and ultra thin semiconductor wafer using ultrafast pulse laser |
| DE102005030543A1 (de) | 2004-07-08 | 2006-02-02 | Carl Zeiss Smt Ag | Polarisatoreinrichtung zur Erzeugung einer definierten Ortsverteilung von Polarisationszuständen |
| US7283209B2 (en) | 2004-07-09 | 2007-10-16 | Carl Zeiss Smt Ag | Illumination system for microlithography |
| US7231786B2 (en) | 2004-07-29 | 2007-06-19 | Corning Incorporated | Process and device for manufacturing glass sheet |
| US7259354B2 (en) | 2004-08-04 | 2007-08-21 | Electro Scientific Industries, Inc. | Methods for processing holes by moving precisely timed laser pulses in circular and spiral trajectories |
| US7136227B2 (en) | 2004-08-06 | 2006-11-14 | Matsushita Electric Industrial Co., Ltd. | Fresnel zone plate based on elastic materials |
| KR101273740B1 (ko) | 2004-09-22 | 2013-06-12 | 가부시키가이샤 니콘 | 조명 장치, 노광 장치 및 마이크로 디바이스의 제조 방법 |
| JP3887394B2 (ja) | 2004-10-08 | 2007-02-28 | 芝浦メカトロニクス株式会社 | 脆性材料の割断加工システム及びその方法 |
| TW200621661A (en) | 2004-10-25 | 2006-07-01 | Mitsuboshi Diamond Ind Co Ltd | Method and device for forming crack |
| JP4692717B2 (ja) * | 2004-11-02 | 2011-06-01 | 澁谷工業株式会社 | 脆性材料の割断装置 |
| JP4222296B2 (ja) | 2004-11-22 | 2009-02-12 | 住友電気工業株式会社 | レーザ加工方法とレーザ加工装置 |
| JP4564343B2 (ja) | 2004-11-24 | 2010-10-20 | 大日本印刷株式会社 | 導電材充填スルーホール基板の製造方法 |
| JP2006150385A (ja) | 2004-11-26 | 2006-06-15 | Canon Inc | レーザ割断方法 |
| US7201965B2 (en) | 2004-12-13 | 2007-04-10 | Corning Incorporated | Glass laminate substrate having enhanced impact and static loading resistance |
| KR101096733B1 (ko) | 2004-12-27 | 2011-12-21 | 엘지디스플레이 주식회사 | 기판의 절단장치 및 이를 이용한 기판의 절단방법 |
| JP5037138B2 (ja) | 2005-01-05 | 2012-09-26 | Thk株式会社 | ワークのブレイク方法及び装置、スクライブ及びブレイク方法、並びにブレイク機能付きスクライブ装置 |
| US7542013B2 (en) | 2005-01-31 | 2009-06-02 | Asml Holding N.V. | System and method for imaging enhancement via calculation of a customized optimal pupil field and illumination mode |
| WO2006082738A1 (ja) | 2005-02-03 | 2006-08-10 | Nikon Corporation | オプティカルインテグレータ、照明光学装置、露光装置、および露光方法 |
| JP2006248885A (ja) | 2005-02-08 | 2006-09-21 | Takeji Arai | 超短パルスレーザによる石英の切断方法 |
| DE102005013783B4 (de) | 2005-03-22 | 2007-08-16 | Jenoptik Automatisierungstechnik Gmbh | Verfahren zum Trennen von spröden Materialien mittels Laser mit unsymmetrischer Strahlungsdichteverteilung |
| US20070228616A1 (en) | 2005-05-11 | 2007-10-04 | Kyu-Yong Bang | Device and method for cutting nonmetalic substrate |
| US20060261118A1 (en) | 2005-05-17 | 2006-11-23 | Cox Judy K | Method and apparatus for separating a pane of brittle material from a moving ribbon of the material |
| JP4173151B2 (ja) | 2005-05-23 | 2008-10-29 | 株式会社椿本チエイン | コンベヤチェーン |
| US7402773B2 (en) * | 2005-05-24 | 2008-07-22 | Disco Corporation | Laser beam processing machine |
| JP4199820B2 (ja) | 2005-06-01 | 2008-12-24 | フェトン株式会社 | レーザー加工装置及びレーザー加工方法 |
| DE102005042072A1 (de) | 2005-06-01 | 2006-12-14 | Forschungsverbund Berlin E.V. | Verfahren zur Erzeugung von vertikalen elektrischen Kontaktverbindungen in Halbleiterwafern |
| WO2006136353A1 (en) | 2005-06-21 | 2006-12-28 | Carl Zeiss Smt Ag | A double-facetted illumination system with attenuator elements on the pupil facet mirror |
| JP4841873B2 (ja) | 2005-06-23 | 2011-12-21 | 大日本スクリーン製造株式会社 | 熱処理用サセプタおよび熱処理装置 |
| US7566914B2 (en) | 2005-07-07 | 2009-07-28 | Intersil Americas Inc. | Devices with adjustable dual-polarity trigger- and holding-voltage/current for high level of electrostatic discharge protection in sub-micron mixed signal CMOS/BiCMOS integrated circuits |
| JP4490883B2 (ja) | 2005-07-19 | 2010-06-30 | 株式会社レーザーシステム | レーザ加工装置およびレーザ加工方法 |
| US7934172B2 (en) | 2005-08-08 | 2011-04-26 | Micronic Laser Systems Ab | SLM lithography: printing to below K1=.30 without previous OPC processing |
| DE102005039833A1 (de) | 2005-08-22 | 2007-03-01 | Rowiak Gmbh | Vorrichtung und Verfahren zur Materialtrennung mit Laserpulsen |
| KR20070023958A (ko) | 2005-08-25 | 2007-03-02 | 삼성전자주식회사 | 액정 표시 장치용 기판 절단 시스템 및 상기 시스템을이용한 액정 표시 장치용 기판 절단 방법 |
| US7244906B2 (en) | 2005-08-30 | 2007-07-17 | Electro Scientific Industries, Inc. | Energy monitoring or control of individual vias formed during laser micromachining |
| DE102006042280A1 (de) | 2005-09-08 | 2007-06-06 | IMRA America, Inc., Ann Arbor | Bearbeitung von transparentem Material mit einem Ultrakurzpuls-Laser |
| US9138913B2 (en) | 2005-09-08 | 2015-09-22 | Imra America, Inc. | Transparent material processing with an ultrashort pulse laser |
| EP1950019B1 (en) | 2005-09-12 | 2011-12-21 | Nippon Sheet Glass Company Limited | Interlayer film separation method |
| US20070068648A1 (en) * | 2005-09-28 | 2007-03-29 | Honeywell International, Inc. | Method for repairing die cast dies |
| KR100792593B1 (ko) * | 2005-10-12 | 2008-01-09 | 한국정보통신대학교 산학협력단 | 극초단 펄스 레이저를 이용한 단일 펄스 패턴 형성방법 및시스템 |
| US20070111119A1 (en) * | 2005-11-15 | 2007-05-17 | Honeywell International, Inc. | Method for repairing gas turbine engine compressor components |
| JP2007142000A (ja) | 2005-11-16 | 2007-06-07 | Denso Corp | レーザ加工装置およびレーザ加工方法 |
| US7838331B2 (en) | 2005-11-16 | 2010-11-23 | Denso Corporation | Method for dicing semiconductor substrate |
| JP4816390B2 (ja) * | 2005-11-16 | 2011-11-16 | 株式会社デンソー | 半導体チップの製造方法および半導体チップ |
| KR100858983B1 (ko) | 2005-11-16 | 2008-09-17 | 가부시키가이샤 덴소 | 반도체 장치 및 반도체 기판 다이싱 방법 |
| US20070111480A1 (en) | 2005-11-16 | 2007-05-17 | Denso Corporation | Wafer product and processing method therefor |
| US7977601B2 (en) | 2005-11-28 | 2011-07-12 | Electro Scientific Industries, Inc. | X and Y orthogonal cut direction processing with set beam separation using 45 degree beam split orientation apparatus and method |
| CN101331592B (zh) | 2005-12-16 | 2010-06-16 | 株式会社半导体能源研究所 | 激光照射设备、激光照射方法和半导体装置的制造方法 |
| GB0600022D0 (en) | 2006-01-03 | 2006-02-08 | Pilkington Plc | Glazings |
| JP4483793B2 (ja) | 2006-01-27 | 2010-06-16 | セイコーエプソン株式会社 | 微細構造体の製造方法及び製造装置 |
| US7418181B2 (en) | 2006-02-13 | 2008-08-26 | Adc Telecommunications, Inc. | Fiber optic splitter module |
| WO2007094160A1 (ja) | 2006-02-15 | 2007-08-23 | Asahi Glass Company, Limited | ガラス基板の面取り方法および装置 |
| US7535634B1 (en) | 2006-02-16 | 2009-05-19 | The United States Of America As Represented By The National Aeronautics And Space Administration | Optical device, system, and method of generating high angular momentum beams |
| US20090013724A1 (en) | 2006-02-22 | 2009-01-15 | Nippon Sheet Glass Company, Limited | Glass Processing Method Using Laser and Processing Device |
| JP4672689B2 (ja) | 2006-02-22 | 2011-04-20 | 日本板硝子株式会社 | レーザを用いたガラスの加工方法および加工装置 |
| US20090176034A1 (en) | 2006-02-23 | 2009-07-09 | Picodeon Ltd. Oy | Surface Treatment Technique and Surface Treatment Apparatus Associated With Ablation Technology |
| DE102006012034A1 (de) | 2006-03-14 | 2007-09-20 | Carl Zeiss Smt Ag | Optisches System, insbesondere in einer Beleuchtungseinrichtung einer Projektionsbelichtungsanlage |
| JP2007253203A (ja) | 2006-03-24 | 2007-10-04 | Sumitomo Electric Ind Ltd | レーザ加工用光学装置 |
| JP2009530222A (ja) | 2006-03-24 | 2009-08-27 | ケー−エング カンパニー リミテッド | ベンディング部を有するガラス切断装置及びこれを利用したガラス切断方法 |
| WO2007119740A1 (ja) | 2006-04-13 | 2007-10-25 | Toray Engineering Co., Ltd. | スクライブ方法、スクライブ装置、及びこの方法または装置を用いて割断した割断基板 |
| US7794904B2 (en) | 2006-04-24 | 2010-09-14 | Stc.Unm | Method and apparatus for producing interferometric lithography patterns with circular symmetry |
| US20070298529A1 (en) | 2006-05-31 | 2007-12-27 | Toyoda Gosei, Co., Ltd. | Semiconductor light-emitting device and method for separating semiconductor light-emitting devices |
| GB2439962B (en) | 2006-06-14 | 2008-09-24 | Exitech Ltd | Process and apparatus for laser scribing |
| US7897487B2 (en) | 2006-07-03 | 2011-03-01 | Hamamatsu Photonics K.K. | Laser processing method and chip |
| JP2008018547A (ja) | 2006-07-11 | 2008-01-31 | Seiko Epson Corp | 基体の製造方法、tft基板の製造方法、多層構造基板の製造方法、表示装置の製造方法 |
| DE102006035555A1 (de) | 2006-07-27 | 2008-01-31 | Eliog-Kelvitherm Industrieofenbau Gmbh | Anordnung und Verfahren zur Verformung von Glasscheiben |
| FR2904437B1 (fr) | 2006-07-28 | 2008-10-24 | Saint Gobain | Dispositif actif a proprietes energetiques/optiques variables |
| JP2008037943A (ja) | 2006-08-03 | 2008-02-21 | Nitto Denko Corp | 衝撃吸収粘着剤シートおよびその製造方法 |
| US8168514B2 (en) | 2006-08-24 | 2012-05-01 | Corning Incorporated | Laser separation of thin laminated glass substrates for flexible display applications |
| US8035803B2 (en) | 2006-09-06 | 2011-10-11 | Carl Zeiss Smt Gmbh | Subsystem of an illumination system of a microlithographic projection exposure apparatus |
| CN101516566B (zh) | 2006-09-19 | 2012-05-09 | 浜松光子学株式会社 | 激光加工方法和激光加工装置 |
| US7867907B2 (en) | 2006-10-17 | 2011-01-11 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
| DE102006051105B3 (de) * | 2006-10-25 | 2008-06-12 | Lpkf Laser & Electronics Ag | Vorrichtung zur Bearbeitung eines Werkstücks mittels Laserstrahlung |
| GB0622232D0 (en) | 2006-11-08 | 2006-12-20 | Rumsby Philip T | Method and apparatus for laser beam alignment for solar panel scribing |
| GB0623511D0 (en) | 2006-11-24 | 2007-01-03 | Council Cent Lab Res Councils | Raman detection of container contents |
| JP2008132616A (ja) | 2006-11-27 | 2008-06-12 | Shibuya Kogyo Co Ltd | 脆性材料の割断方法とその装置 |
| EP2105239B1 (en) | 2006-11-30 | 2016-01-13 | Sumitomo Electric Industries, Ltd. | Light condensing optical system, laser processing method and apparatus, and method of manufacturing fragile material |
