CN102122675B - 光电装置及其制造方法 - Google Patents

光电装置及其制造方法 Download PDF

Info

Publication number
CN102122675B
CN102122675B CN2010102295095A CN201010229509A CN102122675B CN 102122675 B CN102122675 B CN 102122675B CN 2010102295095 A CN2010102295095 A CN 2010102295095A CN 201010229509 A CN201010229509 A CN 201010229509A CN 102122675 B CN102122675 B CN 102122675B
Authority
CN
China
Prior art keywords
diode
substrate
district
region
electrooptical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2010102295095A
Other languages
English (en)
Other versions
CN102122675A (zh
Inventor
安东尼·J·罗特费尔德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of CN102122675A publication Critical patent/CN102122675A/zh
Application granted granted Critical
Publication of CN102122675B publication Critical patent/CN102122675B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/185Joining of semiconductor bodies for junction formation
    • H01L21/187Joining of semiconductor bodies for junction formation by direct bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • H01L29/151Compositional structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02647Lateral overgrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/88Tunnel-effect diodes
    • H01L29/882Resonant tunneling diodes, i.e. RTD, RTBD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Electromagnetism (AREA)
  • Led Devices (AREA)
  • Light Receiving Elements (AREA)
  • Photovoltaic Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本发明提供一种光电装置及其制造方法,该光电装置包括一基板以及具有露出该基板的一部分的两个或两个以上的开口的一介电材料,所述两个或两个以上的开口分别具有至少为1的一深宽比。包括晶格不相称于该基板的一化合物半导体材料的一底部二极管材料占据了所述两个或两个以上的开口并于所述两个或两个以上的开口之上接合以形成一底部二极管区域。上述装置更包括一顶部二极管材料以及位于该顶部二极管材料与该底部二极管材料之间的一有源二极管区。本发明借由于高品质、大区域、低成本的硅晶片上制作太阳能电池、发光二极管、共振穿隧二极管、半导体激光与其他化合物半导体装置,借以降低成本。