| US8041127B2 (en) | 2006-11-30 | 2011-10-18 | Intuit Inc. | Method and system for obscuring and securing financial data in an online banking application |
| US20080158529A1 (en) | 2006-12-28 | 2008-07-03 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| US8952832B2 (en) | 2008-01-18 | 2015-02-10 | Invensense, Inc. | Interfacing application programs and motion sensors of a device |
| AT504726A1 (de) | 2007-01-05 | 2008-07-15 | Lisec Maschb Gmbh | Verfahren und vorrichtung zum herstellen eines trennspalts in einer glasscheibe |
| JP2008168327A (ja) | 2007-01-15 | 2008-07-24 | Shinko Seisakusho:Kk | レーザ切断装置 |
| CN103345128B (zh) | 2007-02-06 | 2017-04-12 | 卡尔蔡司Smt有限责任公司 | 微光刻投射曝光设备的照明系统 |
| US20100029460A1 (en) | 2007-02-22 | 2010-02-04 | Nippon Sheet Glass Company, Limited | Glass for anodic bonding |
| EP2130234B1 (en) | 2007-02-27 | 2014-10-29 | Carl Zeiss Laser Optics GmbH | Continuous coating installation and method for producing crystalline thin films |
| TWI424972B (zh) | 2007-03-02 | 2014-02-01 | Nippon Electric Glass Co | 強化板玻璃 |
| ITMI20070528A1 (it) | 2007-03-16 | 2008-09-17 | Piaggio & C Spa | Sistema di propulsione e di trasmissione ibrida per motoveicoli |
| US8937706B2 (en) | 2007-03-30 | 2015-01-20 | Asml Netherlands B.V. | Lithographic apparatus and method |
| US9250536B2 (en) | 2007-03-30 | 2016-02-02 | Asml Netherlands B.V. | Lithographic apparatus and method |
| WO2008119794A1 (en) | 2007-04-03 | 2008-10-09 | Carl Zeiss Smt Ag | Optical system, in particular illumination device or projection objective of a microlithographic projection exposure apparatus |
| WO2008126742A1 (ja) | 2007-04-05 | 2008-10-23 | Cyber Laser Inc. | レーザ加工方法及び切断方法並びに多層基板を有する構造体の分割方法 |
| FR2914751B1 (fr) | 2007-04-06 | 2009-07-03 | Draka Comteq France | Fibre optique monomode |
| EP1983154B1 (en) | 2007-04-17 | 2013-12-25 | Services Pétroliers Schlumberger | In-situ correction of triaxial accelerometer and magnetometer measurements made in a well |
| JP4863168B2 (ja) | 2007-04-17 | 2012-01-25 | 日本電気硝子株式会社 | フラットパネルディスプレイ用ガラス基板およびその製造方法 |
| JP2008288577A (ja) | 2007-04-18 | 2008-11-27 | Fujikura Ltd | 基板の処理方法、貫通配線基板及びその製造方法、並びに電子部品 |
| DE102007018674A1 (de) | 2007-04-18 | 2008-10-23 | Lzh Laserzentrum Hannover E.V. | Verfahren zum Bilden von Durchgangslöchern in Bauteilen aus Glas |
| WO2008136918A2 (en) | 2007-05-07 | 2008-11-13 | Corning Incorporated | Large effective area fiber |
| US8236116B2 (en) | 2007-06-06 | 2012-08-07 | Centre Luxembourgeois De Recherches Pour Le Verre Et Al Ceramique S.A. (C.R.V.C.) | Method of making coated glass article, and intermediate product used in same |
| US8374472B2 (en) | 2007-06-15 | 2013-02-12 | Ofs Fitel, Llc | Bend insensitivity in single mode optical fibers |
| US8076605B2 (en) | 2007-06-25 | 2011-12-13 | Electro Scientific Industries, Inc. | Systems and methods for adapting parameters to increase throughput during laser-based wafer processing |
| DE112008001873A5 (de) | 2007-07-21 | 2010-06-10 | Du, Keming, Dr. | Optische Anordnung zur Erzeugung von Multistrahlen |
| US8169587B2 (en) | 2007-08-16 | 2012-05-01 | Apple Inc. | Methods and systems for strengthening LCD modules |
| JP2009056482A (ja) | 2007-08-31 | 2009-03-19 | Seiko Epson Corp | 基板分割方法、及び表示装置の製造方法 |
| JP5113462B2 (ja) | 2007-09-12 | 2013-01-09 | 三星ダイヤモンド工業株式会社 | 脆性材料基板の面取り方法 |
| US20100276505A1 (en) | 2007-09-26 | 2010-11-04 | Roger Earl Smith | Drilling in stretched substrates |
| JP2009084089A (ja) | 2007-09-28 | 2009-04-23 | Omron Laserfront Inc | ガラス切断装置及び方法 |
| DE102008041593A1 (de) | 2007-10-09 | 2009-04-16 | Carl Zeiss Smt Ag | Beleuchtungsoptik für die Mikrolithographie |
| KR101235617B1 (ko) | 2007-10-16 | 2013-02-28 | 미쓰보시 다이야몬도 고교 가부시키가이샤 | 취성 재료 기판의 u자 형상 홈 가공 방법 및 이것을 사용한 제거 가공 방법 및 도려내기 가공 방법 및 모따기 방법 |
| JP5326259B2 (ja) | 2007-11-08 | 2013-10-30 | 株式会社ニコン | 照明光学装置、露光装置、およびデバイス製造方法 |
| DE102007055567A1 (de) | 2007-11-20 | 2009-05-28 | Carl Zeiss Smt Ag | Optisches System |
| KR100949152B1 (ko) | 2007-11-23 | 2010-03-25 | 삼성코닝정밀유리 주식회사 | 유리 기판 레이저 절단 장치 |
| JP4710897B2 (ja) | 2007-11-28 | 2011-06-29 | セイコーエプソン株式会社 | 接合体の剥離方法 |
| KR20090057161A (ko) | 2007-12-01 | 2009-06-04 | 주식회사 이엔팩 | 초발수성 좌변기 시트 |
| JP2009142886A (ja) | 2007-12-18 | 2009-07-02 | Agt:Kk | レーザー穴開け加工方法 |
| CN101462822B (zh) | 2007-12-21 | 2012-08-29 | 鸿富锦精密工业(深圳)有限公司 | 具有通孔的脆性非金属工件及其加工方法 |
| US8358868B2 (en) | 2007-12-25 | 2013-01-22 | Nec Corporation | Image processing apparatus, image processing method, image extending apparatus, image compressing apparatus, image transmitting system, and storage medium |
| US7842583B2 (en) | 2007-12-27 | 2010-11-30 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor substrate and method for manufacturing semiconductor device |
| US20090183764A1 (en) | 2008-01-18 | 2009-07-23 | Tenksolar, Inc | Detachable Louver System |
| JP5098665B2 (ja) * | 2008-01-23 | 2012-12-12 | 株式会社東京精密 | レーザー加工装置およびレーザー加工方法 |
| JP2009178725A (ja) | 2008-01-29 | 2009-08-13 | Sunx Ltd | レーザ加工装置及びレーザ加工方法 |
| KR101303542B1 (ko) | 2008-02-11 | 2013-09-03 | 엘지디스플레이 주식회사 | 평판표시패널 절단장치 |
| GB0802944D0 (en) | 2008-02-19 | 2008-03-26 | Rumsby Philip T | Apparatus for laser processing the opposite sides of thin panels |
| CN102105256B (zh) | 2008-02-20 | 2014-12-31 | 激光线圈技术有限公司 | 用于高速切削的渐进激光切料装置 |
| US20100319898A1 (en) | 2008-03-13 | 2010-12-23 | Underwood Patrick K | Thermal interconnect and integrated interface systems, methods of production and uses thereof |
| CN102006964B (zh) | 2008-03-21 | 2016-05-25 | Imra美国公司 | 基于激光的材料加工方法和系统 |
| JP5333816B2 (ja) | 2008-03-26 | 2013-11-06 | 旭硝子株式会社 | ガラス板の切線加工装置及び切線加工方法 |
| US8237080B2 (en) | 2008-03-27 | 2012-08-07 | Electro Scientific Industries, Inc | Method and apparatus for laser drilling holes with Gaussian pulses |
| JP5345334B2 (ja) | 2008-04-08 | 2013-11-20 | 株式会社レミ | 脆性材料の熱応力割断方法 |
| JP5274085B2 (ja) | 2008-04-09 | 2013-08-28 | 株式会社アルバック | レーザー加工装置、レーザービームのピッチ可変方法、及びレーザー加工方法 |
| US8358888B2 (en) | 2008-04-10 | 2013-01-22 | Ofs Fitel, Llc | Systems and techniques for generating Bessel beams |
| JP2009255114A (ja) | 2008-04-15 | 2009-11-05 | Linkstar Japan Co Ltd | 脆性材料基板の加工装置および切断方法 |
| US8035901B2 (en) | 2008-04-30 | 2011-10-11 | Corning Incorporated | Laser scoring with curved trajectory |
| JP5539625B2 (ja) | 2008-05-08 | 2014-07-02 | ミヤチテクノス株式会社 | レーザ加工方法 |
| HUE037068T2 (hu) | 2008-05-14 | 2018-08-28 | Gerresheimer Glas Gmbh | Eljárás és berendezés automatikus gyártórendszeren szennyezõ szemcsék tartályokból való eltávolítására |
| US8061128B2 (en) | 2008-05-15 | 2011-11-22 | Ford Global Technologies, Llc | Diesel particulate filter overstress mitigation |
| US8053704B2 (en) | 2008-05-27 | 2011-11-08 | Corning Incorporated | Scoring of non-flat materials |
| GB2460648A (en) | 2008-06-03 | 2009-12-09 | M Solv Ltd | Method and apparatus for laser focal spot size control |
| JP2009297734A (ja) | 2008-06-11 | 2009-12-24 | Nitto Denko Corp | レーザー加工用粘着シート及びレーザー加工方法 |
| US8514476B2 (en) | 2008-06-25 | 2013-08-20 | View, Inc. | Multi-pane dynamic window and method for making same |
| US8268913B2 (en) | 2008-06-30 | 2012-09-18 | Fina Technology, Inc. | Polymeric blends and methods of using same |
| US7810355B2 (en) | 2008-06-30 | 2010-10-12 | Apple Inc. | Full perimeter chemical strengthening of substrates |
| US8390788B2 (en) | 2008-07-11 | 2013-03-05 | Asml Netherlands B.V. | Spectral purity filters for use in a lithographic apparatus |
| JP2010017990A (ja) | 2008-07-14 | 2010-01-28 | Seiko Epson Corp | 基板分割方法 |
| US7773848B2 (en) | 2008-07-30 | 2010-08-10 | Corning Incorporated | Low bend loss single mode optical fiber |
| TWI484563B (zh) | 2008-08-01 | 2015-05-11 | Moohan Co Ltd | 薄膜電晶體之製造方法與設備 |
| KR101499651B1 (ko) | 2008-08-01 | 2015-03-06 | 주식회사 무한 | 박막 트랜지스터 어레이 기판의 제조방법 및 제조장치 |
| JP5071868B2 (ja) | 2008-08-11 | 2012-11-14 | オムロン株式会社 | レーザ加工方法、レーザ加工装置、光学素子の製造方法、および光学素子 |
| TW201009525A (en) | 2008-08-18 | 2010-03-01 | Ind Tech Res Inst | Laser marking method and laser marking system |
| JP5155774B2 (ja) | 2008-08-21 | 2013-03-06 | 株式会社ノリタケカンパニーリミテド | プラトー面加工用レジノイド超砥粒砥石ホイール |
| JP2010075991A (ja) | 2008-09-29 | 2010-04-08 | Fujifilm Corp | レーザ加工装置 |
| JP5435267B2 (ja) | 2008-10-01 | 2014-03-05 | 日本電気硝子株式会社 | ガラスロール、ガラスロールの製造装置、及びガラスロールの製造方法 |
| US8123515B2 (en) | 2008-10-02 | 2012-02-28 | Robert Frank Schleelein | System and method for producing composite materials with variable shapes |
| US7869210B2 (en) | 2008-10-08 | 2011-01-11 | Dell Products L.P. | Temperature control for an information handling system rack |
| JP5297139B2 (ja) | 2008-10-09 | 2013-09-25 | 新光電気工業株式会社 | 配線基板及びその製造方法 |
| US8895892B2 (en) | 2008-10-23 | 2014-11-25 | Corning Incorporated | Non-contact glass shearing device and method for scribing or cutting a moving glass sheet |
| US8092739B2 (en) | 2008-11-25 | 2012-01-10 | Wisconsin Alumni Research Foundation | Retro-percussive technique for creating nanoscale holes |
| US8131494B2 (en) | 2008-12-04 | 2012-03-06 | Baker Hughes Incorporated | Rotatable orientation independent gravity sensor and methods for correcting systematic errors |
| US20110253544A1 (en) | 2008-12-08 | 2011-10-20 | University Of South Australia | Formation Of Nanoporous Materials |
| JP2010134328A (ja) | 2008-12-08 | 2010-06-17 | Disco Abrasive Syst Ltd | 偏光素子およびレーザーユニット |
| US9346130B2 (en) | 2008-12-17 | 2016-05-24 | Electro Scientific Industries, Inc. | Method for laser processing glass with a chamfered edge |
| US20110240476A1 (en) | 2008-12-17 | 2011-10-06 | Ding Wang | Fabrication of conductive nanostructures on a flexible substrate |
| EP2202545A1 (en) | 2008-12-23 | 2010-06-30 | Karlsruher Institut für Technologie | Beam transformation module with an axicon in a double-pass mode |
| KR101020621B1 (ko) | 2009-01-15 | 2011-03-09 | 연세대학교 산학협력단 | 광섬유를 이용하는 광소자 제조 방법, 광섬유를 이용하는 광소자 및 이를 이용한 광 트위저 |
| KR20110121605A (ko) | 2009-02-02 | 2011-11-07 | 아사히 가라스 가부시키가이샤 | 반도체 디바이스 부재용 유리 기판 및 반도체 디바이스 부재용 유리 기판의 제조 방법 |
| CN102307699B (zh) * | 2009-02-09 | 2015-07-15 | 浜松光子学株式会社 | 加工对象物的切断方法 |
| US8347651B2 (en) | 2009-02-19 | 2013-01-08 | Corning Incorporated | Method of separating strengthened glass |
| US8327666B2 (en) | 2009-02-19 | 2012-12-11 | Corning Incorporated | Method of separating strengthened glass |
| US8341976B2 (en) | 2009-02-19 | 2013-01-01 | Corning Incorporated | Method of separating strengthened glass |
| US8245540B2 (en) | 2009-02-24 | 2012-08-21 | Corning Incorporated | Method for scoring a sheet of brittle material |
| WO2010098186A1 (ja) | 2009-02-25 | 2010-09-02 | 日亜化学工業株式会社 | 半導体素子の製造方法 |
| US8218929B2 (en) | 2009-02-26 | 2012-07-10 | Corning Incorporated | Large effective area low attenuation optical fiber |
| CN201357287Y (zh) | 2009-03-06 | 2009-12-09 | 苏州德龙激光有限公司 | 新型皮秒激光加工装置 |
| CN101502914A (zh) | 2009-03-06 | 2009-08-12 | 苏州德龙激光有限公司 | 用于喷油嘴微孔加工的皮秒激光加工装置 |
| JP5300544B2 (ja) | 2009-03-17 | 2013-09-25 | 株式会社ディスコ | 光学系及びレーザ加工装置 |
| KR101041140B1 (ko) | 2009-03-25 | 2011-06-13 | 삼성모바일디스플레이주식회사 | 기판 절단 방법 |
| US20100252959A1 (en) | 2009-03-27 | 2010-10-07 | Electro Scientific Industries, Inc. | Method for improved brittle materials processing |
| US9723723B2 (en) | 2009-03-31 | 2017-08-01 | View, Inc. | Temperable electrochromic devices |
| US8574487B2 (en) | 2009-04-07 | 2013-11-05 | Trumpf, Inc. | Workpiece processing using a beam |
| KR200448519Y1 (ko) | 2009-04-28 | 2010-04-21 | 남동진 | 돌출형 ⅰc 패키지용 방열판 |
| US20100279067A1 (en) | 2009-04-30 | 2010-11-04 | Robert Sabia | Glass sheet having enhanced edge strength |
| CN102422406B (zh) | 2009-05-06 | 2014-07-09 | 康宁股份有限公司 | 用于玻璃基片的支承件 |
| US8539795B2 (en) | 2009-05-13 | 2013-09-24 | Corning Incorporated | Methods for cutting a fragile material |
| ATE551304T1 (de) | 2009-05-13 | 2012-04-15 | Corning Inc | Verfahren und anlagen zum formen von endlosen glasscheiben |
| US8132427B2 (en) | 2009-05-15 | 2012-03-13 | Corning Incorporated | Preventing gas from occupying a spray nozzle used in a process of scoring a hot glass sheet |
| JP5340806B2 (ja) * | 2009-05-21 | 2013-11-13 | 株式会社ディスコ | 半導体ウエーハのレーザ加工方法 |
| US8269138B2 (en) | 2009-05-21 | 2012-09-18 | Corning Incorporated | Method for separating a sheet of brittle material |
| DE102009023602B4 (de) | 2009-06-02 | 2012-08-16 | Grenzebach Maschinenbau Gmbh | Vorrichtung zum industriellen Herstellen elastisch verformbarer großflächiger Glasplatten in hoher Stückzahl |
| US8194170B2 (en) | 2009-06-02 | 2012-06-05 | Algonquin College | Axicon lens array |
| WO2010139841A1 (en) | 2009-06-04 | 2010-12-09 | Corelase Oy | Method and apparatus for processing substrates |
| US20100332087A1 (en) | 2009-06-24 | 2010-12-30 | Mark Robert Claffee | Remote Vehicle Controller |
| JP5416492B2 (ja) | 2009-06-30 | 2014-02-12 | 三星ダイヤモンド工業株式会社 | レーザ光によるガラス基板加工装置 |
| TWI395630B (zh) | 2009-06-30 | 2013-05-11 | Mitsuboshi Diamond Ind Co Ltd | 使用雷射光之玻璃基板加工裝置 |
| US8592716B2 (en) | 2009-07-22 | 2013-11-26 | Corning Incorporated | Methods and apparatus for initiating scoring |
| CN201471092U (zh) | 2009-08-07 | 2010-05-19 | 苏州德龙激光有限公司 | 皮秒激光加工设备的高精度z轴载物平台 |
| CN101637849B (zh) | 2009-08-07 | 2011-12-07 | 苏州德龙激光有限公司 | 皮秒激光加工设备的高精度z轴载物平台 |
| JP5500914B2 (ja) | 2009-08-27 | 2014-05-21 | 株式会社半導体エネルギー研究所 | レーザ照射装置 |
| KR20120073249A (ko) | 2009-08-28 | 2012-07-04 | 코닝 인코포레이티드 | 화학적으로 강화된 유리 기판으로부터 제품을 레이저 절단하기 위한 방법 |
| US8932510B2 (en) | 2009-08-28 | 2015-01-13 | Corning Incorporated | Methods for laser cutting glass substrates |
| KR101094284B1 (ko) * | 2009-09-02 | 2011-12-19 | 삼성모바일디스플레이주식회사 | 기판 절단 장치 및 이를 이용한 기판 절단 방법 |
| KR20120098623A (ko) | 2009-09-24 | 2012-09-05 | 이에스아이-파이로포토닉스 레이저스, 인코포레이티드 | 바람직한 펄스 형태를 갖는 레이저 펄스의 버스트를 사용하여 박막 물질에 라인을 스크라이빙하는 방법 및 장치 |
| JP2011079690A (ja) | 2009-10-06 | 2011-04-21 | Leo:Kk | 回折格子を用いた厚板ガラスのレーザ熱応力割断 |
| US20110088324A1 (en) | 2009-10-20 | 2011-04-21 | Wessel Robert B | Apparatus and method for solar heat gain reduction in a window assembly |
| US20110094267A1 (en) | 2009-10-28 | 2011-04-28 | Kenneth William Aniolek | Methods of producing glass sheets |
| TWI472494B (zh) | 2009-11-03 | 2015-02-11 | Corning Inc | 對以非固定速度移動的玻璃帶進行雷射刻痕 |
| US8623496B2 (en) | 2009-11-06 | 2014-01-07 | Wisconsin Alumni Research Foundation | Laser drilling technique for creating nanoscale holes |
| JP5809637B2 (ja) | 2009-11-18 | 2015-11-11 | エーエスエムエル ネザーランズ ビー.ブイ. | リソグラフィ装置およびデバイス製造方法 |
| US20120234807A1 (en) | 2009-12-07 | 2012-09-20 | J.P. Sercel Associates Inc. | Laser scribing with extended depth affectation into a workplace |
| US8338745B2 (en) | 2009-12-07 | 2012-12-25 | Panasonic Corporation | Apparatus and methods for drilling holes with no taper or reverse taper |
| EP2336823A1 (de) | 2009-12-18 | 2011-06-22 | Boegli-Gravures S.A. | Verfahren und Vorrichtung zur Herstellung von Masken für eine Laseranlage zur Erzeugung von Mikrostrukturen. |
| CN102695988B (zh) | 2009-12-23 | 2015-09-02 | Asml荷兰有限公司 | 光刻设备以及器件制造方法 |
| WO2011082065A2 (en) | 2009-12-30 | 2011-07-07 | Gsi Group Corporation | Link processing with high speed beam deflection |
| EP2521226B1 (en) | 2009-12-30 | 2019-09-11 | National University Corporation Chiba University | External resonator laser |
| JP5405324B2 (ja) | 2010-01-04 | 2014-02-05 | 富士フイルム株式会社 | 撮像レンズおよび撮像装置 |
| JP5461205B2 (ja) | 2010-01-19 | 2014-04-02 | 日立造船株式会社 | レーザ加工方法とその装置 |
| TWI438162B (zh) | 2010-01-27 | 2014-05-21 | Wintek Corp | 強化玻璃切割方法及強化玻璃切割預置結構 |
| US9234760B2 (en) | 2010-01-29 | 2016-01-12 | Blackberry Limited | Portable mobile transceiver for GPS navigation and vehicle data input for dead reckoning mode |
| ITMO20100020A1 (it) | 2010-02-02 | 2011-08-03 | Keraglass Engineering S R L | Dispositivo per la pulizia di rulli. |
| WO2011106325A1 (en) | 2010-02-25 | 2011-09-01 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Azicon beam polarization devices |
| US8743165B2 (en) | 2010-03-05 | 2014-06-03 | Micronic Laser Systems Ab | Methods and device for laser processing |
| JP5249979B2 (ja) * | 2010-03-18 | 2013-07-31 | 三星ダイヤモンド工業株式会社 | 脆性材料基板の加工方法およびこれに用いるレーザ加工装置 |
| EP2550128B8 (de) | 2010-03-24 | 2018-05-23 | LIMO GmbH | Vorrichtung zur beaufschlagung mit laserstrahlung |
| US20110238308A1 (en) | 2010-03-26 | 2011-09-29 | Isaac Thomas Miller | Pedal navigation using leo signals and body-mounted sensors |
| JP5693705B2 (ja) | 2010-03-30 | 2015-04-01 | イムラ アメリカ インコーポレイテッド | レーザベースの材料加工装置及び方法 |
| US8654538B2 (en) | 2010-03-30 | 2014-02-18 | Ibiden Co., Ltd. | Wiring board and method for manufacturing the same |
| US8951889B2 (en) | 2010-04-16 | 2015-02-10 | Qmc Co., Ltd. | Laser processing method and laser processing apparatus |
| WO2011132600A1 (ja) | 2010-04-20 | 2011-10-27 | 旭硝子株式会社 | 半導体デバイス貫通電極用のガラス基板 |
| JP2013144613A (ja) | 2010-04-20 | 2013-07-25 | Asahi Glass Co Ltd | 半導体デバイス貫通電極形成用のガラス基板の製造方法 |
| JP5514955B2 (ja) | 2010-04-21 | 2014-06-04 | エルジー・ケム・リミテッド | ガラスシート切断装置 |
| DE202010006047U1 (de) | 2010-04-22 | 2010-07-22 | Trumpf Werkzeugmaschinen Gmbh + Co. Kg | Strahlformungseinheit zur Fokussierung eines Laserstrahls |
| KR100984727B1 (ko) | 2010-04-30 | 2010-10-01 | 유병소 | 대상물 가공 방법 및 대상물 가공 장치 |
| US8245539B2 (en) | 2010-05-13 | 2012-08-21 | Corning Incorporated | Methods of producing glass sheets |
| CN102892833B (zh) | 2010-05-19 | 2016-01-06 | 三菱化学株式会社 | 卡用片及卡 |
| JP5488907B2 (ja) | 2010-05-20 | 2014-05-14 | 日本電気硝子株式会社 | ガラスフィルムの回収装置及び回収方法 |
| EP2571520B1 (en) | 2010-05-21 | 2018-04-04 | Seqirus UK Limited | Influenza virus reassortment method |
| GB2481190B (en) | 2010-06-04 | 2015-01-14 | Plastic Logic Ltd | Laser ablation |
| CN108395078B (zh) | 2010-06-29 | 2020-06-05 | 康宁股份有限公司 | 利用溢流下拉熔合法通过共拉制制备的多层玻璃片 |
| DE102010025967B4 (de) | 2010-07-02 | 2015-12-10 | Schott Ag | Verfahren zur Erzeugung einer Vielzahl von Löchern, Vorrichtung hierzu und Glas-Interposer |
| DE102010025965A1 (de) | 2010-07-02 | 2012-01-05 | Schott Ag | Verfahren zur spannungsarmen Herstellung von gelochten Werkstücken |
| DE102010025966B4 (de) | 2010-07-02 | 2012-03-08 | Schott Ag | Interposer und Verfahren zum Herstellen von Löchern in einem Interposer |
| DE202010013161U1 (de) | 2010-07-08 | 2011-03-31 | Oerlikon Solar Ag, Trübbach | Laserbearbeitung mit mehreren Strahlen und dafür geeigneter Laseroptikkopf |
| JP5772827B2 (ja) | 2010-07-12 | 2015-09-02 | 旭硝子株式会社 | インプリントモールド用TiO2含有石英ガラス基材およびその製造方法 |
| FR2962818B1 (fr) | 2010-07-13 | 2013-03-08 | Saint Gobain | Dispositif electrochimique a proprietes de transmission optique et/ou energetique electrocommandables. |
| KR20120015366A (ko) | 2010-07-19 | 2012-02-21 | 엘지디스플레이 주식회사 | 강화유리 절단방법 및 절단장치 |
| JP5580129B2 (ja) | 2010-07-20 | 2014-08-27 | 株式会社アマダ | 固体レーザ加工装置 |
| JP2012024983A (ja) | 2010-07-21 | 2012-02-09 | Shibuya Kogyo Co Ltd | 脆性材料の面取り方法とその装置 |