Description

光电装置及其制造方法
技术领域
本发明涉及由位于硅晶片之上由化合物半导体(compoundsemiconductors)或其他的晶格不相称半导体材料(lattice-mismatchedsemiconductors)所制成的半导体二极管及其制造方法,且尤其涉及如发光二极管(light emitting diode)、激光、光电压(photovoltaics)及其他光电子(optoelectronic)用途的光电应用。
背景技术
于下文中将主张2007年4月9日申请的第60/922,533号美国临时专利申请案的优先权的第60/922,533号美国专利申请案(申请日为2008年4月9号)以提及方式并入于本文中。
本节中提供了背景资料并介绍了于下文中所描述和/或所主张的权利范围所相关的不同观点的相关信息。这些背景资料的陈述并非承认其为公知技术。
大部分的芯片制作皆应用了具有高品质、大区域、低成本等优点的硅晶片的硅制造工艺。采用如砷化镓(gallium arsenide)与磷化铟(indium phosphide)等化合物半导体的装置的商业制作则通常无法具有前述的硅制造工艺的优点。其通常于由如蓝宝石(sapphire)、锗(germanium)、砷化镓(gallium arsenide)或碳化硅(silicon carbide)等材料所制成的小且昂贵的晶片上进行如发光二极管(light emitting diode,LED)、多结太阳能电池(multi-junction solar cell)及其他化合物半导体装置的制作。
于便宜的基板上制造半导体化合物装置的挑战牵涉到极大的经济因素。由于可发射与检测光线,化合物半导体于通信基础建设中为重要的元件。其为适用于如透过光纤传输信号的激光中、用于接受上述信号的感测器、移动电话内的放大器(amplifier)、移动电话基地台内的放大器、以及与传输与接收微波信号的电路等应用中的材料。
发光二极管通常由设置于蓝宝石(sapphire)或碳化硅(silicon carbide)材质的晶片上的多个氮化镓(gallium nitride)膜层所组成。这些独特基板造成了发光二极管的高成本。直径4英寸的蓝宝石晶片的通常价值约130美元,而两英寸的碳化硅晶片则价值约2000美元。作为比较之用,具有四倍于四英寸晶片的使用面积或16倍于两英寸晶片的使用面积的八英寸硅晶片的成本则通常低于100美元。
高效多结太阳能电池(high-efficiency multi-junction solar cells)通常包括设置于锗晶片上的如锗、砷化镓及磷化铟的膜层。于发光二极管所用的晶片中,所使用的锗晶片通常较硅晶片为较小且明显为较昂贵。
于硅晶片上制作化合物半导体装置的能力有助于加速其于多种主要工业中的市场成长。
目前限制了半导体晶片上的化合物半导体装置的实际制作的两种主要技术障碍分别为晶格常数的不匹配(mismatch of lattice constants)与热膨胀系数的不匹配(mismatch ofthermal expansion coefficients)的情形。
晶格不匹配:于结晶物中,原子依照规则性周期阵列物而设置(即公知的晶格)。介于原子之间的距离,即公知的晶格常数,通常约为数埃(1埃=10-10米)。硅具有较化合物半导体为小的晶格常数。当于硅上成长化合物半导体时,于界面处出现了如公知的错配差排(misfit dislocation)的结晶瑕疵(crystallineimperfections)。如此的错配差排造成了如公知贯穿差排(threading dislocation)的其他结晶缺陷,其自界面处向上传播。贯穿差排缩减了如激光、太阳能电池、发光二极管等化合物半导体装置的表现与可靠度。
热收缩的不匹配:化合物半导体通常于如超过1000℃的高温下成长。当晶片冷却之后,化合物半导体的薄膜较硅晶片的收缩程度为大。其结果为,晶片将弯曲成为内凹状,且施加应力与最终地使得薄膜产生破裂。
直到最近,发展出了包括下述三种方法的于硅基板上成长高品质的化合物半导体的最稳固的现有技术,例如渐变缓冲层(graded buffer layers)法、晶片连结(wafer bonding)法或于岛状物上的选择性成长(selective growth onmesas)法等技术。然而,上述技术则尚未达成商业上的成功。
于渐变缓冲层法中,材料的组成由大体纯硅(pure silicon)逐渐地变化成化合物半导体。由于晶格常数也逐渐地随着变化,故晶格缺陷较少形成于界面处。不幸地,这些渐变缓冲层具有相对厚的厚度(每4%的晶格不相称情形具有约10微米)。如此厚的缓冲层增加了工艺成本及破裂的可能性。
晶片连结法则牵涉到于昂贵基板上成长一装置、接着剥离上述装置并将的接合(bonding)于硅晶片上。上述方法并不考虑采用当今硅制造工艺以作为降低成本的方法。此外,接合通常需要高于300℃的温度。当材料冷却之后,由于相较硅晶片具有更大的收缩情形,故化合物半导体可能破裂。
岛状物上的选择性成长法则利用了特定差排的迁移率。此方法于小区域(长度约为10-100微米)内沉积化合物半导体材料,进而形成了一短沟道,其可供位于此处的移动差排(mobile dislocation)可滑动至此区域的边缘并自此装置处而移除。然而,借由上述技术所形成的结构通常具有高密度的贯穿差排(高于1亿/每平方公分)。上述技术并无法移除固定差排(immobiledislocation),于当晶格不匹配超过了2%时其将成为占大多数。
近年来已发展出了深宽比捕捉(aspect ratio trapping)技术(由Park等人于APL 90,0521113(2007)所揭示,于此以提及方式并入于本文中),其可于硅晶片上沉积高品质的化合物半导体材料、锗或其他的晶格不匹配材料。图1显示了此深宽比捕捉技术的原理。于一硅晶片10之上沉积如二氧化硅(SiO2)或氮化硅(SiNx)的一介电材料20的薄膜层。本领域技术人员也可选择如SiOxNy及如铪(Hf)与锆(Zr)的硅化物或氧化物等的多种介电材料。
于上述介电材料内蚀刻形成一沟槽,接着沉积如锗或化合物半导体的晶格不匹配半导体30于沟槽内。如虚线所表示的贯穿差排40将向上传播,其通常依照相对于界面呈大体45度的一角度向上传播。贯穿差排40并不会朝沟槽长度方向而向下传播,其依照垂直于结晶的成长晶面(faceted growth face)的一方向而传播,这些晶面引导了差排朝向侧壁,并于这些侧壁处终止。位于沟槽内其侧壁捕捉了贯穿差排的区域可称之为“捕捉区”50。晶格不相称半导体30之上方区域,且高于捕捉区50的一区域则为一相对无缺陷区60。
深宽比捕捉技术基于下述原因而解决了起因于热膨胀系数的不匹配所造成的破裂问题:(1)由于外延膜层为薄,故应力为小;(2)由于深宽比捕捉开口的尺寸为小,故材料可为弹性地调和起因于热膨胀不匹配所造成的应力;以及(3)较半导体材料为佳的二氧化硅基座可产生形变以调和上述应力。
请继续参照图2,显示了采用深宽比捕捉技术于硅晶片上所形成的连续的高品质III-V族半导体或其他晶格不匹配材料的高品质薄膜。上述技术相似于如图1所示的技术,除了持续地成长晶格不匹配半导体直到相邻的沟槽内的成长结合成为了一单一连续膜层70。其他的缺陷,即所谓的接合缺陷80,则形成于相接合成长处的部分的接合区域。然而,此缺陷密度仍远少于直接于硅晶片上成长晶格不匹配半导体的缺陷密度。
发明内容
为克服上述现有技术的缺陷,本发明提供了一种光电装置及其制造方法。
依据一实施例,本发明提供了一种光电装置,包括:
一基板;一介电材料,包括露出该基板的一部分的两个或两个以上的开口,所述两个或两个以上的开口分别具有至少为1的一深宽比;一底部二极管材料,包括晶格不相称于该基板的一化合物半导体材料,且其中该化合物半导体材料占据了所述两个或两个以上的开口并于所述两个或两个以上的开口之上接合成一底二极管区域;一顶部二极管材料;以及一有源二极管区,位于该顶部二极管材料与该底部二极管材料之间。
依据另一实施例,本发明提供了一种光电装置,包括:
一基板;以及包括一第一区,邻近该基板的一第一顶面、一第二区,邻近该第一区、及一有源区,介于该第一区与该第二区之间的一光电二极管,其中该第二区包括邻近于该有源区的一表面,该表面大体平行于该基板的该顶面;以及该第二区包括与该有源区相分隔的至少一缺陷捕捉区,该缺陷捕捉区包括延伸自该基板的该顶面的一表面。
依据又一实施例,本发明提供了一种光电装置的制造方法,包括:
沉积一第一介电材料层于一基板之上;图案化该第一介电材料层以于其内形成两个或两个以上的开口,已露出该基板的该表面的部分,所述两个或两个以上的开口具有至少为1的深宽比;借由成长晶格不相称于该基板的一化合物半导体材料于所述两个或两个以上的开口内,使得该化合物半导体材料填满所述两个或两个以上的开口并于所述两个或两个以上开口之上接合成一连续膜层,以形成一底二极管区;形成一有源二极管区于该底部二极管区之上;以及形成一顶二极管区于该有源二极管区之上。
本发明借由于高品质、大区域、低成本的硅晶片上而非于又小又较贵的基板上制作太阳能电池、发光二极管、共振穿隧二极管、半导体激光与其他化合物半导体装置,借以降低太阳能电池、发光二极管、共振穿隧二极管、半导体激光与其他化合物半导体装置的成本。
为让本发明的上述目的、特征及优点能更明显易懂,下文特举一较佳实施例,并配合附图,作详细说明如下:
附图说明
图1显示了深宽比捕捉技术的原理,以及于硅晶片上沉积高品质化合物半导体或其他的晶格不相称半导体的方法;
图2显示了借由深宽比捕捉技术以于硅晶片上成长高品质的化合物半导体或其他晶格不相称半导体的薄膜的技术;
图3显示了半导体二极管的一结构;
图4显示了依据本发明一第一实施例的一半导体二极管;
图5与图6显示了用于制造第一实施例的半导体二极管的连续阶段;
图7为一流程图,显示了依据本发明的第一实施例的一制造方法;
图8、图9、图10显示了如图7所示的制造方法的变化;
图11显示了依据本发明的一第二实施例的一施体晶片;
图12为一流程图,显示依据本发明的第二实施例的一施体晶片的一制造方法;
图13与图14显示了图12内的制造方法的变化;
图15-图17显示了于利用一施体晶片以形成一氮化镓基板的一方法中的不同步骤;
图18为一流程图,显示了如图15-图17所示的方法;
图19-图20显示了如图18所示方法的变化情形;
图21显示了可能发生于外延成长膜层内的破裂情形;
图22显示了借由深宽比捕捉而降低位于成长于一硅基板上的半导体材料的一结合膜层内的热应力的方法;
图23为一流程图,显示了如图22内所示方法;
图23A显示了一发光二极管制造工艺内的中间情形;
图23B显示了依据本发明另一实施例的一发光二极管的二极管结构;
图24-图28显示了依据本发明的一第三实施例内包括多个二极管装置的一单芯片的制造步骤;
图29显示了依据本发明的第三实施例所制造出的一结构;以及
图30A及图30B为一流程图,显示了依据本发明的第三实施例的制造方法。
其中,附图标记说明如下:
10~硅晶片;
20~介电材料;
30~晶格不匹配半导体;
40~贯穿差排;
50~捕捉区;
60~无缺陷区;
70~单一连续膜层;
80~接合缺陷;
101、1000~基板;
105、106~导电接触物;
1010~介电材料;
1020~沟槽;
102、1030、1170、1210、1250、1502~底二极管区;
1040~贯穿差排;
1050~捕捉区;
103、1060、1180、1220、1260、1512~有源二极管区;
104、1070、1190、1230、1270、1514~顶二极管区;
1080~握持晶片;
1090~第一电性接触物;
1100~第二电性接触物;
1110~半导体材料;
1120~分裂平面;
1130~握持基板;
1140~破裂;
1150~凹洞;
1160~沟槽;
1195、1240、1280~二极管装置;
1200~第二介电材料;
1290~接触物;
1300~底电性接触物;
1500~硅基板;
1504~缺陷捕捉区;
1506~AlGaN阻挡区;
1508~InGaN发射区;
1510~AlGaN阻挡区。
具体实施方式
本发明的实施例提供了适用于半导体二极管的新颖与有用的结构,其采用由深宽比捕捉(Aspect Ratio Trapping)技术于硅晶片上沉积的化合物半导体或其他晶格的不匹配半导体所形成的接合薄膜(coalesce film)。半导体二极管为太阳能电池(solar cells)、发光二极管(light-emitting diodes)、共振穿隧二极管(resonant tunneling diodes)、半导体激光(semiconductor lasers)与其他装置的基础构件。
本发明的目的包括借由于高品质、大区域、低成本的硅晶片上而非于又小又较贵的基板上制作太阳能电池、发光二极管、共振穿隧二极管、半导体激光与其他化合物半导体装置,借以降低太阳能电池、发光二极管、共振穿隧二极管、半导体激光与其他化合物半导体装置的成本。
本发明的其他目的则为于基板会劣化如发光二极管的表现的情形下,自用于装置的一半导体二极管处移除了硅晶片基板。
本发明的其他目的则提供了制造氮化镓基板的一种较经济方法,例如为于如多晶硅氮化铝的一热匹配基板上形成的氮化镓的高品质薄膜。
本发明的其他目的则提供了用于形成氮化镓薄膜的较便宜的施体晶片(donor wafer),所形成的氮化镓薄膜可被转移至如氮化铝基板的其他基板处。
本发明的其他目的则可缓和借由深宽比捕捉形成的接合膜层内的由热引起的破裂情形。
本发明的其他目的提供了制作包括由不同半导体材料所制成的数个二极管装置的单芯片的较经济方法。
于以下描述中,通常采用单一的二极管方式以讨论示范的二极管结构,半导体工程师及其他本领域技术人员当能理解于多数应用中需使用多个二极管,且其通常整合于单一芯片之上。
一般来说,于下文中讨论的半导体二极管具有如图3所示的一般结构,其包括:一基板101、一底二极管区102、一有源二极管区103、一顶二极管区104、位于装置的顶部的导电接触物105以及位于装置底部的一导电接触物106。上述二极管区102、103与104内则分别由多重膜层所制成。
底二极管区102与顶二极管区104具有相反的掺杂类型(doping types)。举例来说,当底二极管区102显著地为n型掺杂时(具有如磷、砷或锑的电子施体),而顶二极管区104将显著地为p型掺杂(具有如硼或铝的电子受体),反之亦然。于底二极管区102与顶二极管104内的重度掺杂形成了适用于电流进入与离开装置的低电阻值沟道。此顶部区与底部区的一般掺杂程度约介于1017-1020cm-3。而有源区的一般掺杂程度则低于1017cm-3。值得注意的是,为了描述方便而采用了“顶(top)”与“底(bottom)”以指定区域,而于某些情况中顶区可位于底区之上。举例来说,考虑到形成于基板上的二极管,其具有高于其底部区的一顶部区。当此二极管经倒装芯片接合(flip-chip bonded)于一握持晶片后并于移除上述基板之后,上述用于检视二极管的情形通常也随之相反。于此例中,顶区通常将视为位于底区的下方。
基底101通常为一硅晶片,虽然于不同实施例中,包括蓝宝石与碳化硅的其他基板也适用。至少于基板101的部分中通常具有相同的掺杂种类(为n型或p型),而底二极管区102有助于底二极管区102与基板101之间的良好电性接触关系。
有源二极管区103的详细结构可依照包括期望应用的多种参数而决定,于一情形中,有源二极管区103由顶二极管区102与底二极管区104的结(junction)所形成。于此情形中,较佳地改变接近结的顶部区与底部区的掺杂浓度。于发光二极管(LED)内,有源区103则可包括经掺杂的膜层与可使得电子与空穴再结合并产生光子的未经掺杂量子阱(undoped quantum wells)的多个膜层。于太阳能电池的另一范例中,有源二极管区103可包括适度的n型掺杂或适度的p型掺杂的半导体材料,以吸收入射光子并产生电子-空穴对。
对于本领域技术人员而言,形成二极管区的材料为公知的。典型的有用半导体材料为:如硅、碳或锗的IV族材料,或其合金,如碳化硅或硅锗;II-VI族化合物(包括二元、三元与四元形态),例如由锌、镁、铍或镉的II族材料与如碲、硒或硫的VI族材料所形成的化合物,例如为ZnSe、ZnSTe或ZnMgSTe;以及III-V族化合物(包括二元、三元与四元形态),如由如铟、铝或镓的III族材料与如砷、磷、锑或氮的V族材料所组成的化合物,例如InP、GaAs、GaN、InAlAs、AlGaN、InAlGaAs等。本领域技术人员可以了解,可参照如能隙、晶格常数、掺质程度等期望条件而适度选择与处理这些材料。
图4显示了一半导体二极管的实施例。此二极管的结构适用于其内基板将劣化表现的装置。于一发光二极管中,其包括如一硅基板的会吸收装置内所产生的光线。于如图4所示的实施例中,则可移除此硅基板。
图5显示了制造过程中的初步阶段的结果。基础结构为如硅晶片的一基板1000,其表面较佳地具有(111)结晶方向,虽然也可使用其他方向,例如可选择(100)的其他结晶方向。基板1000可依照二极管基装置(diode-baseddevice)的形态而经过n型掺杂或p型掺杂。第一步骤为借由化学气相沉积或其他适当技术沉积如二氧化硅(SiO2)或氮化硅(SiNx)的一层介电材料于硅晶片1000之上。于来自介电层的光线反射会形成问题的装置中,则较佳地使用氮化硅,基由其折射率较为接近于常用的半导体材料。介电层的厚度通常为200-400纳米,但其可为更厚或更薄。
接着于介电材料1010的膜层内图案化形成用于深宽比捕捉的开口,例如具有大体垂直侧壁的沟槽1020,进而于沟槽内露出了硅晶片1000的表面。借由公知光刻技术或借由反应性离子蚀刻的两种示范方法可图案化形成一沟槽1020。为本领域技术人员所了解,基于此处的揭示情形,沟槽可为另一形状的开口,例如为一孔洞、一凹口或环状物。沟槽1020的宽度可相同或少于介电材料的厚度。如此条件是基于深宽比捕捉技术的原理,即沟槽1020的高度与沟槽1020的宽度的比例可大体大于或等于1以捕捉贯穿差排。关于上述技术的细节则揭示于申请中的第11/436,198号US专利申请案于第11/852,078号US专利申请案中,在此以提及方式将的并入于本文中。以及揭示于Park等人于Appl.Phys.Lett.90,052113(2007)的文献中,在此以提及方式将之并入于本文中。
于某些范例中,较佳地洁净于沟槽1020的底部的硅基板1000的表面,以准备用于底二极管区的外延成长。一种适用于洁净程序的范例则包括氧气等离子体蚀刻,请参照Park等人于Appl.Phys.Lett.90,052113(2007)的文献内的揭示。
图6显示了后续几个步骤的结果。首先成长底二极管区1030。用于底二极管区1030的半导体材料则依照元件形态而定。当用于太阳能电池时,底二极管区1030可为如InGaP。而当用于发光二极管时,底二极管区1030可为如GaN。也可使得底二极管区采用包括化合物半导体材料的其他多种半导体材料,其具有用于如激光或共振穿隧二极管的特性的有用特性。半导体材料的范例则如前所述。
于本发明,可以于外延成长时临场地(in-situ)掺杂或借由一离子注入而离场地(ex-situ)掺杂底二极管区1030(较佳地掺杂底二极管区、有源二极管区与顶二极管区,且可于外延成长时临场地掺杂的或借由离子注入而离场地掺杂之)。
于沟槽1020内的底部二极管区1030可称为捕捉区1050,由于其捕捉了如贯穿差排1040的差排,贯穿差排1040产生于底二极管区1030与基板1000间的界面且向上朝向侧壁传播。图6内采用虚线显示了贯穿差排1040。位于捕捉区1050上方的部分底二极管区1030则相对没有缺陷。如此的低缺陷区域使得可于高品质、大区域、低成本的硅晶片上制造出高品质化合物半导体装置。对于某些材料而言,例如GaN、InN、AlN或上述材料的三元或四元组成物,差排密度需少于或等于108/cm2以用于装置应用。对于如GaAs与InP的其他材料,通常需要更低的差排密度以用于装置,例如少于或等于106/cm2
继续成长此底二极管区1030直到(a)材料溢出于沟槽以及(b)来自于相邻沟槽的此材料接合成了一单一连续薄膜。通常较佳地可于进一步的制作中借由化学机械研磨程序或依其他适当技术以平坦化底二极管区1030。后续步骤则为沉积有源二极管区1060以及底二极管区1070。于大多的实施例中,有源二极管区1060与顶二极管区1070具有相同或相似的晶格常数,此晶格常数相同于底二极管区1030。
图4显示了最终步骤的结果。接合一握持基板1080至顶二极管区1070。于部分实施例中,较佳地平坦化顶部二极管1070以附着一高品质接合物至握持基板1080。于其他实施例中,则较佳地包括位于顶二极管区1070与握持晶片1080间的一中间层以改善附着情形,最小化热不匹配或相似特性。握持基板1080可为一发光二极管封装固定物的一部分。接合技术为公知技术,包括倒装芯片接合,其发光二极管的顶部连结于发光二极管封装物的一表面。握持基板1080可为导电的,或其可包含导电元件以作为用于顶部二极管区1070的接触物。接着借由如研磨、化学回蚀刻、激光剥离或上述方法的组合标准技术以移除硅基板1000。
最后,于底二极管区1030上形成一第一导电接触物1090,以及于握持基板1080处形成一第二导电接触物1100。于不同实施例中,导电接触物的材料可为如铜、银或铝的导电金属的条状物,或为如氧化铟锡的相对透明导电氧化物的膜层。于发光二极管的应用中,位于底部的导电接触物1100较佳地为如银的一高反射性导电材料,其可反射内部产生的光线并使的自另一表面离开发光二极管。
熟悉半导体二极管制作技术的技术人员可知悉许多材料与方法可形成导电接触物。图4中仅示了用于形成第一导电接触物1090的一种方案,借由移除介电层1010以露出底二极管区1030。在此,介电材料1010借由如蚀刻的标准技术移除。于一发光二极管中,如图4所示的捕捉区1050可有效地粗糙化其表面,以降低光线的内部反射,以使得捕捉区1050的尺寸与间隔为正确的。
以下为依据本发明的实施例的适用于形成底、有源与顶二极管区的工艺参数的范例。首先,形成基板与图案化的介电层。采用依据本发明的下述实施例的示范性的工艺参数以形成底、有源与顶二极管区,作为GaAs或AlGaAs基的二极管。
(A)底部二极管区(如1030)(如100-500nm厚的GaAs膜层)
压力:0.1atm
前驱物:稀释于氢气中的三甲基镓(trimethylgallium,TMG)与20%的砷化氢(arsine AsH3),
温度:720℃
N型:掺杂有硅
(B)有源二极管区(如1060)(如用于载流子限制的15nm厚的AlGaAs膜层)
压力:0.1atm
前驱物:稀释于氢气中的三甲基镓(trimethylgallium,TMG)、三甲基铝(trimethylaluminium,TMA)与20%的砷化氢(arsineAsH3)
温度:850℃
N型:掺杂有硅
用于发光的GaAs量子阱(10nm厚)
压力:0.1atm
前驱物:稀释于氢气中的三甲基镓(trimethylgallium,TMG)与20%的砷化氢(arsine AsH3)
温度:720℃
未经掺杂
用于载流子限制的AlGaAs层(15nm厚)
压力:0.1atm
前驱物:稀释于氢气中的三甲基镓(trimethylgallium,TMG)、三甲基铝(trimethylaluminium,TMA)与20%的砷化氢(arsine AsH3)
温度:850℃
P型:掺杂有锌
(C)顶二极管区(如1070)(如100-500nm厚的GaAs膜层)
压力:0.1atm
前驱物:稀释于氢气中的三甲基镓(trimethylgallium,TMG)与20%的砷化氢(arsine AsH3)
温度:720℃
P型:掺杂有锌
依据本发明的第一实施例的用于GaN与InGaN基二极管的底、有源与顶二极管的示范性的预知工艺步骤的成长条件(如化学气相沉积),如下:
(A)底二极管区(如1030)
GaN低温缓冲物(如30nm厚)
压力:100Torr
前驱物:稀释于氢气中的三甲基镓(trimethylgallium,TMG)与氨气(NH3)温度:530℃
N型:掺杂有硅
GaN高温缓冲物(如500nm厚)
压力:100Torr
前驱物:稀释于氢气中的三甲基镓(trimethylgallium,TMG)与氨气(NH3)
温度:1030℃
N型:掺杂有硅
(B)有源二极管区(如1060)
用于发光的InGaN量子阱层(如2nm厚)
压力:100Torr
前驱物:稀释于氢气中的三甲基镓(trimethylgallium,TMG)、三甲基铝(trimethyindium,TMI)、氨气
温度:740℃
未经掺杂
用于载流子限制的GaN阻挡层(如15nm厚)
压力:100Torr
前驱物:稀释于氢气中的三甲基镓(trimethylgallium,TMG)、NH3
温度:860℃
N型,掺杂有硅
(C)顶二极管区(如1070):GaN的p-接触层(如100nm厚)
压力:100Torr
前驱物:稀释于氢气中的三甲基镓(trimethylgallium,TMG)与氨气
温度:950℃
P型:掺杂有镁
如图4所示的包括了位于硅晶片之上的半导体二极管由化合物半导体或其他晶格不匹配材料的第一实施例中,包括了下述元件:一底二极管区1030、一有源二极管区1060、一顶二极管区1070、一握持基板1080、一第一导电接触物1090、一第二导电接触物1100与一捕捉区1050,于其处可终止贯穿差排。
上述底二极管区1030、有源二极管区1060与顶二极管区1070可具有低缺陷密度(通常少于或等于5x 107/每平方公分),其结果为可借由深宽比捕捉而成长底二极管区1030而成为一接合膜层(coalesced film)。
请参照图7,显示了依据上述第一实施例的装置的制造方法。此方法包括:沉积一介电材料1010的膜层于一硅晶片1000的表面;形成沟槽1020于介电材料1010的膜层内,以露出硅晶片1000的表面,各沟槽1020具有大体垂直侧壁,而各沟槽1020的高与宽的比例可大于或等于1;成长一半导体材料以形成一底二极管区1030,其填满了沟槽1020并接合成一单一连续薄膜;成长一半导体材料于底二极管区1030上,以形成一有源二极管区1060;成长一半导体材料于有源二极管区1060上以形成一顶二极管区1070;结合一握持基板1080与顶部二极管区1070;移除硅基板1000;移除介电材料1010,以形成一第一导电接触物1090于底二极管区1030的表面上;以及形成一第二导电接触物1100于握持基板1080的表面上。