| JP5669001B2 (ja) | 2010-07-22 | 2015-02-12 | 日本電気硝子株式会社 | ガラスフィルムの割断方法、ガラスロールの製造方法、及びガラスフィルムの割断装置 |
| WO2012014722A1 (ja) | 2010-07-26 | 2012-02-02 | 浜松ホトニクス株式会社 | 基板加工方法 |
| CN103025478B (zh) | 2010-07-26 | 2015-09-30 | 浜松光子学株式会社 | 基板加工方法 |
| JP2012031018A (ja) | 2010-07-30 | 2012-02-16 | Asahi Glass Co Ltd | 強化ガラス基板及び強化ガラス基板の溝加工方法と強化ガラス基板の切断方法 |
| US8604380B2 (en) | 2010-08-19 | 2013-12-10 | Electro Scientific Industries, Inc. | Method and apparatus for optimally laser marking articles |
| US8584354B2 (en) | 2010-08-26 | 2013-11-19 | Corning Incorporated | Method for making glass interposer panels |
| TWI513670B (zh) | 2010-08-31 | 2015-12-21 | Corning Inc | 分離強化玻璃基板之方法 |
| TWI402228B (zh) | 2010-09-15 | 2013-07-21 | Wintek Corp | 強化玻璃切割方法、強化玻璃薄膜製程、強化玻璃切割預置結構及強化玻璃切割件 |
| TWI576320B (zh) | 2010-10-29 | 2017-04-01 | 康寧公司 | 用於裁切玻璃帶之方法與設備 |
| WO2012061304A1 (en) | 2010-11-02 | 2012-05-10 | Georgia Tech Research Corporation | Ultra-thin interposer assemblies with through vias |
| US9958750B2 (en) | 2010-11-08 | 2018-05-01 | View, Inc. | Electrochromic window fabrication methods |
| US8164818B2 (en) | 2010-11-08 | 2012-04-24 | Soladigm, Inc. | Electrochromic window fabrication methods |
| JP5617556B2 (ja) | 2010-11-22 | 2014-11-05 | 日本電気硝子株式会社 | 帯状ガラスフィルム割断装置及び帯状ガラスフィルム割断方法 |
| JP2012119098A (ja) | 2010-11-29 | 2012-06-21 | Gigaphoton Inc | 光学装置、レーザ装置および極端紫外光生成装置 |
| US8616024B2 (en) | 2010-11-30 | 2013-12-31 | Corning Incorporated | Methods for forming grooves and separating strengthened glass substrate sheets |
| JP5905899B2 (ja) | 2010-11-30 | 2016-04-20 | コーニング インコーポレイテッド | ガラスに孔の高密度アレイを形成する方法 |
| US8607590B2 (en) | 2010-11-30 | 2013-12-17 | Corning Incorporated | Methods for separating glass articles from strengthened glass substrate sheets |
| EP2457881B1 (en) | 2010-11-30 | 2019-05-08 | Corning Incorporated | Method and apparatus for bending a sheet of material into a shaped article |
| EP2649490B1 (en) | 2010-12-08 | 2018-07-11 | View, Inc. | Improved spacers for insulated glass units |
| TW201226345A (en) | 2010-12-27 | 2012-07-01 | Liefco Optical Inc | Method of cutting tempered glass |
| KR101298019B1 (ko) | 2010-12-28 | 2013-08-26 | (주)큐엠씨 | 레이저 가공 장치 |
| KR20130130769A (ko) | 2011-01-05 | 2013-12-02 | 가부시키가이샤 유키기쥬츠소고 | 빔 가공 장치 |
| WO2012096053A1 (ja) | 2011-01-11 | 2012-07-19 | 旭硝子株式会社 | 強化ガラス板の切断方法 |
| CN102248302A (zh) | 2011-01-13 | 2011-11-23 | 苏州德龙激光有限公司 | 超短脉冲激光异形切割钢化玻璃的装置及其方法 |
| JP2012159749A (ja) | 2011-02-01 | 2012-08-23 | Nichia Chem Ind Ltd | ベッセルビーム発生装置 |
| US8539794B2 (en) | 2011-02-01 | 2013-09-24 | Corning Incorporated | Strengthened glass substrate sheets and methods for fabricating glass panels from glass substrate sheets |
| US8475507B2 (en) | 2011-02-01 | 2013-07-02 | Solta Medical, Inc. | Handheld apparatus for use by a non-physician consumer to fractionally resurface the skin of the consumer |
| EP2656961A1 (en) * | 2011-02-08 | 2013-10-30 | Fujikura Ltd. | Method for manufacturing substrate having micropore, and substrate |
| US8933367B2 (en) | 2011-02-09 | 2015-01-13 | Sumitomo Electric Industries, Ltd. | Laser processing method |
| WO2012108054A1 (ja) | 2011-02-10 | 2012-08-16 | 信越ポリマー株式会社 | 単結晶基板の製造方法および内部改質層形成単結晶部材の製造方法 |
| JP5649592B2 (ja) | 2011-02-17 | 2015-01-07 | Hoya株式会社 | 携帯電子機器用カバーガラスのガラス基板の製造方法、携帯電子機器用カバーガラスのガラス基板および携帯電子機器 |
| US8584490B2 (en) | 2011-02-18 | 2013-11-19 | Corning Incorporated | Laser cutting method |
| JP5193326B2 (ja) | 2011-02-25 | 2013-05-08 | 三星ダイヤモンド工業株式会社 | 基板加工装置および基板加工方法 |
| US8776547B2 (en) | 2011-02-28 | 2014-07-15 | Corning Incorporated | Local strengthening of glass by ion exchange |
| JP2012187618A (ja) | 2011-03-11 | 2012-10-04 | V Technology Co Ltd | ガラス基板のレーザ加工装置 |
| NL2006418C2 (nl) | 2011-03-18 | 2012-09-19 | Rexnord Flattop Europe Bv | Transportsysteem, alsmede gebruik van een ten opzichte van een kunststof module binnenwaarts reikende kamer in een transportsysteem. |
| KR101927543B1 (ko) | 2011-03-31 | 2018-12-10 | 아반스트레이트 가부시키가이샤 | 유리판의 제조 방법 |
| EP2696312A4 (en) | 2011-04-07 | 2015-04-22 | Nethom | WIRELESS IDENTIFICATION LABEL, ELECTRONIC PRODUCT PCB INCLUDING THE LABEL, AND ELECTRONIC PRODUCT MANAGEMENT SYSTEM |
| US8857215B2 (en) | 2011-05-18 | 2014-10-14 | Corning Incorporated | Apparatus and method for heat treating glass sheets |
| US8986072B2 (en) | 2011-05-26 | 2015-03-24 | Corning Incorporated | Methods of finishing an edge of a glass sheet |
| US20120299219A1 (en) | 2011-05-27 | 2012-11-29 | Hamamatsu Photonics K.K. | Laser processing method |
| TWI547454B (zh) | 2011-05-31 | 2016-09-01 | 康寧公司 | 於玻璃中高速製造微孔洞的方法 |
| WO2012172960A1 (ja) | 2011-06-15 | 2012-12-20 | 旭硝子株式会社 | ガラス板の切断方法 |
| JP2013007842A (ja) | 2011-06-23 | 2013-01-10 | Toyo Seikan Kaisha Ltd | 構造体形成装置、構造体形成方法及び構造体 |
| JP5765421B2 (ja) | 2011-06-28 | 2015-08-19 | 株式会社Ihi | 脆性的な部材を切断する装置、方法、および切断された脆性的な部材 |
| TWI572480B (zh) | 2011-07-25 | 2017-03-01 | 康寧公司 | 經層壓及離子交換之強化玻璃疊層 |
| DE112012003162T5 (de) | 2011-07-29 | 2014-04-17 | Ats Automation Tooling Systems Inc. | Systeme und Verfahren zum Herstellen dünner Siliziumstäbe |
| JP5729873B2 (ja) | 2011-08-05 | 2015-06-03 | 株式会社マキタ | 集塵装置 |
| US8635887B2 (en) | 2011-08-10 | 2014-01-28 | Corning Incorporated | Methods for separating glass substrate sheets by laser-formed grooves |
| JP2013043808A (ja) | 2011-08-25 | 2013-03-04 | Asahi Glass Co Ltd | 強化ガラス板切断用保持具及び強化ガラス板の切断方法 |
| US20130047671A1 (en) | 2011-08-29 | 2013-02-28 | Jeffrey T. Kohli | Apparatus and method for forming glass sheets |
| DE112012003605T5 (de) | 2011-08-29 | 2014-06-12 | Asahi Glass Co., Ltd. | Verfahren zum Schneiden einer Glasplatte mit erhöhter Festigkeit und Vorrichtung zum Schneiden einer Glasplatte mit erhöhter Festigkeit |
| KR20140053256A (ko) | 2011-08-31 | 2014-05-07 | 아사히 가라스 가부시키가이샤 | 강화 유리판의 절단 방법 및 강화 유리판 절단 장치 |
| CN102992600B (zh) | 2011-09-09 | 2016-04-06 | Hoya株式会社 | 离子交换玻璃制品的制造方法 |
| KR101949777B1 (ko) | 2011-09-15 | 2019-02-19 | 니폰 덴키 가라스 가부시키가이샤 | 유리판 절단방법 및 유리판 절단장치 |
| US9010151B2 (en) | 2011-09-15 | 2015-04-21 | Nippon Electric Glass Co., Ltd. | Glass sheet cutting method |
| JP5861864B2 (ja) | 2011-09-15 | 2016-02-16 | 日本電気硝子株式会社 | ガラス板切断方法およびガラス板切断装置 |
| JP6063670B2 (ja) | 2011-09-16 | 2017-01-18 | 株式会社アマダホールディングス | レーザ切断加工方法及び装置 |
| WO2013043173A1 (en) | 2011-09-21 | 2013-03-28 | Raydiance, Inc. | Systems and processes that singulate materials |
| US8687932B2 (en) | 2011-09-21 | 2014-04-01 | Ofs Fitel, Llc | Optimized ultra large area optical fibers |
| US10239160B2 (en) | 2011-09-21 | 2019-03-26 | Coherent, Inc. | Systems and processes that singulate materials |
| US8768129B2 (en) | 2011-09-21 | 2014-07-01 | Ofs Fitel, Llc | Optimized ultra large area optical fibers |
| US8718431B2 (en) | 2011-09-21 | 2014-05-06 | Ofs Fitel, Llc | Optimized ultra large area optical fibers |
| JP5931389B2 (ja) | 2011-09-29 | 2016-06-08 | 川崎重工業株式会社 | 搬送システム |
| JP5864988B2 (ja) | 2011-09-30 | 2016-02-17 | 浜松ホトニクス株式会社 | 強化ガラス板切断方法 |
| FR2980859B1 (fr) | 2011-09-30 | 2013-10-11 | Commissariat Energie Atomique | Procede et dispositif de lithographie |
| DE102011084128A1 (de) | 2011-10-07 | 2013-04-11 | Schott Ag | Verfahren zum Schneiden eines Dünnglases mit spezieller Ausbildung der Kante |
| JP2013091578A (ja) | 2011-10-25 | 2013-05-16 | Mitsuboshi Diamond Industrial Co Ltd | ガラス基板のスクライブ方法 |
| KR20130049080A (ko) | 2011-11-03 | 2013-05-13 | 삼성디스플레이 주식회사 | 회전식 박막 증착 장치 및 그것을 이용한 박막 증착 방법 |
| KR101269474B1 (ko) | 2011-11-09 | 2013-05-30 | 주식회사 모린스 | 강화글라스 절단 방법 |
| US20130129947A1 (en) | 2011-11-18 | 2013-05-23 | Daniel Ralph Harvey | Glass article having high damage resistance |
| US8677783B2 (en) | 2011-11-28 | 2014-03-25 | Corning Incorporated | Method for low energy separation of a glass ribbon |
| US8666214B2 (en) | 2011-11-30 | 2014-03-04 | Corning Incorporated | Low bend loss optical fiber |
| JP5963038B2 (ja) | 2011-12-05 | 2016-08-03 | 株式会社リコー | 穿孔装置、用紙処理装置及び画像形成装置 |
| WO2013084879A1 (ja) | 2011-12-07 | 2013-06-13 | 旭硝子株式会社 | 強化ガラス板の切断方法、及び強化ガラス板切断装置 |
| WO2013084877A1 (ja) | 2011-12-07 | 2013-06-13 | 旭硝子株式会社 | 強化ガラス板の切断方法、および強化ガラス板切断装置 |
| KR20130065051A (ko) | 2011-12-09 | 2013-06-19 | 삼성코닝정밀소재 주식회사 | 강화 글라스의 절단 방법 및 이를 이용한 터치스크린패널의 제조방법 |
| CN103732549A (zh) | 2011-12-12 | 2014-04-16 | 日本电气硝子株式会社 | 平板玻璃的切割分离方法、及平板玻璃的切割分离装置 |
| CN103635438B (zh) | 2011-12-12 | 2016-08-17 | 日本电气硝子株式会社 | 平板玻璃的切割分离方法 |
| US8724937B2 (en) | 2011-12-20 | 2014-05-13 | International Business Machines Corporation | Fiber to wafer interface |
| JP5910075B2 (ja) | 2011-12-27 | 2016-04-27 | 三星ダイヤモンド工業株式会社 | 被加工物の加工方法 |
| JP5887929B2 (ja) | 2011-12-28 | 2016-03-16 | 三星ダイヤモンド工業株式会社 | 被加工物の分断方法および光学素子パターン付き基板の分断方法 |
| CN103182894A (zh) | 2011-12-29 | 2013-07-03 | 深圳富泰宏精密工业有限公司 | 玻璃件及其制作方法 |
| JP2013152986A (ja) | 2012-01-24 | 2013-08-08 | Disco Abrasive Syst Ltd | ウエーハの加工方法 |
| JP5685208B2 (ja) | 2012-01-24 | 2015-03-18 | 株式会社日立製作所 | 薄板用熱間圧延機の制御装置および薄板用熱間圧延機の制御方法 |
| JP5964607B2 (ja) | 2012-02-14 | 2016-08-03 | 株式会社カネカ | 剥離層付き支持体、基板構造、および電子デバイスの製造方法 |
| US20130222877A1 (en) | 2012-02-28 | 2013-08-29 | Sage Electrochromics, Inc. | Multi-zone electrochromic devices |
| WO2013130581A1 (en) | 2012-02-28 | 2013-09-06 | Electro Scientific Industries, Inc. | Method and apparatus for separation of strengthened glass and articles produced thereby |