图8则总结了如图7所示方法的一变化情形,其中于沉积底二极管区之前,洁净了于沟槽的底部的硅晶片的表面。图9则总结了另一变化情形,其中于成长有源二极管区之前,先平坦化了底二极管区的表面。图10则总结了另一变化情形,其中于结合顶二极管区与握持基板之前,先平坦化了顶二极管区的表面。
其他实施例中则允许了采用由深宽比捕捉以形成接合膜层以形成氮化镓基板。于本文中,例如于发光二极管工业中,“氮化镓基板”的描述指如公知的成长或结合于由非氮化镓材质所形成的一基板上的一氮化镓薄膜。发光二极管的制作通常自材料供应商处购入氮化镓基板,并接着沉积额外的氮化镓膜层及其他的材料,以制作发光二极管。典型的氮化镓基板包括了沉积于一蓝宝石或碳化硅基板上的一氮化镓膜层。目前使用氮化镓基板的世界性市场约每年300万美元。
材料供应商通常沉积氮化镓于氧化铝(A12O3)之上,由于此两种材料具有一适当且良好的晶格匹配情形。然而,氮化镓与氧化铝具有不同热膨胀系数。当发光二极管制造商于加热氮化镓/氧化铝结构以沉积其他膜层时,上述的热膨胀系数差异将造成了其结构的弯曲(bowing)。如此的弯曲造成了氧化铝晶片的部分没有接触到支撑座(suspector),即位于沉积腔体内的基板加热器。其结果为,氧化铝晶片的温度随着其位置而改变。不均匀的氧化铝晶片温度造成了膜层的组成与厚度的变化。其实际后果为商造商对于最终得到的发光二极管的发射波长的不易控制情形。
目前见有一种可解决或至少改善上述问题的氮化镓基板的制造技术。此技术的出现使得可取得来自于一施体晶片(donor wafer)的一氮化镓薄膜,并将的结合于具有一热膨胀系数相似于氮化镓的一氧化铝基板。施体晶片通常为具有单晶氮化镓的一晶片。公知方法用于自施体晶片取得氮化镓薄膜涉及离子注入与分离。制造商注入氢离子进入施体晶片,以制造出一分裂平面(cleave plane),接着分割施体晶片借由回火的或借由施加机械压力。上述技术使得其可能分离多重薄膜自一施体晶片处。
图11显示了一第二实施例,其提供了一新颖的施体晶片,适用于较单晶氮化镓的一施体晶片为低成本的制造。此方法起使于采用如具有(111)结晶方向的硅晶片的一基板1000。然而,于部分实施例中,也可采用如(100)的结晶方向的其他方向。基板1000可经过n掺杂或p掺杂。于基板1000之上沉积有介电材料1010的膜层。接着,形成具有大体垂直侧壁的沟槽于介电材料1010的膜层内,进而露出硅晶片1010的表面。于如图11所示的制造阶段中,这些沟槽大体为下述的半导体材料1100所填满。如前所述,为了促进贯穿差排的捕捉,各沟槽的宽度需少于或等于介电材料的厚度。也可借由前述技术而选择性地洁净位于沟槽底部内的硅基板1000的表面。
次一步骤为成长半导体材料1110(例如氮化镓)的一膜层直至此材料溢出于沟槽,而来自于相邻沟槽的此材料接合成了一单一连续薄膜。半导体材料的实施情形则如前所述。半导体材料1110填入于沟槽内的该部作为缺陷捕捉区1050,其捕捉了贯穿差排1040。高于捕捉区1050的半导体材料1110于成长时大体不具有贯穿差排。然而于其成长时位于相邻沟槽接合处可能于部分的位置处形成有接合缺陷,但是其接合缺陷的密度极低(通常少于或等于5x107/cm2)以使得此结构适用于实际制作。
图11显示了一新颖施体晶片,其可自膜层处产生多个半导体材料1110的薄膜。举例来说,图示的实施例可借由离子注入与剥落而作为提供多重氮化镓膜层的来源,并接着将的接合至氮化铝晶片上。深宽比捕捉技术使得可于一较不昂贵的硅基板的施体晶片上制造高品质的氮化镓薄膜。
如图11所示的实施例中,施体晶片主要包括下述元件:一半导体晶片基板1000、包覆了硅晶片基板1000的一介电材料1010的膜层、沟槽介电材料1010的膜层包括了露出了硅晶片基板1000的表面的沟槽、这些沟槽具有大体垂直侧壁、以及这些沟槽的高与宽的比例大于或等于1、半导体材料1110填入于沟槽内并溢出于沟槽以形成一单一连续膜层,以及位于沟槽内的捕捉区,其可使得贯穿差排1040为介电材料的侧壁所拦截并于该处终止。
图12显示了如图11所示的施体晶片的一制造方法。包括以下步骤:
沉积一介电材料1010的膜层于一硅晶片1000的表面上,形成沟槽于介电材料1010的膜层内,以露出硅晶片1000的表面,各沟槽具有大体垂直侧壁,以及各沟槽的高度与宽度的比例大于或等于1;以及成长如氮化镓的一半导体材料1110的膜层以填入沟槽并接合成一单一连续膜层。
图13则总结了如图12所示的制造方法的一变化情形,其中于成长半导体材料1110之前,先洁净了位于沟槽底部的硅晶片基板1000的表面。图14则总结了如图12所示制造方法的另一变化情形,其包括了平坦化了半导体材料1110的表面。
接着描述如前所述的用于分离施体晶片概念的一方法,以形成一氮化镓基板,例如为结合于一氮化铝晶片的一高品质氮化镓薄膜。其较佳地为形成接合于一基板材料的半导体材料的制造方法。
于制造出施体晶片(如图11所示)后,图15显示了后续的制造步骤:
使用如氢离子或氢离子与氦离子的组合,以离子注入半导体材料1110的膜层以形成一分裂平面1120。接着采用公知技术结合半导体材料1110的膜层与握持基板1130,如图16所示。当半导体材料1110为氮化镓时,通常用于握持基板1130的较佳材料为具有相似热膨胀系数的一材料,例如为氮化铝。
最终步骤为借由回火或施加机械压力自分裂平面1120分裂半导体材料1110的膜层,所得到的结果为如图17所示:
接合于一握持基板1130一半导体材料1110的膜层。当半导体材料1110的缺陷密度为低时(例如少于或等于5x107/cm2)时、或当于半导体材料1110与握持基板1130之间具有不匹配的晶格常数,且/或具有于半导体1110与握持晶片1130之间似有接近的匹配热膨胀时,上述结构特别有用。再次地,对于部分材料,如GaN、InN、AlN或上述材料的三元或四元组成物,当差排密度少于108/cm2才适用于装置的应用。对于某些材料言而,如GaAs或InP,则需要更低的差排密度以适用于装置,例如少于106/cm2
图18总结了用于制造由半导体材料的膜层结合于一基板之前述方:
沉积一介电材料1010的膜层于硅晶片1000的表面;形成沟槽于介电材料1010的内,以露出硅晶片1000的表面,各沟槽具有大体垂直侧壁,而各沟槽的高与宽的比例大于或等于1;成长半导体材料1110的一膜层于沟槽内并接合成一连续膜层;使用离子注入半导体材料1110的膜层以制作出一分裂平面1120;接合握持基板1130与半导体材料1110的膜层;以及自分裂平面1120分裂半导体材料1110的膜层。
图19总结了如图18所示方法的一变化情形,其中于半导体材料1010沉积之前,先洁净了位于沟槽底部的半导体晶片1000的表面。第20图则总结了如图18所示方法的又一变化情形,其中于注入离子之前,先平坦化了半导体材料1110的表面。
于部分实施例中,由于相较于硅晶片基板外延材料通常具有较大的热膨胀系数,故借由深宽比捕捉技术所成长的接合薄膜可能遭遇破裂的疑虑。当自成长温度冷却之后,形成的结构内的薄膜较基板更为收缩。如图21所示,于薄膜内的拉伸应变(tensile strain)导致了破裂1140。破裂1140将冲击了如发光二极管或太阳能电池的装置的表现与可靠度。
图22显示了一新颖的解决方法:
制造凹洞(divot)1150于半导体材料的膜层内。可采用标准技术以形成这些凹洞,例如为光刻、蚀刻或激光剥离术。这些凹洞1150有效地限制了接合膜层的区域。其结果为,降低了于半导体材料内的热导应变。当这些凹洞具有适当尺寸与间距时,其可允许半导体材料弹性地调和热应力,且极大地降低或减少晶片的弯曲情形。图23总结了借由深宽比捕捉技术于一硅基板之上成长半导体材料的一接合膜层,以降低热导应力的方法,包括:
沉积一介电材料1010的膜层于一硅晶片1000的表面上;形成沟槽于介电材料1010的膜层内,以露出硅晶片1000的表面,各沟槽具有大体垂直侧壁,而各沟槽的高度与宽度的比例可大于或等于1;成长半导体材料1030的膜层以填入于沟槽内并接合成一单一连续薄膜;以及于半导体材料内形成凹洞1150。
于一实施例中,示范性的第一凹洞可沿着平行于如介于约0.1-1.0微米的一规则、不规则、规定的、周期的或间歇的间距的一第一方向而延伸。于此方法中,半导体材料可参照数个条状物或片段而形成。相似于第一凹洞,一示范性的第二凹洞则可延伸于有别于(例如是垂直于)第一方向的一第二方向。于此情形中,半导体材料可制作成为数个岛状物。当第一凹洞与第二凹洞的图案为规则且相等的,其所得到的岛状物可为正方形,然而也可使用适用于此岛状物的其他已知形状。于一实施例中,半导体材料可包括一底二极管区、一有源二极管区与一顶二极管区。
降低成长于一硅基板上借由深宽比捕捉技术所形成的用于发光二极管的接合膜层内的热导应变的一示范方法,包括:
沉积一介电材料1010的膜层于一硅晶片1000的表面上;形成沟槽或孔洞于介电材料1010的膜层内,以露出具有未被图案化的线状物或片状物的硅晶片的表面,分别具有大体垂直侧壁,而各沟槽的高度与宽度可足够制作出的捕捉区;以及接着借由标准技术(如金属有机化学气相沉积法)成长一接合底二极管区、一有源二极管区与一顶二极管区于符合未经图案化的介电材料1010内的巷道内的图案化区域内,以于未经图案化的介电材料1010的巷道之上形成凹洞。
图23A显示了数个步骤的结果。对应于位于半导体材料内凹洞以分离(例如切割或剥离)形成单一发光二极管1600和/或施行相对于第一实施例的额外步骤,以形成发光二极管的另一实施例。
于一实施例中于对应的发光二极管的各巷弄中的凹洞可占据其长度或宽度尺寸的10-30%。示范的凹洞可具有相对于一邻近发光二极管的顶面约为45度角的一倾斜侧壁。或者,凹洞的侧壁可使用一更大或更小角度,例如为30度、60度等。
于一III-N系统中,可于松散(relaxed)氮化镓上成长用于发光二极管的有源区。举例来说,如此的经松散的氮化镓可为c平面(c plane)氮化镓晶片或为成长于蓝宝石或碳化硅的一基板上大体经松散的c平面氮化镓外延。然而,对于可见光发射情形而言,发射区域需维持铟的显著分量。因此,位于一III-N系统内用于可见光发光二极管的发射区具有一或多个InGaN合金膜层,InGaN膜层相较于氮化镓具有一较大晶格常数。为了避免或降低弄乱所伴随的放松应变外延层的离子,可使于下方的氮化镓层上的InGaN膜层仍维持应变(例如当其成长时,其具有大体相同如下方氮化镓层的晶格常数)。再者,上述c平面III-N半导体材料为极性物质(polar material),且于发射区的应变导致了显著的极化区域(例如压电极化,piezoelectric polarization),其会干扰装置表现。举例来说,其可劣化装置/发射效率或造成发射光的波长的偏移。
图23B显示了依据另一实施例的用于发光二极管的一示范性二极管结构。请参照图23B,至少邻近于基板的一底二极管区的一部分包括了InGaN(以取代GaN)。此底部二极管区内的InGaN可为采用深宽比捕捉技术形成的具有较低或经控制的缺陷密度的一松散层。如此底二极管区的InGaN可为具有显著降低应变的发射区域的一平台(如发光二极管的发光区)。举例来说,用于有源二极管区(例如具有低应变或没有应变的InGaN)与顶部二极管区之后续成长可导致了于发射区内的显著降低应变。如图23B所示,底二极管区1502为经松散的N型InGaN位于并部分地于一缺陷捕捉区1504内,一有源二极管区1512则包括了AlGaN阻挡区1506(例如具有等同底部二极管区晶格空间)、一降低应变InGaN发射区1508与一AlGaN阻挡区1510(例如具有等同于发射区的晶格空间)。于有源二极管区1512之上形成有一顶二极管区1514,其材质例如为经松散的P型InGaN。于图23B中,基板可为一硅基板1500,且可适度的增加接触了上部/顶部或下部/底部二极管区的导电接触物(如前所述结构)。
发光二极管的制作可借由于一单一封装物或模组内安装不同材料的半导体芯片以制作出单芯片方案。此技术使得其可结合不同色彩以形成白光。
研究者已发展出高效率太阳能电池的多芯片方案,其借由于一单一封装物或模组内安装由不同材料所制成的半导体芯片。其应用了“分离光谱(splitspectrum)”方法,其将太阳能光谱的一部分导向至芯片处,以最佳化于的该部的该光谱。
于前述的两实施例中,安装与封装多重芯片的成本可为极高。因此本发明提供了一种单芯片方案,其较为不昂贵。基于图示的目的,在此仅描述了具有三个不同的单一二极管的单一芯片。
图24显示了第一部分的步骤。沉积一第一介电材料1010的膜层于一硅基板1000上。接着形成沟槽1160于第一介电材料1010的膜层的第一区内,其具有大体垂直侧壁。各沟槽露出该硅晶片1000的表面。各沟槽的宽度可相同于或少于介电材料的厚度,以使得沟槽可捕捉差排缺陷。
接着可借由前述方法而选择性地洁净位于沟槽1160的底部的硅基板1000的表面。
接着遮蔽于所有位置的结构的顶面,除了二极管装置1195的区域。可成长底二极管区1170,于沟槽填入半导体材料并接合成单一连续薄膜,如第25图所示,示范性半导体材料则如前所示。贯穿差排形成于底二极管区1170与硅基板1000之间的界面处。贯穿差排向上朝向一45度角传播,而为沟槽的侧壁所拦截并终止于此捕捉区内。
此时,可平坦化底二极管区1170。
接着成长一半导体材料膜层,以形成有源二极管区1180,以及成长另一半导体材料以形成顶二极管区1190。同时,底二极管区1170、有源二极管区1180与顶二极管区1190组成了第一(#1)二极管装置1195。
接着沉积一第二介电材料1200的膜层。举例来说,当第一介电材料为SiO2时,第二介电材料可为SiNx。借由湿蚀刻或干蚀刻选择性地自所有区域移除第二介电材料1200除了,包括二极管装置元件1的区域,留下如第26图所示结构。
接着遮蔽所有位置处的结构,除了第二(#2)二极管装置(1240)处的结构。于后续步骤中,借由形成#1二极管装置的相同步骤以形成第二(#2)二极管装置(1240),进而得到了如第27图所示的结构。如第27图所示,一底二极管区1210、一有源二极管区1220与一顶二极管区1230组成了#2二极管装置(1240)。
沉积另一第二介电材料1200的膜层,以覆盖二极管装置构件2(1240)。接着借由湿蚀刻或干蚀刻选择性地移除包括了第三(#3)二极管装置(1280)的区域的第二介电材料1200的膜层。
接着遮蔽所有区域,除了#3二极管装置(1280)的区域,并借由相同用于形成#1二极管装置(1195)与#2二极管装置(1240)的步骤制作#3二极管装置(1280)。如此形成了如图28所示的结构。如图28所示,底二极管区1250、有源二极管区1260与顶二极管区1270形成了#3二极管装置构件。
最后,采用第二介电材料1200覆盖#3二极管装置,并图案化形成通过第二介电材料1200的接触介层物(contact vias,未显示),并沉积各别的导电接触物1290于各二极管装置的顶部。以及形成一底导电接触物(1300)于支撑基板1000之上,其较佳地但非必要地为各装置所共用。
图29显示了最终结果。不同二极管装置可包括用于形成顶、有源与底二极管区等构件的不同组的半导体材料。于各二极管装置中,材料的能隙经过设计以发射出所期望的光线(于单一的二极管中)或吸收期望频率的光线(于太阳能电池中)。这些实施例代表了于单一芯片之上采用相对不昂贵方式而形成了多个二极管装置。
总而言之,包括多个二极管装置的单芯片,包括下述元件:
一硅晶片基板1000、覆盖硅晶片基板1000的一第一介电材料1010的膜层、第一介电材料1010的膜层露出了硅晶片基板1000的表面包括了沟槽1160,这些沟槽1160具有大体垂直侧壁,而这些沟槽1160的高与宽的比例大于或等于1、数个二极管装置(至少为三个装置1995、1240、1280)分别包括填入于沟槽1160且位于第一介电材料1010的膜层一部分内的一半导体材料,其溢出于沟槽1160以形成一底二极管区(1170、1210、1250),用于捕捉贯穿差排位于沟槽1160内的一捕捉区、一有源二极管区(1180、1220、1260)及一顶二极管区(1195、1240、1280)、顶部导电接触物(1290)与底部导电接触物(1300)。
图30总结了如图29所示结构的一制造方法。此方法可于单一芯片上制造数个二极管装置,包括下列步骤:
沉积一第一介电材料1010的膜层于一硅晶片1000的表面上;
形成沟槽1160于第一介电材料1010的膜层内,以露出硅晶片1000的表面,各沟槽1160具有大体垂直侧壁,而各沟槽1160的高与宽比例大于或等于1;
遮蔽#1二极管装置1(1195)以外所有位置处的结构;
采用以下步骤制作#1二极管装置:成长一半导体材料的膜层,其填入于沟槽内、溢出沟槽且接合成具有单一连续薄膜形态的一底二极管区1170;成长一半导体材料以形成一有源区1180;以及成长一半导体材料以形成一顶二极管区1190;
沉积一第二介电材料(1200)的膜层;
选择性地移除用于设置#1二极管装置(1195)以外所有区域除的第二介电材料(1200);
遮蔽#2二极管装置(1240)所有位置以外的所有位置的结构;
借由形成#1二极管装置(1195)的相同步骤形成#2二极管装置(1240);
沉积第二介电材料(1200)以覆盖#2二极管装置(1240);
选择性地移除用于设置#3二极管装置(1280)所在位置区域的第二介电材料(1200);
遮蔽设置#3二极管装置3(1280)所在位置以外所有位置的结构;
利用制作#1二极管装置(1195)与#2二极管装置(1240)的相同步骤制造#3二极管装置(1280);
沉积一第二介电材料(1200)以覆盖#3二极管装置(1280);
形成图案化的接触介层物,穿过第二介电材料1280;
形成顶导电接触物(1290)至#1二极管装置、#2二极管装置2与#3二极管装置;以及
形成为以上三个二极管所共用的一底导电接触物1300。
可以理解的是,可以的话,可于单一芯片之上形成任何数量的二极管,其唯一限制为所能使用的空间。
本发明的实施例中采用沟槽的描述以形成捕捉区,然而也可使用如凹口的具有可捕捉缺陷的足够剖面的其他结构,且于此处可称之为沟槽。
本发明的应用提供了可用于或借由外延成长或相似情形所形成的多个方法、结构或装置。举例来说示范的适当外延成长系统可为单一晶片或多晶片的批次反应器。也可使用不同化学气相沉积技术。于制造应用中的常用于体积外延(volume epitaxy)的适当的化学气相沉积系统包括如由德国Aixtron提供的Aixtron 2600多晶片系统;由应用材料所产制的EPI CENTURA单芯片外延反应器;或由荷兰ASM国际所产制的EPSILON单晶片多重腔体系统。
于说明书中关于“一实施例”、“一实施例”、“示范性的实施例”、“另一实施例”等描述意谓着于本发明的至少一实施例中所包括的一特定构件、结构或特性。于说明书内不同处之上述描述的出现并非指同一实施例。再者,当于任一实施例描述了相关的一特殊构件、结构、特性时,可以理解的是本领域技术人员可了解如此的特征、结构或特性也可用于其他的实施例。再者,为了方便了解,特定方法步骤可采用分隔步骤表现,然而这些分隔步骤依照其表现并不会限制其顺序。此即为部分步骤可依照其他顺序、或同时的施行。此外,示范性图表显示了依据本发明的实施例不同方法。可于此描述如此的示范性方法的实施例并提供了对应的装置实施例,然而这些方法实施例并未用于限制本发明。
虽然本发明绘示了并描述了的部分实施例,可以理解的是本领域技术人员可依照本发明的精神与原则而针对这些实施例进行变更。前述的实施例便视为所有方面的图示情形而非于此用于限制本发明。本发明的范畴因此依照申请中专利范围所限定,而非前述的描述。于本说明书中,“较佳地”的描述意谓着“较佳地,但非用以加以限制”。权利要求内的描述依照本发明的概念而采用其最大解释范围。举例来说,“耦接于”及“连接”等描述采用以解说直接与非直接连接与耦合情形。于另一范例中,“具有”与“包括”,其相似描述可与“包括”相同(即上述描述皆视为开放性描述),仅“由...组成”与“实质上由...组成”可视为“封闭型”描述。
本发明的较佳实施例包括了一光电装置,包括:
一基板;一介电材料,包括两个或更多个开口露出基板的一部分,此两个或两个以上的开口分别具有至少为1的一深宽比;一底部二极管材料,包括晶格不相称于该基板的一化合物半导体材料,且其中该化合物半导体材料占据了所述两个或两个以上的开口并于所述两个或两个以上的开口之上接合成一底二极管区域;一顶二极管材料;以及一有源二极管区,位于该顶部二极管材料与该底部二极管材料之间。此基板择自由硅、蓝宝石与碳化硅所组成的族群。此基板为具有一结晶方向为(111)或(100)的一单晶硅晶片。此有源二极管区包括由该顶部二极管材料与该底部二极管材料的结所形成的一p-n结。此有源二极管区包括不同于该顶部二极管材料与该底部二极管材料的一材料,而该有源二极管材料构成了位于该顶部二极管材料与底部二极管材料间的一p-i-n结的一本征区。此有源二极管区包括多个多重量子阱,形成于该顶部二极管材料与该底部二极管材料之间。此介电材料包括实质上择自由二氧化硅、氮化硅、氮氧化硅、铪的氧化物、铪的硅化物、锆的氧化物、锆的硅化物及其组合的一材料。此开口为于两平行轴向上具有至少为1的一深宽比的一孔洞。此半导体材料择自由实质上包括一III-V族化合物、一II-VI族化合物、一IV族合金以及其组合物所组成的族群。此底部二极管材料包括一n型掺质,而该顶部二极管材料包括一p型掺质。上述装置更包括一接触物,形成于该顶部二极管区之上。及更包括一第二接触物形成并邻近于该基板。
本发明的其他较佳实施例可包括一种光电装置,包括:
一基板;以及一光电二极管,包括:一第一区,邻近该基板的一第一顶面;一第二区,邻近该第一区;以及一有源区,介于该第一区与该第二区之间,其中该第二区包括邻近于该有源区的一表面,该表面大体平行于该基板的该顶面;以及该第二区包括与该有源区相分隔的至少一缺陷捕捉区,该缺陷捕捉区包括延伸自该基板的该顶面的一表面。该第一区的一表面连结于一握持基板。该握持基板连结有一中间层,该中间层位于该第一区与该握持基板之间。该握持晶片包括电性连结于该第一区的一导体。上述装置更包括一接触物,连结于该握持基板并电性连结于该第一二极管区。
本发明的其他较佳实施例包括一种光电装置的制造方法。上述方法包括:沉积一第一介电材料层于一基板之上;图案化该第一介电材料层以于其内形成两个或两个以上的开口,露出该基板的该表面的部分,所述两个或两个以上的开口具有至少为1的深宽比;借由成长晶格不相称于该基板的一化合物半导体材料于所述两个或两个以上的开口内并使得该化合物半导体材料填满所述两个或两个以上的开口并于所述两个或两个以上开口之上结合成一连续膜层,以形成一底部二极管区;形成一有源二极管区于该底部二极管区之上;以及形成一顶部二极管区于该有源二极管区之上。上述方法更包括连结一握持晶片至该顶部二极管区;以及移除该基板。
本发明的另一较佳实施例可提供一光电装置,其具有一底二极管区,包括两个或两个以上的差排捕捉区且包括一化合物半导体材料、一有源二极管区、一顶二极管区、一握持基板、相连于握持基板的一第一导电接触物与相连于底二极管区的一第二导电接触物。
本发明的另一较佳实施例提供了一种光电装置的制造方法,包括沉积一介电材料的膜层于一基板上,形成两个或两个以上开口于介电材料内以露出基板的表面,此两个或两个以上开口具有至少为1的深宽比,形成一底部二极管区借由成长一化合物半导体材料晶格不匹配于基板于此两个或两个以上开口内并使得化合物半导体填入于两个或两个以上开口并相连于其上以形成一连续膜层,形成一有源二极管区位于底部二极管区之上,形成一顶二极管区位于有源二极管区之上,接合一握持晶片与顶二极管区,移除基板移除介电材料,接触第一导电接触物与该握持基板与接触一第二电性接触物与底部二极管区。
本发明另一较佳实施例包括了用于制造包括接合于一基板的一半导体材料的一制造方法。此方法可包括沉积一介电材料的膜层于一基板上,形成两个或更多开口于介电材料内以露出基板的表面的部分,此两个或更多开口具有至少为1的深宽比,成长一化合物半导体材料晶格不匹配于基板于两个或更多开口内并使得其填入于其中并接合成一连续膜层,注入离子进入半导体材料以形成一分裂平面,接合一握持基板与半导体材料以及自该分裂平面处分离半导体材料。
于某些方面,较佳实施例提供了包括了数个分离的光电装置形成于其上的一芯片。此芯片可包括一基板、覆盖该基板且具有数个具有深宽比至少为1的开口位于其内的一第一介电材料的膜层,多个分离的光电装置,各光电装置包括(i)不匹配于基板的一半导体材料膜层,占据两个开口且接合于开口之上以形成单一底二极管区;(ii)一有源二极管区;及(iii)一顶部二极管区,一第二介电材料层覆盖该些分离光电装置,至少一顶导电接触物与至少一底导电接触物。
用于制作包括多个分离的光电装置于其上的一芯片的另一较佳方法包括:
沉积一介电材料的膜层于一基板上,形成第一组开口于介电材料内以露出基板的表面,该第一组开口具有至少为1的深宽比,形成一第一底二极管区,其借由成长一半导体材料的膜层晶格不匹配于基板于第一组开口内并使得半导体材料填满第一组开口并于第一组开口之上接合成为一连续膜层,形成一第一有源二极管区于第一底二极管区上,形成第一顶二极管区于第一有源二极管区之上,成长一介电材料层以覆盖该第一底二极管区、该第一有源二极管区、与该第一顶二极管区,于该介电材料的膜层内图案化形成一第二组开口具有深宽比至少为1,形成一第二底部二极管区借由于第二开口内成长晶格不匹配于基板的一半导体材料的膜层并使得半导体材料填满第二组开口并于第二组开口之上接合成为一连续膜层,形成一第二有源二极管区于第一底部二极管区上,形成第二顶二极管区于第二有源二极管区之上,成长一介电材料层以覆盖该第二底二极管区、该第二有源二极管区、与该第二顶二极管区。此方法更包括接触一第一导电接触物与基板,接触一第二导电接触物与第一部分电极区、以及接触一第三导电接触物与一第二顶电极区。
虽然本发明已以较佳实施例揭示如上,然而其并非用以限定本发明,任何本领域技术人员,在不脱离本发明的精神和范围内,当可作更动与润饰,因此本发明的保护范围当视随附的权利要求所界定的范围为准。

Claims (15)

1.一种光电装置,包括:
一基板;
一介电材料,包括露出该基板的一部分的两个或两个以上的开口,所述两个或两个以上的开口分别具有至少为1的一深宽比;
一底部二极管材料,包括晶格不相称于该基板的一化合物半导体材料,且其中该化合物半导体材料占据了所述两个或两个以上的开口并于所述两个或两个以上的开口之上接合以形成一底二极管区;
一顶部二极管材料;以及
一有源二极管区,位于该顶部二极管材料与该底部二极管材料之间。
2.如权利要求1所述的光电装置,其中该有源二极管区包括不同于该顶部二极管材料与该底部二极管材料的一材料,而该有源二极管材料构成了位于该顶部二极管材料与底部二极管材料间的一p-i-n结的一本征区。
3.如权利要求1所述的光电装置,其中该有源二极管区包括多个多重量子阱,形成于该顶部二极管材料与该底部二极管材料之间。
4.如权利要求1所述的光电装置,其中该介电材料包括实质上择自二氧化硅、氮化硅、氮氧化硅、铪的氧化物、铪的硅化物、锆的氧化物、锆的硅化物及其组合所组成的族群中的一材料。
5.如权利要求1所述的光电装置,其中该开口为于两垂直轴向上具有至少为1的一深宽比的一孔洞。
6.如权利要求1所述的光电装置,其中该半导体材料择自实质上由一III-V族化合物、一II-VI族化合物、一IV族合金及其组合所组成族群的一材料。
7.如权利要求1所述的光电装置,其中该底部二极管材料包括一n型掺质,而该顶部二极管材料包括一p型掺质。
8.一种光电装置,包括:
一基板;以及
一光电二极管,包括:
一第一区,邻近该基板的一第一顶面;
一第二区,邻近该第一区;以及
一有源区,介于该第一区与该第二区之间,
其中该第二区包括邻近于该有源区的一表面,该表面平行于该基板的该顶面;以及
该第二区包括与该有源区相分隔的至少一缺陷捕捉区,该缺陷捕捉区包括延伸自该基板的该顶面的一表面。
9.如权利要求8所述的光电装置,其中该第一区的一表面接合于一握持基板。
10.如权利要求8所述的光电装置,其中该握持基板接合有一中间层,该中间层位于该第一区与该握持基板之间。
11.如权利要求9所述的光电装置,其中该握持晶片包括电性连结于该第一区的一导电物。
12.如权利要求8所述的光电装置,更包括一接触物,连结于该握持基板并电性连结于该第一二极管区。
13.一种光电装置的制造方法,包括:
沉积一第一介电材料层于一基板之上;
图案化该第一介电材料层以于其内形成两个或两个以上的开口,以露出该基板的该表面的部分,所述两个或两个以上的开口具有至少为1的深宽比;
借由成长晶格不相称于该基板的一化合物半导体材料于所述两个或两个以上的开口内,使得该化合物半导体材料填满所述两个或两个以上的开口以及于所述两个或两个以上开口之上接合成一连续膜层,以形成一底二极管区;
形成一有源二极管区于该底部二极管区之上;以及
形成一顶二极管区于该有源二极管区之上。
14.如权利要求13所述的光电装置的制造方法,更包括:
接合一握持晶片至该顶部二极管区;以及
移除该基板。
15.如权利要求13所述的光电装置的制造方法,更包括:
注入离子进入该半导体材料以制造出一分裂平面;
接合一握持基板至该半导体材料;以及
自该分裂平面处分裂该半导体材料的膜层。
CN2010102295095A 2010-01-08 2010-07-09 光电装置及其制造方法 Active CN102122675B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/684,499 2010-01-08
US12/684,499 US8304805B2 (en) 2009-01-09 2010-01-08 Semiconductor diodes fabricated by aspect ratio trapping with coalesced films

Publications (2)

Publication Number Publication Date
CN102122675A CN102122675A (zh) 2011-07-13
CN102122675B true CN102122675B (zh) 2013-04-17

Family

ID=43836833

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102295095A Active CN102122675B (zh) 2010-01-08 2010-07-09 光电装置及其制造方法

Country Status (7)

Country Link
US (4) US8304805B2 (zh)
EP (1) EP2343742B1 (zh)
JP (3) JP5399335B2 (zh)
KR (1) KR20110081742A (zh)
CN (1) CN102122675B (zh)
SG (1) SG173245A1 (zh)
TW (1) TWI427830B (zh)

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9153645B2 (en) 2005-05-17 2015-10-06 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8324660B2 (en) 2005-05-17 2012-12-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US7777250B2 (en) 2006-03-24 2010-08-17 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures and related methods for device fabrication
US8173551B2 (en) 2006-09-07 2012-05-08 Taiwan Semiconductor Manufacturing Co., Ltd. Defect reduction using aspect ratio trapping
WO2008039534A2 (en) 2006-09-27 2008-04-03 Amberwave Systems Corporation Quantum tunneling devices and circuits with lattice- mismatched semiconductor structures
US20080187018A1 (en) 2006-10-19 2008-08-07 Amberwave Systems Corporation Distributed feedback lasers formed via aspect ratio trapping
US7825328B2 (en) 2007-04-09 2010-11-02 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride-based multi-junction solar cell modules and methods for making the same
US8304805B2 (en) * 2009-01-09 2012-11-06 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor diodes fabricated by aspect ratio trapping with coalesced films
US8237151B2 (en) 2009-01-09 2012-08-07 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US9508890B2 (en) 2007-04-09 2016-11-29 Taiwan Semiconductor Manufacturing Company, Ltd. Photovoltaics on silicon
US8329541B2 (en) 2007-06-15 2012-12-11 Taiwan Semiconductor Manufacturing Company, Ltd. InP-based transistor fabrication
KR101093588B1 (ko) 2007-09-07 2011-12-15 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 멀티-정션 솔라 셀
US8183667B2 (en) 2008-06-03 2012-05-22 Taiwan Semiconductor Manufacturing Co., Ltd. Epitaxial growth of crystalline material
US8274097B2 (en) 2008-07-01 2012-09-25 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US8981427B2 (en) 2008-07-15 2015-03-17 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
CN102160145B (zh) 2008-09-19 2013-08-21 台湾积体电路制造股份有限公司 通过外延层过成长的元件形成
US20100072515A1 (en) 2008-09-19 2010-03-25 Amberwave Systems Corporation Fabrication and structures of crystalline material
US8253211B2 (en) 2008-09-24 2012-08-28 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor sensor structures with reduced dislocation defect densities
JP5705207B2 (ja) 2009-04-02 2015-04-22 台湾積體電路製造股▲ふん▼有限公司Taiwan Semiconductor Manufacturing Company,Ltd. 結晶物質の非極性面から形成される装置とその製作方法
CN102790006B (zh) * 2011-05-17 2014-09-17 中国科学院微电子研究所 半导体结构及其制作方法
US8564085B2 (en) * 2011-07-18 2013-10-22 Taiwan Semiconductor Manufacturing Company, Ltd. CMOS image sensor structure
US8749015B2 (en) 2011-11-17 2014-06-10 Avogy, Inc. Method and system for fabricating floating guard rings in GaN materials
US9018517B2 (en) 2011-11-07 2015-04-28 International Business Machines Corporation Silicon heterojunction photovoltaic device with wide band gap emitter
US9323010B2 (en) * 2012-01-10 2016-04-26 Invensas Corporation Structures formed using monocrystalline silicon and/or other materials for optical and other applications
US9653639B2 (en) 2012-02-07 2017-05-16 Apic Corporation Laser using locally strained germanium on silicon for opto-electronic applications
US9476143B2 (en) * 2012-02-15 2016-10-25 Imec Methods using mask structures for substantially defect-free epitaxial growth
US9257339B2 (en) * 2012-05-04 2016-02-09 Silicon Genesis Corporation Techniques for forming optoelectronic devices
AU2013277994A1 (en) 2012-06-22 2015-01-22 Epiworks, Inc. Manufacturing semiconductor-based multi-junction photovoltaic devices
DE102012107001A1 (de) 2012-07-31 2014-02-06 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines optoelektronischen Halbleiterchips und optoelektronischer Halbleiterchip
US8669135B2 (en) 2012-08-10 2014-03-11 Taiwan Semiconductor Manufacturing Company, Ltd. System and method for fabricating a 3D image sensor structure
JP5881560B2 (ja) * 2012-08-30 2016-03-09 株式会社東芝 半導体発光装置及びその製造方法
JP6004429B2 (ja) * 2012-09-10 2016-10-05 国立研究開発法人産業技術総合研究所 単結晶SiGe層の製造方法及びそれを用いた太陽電池
TWI565094B (zh) * 2012-11-15 2017-01-01 財團法人工業技術研究院 氮化物半導體結構
US10164038B2 (en) 2013-01-30 2018-12-25 Taiwan Semiconductor Manufacturing Company, Ltd. Method of implanting dopants into a group III-nitride structure and device formed
CN105027262B (zh) * 2013-03-07 2018-04-03 学校法人名城大学 氮化物半导体晶体及其制备方法
US8916445B1 (en) 2013-08-16 2014-12-23 International Business Machines Corporation Semiconductor devices and methods of manufacture
GB2520399B (en) * 2013-11-01 2017-10-25 Ibm Silicon heterojunction photovoltaic device with non-crystalline wide band gap emitter
KR101531875B1 (ko) * 2013-12-27 2015-06-29 (재)한국나노기술원 트랩홀에 의한 계단형 트렌치를 이용하여 실리콘 기판 상에 대면적 화합물 반도체 소자를 제조하는 방법
KR102122361B1 (ko) 2013-12-27 2020-06-15 삼성전자주식회사 플립칩 엘이디 패키지 기판 및 플립칩 엘이디 패키지 구조
KR102168969B1 (ko) 2014-02-28 2020-10-22 삼성전자주식회사 반도체 장치 및 그 제조 방법
US20160284957A1 (en) * 2015-03-23 2016-09-29 Toshiba Corporation REFLECTIVE CONTACT FOR GaN-BASED LEDS
US9401583B1 (en) 2015-03-30 2016-07-26 International Business Machines Corporation Laser structure on silicon using aspect ratio trapping growth
US9754968B2 (en) * 2015-04-30 2017-09-05 International Business Machines Corporation Structure and method to form III-V, Ge and SiGe fins on insulator
US9917414B2 (en) 2015-07-15 2018-03-13 International Business Machines Corporation Monolithic nanophotonic device on a semiconductor substrate
US10483351B2 (en) * 2015-09-04 2019-11-19 Nanyang Technological University Method of manufacturing a substrate with reduced threading dislocation density
US9646841B1 (en) 2015-10-14 2017-05-09 International Business Machines Corporation Group III arsenide material smoothing and chemical mechanical planarization processes
US9646842B1 (en) 2015-10-14 2017-05-09 International Business Machines Corporation Germanium smoothing and chemical mechanical planarization processes
US9916985B2 (en) 2015-10-14 2018-03-13 International Business Machines Corporation Indium phosphide smoothing and chemical mechanical planarization processes
EP3170574B1 (de) 2015-11-19 2022-07-13 Heraeus Deutschland GmbH & Co. KG Verfahren zur herstellung einer hülse für eine elektrode für medizinische anwendungen
JP6706414B2 (ja) * 2015-11-27 2020-06-10 国立研究開発法人情報通信研究機構 Ge単結晶薄膜の製造方法及び光デバイス
CN107132942A (zh) * 2016-02-26 2017-09-05 鸿富锦精密工业(深圳)有限公司 触控显示装置
US9793113B2 (en) * 2016-03-21 2017-10-17 Globalfoundries Inc. Semiconductor structure having insulator pillars and semiconductor material on substrate
TWI607582B (zh) 2016-03-25 2017-12-01 晶元光電股份有限公司 半導體元件及其製造方法
TWI638453B (zh) * 2016-03-25 2018-10-11 晶元光電股份有限公司 半導體元件及其製造方法
US9966466B2 (en) * 2016-08-08 2018-05-08 Globalfoundries Inc. Semiconductor-on-insulator wafer, semiconductor structure including a transistor, and methods for the formation and operation thereof
US9620590B1 (en) * 2016-09-20 2017-04-11 International Business Machines Corporation Nanosheet channel-to-source and drain isolation
DE102017002935A1 (de) * 2017-03-24 2018-09-27 3-5 Power Electronics GmbH III-V-Halbleiterdiode
US10720520B2 (en) * 2017-06-21 2020-07-21 Infineon Technologies Austria Ag Method of controlling wafer bow in a type III-V semiconductor device
CN107591464B (zh) * 2017-11-08 2019-02-12 宁波高新区斯汀环保科技有限公司 一种多功能曲面显示屏用led材料及其制造方法
CN111435679B (zh) * 2019-01-14 2023-06-13 联华电子股份有限公司 具有非对称应变源极/漏极结构的半导体元件其制作方法
EP3806152B1 (en) 2019-10-11 2022-08-24 Imec VZW A method of forming a semiconductor device structure
US11742203B2 (en) 2020-02-26 2023-08-29 The Hong Kong University Of Science And Technology Method for growing III-V compound semiconductor thin films on silicon-on-insulators