| US9895771B2 (en) | 2012-02-28 | 2018-02-20 | General Lasertronics Corporation | Laser ablation for the environmentally beneficial removal of surface coatings |
| US10357850B2 (en) | 2012-09-24 | 2019-07-23 | Electro Scientific Industries, Inc. | Method and apparatus for machining a workpiece |
| CN104136967B (zh) | 2012-02-28 | 2018-02-16 | 伊雷克托科学工业股份有限公司 | 用于分离增强玻璃的方法及装置及由该增强玻璃生产的物品 |
| CN104114506B (zh) | 2012-02-29 | 2017-05-24 | 伊雷克托科学工业股份有限公司 | 加工强化玻璃的方法和装置及藉此制造的物品 |
| US9082764B2 (en) | 2012-03-05 | 2015-07-14 | Corning Incorporated | Three-dimensional integrated circuit which incorporates a glass interposer and method for fabricating the same |
| JP2013187247A (ja) | 2012-03-06 | 2013-09-19 | Nippon Hoso Kyokai <Nhk> | インターポーザおよびその製造方法 |
| US9341912B2 (en) | 2012-03-13 | 2016-05-17 | View, Inc. | Multi-zone EC windows |
| TW201343296A (zh) | 2012-03-16 | 2013-11-01 | Ipg Microsystems Llc | 使一工件中具有延伸深度虛飾之雷射切割系統及方法 |
| JP5964626B2 (ja) | 2012-03-22 | 2016-08-03 | 株式会社Screenホールディングス | 熱処理装置 |
| JP2013203630A (ja) | 2012-03-29 | 2013-10-07 | Asahi Glass Co Ltd | 強化ガラス板の切断方法 |
| JP2013203631A (ja) | 2012-03-29 | 2013-10-07 | Asahi Glass Co Ltd | 強化ガラス板の切断方法、及び強化ガラス板切断装置 |
| TW201339111A (zh) | 2012-03-29 | 2013-10-01 | Global Display Co Ltd | 強化玻璃的切割方法 |
| CN104661787A (zh) | 2012-04-05 | 2015-05-27 | Sage电致变色显示有限公司 | 用于电变色装置制造的热激光划线切割方法和设备及相应的切割玻璃面板 |
| JP2013216513A (ja) | 2012-04-05 | 2013-10-24 | Nippon Electric Glass Co Ltd | ガラスフィルムの切断方法及びガラスフィルム積層体 |
| JP2015120604A (ja) | 2012-04-06 | 2015-07-02 | 旭硝子株式会社 | 強化ガラス板の切断方法、及び強化ガラス板切断システム |
| FR2989294B1 (fr) | 2012-04-13 | 2022-10-14 | Centre Nat Rech Scient | Dispositif et methode de nano-usinage par laser |
| US20130288010A1 (en) | 2012-04-27 | 2013-10-31 | Ravindra Kumar Akarapu | Strengthened glass article having shaped edge and method of making |
| KR20130124646A (ko) | 2012-05-07 | 2013-11-15 | 주식회사 엠엠테크 | 강화 유리 절단 방법 |
| US9365446B2 (en) | 2012-05-14 | 2016-06-14 | Richard Green | Systems and methods for altering stress profiles of glass |
| CN102672355B (zh) | 2012-05-18 | 2015-05-13 | 杭州士兰明芯科技有限公司 | Led衬底的划片方法 |
| DE102012010635B4 (de) | 2012-05-18 | 2022-04-07 | Leibniz-Institut für Oberflächenmodifizierung e.V. | Verfahren zur 3D-Strukturierung und Formgebung von Oberflächen aus harten, spröden und optischen Materialien |
| JP6009225B2 (ja) | 2012-05-29 | 2016-10-19 | 浜松ホトニクス株式会社 | 強化ガラス板の切断方法 |
| FR2991214B1 (fr) | 2012-06-01 | 2014-06-13 | Snecma | Procede de percage d'une piece par impulsions laser |
| US9938180B2 (en) | 2012-06-05 | 2018-04-10 | Corning Incorporated | Methods of cutting glass using a laser |
| JP6022223B2 (ja) | 2012-06-14 | 2016-11-09 | 株式会社ディスコ | レーザー加工装置 |
| JP5991860B2 (ja) | 2012-06-19 | 2016-09-14 | 三星ダイヤモンド工業株式会社 | ガラス基板の加工方法 |
| US20130344684A1 (en) | 2012-06-20 | 2013-12-26 | Stuart Bowden | Methods and systems for using subsurface laser engraving (ssle) to create one or more wafers from a material |
| WO2014010490A1 (ja) | 2012-07-09 | 2014-01-16 | 旭硝子株式会社 | 強化ガラス板の切断方法 |
| AT13206U1 (de) | 2012-07-17 | 2013-08-15 | Lisec Maschb Gmbh | Verfahren und Anordnung zum Teilen von Flachglas |
| US9462632B2 (en) | 2012-07-17 | 2016-10-04 | Qualcomm Incorporated | Concurrent data streaming using various parameters from the same sensor |
| TW201417928A (zh) | 2012-07-30 | 2014-05-16 | Raydiance Inc | 具訂製邊形及粗糙度之脆性材料切割 |
| US8842358B2 (en) | 2012-08-01 | 2014-09-23 | Gentex Corporation | Apparatus, method, and process with laser induced channel edge |
| KR101395054B1 (ko) | 2012-08-08 | 2014-05-14 | 삼성코닝정밀소재 주식회사 | 강화유리 커팅 방법 및 강화유리 커팅용 스테이지 |
| KR20140022981A (ko) | 2012-08-14 | 2014-02-26 | (주)하드램 | 기판 에지 보호유닛을 포함한 강화유리 레이저 절단 장치 및 방법 |
| KR20140022980A (ko) | 2012-08-14 | 2014-02-26 | (주)하드램 | 강화유리 레이저 절단 장치 및 방법 |
| US9446590B2 (en) | 2012-08-16 | 2016-09-20 | Hewlett-Packard Development Company, L.P. | Diagonal openings in photodefinable glass |
| US20140047957A1 (en) | 2012-08-17 | 2014-02-20 | Jih Chun Wu | Robust Torque-Indicating Wrench |
| JP5727433B2 (ja) | 2012-09-04 | 2015-06-03 | イムラ アメリカ インコーポレイテッド | 超短パルスレーザでの透明材料処理 |
| CN102923939B (zh) | 2012-09-17 | 2015-03-25 | 江西沃格光电股份有限公司 | 强化玻璃的切割方法 |
| CN102898014A (zh) | 2012-09-29 | 2013-01-30 | 江苏太平洋石英股份有限公司 | 无接触激光切割石英玻璃制品的方法及其装置 |
| US9227886B2 (en) | 2012-10-12 | 2016-01-05 | Exxonmobil Chemical Patents Inc. | Polymerization process |
| CN102916081B (zh) | 2012-10-19 | 2015-07-08 | 张立国 | 一种薄膜太阳能电池的清边方法 |
| LT6046B (lt) | 2012-10-22 | 2014-06-25 | Uab "Lidaris" | Justiruojamų optinių laikiklių pakeitimo įrenginys ir sistema, turinti tokių įrenginių |
| US20140110040A1 (en) | 2012-10-23 | 2014-04-24 | Ronald Steven Cok | Imprinted micro-louver structure method |
| DE102012110971B4 (de) | 2012-11-14 | 2025-03-20 | Schott Ag | Verfahren zur Herstellung von linienförmig aufgereihten Schädigungsstellen in einem transparenten Werkstück sowie Verfahren und Vorrichtung zum Trennen eines Werkstücks |
| US9991090B2 (en) | 2012-11-15 | 2018-06-05 | Fei Company | Dual laser beam system used with an electron microscope and FIB |
| KR20140064220A (ko) | 2012-11-20 | 2014-05-28 | 에스케이씨 주식회사 | 보안필름의 제조방법 |
| WO2014079478A1 (en) | 2012-11-20 | 2014-05-30 | Light In Light Srl | High speed laser processing of transparent materials |
| KR20150109339A (ko) | 2012-11-21 | 2015-10-01 | 넥세온 에너지 솔루션즈 엘엘씨 | 에너지 효율화 필름 |
| JP2014104484A (ja) | 2012-11-27 | 2014-06-09 | Disco Abrasive Syst Ltd | レーザー加工装置 |
| CN102962583A (zh) | 2012-11-28 | 2013-03-13 | 江苏大学 | 一种基于激光加热的塑料件微结构成形方法和装置 |
| US9758876B2 (en) | 2012-11-29 | 2017-09-12 | Corning Incorporated | Sacrificial cover layers for laser drilling substrates and methods thereof |
| US9346706B2 (en) | 2012-11-29 | 2016-05-24 | Corning Incorporated | Methods of fabricating glass articles by laser damage and etching |
| JP6054161B2 (ja) | 2012-12-13 | 2016-12-27 | 株式会社ディスコ | レーザ加工方法 |
| RU2539970C2 (ru) | 2012-12-17 | 2015-01-27 | Общество с ограниченной ответственностью "РнД-ИСАН" | Источник света с лазерной накачкой и способ генерации излучения |
| CN203021443U (zh) | 2012-12-24 | 2013-06-26 | 深圳大宇精雕科技有限公司 | 玻璃板水射流切割机 |
| CN103013374B (zh) | 2012-12-28 | 2014-03-26 | 吉林大学 | 仿生防粘疏水疏油贴膜 |
| EP2750447A1 (en) | 2012-12-28 | 2014-07-02 | Alcatel Lucent | Neighboring cell selection for an user equipment using a content delivery service in a mobile network |
| US9595283B2 (en) | 2012-12-29 | 2017-03-14 | Hoya Corporation | Glass substrate for magnetic disk and magnetic disk |
| EP2754524B1 (de) | 2013-01-15 | 2015-11-25 | Corning Laser Technologies GmbH | Verfahren und Vorrichtung zum laserbasierten Bearbeiten von flächigen Substraten, d.h. Wafer oder Glaselement, unter Verwendung einer Laserstrahlbrennlinie |
| JP2016513016A (ja) | 2013-02-04 | 2016-05-12 | ニューポート コーポレーション | 透明及び半透明な基板をレーザ切断する方法及び装置 |
| JP6801846B2 (ja) * | 2013-02-05 | 2020-12-16 | マサチューセッツ インスティテュート オブ テクノロジー | 3dホログラフィックイメージングフローサイトメトリ |
| US9498920B2 (en) | 2013-02-12 | 2016-11-22 | Carbon3D, Inc. | Method and apparatus for three-dimensional fabrication |
| JP2014156289A (ja) | 2013-02-14 | 2014-08-28 | Mitsubishi Electric Building Techno Service Co Ltd | エレベータの主ロープ点検方法 |
| US9919380B2 (en) | 2013-02-23 | 2018-03-20 | Coherent, Inc. | Shaping of brittle materials with controlled surface and bulk properties |
| CN105339316B (zh) | 2013-02-25 | 2018-11-09 | 康宁股份有限公司 | 制造薄玻璃块的方法 |
| DE102013003118B4 (de) | 2013-02-25 | 2015-03-26 | Jenoptik Automatisierungstechnik Gmbh | Verfahren zum Entsorgen von einem bei einem Lochungsvorgang eines Hohlprofils enstehenden Butzens |
| CN105164581B (zh) | 2013-03-08 | 2020-05-01 | Sage电致变色显示有限公司 | 具有多个独立可控区域和内部母线的电致变色器件 |
| US10179952B2 (en) | 2013-03-08 | 2019-01-15 | Rutgers, The State University Of New Jersey | Patterned thin films by thermally induced mass displacement |
| CN103143841B (zh) | 2013-03-08 | 2014-11-26 | 西北工业大学 | 一种利用皮秒激光加工孔的方法 |
| KR102209964B1 (ko) | 2013-03-13 | 2021-02-02 | 삼성디스플레이 주식회사 | 피코초 레이저 가공 장치 |
| WO2014144322A1 (en) | 2013-03-15 | 2014-09-18 | Kinestral Technologies, Inc. | Laser cutting strengthened glass |
| JP6061193B2 (ja) | 2013-03-18 | 2017-01-18 | 大日本印刷株式会社 | ブランクのストリッパ機構 |
| EP2781296B1 (de) | 2013-03-21 | 2020-10-21 | Corning Laser Technologies GmbH | Vorrichtung und verfahren zum ausschneiden von konturen aus flächigen substraten mittels laser |
| SG11201508042PA (en) | 2013-03-27 | 2015-10-29 | Sumitomo Seika Chemicals | Water-absorbent resin composition production method |
| JP6059059B2 (ja) | 2013-03-28 | 2017-01-11 | 浜松ホトニクス株式会社 | レーザ加工方法 |
| CN105102177B (zh) | 2013-04-04 | 2018-02-27 | Lpkf激光电子股份公司 | 在基板上引入穿孔的方法和装置以及以这种方式制造的基板 |
| ES2959429T3 (es) | 2013-04-04 | 2024-02-26 | Lpkf Laser & Electronics Se | Procedimiento para la separación de un sustrato |
| DE102013103370A1 (de) | 2013-04-04 | 2014-10-09 | Lpkf Laser & Electronics Ag | Verfahren zum Einbringen von Durchbrechungen in ein Glassubstrat sowie ein derart hergestelltes Glassubstrat |
| US10190363B2 (en) | 2013-04-10 | 2019-01-29 | Cardinal Ig Company | Multilayer film with electrically switchable optical properties |
| CN103224117B (zh) | 2013-05-10 | 2016-02-03 | 深圳市华星光电技术有限公司 | 一种自动反馈调节碎玻璃传送张力的系统 |
| CN103273195B (zh) | 2013-05-28 | 2015-03-04 | 江苏大学 | 激光间接冲击下金属薄板的微冲裁自动化装置及其方法 |
| CN103316990B (zh) | 2013-05-28 | 2015-06-10 | 江苏大学 | 脉冲激光驱动飞片加载薄板的微冲裁自动化装置及其方法 |
| US9365413B2 (en) | 2013-05-29 | 2016-06-14 | Freescale Semiconductor, Inc. | Transducer-including devices, and methods and apparatus for their calibration |