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007196165A (ja) * 2006-01-27 2007-08-09 National Institute For Materials Science 新規なデバイス
CN101114661A (zh) * 2006-07-25 2008-01-30 格科微电子(上海)有限公司 Cmos图像传感器

Family Cites Families (410)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1310808A (en) 1919-07-22 Planoqilaph co
US4307510A (en) 1980-03-12 1981-12-29 The United States Of America As Represented By The Administrator Of The National Aeronautics & Space Administration Computer circuit card puller
EP0506146A2 (en) * 1980-04-10 1992-09-30 Massachusetts Institute Of Technology Method of producing sheets of crystalline material
US4322253A (en) * 1980-04-30 1982-03-30 Rca Corporation Method of making selective crystalline silicon regions containing entrapped hydrogen by laser treatment
US4370510A (en) * 1980-09-26 1983-01-25 California Institute Of Technology Gallium arsenide single crystal solar cell structure and method of making
US4651179A (en) * 1983-01-21 1987-03-17 Rca Corporation Low resistance gallium arsenide field effect transistor
US4545109A (en) 1983-01-21 1985-10-08 Rca Corporation Method of making a gallium arsenide field effect transistor
US5091333A (en) * 1983-09-12 1992-02-25 Massachusetts Institute Of Technology Reducing dislocations in semiconductors utilizing repeated thermal cycling during multistage epitaxial growth
US4860081A (en) 1984-06-28 1989-08-22 Gte Laboratories Incorporated Semiconductor integrated circuit structure with insulative partitions
US4551394A (en) 1984-11-26 1985-11-05 Honeywell Inc. Integrated three-dimensional localized epitaxial growth of Si with localized overgrowth of GaAs
CA1292550C (en) 1985-09-03 1991-11-26 Masayoshi Umeno Epitaxial gallium arsenide semiconductor wafer and method of producing the same
JPS62188386A (ja) * 1986-02-14 1987-08-17 Omron Tateisi Electronics Co 半導体発光素子
US4774205A (en) 1986-06-13 1988-09-27 Massachusetts Institute Of Technology Monolithic integration of silicon and gallium arsenide devices
JPS6381855A (ja) 1986-09-25 1988-04-12 Mitsubishi Electric Corp ヘテロ接合バイポ−ラトランジスタの製造方法
US5236546A (en) 1987-01-26 1993-08-17 Canon Kabushiki Kaisha Process for producing crystal article
US5269876A (en) 1987-01-26 1993-12-14 Canon Kabushiki Kaisha Process for producing crystal article
US5281283A (en) * 1987-03-26 1994-01-25 Canon Kabushiki Kaisha Group III-V compound crystal article using selective epitaxial growth
US5166767A (en) 1987-04-14 1992-11-24 National Semiconductor Corporation Sidewall contact bipolar transistor with controlled lateral spread of selectively grown epitaxial layer
US4876210A (en) 1987-04-30 1989-10-24 The University Of Delaware Solution growth of lattice mismatched and solubility mismatched heterostructures
US4826784A (en) 1987-11-13 1989-05-02 Kopin Corporation Selective OMCVD growth of compound semiconductor materials on silicon substrates
JPH01165177A (ja) * 1987-12-22 1989-06-29 Ricoh Co Ltd 光電変換素子
US5079616A (en) * 1988-02-11 1992-01-07 Gte Laboratories Incorporated Semiconductor structure
US5272105A (en) 1988-02-11 1993-12-21 Gte Laboratories Incorporated Method of manufacturing an heteroepitaxial semiconductor structure
GB2215514A (en) 1988-03-04 1989-09-20 Plessey Co Plc Terminating dislocations in semiconductor epitaxial layers
US5156995A (en) 1988-04-01 1992-10-20 Cornell Research Foundation, Inc. Method for reducing or eliminating interface defects in mismatched semiconductor epilayers
US5032893A (en) 1988-04-01 1991-07-16 Cornell Research Foundation, Inc. Method for reducing or eliminating interface defects in mismatched semiconductor eiplayers
DE3821596A1 (de) 1988-06-27 1990-02-01 Horst J Ing Grad Feist Verfahren und vorrichtung zum herstellen von graphitelektroden
JPH0213988A (ja) * 1988-07-01 1990-01-18 Inobeeshiyon Center Kk 多色ディスプレイとその製造方法
EP0352472A3 (en) 1988-07-25 1991-02-06 Texas Instruments Incorporated Heteroepitaxy of lattice-mismatched semiconductor materials
US5238869A (en) 1988-07-25 1993-08-24 Texas Instruments Incorporated Method of forming an epitaxial layer on a heterointerface
US5061644A (en) 1988-12-22 1991-10-29 Honeywell Inc. Method for fabricating self-aligned semiconductor devices
EP0380815B1 (en) 1989-01-31 1994-05-25 Agfa-Gevaert N.V. Integration of GaAs on Si substrate
US5034337A (en) 1989-02-10 1991-07-23 Texas Instruments Incorporated Method of making an integrated circuit that combines multi-epitaxial power transistors with logic/analog devices
US4948456A (en) 1989-06-09 1990-08-14 Delco Electronics Corporation Confined lateral selective epitaxial growth
US5098850A (en) * 1989-06-16 1992-03-24 Canon Kabushiki Kaisha Process for producing substrate for selective crystal growth, selective crystal growth process and process for producing solar battery by use of them
US5256594A (en) 1989-06-16 1993-10-26 Intel Corporation Masking technique for depositing gallium arsenide on silicon
US5093699A (en) * 1990-03-12 1992-03-03 Texas A & M University System Gate adjusted resonant tunnel diode device and method of manufacture
US5164359A (en) 1990-04-20 1992-11-17 Eaton Corporation Monolithic integrated circuit having compound semiconductor layer epitaxially grown on ceramic substrate
US5158907A (en) * 1990-08-02 1992-10-27 At&T Bell Laboratories Method for making semiconductor devices with low dislocation defects
US5105247A (en) 1990-08-03 1992-04-14 Cavanaugh Marion E Quantum field effect device with source extension region formed under a gate and between the source and drain regions
JP3202223B2 (ja) 1990-11-27 2001-08-27 日本電気株式会社 トランジスタの製造方法
US5403751A (en) 1990-11-29 1995-04-04 Canon Kabushiki Kaisha Process for producing a thin silicon solar cell
US5223043A (en) 1991-02-11 1993-06-29 The United States Of America As Represented By The United States Department Of Energy Current-matched high-efficiency, multijunction monolithic solar cells
US5091767A (en) * 1991-03-18 1992-02-25 At&T Bell Laboratories Article comprising a lattice-mismatched semiconductor heterostructure
JPH04299569A (ja) 1991-03-27 1992-10-22 Nec Corp Soisの製造方法及びトランジスタとその製造方法
JPH04315419A (ja) * 1991-04-12 1992-11-06 Nec Corp 元素半導体基板上の絶縁膜/化合物半導体積層構造
US5269852A (en) 1991-05-27 1993-12-14 Canon Kabushiki Kaisha Crystalline solar cell and method for producing the same
JP3058954B2 (ja) 1991-09-24 2000-07-04 ローム株式会社 絶縁層の上に成長層を有する半導体装置の製造方法
JP2773487B2 (ja) 1991-10-15 1998-07-09 日本電気株式会社 トンネルトランジスタ
JPH05121317A (ja) 1991-10-24 1993-05-18 Rohm Co Ltd Soi構造形成方法
JP3286920B2 (ja) 1992-07-10 2002-05-27 富士通株式会社 半導体装置の製造方法
JP2875124B2 (ja) * 1992-11-26 1999-03-24 シャープ株式会社 半導体発光素子およびその製造方法
ATE169350T1 (de) 1992-12-04 1998-08-15 Siemens Ag Verfahren zur herstellung eines seitlich begrenzten, einkristallinen gebietes mittels selektiver epitaxie und dessen anwendung zur herstellung eines bipolartransistors sowie eines mos-transistors
JP3319472B2 (ja) 1992-12-07 2002-09-03 富士通株式会社 半導体装置とその製造方法
US5295150A (en) * 1992-12-11 1994-03-15 Eastman Kodak Company Distributed feedback-channeled substrate planar semiconductor laser
US5407491A (en) 1993-04-08 1995-04-18 University Of Houston Tandem solar cell with improved tunnel junction
DE69406049T2 (de) * 1993-06-04 1998-04-16 Sharp Kk Lichtmittierende Halbleitervorrichtung mit einer dritten Begrenzungsschicht
JP3748905B2 (ja) 1993-08-27 2006-02-22 三洋電機株式会社 量子効果デバイス
US5792679A (en) 1993-08-30 1998-08-11 Sharp Microelectronics Technology, Inc. Method for forming silicon-germanium/Si/silicon dioxide heterostructure using germanium implant
US5461243A (en) 1993-10-29 1995-10-24 International Business Machines Corporation Substrate for tensilely strained semiconductor
US5405453A (en) 1993-11-08 1995-04-11 Applied Solar Energy Corporation High efficiency multi-junction solar cell
US5489539A (en) 1994-01-10 1996-02-06 Hughes Aircraft Company Method of making quantum well structure with self-aligned gate
JPH0851109A (ja) 1994-04-11 1996-02-20 Texas Instr Inc <Ti> 酸化物でパターン化されたウェーハの窓内にエピタキシャルシリコンを成長させる方法
US6011271A (en) * 1994-04-28 2000-01-04 Fujitsu Limited Semiconductor device and method of fabricating the same
US5710436A (en) * 1994-09-27 1998-01-20 Kabushiki Kaisha Toshiba Quantum effect device
US5825240A (en) 1994-11-30 1998-10-20 Massachusetts Institute Of Technology Resonant-tunneling transmission line technology
JP3835225B2 (ja) 1995-02-23 2006-10-18 日亜化学工業株式会社 窒化物半導体発光素子
US5528209A (en) 1995-04-27 1996-06-18 Hughes Aircraft Company Monolithic microwave integrated circuit and method
JPH08306700A (ja) 1995-04-27 1996-11-22 Nec Corp 半導体装置及びその製造方法
TW304310B (zh) 1995-05-31 1997-05-01 Siemens Ag
US5621227A (en) 1995-07-18 1997-04-15 Discovery Semiconductors, Inc. Method and apparatus for monolithic optoelectronic integrated circuit using selective epitaxy
JPH11500873A (ja) 1995-12-15 1999-01-19 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ SiGe層を具えた半導体電界効果デバイス
TW314621B (zh) 1995-12-20 1997-09-01 Toshiba Co Ltd
US6121542A (en) 1996-05-17 2000-09-19 Canon Kabushiki Kaisha Photovoltaic device
JP3719618B2 (ja) 1996-06-17 2005-11-24 松下電器産業株式会社 半導体装置及びその製造方法
US6229153B1 (en) 1996-06-21 2001-05-08 Wisconsin Alumni Research Corporation High peak current density resonant tunneling diode
JP3260660B2 (ja) * 1996-08-22 2002-02-25 株式会社東芝 半導体装置およびその製造方法
JP3449516B2 (ja) 1996-08-30 2003-09-22 株式会社リコー 半導体多層膜反射鏡および半導体多層膜反射防止膜および面発光型半導体レーザおよび受光素子
US6191432B1 (en) * 1996-09-02 2001-02-20 Kabushiki Kaisha Toshiba Semiconductor device and memory device
US5825049A (en) 1996-10-09 1998-10-20 Sandia Corporation Resonant tunneling device with two-dimensional quantum well emitter and base layers
JPH10126010A (ja) 1996-10-23 1998-05-15 Ricoh Co Ltd 半導体レーザ装置の製造方法
SG65697A1 (en) 1996-11-15 1999-06-22 Canon Kk Process for producing semiconductor article
US5853497A (en) 1996-12-12 1998-12-29 Hughes Electronics Corporation High efficiency multi-junction solar cells
US6348096B1 (en) * 1997-03-13 2002-02-19 Nec Corporation Method for manufacturing group III-V compound semiconductors
JP3853905B2 (ja) 1997-03-18 2006-12-06 株式会社東芝 量子効果装置とblトンネル素子を用いた装置
EP0874405A3 (en) 1997-03-25 2004-09-15 Mitsubishi Cable Industries, Ltd. GaN group crystal base member having low dislocation density, use thereof and manufacturing methods thereof
CN1131548C (zh) 1997-04-04 2003-12-17 松下电器产业株式会社 半导体装置
JP3184115B2 (ja) 1997-04-11 2001-07-09 松下電器産業株式会社 オーミック電極形成方法
JP3047852B2 (ja) 1997-04-04 2000-06-05 松下電器産業株式会社 半導体装置
WO1998047170A1 (en) 1997-04-11 1998-10-22 Nichia Chemical Industries, Ltd. Method of growing nitride semiconductors, nitride semiconductor substrate and nitride semiconductor device
JP2008034862A (ja) * 1997-04-11 2008-02-14 Nichia Chem Ind Ltd 窒化物半導体の成長方法
US5998781A (en) 1997-04-30 1999-12-07 Sandia Corporation Apparatus for millimeter-wave signal generation
US5903170A (en) 1997-06-03 1999-05-11 The Regents Of The University Of Michigan Digital logic design using negative differential resistance diodes and field-effect transistors
US5883549A (en) * 1997-06-20 1999-03-16 Hughes Electronics Corporation Bipolar junction transistor (BJT)--resonant tunneling diode (RTD) oscillator circuit and method
WO1998059365A1 (en) 1997-06-24 1998-12-30 Massachusetts Institute Of Technology CONTROLLING THREADING DISLOCATION DENSITIES IN Ge ON Si USING GRADED GeSi LAYERS AND PLANARIZATION
US5869845A (en) * 1997-06-26 1999-02-09 Texas Instruments Incorporated Resonant tunneling memory
US6015979A (en) * 1997-08-29 2000-01-18 Kabushiki Kaisha Toshiba Nitride-based semiconductor element and method for manufacturing the same
JP3930161B2 (ja) 1997-08-29 2007-06-13 株式会社東芝 窒化物系半導体素子、発光素子及びその製造方法
KR20010024041A (ko) 1997-09-16 2001-03-26 자르밀라 제트. 흐르벡 공동 평면 Si 및 Ge 합성물 기판 및 그 제조 방법
FR2769924B1 (fr) 1997-10-20 2000-03-10 Centre Nat Rech Scient Procede de realisation d'une couche epitaxiale de nitrure de gallium, couche epitaxiale de nitrure de gallium et composant optoelectronique muni d'une telle couche
EP2200071B1 (en) 1997-10-30 2012-01-18 Sumitomo Electric Industries, Ltd. GaN single crystal substrate and method of making the same using homoepitaxy
JP3180743B2 (ja) 1997-11-17 2001-06-25 日本電気株式会社 窒化化合物半導体発光素子およびその製法
JP3468082B2 (ja) 1998-02-26 2003-11-17 日亜化学工業株式会社 窒化物半導体素子
US6150242A (en) 1998-03-25 2000-11-21 Texas Instruments Incorporated Method of growing crystalline silicon overlayers on thin amorphous silicon oxide layers and forming by method a resonant tunneling diode
JPH11274467A (ja) 1998-03-26 1999-10-08 Murata Mfg Co Ltd 光電子集積回路素子
US6500257B1 (en) 1998-04-17 2002-12-31 Agilent Technologies, Inc. Epitaxial material grown laterally within a trench and method for producing same
JP3338778B2 (ja) 1998-04-24 2002-10-28 日本電気株式会社 窒化物系化合物半導体レーザ素子
US6265289B1 (en) * 1998-06-10 2001-07-24 North Carolina State University Methods of fabricating gallium nitride semiconductor layers by lateral growth from sidewalls into trenches, and gallium nitride semiconductor structures fabricated thereby
JP4005701B2 (ja) 1998-06-24 2007-11-14 シャープ株式会社 窒素化合物半導体膜の形成方法および窒素化合物半導体素子
WO2000004615A1 (en) 1998-07-14 2000-01-27 Fujitsu Limited Semiconductor laser, semiconductor device, and method for manufacturing the same
JP4365530B2 (ja) 1998-09-10 2009-11-18 ローム株式会社 半導体発光素子およびその製法
US6252261B1 (en) 1998-09-30 2001-06-26 Nec Corporation GaN crystal film, a group III element nitride semiconductor wafer and a manufacturing process therefor
JP3868136B2 (ja) 1999-01-20 2007-01-17 日亜化学工業株式会社 窒化ガリウム系化合物半導体発光素子
JP3372226B2 (ja) 1999-02-10 2003-01-27 日亜化学工業株式会社 窒化物半導体レーザ素子
US7145167B1 (en) 2000-03-11 2006-12-05 International Business Machines Corporation High speed Ge channel heterostructures for field effect devices
JP3702700B2 (ja) * 1999-03-31 2005-10-05 豊田合成株式会社 Iii族窒化物系化合物半導体素子及びその製造方法
JP3760663B2 (ja) 1999-03-31 2006-03-29 豊田合成株式会社 Iii族窒化物系化合物半導体素子の製造方法
DE10017137A1 (de) 1999-04-14 2000-10-26 Siemens Ag Silizium-Aufbau und Verfahren zu dessen Herstellung
US6803598B1 (en) 1999-05-07 2004-10-12 University Of Delaware Si-based resonant interband tunneling diodes and method of making interband tunneling diodes
JP3587081B2 (ja) 1999-05-10 2004-11-10 豊田合成株式会社 Iii族窒化物半導体の製造方法及びiii族窒化物半導体発光素子
TW461096B (en) * 1999-05-13 2001-10-21 Hitachi Ltd Semiconductor memory
US6252287B1 (en) 1999-05-19 2001-06-26 Sandia Corporation InGaAsN/GaAs heterojunction for multi-junction solar cells
JP3555500B2 (ja) 1999-05-21 2004-08-18 豊田合成株式会社 Iii族窒化物半導体及びその製造方法
US6214653B1 (en) 1999-06-04 2001-04-10 International Business Machines Corporation Method for fabricating complementary metal oxide semiconductor (CMOS) devices on a mixed bulk and silicon-on-insulator (SOI) substrate
JP2001007447A (ja) 1999-06-18 2001-01-12 Nichia Chem Ind Ltd 窒化物半導体レーザ素子
DE60039875D1 (de) 1999-06-25 2008-09-25 Massachusetts Inst Technology Zyklisches thermisches ausheilverfahren zur reduktion von kristallversetzungen
US6228691B1 (en) 1999-06-30 2001-05-08 Intel Corp. Silicon-on-insulator devices and method for producing the same
GB9919479D0 (en) 1999-08-17 1999-10-20 Imperial College Island arrays
US6339232B1 (en) * 1999-09-20 2002-01-15 Kabushika Kaisha Toshiba Semiconductor device
JP2001102678A (ja) 1999-09-29 2001-04-13 Toshiba Corp 窒化ガリウム系化合物半導体素子
US6984571B1 (en) * 1999-10-01 2006-01-10 Ziptronix, Inc. Three dimensional device integration method and integrated device
US6812053B1 (en) 1999-10-14 2004-11-02 Cree, Inc. Single step pendeo- and lateral epitaxial overgrowth of Group III-nitride epitaxial layers with Group III-nitride buffer layer and resulting structures
JP2001189483A (ja) 1999-10-18 2001-07-10 Sharp Corp バイパス機能付太陽電池セルおよびバイパス機能付き多接合積層型太陽電池セルおよびそれらの製造方法
EP1672700A2 (en) * 1999-11-15 2006-06-21 Matsushita Electric Industrial Co., Ltd. Field effect semiconductor device
US6521514B1 (en) * 1999-11-17 2003-02-18 North Carolina State University Pendeoepitaxial methods of fabricating gallium nitride semiconductor layers on sapphire substrates
JP2001176805A (ja) 1999-12-16 2001-06-29 Sony Corp 窒化物系iii−v族化合物の結晶製造方法、窒化物系iii−v族化合物結晶基板、窒化物系iii−v族化合物結晶膜およびデバイスの製造方法
US6403451B1 (en) 2000-02-09 2002-06-11 Noerh Carolina State University Methods of fabricating gallium nitride semiconductor layers on substrates including non-gallium nitride posts
AU2001233526A1 (en) * 2000-02-11 2001-08-20 Novo Rps Ulc Stent delivery system and method of use
US6902987B1 (en) 2000-02-16 2005-06-07 Ziptronix, Inc. Method for low temperature bonding and bonded structure
JP3512701B2 (ja) 2000-03-10 2004-03-31 株式会社東芝 半導体装置及びその製造方法
TW504754B (en) * 2000-03-24 2002-10-01 Sumitomo Chemical Co Group III-V compound semiconductor and method of producing the same
US20050184302A1 (en) 2000-04-04 2005-08-25 Toshimasa Kobayashi Nitride semiconductor device and method of manufacturing the same
US6362071B1 (en) * 2000-04-05 2002-03-26 Motorola, Inc. Method for forming a semiconductor device with an opening in a dielectric layer
JP2001338988A (ja) 2000-05-25 2001-12-07 Hitachi Ltd 半導体装置及びその製造方法
US6841808B2 (en) * 2000-06-23 2005-01-11 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor device and method for producing the same
US20020030246A1 (en) * 2000-06-28 2002-03-14 Motorola, Inc. Structure and method for fabricating semiconductor structures and devices not lattice matched to the substrate
US20020008234A1 (en) 2000-06-28 2002-01-24 Motorola, Inc. Mixed-signal semiconductor structure, device including the structure, and methods of forming the device and the structure
US20020011612A1 (en) * 2000-07-31 2002-01-31 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
JP2002118255A (ja) 2000-07-31 2002-04-19 Toshiba Corp 半導体装置およびその製造方法
JP4269541B2 (ja) * 2000-08-01 2009-05-27 株式会社Sumco 半導体基板と電界効果型トランジスタ並びにSiGe層の形成方法及びこれを用いた歪みSi層の形成方法と電界効果型トランジスタの製造方法
JP2002062090A (ja) 2000-08-17 2002-02-28 Mekku Corporation:Kk プレート型直交熱交換器のダスト除去装置
US6579463B1 (en) 2000-08-18 2003-06-17 The Regents Of The University Of Colorado Tunable nanomasks for pattern transfer and nanocluster array formation
KR20020040903A (ko) 2000-08-21 2002-05-30 다니구찌 이찌로오, 기타오카 다카시 π/2 이상기
US7301199B2 (en) 2000-08-22 2007-11-27 President And Fellows Of Harvard College Nanoscale wires and related devices
US20060175601A1 (en) 2000-08-22 2006-08-10 President And Fellows Of Harvard College Nanoscale wires and related devices
US6407425B1 (en) 2000-09-21 2002-06-18 Texas Instruments Incorporated Programmable neuron MOSFET on SOI
US6456214B1 (en) 2000-09-27 2002-09-24 Raytheon Company High-speed comparator utilizing resonant tunneling diodes and associated method
JP4044276B2 (ja) * 2000-09-28 2008-02-06 株式会社東芝 半導体装置及びその製造方法
US7163864B1 (en) * 2000-10-18 2007-01-16 International Business Machines Corporation Method of fabricating semiconductor side wall fin
US6720090B2 (en) 2001-01-02 2004-04-13 Eastman Kodak Company Organic light emitting diode devices with improved luminance efficiency
JP4084541B2 (ja) 2001-02-14 2008-04-30 豊田合成株式会社 半導体結晶及び半導体発光素子の製造方法
JP4084544B2 (ja) 2001-03-30 2008-04-30 豊田合成株式会社 半導体基板及び半導体素子の製造方法
DE60233386D1 (de) 2001-02-14 2009-10-01 Toyoda Gosei Kk Verfahren zur herstellung von halbleiterkristallen und halbleiter-leuchtelementen
US6380590B1 (en) 2001-02-22 2002-04-30 Advanced Micro Devices, Inc. SOI chip having multiple threshold voltage MOSFETs by using multiple channel materials and method of fabricating same
US6475869B1 (en) 2001-02-26 2002-11-05 Advanced Micro Devices, Inc. Method of forming a double gate transistor having an epitaxial silicon/germanium channel region
JP3679720B2 (ja) * 2001-02-27 2005-08-03 三洋電機株式会社 窒化物系半導体素子および窒化物系半導体の形成方法
JP2002270516A (ja) * 2001-03-07 2002-09-20 Nec Corp Iii族窒化物半導体の成長方法、iii族窒化物半導体膜およびそれを用いた半導体素子
US7205604B2 (en) 2001-03-13 2007-04-17 International Business Machines Corporation Ultra scalable high speed heterojunction vertical n-channel MISFETs and methods thereof
JP3705142B2 (ja) 2001-03-27 2005-10-12 ソニー株式会社 窒化物半導体素子及びその作製方法
US6996147B2 (en) 2001-03-30 2006-02-07 The Regents Of The University Of California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
JP3956637B2 (ja) 2001-04-12 2007-08-08 ソニー株式会社 窒化物半導体の結晶成長方法及び半導体素子の形成方法
GB0110112D0 (en) 2001-04-25 2001-06-20 Univ Glasgow Improved optoelectronic device
GB0111207D0 (en) 2001-05-08 2001-06-27 Btg Int Ltd A method to produce germanium layers
US6784074B2 (en) 2001-05-09 2004-08-31 Nsc-Nanosemiconductor Gmbh Defect-free semiconductor templates for epitaxial growth and method of making same
JP3819730B2 (ja) 2001-05-11 2006-09-13 三洋電機株式会社 窒化物系半導体素子および窒化物半導体の形成方法
US20020168802A1 (en) 2001-05-14 2002-11-14 Hsu Sheng Teng SiGe/SOI CMOS and method of making the same
US7358578B2 (en) * 2001-05-22 2008-04-15 Renesas Technology Corporation Field effect transistor on a substrate with (111) orientation having zirconium oxide gate insulation and cobalt or nickel silicide wiring
TW544956B (en) 2001-06-13 2003-08-01 Matsushita Electric Ind Co Ltd Nitride semiconductor, production method therefor and nitride semiconductor element
JP3515974B2 (ja) 2001-06-13 2004-04-05 松下電器産業株式会社 窒化物半導体、その製造方法及び窒化物半導体素子
US6566284B2 (en) 2001-08-07 2003-05-20 Hrl Laboratories, Llc Method of manufacture for 80 nanometer diameter resonant tunneling diode with improved peak-to-valley ratio and resonant tunneling diode therefrom
JP3785970B2 (ja) * 2001-09-03 2006-06-14 日本電気株式会社 Iii族窒化物半導体素子の製造方法
JP2003077847A (ja) * 2001-09-06 2003-03-14 Sumitomo Chem Co Ltd 3−5族化合物半導体の製造方法
JP2003163370A (ja) 2001-09-11 2003-06-06 Toyoda Gosei Co Ltd 半導体結晶の製造方法
TW544930B (en) 2001-09-11 2003-08-01 Toyoda Gosei Kk Method for producing semiconductor crystal
US7105865B2 (en) * 2001-09-19 2006-09-12 Sumitomo Electric Industries, Ltd. AlxInyGa1−x−yN mixture crystal substrate
JP3697406B2 (ja) * 2001-09-26 2005-09-21 株式会社東芝 半導体発光装置及びその製造方法
US6689650B2 (en) * 2001-09-27 2004-02-10 International Business Machines Corporation Fin field effect transistor with self-aligned gate
US20030064535A1 (en) 2001-09-28 2003-04-03 Kub Francis J. Method of manufacturing a semiconductor device having a thin GaN material directly bonded to an optimized substrate
US6710368B2 (en) 2001-10-01 2004-03-23 Ken Scott Fisher Quantum tunneling transistor
US20030070707A1 (en) 2001-10-12 2003-04-17 King Richard Roland Wide-bandgap, lattice-mismatched window layer for a solar energy conversion device
JP2003142728A (ja) 2001-11-02 2003-05-16 Sharp Corp 半導体発光素子の製造方法
JP2003152220A (ja) * 2001-11-15 2003-05-23 Sharp Corp 半導体発光素子の製造方法および半導体発光素子
US6835246B2 (en) 2001-11-16 2004-12-28 Saleem H. Zaidi Nanostructures for hetero-expitaxial growth on silicon substrates
JP3758562B2 (ja) * 2001-11-27 2006-03-22 日亜化学工業株式会社 窒化物半導体多色発光素子
US6576532B1 (en) 2001-11-30 2003-06-10 Motorola Inc. Semiconductor device and method therefor
EP1363318A1 (en) 2001-12-20 2003-11-19 Matsushita Electric Industrial Co., Ltd. Method for making nitride semiconductor substrate and method for making nitride semiconductor device
WO2003065464A1 (fr) 2002-01-28 2003-08-07 Nichia Corporation Dispositif a semi-conducteur a base de nitrure comprenant un substrat de support, et son procede de realisation
KR100458288B1 (ko) 2002-01-30 2004-11-26 한국과학기술원 이중-게이트 FinFET 소자 및 그 제조방법
US7411233B2 (en) * 2002-08-27 2008-08-12 E-Phocus, Inc Photoconductor-on-active-pixel (POAP) sensor utilizing a multi-layered radiation absorbing structure
US6492216B1 (en) 2002-02-07 2002-12-10 Taiwan Semiconductor Manufacturing Company Method of forming a transistor with a strained channel
JP3782021B2 (ja) 2002-02-22 2006-06-07 株式会社東芝 半導体装置、半導体装置の製造方法、半導体基板の製造方法
JP4092927B2 (ja) 2002-02-28 2008-05-28 豊田合成株式会社 Iii族窒化物系化合物半導体、iii族窒化物系化合物半導体素子及びiii族窒化物系化合物半導体基板の製造方法
US6635909B2 (en) 2002-03-19 2003-10-21 International Business Machines Corporation Strained fin FETs structure and method
US7208393B2 (en) 2002-04-15 2007-04-24 The Regents Of The University Of California Growth of planar reduced dislocation density m-plane gallium nitride by hydride vapor phase epitaxy
KR101167590B1 (ko) 2002-04-15 2012-07-27 더 리전츠 오브 더 유니버시티 오브 캘리포니아 유기금속 화학기상 증착법에 의해 성장된 무극성 α면 질화갈륨 박막
US8067687B2 (en) 2002-05-21 2011-11-29 Alliance For Sustainable Energy, Llc High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters
US20060162768A1 (en) 2002-05-21 2006-07-27 Wanlass Mark W Low bandgap, monolithic, multi-bandgap, optoelectronic devices
US7217882B2 (en) 2002-05-24 2007-05-15 Cornell Research Foundation, Inc. Broad spectrum solar cell
CN2550906Y (zh) 2002-05-27 2003-05-14 李映华 立体光双面结光电池
FR2840452B1 (fr) 2002-05-28 2005-10-14 Lumilog Procede de realisation par epitaxie d'un film de nitrure de gallium separe de son substrat
TWI271877B (en) 2002-06-04 2007-01-21 Nitride Semiconductors Co Ltd Gallium nitride compound semiconductor device and manufacturing method
US6995430B2 (en) * 2002-06-07 2006-02-07 Amberwave Systems Corporation Strained-semiconductor-on-insulator device structures
US7074623B2 (en) * 2002-06-07 2006-07-11 Amberwave Systems Corporation Methods of forming strained-semiconductor-on-insulator finFET device structures
JP2004014856A (ja) 2002-06-07 2004-01-15 Sharp Corp 半導体基板の製造方法及び半導体装置の製造方法
US6887773B2 (en) 2002-06-19 2005-05-03 Luxtera, Inc. Methods of incorporating germanium within CMOS process
JP2005530360A (ja) 2002-06-19 2005-10-06 マサチューセッツ・インスティチュート・オブ・テクノロジー Ge光検出器
US7012298B1 (en) * 2002-06-21 2006-03-14 Advanced Micro Devices, Inc. Non-volatile memory device
US6617643B1 (en) 2002-06-28 2003-09-09 Mcnc Low power tunneling metal-oxide-semiconductor (MOS) device
US7335908B2 (en) 2002-07-08 2008-02-26 Qunano Ab Nanostructures and methods for manufacturing the same
US6982204B2 (en) * 2002-07-16 2006-01-03 Cree, Inc. Nitride-based transistors and methods of fabrication thereof using non-etched contact recesses
US20040012037A1 (en) * 2002-07-18 2004-01-22 Motorola, Inc. Hetero-integration of semiconductor materials on silicon
EP2267762A3 (en) * 2002-08-23 2012-08-22 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor heterostructures having reduced dislocation pile-ups and related methods
US7015497B1 (en) 2002-08-27 2006-03-21 The Ohio State University Self-aligned and self-limited quantum dot nanoswitches and methods for making same
US20040043584A1 (en) * 2002-08-27 2004-03-04 Thomas Shawn G. Semiconductor device and method of making same
GB0220438D0 (en) * 2002-09-03 2002-10-09 Univ Warwick Formation of lattice-turning semiconductor substrates
US7122733B2 (en) 2002-09-06 2006-10-17 The Boeing Company Multi-junction photovoltaic cell having buffer layers for the growth of single crystal boron compounds
US6830953B1 (en) 2002-09-17 2004-12-14 Taiwan Semiconductor Manufacturing Company, Ltd. Suppression of MOSFET gate leakage current
US6815241B2 (en) 2002-09-25 2004-11-09 Cao Group, Inc. GaN structures having low dislocation density and methods of manufacture
US6800910B2 (en) 2002-09-30 2004-10-05 Advanced Micro Devices, Inc. FinFET device incorporating strained silicon in the channel region
US6787864B2 (en) 2002-09-30 2004-09-07 Advanced Micro Devices, Inc. Mosfets incorporating nickel germanosilicided gate and methods for their formation
JP4546021B2 (ja) 2002-10-02 2010-09-15 ルネサスエレクトロニクス株式会社 絶縁ゲート型電界効果型トランジスタ及び半導体装置
US6902991B2 (en) 2002-10-24 2005-06-07 Advanced Micro Devices, Inc. Semiconductor device having a thick strained silicon layer and method of its formation
US6709982B1 (en) * 2002-11-26 2004-03-23 Advanced Micro Devices, Inc. Double spacer FinFET formation
US6855990B2 (en) * 2002-11-26 2005-02-15 Taiwan Semiconductor Manufacturing Co., Ltd Strained-channel multiple-gate transistor
US6920159B2 (en) 2002-11-29 2005-07-19 Optitune Plc Tunable optical source
US7003436B1 (en) * 2002-12-04 2006-02-21 Southwest Sciences Incorporated Determination of fit basis functions
AU2003297649A1 (en) 2002-12-05 2004-06-30 Blue Photonics, Inc. High efficiency, monolithic multijunction solar cells containing lattice-mismatched materials and methods of forming same
US6645797B1 (en) 2002-12-06 2003-11-11 Advanced Micro Devices, Inc. Method for forming fins in a FinFET device using sacrificial carbon layer
US7071494B2 (en) * 2002-12-11 2006-07-04 Lumileds Lighting U.S. Llc Light emitting device with enhanced optical scattering
JP4486506B2 (ja) 2002-12-16 2010-06-23 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア ハイドライド気相成長方法による転位密度の低い無極性窒化ガリウムの成長
US7589380B2 (en) * 2002-12-18 2009-09-15 Noble Peak Vision Corp. Method for forming integrated circuit utilizing dual semiconductors
US7453129B2 (en) 2002-12-18 2008-11-18 Noble Peak Vision Corp. Image sensor comprising isolated germanium photodetectors integrated with a silicon substrate and silicon circuitry
US7012314B2 (en) * 2002-12-18 2006-03-14 Agere Systems Inc. Semiconductor devices with reduced active region defects and unique contacting schemes
JP2004200375A (ja) 2002-12-18 2004-07-15 Matsushita Electric Ind Co Ltd 半導体レーザ装置およびその製造方法
US6794718B2 (en) 2002-12-19 2004-09-21 International Business Machines Corporation High mobility crystalline planes in double-gate CMOS technology
US6686245B1 (en) * 2002-12-20 2004-02-03 Motorola, Inc. Vertical MOSFET with asymmetric gate structure
US7098487B2 (en) 2002-12-27 2006-08-29 General Electric Company Gallium nitride crystal and method of making same
KR100513316B1 (ko) * 2003-01-21 2005-09-09 삼성전기주식회사 고효율 반도체 소자 제조방법
US6762483B1 (en) 2003-01-23 2004-07-13 Advanced Micro Devices, Inc. Narrow fin FinFET
JP2004235190A (ja) 2003-01-28 2004-08-19 Sony Corp 光半導体装置
US7304336B2 (en) 2003-02-13 2007-12-04 Massachusetts Institute Of Technology FinFET structure and method to make the same
DE10320160A1 (de) 2003-02-14 2004-08-26 Osram Opto Semiconductors Gmbh Verfahren zum Herstellen einer Mehrzahl von Halbleiterkörper und elektronischer Halbleiterkörper
US6815738B2 (en) 2003-02-28 2004-11-09 International Business Machines Corporation Multiple gate MOSFET structure with strained Si Fin body
JP4695824B2 (ja) 2003-03-07 2011-06-08 富士電機ホールディングス株式会社 半導体ウエハの製造方法
WO2004081982A2 (en) 2003-03-07 2004-09-23 Amberwave Systems Corporation Shallow trench isolation process
US6936851B2 (en) 2003-03-21 2005-08-30 Tien Yang Wang Semiconductor light-emitting device and method for manufacturing the same
WO2004086461A2 (en) * 2003-03-21 2004-10-07 North Carolina State University Methods for nanoscale structures from optical lithography and subsequent lateral growth
US7061065B2 (en) 2003-03-31 2006-06-13 National Chung-Hsing University Light emitting diode and method for producing the same
JP4628651B2 (ja) * 2003-04-02 2011-02-09 日亜化学工業株式会社 窒化物半導体発光素子の製造方法
US6900502B2 (en) 2003-04-03 2005-05-31 Taiwan Semiconductor Manufacturing Company, Ltd. Strained channel on insulator device
TWI231994B (en) 2003-04-04 2005-05-01 Univ Nat Taiwan Strained Si FinFET
US20050212051A1 (en) 2003-04-16 2005-09-29 Sarnoff Corporation Low voltage silicon controlled rectifier (SCR) for electrostatic discharge (ESD) protection of silicon-on-insulator technologies
US6867433B2 (en) * 2003-04-30 2005-03-15 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor-on-insulator chip incorporating strained-channel partially-depleted, fully-depleted, and multiple-gate transistors
JP2004336040A (ja) * 2003-04-30 2004-11-25 Osram Opto Semiconductors Gmbh 複数の半導体チップの製造方法および電子半導体基体
US6909186B2 (en) 2003-05-01 2005-06-21 International Business Machines Corporation High performance FET devices and methods therefor
US6838322B2 (en) * 2003-05-01 2005-01-04 Freescale Semiconductor, Inc. Method for forming a double-gated semiconductor device
US7088143B2 (en) 2003-05-22 2006-08-08 The Regents Of The University Of Michigan Dynamic circuits having improved noise tolerance and method for designing same
US6849487B2 (en) * 2003-05-27 2005-02-01 Motorola, Inc. Method for forming an electronic structure using etch
TWI242232B (en) * 2003-06-09 2005-10-21 Canon Kk Semiconductor substrate, semiconductor device, and method of manufacturing the same
US7262117B1 (en) 2003-06-10 2007-08-28 Luxtera, Inc. Germanium integrated CMOS wafer and method for manufacturing the same
JP4105044B2 (ja) 2003-06-13 2008-06-18 株式会社東芝 電界効果トランジスタ
US6974733B2 (en) 2003-06-16 2005-12-13 Intel Corporation Double-gate transistor with enhanced carrier mobility
US6943407B2 (en) 2003-06-17 2005-09-13 International Business Machines Corporation Low leakage heterojunction vertical transistors and high performance devices thereof
JP2005011915A (ja) 2003-06-18 2005-01-13 Hitachi Ltd 半導体装置、半導体回路モジュールおよびその製造方法
US7045401B2 (en) 2003-06-23 2006-05-16 Sharp Laboratories Of America, Inc. Strained silicon finFET device
KR100631832B1 (ko) 2003-06-24 2006-10-09 삼성전기주식회사 백색 발광소자 및 그 제조방법
US7122392B2 (en) 2003-06-30 2006-10-17 Intel Corporation Methods of forming a high germanium concentration silicon germanium alloy by epitaxial lateral overgrowth and structures formed thereby
US20050017351A1 (en) * 2003-06-30 2005-01-27 Ravi Kramadhati V. Silicon on diamond wafers and devices
US6921982B2 (en) 2003-07-21 2005-07-26 International Business Machines Corporation FET channel having a strained lattice structure along multiple surfaces
EP1519420A2 (en) 2003-09-25 2005-03-30 Interuniversitaire Microelectronica Centrum vzw ( IMEC) Multiple gate semiconductor device and method for forming same
JP2005051022A (ja) * 2003-07-28 2005-02-24 Seiko Epson Corp 半導体装置およびその製造方法
US6855583B1 (en) * 2003-08-05 2005-02-15 Advanced Micro Devices, Inc. Method for forming tri-gate FinFET with mesa isolation
US6835618B1 (en) 2003-08-05 2004-12-28 Advanced Micro Devices, Inc. Epitaxially grown fin for FinFET