| RU2019101249A (ru) | 2013-06-18 | 2019-03-05 | Вью, Инк. | Электрохромные устройства непрямоугольных форм |
| US9776891B2 (en) | 2013-06-26 | 2017-10-03 | Corning Incorporated | Filter and methods for heavy metal remediation of water |
| KR101344368B1 (ko) | 2013-07-08 | 2013-12-24 | 정우라이팅 주식회사 | 수직형 유리관 레이저 절단장치 |
| CN103359948A (zh) | 2013-07-12 | 2013-10-23 | 深圳南玻伟光导电膜有限公司 | 钢化玻璃的切割方法 |
| KR20150009153A (ko) | 2013-07-16 | 2015-01-26 | 동우 화인켐 주식회사 | 강화처리된 유리의 홀 형성 방법 |
| US9102011B2 (en) | 2013-08-02 | 2015-08-11 | Rofin-Sinar Technologies Inc. | Method and apparatus for non-ablative, photoacoustic compression machining in transparent materials using filamentation by burst ultrafast laser pulses |
| US9102007B2 (en) | 2013-08-02 | 2015-08-11 | Rofin-Sinar Technologies Inc. | Method and apparatus for performing laser filamentation within transparent materials |
| US9790128B2 (en) | 2013-08-07 | 2017-10-17 | Corning Incorporated | Laser controlled ion exchange process and glass articles formed therefrom |
| US9296646B2 (en) | 2013-08-29 | 2016-03-29 | Corning Incorporated | Methods for forming vias in glass substrates |
| TWI618131B (zh) | 2013-08-30 | 2018-03-11 | 半導體能源研究所股份有限公司 | 剝離起點形成裝置及形成方法、疊層體製造裝置 |
| PL3041804T3 (pl) | 2013-09-04 | 2017-09-29 | Saint-Gobain Glass France | Sposób produkcji szyby z powłoką przewodzącą prąd elektryczny z elektrycznie odizolowanymi defektami |
| CN203509350U (zh) | 2013-09-27 | 2014-04-02 | 东莞市盛雄激光设备有限公司 | 皮秒激光加工装置 |
| CN103531414B (zh) | 2013-10-14 | 2016-03-02 | 南京三乐电子信息产业集团有限公司 | 一种栅控行波管栅网的皮秒脉冲激光切割制备方法 |
| US10017410B2 (en) | 2013-10-25 | 2018-07-10 | Rofin-Sinar Technologies Llc | Method of fabricating a glass magnetic hard drive disk platter using filamentation by burst ultrafast laser pulses |
| US20150122656A1 (en) | 2013-11-04 | 2015-05-07 | Rofin-Sinar Technologies Inc. | Mass based filtration devices and method of fabrication using bursts of ultrafast laser pulses |
| US20150121960A1 (en) | 2013-11-04 | 2015-05-07 | Rofin-Sinar Technologies Inc. | Method and apparatus for machining diamonds and gemstones using filamentation by burst ultrafast laser pulses |
| US10005152B2 (en) | 2013-11-19 | 2018-06-26 | Rofin-Sinar Technologies Llc | Method and apparatus for spiral cutting a glass tube using filamentation by burst ultrafast laser pulses |
| US9517929B2 (en) | 2013-11-19 | 2016-12-13 | Rofin-Sinar Technologies Inc. | Method of fabricating electromechanical microchips with a burst ultrafast laser pulses |
| US11053156B2 (en) | 2013-11-19 | 2021-07-06 | Rofin-Sinar Technologies Llc | Method of closed form release for brittle materials using burst ultrafast laser pulses |
| DE102013223637B4 (de) | 2013-11-20 | 2018-02-01 | Trumpf Laser- Und Systemtechnik Gmbh | Verfahren zum Behandeln eines lasertransparenten Substrats zum anschließenden Trennen des Substrats |
| JP2017501951A (ja) | 2013-11-25 | 2017-01-19 | コーニング インコーポレイテッド | 実質的に柱面を成す鏡面反射面の形状を決定するための方法 |
| WO2015079613A1 (ja) | 2013-11-29 | 2015-06-04 | パナソニックIpマネジメント株式会社 | 塗料組成物及び該塗料組成物を用いた光拡散部材 |
| US10144088B2 (en) | 2013-12-03 | 2018-12-04 | Rofin-Sinar Technologies Llc | Method and apparatus for laser processing of silicon by filamentation of burst ultrafast laser pulses |
| CN103746027B (zh) | 2013-12-11 | 2015-12-09 | 西安交通大学 | 一种在ito导电薄膜表面刻蚀极细电隔离槽的方法 |
| US9687936B2 (en) | 2013-12-17 | 2017-06-27 | Corning Incorporated | Transparent material cutting with ultrafast laser and beam optics |
| US9815730B2 (en) | 2013-12-17 | 2017-11-14 | Corning Incorporated | Processing 3D shaped transparent brittle substrate |
| US9676167B2 (en) | 2013-12-17 | 2017-06-13 | Corning Incorporated | Laser processing of sapphire substrate and related applications |
| US20150165560A1 (en) | 2013-12-17 | 2015-06-18 | Corning Incorporated | Laser processing of slots and holes |
| US9701563B2 (en) | 2013-12-17 | 2017-07-11 | Corning Incorporated | Laser cut composite glass article and method of cutting |
| US9850160B2 (en) | 2013-12-17 | 2017-12-26 | Corning Incorporated | Laser cutting of display glass compositions |
| US20150165563A1 (en) | 2013-12-17 | 2015-06-18 | Corning Incorporated | Stacked transparent material cutting with ultrafast laser beam optics, disruptive layers and other layers |
| US9713799B2 (en) | 2013-12-17 | 2017-07-25 | Bayer Cropscience Lp | Mixing systems, methods, and devices with extendible impellers |
| US20150166393A1 (en) | 2013-12-17 | 2015-06-18 | Corning Incorporated | Laser cutting of ion-exchangeable glass substrates |
| US9517963B2 (en) | 2013-12-17 | 2016-12-13 | Corning Incorporated | Method for rapid laser drilling of holes in glass and products made therefrom |
| US10442719B2 (en) | 2013-12-17 | 2019-10-15 | Corning Incorporated | Edge chamfering methods |
| US20160311717A1 (en) | 2013-12-17 | 2016-10-27 | Corning Incorporated | 3-d forming of glass |
| CN103831539B (zh) | 2014-01-10 | 2016-01-20 | 合肥鑫晟光电科技有限公司 | 激光打孔方法及激光打孔系统 |
| JP6390961B2 (ja) | 2014-01-28 | 2018-09-19 | 株式会社リコー | 書込ヘッドユニットの組立装置および書込ヘッドユニットの組立方法 |
| DE102014201739B4 (de) | 2014-01-31 | 2021-08-12 | Trumpf Laser- Und Systemtechnik Gmbh | Laserbearbeitungsvorrichtung sowie Verfahren zum Erzeugen zweier Teilstrahlen |
| WO2015127583A1 (en) | 2014-02-25 | 2015-09-03 | Schott Ag | Chemically toughened glass article with low coefficient of thermal expansion |
| EP2913137A1 (de) | 2014-02-26 | 2015-09-02 | Bystronic Laser AG | Laserbearbeitungsvorrichtung und Verfahren |
| BR112016019541B1 (pt) | 2014-03-04 | 2021-12-14 | Saint-Gobain Glass France | Método para corte de uma camada de vidro ultrafina laminada |
| US11780029B2 (en) | 2014-03-05 | 2023-10-10 | Panasonic Connect North America, division of Panasonic Corporation of North America | Material processing utilizing a laser having a variable beam shape |
| US11204506B2 (en) | 2014-03-05 | 2021-12-21 | TeraDiode, Inc. | Polarization-adjusted and shape-adjusted beam operation for materials processing |
| US20150352671A1 (en) | 2014-06-09 | 2015-12-10 | GM Global Technology Operations LLC | Laser cutting same side slug removal |
| EP3158390B1 (en) | 2014-06-17 | 2023-01-18 | Sage Electrochromics, Inc. | Moisture resistant electrochromic device |
| US9933682B2 (en) | 2014-06-17 | 2018-04-03 | Sage Electrochromics, Inc. | Controlled switching for electrochromic devices |
| KR102445217B1 (ko) | 2014-07-08 | 2022-09-20 | 코닝 인코포레이티드 | 재료를 레이저 가공하는 방법 및 장치 |
| LT2965853T (lt) | 2014-07-09 | 2016-11-25 | High Q Laser Gmbh | Medžiagos apdorojimas, naudojant pailgintuosius lazerio spindulius |
| MX2017000440A (es) | 2014-07-11 | 2017-08-16 | Corning Inc | Sistemas y metodos para cortado de vidrio al inducir perforaciones por láser pulsado en artículos de vidrio. |
| WO2016010991A1 (en) | 2014-07-14 | 2016-01-21 | Corning Incorporated | Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block |
| TWI659793B (zh) | 2014-07-14 | 2019-05-21 | 美商康寧公司 | 用於使用可調整雷射束焦線來處理透明材料的系統及方法 |
| US9617180B2 (en) | 2014-07-14 | 2017-04-11 | Corning Incorporated | Methods and apparatuses for fabricating glass articles |
| US20160009066A1 (en) | 2014-07-14 | 2016-01-14 | Corning Incorporated | System and method for cutting laminated structures |
| DE102014213775B4 (de) | 2014-07-15 | 2018-02-15 | Innolas Solutions Gmbh | Verfahren und Vorrichtung zum laserbasierten Bearbeiten von flächigen, kristallinen Substraten, insbesondere von Halbleitersubstraten |
| US9757815B2 (en) | 2014-07-21 | 2017-09-12 | Rofin-Sinar Technologies Inc. | Method and apparatus for performing laser curved filamentation within transparent materials |
| DE102014110920C5 (de) | 2014-07-31 | 2023-08-03 | Schott Ag | Geformter Glasartikel mit vorbestimmter Geometrie |
| CN104344202A (zh) | 2014-09-26 | 2015-02-11 | 张玉芬 | 一种有孔玻璃 |
| KR102138964B1 (ko) | 2014-11-19 | 2020-07-28 | 트룸프 레이저-운트 시스템테크닉 게엠베하 | 비대칭 광학 빔 정형을 위한 시스템 |
| DE102014116958B9 (de) | 2014-11-19 | 2017-10-05 | Trumpf Laser- Und Systemtechnik Gmbh | Optisches System zur Strahlformung eines Laserstrahls, Laserbearbeitungsanlage, Verfahren zur Materialbearbeitung und Verwenden einer gemeinsamen langgezogenen Fokuszone zur Lasermaterialbearbeitung |
| US9740063B2 (en) | 2014-11-28 | 2017-08-22 | Japan Display Inc. | Reflective type liquid crystal display device |
| US9873628B1 (en) | 2014-12-02 | 2018-01-23 | Coherent Kaiserslautern GmbH | Filamentary cutting of brittle materials using a picosecond pulsed laser |
| US10047001B2 (en) | 2014-12-04 | 2018-08-14 | Corning Incorporated | Glass cutting systems and methods using non-diffracting laser beams |
| US10900885B2 (en) | 2014-12-19 | 2021-01-26 | Captl Llc | Flow cytometry using hydrodynamically planar flow |
| JP6005125B2 (ja) | 2014-12-22 | 2016-10-12 | イムラ アメリカ インコーポレイテッド | 超短パルスレーザでの透明材料処理 |
| FR3031102B1 (fr) | 2014-12-31 | 2017-01-27 | Saint Gobain | Procede de rompage d'une forme interieure dans une feuille de verre |
| EP3848334A1 (en) | 2015-03-24 | 2021-07-14 | Corning Incorporated | Alkaline earth boro-aluminosilicate glass article with laser cut edge |
| WO2016160391A1 (en) | 2015-03-27 | 2016-10-06 | Corning Incorporated | Gas permeable window and method of fabricating the same |
| US9477037B1 (en) | 2015-04-22 | 2016-10-25 | Corning Incorporated | Optical fiber for silicon photonics |
| KR20170006900A (ko) | 2015-07-10 | 2017-01-18 | 삼성전자주식회사 | 성형장치 및 이를 이용한 성형방법 |
| DE102015111490A1 (de) | 2015-07-15 | 2017-01-19 | Schott Ag | Verfahren und Vorrichtung zum lasergestützten Abtrennen eines Teilstücks von einem flächigen Glaselement |
| MX2018001587A (es) | 2015-08-10 | 2018-05-22 | Saint Gobain | Metodo para cortar una capa delgada de vidrio. |
| CN105081564B (zh) | 2015-08-31 | 2017-03-29 | 大族激光科技产业集团股份有限公司 | 一种强化玻璃内形孔的加工方法 |
| CN107922259B (zh) | 2015-09-04 | 2021-05-07 | Agc株式会社 | 玻璃板的制造方法、玻璃板、玻璃物品的制造方法、玻璃物品以及玻璃物品的制造装置 |
| WO2017091529A1 (en) | 2015-11-25 | 2017-06-01 | Corning Incorporated | Methods of separating a glass web |
| DE102015120950B4 (de) | 2015-12-02 | 2022-03-03 | Schott Ag | Verfahren zum lasergestützten Ablösen eines Teilstücks von einem flächigen Glas- oder Glaskeramikelement, flächiges zumindest teilweise keramisiertes Glaselement oder Glaskeramikelement und Kochfläche umfassend ein flächiges Glas- oder Glaskeramikelement |
| US20170197868A1 (en) | 2016-01-08 | 2017-07-13 | Apple Inc. | Laser Processing of Electronic Device Structures |
| DE102016102768A1 (de) | 2016-02-17 | 2017-08-17 | Schott Ag | Verfahren zur Kantenbearbeitung von Glaselementen und verfahrensgemäß bearbeitetes Glaselement |
| CN109803934A (zh) | 2016-07-29 | 2019-05-24 | 康宁股份有限公司 | 用于激光处理的装置和方法 |
| WO2018044843A1 (en) | 2016-08-30 | 2018-03-08 | Corning Incorporated | Laser processing of transparent materials |
| NL2017998B1 (en) | 2016-12-14 | 2018-06-26 | Corning Inc | Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots |
| CN109803786B (zh) | 2016-09-30 | 2021-05-07 | 康宁股份有限公司 | 使用非轴对称束斑对透明工件进行激光加工的设备和方法 |
| LT3311947T (lt) | 2016-09-30 | 2019-12-27 | Corning Incorporated | Skaidrių ruošinių lazerinio apdirbimo, naudojant spindulių pluošto dėmes be simetrijos ašių, būdas |
| US20180118602A1 (en) | 2016-11-01 | 2018-05-03 | Corning Incorporated | Glass sheet transfer apparatuses for laser-based machining of sheet-like glass substrates |
| US10668561B2 (en) | 2016-11-15 | 2020-06-02 | Coherent, Inc. | Laser apparatus for cutting brittle material |
| KR102270125B1 (ko) | 2017-04-13 | 2021-06-25 | 시노라 게엠베하 | 유기 분자, 특히 광전자 장치에 사용하기 위한 유기 분자 |
-
2013
- 2013-01-15 EP EP13151296.4A patent/EP2754524B1/de active Active
-
2014
- 2014-01-14 US US14/761,275 patent/US11028003B2/en active Active
- 2014-01-14 EP EP14705210.4A patent/EP2945770B1/en active Active
- 2014-01-14 KR KR1020157022066A patent/KR102165804B1/ko active Active
- 2014-01-14 CN CN201480008674.4A patent/CN106170365A/zh active Pending
- 2014-01-14 US US14/154,525 patent/US10421683B2/en active Active
- 2014-01-14 JP JP2015553060A patent/JP6496248B2/ja active Active
- 2014-01-14 CA CA2898256A patent/CA2898256A1/en not_active Abandoned
- 2014-01-14 TW TW103101310A patent/TWI639479B/zh active
- 2014-01-14 JP JP2015553188A patent/JP6422033B2/ja active Active
- 2014-01-14 KR KR1020157022064A patent/KR102230762B1/ko active Active
- 2014-01-14 EP EP14700411.3A patent/EP2945769B1/de active Active
- 2014-01-14 WO PCT/EP2014/050610 patent/WO2014111385A1/de not_active Ceased
- 2014-01-14 CA CA2898371A patent/CA2898371A1/en not_active Abandoned
- 2014-01-14 LT LTEP14700411.3T patent/LT2945769T/lt unknown
- 2014-01-14 LT LTEP14705210.4T patent/LT2945770T/lt unknown
- 2014-01-14 WO PCT/IB2014/000035 patent/WO2014111794A1/en not_active Ceased
- 2014-01-14 CN CN201480009759.4A patent/CN105209218B/zh active Active
- 2014-01-15 TW TW103101361A patent/TWI630969B/zh active
-
2018
- 2018-10-04 JP JP2018188881A patent/JP2019034343A/ja active Pending
-
2019
- 2019-07-31 US US16/527,986 patent/US11345625B2/en active Active
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050024743A1 (en) * | 2003-05-22 | 2005-02-03 | Frederic Camy-Peyret | Focusing optic for laser cutting |
| US20050098548A1 (en) * | 2003-11-06 | 2005-05-12 | Satoshi Kobayashi | Processing apparatus using laser beam |
| WO2012006736A2 (en) * | 2010-07-12 | 2012-01-19 | Filaser Inc. | Method of material processing by laser filamentation |
| WO2012108052A1 (ja) * | 2011-02-10 | 2012-08-16 | 信越ポリマー株式会社 | 単結晶基板製造方法および内部改質層形成単結晶部材 |
| DE102011000768A1 (de) | 2011-02-16 | 2012-08-16 | Ewag Ag | Laserbearbeitungsvorrichtung mit umschaltbarer Laseranordnung und Laserbearbeitungsverfahren |
| KR101120471B1 (ko) * | 2011-08-05 | 2012-03-05 | (주)지엘코어 | 다중 초점 방식의 펄스 레이저를 이용한 취성 재료 절단 장치 |
Cited By (77)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10399184B2 (en) | 2010-07-12 | 2019-09-03 | Rofin-Sinar Technologies Llc | Method of material processing by laser filamentation |
| US10421683B2 (en) | 2013-01-15 | 2019-09-24 | Corning Laser Technologies GmbH | Method and device for the laser-based machining of sheet-like substrates |
| US11028003B2 (en) | 2013-01-15 | 2021-06-08 | Corning Laser Technologies GmbH | Method and device for laser-based machining of flat substrates |
| US11345625B2 (en) | 2013-01-15 | 2022-05-31 | Corning Laser Technologies GmbH | Method and device for the laser-based machining of sheet-like substrates |
| US9701564B2 (en) | 2013-01-15 | 2017-07-11 | Corning Incorporated | Systems and methods of glass cutting by inducing pulsed laser perforations into glass articles |
| US10280108B2 (en) | 2013-03-21 | 2019-05-07 | Corning Laser Technologies GmbH | Device and method for cutting out contours from planar substrates by means of laser |
| US11713271B2 (en) | 2013-03-21 | 2023-08-01 | Corning Laser Technologies GmbH | Device and method for cutting out contours from planar substrates by means of laser |
| US10376986B2 (en) | 2013-08-02 | 2019-08-13 | Rofin-Sinar Technologies Llc | Method and apparatus for hybrid photoacoustic compression machining in transparent materials using filamentation by burst ultrafast laser pulses |
| US10017410B2 (en) | 2013-10-25 | 2018-07-10 | Rofin-Sinar Technologies Llc | Method of fabricating a glass magnetic hard drive disk platter using filamentation by burst ultrafast laser pulses |
| US11053156B2 (en) | 2013-11-19 | 2021-07-06 | Rofin-Sinar Technologies Llc | Method of closed form release for brittle materials using burst ultrafast laser pulses |
| US9517929B2 (en) | 2013-11-19 | 2016-12-13 | Rofin-Sinar Technologies Inc. | Method of fabricating electromechanical microchips with a burst ultrafast laser pulses |
| US10252507B2 (en) | 2013-11-19 | 2019-04-09 | Rofin-Sinar Technologies Llc | Method and apparatus for forward deposition of material onto a substrate using burst ultrafast laser pulse energy |
| US10005152B2 (en) | 2013-11-19 | 2018-06-26 | Rofin-Sinar Technologies Llc | Method and apparatus for spiral cutting a glass tube using filamentation by burst ultrafast laser pulses |
| US10144088B2 (en) | 2013-12-03 | 2018-12-04 | Rofin-Sinar Technologies Llc | Method and apparatus for laser processing of silicon by filamentation of burst ultrafast laser pulses |
| US9687936B2 (en) | 2013-12-17 | 2017-06-27 | Corning Incorporated | Transparent material cutting with ultrafast laser and beam optics |
| US10173916B2 (en) | 2013-12-17 | 2019-01-08 | Corning Incorporated | Edge chamfering by mechanically processing laser cut glass |
| US10597321B2 (en) | 2013-12-17 | 2020-03-24 | Corning Incorporated | Edge chamfering methods |
| US9850160B2 (en) | 2013-12-17 | 2017-12-26 | Corning Incorporated | Laser cutting of display glass compositions |
| US10442719B2 (en) | 2013-12-17 | 2019-10-15 | Corning Incorporated | Edge chamfering methods |
| US9517963B2 (en) | 2013-12-17 | 2016-12-13 | Corning Incorporated | Method for rapid laser drilling of holes in glass and products made therefrom |
| US11556039B2 (en) | 2013-12-17 | 2023-01-17 | Corning Incorporated | Electrochromic coated glass articles and methods for laser processing the same |
| US10611668B2 (en) | 2013-12-17 | 2020-04-07 | Corning Incorporated | Laser cut composite glass article and method of cutting |
| US9701563B2 (en) | 2013-12-17 | 2017-07-11 | Corning Incorporated | Laser cut composite glass article and method of cutting |
| US10293436B2 (en) | 2013-12-17 | 2019-05-21 | Corning Incorporated | Method for rapid laser drilling of holes in glass and products made therefrom |
| US9676167B2 (en) | 2013-12-17 | 2017-06-13 | Corning Incorporated | Laser processing of sapphire substrate and related applications |
| US10144093B2 (en) | 2013-12-17 | 2018-12-04 | Corning Incorporated | Method for rapid laser drilling of holes in glass and products made therefrom |
| US11148225B2 (en) | 2013-12-17 | 2021-10-19 | Corning Incorporated | Method for rapid laser drilling of holes in glass and products made therefrom |
| US9815730B2 (en) | 2013-12-17 | 2017-11-14 | Corning Incorporated | Processing 3D shaped transparent brittle substrate |
| US10179748B2 (en) | 2013-12-17 | 2019-01-15 | Corning Incorporated | Laser processing of sapphire substrate and related applications |
| US10183885B2 (en) | 2013-12-17 | 2019-01-22 | Corning Incorporated | Laser cut composite glass article and method of cutting |
| US10233112B2 (en) | 2013-12-17 | 2019-03-19 | Corning Incorporated | Laser processing of slots and holes |
| US9938187B2 (en) | 2014-02-28 | 2018-04-10 | Rofin-Sinar Technologies Llc | Method and apparatus for material processing using multiple filamentation of burst ultrafast laser pulses |
| US9815144B2 (en) | 2014-07-08 | 2017-11-14 | Corning Incorporated | Methods and apparatuses for laser processing materials |
| US11697178B2 (en) | 2014-07-08 | 2023-07-11 | Corning Incorporated | Methods and apparatuses for laser processing materials |
| US9975799B2 (en) | 2014-07-14 | 2018-05-22 | Corning Incorporated | Methods and apparatuses for fabricating glass articles |
| US10611667B2 (en) | 2014-07-14 | 2020-04-07 | Corning Incorporated | Method and system for forming perforations |
| US11648623B2 (en) | 2014-07-14 | 2023-05-16 | Corning Incorporated | Systems and methods for processing transparent materials using adjustable laser beam focal lines |
| US9617180B2 (en) | 2014-07-14 | 2017-04-11 | Corning Incorporated | Methods and apparatuses for fabricating glass articles |
| US10526234B2 (en) | 2014-07-14 | 2020-01-07 | Corning Incorporated | Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block |
| US10335902B2 (en) | 2014-07-14 | 2019-07-02 | Corning Incorporated | Method and system for arresting crack propagation |
| JP2017521877A (ja) * | 2014-07-15 | 2017-08-03 | イノラス ソリューションズ ゲーエムベーハー | 平面結晶性基板、特に半導体基板のレーザ加工方法及び装置 |
| US9757815B2 (en) | 2014-07-21 | 2017-09-12 | Rofin-Sinar Technologies Inc. | Method and apparatus for performing laser curved filamentation within transparent materials |
| EP4122633A1 (de) * | 2014-11-27 | 2023-01-25 | Siltectra GmbH | Festkörperteilung mittels stoffumwandlung |
| US10047001B2 (en) | 2014-12-04 | 2018-08-14 | Corning Incorporated | Glass cutting systems and methods using non-diffracting laser beams |
| US11014845B2 (en) | 2014-12-04 | 2021-05-25 | Corning Incorporated | Method of laser cutting glass using non-diffracting laser beams |
| CN107406293A (zh) * | 2015-01-12 | 2017-11-28 | 康宁股份有限公司 | 使用多光子吸收方法来对经热回火的基板进行激光切割 |
| US10252931B2 (en) | 2015-01-12 | 2019-04-09 | Corning Incorporated | Laser cutting of thermally tempered substrates |
| US10391588B2 (en) | 2015-01-13 | 2019-08-27 | Rofin-Sinar Technologies Llc | Method and system for scribing brittle material followed by chemical etching |
| US11773004B2 (en) | 2015-03-24 | 2023-10-03 | Corning Incorporated | Laser cutting and processing of display glass compositions |
| US10525657B2 (en) | 2015-03-27 | 2020-01-07 | Corning Incorporated | Gas permeable window and method of fabricating the same |
| US10010971B1 (en) | 2015-06-17 | 2018-07-03 | Rofin Sinar Technologies Llc | Method and apparatus for performing laser curved filamentation within transparent materials |
| KR20180020300A (ko) * | 2015-06-29 | 2018-02-27 | 쇼오트 아게 | 레이저 가공에 의해 다상의 투명한 공작물 내에 또는 그 위에 변형을 생성하는 방법 및 다상의 복합 재료 |
| DE102015110422A1 (de) | 2015-06-29 | 2016-12-29 | Schott Ag | Laserbearbeitung eines mehrphasigen transparenten Materials, sowie mehrphasiger Kompositwerkstoff |
| WO2017001102A1 (de) * | 2015-06-29 | 2017-01-05 | Schott Ag | Verfahren zur erzeugung von modifikationen in oder an einem mehrphasigen transparaten werkstück mittels laserbearbeitung; mehrphasiger kompositwerkstoff |
| US12409513B2 (en) | 2015-06-29 | 2025-09-09 | Schott Ag | Laser processing of a multi-phase transparent material, and multi-phase composite material |
| US10702948B2 (en) | 2015-06-29 | 2020-07-07 | Schott Ag | Laser processing of a multi-phase transparent material, and multi-phase composite material |
| KR102096189B1 (ko) | 2015-06-29 | 2020-04-27 | 쇼오트 아게 | 레이저 가공에 의해 다상의 투명한 공작물 내에 또는 그 위에 변형을 생성하는 방법 및 다상의 복합 재료 |
| US11186060B2 (en) | 2015-07-10 | 2021-11-30 | Corning Incorporated | Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same |
| US11148231B2 (en) | 2015-10-05 | 2021-10-19 | Schott Ag | Method and apparatus for filamentation of workpieces not having a plan-parallel shape, and workpiece produced by filamentation |
| WO2017060251A1 (de) | 2015-10-05 | 2017-04-13 | Schott Ag | Verfahren und vorrichtung zum filamentieren nicht planparallel geformter werkstücke sowie durch filamentieren erzeugtes werkstück |
| DE102015116846A1 (de) | 2015-10-05 | 2017-04-06 | Schott Ag | Verfahren zum Filamentieren eines Werkstückes mit einer von der Sollkontur abweichenden Form sowie durch Filamentation erzeugtes Werkstück |
| US11904410B2 (en) | 2015-10-07 | 2024-02-20 | Corning Incorporated | Laser surface preparation of coated substrate |
| CN106914704A (zh) * | 2015-10-13 | 2017-07-04 | 株式会社迪思科 | 光器件晶片的加工方法 |
| US11114309B2 (en) | 2016-06-01 | 2021-09-07 | Corning Incorporated | Articles and methods of forming vias in substrates |
| US11774233B2 (en) | 2016-06-29 | 2023-10-03 | Corning Incorporated | Method and system for measuring geometric parameters of through holes |
| US11130701B2 (en) | 2016-09-30 | 2021-09-28 | Corning Incorporated | Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots |
| US11542190B2 (en) | 2016-10-24 | 2023-01-03 | Corning Incorporated | Substrate processing station for laser-based machining of sheet-like glass substrates |
| US11062986B2 (en) | 2017-05-25 | 2021-07-13 | Corning Incorporated | Articles having vias with geometry attributes and methods for fabricating the same |
| US11972993B2 (en) | 2017-05-25 | 2024-04-30 | Corning Incorporated | Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same |
| US11078112B2 (en) | 2017-05-25 | 2021-08-03 | Corning Incorporated | Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same |
| US12180108B2 (en) | 2017-12-19 | 2024-12-31 | Corning Incorporated | Methods for etching vias in glass-based articles employing positive charge organic molecules |
| US11554984B2 (en) | 2018-02-22 | 2023-01-17 | Corning Incorporated | Alkali-free borosilicate glasses with low post-HF etch roughness |
| US11629088B2 (en) | 2018-06-19 | 2023-04-18 | Corning Incorporated | Actively controlled laser processing of transparent workpieces |
| US11478874B2 (en) | 2019-04-05 | 2022-10-25 | Tdk Corporation | Method of processing inorganic material substrate, device, and method of manufacturing device |
| US12242080B2 (en) | 2019-11-27 | 2025-03-04 | Hamamatsu Photonics K.K. | Laser processing device, and laser processing method |
| US20210379695A1 (en) * | 2020-06-04 | 2021-12-09 | Corning Incorporated | Methods for laser processing transparent workpieces using modified pulse burst profiles |
| US12233474B2 (en) * | 2020-06-04 | 2025-02-25 | Corning Incorporated | Methods for laser processing transparent workpieces using modified pulse burst profiles |
Also Published As
| Publication number | Publication date |
|---|---|
| TW201446379A (zh) | 2014-12-16 |
| KR102165804B1 (ko) | 2020-10-15 |
| US10421683B2 (en) | 2019-09-24 |
| JP2019034343A (ja) | 2019-03-07 |
| US20140199519A1 (en) | 2014-07-17 |
| US11028003B2 (en) | 2021-06-08 |
| CA2898256A1 (en) | 2014-07-24 |
| CN106170365A (zh) | 2016-11-30 |
| CN105209218B (zh) | 2018-07-06 |
| US20150360991A1 (en) | 2015-12-17 |
| JP2016513024A (ja) | 2016-05-12 |
| EP2754524B1 (de) | 2015-11-25 |
| TW201436914A (zh) | 2014-10-01 |
| TWI630969B (zh) | 2018-08-01 |
| JP6496248B2 (ja) | 2019-04-03 |
| US20190352215A1 (en) | 2019-11-21 |
| EP2945770A1 (en) | 2015-11-25 |
| JP6422033B2 (ja) | 2018-11-14 |
| US11345625B2 (en) | 2022-05-31 |
| LT2945769T (lt) | 2017-09-25 |
| EP2945770B1 (en) | 2019-03-27 |
| EP2945769A1 (de) | 2015-11-25 |
| CN105209218A (zh) | 2015-12-30 |
| LT2945770T (lt) | 2019-04-25 |
| KR102230762B1 (ko) | 2021-03-23 |
| KR20160010397A (ko) | 2016-01-27 |
| CA2898371A1 (en) | 2014-07-24 |
| WO2014111794A1 (en) | 2014-07-24 |
| EP2945769B1 (de) | 2017-04-26 |
| TWI639479B (zh) | 2018-11-01 |
| KR20160010396A (ko) | 2016-01-27 |
| JP2016509540A (ja) | 2016-03-31 |
| EP2754524A1 (de) | 2014-07-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2754524B1 (de) | Verfahren und Vorrichtung zum laserbasierten Bearbeiten von flächigen Substraten, d.h. Wafer oder Glaselement, unter Verwendung einer Laserstrahlbrennlinie | |
| EP2781296B1 (de) | Vorrichtung und verfahren zum ausschneiden von konturen aus flächigen substraten mittels laser | |
| EP3169475B1 (de) | Verfahren und vorrichtung zum laserbasierten bearbeiten von flächigen, kristallinen substraten, insbesondere von halbleitersubstraten | |
| KR102287201B1 (ko) | 이온-교환가능한 유리 기판의 레이저 절단 | |
| DE102012110971B4 (de) | Verfahren zur Herstellung von linienförmig aufgereihten Schädigungsstellen in einem transparenten Werkstück sowie Verfahren und Vorrichtung zum Trennen eines Werkstücks | |
| EP3245166B1 (en) | Laser cutting of thermally tempered substrates using the multi photon absorption method | |
| DE19728766C1 (de) | Verwendung eines Verfahrens zur Herstellung einer Sollbruchstelle bei einem Glaskörper | |
| KR20160098467A (ko) | 사파이어 기판을 레이저로써 레이저 절단하는 방법 및 일련의 결함을 갖는 엣지가 형성된 사파이어를 포함한 물품 | |
| WO2017009379A1 (de) | Verfahren und vorrichtung zum abtrennen von glas- oder glaskeramikteilen | |
| CN106132886A (zh) | 边缘倒角方法 | |
| DE102015004347A1 (de) | Erzeugung von physischen Modifikationen mittels LASER im Inneren eines Festkörpers |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14700411 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2898256 Country of ref document: CA Ref document number: 2015553060 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 14761275 Country of ref document: US |
|
| ENP | Entry into the national phase |
Ref document number: 20157022066 Country of ref document: KR Kind code of ref document: A |
|
| REEP | Request for entry into the european phase |
Ref document number: 2014700411 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2014700411 Country of ref document: EP |