JP4322255B2 (ja) 2003-08-05 2009-08-26 富士通マイクロエレクトロニクス株式会社 半導体装置及びその製造方法
US7101742B2 (en) 2003-08-12 2006-09-05 Taiwan Semiconductor Manufacturing Company, Ltd. Strained channel complementary field-effect transistors and methods of manufacture
US20050035410A1 (en) * 2003-08-15 2005-02-17 Yee-Chia Yeo Semiconductor diode with reduced leakage
US7355253B2 (en) * 2003-08-22 2008-04-08 International Business Machines Corporation Strained-channel Fin field effect transistor (FET) with a uniform channel thickness and separate gates
US6815278B1 (en) 2003-08-25 2004-11-09 International Business Machines Corporation Ultra-thin silicon-on-insulator and strained-silicon-direct-on-insulator with hybrid crystal orientations
JP4160881B2 (ja) * 2003-08-28 2008-10-08 松下電器産業株式会社 半導体発光装置、発光モジュール、照明装置、および半導体発光装置の製造方法
US7078299B2 (en) 2003-09-03 2006-07-18 Advanced Micro Devices, Inc. Formation of finFET using a sidewall epitaxial layer
US6955969B2 (en) 2003-09-03 2005-10-18 Advanced Micro Devices, Inc. Method of growing as a channel region to reduce source/drain junction capacitance
JP4439358B2 (ja) 2003-09-05 2010-03-24 株式会社東芝 電界効果トランジスタ及びその製造方法
US7579263B2 (en) * 2003-09-09 2009-08-25 Stc.Unm Threading-dislocation-free nanoheteroepitaxy of Ge on Si using self-directed touch-down of Ge through a thin SiO2 layer
US20050054164A1 (en) * 2003-09-09 2005-03-10 Advanced Micro Devices, Inc. Strained silicon MOSFETs having reduced diffusion of n-type dopants
US7138292B2 (en) 2003-09-10 2006-11-21 Lsi Logic Corporation Apparatus and method of manufacture for integrated circuit and CMOS device including epitaxially grown dielectric on silicon carbide
US7211864B2 (en) * 2003-09-15 2007-05-01 Seliskar John J Fully-depleted castellated gate MOSFET device and method of manufacture thereof
US20050056827A1 (en) * 2003-09-15 2005-03-17 Agency For Science, Technology And Research CMOS compatible low band offset double barrier resonant tunneling diode
EP1676322A2 (en) 2003-09-19 2006-07-05 Spinnaker Semiconductor, Inc. Schottky barrier integrated circuit
US6831350B1 (en) 2003-10-02 2004-12-14 Freescale Semiconductor, Inc. Semiconductor structure with different lattice constant materials and method for forming the same
US6919258B2 (en) 2003-10-02 2005-07-19 Freescale Semiconductor, Inc. Semiconductor device incorporating a defect controlled strained channel structure and method of making the same
JP2007507905A (ja) 2003-10-03 2007-03-29 スピンネイカー セミコンダクター インコーポレイテッド 等方性エッチングプロセスを使ったショットキーバリアmosfet製造方法
US6900491B2 (en) 2003-10-06 2005-05-31 Hewlett-Packard Development Company, L.P. Magnetic memory
WO2005038901A1 (en) 2003-10-22 2005-04-28 Spinnaker Semiconductor, Inc. Dynamic schottky barrier mosfet device and method of manufacture
US7009215B2 (en) 2003-10-24 2006-03-07 General Electric Company Group III-nitride based resonant cavity light emitting devices fabricated on single crystal gallium nitride substrates
US6977194B2 (en) 2003-10-30 2005-12-20 International Business Machines Corporation Structure and method to improve channel mobility by gate electrode stress modification
US6902965B2 (en) 2003-10-31 2005-06-07 Taiwan Semiconductor Manufacturing Company, Ltd. Strained silicon structure
US7057216B2 (en) 2003-10-31 2006-06-06 International Business Machines Corporation High mobility heterojunction complementary field effect transistors and methods thereof
GB0326321D0 (en) 2003-11-12 2003-12-17 Univ Warwick Formation of lattice-tuning semiconductor substrates
US20050104156A1 (en) 2003-11-13 2005-05-19 Texas Instruments Incorporated Forming a semiconductor structure in manufacturing a semiconductor device using one or more epitaxial growth processes
US7247534B2 (en) 2003-11-19 2007-07-24 International Business Machines Corporation Silicon device on Si:C-OI and SGOI and method of manufacture
US7176522B2 (en) * 2003-11-25 2007-02-13 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device having high drive current and method of manufacturing thereof
JP2005191530A (ja) 2003-12-03 2005-07-14 Sumitomo Electric Ind Ltd 発光装置
JP4473710B2 (ja) 2003-12-05 2010-06-02 株式会社東芝 半導体装置
US7198995B2 (en) 2003-12-12 2007-04-03 International Business Machines Corporation Strained finFETs and method of manufacture
US6958286B2 (en) 2004-01-02 2005-10-25 International Business Machines Corporation Method of preventing surface roughening during hydrogen prebake of SiGe substrates
US7247912B2 (en) 2004-01-05 2007-07-24 International Business Machines Corporation Structures and methods for making strained MOSFETs
US7705345B2 (en) 2004-01-07 2010-04-27 International Business Machines Corporation High performance strained silicon FinFETs device and method for forming same
US7138302B2 (en) 2004-01-12 2006-11-21 Advanced Micro Devices, Inc. Method of fabricating an integrated circuit channel region
US7268058B2 (en) 2004-01-16 2007-09-11 Intel Corporation Tri-gate transistors and methods to fabricate same
US7385247B2 (en) 2004-01-17 2008-06-10 Samsung Electronics Co., Ltd. At least penta-sided-channel type of FinFET transistor
US7198970B2 (en) 2004-01-23 2007-04-03 The United States Of America As Represented By The Secretary Of The Navy Technique for perfecting the active regions of wide bandgap semiconductor nitride devices
US7118987B2 (en) 2004-01-29 2006-10-10 Taiwan Semiconductor Manufacturing Co., Ltd. Method of achieving improved STI gap fill with reduced stress
US7180134B2 (en) * 2004-01-30 2007-02-20 Taiwan Semiconductor Manufacturing Company, Ltd. Methods and structures for planar and multiple-gate transistors formed on SOI
DE102004005506B4 (de) * 2004-01-30 2009-11-19 Atmel Automotive Gmbh Verfahren zur Erzeugung von aktiven Halbleiterschichten verschiedener Dicke in einem SOI-Wafer
US6855982B1 (en) * 2004-02-02 2005-02-15 Advanced Micro Devices, Inc. Self aligned double gate transistor having a strained channel region and process therefor
US7205210B2 (en) 2004-02-17 2007-04-17 Freescale Semiconductor, Inc. Semiconductor structure having strained semiconductor and method therefor
JP2005277374A (ja) * 2004-02-26 2005-10-06 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体発光素子及びその製造方法
US7492022B2 (en) 2004-02-27 2009-02-17 University Of Iowa Research Foundation Non-magnetic semiconductor spin transistor
US6995456B2 (en) * 2004-03-12 2006-02-07 International Business Machines Corporation High-performance CMOS SOI devices on hybrid crystal-oriented substrates
US7160753B2 (en) * 2004-03-16 2007-01-09 Voxtel, Inc. Silicon-on-insulator active pixel sensors
US6888181B1 (en) 2004-03-18 2005-05-03 United Microelectronics Corp. Triple gate device having strained-silicon channel
US20050211291A1 (en) 2004-03-23 2005-09-29 The Boeing Company Solar cell assembly
US6998684B2 (en) * 2004-03-31 2006-02-14 International Business Machines Corporation High mobility plane CMOS SOI
US7154118B2 (en) 2004-03-31 2006-12-26 Intel Corporation Bulk non-planar transistor having strained enhanced mobility and methods of fabrication
US7087965B2 (en) 2004-04-22 2006-08-08 International Business Machines Corporation Strained silicon CMOS on hybrid crystal orientations
US7445673B2 (en) 2004-05-18 2008-11-04 Lumilog Manufacturing gallium nitride substrates by lateral overgrowth through masks and devices fabricated thereof
US7084441B2 (en) 2004-05-20 2006-08-01 Cree, Inc. Semiconductor devices having a hybrid channel layer, current aperture transistors and methods of fabricating same
KR101332391B1 (ko) 2004-06-03 2013-11-22 재팬 사이언스 앤드 테크놀로지 에이젼시 수소화물 기상 에피택시법에 의한 평면의, 전위 밀도가감소된 m-면 질화갈륨의 성장
US7125785B2 (en) 2004-06-14 2006-10-24 International Business Machines Corporation Mixed orientation and mixed material semiconductor-on-insulator wafer
US7807921B2 (en) 2004-06-15 2010-10-05 The Boeing Company Multijunction solar cell having a lattice mismatched GrIII-GrV-X layer and a composition-graded buffer layer
US7244958B2 (en) 2004-06-24 2007-07-17 International Business Machines Corporation Integration of strained Ge into advanced CMOS technology
US6991998B2 (en) * 2004-07-02 2006-01-31 International Business Machines Corporation Ultra-thin, high quality strained silicon-on-insulator formed by elastic strain transfer
US7384829B2 (en) * 2004-07-23 2008-06-10 International Business Machines Corporation Patterned strained semiconductor substrate and device
WO2006015185A2 (en) * 2004-07-30 2006-02-09 Aonex Technologies, Inc. GaInP/GaAs/Si TRIPLE JUNCTION SOLAR CELL ENABLED BY WAFER BONDING AND LAYER TRANSFER
US20060211210A1 (en) 2004-08-27 2006-09-21 Rensselaer Polytechnic Institute Material for selective deposition and etching
TWI500072B (zh) 2004-08-31 2015-09-11 Sophia School Corp 發光元件之製造方法
US20060073681A1 (en) 2004-09-08 2006-04-06 Han Sang M Nanoheteroepitaxy of Ge on Si as a foundation for group III-V and II-VI integration
US7002175B1 (en) * 2004-10-08 2006-02-21 Agency For Science, Technology And Research Method of making resonant tunneling diodes and CMOS backend-process-compatible three dimensional (3-D) integration
US7846759B2 (en) 2004-10-21 2010-12-07 Aonex Technologies, Inc. Multi-junction solar cells and methods of making same using layer transfer and bonding techniques
US20060105533A1 (en) 2004-11-16 2006-05-18 Chong Yung F Method for engineering hybrid orientation/material semiconductor substrate
FR2878535B1 (fr) * 2004-11-29 2007-01-05 Commissariat Energie Atomique Procede de realisation d'un substrat demontable
US20060113603A1 (en) 2004-12-01 2006-06-01 Amberwave Systems Corporation Hybrid semiconductor-on-insulator structures and related methods
US20060131606A1 (en) 2004-12-18 2006-06-22 Amberwave Systems Corporation Lattice-mismatched semiconductor structures employing seed layers and related fabrication methods
KR100682873B1 (ko) * 2004-12-28 2007-02-15 삼성전기주식회사 반도체 발광 소자 및 그 제조 방법
US7405436B2 (en) 2005-01-05 2008-07-29 International Business Machines Corporation Stressed field effect transistors on hybrid orientation substrate
JP2006196631A (ja) 2005-01-13 2006-07-27 Hitachi Ltd 半導体装置及びその製造方法
US7138309B2 (en) 2005-01-19 2006-11-21 Sharp Laboratories Of America, Inc. Integration of biaxial tensile strained NMOS and uniaxial compressive strained PMOS on the same wafer
US7344942B2 (en) 2005-01-26 2008-03-18 Micron Technology, Inc. Isolation regions for semiconductor devices and their formation
US7224033B2 (en) 2005-02-15 2007-05-29 International Business Machines Corporation Structure and method for manufacturing strained FINFET
JP2006253181A (ja) 2005-03-08 2006-09-21 Seiko Epson Corp 半導体装置および半導体装置の製造方法
KR100712753B1 (ko) 2005-03-09 2007-04-30 주식회사 실트론 화합물 반도체 장치 및 그 제조방법
US9153645B2 (en) * 2005-05-17 2015-10-06 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US20070267722A1 (en) 2006-05-17 2007-11-22 Amberwave Systems Corporation Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
EP2595175B1 (en) 2005-05-17 2019-04-17 Taiwan Semiconductor Manufacturing Company, Ltd. Method of fabricating a lattice-mismatched semiconductor structure with reduced dislocation defect densities
US8324660B2 (en) 2005-05-17 2012-12-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
JP2006332295A (ja) 2005-05-26 2006-12-07 Matsushita Electric Ind Co Ltd ヘテロ接合バイポーラトランジスタ及びヘテロ接合バイポーラトランジスタの製造方法
TW200703463A (en) 2005-05-31 2007-01-16 Univ California Defect reduction of non-polar and semi-polar III-nitrides with sidewall lateral epitaxial overgrowth (SLEO)
KR20060131327A (ko) * 2005-06-16 2006-12-20 엘지전자 주식회사 발광 다이오드의 제조 방법
KR101329388B1 (ko) 2005-07-26 2013-11-14 앰버웨이브 시스템즈 코포레이션 다른 액티브 영역 물질의 집적회로 집적을 위한 솔루션
US7801406B2 (en) * 2005-08-01 2010-09-21 Massachusetts Institute Of Technology Method of fabricating Ge or SiGe/Si waveguide or photonic crystal structures by selective growth
US20070054467A1 (en) 2005-09-07 2007-03-08 Amberwave Systems Corporation Methods for integrating lattice-mismatched semiconductor structure on insulators
US7638842B2 (en) 2005-09-07 2009-12-29 Amberwave Systems Corporation Lattice-mismatched semiconductor structures on insulators
JP4462249B2 (ja) * 2005-09-22 2010-05-12 ソニー株式会社 発光ダイオードの製造方法、集積型発光ダイオードの製造方法および窒化物系iii−v族化合物半導体の成長方法
US7358107B2 (en) 2005-10-27 2008-04-15 Sharp Laboratories Of America, Inc. Method of fabricating a germanium photo detector on a high quality germanium epitaxial overgrowth layer
CN101326646B (zh) 2005-11-01 2011-03-16 麻省理工学院 单片集成的半导体材料和器件
KR20080074948A (ko) 2005-11-04 2008-08-13 더 리전츠 오브 더 유니버시티 오브 캘리포니아 광추출 효율이 높은 발광 다이오드
WO2007060931A1 (ja) * 2005-11-22 2007-05-31 Rohm Co., Ltd. 窒化物半導体素子
JP2007158100A (ja) * 2005-12-06 2007-06-21 Rohm Co Ltd 窒化物半導体発光素子の製造方法
US7629661B2 (en) 2006-02-10 2009-12-08 Noble Peak Vision Corp. Semiconductor devices with photoresponsive components and metal silicide light blocking structures
KR100790869B1 (ko) 2006-02-16 2008-01-03 삼성전자주식회사 단결정 기판 및 그 제조방법
US7691698B2 (en) 2006-02-21 2010-04-06 International Business Machines Corporation Pseudomorphic Si/SiGe/Si body device with embedded SiGe source/drain
US7777250B2 (en) * 2006-03-24 2010-08-17 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures and related methods for device fabrication
US8173551B2 (en) 2006-09-07 2012-05-08 Taiwan Semiconductor Manufacturing Co., Ltd. Defect reduction using aspect ratio trapping
WO2008036256A1 (en) 2006-09-18 2008-03-27 Amberwave Systems Corporation Aspect ratio trapping for mixed signal applications
US7799592B2 (en) 2006-09-27 2010-09-21 Taiwan Semiconductor Manufacturing Company, Ltd. Tri-gate field-effect transistors formed by aspect ratio trapping
WO2008039534A2 (en) 2006-09-27 2008-04-03 Amberwave Systems Corporation Quantum tunneling devices and circuits with lattice- mismatched semiconductor structures
US20080187018A1 (en) 2006-10-19 2008-08-07 Amberwave Systems Corporation Distributed feedback lasers formed via aspect ratio trapping
US20080154197A1 (en) 2006-12-20 2008-06-26 Joel Brian Derrico System and method for regulating the temperature of a fluid injected into a patient
US7781235B2 (en) * 2006-12-21 2010-08-24 Taiwan Semiconductor Manufacturing Company, Ltd. Chip-probing and bumping solutions for stacked dies having through-silicon vias
JP2008198656A (ja) 2007-02-08 2008-08-28 Shin Etsu Chem Co Ltd 半導体基板の製造方法
US9508890B2 (en) 2007-04-09 2016-11-29 Taiwan Semiconductor Manufacturing Company, Ltd. Photovoltaics on silicon
US8304805B2 (en) * 2009-01-09 2012-11-06 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor diodes fabricated by aspect ratio trapping with coalesced films
US8237151B2 (en) 2009-01-09 2012-08-07 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US7825328B2 (en) * 2007-04-09 2010-11-02 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride-based multi-junction solar cell modules and methods for making the same
KR20080102065A (ko) 2007-05-18 2008-11-24 삼성전자주식회사 에피택시얼 실리콘 구조물 형성 방법 및 이를 이용한 반도체 소자의 형성 방법
US8329541B2 (en) * 2007-06-15 2012-12-11 Taiwan Semiconductor Manufacturing Company, Ltd. InP-based transistor fabrication
KR20090010284A (ko) 2007-07-23 2009-01-30 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
JP2007300146A (ja) * 2007-08-20 2007-11-15 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
KR101093588B1 (ko) 2007-09-07 2011-12-15 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 멀티-정션 솔라 셀
US7883990B2 (en) 2007-10-31 2011-02-08 International Business Machines Corporation High resistivity SOI base wafer using thermally annealed substrate
WO2009084238A1 (ja) 2007-12-28 2009-07-09 Sumitomo Chemical Company, Limited 半導体基板、半導体基板の製造方法および電子デバイス
JP5669359B2 (ja) * 2008-03-01 2015-02-12 住友化学株式会社 半導体基板、半導体基板の製造方法および電子デバイス
JP4247413B1 (ja) * 2008-03-19 2009-04-02 株式会社 東北テクノアーチ デバイスの製造方法
US8183667B2 (en) 2008-06-03 2012-05-22 Taiwan Semiconductor Manufacturing Co., Ltd. Epitaxial growth of crystalline material
US8274097B2 (en) * 2008-07-01 2012-09-25 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US8981427B2 (en) * 2008-07-15 2015-03-17 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
CN102160145B (zh) 2008-09-19 2013-08-21 台湾积体电路制造股份有限公司 通过外延层过成长的元件形成
US20100072515A1 (en) 2008-09-19 2010-03-25 Amberwave Systems Corporation Fabrication and structures of crystalline material
US8253211B2 (en) 2008-09-24 2012-08-28 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor sensor structures with reduced dislocation defect densities
JP5705207B2 (ja) 2009-04-02 2015-04-22 台湾積體電路製造股▲ふん▼有限公司Taiwan Semiconductor Manufacturing Company,Ltd. 結晶物質の非極性面から形成される装置とその製作方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007196165A (ja) * 2006-01-27 2007-08-09 National Institute For Materials Science 新規なデバイス
CN101114661A (zh) * 2006-07-25 2008-01-30 格科微电子(上海)有限公司 Cmos图像传感器

Also Published As

Publication number Publication date
JP2013048301A (ja) 2013-03-07
JP2015130530A (ja) 2015-07-16
TWI427830B (zh) 2014-02-21
US20150221546A1 (en) 2015-08-06
US20130034924A1 (en) 2013-02-07
US8765510B2 (en) 2014-07-01
TW201125162A (en) 2011-07-16
CN102122675A (zh) 2011-07-13
EP2343742A3 (en) 2014-03-19
US20140264272A1 (en) 2014-09-18
JP5829598B2 (ja) 2015-12-09
JP2011142294A (ja) 2011-07-21
US20100176371A1 (en) 2010-07-15
EP2343742B1 (en) 2019-03-13
JP6484076B2 (ja) 2019-03-13
JP5399335B2 (ja) 2014-01-29
SG173245A1 (en) 2011-08-29
KR20110081742A (ko) 2011-07-14
EP2343742A2 (en) 2011-07-13
US8304805B2 (en) 2012-11-06
US9029908B2 (en) 2015-05-12
US9449868B2 (en) 2016-09-20

Similar Documents

Publication Publication Date Title
CN102122675B (zh) 光电装置及其制造方法
CN102122693B (zh) 二极管
US9853176B2 (en) Nitride-based multi-junction solar cell modules and methods for making the same
US20100044719A1 (en) III-V Compound Semiconductor Epitaxy Using Lateral Overgrowth
SG171987A1 (en) Devices formed from a non-polar plane of a crystalline material and method of making the same
CN104221129A (zh) 基于外延生长来制造半导体设备的方法
US8148732B2 (en) Carbon-containing semiconductor substrate
US20230124769A1 (en) Light-emitting structures and manufacturing methods thereof
KR20090042032A (ko) 질화물계 발광소자

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant