WO1997002596A1 - Composant electronique et son procede de fabrication - Google Patents

Composant electronique et son procede de fabrication Download PDF

Info

Publication number
WO1997002596A1
WO1997002596A1 PCT/JP1996/001492 JP9601492W WO9702596A1 WO 1997002596 A1 WO1997002596 A1 WO 1997002596A1 JP 9601492 W JP9601492 W JP 9601492W WO 9702596 A1 WO9702596 A1 WO 9702596A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional element
wiring board
wiring
electronic component
gap
Prior art date
Application number
PCT/JP1996/001492
Other languages
English (en)
French (fr)
Inventor
Osamu Furukawa
Hitoshi Chiyoma
Kazuhisa Yabukawa
Kenichi Donuma
Original Assignee
Kabushiki Kaisha Toshiba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba filed Critical Kabushiki Kaisha Toshiba
Priority to KR1019970709809A priority Critical patent/KR19990028493A/ko
Priority to US08/973,858 priority patent/US6262513B1/en
Priority to JP50497697A priority patent/JP3825475B2/ja
Priority to EP96920032A priority patent/EP0840369A4/en
Publication of WO1997002596A1 publication Critical patent/WO1997002596A1/ja
Priority to US09/772,859 priority patent/US6754950B2/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1064Mounting in enclosures for surface acoustic wave [SAW] devices
    • H03H9/1085Mounting in enclosures for surface acoustic wave [SAW] devices the enclosure being defined by a non-uniform sealing mass covering the non-active sides of the BAW device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3135Double encapsulation or coating and encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/315Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the encapsulation having a cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49805Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers the leads being also applied on the sidewalls or the bottom of the substrate, e.g. leadless packages for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0655Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next to each other
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02637Details concerning reflective or coupling arrays
    • H03H9/02779Continuous surface reflective arrays
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/058Holders; Supports for surface acoustic wave devices
    • H03H9/059Holders; Supports for surface acoustic wave devices consisting of mounting pads or bumps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1064Mounting in enclosures for surface acoustic wave [SAW] devices
    • H03H9/1078Mounting in enclosures for surface acoustic wave [SAW] devices the enclosure being defined by a foil covering the non-active sides of the SAW device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6436Coupled resonator filters having one acoustic track only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/644Coupled resonator filters having two acoustic tracks
    • H03H9/6456Coupled resonator filters having two acoustic tracks being electrically coupled
    • H03H9/6469Coupled resonator filters having two acoustic tracks being electrically coupled via two connecting electrodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/644Coupled resonator filters having two acoustic tracks
    • H03H9/6456Coupled resonator filters having two acoustic tracks being electrically coupled
    • H03H9/6469Coupled resonator filters having two acoustic tracks being electrically coupled via two connecting electrodes
    • H03H9/6473Coupled resonator filters having two acoustic tracks being electrically coupled via two connecting electrodes the electrodes being electrically interconnected
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73257Bump and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01087Francium [Fr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/049Nitrides composed of metals from groups of the periodic table
    • H01L2924/04955th Group
    • H01L2924/04953TaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12033Gunn diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19043Component type being a resistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
    • H03B5/326Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator the resonator being an acoustic wave device, e.g. SAW or BAW device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02614Treatment of substrates, e.g. curved, spherical, cylindrical substrates ensuring closed round-about circuits for the acoustical waves
    • H03H9/02622Treatment of substrates, e.g. curved, spherical, cylindrical substrates ensuring closed round-about circuits for the acoustical waves of the surface, including back surface
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02913Measures for shielding against electromagnetic fields
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • Y10T29/49144Assembling to base an electrical component, e.g., capacitor, etc. by metal fusion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • Y10T29/49146Assembling to base an electrical component, e.g., capacitor, etc. with encapsulating, e.g., potting, etc.

Definitions

  • the present invention relates to a surface acoustic wave device and an EP ROM (Erasab1e).
  • the present invention relates to electronic components such as devices, charge coupled devices), semiconductor lasers, light emitting diodes, and the like, and to a method of manufacturing the same, and more particularly to an electronic component having a device mounted face down on a substrate and a method of manufacturing the same.
  • the surface acoustic wave element Due to its function, the surface acoustic wave element requires an air gap on the surface of the transducer portion where the surface wave propagates, and the presence of a foreign material layer on the surface adversely affects the propagation of the surface wave. The properties are impaired. For this reason, a means for accommodating the surface acoustic wave element in a package has been adopted. In this case, the resin sealing means used in ICs, etc. cannot be applied because the resin covers the transducer part that excites and propagates the surface wave, and is usually airtight using a metal package or ceramic package. Sealing means called structures are frequently used.
  • the hermetic sealing structure using the above-mentioned metal package or ceramic package has poor productivity and does not increase the mounting density.
  • the face-down type surface acoustic wave device disclosed in Japanese Patent Application Laid-Open No. Hei 4-56510 and Japanese Patent Application Laid-Open No. 5-55303 discloses a surface acoustic wave in which a transducer portion and a bonding pad portion are formed.
  • a gap is provided in the space, and it is joined via a conductive material such as a bump and covered and fixed with resin.
  • Surface acoustic wave device is provided.
  • a sealing resin for manufacturing such a surface acoustic wave device a liquid thermosetting epoxy resin for potting or the like is used, but because of its low viscosity, a transformer is required before the resin is cured. The surface of the duplexer is covered with the liquid resin. For this reason, a frame-shaped insulating member or dam must be formed so as to surround the propagation path of the surface acoustic wave generated by the transducer section on the element before being integrally covered and fixed with resin.
  • FIG. 46 (a) is a cross-sectional view
  • FIG. 46 (b) is a cross-sectional view taken along a line A—A in FIG. 46 (a).
  • FIG. 2 shows a plan view of a substrate.
  • 201 and 202 indicated by dotted lines indicate the positions of the surface acoustic wave element 203 and the conductive bump 204, respectively.
  • the wiring substrate 205 has a conductive wiring pattern 206 formed on both surfaces of the insulating substrate and end surfaces continuous with both surfaces.
  • a transducer section 207 comprising a comb-shaped electrode pattern, and a wiring pattern 2 electrically connected to the comb-shaped electrode pattern for supplying signals. 0 8 is formed.
  • the transducer part 2007 of the surface acoustic wave element 203 and the wiring board 205 are disposed so as to form a gap part 209 and face each other.
  • the wiring pattern 208 and the wiring pattern 206 on the wiring board 205 are electrically connected by conductive bumps 204 made of gold (Ai), silver (g), or the like. I have.
  • the connection between the surface acoustic wave element 203 with the conductive bumps 204 and the wiring board 205 and the surface acoustic wave element 203 are covered with a resin material 210 such as epoxy resin. .
  • a resin material 210 such as epoxy resin.
  • a liquid thermosetting epoxy resin or the like is used as the sealing resin material.
  • a frame-shaped member made of polyimide resin or the like is used. Insulating members or dams 211 are provided.
  • the wiring board 20 is formed so that the resin 210 covering the whole or a part of the transducer section 207 of the surface acoustic wave element 203 covers the whole element so that the resin 210 does not flow out from the peripheral edge of the wiring board 205.
  • 5 Frame-shaped insulating part formed of polyimide resin, etc. Lumber or dams 2 1 2 are provided.
  • Fig. 46 (b) shows the frame-shaped insulating member or dam 2 11
  • FIG. 3 is a plan view of a wiring board 205 on which 2 12 is formed.
  • the sealing resin 210 of the surface acoustic wave element 203 is blocked by the frame-shaped insulating member or the dam 211, and flows into the void 209 until the resin 210 is cured.
  • the surface acoustic wave element does not enter the surface acoustic wave propagation path, and the surface of the surface acoustic wave element is held in a hollow shape, so that the characteristics are not impaired.
  • the resin 210 is formed on the wiring board by the dam 2 12 provided on the periphery of the wiring board.
  • the effective area of the transducer section which is the functional surface of the surface acoustic wave element, must be limited to a small amount by forming a frame-shaped insulating member and a dam. For this reason, for example, a surface acoustic wave for mobile communication is required. While there is a strong demand for miniaturization of the device, there has been a problem that it is insufficient to fully exhibit the characteristics and functions of the surface acoustic wave device.
  • the present invention has been made in view of such circumstances.
  • An object of the present invention is to provide an electronic component that does not adversely affect the characteristics of elements mounted on the electronic component and that can be easily sealed with a resin, and a method of manufacturing the electronic component.
  • An object of the present invention is to provide an electronic component suitable for miniaturization and high-density mounting. It is to provide a manufacturing method.
  • the present invention does not adversely affect the characteristics of elements mounted on electronic components, can be easily resin-sealed, is resistant to electrical noise, is easy to mark, and improves productivity and reliability. It is an object of the present invention to provide an electronic component and a manufacturing method thereof.
  • resin sealing can be easily performed without adversely affecting the characteristics of elements mounted on electronic components, and stress distortion caused by differences in resin curing and thermal expansion is reduced, and further sealing is achieved. It is an object of the present invention to provide an electronic component and a method for manufacturing the same, which reduce unfavorable effects of characteristics on characteristics and improve productivity and reliability.
  • the present invention provides an electronic device that does not adversely affect the characteristics of an element mounted on an electronic component, can be easily sealed with a resin, solves a problem due to a thickness of a joining member, and improves productivity and reliability. It is intended to provide a component and a method for manufacturing the same.
  • ADVANTAGE OF THE INVENTION This invention does not adversely affect the characteristic of the element mounted in an electronic component, can be easily resin-sealed, and furthermore, since the sealed resin works as a surface acoustic wave absorber, for example, the surface wave absorption performance is further improved. It is an object of the present invention to provide an electronic component capable of improving (sound absorbing effect) and improving productivity and reliability, and a method for manufacturing the same. Another object of the present invention is to provide an electronic component having an electromagnetic shielding effect (shielding effect), which is unlikely to induce external noise and operates stably, and a method for manufacturing the same.
  • Another object of the present invention is to provide a surface acoustic wave device that prevents the surface acoustic wave element of the sealing member from entering the transducer section, and a method of manufacturing the same. It is another object of the present invention to provide a surface acoustic wave device having a high strength while preventing a sealing member, particularly an elongated surface acoustic wave element, from entering a transducer portion, and a method of manufacturing the same.
  • An object of the present invention is to provide an electronic component capable of effectively securing a gap between a mounted functional element and a wiring board, and a method of manufacturing the electronic component.
  • the present invention provides an electronic component with high reliability of connection, which can effectively secure a gap between the mounted functional element and the wiring board, and can sufficiently maintain the bonding strength between the functional element and the wiring board. It is intended to provide a manufacturing method thereof.
  • An object of the present invention is to provide an electronic component having a high degree of freedom in design and a method of manufacturing the electronic component without requiring a frame-shaped member for preventing a sealing member from flowing.
  • An object of the present invention is to provide an electronic component which does not require a frame-shaped member for preventing the sealing member from flowing in, and which can sufficiently exhibit the function of the active element, and a method for manufacturing the same.
  • An object of the present invention is to provide an electronic component having high bonding strength between a mounted element and a wiring board and high connection reliability, and a method for manufacturing the same.
  • the method for manufacturing an electronic component according to the present invention includes: (a) a step of disposing the first surface of the wiring board and the first surface of the functional element to face each other; and (b) the first surface of the wiring board and / or Arranging a heat melting type member above a second surface of the functional element; A step of heating and melting the mold member and sealing the gap while leaving at least a gap between the wiring substrate and the functional element.
  • the method for manufacturing an electronic component of the present invention may further include, prior to the step (a), a step of disposing a frame-shaped member on the first surface of the wiring board so as to surround the gap. .
  • the heat melting type member in the step (c), may be heated and melted so as to cover the entire second surface of the functional element. In the method of manufacturing an electronic component according to the present invention, in the step (c), the heat melting type member may be heated and melted while exposing the entire second surface of the functional element. In the method for manufacturing an electronic component according to the present invention, in the step (c), the heat melting type member may be heated and melted while exposing a part of the second surface of the functional element. In the method for manufacturing an electronic component of the present invention, in the step (a), the first surface of the wiring board and the first surface of the functional element may be arranged to face each other via a conductive bonding member. Good.
  • the functional element is a surface acoustic wave element
  • the connection pattern on the first surface of the wiring substrate and the elastic surface wave element may be opposed to the connection pattern via a conductive bonding member by a face down bonding method.
  • the functional element is a quartz oscillator
  • a connection pattern on a first surface of the wiring board and a first pattern of the quartz oscillator are provided.
  • the electrodes on the surface are opposed to each other by a face-down bonding method via a conductive bonding member, and the wiring pattern on the first surface of the wiring board is electrically connected to the electrodes on the second surface of the crystal unit.
  • Electrically connecting by a connecting means and further comprising, between the steps (a) and (b), arranging a surrounding member on the wiring substrate so as to surround the quartz oscillator;
  • a heat melting type member may be arranged at least on the surrounding member.
  • the functional element is a piezoelectric vibrator
  • the connection pattern on the first surface of the wiring board and the piezoelectric vibrator is opposed to the electrode on the first surface of the wiring substrate by a face-down bonding method via a conductive bonding member.
  • the electrode on the surface may be electrically connected by an electrical connection means.
  • the functional element is a photo-power blur having a pair of a light transmitting unit and a light receiving unit
  • the connection pattern on the first surface of the wiring board is provided.
  • a wiring pattern on each first surface of the photocoupler are opposed to each other by a face-down bonding method via a conductive bonding member, and between the steps (a) and (b),
  • the method may further include a step of arranging a surrounding member on the wiring board so as to surround the wiring member.
  • the wiring substrate is a substrate that transmits light
  • the functional element is an EPROM
  • the first surface of the wiring substrate is The light-receiving surface of the EPROM may be arranged to face.
  • the wiring substrate is a substrate that transmits light
  • the functional element is a CCD
  • the first surface of the wiring substrate and the CCD May be disposed so as to face the light receiving surface.
  • the wiring substrate is a substrate that transmits light
  • the functional element is a semiconductor laser
  • the first surface of the wiring substrate is The light emitting surface of the semiconductor laser may be disposed to face.
  • the wiring substrate is a substrate that transmits light
  • the functional element is a light emitting diode
  • the first surface of the wiring substrate is The light emitting surface of the light emitting diode may be arranged to face.
  • the functional element has a bump
  • the bumps of the functional element are arranged so as to face the wiring board;
  • the heat-melting member is made of a resin. Is also good.
  • the heat-meltable member may be a thermosetting resin.
  • the heat-meltable member may be epoxy resin.
  • the heat-meltable member may be a phenol-based epoxy resin.
  • the heat-meltable member may be a silicone resin.
  • the heat-meltable member may be a low-melting glass.
  • Low melting point glass having a melting point of 250 ° C. to 400 ° C. may be used.
  • Low melting point glass having a melting point of C to 350 ° C. may be used.
  • the heat melting type member may be a lead borosilicate glass.
  • the heat-fusible member may be at least one of lead borosilicate glass and bismuth borosilicate glass.
  • the method for manufacturing an electronic component of the present invention may include a step of temporarily fixing the wiring board and the functional element before the step (a).
  • the heat-fusible member may have a shape larger than the shape of the functional element and substantially equal to the shape of the wiring substrate.
  • the heat-meltable member may be a material obtained by cold-pressing a powder material.
  • the shape of the ripening / melting mold member before heating and melting may be a shape in which a peripheral portion thereof is suspended.
  • the step (c) may include a plurality of heating steps.
  • the heating and melting of the heat melting type member is performed at a curing temperature of 100 to 200 ° C. and a curing time of 20 to 2 hours. You may.
  • An electronic component includes a wiring board having a first surface and a second surface, a first surface and a second surface, wherein the first surface faces the first surface of the wiring substrate. And a heat melting type member that seals the void while leaving a void between the first surface of the wiring substrate and the first surface of the functional element. It is characterized by:
  • the electronic component may further include a frame-shaped member disposed on the first surface of the wiring board and surrounding the void.
  • the heat melting type member may be disposed so as to cover the entire second surface of the functional element.
  • the heat melting type member may be arranged so as to cover a part of the second surface of the functional element.
  • the heat melting type member may be arranged so as to expose the entire second surface of the functional element.
  • the electronic component of the present invention may further include a conductive bonding member disposed between the first surface of the wiring board and the first surface of the functional element.
  • the functional element is a surface acoustic wave element, and a connection pattern between a connection pattern on a first surface of the wiring board and a connection pattern on a first surface of the surface acoustic wave element is provided.
  • the semiconductor device may further include a conductive bonding member bonded by a face-down bonding method.
  • the functional element is a quartz oscillator, and face-down bonding is performed between the connection pattern on the first surface of the wiring board and the electrode on the first surface of the quartz oscillator. Electrically connecting a conductive bonding member to be bonded by a method, a wiring pattern on a first surface of the wiring substrate, and an electrode on a second surface of the crystal unit. And electrical connection means connected thereto.
  • the functional element is a piezoelectric vibrator, and face-down bonding is performed between the connection pattern on the first surface of the wiring board and the electrode on the first surface of the piezoelectric vibrator.
  • a conductive bonding member for bonding by a method, and electrical connection means for electrically connecting a wiring pattern on a first surface of the wiring substrate to an electrode on a second surface of the piezoelectric vibrator. May be.
  • the functional element is a photo force blur having a pair of a light transmitting portion and a light receiving portion, and the connection pattern on the first surface of the wiring substrate and each of the photo force blurs are included.
  • a conductive joining member that joins the wiring pattern on the first surface by a face-down bonding method, and a surrounding member that is disposed on the first surface of the wiring board and surrounds the photo-power bra.
  • the heat melting type member may be arranged at least on the surrounding member.
  • the wiring substrate may be a substrate that transmits light
  • the functional element may be an EPROM whose first surface is a light receiving surface.
  • the wiring substrate may be a substrate that transmits light
  • the functional element may have a first surface that is a CCD.
  • the wiring substrate may be a substrate that transmits light
  • the functional element may be a semiconductor laser having a first surface having a light emitting surface
  • the wiring substrate may be a substrate that transmits light
  • the functional element may be a light emitting diode whose first surface is a light emitting surface.
  • the heat melting type member may be a resin.
  • the heat melting type member may be a thermosetting resin.
  • the heat melting type member may be an epoxy resin.
  • the heat melting type member may be a phenol-based epoxy resin. Further, in the electronic component of the present invention, the heat melting type member may be a silicone resin.
  • the heat melting type member may be a low melting point glass.
  • the heat melting type member may have a temperature of 250 °.
  • Low melting point glass having a melting point of C to 400 ° C. may be used.
  • the heat melting type member may be a low melting point glass having a melting point of 320 ° C. to 350 ° C.
  • the heat melting type member may be lead borosilicate glass.
  • the heat melting type member may be at least one of lead borosilicate glass and bismuth borosilicate glass.
  • the wiring board may include a first wiring pattern formed on a first surface, a second wiring pattern formed on a second surface, and an end surface of the wiring substrate. And a third wiring pattern that connects the first wiring pattern and the second wiring pattern.
  • An electronic component has a first surface and a second surface, a wiring board having a wiring pattern formed on at least the first surface, and a first surface and a second surface.
  • a functional element having a first surface facing the first surface of the wiring board; a conductive film formed on a second surface of the functional element; wiring between the conductive film and the wiring board; And a sealing member that seals the gap while leaving a gap between the first surface of the wiring board and the first surface of the functional element. It is characterized by doing.
  • the electronic component of the present invention has a first surface and a second surface, and has a wiring board having a wiring pattern formed on at least the first surface, and a first surface and a second surface, A functional element having a first surface facing the first surface of the wiring substrate, a metallic foil formed on a second surface of the functional device, the metallic foil and the wiring substrate Conductive means for conducting between the wiring pattern and the first surface of the wiring board and the functional element. And a sealing member for sealing the gap while leaving the gap between the first surface and the first surface.
  • the electronic component of the present invention has a first surface and a second surface, and has at least a wiring substrate having a wiring pattern formed on the first surface, and a first surface and a second surface, A functional element having a first surface facing the first surface of the wiring substrate, a conductive film formed on a second surface of the functional device, the conductive film and the wiring substrate And a resin in which a magnetic substance that conducts between the wiring pattern and the functional element is dispersed, and the gap is sealed while leaving a gap between the first surface of the wiring substrate and the first surface of the functional element. And a sealing member for stopping.
  • the electronic component of the present invention has a wiring board having a first surface and a second surface, and has a first surface and a second surface, wherein the first surface is the same as the first surface of the wiring substrate. It is made of a resin in which a functional element and a metal powder are dispersed to face each other, and the gap is formed while leaving a gap between the first surface of the wiring substrate and the first surface of the functional element.
  • the electronic component of the present invention has a wiring board having a first surface and a second surface, and has a first surface and a second surface, wherein the first surface is the same as the first surface of the wiring substrate.
  • a functional element disposed oppositely; and a resin in which a magnetic substance powder is dispersed, wherein the void is formed while leaving a void between the first surface of the wiring board and the first surface of the functional element.
  • a sealing member for sealing the sealing member.
  • the electronic component of the present invention includes a wiring board having a first surface or a second surface, a first surface and a second surface, wherein the first surface is a first surface of the wiring substrate.
  • a functional element disposed to face the surface, and a resin in which a radio wave absorber material is dispersed, while leaving a gap between the first surface of the wiring substrate and the first surface of the functional element.
  • a sealing member for sealing the gap.
  • the electronic component of the present invention includes a wiring board having a first surface or a second surface, a first surface and a second surface, wherein the first surface is a first surface of the wiring substrate.
  • a functional element disposed to face the surface; and a resin containing a conductive filler, wherein the void is formed while leaving a void between the first surface of the wiring board and the first surface of the functional element. Seal the part And a sealing member.
  • the electronic component of the present invention has a first surface and a second surface, a wiring board having recesses formed at two end surfaces, and a first surface and a second surface.
  • a functional element having a first surface disposed opposite to the first surface of the wiring board; and a void between the first surface of the wiring substrate and the first surface of the functional element.
  • a sealing member for sealing the gap portion while leaving, and a pair of convex portions engaging with the concave portions provided on the wiring board are provided on the two legs so as to face each other.
  • a metal plate that covers the first surface of the substrate and the functional element.
  • an electronic component of the present invention has a first surface and a second surface, a concave portion is formed on each of two end surfaces, and a wiring pattern in which a wiring pattern is formed on the inner surface of the concave portion.
  • a functional element having a first surface and a second surface, wherein the first surface is disposed so as to face the first surface of the wiring board; and the first surface of the wiring substrate and the function
  • a sealing member that seals the gap while leaving a gap between the first surface of the element and an electrical connection to each wiring pattern on the inner surface of the recess while engaging with each recess provided in the wiring board;
  • a pair of protrusions that are electrically connected to each other are provided on the two legs so as to be opposed to each other, and include a metal plate that covers the first surface of the wiring board and the functional element.
  • the electronic component of the present invention has a first surface and a second surface, and a wiring board having a stepped portion in which the first surface is an upper stage at each of two end surfaces, A functional element having a first surface and a second surface, wherein the first surface is arranged to face the first surface of the wiring board; and the first surface of the wiring substrate and the functional element.
  • a metal plate is provided on the leg portion so as to face each other, and the first surface of the wiring board and the metal plate covering the functional element are provided.
  • the electronic component of the present invention has a first surface or a second surface, the first surface side is an upper stage on each of two end surfaces, and a wiring pattern is provided on a lower stage surface.
  • a functional element having a first surface and a second surface, the first surface being opposed to the first surface of the wiring substrate;
  • the first side and the front side of the wiring board A sealing member for sealing the gap while leaving a gap between the first surface of the functional element and each wiring of the lower step portion that engages with each stepped portion provided on the wiring board;
  • a pair of projecting portions electrically connected to the pattern are provided on the two legs so as to face each other, and a first plate of the wiring board and a metal plate covering the functional element are provided. It is characterized by.
  • the electronic component of the present invention has a wiring board having a first surface and a second surface, and has a first surface and a second surface, wherein the first surface is the same as the first surface of the wiring substrate.
  • a functional element disposed to face, a cushioning material disposed on a second surface of the functional element, and a gap between a first surface of the wiring board and a first surface of the functional element.
  • a sealing member that seals the gap while leaving the gap.
  • the electronic component of the present invention includes a wiring board having a first surface or a second surface, a first surface and a second surface, wherein the first surface is a first surface of the wiring substrate.
  • a functional element disposed to face the surface, and a resin containing a glass filler, wherein the void is formed while leaving a void between the first surface of the wiring board and the first surface of the functional element.
  • a sealing member for sealing the sealing member.
  • the electronic component of the present invention has a first surface and a second surface, a wiring board having a wiring pattern formed on the first surface, and a first surface and a second surface, A wiring pattern is formed on the first surface, and the first surface is arranged so as to face the first surface of the wiring board, and the functional element is concentratedly arranged in a region near the center of the functional element.
  • a joining member that electrically connects a wiring pattern of the wiring board and a wiring pattern of the functional element; and a gap between a first surface of the wiring substrate and a first surface of the functional element.
  • a sealing member for sealing the gap while leaving the portion.
  • the electronic component of the present invention has a first surface and a second surface, a wiring substrate having a wiring pattern formed on the first surface, and a first surface and a second surface, A wiring pattern is formed on the first surface, and the first surface is arranged so as to face the first surface of the wiring substrate, and the functional element is arranged intensively in a region near the center of the functional element.
  • a first connecting member that electrically connects a wiring pattern of the wiring board and a wiring pattern of the functional element; and a wiring pattern of the wiring board, which is disposed in a peripheral region of the functional element.
  • a second joining member that is not involved in the electrical connection between the wiring board and the functional element; and a gap between the first surface of the wiring board and the first surface of the functional element while leaving a gap.
  • a sealing member for sealing the gap for sealing the gap.
  • the electronic component of the present invention has a first surface and a second surface, and the first surface has a first wiring pattern made of a conductive material having a first thickness and a second wiring pattern thicker than the first thickness.
  • a sealing member that seals the gap while leaving a gap between the first surface of the wiring substrate and the first surface of the functional element.
  • the electronic component of the present invention has a first surface and a second surface, a first region made of a substrate material having a first thickness, and a substrate having a second thickness greater than the first thickness.
  • a wiring substrate having a second region made of a material, a wiring pattern formed on the first region and the second region on the first surface, and a first surface and a second surface.
  • a functional element having a wiring pattern formed on the first surface, the first surface being disposed so as to face the first surface of the wiring substrate; and a wiring pattern of a second region of the wiring substrate.
  • a conductive bonding member disposed between the wiring pattern of the functional element and the void while leaving a void between the first surface of the wiring board and the first surface of the functional element; And a sealing member for sealing the sealing member.
  • the electronic component of the present invention has a first surface and a second surface, a wiring substrate having a wiring pattern formed on the first surface, and a first surface and a second surface, A functional element having a wiring pattern formed on a first surface, the first surface being arranged to face the first surface of the wiring board; a wiring pattern on the first surface of the wiring board; A conductive bonding member disposed between the wiring patterns on the first surface of the element and having bumps stacked in accordance with an interval between the wiring patterns; a first surface of the wiring substrate and a first surface of the functional element; A sealing member for sealing the gap while leaving the gap between the surface and the surface.
  • the electronic component of the present invention has a first surface or a second surface, a wiring board having a wiring pattern formed on the first surface, and a first surface and a second surface.
  • a functional element that is a surface acoustic wave element having a wiring pattern and a sound absorbing agent formed on a first surface, wherein the first surface is arranged to face the first surface of the wiring substrate; and
  • a conductive joining member having a height exceeding the thickness of the sound absorbing agent, and a first surface of the wiring board and a first surface of the functional element.
  • a sealing member for sealing the gap while leaving the gap between the surface and the surface.
  • the electronic component of the present invention has a first surface and a second surface, a wiring board having a wiring pattern formed on the first surface, and a first surface and a second surface, A function as a surface acoustic wave element in which a wiring pattern is formed on a first surface, a sound absorbing agent is formed on a second surface, and the first surface is arranged to face the first surface of the wiring board.
  • An element, a conductive bonding member disposed between a wiring pattern of the wiring board and a wiring pattern of the functional element, and between a first surface of the wiring substrate and a first surface of the functional element.
  • a sealing member for sealing the gap while leaving the gap.
  • the electronic component of the present invention has a first surface and a second surface, a wiring board having a wiring pattern formed on the first surface, and a first surface and a second surface, A function as a surface acoustic wave element in which a wiring pattern is formed on a first surface, a sound absorbing agent is formed on a second surface, and the first surface is arranged to face the first surface of the wiring board.
  • a conductive bonding member disposed between a wiring pattern of the wiring substrate and a wiring pattern of the functional element; a metal foil disposed on a second surface of the functional element; and the wiring board.
  • a sealing member for sealing the gap while leaving a gap between the first surface of the functional element and the first surface of the functional element.
  • a heat melting type member may be used as the sealing member.
  • thermosetting member may be used as the sealing member.
  • the electronic component of the present invention is disposed on the first surface of the wiring board, A surrounding frame-shaped member may be further provided.
  • the electronic component of the present invention may be arranged such that the sealing member covers the entire second surface of the functional element.
  • the electronic component of the present invention may be arranged such that the sealing member covers a part of the second surface of the functional element.
  • the electronic component of the present invention may be arranged such that the sealing member exposes the entire second surface of the functional element.
  • the electronic component of the present invention may further include a conductive bonding member disposed between the first surface of the wiring board and the first surface of the functional element.
  • the functional element is a surface acoustic wave element, and a face is formed between a connection pattern on a first surface of the wiring board and a connection pattern on a first surface of the surface acoustic wave element.
  • a conductive bonding member for bonding by a down bonding method may be further provided.
  • the functional element is a quartz oscillator, and a ferrule is provided between the connection pattern on the first surface of the wiring board and the electrode on the first surface of the quartz oscillator.
  • the functional element is a piezoelectric vibrator
  • a face down bonding method is used between the connection pattern on the first surface of the wiring substrate and the electrode on the first surface of the piezoelectric vibrator.
  • electrically connecting means for electrically connecting the wiring pattern on the first surface of the wiring substrate and the electrode on the second surface of the piezoelectric vibrator. Is also good.
  • the functional element is a photopower blur having a pair of a light transmitting part and a light receiving part, and a connection pattern on a first surface of the wiring board and a first one of the photopower blurs.
  • a conductive joining member that joins with a surface wiring pattern by a face-down bonding method; and a surrounding member that is disposed on the first surface of the wiring board and surrounds the photocoupler.
  • a stop member is at least the surrounding member It may be arranged above.
  • the wiring substrate may be a substrate that transmits light
  • the functional element may be an EPROM whose first surface is a light receiving surface.
  • the wiring substrate may be a substrate that transmits light
  • the functional element may be a CCD whose first surface is a light receiving surface.
  • the wiring substrate may be a substrate that transmits light, and a semiconductor laser whose first surface is a light emitting surface may be used as the functional element.
  • the wiring substrate may be a substrate that transmits light, and a light emitting diode whose first surface is a light emitting surface may be used as the functional element.
  • the method for manufacturing an electronic component according to the present invention includes the steps of: disposing a first surface of a wiring board and a first surface of a functional element to face each other; and forming a conductive film on a second surface of the functional element. Electrically connecting the conductive film and the wiring pattern on the first surface of the wiring board with a conductive substance, and sealing the gap while leaving at least a gap between the wiring board and the functional element. Sealing with a member.
  • the method for manufacturing an electronic component according to the present invention includes the steps of: And a step of sealing the gap with a sealing member made of a resin in which metal powder is dispersed while leaving a gap between at least the wiring substrate and the functional element. It is characterized by having.
  • a step of arranging the first surface of the wiring board and the first surface of the functional element so as to face each other includes forming a gap between at least the wiring board and the functional element. Sealing the gap with a sealing member made of a resin in which the magnetic powder is dispersed while leaving the gap.
  • a step of arranging the first surface of the wiring board and the first surface of the functional element so as to face each other includes forming a gap between at least the wiring board and the functional element. Sealing the gap with a sealing member made of a resin in which a radio wave absorber material is dispersed while leaving the gap.
  • a step of arranging the first surface of the wiring board and the first surface of the functional element so as to face each other includes forming a gap between at least the wiring board and the functional element. Sealing the gap with a sealing member made of a resin containing a conductive filler while leaving the gap.
  • a step of arranging the first surface of the wiring board and the first surface of the functional element so as to face each other includes forming a gap between at least the wiring board and the functional element.
  • a step of arranging the first surface of the wiring substrate and the first surface of the functional element to face each other includes forming a gap between at least the wiring substrate and the functional element.
  • a wiring pattern provided on the inner surface of the recess and a wiring pattern provided on the tip of the projection are electrically connected to each other, and the first metal substrate is connected to the first wiring board by the metal plate. Covering the functional element. It is characterized by the following.
  • a step of arranging the first surface of the wiring board and the first surface of the functional element so as to face each other includes forming a gap between at least the wiring board and the functional element.
  • a step of arranging the first surface of the wiring board and the first surface of the functional element so as to face each other includes forming a gap between at least the wiring board and the functional element.
  • the method for manufacturing an electronic component according to the present invention includes a step of disposing the first surface of the wiring board and the first surface of the functional element to face each other; and a step of disposing a cushioning material on the second surface of the functional element. And sealing the gap with a sealing member while leaving a gap between at least the wiring substrate and the functional element.
  • a step of arranging the first surface of the wiring board and the first surface of the functional element so as to face each other includes forming a gap between at least the wiring board and the functional element. Sealing the gap with a sealing member made of a resin containing a glass filler while leaving the gap.
  • the method for manufacturing an electronic component according to the present invention includes the step of disposing a bonding member for electrically connecting a wiring pattern of the wiring board and a wiring pattern of the functional element in a region near a central portion of the functional element. Arranging the first surface and the first surface of the functional element to face each other, and sealing the void while leaving at least a void between the wiring substrate and the functional element. Sealing with a member.
  • the first bonding member that electrically connects the wiring pattern of the wiring board and the wiring pattern of the functional element is intensively arranged in a region near the center of the functional element
  • the second bonding member which is not involved in the electrical connection between the wiring pattern of the wiring board and the wiring pattern of the functional element, is arranged in the peripheral area of the functional element while the second bonding member is in contact with the first surface of the wiring board.
  • the first surface includes a first wiring pattern made of a conductive material having a first thickness and a conductive material having a second thickness larger than the first thickness.
  • the first surface of the wiring substrate on which the second wiring pattern is formed and the first surface of the functional element are electrically connected between the second wiring pattern of the wiring substrate and the wiring pattern of the functional element.
  • the method for manufacturing an electronic component of the present invention includes the steps of: forming a first region made of a substrate material having a first thickness and a second region made of a substrate material having a second thickness larger than the first thickness.
  • the first surface of the wiring board and the first surface of the functional element may be formed by a wiring pattern of the first surface of the wiring substrate and a first surface of the functional element.
  • the method for manufacturing an electronic component according to the present invention includes: a first surface of a wiring board; and a first surface of a functional element which is a surface acoustic wave element having a first surface on which a sound absorbing agent is formed.
  • the sealing member is formed of a heat-melting member, and the sealing step is performed above the first surface and the Z of the wiring board or the second surface of the functional element. And a step of heating and melting the heat melting type member and sealing the gap while leaving at least a space between the wiring board and the functional element. You may do so.
  • the sealing member is made of a thermosetting member, and the sealing step is performed above the first surface and the Z of the wiring board or the second surface of the functional element.
  • a step of sealing the seal is made of a thermosetting member, and the sealing step is performed above the first surface and the Z of the wiring board or the second surface of the functional element.
  • the sealing member is made of a thermosetting member
  • the sealing step heat-curs while dropping the liquid thermosetting member at a predetermined position from above the first surface Z of the wiring substrate or the second surface of the functional element, And a step of sealing the gap while leaving a gap between the wiring substrate and the functional element.
  • the method for manufacturing an electronic component according to the present invention may further include a step of arranging a frame-shaped member on the first surface of the wiring board so as to surround the gap before the facing arrangement step.
  • the sealing member in the sealing step, may be formed so as to cover the entire second surface of the functional element.
  • the sealing member in the sealing step, may be formed while exposing the entire second surface of the functional element.
  • the sealing member in the sealing step, may be formed while exposing a part of the second surface of the functional element.
  • the first surface of the wiring substrate and the first surface of the functional element may be opposed to each other via a conductive bonding member. Good.
  • the functional element is a surface acoustic wave element
  • the connection pattern on the first surface of the wiring board and the first surface of the surface acoustic wave element The connection pattern may be opposed to the connection pattern by a face-down bonding method via a conductive bonding member.
  • the functional element is a quartz oscillator
  • the connection pattern on the first surface of the wiring board and the electrode on the first surface of the quartz oscillator are And a wiring pattern on the first surface of the wiring substrate and an electrode on the second surface of the crystal unit are electrically connected by an electrical connection means.
  • the method may further include a step of arranging a surrounding member on the wiring board so as to surround the crystal resonator.
  • the functional element is a piezoelectric vibrator;
  • the connection pattern on the first surface of the wiring board and the electrode on the first surface of the piezoelectric vibrator are opposed to each other by a face-down bonding method via a conductive bonding member, and the wiring substrate
  • the wiring pattern on the first surface and the electrode on the second surface of the piezoelectric vibrator may be electrically connected by an electric connection means.
  • the functional element is a photovoltaic brush having a pair of a light transmitting unit and a light receiving unit.
  • the wiring pattern on each first surface of the force bra is opposed to each other by a face-down bonding method via a conductive bonding member, and thereafter, a surrounding member is disposed on the wiring board so as to surround the photo force bra. You may make it have the process of performing further.
  • the wiring substrate is a substrate that transmits light
  • the functional element is an EPROM
  • a first surface of the wiring substrate and a light receiving surface of the EPROM are provided. May be arranged to face each other.
  • the wiring substrate is a substrate that transmits light
  • the functional element is a CCD
  • a first surface of the wiring substrate and a light receiving surface of the CCD are provided. May be arranged to face each other.
  • the wiring substrate is a substrate that transmits light
  • the functional element is a semiconductor laser
  • the first surface of the wiring substrate and the semiconductor laser May be arranged facing each other.
  • the wiring substrate is a substrate that transmits light
  • the functional element is a light emitting diode
  • the facing arrangement step the first surface of the wiring substrate and the light emitting diode You may make it oppose a light emission surface.
  • the functional element has a bump
  • the bump of the functional element is disposed facing the wiring board in the facing step, and thereafter, the bump is provided on the wiring board and / or the bump.
  • the method may further include a step of bonding the wiring substrate and the functional element while irradiating infrared rays.
  • the method for manufacturing an electronic component includes the steps of: Positioning the plurality of functional elements in the device, assembling the functional element and the assembly of the wiring board at a predetermined interval via a conductive bonding member, Arranging a heat-meltable member on the assembly; heating and melting the heat-meltable member while leaving a gap between the wiring substrate and the functional element; Dividing the assembly together with the heat-melting member to obtain individual electronic components.
  • the method for manufacturing an electronic component according to the present invention includes a step of locating a functional element at a predetermined position with respect to a wiring board; and maintaining a predetermined interval between the functional element and the wiring board via a conductive bonding member. And assembling; disposing a heat-meltable member on the wiring board; and heat-melting the heat-meltable member while leaving a gap between the wiring board and the functional element.
  • the heat melting type member is a heat melting type flaky resin
  • the step of heat melting and curing the flaky resin includes at least (1) a step of determining a resin shape by heat melting of the flaky resin; (2) a step of transitioning to a gelled state while maintaining the resin shape, (3) a step of curing the resin, and the process temperature of (2) is lower than (1) or (3). It is characterized by.
  • the method for manufacturing an electronic component according to the present invention includes a step of positioning a surface acoustic wave element at a predetermined position with respect to a wiring board; and a step of positioning the surface acoustic wave element and the wiring board at a predetermined distance via a conductive bonding member. Assembling while maintaining the above, a step of disposing a heat melting type member on the wiring board, and heating and melting the heat melting type member while leaving a gap between the wiring board and the surface acoustic wave element. And forming a plurality of transducer sections and a plurality of wiring patterns electrically connected to the transducer sections on one principal surface of a wafer made of a piezoelectric material constituting the surface acoustic wave element. After forming a plurality of joining members on the upper part, when cutting to form individual surface acoustic wave elements, the speed of the blade at the time of cutting is 10ran3 ⁇ 4 / 50mn3 ⁇ 4 / sec. .
  • the method for manufacturing an electronic component according to the present invention includes a step of locating a surface acoustic wave element at a predetermined position with respect to a wiring board; and Assembling while maintaining a predetermined interval, and heating and melting the wiring board A step of disposing a mold member; and a step of heating and melting the heat-melting mold member while leaving a gap between the wiring substrate and the surface acoustic wave element, thereby constituting the surface acoustic wave element.
  • a plurality of transducer portions and a plurality of wiring patterns electrically connected to the transducer portions are formed on one main surface of a wafer made of a piezoelectric material, and a plurality of joining members are formed on a part of the wiring patterns, and then cut.
  • the specific resistance of water used for cutting is 0.11 MQ cm or more.
  • the method for manufacturing an electronic component according to the present invention includes a step of locating a functional element at a predetermined position with respect to a wiring board; and maintaining a predetermined interval between the functional element and the wiring board via a conductive bonding member. And assembling; disposing a heat-meltable member on the wiring board; and heat-melting the heat-meltable member while leaving a gap between the wiring board and the functional element. After forming the conductive bonding member on a wiring pattern formed on at least one main surface of the wiring board, a predetermined distance is maintained between the functional element and the wiring board via the conductive bonding member. It is characterized by being assembled.
  • the functional element of the present invention is a functional element mounted on a substrate by a face-down bonding method, wherein a plurality of connection terminals electrically connected to the substrate are concentrated substantially at the center of one main surface of the functional element. It is characterized by being arranged.
  • a functional element having a relatively elongated shape may be used as the functional element.
  • a surface acoustic wave element may be used as the functional element.
  • the surface acoustic wave element according to the present invention includes: a piezoelectric substrate; a plurality of pairs of comb-shaped electrodes formed on the piezoelectric substrate; and an external connection terminal provided substantially at the center of the piezoelectric substrate.
  • a group may be provided.
  • the surface acoustic wave element of the present invention may further include a sound absorbing agent formed on the piezoelectric substrate so as to sandwich the comb-shaped electrode.
  • the surface acoustic wave device of the present invention may further comprise: Electrode pads that cannot be deposited may be provided.
  • the external connection terminal group may include an external connection terminal extending to the comb-shaped electrode and electrically connected thereto.
  • An imaging apparatus includes: an optical system that receives imaging light; a wiring board having a first surface and a second surface; and a first surface and a second surface. And a CCD element disposed opposite to the first surface of the wiring substrate; and a gap between the first surface of the wiring substrate and the first surface of the CCD element while leaving a gap between the CCD element and the first surface of the CCD element.
  • a heat melting type member for sealing the portion, and a CCD for photoelectrically converting the imaging light incident from the optical system.
  • a mobile communication device includes a wiring board having a first surface and a second surface, and a first surface and a second surface, as a bandpass filter in a radio frequency band.
  • a surface acoustic wave element whose surface is arranged to face the first surface of the wiring board; and a gap between the first surface of the wiring board and the first surface of the surface acoustic wave element. It is characterized in that a surface acoustic wave filter provided with a heat melting type member for sealing the gap while leaving it is used.
  • a mobile communication device includes: a wiring board having a first surface and a second surface; and a first surface and a second surface, as a bandpass filter in an intermediate frequency band.
  • a surface acoustic wave element whose surface is arranged to face the first surface of the wiring board; and a gap between the first surface of the wiring board and the first surface of the surface acoustic wave element. It is characterized in that a surface acoustic wave filter provided with a heat melting type member for sealing the gap while leaving it is used.
  • a mobile communication device includes, as an oscillator of an FM modulator, a wiring board having a first surface and a second surface, and a first surface and a second surface, wherein the first surface is A surface acoustic wave element arranged to face the first surface of the wiring board; and a gap between the first surface of the wiring board and the first surface of the surface acoustic wave element while leaving a gap between the first surface and the first surface of the surface acoustic wave element.
  • the present invention is characterized in that a surface acoustic wave resonator provided with a heat melting type member for sealing a gap is used.
  • the oscillation circuit according to the present invention includes an oscillation circuit of an RF A wiring board having a second surface; a surface acoustic wave element having a first surface and a second surface, wherein the first surface is arranged to face the first surface of the wiring substrate; A surface acoustic wave resonator provided with a heat melting type member for sealing the gap while leaving a gap between the first surface of the wiring board and the first surface of the surface acoustic wave element. It is characterized by.
  • An oscillation circuit includes an oscillation circuit of an RF modulator, comprising: a wiring board having a first surface and a second surface; a first surface and a second surface; Face-down bonding between a crystal oscillator disposed to face the first surface of the wiring substrate, and a connection pattern on the first surface of the wiring substrate and an electrode on the first surface of the crystal oscillator.
  • a conductive bonding member for bonding by a method an electrical connection means for electrically connecting a wiring pattern on a first surface of the wiring substrate and an electrode on a second surface of the crystal unit, and the wiring substrate
  • a quartz-crystal vibrating component comprising a heat-melting member for sealing the gap while leaving a gap between the first surface of the quartz-crystal resonator and the first surface of the crystal resonator.
  • the method for manufacturing an electronic component according to the present invention includes: (a) a step of arranging the first surface of the wiring board and the first surface of the functional element so as to face each other; Or a step of pouring a liquid thermosetting member into a predetermined position from above the second surface of the functional element; and (c) heat-curing the poured thermosetting member, and Sealing the gap while leaving the gap between the functional element and the functional element.
  • a step of positioning a functional element at a predetermined position with respect to a wiring board; and maintaining a predetermined distance between the functional element and the wiring board via a conductive bonding member An assembling step, a step of disposing a heat melting type member with respect to the wiring board, a step of heating and melting the ripening melting type member while leaving a gap between the wiring board and the functional element, Curing the heated and melted mold member, forming the conductive bonding member on a wiring pattern formed on at least one main surface of the wiring board, and then forming the functional element and the wiring It is characterized in that the substrate and the substrate are assembled while maintaining a predetermined interval via the conductive connecting member.
  • the method for manufacturing an electronic component according to the present invention includes the steps of: (B) dropping a liquid thermosetting member to a predetermined position from above the first surface of the wiring substrate and / or the second surface of the functional element. Heat curing and sealing the gap while leaving a gap between at least the wiring substrate and the functional element.
  • the method for manufacturing an electronic component according to the present invention includes: (a) a step of disposing the first surface of the wiring board and the first surface of the functional element to face each other; and (b) the first surface of the wiring board and the Z Or a step of disposing a heating-melting member above the second surface of the functional element; and (c) heating and melting the heating-melting member, and at least between the wiring board and the functional element. And sealing the gap while leaving the gap.
  • An electronic component includes a wiring board having a first surface and a second surface, a first surface and a second surface, wherein the first surface faces the first surface of the wiring substrate.
  • the first surface of the wiring board and the first surface of the functional element leaving a first void portion, and the second surface of the functional element and the heat melting.
  • a matured melting mold member for sealing the first gap portion while leaving the second gap portion between the mold member and the mold member.
  • the method for manufacturing an electronic component according to the present invention includes: (a) a step of arranging the first surface of the wiring board and the first surface of the functional element so as to face each other; and (b) thermosetting the bottom surface of the concave heat-fusible member. (C) applying the heat-melting mold member above the first surface and the Z of the wiring board or the second surface of the functional element with the thermosetting buffer material interposed therebetween; Disposing, and (d) heat-melting the heat-melting mold member and sealing the gap while leaving at least a gap between the wiring board and the functional element. It is characterized by.
  • thermosetting buffer liquid silicone is preferable.
  • An electronic component includes a wiring substrate having a first surface and a second surface, a first surface and a second surface, wherein the first surface is a first surface of the wiring substrate.
  • a functional element disposed opposite to the first surface of the wiring board and a first surface of the functional element while leaving a first void portion, and a second surface of the functional element and the second surface of the functional element.
  • a heating / melting member for sealing the first gap while leaving a second gap between the heating / melting member and the functional element;
  • a thermosetting cushioning material interposed between the second surface of the child and the heat-fusible member.
  • thermosetting buffer material liquid silicone is suitable.
  • the heat-melting member may be provided with a positioning means for the functional element.
  • a peripheral portion may have a drooping shape with respect to the functional element.
  • the method for manufacturing an electronic component according to the present invention includes: (a) a step of disposing a first surface of a wiring board and a first surface of a functional element to face each other; and (b) a first surface on the second surface of the functional element. Disposing a cushioning material having a packing density of: (c) a second packing density higher than the first packing density above the first surface and the Z of the wiring board or the second surface of the functional element. Arranging a sealing member having a filling density; and (d) sealing the gap while leaving at least a gap between the wiring substrate and the functional element by the sealing member. It is characterized by doing.
  • the method for manufacturing an electronic component according to the present invention includes: (a) a step of disposing a first surface of a wiring board and a first surface of a functional element to face each other; and (b) a first surface on the second surface of the functional element. And (c) placing the first and second surfaces above the first surface and Z of the wiring board or the second surface of the functional element. Arranging a sealing member having a third packing density higher than the packing density; and (d) forming a gap between the wiring board and the functional element by the sealing member while leaving at least a gap between the wiring substrate and the functional element. And a step of sealing.
  • An electronic component includes a wiring board having a first surface and a second surface, a first surface and a second surface, wherein the first surface faces the first surface of the wiring substrate.
  • a heat melting type member that seals the gap while leaving a gap between the first surface of the wiring substrate and the first surface of the functional element; It is characterized in that it comprises a deformation preventing means for preventing deformation of the functional element in the relationship between the element and the heating / melting member.
  • the deformation preventing means is a cushioning material arranged between the functional element and the heat melting type member. It is preferable that the deformation preventing means is a gap provided between the functional element and the heat melting type member.
  • the deformation preventing means is preferably a large number of bubbles contained in the heat melting type member.
  • the first surface of the wiring board and the first surface of the functional element are arranged to face each other at a predetermined interval, and the first surface of the wiring board is provided.
  • a heat melting type member is disposed above the second surface of the functional element, the heat melting type member is heated and melted, and the heat melting type member is at least a gap between the wiring board and the functional element. While closing the gap.
  • the heating and melting member a member which is melted by any kind of heating may be used.
  • a member which is melted by indirect heating such as irradiation of high frequency, electromagnetic wave, ultrasonic wave, or light
  • the heating may be any kind of heating, and for example, an indirect heating method such as high frequency, electromagnetic wave, ultrasonic wave, or light irradiation may be used.
  • a frame-like insulating member for preventing a sealing resin having a constant viscosity from flowing into a gap formed between a functional element and a wiring board is necessarily required. Therefore, the step of forming the frame-shaped insulating member, which has been required conventionally, can be omitted, and there is an advantage that an electronic component having a simple structure can be obtained.
  • a flaky resin molded as a sealing resin and joining by heating and curing it is possible to easily prevent the resin from flowing into the surface of the functional element particularly facing the void.
  • the heating may be any heating, and for example, an indirect heating method such as irradiation of high frequency, electromagnetic wave, ultrasonic wave, or light may be used.
  • Examples of the material of the wiring board include ceramics such as alumina, magnesia, and silicon carbide, glass-coated ceramics, ceramic multilayer boards such as alumina having conductors and functional parts incorporated therein, and glass epoxy such as FR-4.
  • a fat substrate can be used.
  • Examples of the functional element include a surface acoustic wave element, a crystal oscillator, a piezoelectric oscillator, a photo-power plastic having at least a pair of a light transmitting unit and a light receiving unit, an EPROM, a CCD, a semiconductor laser, or a light emitting diode. Is mentioned.
  • a functional element such as a surface acoustic wave element or a semiconductor element is face-down bonded (a technique of directly turning a chip upside down and directly mounting a package without a die bonding and a wire bonding process; Daijiki “Maruzen Co., Ltd., published March 5, 1985, page 1189.)
  • the face-down bonding specifically includes a so-called flip-chip method, a beam lead method, a TAB method, and a pedestal method.
  • a heat melting type member for example, a thermosetting flaky resin is used as a member at the time of sealing, and the functional element and the wiring board are melted by heating to melt or cure the resin surface or the whole.
  • the sealing can be performed while maintaining a gap between the main surface of the functional element facing the wiring substrate and the wiring substrate.
  • the wiring board that forms part of the electronic component of the present invention can form a wiring pattern on only one main surface or on both the main surface and the other main surface depending on the mounting method. Also, for example, in a surface acoustic wave device, in order to secure a gap, a transducer portion composed of a comb-shaped electrode pattern and a wiring pattern electrically connected to the transducer portion are provided on one surface. It needs to be formed.
  • the functional element and the wiring board can be joined via a conductive joining member.
  • the gap of the void formed by the present invention is determined by the shape of the joining member, it is 10 to 200. It is desirable to secure ⁇ , preferably 20 to 80 / m.
  • the conductive bonding member is defined as a means for electrically connecting a semiconductor laser and a wiring board and for fixing both.
  • a so-called bump or conductive resin is used.
  • the bumps include ball bumps and plated bumps, and the conductive resin includes a conductive paste and an anisotropic conductive resin.
  • these may be used alone or in combination. These may be used in combination in combination, and these are included in the present invention. That is, in the present invention, for example, a bump and a conductive resin may be used in combination as the conductive bonding member, or a ball bump and an anisotropic conductive resin may be used in combination, for example. You may do so.
  • the material for electrically connecting the wiring pattern on the wiring board to the wiring pattern on the functional element, such as a conductive bump, is made of resin ball, gold (Ai), silver (g), solder (Sn) System, Pb system, In system, etc.).
  • These conductive bumps electrically connect the wiring pattern on the wiring board and the wiring pattern on the functional element by bonding the wiring board and the functional element at a predetermined temperature and pressure. Thus, a gap is formed and secured between the functional element and the wiring board.
  • a metal bump made of gold, silver, solder, or the like is particularly preferable as the conductive bump.
  • the bonded functional element and the wiring board are mounted on the wiring board by covering and hardening with a thermosetting resin to form the electronic component.
  • a thermosetting resin used as a thermosetting resin
  • the surface or the entire surface of the resin is melted by heating and cured to join the functional element and the wiring board. Therefore, the resin can be prevented from flowing into the void formed on the side of the functional element facing the wiring substrate during curing.
  • a frame-shaped insulating partition or dam is not necessarily required. However, by providing a frame-shaped insulating partition, the sealing effect can be further enhanced, and this is included in the present invention.
  • Liquid thermosetting resins used as conventional sealing resin materials such as epoxy potting resins, have low viscosities of about 15 Pas, and even after ripening to 100-200, Since the viscosity does not increase and remains low, without the frame-shaped insulating member, there is a drawback that the functional element and the function of the functional element are impaired because it cannot flow into the void of the wiring board and maintain the void.
  • a viscosity of 50 Pa ⁇ s or more is obtained. Therefore, the functional element can be easily covered.
  • Such a flaky resin can be easily formed by, for example, cold-press molding a powder made from an epoxy resin into a required shape and weight.
  • Heat-fused members such as flaky resin are not the main surface that forms the voids of the functional element.
  • the functional element is a surface acoustic wave element
  • the wiring pattern of the surface acoustic wave element. Is placed on the other main surface instead of the main surface on which is formed.
  • the shape of the flaky resin is larger than the shape of the functional element and is substantially equal to or slightly smaller than the shape of the wiring board. More preferably, the shape of the flaky resin is larger than the shape of the functional element and substantially equal to the shape of the wiring board.
  • the size of the functional element is 2 mm X 2 mm and the size of the wiring board is 4 mm 4 mm
  • the size of the flake resin is also 4 mm X 4 mm .
  • this dimension can be appropriately selected depending on the volume of the functional element and the thickness of the flaky resin.
  • the heat melting type member such as a flaky resin, placed on the surface of the functional element opposite to the surface facing the void portion, adheres to or is integrated with at least the other main surface of the element by heat melting and curing.
  • the surface acoustic wave element is sealed with the wiring board by encapsulating the element.
  • the heat melting temperature of the heat melting mold member such as a flaky resin is 100 to 200, and the curing time is Is carried out in 20 hours to 2 hours. More preferably, after heating and melting at 110 to 170, the curing is carried out at 100 ° C to 160 on the order of 3 to 20 hours.
  • a buffer material sheet having a shape smaller than the shape of the heat-meltable member is adhered to the main surface of the heat-meltable member, and the buffer material sheet surface of the heat-meltable member is wired.
  • the functional element having the pattern-formed main surface is placed facing the other main surface of the functional element, and at least the other main surface of the element and the cushioning sheet are brought into close contact with each other by heat melting and curing. While enclosing the element, the element can be sealed with a wiring board.
  • the cushioning material sheet include a material having high elasticity such as a rubber elastic body sheet.
  • a metal foil / paraffin paper having two layers may be arranged.
  • the size of the sheet of each layer is not necessarily required to be the same as long as it is smaller than the flaky resin shape, and may be any shape. With such a configuration, stress distortion of the resin caused by shrinkage during resin curing and a difference in thermal expansion can be reduced. Further, since the position of the cushioning sheet can be easily determined between the sealing resin portion and the surface acoustic wave element, productivity and reliability are improved.
  • the wiring pattern from one main surface of the wiring board is exposed between the peripheral edge of the resin part and the peripheral edge of the wiring board, and the resin part covers the wiring pattern.
  • the wiring pattern is continuous with the concave wiring pattern formed on the side end surface of the wiring board.
  • connection portion on the circuit board and a concave wiring pattern formed on a side end surface of the wiring board are soldered. Can be easily connected.
  • the height of a wiring pattern connected to a conductive bonding member serving as an electrical connection portion between a wiring board and a functional element is set to the thickness of the wiring board material or the wiring pattern.
  • an electronic component of the present invention for example, a surface acoustic wave device
  • when forming a wiring pattern of a wiring board at least a part of the wiring pattern is applied a plurality of times by a screen printing method using a conductive paste. It can also be baked or co-fired.
  • the difference between the thickness of the portion applied a plurality of times after firing and that of the other portion is in the range of 5 to 100 / zm.
  • the method for manufacturing an electronic component when forming a wiring pattern on a wiring board, at least a part of the wiring pattern is separated from other parts of the wiring pattern by a film forming method such as evaporation or sputtering. Thick films can also be formed.
  • This difference is preferably at least 0.5 ⁇
  • a green sheet corresponding to a portion opposed to a bonding member serving as an electrical connection portion and a region in the vicinity thereof is added and fired. After that, a wiring pattern can be formed on the wiring board.
  • the difference between the thickness of the portion baked with the green sheet added and the thickness of the other portion is preferably substantially in the range of 5 to 500 ⁇ ⁇ .
  • a conductive bonding member serving as an electrical connection portion may be formed by stacking a plurality of conductive bumps at substantially the same position. it can.
  • the sum of the thicknesses of the plurality of conductive bumps is preferably in the range of 30 to 150 ⁇ ⁇ .
  • the thickness of the conductive pole bump can be adjusted by using a conductive pole bump as a conductive bonding member serving as an electrical connection portion, and changing the thickness of the conductive thin wire.
  • the conductive bumps are more preferably ball bumps substantially composed of gold, ball bumps substantially composed of tin, and pole bumps substantially composed of lead.
  • the functional material when the functional material is applied to at least one main surface of the functional element or a part of another main surface, specifically, for example, at least one main surface or another main surface of the surface acoustic wave element is applied.
  • the functional material that is, the elastic surface wave absorbing material can be applied to be thinner than the thickness of the conductive bonding member.
  • the method of manufacturing an electronic component according to the present invention may include a step of temporarily fixing the wiring substrate and the functional element before the step (a).
  • the arrangement of the wiring board and the functional element can be finely adjusted, and therefore, the wiring board and the functional element can be accurately and vertically arranged.
  • the method for manufacturing an electronic component according to the present invention may further include, prior to the step (a), a step of disposing a frame-shaped member on the first surface of the wiring board so as to surround the gap. .
  • the step of arranging a frame-shaped member for preventing a resin for sealing from flowing into a void formed by the functional element and the wiring board includes at least the wiring Although it is not always necessary to seal the gap while leaving the gap between the substrate and the functional element, it has a constant viscosity by arranging the frame member so as to surround the gap. It is possible to more reliably prevent the sealing resin from flowing into the gap formed between the functional element and the wiring board.
  • the frame-shaped member a frame-shaped member conventionally used can be used as it is.
  • the heat melting type member in the method for manufacturing an electronic component according to the present invention, in the step (c), can be ripened and melted so as to cover the entire second surface of the functional element, Further, in the step (c), the entire second surface of the functional element is exposed. The heat melting type member can be heated and melted. Further, in the step (C), the heat melting type member can be heated and melted while exposing a part of the second surface of the functional element.
  • the step (c) when the heat melting mold member is heated and melted so as to cover the entire second surface of the functional element, the second surface of the functional element can be completely protected. Further, in the step (c), when the heat melting type member is heated and melted while exposing the entire second surface of the functional element or exposing the negative part, the second surface of the functional element is exposed. Therefore, a wiring pattern is further provided here, and the electronic components can be stacked or connected to other electronic components via the wiring pattern.
  • the first surface of the wiring board and the first surface of the functional element are arranged to face each other via a conductive bonding member. Can be.
  • the first surface of the wiring board and the first surface of the functional element facing each other with the conductive bonding member interposed therebetween, the first surface of the wiring substrate and the first surface of the functional element are connected to each other. They can be arranged quickly and reliably.
  • the joining member is defined as a means for electrically connecting the element (functional element) and the wiring board and fixing the both.
  • a so-called bump or conductive resin is used.
  • the bumps include ball bumps and plated bumps
  • the conductive resin includes a conductive paste and an anisotropic conductive resin.
  • a member for electrically connecting the wiring pattern on the wiring board to the wiring pattern on the surface acoustic wave element is made of a resin pole with conductive metal, gold (Ax), silver (g), or the like. And metal bumps made of solder (Sii, Pb, In, etc.).
  • conductive bumps electrically connect the wiring pattern on the wiring board and the wiring pattern on the surface acoustic wave element by bonding the wiring board and the surface acoustic wave element at a predetermined temperature and pressure.
  • a gap is formed between the surface acoustic wave element and the wiring board to play a role.
  • a metal bump made of gold, silver, solder, or the like is particularly preferable as the conductive bump.
  • a conductive bonding member serving as an electrical connection portion may be formed by stacking a plurality of conductive bumps at substantially the same position.
  • the sum of the thicknesses of the plurality of conductive bumps is preferably in the range of 30 to 150 ⁇ 150.
  • the thickness of the conductive ball bump can be adjusted by changing the thickness of the conductive thin wire by using a conductive ball bump as a conductive bonding member to be an electrical connection portion.
  • the conductive bumps are more preferably ball bumps made of substantially gold, pole bumps made of substantially tin, pole bumps made of substantially lead, and the like.
  • an elastic surface acoustic wave element is used as the functional element.
  • the connection pattern on the first surface of the wiring board and the elastic surface The connection pattern on the first surface of the wave element can be opposed to the connection pattern by a face-down bonding method via a conductive bonding material.
  • a flaky resin is used as a heat melting type member at the time of sealing, and the resin surface or the whole is melted and cured by heating.
  • the surface acoustic wave element and the wiring board can be sealed while holding a gap between the transducer section provided on the surface acoustic wave element and the wiring board.
  • a frame-shaped insulating member for preventing the heat-melting member for sealing from flowing into the gap formed by the surface acoustic wave element and the wiring board.
  • the configuration of the device can be simplified.
  • a heat-melting mold member for sealing for example, by using a molded flaky resin and joining by heating and curing, it is particularly easy for the resin to flow into the surface of the transducer portion of the surface acoustic wave element.
  • the surface acoustic wave propagation path of the surface acoustic wave element is not adversely affected, and a void is formed between the surface acoustic wave element and the wiring board to facilitate the resin-sealed surface acoustic wave device.
  • the frame-like insulating member is not necessarily used to prevent the sealing resin having a constant viscosity from flowing into the gap formed between the main surface of the surface acoustic wave element on the transducer side and the wiring board, for example.
  • a surface acoustic wave device with a simple structure that can be prevented without the need Have the advantage. Since the electronic component of the present invention does not require the frame-shaped insulating member or the surrounding member, the electronic component can be downsized. Therefore, an electronic component suitable for high-density mounting can be provided. Further, according to the method for manufacturing an electronic component of the present invention, a functional element can be mounted on a wiring board without the need for a frame-shaped insulating member or a surrounding member. Can be. In addition, electronic components suitable for high-density mounting can be manufactured.
  • thermosetting flaky resin is used as a member at the time of sealing, and the resin surface or the whole is melted and cured by heating, so that the surface acoustic wave element and the wiring board are brought into contact with each other.
  • the sealing is performed while maintaining a gap between the transducer section provided in the wave element and the wiring board.
  • the first surface of the wiring board and the main surface of the surface acoustic wave element are arranged on the side of the transducer via the conductive bonding member.
  • the main surface on the part side can be arranged quickly and reliably.
  • the gap of the void formed in the present invention is determined by the shape of the conductive bonding member, it is desirable to secure 10 to 200 ⁇ , preferably 20 to 80 ⁇ .
  • a bump is formed by partially increasing the thickness of the wiring pattern on the wiring board or the wiring pattern on the surface acoustic wave element as the conductive bonding member, the wiring pattern on the wiring board and the surface acoustic wave element It is also possible to join the upper wiring pattern.
  • annular insulating partition wall may be formed along the inside of each joint member and / or along the outside of each joint member of the trajectory formed by the plurality of joint members.
  • annular insulating partitions play a role in securely holding a gap formed between the surface acoustic wave element and the wiring board.
  • a bonding member to be an electrical connection portion on the wiring pattern of the wiring board first, bonding strength can be increased and connection reliability can be improved.
  • a quartz oscillator is used as the functional element. In this case, in the step (a), the connection pattern on the first surface of the wiring board and the quartz oscillator are used.
  • the electrode of the first surface is opposed to the electrode of the first surface of the wiring board via a conductive bonding member by a face-down bonding method, and the electrode of the second surface of the crystal unit is Further comprising a step of arranging a surrounding member on the wiring board so as to surround the crystal unit between the steps (a) and (b), In the step (b), a heat melting type member can be arranged at least on the surrounding member.
  • a surrounding member is arranged around the crystal unit in order to secure the vibration of the crystal unit, and the enclosing member is disposed on the surrounding member.
  • a flake-like resin is used as the ripening and melting type member, and the resin surface or the whole is melted and cured by heating to secure the vibration of the crystal oscillator and a gap between the crystal oscillator and the wiring board. It is possible to seal while holding the part.
  • the bonding wire is not encapsulated in the heat-fusible member, so that the wiring pattern on the first surface of the wiring board and the gap between the crystal unit and the wiring pattern are formed.
  • the electrodes formed on the surface other than the surface facing the surface can be electrically connected by an electrical connection means such as a bonding switch.
  • gap part formed of a crystal oscillator and a wiring board is not necessarily needed, and a structure is simplified. be able to.
  • a heat-melting mold member for sealing for example, a molded flaky resin is joined by heating and melting and hardening, so that it is particularly suitable for the gap formed by the crystal screw element and the wiring board. It is possible to easily prevent the heat melting type member from flowing in, and it is possible to perform resin sealing without causing any adverse effect on the vibration of the crystal unit.
  • thermosetting flaky resin is used as a member at the time of sealing, and the resin surface or the whole is melted and cured by heating to form a gap between the crystal unit and the wiring substrate. It is possible to seal while holding the part.
  • the first surface of the wiring board and the first surface of the crystal unit to face each other via the conductive bonding member, the first surface of the wiring substrate and the first surface of the crystal unit can be quickly connected. In addition, they can be arranged reliably.
  • the gap of the void formed in the present invention is determined by the shape of the conductive bonding member, but it is desirable to secure 10 to 200 m, preferably 20 to 80 m. Also, when a bump is formed by partially increasing the thickness of the wiring pattern on the wiring board or the electrode on the first surface of the crystal unit as the conductive bonding member, the wiring pattern on the wiring board is directly The electrode on the first surface of the crystal unit can also be joined.
  • annular insulating partition wall may be formed along the inside of each joint member and / or along the outside of each joint member of the trajectory formed by the plurality of joint members.
  • annular insulating partitions play a role in securely holding a gap formed between the crystal unit and the wiring board.
  • a bonding member to be an electrical connection portion on the wiring pattern of the wiring board first, bonding strength can be increased and connection reliability can be improved.
  • the functional element may be a piezoelectric vibrator.
  • the connection pattern on the first surface of the wiring substrate and the piezoelectric vibrator The electrode on the first surface is opposed to the electrode on the first surface by a face-down bonding method via a conductive bonding member, and the wiring pattern on the first surface of the wiring board and the electrode on the second surface of the piezoelectric vibrator are connected to each other. It can be electrically connected by an electrical connection means such as a bonding wire.
  • the present invention relates to a method of mounting a piezoelectric vibrator by face-down bonding, wherein, for example, a flaky resin is used as a heat melting type member at the time of sealing placed on the piezoelectric vibrator, and the resin surface or the whole is heated. Is melted and cured, whereby sealing can be performed while maintaining a gap between the piezoelectric vibrator and the wiring board.
  • the piezoelectric vibrator If a cushioning material is provided between the heating and melting member at the time of sealing, the heating and melting member does not directly contact the piezoelectric vibrator, and the piezoelectric vibrator can reliably exhibit its function. . It is desirable that the cushioning material is larger than the second surface of the piezoelectric vibrator.
  • the bonding wire connects the wiring pattern on the first surface of the wiring board to the electrode formed on the surface other than the surface facing the gap of the piezoelectric vibrator. Can be electrically connected.
  • the present invention it is possible to simplify the configuration without necessarily requiring a frame-shaped insulating member for preventing the heat-fused mold member for sealing from flowing into the gap formed by the piezoelectric vibrator and the wiring board.
  • a heat melting type member for sealing for example, a molded flake resin is heated and melted and joined by curing, thereby forming a heat melting mold in a void formed by the piezoelectric vibrator and the wiring board.
  • the members can be easily prevented from flowing, and the piezoelectric vibrator can be sealed without adversely affecting the vibration.
  • thermosetting flaky resin is used as a member at the time of sealing, and the resin surface or the whole is melted and cured by heating to form a gap between the piezoelectric vibrator and the wiring substrate. It is possible to seal while holding.
  • the first surface of the wiring board and the first surface of the piezoelectric vibrator in opposition via the conductive bonding member, the first surface of the wiring substrate and the first surface of the piezoelectric vibrator can be quickly connected. In addition, they can be arranged reliably.
  • the gap of the void formed in the present invention is determined by the shape of the conductive bonding member, but it is desirable to secure 10 to 200 ⁇ , preferably 20 to 80 / m.
  • the bumps are formed by partially increasing the thickness of the wiring pattern on the wiring board or the electrode on the first surface of the piezoelectric vibrator as the conductive bonding member, the wiring pattern on the wiring board is directly An electrode on the first surface of the piezoelectric vibrator can also be joined.
  • annular insulating partition wall may be formed along the inside of each joining member and / or the outside of each joining member of the trajectory formed by the plurality of joining members. These annular insulating partitions are formed in the gaps formed between the piezoelectric vibrator and the wiring board. Plays a role in ensuring that
  • a bonding member to be an electrical connection portion on the wiring pattern of the wiring board first, bonding strength can be increased and connection reliability can be improved.
  • the functional element may be a photo-power blur having a pair of a light transmitting unit and a light receiving unit.
  • the first The connection pattern on the surface and the wiring pattern on each first surface of the photo-power blur are opposed to each other by a face-down bonding method via a conductive bonding member, and between the steps (a) and (b) And a step of arranging a surrounding member on the wiring board so as to surround the photo-power bra.
  • a heat-melting member is arranged at least on the surrounding member.
  • a surrounding member is disposed around the photo power bra to secure an optical path of the photo power bra, and a sealing member is disposed on the surrounding member.
  • a flaky resin is used as the heat-melting type member, and the resin surface or the whole is melted and cured by heating, so that the optical path of the photo-power bra is secured and a gap is formed between the photo-power bra and the wiring board. It is possible to seal while holding the seal.
  • gap part formed by a photo-force blur and a wiring board is not necessarily needed, and a structure is simplified.
  • a heat-melting mold member for sealing for example, by using a molded flake resin and joining by heating and curing, the resin flows into the gap formed by the photo-force bra and the wiring board. Can be easily prevented, and resin sealing can be performed without causing an adverse effect on the optical path of the photo-power blur.
  • the frame-shaped insulating member can be prevented from flowing into the space
  • thermosetting flaky resin is used as a member at the time of sealing, Therefore, the resin surface or the whole is melted and hardened, so that sealing can be performed while holding a gap between the photo-force blur and the wiring board.
  • the first surface of the wiring board and each first surface of the photo power blur are arranged. And can be arranged quickly and reliably.
  • the gap of the void formed in the present invention is determined by the shape of the conductive bonding member, but it is desirable to secure 10 to 200 / zm, preferably 20 to 80 / m.
  • the bumps are formed by partially increasing the thickness of the electrode on the first surface of the wiring pattern or the wiring pattern on the wiring board as the conductive bonding member, the wiring pattern on the wiring board is directly
  • the electrodes can be joined to the electrodes on each of the first surfaces of the photo force blur.
  • annular insulating partition wall may be formed along the inside of each joint member and / or along the outside of each joint member of the trajectory formed by the plurality of joint members.
  • annular insulating partitions play a role in securely holding a gap formed between the photobra and the wiring board.
  • a bonding member to be an electrical connection portion on the wiring pattern of the wiring board first, bonding strength can be increased and connection reliability can be improved.
  • the wiring substrate is a light-transmitting substrate
  • the functional element is an EPROM.
  • the first surface of the wiring substrate And the light receiving surface of the EPROM can be opposed to each other.
  • an ultraviolet-transmitting substrate may be used so that at least the EPROM can be irradiated with ultraviolet light, and examples thereof include a glass substrate.
  • the present invention relates to a method for mounting an EPROM by face-down bonding, wherein, for example, a flake-like resin is used as a heat-melting mold member at the time of sealing, and the resin surface or the whole is melted and cured by heating, thereby obtaining an EPROM.
  • the wiring board and- It is designed to seal while maintaining a gap between the light receiving section of the EP ROM and the wiring board.
  • a frame-shaped insulating member for preventing a heat-melting member for sealing from flowing into a gap formed between an EPROM and a wiring board it is not always necessary to provide a frame-shaped insulating member for preventing a heat-melting member for sealing from flowing into a gap formed between an EPROM and a wiring board. It can be simplified. Also, as a heat-melting mold member for sealing, for example, by using a molded flaky resin and joining by heating and curing, it is particularly easy for the resin to flow into the light receiving part of the EPROM. It is possible to easily manufacture a mounting type EPROM in which a gap is formed between the EPROM and the wiring board and which is sealed with a resin without adversely affecting the optical control of the EPROM.
  • an EPROM and a wiring board are provided in the EPROM by using, for example, a thermosetting flaky resin as a member at the time of sealing, and melting and curing the resin surface or the whole by heating.
  • the sealing can be performed while holding the gap between the light receiving portion and the wiring board.
  • the first surface of the wiring board and the main surface of the EPROM on the light receiving section side are connected to each other. Can be arranged quickly and reliably.
  • the gap of the void formed in the present invention is determined by the shape of the conductive bonding member, but it is desirable to secure 10 to 200 ⁇ m, preferably 20 to 80 ⁇ m. Also, when a bump is formed by partially increasing the thickness of the wiring pattern on the wiring board or the wiring pattern on the EPROM as the conductive bonding member, the wiring pattern on the wiring board and the wiring pattern on the EPROM are directly connected. And can be joined. Further, in the present invention, an annular insulating partition wall may be formed along the inside of each joint member and / or along the outside of each joint member of the trajectory formed by the plurality of joint members.
  • annular insulating partition walls play a role in securely holding a gap formed between the EPROM and the wiring board.
  • a bonding member to be an electrical connection portion on the wiring pattern of the wiring board first, the bonding strength is increased and the connection reliability is improved. Can be made.
  • the wiring substrate may be a light-transmitting substrate
  • the functional element may be a CCD
  • the first surface of the wiring substrate and the CCD The light receiving surface can be arranged to face the light receiving surface.
  • any substrate having optical flat characteristics may be used.
  • an ultraviolet transmission type substrate or the like that can irradiate ultraviolet rays to the light receiving surface of the CCD may be used, and for example, a glass substrate may be used. .
  • the present invention relates to a method of mounting a CCD by face-down bonding, in which, for example, a flaky resin is used as a heat-melting type member at the time of sealing, and the resin surface or the whole is melted and cured by heating, thereby obtaining a CCD. And the wiring substrate can be sealed while maintaining a gap between the light receiving portion of the CCD and the wiring substrate.
  • the configuration of the CCD can be simplified. Also, as a heat-melting mold member for sealing, for example, by using a molded flaky resin and joining it by aging and curing, it is possible to easily prevent resin from flowing into the light receiving part of the CCD, in particular. This makes it possible to easily manufacture a mounted CCD in which a gap is formed between the CCD and the wiring board and sealed with resin without causing any adverse effect on the control of the CCD.
  • thermosetting flaky resin is used as the sealing member, and the CCD and the wiring board are provided on the CCD by melting and curing the resin surface or the whole by heating.
  • the sealing can be performed while holding a gap between the light receiving section and the wiring board.
  • the first surface of the wiring board and the main surface on the light receiving portion side of the CCD are connected. They can be arranged quickly and reliably.
  • the gap of the void formed in the present invention is determined by the shape of the conductive joining member, but it is desirable to secure 10 to 200 ⁇ , preferably 20 to 80 m. - Also, when a bump is formed by partially increasing the thickness of the wiring pattern on the wiring board or the wiring pattern on the CCD as a conductive bonding member, the wiring pattern on the wiring board and the wiring pattern on the CCD are directly And can be joined.
  • annular insulating partition wall may be formed along the inside of each joint member and / or along the outside of each joint member of the trajectory formed by the plurality of joint members.
  • annular insulating partitions play a role in reliably maintaining a gap formed between the CCD and the wiring board.
  • a bonding member to be an electrical connection portion on the wiring pattern of the wiring board first, the bonding strength can be increased and the reliability of the connection can be improved.
  • the wiring substrate may be a light-transmitting substrate
  • the functional element may be a semiconductor laser.
  • the light emitting surface of the semiconductor laser can be arranged to face each other.
  • a light-transmitting substrate may be used so that at least the laser light from the light emitting surface of the semiconductor laser is transmitted through the wiring substrate and output to the outside.
  • a glass substrate may be used.
  • the present invention provides a method for mounting a semiconductor laser by face-down bonding, wherein, for example, a flaky resin is used as a heat-melting mold member at the time of sealing, and the resin surface or the whole is melted and cured by heating.
  • the semiconductor laser and the wiring board can be sealed while maintaining a gap between the light emitting surface of the semiconductor laser and the wiring board.
  • a frame-shaped insulating member for preventing a heat melting type member for sealing from flowing into a gap formed between a semiconductor laser and a wiring board. It can be simplified.
  • a molded flaky resin is used as a heat-fusible mold member for encapsulation, and is bonded by heat-melting and curing, thereby easily preventing the resin from flowing particularly into the light emitting surface of the semiconductor laser. It is possible to easily manufacture a mounting type semiconductor laser in which a gap is formed between the semiconductor laser and the wiring board and resin-sealed without causing a bad influence on the output of the semiconductor laser to the outside. it can.
  • a semiconductor laser and a wiring board are provided in the semiconductor laser by using, for example, a thermosetting flaky resin as a member at the time of sealing and melting and curing the resin surface or the whole by heating.
  • the sealing is performed while maintaining a gap between the light emitting unit and the wiring board.
  • the first surface of the wiring board and the main surface on the light emitting portion side of the semiconductor laser are arranged.
  • Surfaces can be arranged quickly and reliably.
  • the space of the void formed in the present invention is determined by the shape of the conductive bonding member, but it is desirable to secure 10 to 200 m, preferably 20 to 80 m.
  • a bump is formed by partially increasing the thickness of a wiring pattern on a wiring board or a wiring pattern on a semiconductor laser as a conductive bonding member, the wiring pattern on the wiring board is directly connected to the wiring pattern on the semiconductor laser. Can be joined to the wiring pattern.
  • annular insulating partition wall may be formed along the inside of each joint member and / or along the outside of each joint member of the trajectory formed by the plurality of joint members.
  • annular insulating partitions play a role in securely holding a gap formed between the semiconductor laser and the wiring board.
  • a bonding member to be an electrical connection portion on the wiring pattern of the wiring board first, bonding strength can be increased and connection reliability can be improved.
  • the wiring substrate may be a light-transmitting substrate
  • the functional element may be a light-emitting diode.
  • the surface and the light emitting surface of the light emitting diode can be arranged to face each other.
  • a light-transmitting substrate may be used so that at least light from the light-emitting surface of the light-emitting diode passes through the wiring substrate and is output to the outside.
  • a glass substrate may be used.
  • a flaky resin when mounting a light emitting diode by face-down bonding, for example, a flaky resin is used as a heat melting type member at the time of sealing, and the resin surface or the whole is melted and cured by ripening. Further, the light emitting diode and the wiring board can be sealed while holding a gap between the light emitting surface of the light emitting diode and the wiring board.
  • the present invention it is not always necessary to provide a frame-shaped insulating member for preventing the heat-fused mold member for sealing from flowing into the gap formed by the light emitting diode and the wiring board.
  • the configuration can be simplified.
  • a heat-melting mold member for sealing for example, by using a molded flaky resin and joining by heating and curing, it is possible to easily prevent the resin from flowing into the light-emitting surface of the light-emitting diode in particular.
  • thermosetting flaky resin is used as a member at the time of sealing, and the surface or the whole of the resin is melted and cured by heating, so that the light emitting diode and the wiring board are connected to each other. It is possible to seal while maintaining a gap between the substrate and the wiring board.
  • the first surface of the wiring board and the main surface of the light emitting diode side facing each other via the conductive bonding member By disposing the first surface of the wiring board and the main surface of the light emitting diode side facing each other via the conductive bonding member, the first surface of the wiring board and the main surface of the light emitting diode side of the light emitting diode can be separated. Can be arranged quickly and reliably.
  • the gap of the void formed in the present invention is determined by the shape of the conductive bonding member, but it is desirable to secure 10 to 200 / zm, preferably 20 to 80 ⁇ . Also, when a bump is formed by partially increasing the thickness of the wiring pattern on the wiring board or the wiring pattern on the light emitting diode as the conductive bonding member, the wiring pattern on the wiring board and the wiring pattern on the light emitting diode are directly formed. Can be joined with Wear.
  • annular insulating partition wall may be formed along the inside of each joint member and / or along the outside of each joint member of the trajectory formed by the plurality of joint members.
  • annular insulating partitions play a role in securely holding a gap formed between the light emitting diode and the wiring board.
  • a bonding member to be an electrical connection portion on the wiring pattern of the wiring board first, bonding strength can be increased and connection reliability can be improved.
  • a bump is provided on the functional element, and at this time, the bump of the functional element is arranged to face the wiring board in the step (a), and the steps (a) and ( During the step b), the wiring board and / or the functional element can be joined while irradiating the wiring board and / or the bumps with infrared rays.
  • the first surface of the wiring substrate and the first surface of the functional element By arranging the first surface of the wiring substrate and the first surface of the functional element to face each other via the bumps provided on the functional element, the first surface of the wiring substrate and the first surface of the functional element can be connected to each other. They can be arranged quickly and reliably.
  • the wiring pattern on the wiring board and the wiring pattern on the functional element can be directly joined.
  • a bump is defined as a means for electrically connecting a functional element and a wiring board, or for fixing both.
  • Bumps include pole bumps and plated bumps, and conductive paste such as conductive paste or anisotropic conductive resin. Some bumps are used.
  • the conductive bumps that can electrically connect the wiring pattern on the wiring board to the wiring pattern on the functional element include resin balls, gold (Ai), silver (), solder (Sn) System, Pb system, In system, etc.).
  • These bumps fix the wiring board and the functional element by bonding the wiring board and the functional element at a predetermined temperature and pressure, and further connect the wiring pattern on the wiring board and the wiring pattern on the light emitting diode. Make an electrical connection. Then, it plays a role of forming and securing a gap between the functional element and the wiring board.
  • a metal bump made of gold, silver, solder, or the like is particularly preferable as the conductive bump.
  • the surface of the functional element on which the bumps are not formed can be heated by infrared rays to transfer the heat to the bumps to indirectly heat the pump. Since the entire device is heated, special attention must be paid to the heating temperature and heating time.
  • the surface of the functional element on which the bump is formed and the surface of the wiring board facing the functional element are directly ripened to heat and join the bump.
  • the bumps are heated to a temperature sufficient to join the functional element and the wiring board, which depends on the type of the bumps, but is typically heated to several hundred degrees. Since it is preferable that heating of the bumps be performed promptly, a halogen lamp, for example, is used as the infrared light source.
  • a halogen lamp for example, is used as the infrared light source.
  • the gap of the void formed in the present invention is determined by the shape of the bump
  • the functional element and the wiring board can be joined via the bumps, and sealing with resin can be performed.
  • thermosetting resin in the method for manufacturing an electronic component according to the present invention, a resin, for example, a thermosetting resin can be used as the heat-meltable member.
  • an electronic component is mounted on a wiring board by covering and bonding the bonded functional element and the wiring board with a heat-melting type member, for example, a thermosetting resin.
  • a heat-melting type member for example, a thermosetting resin.
  • the functional element and the wiring board are joined together, so that the viscosity of the resin can be kept high and the functional element can be cured during curing.
  • the resin can be reliably prevented from flowing into the void formed on the first surface.
  • the resin which is the heat melting mold member into a flake shape for example, it can be molded by a cold compression molding method.
  • the ripened molten mold member is formed so as to be larger than the shape of the functional element and to have substantially the same shape as the wiring board, the positioning of the ripened molten mold member with respect to the functional element and the wiring board is performed. This can be performed reliably, and the functional element and the wiring board can be reliably sealed. Furthermore, by processing the shape of the heat melting type member before the heat melting into a shape in which the peripheral portion is hung, the functional element and the wiring substrate can be more reliably sealed.
  • a concave portion can be provided on a part of the surface of the flaky resin on the functional element side.
  • This recess is provided with a recess slightly larger than the outer shape of the functional element.
  • a concave portion formed in the resin a concave portion is formed in two steps, a void portion is provided in advance in a narrow concave portion, and when heated and melted, a void is easily formed between the device and the cushioning material (gas ) Is also exhibited.
  • the effect of the positioning or the effect of the shock absorbing material (by gas) can be obtained for the resin whose peripheral portion is hung down.
  • Liquid thermosetting resins used as conventional sealing resin materials such as epoxy-based potting resins, have low viscosities of about 15 Pas, and even when heated to 100 to 200 Since the viscosity does not increase and remains low, without the frame-shaped insulating member, there is a drawback that the gap flows into the gaps between the functional element and the wiring board and cannot be maintained, thereby impairing the function of the functional element.
  • thermosetting resin obtained by cold-pressing a powder material into a flake having the required shape and weight
  • a high-viscosity state is maintained until melting is started by heating.
  • a viscosity of at least 50 Pa ⁇ s is obtained. Therefore, the functional element can be easily covered.
  • thermosetting resin examples thereof include an epoxy resin, a silicone resin, and a urethane resin.
  • An epoxy resin is preferred, and a phenol-based epoxy resin is more preferred.
  • bisphenol A epoxy resin and phenol novolak epoxy resin are suitable for the method for producing an electronic component of the present invention.
  • the flaky resin placed on a surface different from the surface facing the void of the functional element is brought into close contact with at least a surface different from the surface facing the void of the element by heating, melting, and hardening. And the functional element is sealed with the wiring board.
  • the heat melting temperature of the heat melting type member for example, the flaky resin
  • the curing time is from 100 to 200 hours. More preferably, after heating and melting at 110 ° C. to 170 ° C., curing (cooling) is performed at 100 ° C.
  • the heating temperature and the heating time need not always be constant, and may take several forms as needed. For example, after ripening at about 160 for 3 hours, 1
  • the heat-meltable member for example, the flaky resin
  • low melting point glass can be used for the same purpose.
  • a low-melting glass powder (frit) obtained by cold compression molding into a flake shape is used.
  • a small amount of wax, polyvinyl alcohol, or the like may be used as a binder.
  • the melting point of the low-melting glass is 250 to 400, more preferably 300 to 350 ° C.
  • lead borosilicate glass having a melting point in the above range is suitable.
  • PbO is 50 weight 0 /. The above are the most suitable.
  • ZnO, Al203, Ti02, Bi203, PbF2, and those containing a small amount of CuO may be used.
  • bismuth borosilicate glass may be used. These glasses can be used in combination.
  • the heat melting type member for example, the low melting glass has a heat melting temperature of 250 to 400, and the curing time is one hour. Carried out in ⁇ 2 hours. More preferably, after heating and melting at 300 ⁇ : ⁇ 350, the curing is carried out for about 100-160 for about 1-20 hours.
  • the heating temperature and the heating time need not always be constant, and may take several forms as needed. For example, after heating at about 300 for about 3 hours, heating at about 120 for about 3 hours can be performed. In this way, the heat melting type member, for example, the low melting point glass is melted as a whole while maintaining an appropriate viscosity, and is hardened while maintaining a reliable sealing form.
  • An electronic component includes a wiring substrate having a first surface and a second surface, a first surface and a second surface, wherein the first surface is a first surface of the wiring substrate.
  • a functional element disposed opposite to the heat-melting member that seals the void while leaving a void between the first surface of the wiring substrate and the first surface of the functional element. It is characterized by doing.
  • the first surface of the wiring board and the first surface of the functional element are located at different positions.
  • a heat-melting member is disposed opposite to the first surface of the wiring board at a predetermined interval, or a heat-melting member is disposed above the second surface of the functional element. Both seal the gap while leaving the gap between the wiring board and the functional element.
  • the electronic component of the present invention it is necessary to provide a frame-shaped insulating member for preventing the heat melting type sealing member having a constant viscosity from flowing into the gap formed between the functional element and the wiring board. This eliminates the need for a frame-shaped insulating member that has been required in the past, and has the advantage that an electronic component having a simple structure can be obtained.
  • Materials for the wiring board include ceramics such as alumina, magnesia, and silicon carbide; glass-coated ceramics; ceramic multilayer boards such as alumina with internal conductors and functional parts; and resins such as FR-4 and glass epoxy.
  • a substrate can be used.
  • the functional elements include, for example, surface acoustic wave elements, crystal oscillators, piezoelectric oscillators
  • a photo power blur having a pair of a light transmitting unit and a light receiving unit; EPROM, CCD, a semiconductor laser or a light emitting diode.
  • a functional element such as a surface acoustic wave element or a semiconductor element is face-down bonded (a technique of directly turning a chip upside down and directly mounting a package without a die bonding and a wire bonding process; (See page 1189, issued March 5, 1985).
  • the face-down bonding specifically includes a so-called flip-chip method, a beam lead method, a TAB method, a Vestel method, and the like.
  • a hot-melt type member obtained by cold-press-molding a powder raw material for example, a thermosetting flaky resin is used, and the resin surface or the whole is melted and cured by heating.
  • the functional element and the wiring board are sealed while maintaining a gap between the main surface of the functional element facing the wiring board and the wiring board.
  • the wiring board that constitutes a part of the electronic component of the present invention may have only one main surface, or both main surface and another main surface, or one main surface and another main surface, depending on the mounting method.
  • the wiring pattern can be formed over the end face.
  • the wiring pattern formed on one main surface and the other main surface can be connected through the wiring pattern on the end surface.
  • a transducer part composed of a comb-shaped electrode pattern and a wiring pattern that is electrically connected to the transducer part are formed on one surface. It is necessary to do.
  • the functional element and the wiring board can be joined via a joining member.
  • the gap of the void is determined by the shape of the joining member, but is preferably 10 to 200 ⁇ , preferably 20 to 20 ⁇ . It is desirable to secure ⁇ 80 ⁇ .
  • the conductive bonding member is defined as a means for electrically connecting an element (functional element) and a wiring board, and for fixing both.
  • a so-called bump or conductive resin is used.
  • the bumps include ball bumps and plated bumps, and the conductive resin includes a conductive paste and an anisotropic conductive resin.
  • the electronic component of the present invention does not necessarily require a frame-shaped insulating partition or dam. However, by providing a frame-shaped insulating partition, the sealing effect can be further enhanced, and this is included in the present invention.
  • Liquid thermosetting resins used as conventional sealing resin materials such as epoxy potting resins, have low viscosities of about 15 Pas, and even when heated to 100 to 200
  • the viscosity does not increase and the viscosity remains low, without the frame-shaped insulating member, there is a drawback that the gap flows into the gap between the functional element and the wiring board, and the gap cannot be maintained, thereby impairing the function of the functional element.
  • a high-viscosity state is maintained until melting is started by heating by using, for example, a flake-shaped epoxy resin as the heat-melting mold member.
  • a viscosity of at least 50 Pa ⁇ s is obtained. Therefore, the functional element is easily covered.
  • Such a flaky resin must be, for example, a powdery one made from an epoxy resin. It can be easily formed by cold compression molding to the required shape and weight.
  • the flaky resin placed on the surface of the functional element opposite to the surface facing the gap is heated and melted and hardened to closely adhere to at least the other main surface of the element and wrap the element. Cover and seal the surface acoustic wave element with the wiring board.
  • a buffer material sheet having a shape smaller than the shape of the heat-fusible member is adhered to the main surface of the heat-fusible member, and the buffer material sheet surface of the heat-fusible member is connected to the wiring pattern
  • the surface acoustic wave element having the main surface with the surface formed thereon is placed facing the other main surface, and at least the other main surface of the element and the cushioning sheet are brought into close contact with each other by heating and melting and curing.
  • the element can be sealed with a wiring board.
  • the cushioning material sheet include a material having high elasticity such as a rubber elastic sheet.
  • a metal foil / paraffin paper having two layers may be arranged.
  • the size of the sheet of each layer does not necessarily have to be the same size as long as it is smaller than the flaky resin shape, and may have any shape.
  • stress distortion of the resin caused by shrinkage during curing of the resin and a difference in thermal expansion can be reduced.
  • the positioning of the cushioning material sheet between the sealing resin portion and the functional element can be easily performed, which leads to an improvement in productivity and reliability.
  • liquid silicone can be applied to the functional element side of the resin part, placed on the functional element so as to cover the functional element, and heated and melted to seal the functional element. . At that time, the liquid silicone becomes rubbery and functions as a cushioning material.
  • a void may be provided between the resin portion and the element as a cushioning material. That is, as the material of the resin portion, the filling density of the epoxy resin may be reduced, bubbles may be left in the resin, and the void may be left even after heating and melting. Further, two layers of resin materials having different filler densities, that is, different bubble densities, may be used. In other words, it can be realized by using epoxy resin with low packing density (material with low fluidity) on the side facing the element and resin with high packing density (material with high fluidity) on the other layers. It is. The fluidity of the material used here changes the amount of the curing agent or filler. Thus, control is possible.
  • the wiring pattern from one main surface of the wiring board is exposed between the peripheral edge of the resin part and the peripheral edge of the wiring board, and the resin part covers the wiring pattern.
  • the wiring pattern is continuous with the concave wiring pattern formed on the side end surface of the wiring board.
  • connection portion on the circuit board and the concave wiring pattern formed on the side end surface of the wiring board are easily soldered. Can be connected to
  • the height of the wiring pattern to be connected to the conductive joining member which is an electrical connection portion between the wiring board and the functional element is determined by the thickness of the wiring board material or the thickness of the conductive material of the wiring pattern.
  • the wiring pattern of the wiring board when forming the wiring pattern of the wiring board, at least a part of the wiring pattern may be applied a plurality of times by a screen printing method using a conductive paste, and may be baked or fired simultaneously. .
  • the difference between the thickness of the portion applied a plurality of times after firing and that of the other portion is in the range of 5 to 100 / zm.
  • the wiring pattern of the wiring board when forming the wiring pattern of the wiring board, at least a part of the wiring pattern may be made thicker than other parts of the wiring pattern by a film forming method such as evaporation or sputtering. it can.
  • This difference is preferably at least 0.5 ⁇ 3 ⁇ 4.
  • the wiring board may have a structure in which a green sheet corresponding to a portion facing the joining member to be an electrical connection portion and a region in the vicinity thereof is added. May be formed. It is preferable that the difference between the thickness of the portion fired with the Darine sheet added and the thickness of the other portion is substantially in the range of 5 to 500 / ⁇ .
  • the thickness of the joining member can be added to the thickness of the wiring board material or the conductive material in the wiring pattern portion. Since an appropriate amount of voids can be effectively secured, the joint strength between the surface acoustic wave element and the wiring board is sufficiently maintained, especially in the case of a surface acoustic wave element in which a surface acoustic wave absorbing material is arranged. It is possible to increase the bonding strength and the connection reliability.
  • a plurality of conductive bumps can be stacked at substantially the same position as a conductive bonding member serving as an electrical connection portion, in order to secure an appropriate amount of void.
  • the sum of the thicknesses of the plurality of conductive bumps is
  • the thickness of the conductive ball bump can be adjusted by using a conductive pole bump as a conductive bonding member serving as an electrical connection portion and changing the thickness of the conductive thin wire.
  • the conductive bumps ball bumps substantially made of gold, ball bumps substantially made of tin, ball bumps substantially made of lead, and the like are more preferable.
  • the functional material is applied to at least one principal surface of the functional element or a part of another principal surface, specifically, for example, at least one principal plane or another surface of the surface acoustic wave element is applied.
  • the functional material that is, the surface acoustic wave absorbing material can be applied thinner than the thickness of the conductive bonding member.
  • a frame-shaped member can be arranged on the first surface of the wiring board so as to surround the void.
  • the arrangement of the frame-shaped member that prevents the heat-fusible mold member for sealing from flowing into the void formed by the functional element and the wiring board is at least It is not always necessary to seal the gap while leaving a gap between the wiring substrate and the functional element. It is possible to more reliably prevent the heat melting type member for stopping from flowing into the void formed by the functional element and the wiring board.
  • the frame member a frame member that has been conventionally used can be used as it is.
  • the heat melting type member can be arranged so as to cover the entire second surface of the functional element, and the entirety of the second surface of the functional element can be disposed. Can be exposed. Further, a part of the second surface of the functional element can be exposed.
  • the heat melting type member When the heat melting type member is disposed so as to cover the entire second surface of the functional element, the second surface of the functional element can be completely protected. Further, when the entire second surface of the functional element is exposed or a part of the functional element is exposed, the second surface of the functional element is exposed. It is also possible to stack electronic components together or to connect to other electronic components via the. Further, in the electronic component according to the present invention, a configuration may be adopted in which the first surface of the wiring board and the first surface of the functional element are opposed to each other via a conductive bonding member.
  • the conductive bonding member is defined as a means for electrically connecting the functional element and the wiring board and fixing the both.
  • bumps and conductive resin are used.
  • the bumps include pole bumps and plated bumps, and the conductive resin includes a conductive paste and an anisotropic conductive resin.
  • a member that electrically joins the wiring pattern on the wiring board to the electrode on the first surface of the surface acoustic wave element such as a conductive bump, may be made of a resin metal-plated metal (Ai) or a conductive metal.
  • Metal bumps made of silver () or solder (Sn, Pb, In, etc.) are available.
  • conductive bumps join the wiring board and the functional element at a predetermined temperature and pressure. This electrically connects the wiring pattern on the wiring board to the electrode on the first surface of the functional element, and serves to form and secure a gap between the functional element and the wiring board. Will be.
  • a metal bump made of gold, silver, solder, or the like is particularly preferable as the conductive bump.
  • a conductive bonding member serving as an electrical connection portion may be formed by stacking a plurality of conductive bumps at substantially the same position. In this case, the sum of the thicknesses of the plurality of conductive bumps is preferably in the range of 30 to 150 / i iri.
  • the thickness of the conductive pole bump can be adjusted by using a conductive ball bump as a conductive bonding member serving as an electrical connection portion, and changing the thickness of the conductive thin wire.
  • the conductive bumps are more preferably ball bumps substantially composed of gold, ball bumps substantially composed of tin, and pole bumps substantially composed of lead.
  • the functional element is a surface acoustic wave element, and a face is formed between a connection pattern on a first surface of the wiring board and a connection pattern on a first surface of the surface acoustic wave element.
  • a conductive bonding member arranged by a down bonding method can be provided.
  • a flaky resin is used as a heat-melting type member at the time of sealing, and a gap is held between a functional element and a wiring board. It is what was sealed while doing.
  • the frame-shaped insulating member which prevents the heat melting type
  • thermosetting flaky resin is used as a member at the time of sealing, and a functional element and a wiring board are provided, and a gap is provided between a transducer section provided on the surface acoustic wave element and the wiring board. It is sealed while holding.
  • the gap of the void formed in the present invention is determined by the shape of the conductive bonding member, it is desirable to secure 10 to 200 / zm, preferably 20 to 80 m.
  • a wiring pattern or a surface acoustic wave element on a wiring board may be used as the conductive bonding member.
  • the bumps are formed by partially increasing the thickness of the upper wiring pattern, it is also possible to directly join the wiring pattern on the wiring board and the wiring pattern on the surface acoustic wave element.
  • annular insulating partition wall may be provided along the inside of each joining member and / or along the outside of each joining member of the trajectory formed by the plurality of joining members.
  • annular insulating partitions play a role of securely holding a gap formed between the functional element and the wiring board.
  • the functional element is a quartz oscillator, and the connection pattern on the first surface of the wiring board and the electrode on the first surface of the quartz oscillator are face-down bonding.
  • a conductive wire for electrically connecting the wiring pattern on the first surface of the wiring substrate and the electrode on the second surface of the crystal unit, for example. Can be.
  • the frame-shaped insulating member which prevents that the heat melting type
  • the resin is particularly filled in the void formed by the crystal unit and the wiring board. It can be easily prevented from flowing in and can be sealed with resin without causing any adverse effects on the vibration of the crystal unit.
  • the resin for sealing which has fixed viscosity can be prevented from flowing into the space
  • thermosetting flaky resin is used as a member at the time of sealing, and the resin surface or the whole is melted and cured by heating to form a gap between the crystal unit and the wiring substrate. Sealed while holding the part.
  • the gap of the void formed in the present invention is determined by the shape of the conductive bonding member, it is desirable to secure 10 to 200 ⁇ , preferably 20 to 80 / zm.
  • the wiring pattern on the wiring board or the first 1492 is determined by the shape of the conductive bonding member, it is desirable to secure 10 to 200 ⁇ , preferably 20 to 80 / zm.
  • the wiring pattern on the wiring board can be directly joined to the electrode on the first surface of the crystal unit.
  • annular insulating partition wall may be provided along the inside of each joining member and / or along the outside of each joining member of the trajectory formed by the plurality of joining members.
  • annular insulating partitions play a role in securely holding a gap formed between the crystal unit and the wiring board.
  • a bonding member to be an electrical connection portion on the wiring pattern of the wiring board first, bonding strength can be increased and connection reliability can be improved.
  • a surrounding member may be arranged on the wiring board so as to surround the crystal unit, and a heat melting type member can be arranged at least on the surrounding member. At this time, the oscillation of the crystal oscillator is completely maintained.
  • the functional element may be a piezoelectric vibrator.
  • the connection pattern on the first surface of the wiring board and the second piezoelectric vibrator may be formed by a face-down bonding method.
  • a wire a wire.
  • the present invention relates to a method of mounting a piezoelectric vibrator by face-down bonding, wherein, for example, a flaky resin is used as a heat-melting member at the time of sealing to be disposed on the piezoelectric vibrator, and It is sealed while holding a gap between them.
  • a cushioning material can be provided between the piezoelectric vibrator and the resin at the time of sealing. There is no direct contact, and the piezoelectric vibrator can reliably perform its function.
  • This cushioning material is desirably larger than the second surface of the piezoelectric vibrator.
  • the electronic component of a simple structure does not necessarily need the frame-shaped insulating member which prevents the heat melting type
  • a heat melting type member for sealing for example, a molded flaky resin is used to join by heat melting and curing, so that the resin is filled in a void formed by the piezoelectric vibrator and the wiring board. Inflow can be easily prevented, and the resin can be sealed without adversely affecting the vibration of the piezoelectric vibrator.
  • thermosetting flaky resin is used as a member at the time of sealing, and the resin surface or the whole is melted and cured by heating to form a gap between the piezoelectric vibrator and the wiring substrate. It is sealed while maintaining f.
  • the gap of the void formed in the present invention is determined by the shape of the conductive bonding member, it is desirable to secure 10 to 200 ⁇ , preferably 20 to 80 / z m.
  • the bumps are formed by partially increasing the thickness of the wiring pattern on the wiring board or the electrode on the first surface of the piezoelectric vibrator as the conductive bonding member, the wiring pattern on the wiring board is directly An electrode on the first surface of the piezoelectric vibrator can also be joined.
  • annular insulating partition wall may be provided along the inside of each conductive joining member and / or along the outside of each conductive joining member on the trajectory formed by the plurality of conductive joining members.
  • annular insulating partitions play a role in securely holding a gap formed between the piezoelectric vibrator and the wiring board.
  • the functional element may be a photo-power blur having a pair of a light-sending unit and a light-receiving unit.
  • the connection pattern on the first surface and the photo- A conductive bonding member that opposes the wiring pattern on each first surface of the force bra; a surrounding member that surrounds the photo power bra on the wiring board; It has a member.
  • a surrounding member is disposed around the photo power bra to secure an optical path of the photo power bra, and a sealing member is disposed on the surrounding member.
  • a flaky resin is used as the heat-melting type member, and sealing is performed while maintaining a gap between the photo-power bra and the wiring board while securing the optical path of the photo-power bra.
  • gap part formed by a photo-force blur and a wiring board is not necessarily needed, and a structure is simplified.
  • a heat-melting mold member for sealing for example, a molded flaky resin is used and bonded by heat-melting and hardening, so that the optical path of the photo-force bra is not adversely affected, and the resin can be sealed. it can.
  • the frame-shaped insulating member can be prevented from flowing into the space
  • thermosetting flaky resin is used as a member at the time of sealing, and the resin surface or the whole is melted and cured by heating, so that a gap is formed between the photo-force bra and the wiring board. It is sealed while holding.
  • the gap of the void formed in the present invention is determined by the shape of the conductive bonding member, it is desirable to secure 10 to 200 ⁇ , preferably 20 to 80 ⁇ .
  • the bumps are formed by partially increasing the thickness of the electrode on the first surface of the wiring pattern or the wiring pattern on the wiring board as the conductive bonding member, the wiring pattern on the wiring board is directly And the electrodes on each first surface of the photo force bra.
  • annular insulating partition wall may be provided along the inside of each conductive joining member and / or along the outside of each conductive joining member on the trajectory formed by the plurality of conductive joining members.
  • the wiring substrate may be a substrate that transmits light
  • the functional element may be an EP ROM.
  • an ultraviolet-transmitting substrate may be used so that at least the EPROM can be irradiated with ultraviolet light, and examples thereof include a glass substrate.
  • a flake-shaped resin is used as a heat-melting type member at the time of sealing, and the EP ROM and the wiring board are connected to each other with the light receiving portion of the EPROM and the wiring board. And sealed while maintaining a gap between the two.
  • mold of a simple structure does not necessarily need the frame-shaped insulating member which prevents the heat melting type
  • a mature curable flaky resin as a member at the time of sealing, for example, a mature curable flaky resin is used,
  • the EPROM and the wiring board are sealed while holding a gap between the light receiving portion provided on the EPROM and the wiring board.
  • the space of the void formed in the present invention is determined by the shape of the conductive bonding member, but it is desirable to secure 10 to 200 / zm, preferably 20 to 80 / zm. Also, when bumps are formed by partially increasing the thickness of the wiring pattern on the wiring board or the wiring pattern on the EP ROM as the conductive bonding member, the wiring pattern on the wiring board and the wiring pattern on the EP ROM are directly And can be joined. Further, in the present invention, an annular insulating partition wall may be provided along the inside of each conductive joining member and / or along the outside of the conductive joining member on the trajectory formed by the plurality of conductive joining members.
  • annular insulating partition walls play a role in securely holding a gap formed between the EPROM and the wiring board.
  • the wiring substrate is a substrate that transmits light
  • the functional element is a CCD
  • a first surface of the wiring substrate a light receiving surface of the CCD.
  • any substrate having optical flat characteristics may be used.
  • an ultraviolet transmission type substrate or the like which can irradiate ultraviolet light to the CCD light receiving surface may be used, and examples thereof include a glass substrate.
  • a flake-shaped resin is used as a heat-melting type member at the time of sealing, and the CCD and the wiring substrate are moved between the light receiving portion of the CCD and the wiring substrate.
  • the sealing is carried out while maintaining the gap.
  • wearing type CCD of a simple structure does not necessarily need the frame-shaped insulating member which prevents that the heat melting type
  • thermosetting flaky resin is used as a member at the time of sealing, and the CCD and the wiring substrate are sealed while holding a gap between the light receiving portion provided on the CCD and the wiring substrate. It was done.
  • the gap of the void formed in the present invention is determined by the shape of the conductive joining member, but it is desirable to secure 10 to 200 / xm, preferably 20 to 80 ⁇ . Also, when a bump is formed by partially increasing the thickness of the wiring pattern on the wiring board or the wiring pattern on the CCD as a conductive bonding member, the wiring pattern on the wiring board and the wiring pattern on the CCD are directly And can be joined.
  • annular insulating partition wall may be provided along the inside of each conductive joining member and / or along the outside of each conductive joining member on the trajectory formed by the plurality of conductive joining members.
  • annular insulating partitions play a role in reliably maintaining a gap formed between the CCD and the wiring board.
  • the wiring substrate is a substrate that transmits light
  • the functional element is a semiconductor laser
  • a first surface of the wiring substrate and a light emitting surface of the semiconductor laser are opposed to each other. Can be placed.
  • a light transmission type substrate may be used so that at least the laser light from the light emitting surface of the semiconductor laser passes through the wiring substrate and is output to the outside. Glass substrate.
  • a flaky resin is used as a heat-melting member at the time of sealing, and the semiconductor laser and a wiring substrate are connected to each other using a light emitting surface of a semiconductor laser. It is sealed while maintaining a gap between the substrate and the wiring board.
  • gap part formed of a semiconductor laser and a wiring board is not necessarily needed, and mounting of a simple structure is carried out.
  • Type semiconductor laser for example, a molded flaky resin is joined by heating and melting and hardening so as not to adversely affect the output of the semiconductor laser to the outside. A gap can be formed between them, and a resin-sealed mounting type semiconductor laser can be obtained.
  • a semiconductor laser and a wiring board are provided in the semiconductor laser by using, for example, a thermosetting flaky resin as a member at the time of sealing and melting and curing the resin surface or the whole by heating. It is sealed while maintaining a gap between the light emitting unit and the wiring board.
  • the gap of the void formed by the present invention is determined by the shape of the electronic component and the conductive joining member to be applied, but it should be 10 to 200 m, preferably 20 to 80 / xm. Is desirable.
  • the wiring pattern on the wiring board and the wiring on the semiconductor laser are directly connected. It can be joined with a pattern.
  • annular insulating partition wall may be provided along the inside of each conductive joining member and / or along the outside of each conductive joining member on the trajectory formed by the plurality of conductive joining members.
  • annular insulating partitions play a role in securely holding a gap formed between the semiconductor laser and the wiring board.
  • the wiring board may include a substrate that transmits light.
  • the functional element may be a light emitting diode, and the first surface of the wiring substrate and the light emitting surface of the light emitting diode may be arranged to face each other.
  • a light-transmitting substrate may be used so that at least light from the light-emitting surface of the light-emitting diode passes through the wiring substrate and is output to the outside.
  • a glass substrate may be used.
  • a flaky resin is used as a heat melting type member at the time of sealing, and a light emitting diode and a wiring board are connected to a light emitting surface of the light emitting diode. It is sealed while holding a gap between it and the wiring board.
  • the frame-shaped insulating member which prevents the heat melting type
  • a heat-melting mold member for sealing for example, by using a molded flaky resin and joining by heating and curing, it is possible to easily prevent the resin from flowing into the light-emitting surface of the light-emitting diode in particular.
  • thermosetting flaky resin is used as a member at the time of sealing, and the surface or the whole of the resin is melted and cured by heating, so that the light emitting diode and the wiring board are illuminated by the light emitting diode. It is possible to seal while maintaining a gap between the portion and the wiring board.
  • the space of the void formed in the present invention is determined by the shape of the conductive bonding member, but it is desirable to secure 10 to 200 / zm, preferably 20 to 80zm. Also, when a bump is formed by partially increasing the thickness of the wiring pattern on the wiring board or the wiring pattern on the light emitting diode as the conductive bonding member, the wiring pattern on the wiring board and the wiring pattern on the light emitting diode are directly And can be joined.
  • each conductive member of a locus formed by a plurality of conductive bonding members An annular insulating partition may be provided along the inside of the conductive joining member and / or along the outside of each conductive joining member.
  • annular insulating partitions play a role in securely holding a gap formed between the light emitting diode and the wiring board.
  • a resin for example, a thermoplastic resin or a mature curable resin can be used as the heat-meltable member.
  • an electronic component is configured by mounting the bonded functional element and the wiring board on a wiring board by covering and solidifying a flaky heat-melting mold member, for example, a thermosetting resin.
  • a flaky heat-melting mold member for example, a thermosetting resin.
  • Liquid thermosetting resins used as conventional sealing resin materials such as epoxy potting resins, have low viscosities of about 15 Pas, and even when heated to 100 to 200
  • the viscosity does not increase and the viscosity remains low, without the frame-shaped insulating member, there is a drawback that the gap flows into the gap between the functional element and the wiring board, and the gap cannot be maintained, thereby impairing the function of the functional element.
  • a resin for example, a thermosetting resin obtained by cold-pressing a powder material into a flake having the required shape and weight, a high-viscosity state is maintained until melting is started by heating. By controlling the curing, a viscosity of at least 50 Pa ⁇ s is obtained. For this reason, the functional element is reliably covered.
  • thermosetting resin examples thereof include an epoxy resin, a silicone resin, and a urethane resin.
  • An epoxy resin is preferable, and a phenol-based epoxy resin is more preferable.
  • bisphenol A epoxy resin and phenol novolak epoxy resin are suitable for the electronic component of the present invention.
  • the flaky resin placed on a surface different from the surface of the functional element facing the void portion has at least a surface different from the surface of the functional element facing the void portion by heating, melting and curing.
  • the functional element is sealed by covering the element, and the functional element is sealed with the wiring board.
  • the heat melting type member for example, the heat melting temperature of a flaky resin is
  • low melting point glass can be used for the same purpose instead of resin.
  • a low-melting glass powder (frit) obtained by cold compression molding into a flake shape is used.
  • a trace amount of wax or polyvinyl alcohol may be used as a binder.
  • the melting point of the low-melting glass is from 250 ° to 400 °, more preferably from 300 ° to 350 °, and for example, lead borosilicate glass having a melting point in the above-mentioned range is suitable.
  • P b O is most suitable not less than 50 weight 0 / o.
  • ZnO, Al203, Ti02, Bi2 ⁇ 3, PbF2, and those containing a small amount of CuO may be used.
  • bismuth borosilicate glass may be used.
  • the method for manufacturing an electronic component according to the present invention includes: a step of positioning a plurality of functional elements at a predetermined position with respect to an aggregate of a plurality of wiring boards; and a method of conductively joining the functional element and the aggregate of the wiring boards.
  • a step of assembling while maintaining a predetermined interval via a member; a step of arranging a heat melting type member with respect to the assembly of the wiring board and the functional element; a gap between the wiring board and the functional element A step of heating and melting the heat melting type member while leaving a portion; and a step of dividing the aggregate of the plurality of wiring boards together with the heat melting type member to obtain individual electronic components. I do.
  • a plurality of functional elements are positioned at predetermined positions with respect to an aggregate of a plurality of wiring boards, and the functional element and the aggregate of the wiring boards are separated by a predetermined distance via a conductive bonding member. Is maintained and assembled.
  • a heat melting type member is disposed with respect to the assembly of the wiring substrate and the functional element, and the heat melting type member is heated and melted while leaving a gap between the wiring substrate and the functional element. .
  • the assembly of the plurality of wiring boards is divided together with the heat-melting mold member to obtain a plurality of individual electronic components at once.
  • a conductive bonding member and a surface acoustic wave element which is a functional element, are assembled at once on an assembly of one wiring board, and thereafter, one heat melting type member, for example, Since the flaky resin is placed and sealed, that is, so-called multi-cavity, productivity can be improved.
  • the frame-shaped insulating member which prevents the heat melting type
  • a flaky resin molded as a heat-melting mold member for sealing and joining by heating and curing it is easy for resin to flow into the surface of each functional element, especially facing the void. It is possible to easily produce an electronic component which is formed by forming a gap between each functional element and the wiring board and sealed with resin without causing any adverse effect on each functional element.
  • Materials for the wiring board include ceramics such as alumina, magnesia, and silicon carbide; glass-coated ceramics; ceramic multilayer boards such as alumina with internal conductors and functional parts; and resins such as FR-4 and glass epoxy.
  • a substrate can be used.
  • the wiring board may be provided with a marker for defining a division range in preparation for division.
  • the functional elements include, for example, surface acoustic wave elements, crystal oscillators, piezoelectric oscillators
  • a photo power blur having a pair of a light transmitting unit and a light receiving unit; EPROM, CCD, a semiconductor laser or a light emitting diode.
  • a plurality of functional elements for example, a surface acoustic wave element and a semiconductor element are face-down bonded (a technique in which a chip is turned upside down and directly mounted on a package without die bonding and wire bonding steps).
  • the face-down bonding specifically includes a so-called flip-chip method, a beam lead method, a TAB method and a pedestal method.
  • thermosetting flaky resin is used as a member at the time of sealing, and the functional surface and the wiring board are melted and cured by heating so that each functional element and the wiring board are connected to each other. Between the main surface of each opposing functional element and the wiring board W 702
  • the sealing can be performed while maintaining the gap.
  • a wiring pattern is formed on only one main surface or on both the main surface and the other main surface, depending on the mounting method, on each of the wiring boards that constitute a part of the electronic component of the present invention. can do. Also, for example, in the case of a surface acoustic wave device, in order to secure a void portion, a transducer portion composed of a comb-shaped electrode pattern and a wiring pattern electrically connected to the transducer portion should be formed on one surface. Is required.
  • the gap of the void formed by the present invention is determined by the shape of the joining member. It is desirable to ensure 0 ⁇ , preferably 20 to 80 ⁇ .
  • the joining member is defined as a means for electrically connecting an element (functional element) and a wiring board, and for fixing both.
  • a so-called bump or conductive resin is used.
  • the bumps include ball bumps and plated bumps, and the conductive resin includes a conductive paste and an anisotropic conductive resin.
  • a member that electrically joins a wiring pattern on a wiring board to a wiring pattern on an element (functional element), such as a conductive bump, includes a resin ball, gold ( ⁇ ), silver (fig), There are metal bumps made of solder (Sn, Pb, In, etc.).
  • conductive bumps electrically connect the wiring pattern on the wiring board to the wiring pattern on the element (functional element) by bonding the wiring board and the element (functional element) at a predetermined temperature and pressure. In addition, it plays a role of forming and securing a gap between the element (functional element) and the wiring board. In order to secure a certain gap, a metal bump made of gold, silver, solder, or the like is particularly preferable as the conductive bump.
  • each of the bonded functional elements and the wiring board are mounted on the wiring board by covering with a single thermosetting resin, and the electronic component is divided. At this time, for example, it is molded into flakes as thermosetting resin.
  • the viscosity of the resin can be maintained at a high level.
  • the resin can be prevented from flowing into the void formed on the side of the functional element facing the wiring board.
  • a frame-shaped insulating partition or dam is not necessarily required. However, by providing the frame-shaped insulating partition, the sealing effect can be further enhanced, and this is included in the present invention.
  • Liquid thermosetting resins used as conventional sealing resin materials such as epoxy-based potting resins, have low viscosities of about 15 Pa ⁇ s, so even if they are heated to 100 to 200 Since the viscosity does not increase and remains low, without the frame-shaped insulating member, there is a drawback that the gap flows into the functional element and the wiring board and the gap cannot be maintained, thereby impairing the function of the functional element.
  • a high viscosity state is maintained until melting is started by heating, and curing is performed after melting.
  • a viscosity of 5 O Pa ⁇ s or more is obtained. For this reason, each functional element can be easily covered.
  • Such a flaky resin can be easily formed by, for example, cold-press molding a powder made from an epoxy resin into a required shape and weight.
  • the flaky resin is not the main surface that forms the void of the functional element.
  • each functional element is a surface acoustic wave element
  • the wiring pattern of each surface acoustic wave element is formed. It is placed on the other main surface side instead of the main surface.
  • the shape of the flaky resin that is substantially equal to or slightly smaller than the shape of the divided wiring board. More preferably, the shape of the flaky resin is substantially equal to the shape of the wiring board before the division.
  • the selection of this dimension can be appropriately selected depending on the total volume of each functional element and the thickness of the flaky resin.
  • the flaky resin which is a hot-melt mold member placed on the surface of each functional element on the side opposite to the surface facing the gap, is heated at least to the other main surface of the element by heating and melting.
  • the functional element is sealed by covering the element and sealing the functional element with the wiring board.
  • the heat melting temperature of the flaky resin is 100 to 200, and the curing time is 20 hours to 2 hours. Implemented in time. More preferably, after heating and melting at 110 ° C. to 170 ° C., the curing is performed at about 100 to 160 for 3 to 20 hours.
  • a buffer material sheet having a shape smaller than the shape of the heat-meltable mold member is adhered to one main surface of the heat-meltable mold member to absorb the shock of the heat-meltable mold member.
  • the surface of the material sheet is placed facing the other main surface of each surface acoustic wave element having a main surface on which a wiring pattern is formed, and at least the other main surface of each element is heated and melted and cured.
  • the cushioning material sheet may be in close contact with each other to cover each element, and the wiring board may seal each element.
  • a material having high elasticity such as a rubber elastic sheet can be used.
  • two layers of metal foil / paraffin paper may be arranged. In this case, the size of the sheet of each layer is not necessarily required to be the same as long as the shape is smaller than the shape of the heat melting type member, and may be any shape.
  • the height of a wiring pattern connected to a conductive bonding member serving as an electrical connection portion between a wiring board and each functional element is determined by the thickness of the wiring board material or the conductive material of the wiring pattern.
  • the thickness By controlling the thickness by partially changing the thickness, or by controlling the height itself of the conductive bonding member that becomes the electrical connection portion, an appropriate amount of gap between each functional element and the wiring board can be obtained.
  • the functional element is, for example, a surface acoustic wave element in which a surface acoustic wave absorbing material is arranged, the bonding strength between each surface acoustic wave element and the wiring board can be sufficiently maintained. To improve connection reliability Can be up.
  • an electronic component of the present invention for example, a surface acoustic wave device
  • when forming a wiring pattern of a wiring board at least a part of the wiring pattern is applied a plurality of times by a screen printing method using a conductive paste. It can also be baked or co-fired.
  • the difference between the thickness of the portion applied a plurality of times after firing and that of the other portion is in the range of 5 to 100 ⁇ .
  • the method for manufacturing an electronic component when forming a wiring pattern on a wiring board, at least a part of the wiring pattern is separated from other parts of the wiring pattern by a film forming method such as evaporation or sputtering. Thick films can also be formed.
  • This difference is preferably at least 0.5 / mi3 ⁇ 4.
  • a green sheet corresponding to a portion opposed to a bonding member serving as an electrical connection portion and a region in the vicinity thereof is added and fired. After that, a wiring pattern can be formed on the wiring board.
  • the difference between the thickness of the portion to which the green sheet is added and fired and the thickness of the other portion is preferably substantially in the range of 5 to 500 ⁇ .
  • the thickness of the joining member is small, it can be added to the thickness of the wiring board material or conductive material of the wiring pattern portion.
  • the bonding strength between the surface acoustic wave element and the wiring board can be maintained sufficiently, the connection strength can be increased, and the connection reliability can be increased.
  • a plurality of conductive bumps stacked at substantially the same position can be used as a conductive bonding member serving as an electrical connection portion.
  • the sum of the thicknesses of the plurality of conductive bumps is preferably in the range of 30 to 150 ni.
  • a conductive pole bump is used as a conductive bonding member serving as an electrical connection portion, and the conductive ball The thickness of the bump can be adjusted by changing the thickness of the conductive thin wire.
  • the conductive bumps are more preferably ball bumps substantially composed of gold, ball bumps substantially composed of tin, pole bumps substantially composed of lead, and the like.
  • the functional material when the functional material is applied to at least one principal surface of each functional element or a part of another principal surface, specifically, for example, at least one principal plane or another principal surface of each surface acoustic wave element is applied.
  • the functional material that is, the surface acoustic wave absorbing material can be applied to be thinner than the thickness of the conductive bonding member.
  • the method for manufacturing an electronic component according to the present invention includes a step of locating a functional element at a predetermined position with respect to a wiring board; and maintaining a predetermined interval between the functional element and the wiring board via a conductive bonding member. And assembling; disposing a heat-meltable member on the wiring board; and heat-melting the heat-meltable member while leaving a gap between the wiring board and the functional element.
  • the heat melting type member is a heat melting type flaky resin
  • the steps relating to heat melting and curing of the flaky resin include at least (1) determining a resin shape by heat melting of the flaky resin. (2) transitioning to a gelled state while maintaining the resin shape, (3) curing the resin, and wherein the process temperature of (2) is lower than (1) or (3). It is characterized by the following.
  • the functional element is arranged at a predetermined position with respect to the wiring board.
  • the functional element and the wiring board are assembled with a predetermined distance therebetween via a conductive bonding member, and the hot-melt flaky resin is disposed on the wiring board.
  • the heat-melt flaky resin is heat-melt-hardened while leaving a gap between the wiring substrate and the functional element.
  • the ripening / melting / curing process involves a plurality of temperature conditions, that is, (1) a step of determining the resin shape by heating and melting the flaky resin, and (2) a gelation state while maintaining the resin shape. At least the transition stage, (3) the stage of curing the resin, is controlled so that the temperature of (2) is the lowest. In this way, by providing a plurality of stepwise temperature conditions in the heat melting / curing process, the functional element and the wiring board are prevented from flowing into the void formed between the functional element and the wiring board. Can be reliably sealed.
  • a frame-like insulating member for preventing a sealing resin having a constant viscosity from flowing into a gap formed between a functional element and a wiring board is necessarily required. Therefore, the step of forming the frame-shaped insulating member, which has been required conventionally, can be omitted, and there is an advantage that an electronic component having a simple structure can be obtained.
  • a flaky resin molded as a sealing resin and bonding by heating and curing it is possible to easily prevent the resin from flowing into the surface of the functional element particularly facing the void.
  • Examples of the material of the wiring board include ceramics such as alumina, magnesia, and silicon carbide, glass-coated ceramics, ceramic multilayer boards such as alumina having conductors and functional parts incorporated therein, and glass epoxy such as FR-4.
  • a fat substrate can be used.
  • Examples of the functional element include a surface acoustic wave element, a crystal oscillator, a piezoelectric oscillator, a photo power blur having a pair of light transmitting and receiving parts, an EPROM, a CCD, a semiconductor laser, or a light emitting diode. No.
  • a functional element such as a surface acoustic wave element or a semiconductor element is face-down bonded (a technique of directly flipping a chip upside down without a die bonding and wire bonding process and directly attaching the chip to a package).
  • the face-down bonding specifically includes a so-called flip-chip method, a beam lead method, a TAB method, a pedestal method, and the like.
  • a hot-melt type member obtained by cold-press-molding a powder raw material, for example, a thermosetting flaky resin is used, and the resin surface or the whole is melted and cured by heating.
  • the functional element and the wiring board can be sealed while maintaining a gap between the main surface of the functional element facing the wiring board and the wiring board. It was done.
  • the wiring board that forms part of the electronic component of the present invention can form a wiring pattern on only one main surface or on both the main surface and the other main surface depending on the mounting method. Also, for example, in a surface acoustic wave device, in order to secure a void portion, a transducer portion composed of a comb-shaped electrode pattern and a wiring pattern electrically connected to the transducer portion are formed on one surface. Is necessary.
  • the functional element and the wiring board can be joined by interposing a joining member.
  • the gap of the void formed by the present invention is determined by the shape of the joining member, but is 10 to 200 ⁇ m. It is desirable to secure 20 to 80 / zm.
  • the joining member is defined as a means for electrically connecting an element (functional element) and a wiring board, and for fixing both.
  • a so-called bump or conductive resin is used.
  • the bumps include ball bumps and plated bumps
  • the conductive resin includes a conductive paste and an anisotropic conductive resin.
  • a member that electrically connects a wiring pattern on a wiring board to a wiring pattern on an element (functional element), such as a conductive bump, is made of a resin metal plated with conductive metal such as gold (Ai) or silver (g). ) And metal bumps made of solder (Sn, Pb, In, etc.).
  • conductive bumps electrically connect the wiring pattern on the wiring board to the wiring pattern on the element (functional element) by bonding the wiring board and the element (functional element) at a predetermined temperature and pressure. In addition, it plays a role of forming and securing a gap between the element (functional element) and the wiring board. In order to secure a certain gap, a metal bump made of gold, silver, solder, or the like is particularly preferable as the conductive bump.
  • the functional component and the wiring substrate are mounted on the wiring substrate by covering the flakes with, for example, a thermosetting resin to form the electronic component. Occasionally, epoki's flakes are formed as mature hardening resin.
  • the functional element When the functional element is bonded to the wiring board by melting the surface or the entire surface of the resin by heating using a silicone resin and hardening, the viscosity of the resin can be kept high, and the wiring of the functional element during curing can be maintained. It is possible to prevent the resin from flowing into the gap formed on the side facing the substrate. Also, since it is not a liquid resin, a frame-shaped insulating partition or dam is not necessarily required. However, by providing a frame-shaped insulating partition, the sealing effect can be further enhanced, and this is included in the present invention.
  • Liquid thermosetting resins used as conventional sealing resin materials such as epoxy potting resins, have low viscosities of about 15 Pas, and even when heated to 100 to 200
  • the viscosity does not increase and the viscosity remains low, without the frame-shaped insulating member, there is a drawback that the gap flows into the gap between the functional element and the wiring board, and the gap cannot be maintained, thereby impairing the function of the functional element.
  • a high-viscosity state is maintained until melting is started by heating by using a flake-shaped example, for example, an epoxy-based resin, and even after melting.
  • a flake-shaped example for example, an epoxy-based resin
  • a viscosity of 50 Pa ⁇ s or more is obtained. Therefore, the functional element can be easily covered.
  • Such a flaky resin can be easily formed by, for example, cold-press molding a powder made from an epoxy resin into a required shape and weight.
  • the flaky resin is formed on another main surface other than the main surface forming the void portion of the functional element, for example, when the functional element is a surface acoustic wave element, the main surface on which the wiring pattern of the surface acoustic wave element is formed. Instead, it is mounted on other main surfaces.
  • the shape of the flaky resin is larger than the shape of the functional element and is substantially equal to or slightly smaller than the shape of the wiring board. More preferably, the shape of the flaky resin is larger than the shape of the functional element and substantially equal to the shape of the wiring board. By doing so, the positioning of the flaky resin with respect to the functional element and the wiring board can be ensured. Further, it is preferable that the shape of the flaky resin is a shape in which the periphery thereof is hung down, because the sealing between the functional element and the wiring board can be more reliably performed. For example, if the dimensions of the functional element are 2 mm x 2 mm and the dimensions of the wiring board are 4 mm x 4 mm, the dimensions of the flaky resin are also 4 mm x 4 mm. Can be
  • this dimension can be appropriately selected depending on the volume of the functional element and the thickness of the flaky resin.
  • the flaky resin placed on the surface of the functional element on the side opposite to the surface facing the void portion is brought into close contact with at least the other main surface of the element by heating and melting, and covers the element. Then, the functional element is sealed with the wiring board. .
  • thermosetting resin examples thereof include an epoxy resin, a silicone resin, and a urethane resin.
  • An epoxy resin is preferred, and a phenol-based epoxy resin is more preferred.
  • bisphenol A epoxy resin / phenol nopolak epoxy resin is suitable for the method for producing an electronic component of the present invention.
  • the flaky resin placed on a surface different from the surface facing the void of the functional element is closely adhered to at least a surface different from the surface facing the void of the element by heating, melting and curing.
  • the element is covered and the functional element is sealed with the wiring board.
  • the gelation temperature is 90 to 15
  • the gelation temperature is 90 to 15
  • curing is carried out at about 100 ° C. to about 160 for 3 hours to 20 hours.
  • a buffer material sheet having a shape smaller than the shape of the heat melting type member is adhered to the main surface of the heat melting type member to absorb the heat melting type member.
  • the material sheet surface is placed facing the other main surface of the surface acoustic wave device having the main surface on which the wiring pattern is formed, and at least the other main surface of the device is heated and melted and cured.
  • the cushioning material sheet are closely attached to cover the element, and the element can be sealed with a wiring board.
  • the cushioning material sheet include a material having high elasticity, such as a rubber elastic sheet.
  • two layers of metal foil / paraffin paper may be arranged.
  • the size of the sheet of each layer is not necessarily required to be the same size as long as it is smaller than the flaky resin shape, and may be any shape. With such a configuration, it is possible to reduce stress distortion of the resin caused by shrinkage and thermal expansion difference during resin curing. Further, since the cushioning material sheet can be easily positioned between the sealing resin portion and the surface acoustic wave element, productivity and reliability are improved.
  • the wiring pattern from one main surface of the wiring board is exposed between the peripheral edge of the resin portion and the peripheral edge of the wiring board. In this case, it is possible to prevent the resin portion from covering the wiring pattern. In this case, the wiring pattern is continuous with the concave wiring pattern formed on the side end surface of the wiring board.
  • connection portion on the circuit board and the concave wiring pattern formed on the side end surface of the wiring board are easily soldered. Can be connected.
  • the height of a wiring pattern connected to a conductive bonding member serving as an electrical connection portion between a wiring board and a functional element is set to a thickness of a wiring board material or a wiring pattern.
  • an electronic component of the present invention for example, a surface acoustic wave device
  • when forming a wiring pattern of a wiring board at least a part of the wiring pattern is applied a plurality of times by a screen printing method using a conductive paste. It can also be baked or co-fired.
  • the difference between the thickness of the portion applied a plurality of times after firing and that of the other portion is in the range of 5 to 100 m.
  • a film forming method such as evaporation or sputtering. Thick films can be formed.
  • This difference is preferably at least 0.5 / ⁇ ⁇ .
  • a green sheet corresponding to a portion opposed to a bonding member serving as an electrical connection portion and a region in the vicinity thereof is added and fired. After that, a wiring pattern can be formed on the wiring board.
  • the difference between the thickness of the portion fired by adding the green sheet and the thickness of the other portion is substantially in the range of 5 to 500 ⁇ ⁇ .
  • a plurality of conductive bumps stacked at substantially the same position can be used as a conductive bonding member serving as an electrical connection portion.
  • the sum of the thicknesses of the plurality of conductive bumps is preferably in the range of 30 to 150 / ⁇ ⁇ .
  • the thickness of the conductive ball bump can be adjusted by changing the thickness of the conductive thin wire by using a conductive ball bump as a conductive bonding member to be an electrical connection portion.
  • the conductive bumps are more preferably ball bumps substantially made of gold, ball bumps substantially made of tin, and ball bumps substantially made of lead.
  • the functional material when the functional material is applied to at least one main surface of the functional element or a part of another main surface, specifically, for example, at least one main surface or another main surface of the surface acoustic wave element is applied.
  • the functional material that is, the elastic surface wave absorbing material can be applied to be thinner than the thickness of the conductive bonding member.
  • the method for manufacturing an electronic component according to the present invention includes a step of positioning a surface acoustic wave element at a predetermined position with respect to a wiring board; and a step of positioning the surface acoustic wave element and the wiring board at a predetermined distance via a conductive bonding member. Assembling while maintaining the above, a step of disposing a heat melting type member on the wiring board, and heating and melting the heat melting type member while leaving a gap between the wiring board and the surface acoustic wave element. And forming a plurality of transducer portions and a plurality of wiring patterns electrically connected to the transducer portions on one main surface of the piezoelectric device comprising the piezoelectric material constituting the surface acoustic wave element. After forming multiple joining members on the upper part, when cutting to form individual surface acoustic wave elements, the blade speed at cutting is 50 mn ⁇ below lOrrn ⁇ per second. To be .
  • the surface acoustic wave element is positioned at a predetermined position with respect to the wiring board.
  • a transducer portion and a plurality of wiring patterns electrically connected to the transducer portion are formed on one main surface of a wafer made of a piezoelectric material constituting a surface acoustic wave element, and a part of this wiring pattern is formed.
  • a plurality of joining members are formed.
  • the surface acoustic wave element and the wiring board are assembled while maintaining a predetermined interval via the joining member.
  • a heat melting type member is disposed on the wiring substrate, and the heat melting type member is heated and melted while leaving a gap between the wiring substrate and the surface acoustic wave element.
  • the surface is cut by a blade adjusted so that the speed of movement is lOmn ⁇ above 50im ⁇ below per second according to the plurality of formed wiring patterns, and individual surface acoustic wave devices are formed.
  • a cutting member such as a diamond cutter can be appropriately used.
  • a plurality of transducer sections and a wiring pattern electrically connected to the transducer sections are formed on one piezoelectric body, and a conductive bonding member and a surface acoustic wave element are assembled at once. Since a plurality of surface acoustic wave devices are obtained by mounting and sealing the flaky resin and cutting the resin, productivity can be improved.
  • the frame-shaped insulating member for preventing the heat-fusible mold member for sealing from flowing into each gap formed by the surface acoustic wave element and the wiring board is not necessarily provided. Since it is not required, the step of forming a frame-shaped insulating member, which has been required conventionally, can be omitted, and there is an advantage that a plurality of electronic components having a simple structure can be obtained at one time.
  • the fusible resin molded as a sealing heat melting member is joined by heat melting and curing, so that the heat melting member flows into the surface of the surface acoustic wave element facing the void.
  • Materials for the wiring board include ceramics such as alumina, magnesia, and silicon carbide; glass-coated ceramics; ceramic multilayer boards such as alumina with internal conductors and functional parts; and resins such as FR-4 and glass epoxy.
  • a substrate can be used.
  • the wiring board may be provided with a marker for defining a division range in preparation for division.
  • the surface acoustic wave element is subjected to face-down bonding (a technique of directly flipping a chip upside down without a die bonding and a wire bonding process and directly attaching to a package, “Dictionary of Science” Maruzen Co., Ltd.) (See page 1189, issued March 5, 1960).
  • the face down bonding specifically includes a so-called flip chip method, a beam lead method, a TAB method and a pedestal method.
  • a thermosetting flaky resin is used as a member at the time of sealing, and the resin surface or the whole is cured by ripening. By melting and curing the body, the surface acoustic wave element and the wiring board can be sealed while maintaining a gap between the main surface of the surface acoustic wave element facing the wiring board and the wiring board. It was done.
  • a wiring pattern is formed on only one main surface or on both the main surface and the other main surface, depending on the mounting method, on each of the wiring boards that constitute a part of the electronic component of the present invention. can do. Also, in a surface acoustic wave device, it is necessary to form a transducer section composed of a comb-shaped electrode pattern and a wiring pattern electrically connected to the transducer section on one surface in order to secure a gap. .
  • the surface acoustic wave element and the wiring board can be joined via a conductive joining member.
  • the gap of the void formed by the present invention is determined by the shape of the conductive joining member. It is desirable to secure 0 to 200 / m, preferably 20 to 80 ⁇ .
  • the conductive bonding member is defined as a means for electrically connecting the surface acoustic wave element and the wiring board and for fixing the both.
  • a so-called bump or conductive resin is used.
  • the bumps include ball bumps and plated bumps, and the conductive resin includes a conductive paste and an anisotropic conductive resin.
  • a member for electrically connecting a wiring pattern on a wiring board to a wiring pattern on a surface acoustic wave element for example, a conductive bump may be made of a resin ball or a gold plated with a conductive metal.
  • Metal bumps made of ( ⁇ ), silver (g), solder (Sn, Pb, In, etc.).
  • conductive bumps electrically connect the wiring pattern on the wiring board and the wiring pattern on the surface acoustic wave element by joining the wiring board and the surface acoustic wave element at a predetermined temperature and pressure. At the same time, a gap is formed between the surface acoustic wave element and the wiring board to play a role of securing the gap.
  • a metal bump made of gold, silver, solder, or the like is particularly preferable as the conductive bump.
  • the surface acoustic wave element and the wiring board that are joined are covered with a heat-melting member, and are mounted on a wiring board, and divided to form a surface acoustic wave device.
  • the surface or the entire surface of the resin is melted and cured by heating using a flake-shaped epoxy resin as a heat melting type member, and the surface acoustic wave element and the wiring board are cured.
  • the viscosity of the resin can be kept high, and the resin can be prevented from flowing into the void formed on the side of the surface acoustic wave element facing the wiring substrate during curing.
  • a frame-shaped insulating partition or dam is not necessarily required. However, by providing the frame-shaped insulating partition, the sealing effect can be further enhanced, and this is included in the present invention.
  • Liquid thermosetting resins used as conventional sealing resin materials such as epoxy-based potting resins, have low viscosities of about 15 Pas, and even when heated to 100 to 200 Since the viscosity does not increase and remains low, without the frame-shaped insulating member, there is a drawback that the gap flows into the gaps between the functional element and the wiring board and cannot be maintained, thereby impairing the function of the functional element.
  • a high-viscosity state is maintained until melting is started by heating, and even after melting.
  • a viscosity of 50 Pa ⁇ s or more is obtained. Therefore, the surface acoustic wave element can be easily covered.
  • Such a flaky resin can be easily formed by, for example, cold-press molding a powder of epoxy resin as a raw material into a required shape and weight.
  • the flaky resin is placed on another main surface other than the main surface forming the void portion of the surface acoustic wave element, that is, on the other main surface side, not the main surface on which the wiring pattern of the surface acoustic wave element is formed. .
  • the shape of the flaky resin that is substantially equal to or slightly smaller than the shape of the divided wiring board. More preferably, the shape of the flaky resin is substantially equal to the shape of the wiring board before the division.
  • the flaky resin surface acoustic wave element and the wiring before division can be obtained. Positioning with respect to the substrate can be ensured.
  • this dimension can be appropriately selected depending on the total volume of the surface acoustic wave element and the thickness of the flaky resin.
  • the flaky resin placed on the surface of the surface acoustic wave element on the side opposite to the surface facing the void portion is brought into close contact with at least the other main surface of the element by heating and melting and hardening thereof. And the surface acoustic wave element is sealed with the wiring board.
  • the heat melting temperature of the flaky resin is 100 to 200 ⁇
  • the curing time is 20 hours to Will be implemented in 2 hours. More preferably, after heating and melting at 110 to 170 t, the curing is performed at about 100 to 160 for 3 hours to 20 hours.
  • a buffer material sheet having a shape smaller than the shape of the heat-meltable member is adhered to one main surface of the heat-meltable member.
  • the surface of the material sheet is placed facing the other main surface of the surface acoustic wave element having the main surface on which the wiring pattern is formed, and at least the other elements of the above elements are heated and melted and cured.
  • the main surface of the substrate and the cushioning material sheet are in close contact with each other to cover the surface acoustic wave element, and the surface acoustic wave element can be sealed with the wiring board.
  • the cushioning material sheet include a material having high elasticity such as a rubber elastic sheet.
  • two layers of metal foil / paraffin paper may be arranged.
  • the size of the sheet of each layer is not necessarily required to be the same as long as it is smaller than the flaky resin shape, and may be any shape. With such a configuration, it is possible to reduce stress distortion of the resin caused by shrinkage and thermal expansion difference during resin curing.
  • the cushioning sheet can be easily positioned between the sealing resin portion and the surface acoustic wave element, productivity and reliability are improved.
  • the height of a wiring pattern connected to a conductive bonding member that is an electrical connection portion between a wiring board and a surface acoustic wave element is determined by the thickness of the wiring board material or the conductivity of the wiring pattern. It is controlled by changing the thickness of the material partly, or by controlling the height itself of the conductive joining member that will be the electrical connection. Therefore, an appropriate amount of gap between the surface acoustic wave element and the wiring board can be effectively secured, so that even if the surface acoustic wave element is provided with a surface acoustic wave absorbing material, The bonding strength between the substrate and the substrate can be sufficiently maintained, and the reliability of the connection can be improved.
  • the method for manufacturing an electronic component and a surface acoustic wave device when forming a wiring pattern of a wiring board, at least a part of the wiring pattern is applied a plurality of times by a screen printing method using a conductive paste. It can be baked or co-fired.
  • the difference between the thickness of the portion applied a plurality of times after firing and that of the other portion is in the range of 5 to 100 / zm.
  • the method for manufacturing an electronic component when forming a wiring pattern on a wiring board, at least a part of the wiring pattern is separated from other parts of the wiring pattern by a film forming method such as evaporation or sputtering. Thick films can also be formed.
  • This difference is preferably at least 0.5 ⁇ 3 ⁇ 4.
  • a green sheet corresponding to a portion opposed to a bonding member serving as an electrical connection portion and a region in the vicinity thereof is added and fired. After that, a wiring pattern can be formed on the wiring board.
  • the difference between the thickness of the portion fired with the Darine sheet added and the thickness of the other portion is preferably substantially in the range of 5 to 500 ⁇ 7).
  • the bonding strength between the surface acoustic wave device and the wiring board can be increased, especially in the case of a surface acoustic wave device in which a surface acoustic wave absorbing material is arranged. Can be maintained sufficiently, so that bonding strength can be increased and connection reliability can be increased.
  • a plurality of conductive bumps are provided at substantially the same position as a conductive bonding member serving as an electrical connection portion. Stacked ones can also be used.
  • the sum of the thicknesses of the plurality of conductive bumps is preferably in the range of 30 to 150 / i iri.
  • a conductive ball bump can be used as a conductive bonding member serving as an electrical connection portion, and the thickness of the conductive pole bump can be adjusted by changing the thickness of the conductive thin wire.
  • the conductive bumps ball bumps substantially made of gold, ball bumps substantially made of tin, ball bumps substantially made of lead, and the like are more preferable.
  • the functional material that is, the surface acoustic wave absorbing material is thinner than the thickness of the conductive bonding material. Can be applied.
  • the thickness of the conductive bonding member serving as an electrical connection portion an appropriate amount of a gap between the surface acoustic wave element and the wiring board can be effectively secured.
  • it is not necessary to partially change the thickness of the wiring board or the thickness of the conductive material it is easier to manufacture a plurality of electronic components.
  • the method for manufacturing an electronic component according to the present invention includes a step of positioning a surface acoustic wave element at a predetermined position with respect to a wiring board; and a step of positioning the surface acoustic wave element and the wiring board at a predetermined distance via a conductive bonding member. Assembling while maintaining the above, a step of disposing a heat melting type member on the wiring board, and heating and melting the heat melting type member while leaving a gap between the wiring board and the surface acoustic wave element. And forming a plurality of transducer sections and a plurality of wiring patterns electrically connected to the transducer sections on one principal surface of a wafer made of a piezoelectric material constituting the surface acoustic wave element. After forming a plurality of joining members on the upper part, when cutting to form individual surface acoustic wave elements, the specific resistance of water used for cutting is more than 0.11 ⁇ m
  • the surface acoustic wave element is positioned at a predetermined position with respect to the wiring board.
  • a transducer part and a plurality of wiring patterns electrically connected to the transducer part are formed on one main surface of a wafer made of a piezoelectric material constituting a surface acoustic wave element, and a part of this wiring pattern is formed.
  • a plurality of joining members are formed.
  • the surface acoustic wave element and the wiring board are separated by a predetermined distance through the joining member. Is maintained and assembled.
  • a heat melting type member is disposed on the wiring substrate, and the heat melting type member is heated and melted while leaving a gap between the wiring substrate and the surface acoustic wave element.
  • the individual surface acoustic wave devices are cut by water adjusted so that the specific resistance is between 0.01 MQcm and 100 MQcm, corresponding to the plurality of formed wiring patterns. It is formed.
  • a plurality of transducer sections and a wiring pattern electrically connected to the transducer sections are formed on one piezoelectric body, and a conductive bonding member and a surface acoustic wave element are assembled at once. Since a plurality of surface acoustic wave devices are obtained by mounting and sealing the flaky resin and cutting the resin, productivity can be improved.
  • the frame-shaped insulating member for preventing the heat-fusible mold member for sealing from flowing into each gap formed by the surface acoustic wave element and the wiring board is not necessarily provided. Since it is not required, the step of forming a frame-shaped insulating member, which has been required conventionally, can be omitted, and there is an advantage that a plurality of electronic components having a simple structure can be obtained at one time.
  • the fusible resin molded as a sealing heat melting member is joined by heat melting and curing, so that the heat melting member flows into the surface of the surface acoustic wave element facing the void.
  • the surface acoustic wave device can be easily prevented, and the surface acoustic wave device is not adversely affected, and a gap is formed between the surface acoustic wave device and the wiring board, and the surface acoustic wave device can be easily manufactured. it can.
  • Materials for the wiring board include ceramics such as alumina, magnesia, and silicon carbide; glass-coated ceramics; ceramic multilayer boards such as alumina with internal conductors and functional parts; and resins such as FR-4 and glass epoxy.
  • a substrate can be used.
  • the wiring board may be provided with a marker for defining a division range in preparation for division. According to the method of manufacturing an electronic component of the present invention, a surface acoustic wave device is face-down bonded (a technique of directly turning a chip upside down and mounting directly to a package without a die bonding and a wire bonding process. (See page 1189, issued March 5, 1960).
  • the face down bonding specifically includes a so-called flip chip method, a beam lead method, a TAB method and a destelling method.
  • a thermosetting flaky resin is used as a member at the time of sealing, and the surface or the whole of the resin is melted and cured by heating, so that the surface acoustic wave element and the wiring board are separated from each other.
  • the sealing can be performed while maintaining a gap between the main surface of the opposed surface acoustic wave element and the wiring board.
  • a wiring pattern is formed on only one main surface or on both the main surface and the other main surface, depending on the mounting method, on each of the wiring boards that constitute a part of the electronic component of the present invention. can do. Also, in a surface acoustic wave device, it is necessary to form a transducer section composed of a comb-shaped electrode pattern and a wiring pattern electrically connected to the transducer section on one surface in order to secure a gap. .
  • the surface acoustic wave element and the wiring board can be joined via a joining member, and at this time, the gap of the void formed by the present invention is determined by the shape of the joining member, but it is 10 to 200. It is desirable to secure ⁇ ⁇ , preferably 20 to 80 ⁇ ⁇ .
  • the joining member is defined as a means for electrically connecting the surface acoustic wave element and the wiring board and for fixing the both.
  • bumps and conductive resin are used.
  • the bumps include ball bumps and plated bumps
  • the conductive resin includes a conductive paste and an anisotropic conductive resin.
  • a member for electrically connecting a wiring pattern on a wiring board to a wiring pattern on a surface acoustic wave element for example, a conductive bump may be made of a resin pole or a gold-plated conductive metal.
  • Au gold-plated conductive metal.
  • P solder
  • These conductive bumps electrically connect the wiring pattern on the wiring board and the wiring pattern on the surface acoustic wave element by bonding the wiring board and the surface acoustic wave element at a predetermined temperature and pressure. At the same time, a gap is formed between the surface acoustic wave element and the wiring board to play a role of securing the gap.
  • a metal bump made of gold, silver, solder, or the like is particularly preferable as the conductive bump.
  • the surface acoustic wave element and the wiring board that are joined are mounted on the wiring board by covering and solidifying the surface acoustic wave element with a heat-melting mold member, and divided to form a surface acoustic wave device.
  • an epoxy-based resin molded into a flake shape as a thermosetting resin is used to melt and cure the surface or the entire surface of the resin by heating, so that the wiring is connected to the surface acoustic wave element.
  • the viscosity of the resin can be kept high, and the resin can be prevented from flowing into the void formed on the side of the surface acoustic wave element facing the wiring substrate during curing.
  • a frame-shaped insulating partition or dam is not necessarily required. However, by providing the frame-shaped insulating partition, the sealing effect can be further enhanced, and is included in the present invention.
  • Liquid thermosetting resins used as conventional sealing resin materials such as epoxy-based potting resins, have low viscosities of about 15 Pas, and even when heated to 100 to 200 Since the viscosity does not increase and remains low, without the frame-shaped insulating member, there is a drawback that the gap flows into the gaps between the functional element and the wiring board and cannot be maintained, thereby impairing the function of the functional element.
  • a high-viscosity state is maintained until melting is started by heating, and even after melting.
  • a viscosity of 50 Pa ⁇ s or more is obtained. Therefore, the surface acoustic wave element can be easily covered.
  • Such a flaky resin must be, for example, a powdery one made from an epoxy resin. It can be easily formed by cold compression molding to the required shape and weight.
  • the flaky resin is mounted on another main surface other than the main surface forming the void portion of the surface acoustic wave element, that is, on the other main surface side instead of the main surface on which the wiring pattern of the surface acoustic wave element is formed. You.
  • the shape of the flaky resin that is substantially equal to or slightly smaller than the shape of the divided wiring board. More preferably, the shape of the flaky resin is substantially equal to the shape of the wiring board before the division.
  • this dimension can be appropriately selected depending on the total volume of the surface acoustic wave element and the thickness of the flaky resin.
  • the flaky resin placed on the surface of the surface acoustic wave element on the side opposite to the surface facing the void portion is brought into close contact with at least the other main surface of the element by heating and melting and hardening thereof. And the surface acoustic wave element is sealed with the wiring board.
  • the heating and melting temperature of the flaky resin is 100 to 200, and the curing time is 20 hours. Carried out in ⁇ 2 hours. More preferably, after heating and melting at 110 to 170, the curing is carried out at 100 to 160 ° C. for 3 to 20 hours.
  • a buffer material sheet having a shape smaller than the shape of the heat-meltable member is adhered to one main surface of the heat-meltable member.
  • the surface of the material sheet is placed facing the other main surface of the surface acoustic wave element having the main surface on which the wiring pattern is formed, and at least the other elements are not heated or melted and cured.
  • the main surface and the cushioning material sheet are in close contact with each other to cover the surface acoustic wave element, and the surface acoustic wave element can be sealed with the wiring board.
  • the cushioning material sheet include a material having high elasticity such as a rubber elastic sheet.
  • two layers of metal foil / paraffin paper may be arranged. In this case, the size of the sheet of each layer is not necessarily required to be the same as long as it is a shape smaller than the flaky resin shape, and may be any shape.
  • the resin which is caused by contraction and thermal expansion difference during resin curing The stress distortion of the fat can be reduced. Further, since the cushioning sheet can be easily positioned between the sealing resin portion and the surface acoustic wave element, productivity and reliability are improved.
  • the height of a wiring pattern connected to a conductive bonding member that is an electrical connection portion between a wiring board and a surface acoustic wave element is determined by changing the wiring board material thickness or wiring pattern. Between the surface acoustic wave element and the wiring board by partially changing the thickness of the conductive material of the surface acoustic wave device, or by controlling the height itself of the conductive joining member to be the electrical connection portion. Since the proper amount of voids can be effectively secured, even in the case of a surface acoustic wave element in which a surface acoustic wave absorbing material is arranged, the bonding strength between the surface acoustic wave element and the wiring board can be sufficiently maintained. However, the reliability of the connection can be improved.
  • the method for manufacturing an electronic component and a surface acoustic wave device when forming a wiring pattern of a wiring board, at least a part of the wiring pattern is applied a plurality of times by a screen printing method using a conductive paste. It can be baked or co-fired.
  • the difference between the thickness of the portion applied a plurality of times after firing and that of the other portion is in the range of 5 to 100 ⁇ .
  • the wiring pattern when forming a wiring pattern on a wiring board, at least a part of the wiring pattern is formed from another part of the wiring pattern by a film forming method such as evaporation or sputtering. Thick films can also be formed.
  • This difference is preferably at least 0.5 ⁇ ⁇ 3 ⁇ 4.
  • a green sheet corresponding to a portion opposed to a bonding member serving as an electrical connection portion and a region in the vicinity thereof is added and fired. After that, a wiring pattern can be formed on the wiring board.
  • the difference between the thickness of the portion where the green sheet is added and fired and the thickness of the other portion is substantially in the range of 5 to 500 ⁇ .
  • the thickness of the joining member is reduced. At least, it can be added to the thickness of the wiring board material or conductive material in the wiring pattern, so that an appropriate amount of gap between the surface acoustic wave element and the wiring board can be effectively secured. Even in the case of a surface acoustic wave element in which a surface acoustic wave absorbing material is arranged, it is possible to sufficiently maintain the bonding strength between the surface acoustic wave element and the wiring board, thereby increasing the bonding strength and improving connection reliability. Can increase the quality.
  • a plurality of conductive bumps stacked at substantially the same position may be used as a conductive bonding member serving as an electrical connection portion. it can.
  • the sum of the thicknesses of the plurality of conductive bumps is preferably in the range of 30 to 150 ⁇ ⁇ .
  • the thickness of the conductive ball bump can be adjusted by changing the thickness of the conductive thin wire by using a conductive pole bump as a conductive bonding member serving as an electrical connection portion.
  • a ball bump substantially made of gold, a pole bump made substantially of tin, a pole bump made substantially of lead, and the like are more preferable.
  • the functional material that is, the surface acoustic wave absorbing material is thinner than the thickness of the conductive joint material. Can be applied.
  • a predetermined distance is maintained between the functional element and the wiring board via the conductive bonding member. It is characterized by being assembled.
  • the functional element is positioned at a predetermined position with respect to the wiring board. At this time, the conductive bonding member is formed on the wiring pattern formed on at least one main surface of the wiring board.
  • the functional element and the wiring board are assembled while maintaining a predetermined interval via the joining member.
  • a heat melting type member is disposed on the wiring substrate, and the heat melting type member is heated and melted while leaving a gap between the wiring substrate and the functional element.
  • the ripening history of the interface between the functional element and the conductive bonding member during the process can be further reduced, so that the bonding strength can be improved and the reliability can be further improved.
  • the frame-shaped insulating member which prevents the heat melting type
  • the flaky resin molded as a heat-melting mold member for sealing is joined by heat melting and curing, thereby easily preventing the resin from flowing into the surface of the functional element facing the void. This makes it possible to easily produce a resin-sealed electronic component by forming a gap between the functional element and the wiring board without causing any adverse effect on the functional element.
  • Materials for the wiring board include ceramics such as alumina, magnesia, and silicon carbide, glass-coated ceramics, and conductors and functional parts inside.
  • a ceramic multilayer substrate such as stored alumina, or a resin substrate such as glass epoxy such as FR-4 can be used. Further, the wiring board may be provided with a marker for defining a division range in preparation for division.
  • Examples of the functional element include a surface acoustic wave element, a quartz oscillator, a piezoelectric oscillator, a photo power blur having a pair of a light transmitting unit and a light receiving unit, EPROM, CCD, a semiconductor laser, or a light emitting diode.
  • a functional element is directly face-down bonded (inverting a chip directly without die bonding and wire bonding steps). It can be mounted by the technology of attaching it to a package, see “Science Dictionary”, Maruzen Co., Ltd., published on March 5, 1985, page 1189.
  • the face-down bonding specifically includes a flip-chip method, a beam lead method, a TAB method, a pedestal method, and the like.
  • a thermosetting flaky resin is used as a member at the time of sealing, and the surface or the whole of the resin is polished and cured by heating, whereby the surface acoustic wave element and the wiring board are connected to each other.
  • the sealing can be performed while maintaining a gap between the main surface of the surface acoustic wave element facing the semiconductor device and the wiring board.
  • a wiring pattern is formed on only one main surface or on both the main surface and the other main surface, depending on the mounting method, on each of the wiring boards that constitute a part of the electronic component of the present invention. can do.
  • the functional element and the wiring board are joined via a joining member formed on the wiring board.
  • a joining member formed on the wiring board.
  • the gap of the void formed by the present invention is determined by the shape of the joining member, it is 10 to It is desirable to secure 200 ⁇ , preferably 20 to 80 / zm.
  • the joining member is defined as a means for electrically connecting an element (functional element) and a wiring board, and for fixing both.
  • bumps and conductive resin are used.
  • the bumps include a pole bump and a plating bump
  • the conductive resin includes a conductive paste and an anisotropic conductive resin.
  • a member for electrically connecting a wiring pattern on a wiring board to a wiring pattern on an element (functional element), such as a conductive bump, includes a resin pole, gold (Ai), silver (g), There are metal bumps made of solder (Sn, Pb, In, etc.).
  • conductive bumps electrically connect the wiring pattern on the wiring board to the wiring pattern on the element (functional element) by bonding the wiring board and the element (functional element) at a predetermined temperature and pressure. And an empty space between the element (functional element) and the wiring board. It will play a role in forming and securing the gap.
  • a metal bump made of gold, silver, solder, or the like is particularly preferable as the conductive bump.
  • the bonded functional element and the wiring board are mounted on the wiring board by covering with a heat-melting type member, for example, a thermosetting resin, and then divided, and the surface acoustic wave is divided.
  • an epoxy-based resin molded into a flake shape as a mature curable resin is used, and the surface or the entire surface of the resin is melted by heating, and then the functional element is cured.
  • the viscosity of the resin can be kept high, and the resin can be prevented from flowing into the void formed on the side of the functional element facing the wiring board during curing.
  • a frame-shaped insulating partition or dam is not necessarily required. However, by providing the frame-shaped insulating partition, the sealing effect can be further enhanced, and is included in the present invention.
  • Liquid ripening curable resins used as conventional sealing resin materials such as epoxy-based potting resins, have low viscosities of about 15 Pas, and even when ripened to 100-200 Since the viscosity does not increase and remains low, without the frame-shaped insulating member, there is a drawback that the void flows into the voids of the functional element and the wiring board and cannot be maintained, thereby impairing the function of the functional element.
  • a high-viscosity state is maintained until melting is started by ripening by using a flaky epoxy resin, and even after melting.
  • a viscosity of 50 Pa ⁇ s or more is obtained. Therefore, the surface acoustic wave element can be easily covered.
  • a flaky resin can be easily formed by, for example, cold-pressing a powder made from an epoxy resin into a required shape and weight. The flaky resin is placed on another main surface side other than the main surface forming the void portion of the functional element.
  • a shape of the flaky resin that is substantially equal to or slightly smaller than the shape of the divided wiring board. More preferred flaky resin shape is This is almost the same as the wiring board shape.
  • this dimension can be appropriately selected depending on the total volume of the functional element and the thickness of the flaky resin.
  • the heat melting type member such as a flaky resin, placed on the surface of the functional element opposite to the surface facing the gap portion is in close contact with at least the other main surface of the element by heat melting and curing.
  • the element is covered, and the functional element is sealed with the wiring board.
  • the heat melting temperature of the flaky resin is 100 to 200 mm, and the curing time is 20 hours. Carried out in ⁇ 2 hours. More preferably, after heating and melting at 110 to 170 ⁇ , curing is performed at about 100 to 160 ⁇ for 3 to 20 hours.
  • a buffer sheet having a shape smaller than the shape of the heat-fusible member is adhered to the main surface of the heat-fusible member, and the cushioning material sheet surface of the heat-fusible member is wired.
  • the functional element having the main surface on which the pattern is formed is placed facing the other main surface of the functional element, and at least the other main surface of each element and the cushioning material sheet are brought into close contact with each other by heat melting and curing.
  • the functional element can be sealed with the wiring board.
  • the cushioning material sheet include a material having high elasticity such as a rubber elastic sheet.
  • a metal foil / paraffin paper having two layers may be arranged.
  • the size of the sheet of each layer is not necessarily required to be the same size as long as the shape is smaller than the flaky resin shape, and may be any shape. With such a configuration, stress distortion of the resin caused by shrinkage and thermal expansion difference when the resin is cured can be reduced. Further, since the cushioning material sheet can be easily positioned between the sealing resin portion and the functional element, productivity and reliability are improved.
  • the height of a wiring pattern connected to a conductive bonding member serving as an electrical connection portion between a wiring board and a functional element is set to a thickness of a wiring board material or a wiring pattern. It is controlled by partially changing the thickness of the conductive material.
  • the height itself of the conductive bonding member, which is the electrical connection part an appropriate amount of gap between the functional element and the wiring board can be effectively secured, so that it can be used as a surface acoustic wave absorbing material. Even in the case of a functional element on which a functional material is arranged, the bonding strength between the functional element and the wiring board can be sufficiently maintained, and the connection reliability can be improved.
  • the difference between the thickness of the portion applied a plurality of times after firing and that of the other portion is in the range of 5 to 100 / ⁇ .
  • a film forming method such as evaporation or sputtering. Thick films can also be formed.
  • This difference is preferably at least 0.5 / imi.
  • a green sheet corresponding to a portion opposed to a bonding member serving as an electrical connection portion and a region in the vicinity thereof is added and fired. After that, a wiring pattern can be formed on the wiring board.
  • the difference between the thickness of the portion fired by adding the green sheet and the thickness of the other portion is substantially in the range of 5 to 500 ⁇ 500 ⁇ .
  • the thickness of the joining member can be added to the thickness of the wiring board material or the conductive material in the wiring pattern portion.
  • the joint strength can be increased and the connection reliability can be increased.
  • the sum of the thicknesses of the conductive bumps is preferably in the range of 30 to 150 / zm.
  • a conductive contact serving as an electrical connection portion A conductive ball bump can be used as a composite member, and the thickness of the conductive ball bump can be adjusted by changing the thickness of the conductive thin wire.
  • the conductive bumps are more preferably pole bumps substantially made of gold, ball bumps substantially made of tin, and pole bumps substantially made of lead.
  • the functional material can be applied to at least one main surface or a part of another main surface of the functional element so as to be thinner than the thickness of the conductive bonding member.
  • An electronic component of the present invention described below has a wiring board having a first surface and a second surface, a first surface and a second surface, and the first surface is a third surface of the wiring substrate.
  • the first surface of the wiring board and the first surface of the functional element are arranged to face each other, and the electronic component is provided above the first surface of the wiring substrate and / or the second surface of the functional element.
  • a heat melting type member may be disposed, the heat melting type member may be heated and melted, and the gap may be sealed while at least a gap is left between the wiring board and the functional element. Good.
  • the first surface of the wiring board and the first surface of the functional element are arranged to face each other, and a liquid thermosetting liquid is provided from above the first surface and the Z of the wiring substrate or the second surface of the functional element.
  • the functional member is poured into a predetermined position, and the poured thermosetting member is heated and cured, and the gap is sealed while at least a gap is left between the wiring board and the functional element. You may.
  • the first surface of the wiring board and the first surface of the functional element are arranged to face each other, and a liquid thermosetting liquid is formed from above the first surface and the Z of the wiring substrate or the second surface of the functional element.
  • Heat-curing while dropping the conductive member at a predetermined position, and at least The manufacturing may be performed by sealing the gap while leaving the gap between the functional element.
  • any heating means may be used for the ripening means, such as melting the heat melting type member or curing the thermosetting member, for example, indirectly using high frequency, electromagnetic wave, ultrasonic wave, light irradiation, or the like.
  • a thermal heating method may be used.
  • a surface acoustic wave device for example, a surface acoustic wave device, a frame-like insulating member for preventing the sealing resin from flowing into the gap formed between the surface acoustic wave element and the wiring board is necessarily required.
  • This has the advantage that a simple structure can be obtained.
  • a molded flaky resin as a sealing resin and bonding by heating and melting, it is possible to easily prevent the resin from flowing into the transducer surface of the surface acoustic wave element in particular.
  • the sealing resin is applied to the gap formed between the surface acoustic wave element, which is a functional element, and the wiring board.
  • the resin wrapping around the side surface of the surface acoustic wave element also acts as a surface acoustic wave absorbing material (sound absorbing material) that absorbs unnecessary surface acoustic waves, thus attenuating unnecessary spurs and creating a surface acoustic wave device. Performance can be improved.
  • the elastic surface acoustic wave element can be sealed with the wiring board by curing the liquid resin.
  • the electronic component of the present invention has a first surface and a second surface, and has at least a wiring substrate having a wiring pattern formed on the first surface, and a first surface and a second surface.
  • a functional element having a first surface facing the first surface of the wiring substrate, a conductive film formed on a second surface of the functional element, the conductive film and the wiring substrate A conductive material that conducts between the wiring pattern and a sealing member that seals the gap while leaving a gap between the first surface of the wiring substrate and the first surface of the functional element.
  • one aspect of the electronic component of the present invention for example, a surface acoustic wave device, is that a conductive film is formed over substantially the entire other main surface of the surface acoustic wave device, which is a functional device having one main surface on which a wiring pattern is formed. Is formed, and the conductive film and at least a part of the wiring pattern of the wiring substrate are connected by a conductive material. For this reason, even if external noise is induced, it can be received by the conductive film and grounded through the wiring pattern of the wiring board. It has a so-called electromagnetic shielding effect (shield effect).
  • This conductive substance may be a conductive resin containing a conductor such as so-called silver. Further, an anisotropic conductive resin in which a conductor is embedded may be used. Alternatively, the connection may be made using a thin bonding wire such as aluminum, gold, copper, or a solder wire.
  • Such a structure includes, for example, a step of arranging a first surface of a wiring board and a first surface of a functional element in opposition, and a step of forming a conductive film on a second surface of the functional element. Conducting a conductive material between the conductive film and the wiring pattern on the first surface of the wiring board with a conductive substance; and sealing the gap with at least a gap between the wiring board and the functional element. Alternatively, it may be manufactured by sealing.
  • the electronic component of the present invention has a first surface and a second surface, and has at least a wiring substrate having a wiring pattern formed on the first surface, and a first surface and a second surface, A functional element having a first surface facing the first surface of the wiring substrate, a metallic foil formed on a second surface of the functional device, the metallic foil and the wiring substrate A sealing means for sealing the gap while leaving a gap between the first surface of the wiring substrate and the first surface of the functional element; And characterized in that:
  • a metal foil can be used instead of the conductive film and the conductive material. That is, in another aspect of the electronic component of the present invention, for example, a surface acoustic wave device, at least a gap between the other main surface of the surface acoustic wave element having one main surface on which the wiring pattern is formed and the resin portion is provided. A metal foil is provided on a part of the metal foil, and an end of the metal foil is connected to at least a part of a wiring pattern of the wiring board. For this reason, Even if external noise is induced, it can be received by the metal foil and grounded through the wiring pattern of the wiring board.
  • Such a structure includes, for example, a step of arranging the first surface of the wiring board and the first surface of the functional element in opposition, and a step of arranging a metallic foil on the second surface of the functional element.
  • it may be manufactured by sealing.
  • Such a structure is, for example, that a metal foil having a shape smaller than the flaky resin shape is adhered to one main surface of a flaky resin which is a heat melting type member, and the metal foil surface of the resin is bonded to the wiring pattern.
  • the surface acoustic wave element having the main surface with the surface formed thereon is placed opposite to the other main surface, and at least the other main surface of the element and the metal foil adhere to each other by heat melting and curing. And enclosing the element, and contacting and connecting the end of the metallic foil to at least a part of the wiring pattern of the wiring board, and sealing the element with the wiring board. it can.
  • such a structure is such that a surface acoustic wave element and a wiring board are assembled while maintaining a predetermined interval via an electrical connection portion, and a metal foil is arranged on another main surface of the surface acoustic wave element.
  • a liquid component is dropped on the element and adheres to the side of the element.
  • the device can be manufactured by tightly covering the element, making an end of the metallic foil contact and connect to at least a part of the wiring pattern of the wiring board, and sealing the element with the wiring board. it can.
  • the metallic foil inexpensive ones such as aluminum foil, copper foil, nickel foil, zinc foil and tin foil can be used.
  • the metal foil and the element are in close contact with each other, but need not necessarily be integrated. Rather, the small gaps have the advantage of significantly minimizing long-term frequency fluctuations of the device.
  • the electronic component of the present invention has a first surface and a second surface, and has a wiring board having a wiring pattern formed on at least the first surface, and a first surface and a second surface, No.
  • a functional element having a first surface facing the first surface of the wiring substrate; a conductive film formed on a second surface of the functional device; and a conductive film formed of the conductive film and the wiring substrate.
  • a conductive film is provided over substantially the entire other surface of the surface acoustic wave element having one main surface on which a wiring pattern is formed. Is formed, and the conductive film and at least a part of the wiring pattern of the wiring board are connected by a resin in which a magnetic material is dispersed. Ferrite or the like is suitable as the magnetic material.
  • the magnetic material acts as an electrically conductive state mainly in a high frequency region of 1 GHz or more, so even if external noise is induced, the conductive film receives the noise and disperses the magnetic material. And through a wiring pattern on the wiring board.
  • Such a structure includes, for example, a step of arranging a first surface of a wiring board and a first surface of a functional element in opposition, and a step of forming a conductive film on a second surface of the functional element. Electrically connecting the conductive film and the wiring pattern on the first surface of the wiring board with a resin in which a magnetic substance is dispersed; and forming a gap between the wiring board and the functional element while leaving a gap between at least the wiring board and the functional element. It may be manufactured by sealing the part with a sealing member.
  • the electronic component of the present invention has a wiring board having a first surface and a second surface, and has a first surface and a second surface, wherein the first surface is the same as the first surface of the wiring substrate. It is made of a resin in which a functional element and a metal powder are dispersed to face each other, and the gap is formed while leaving a gap between the first surface of the wiring substrate and the first surface of the functional element.
  • a sealing member for sealing is
  • a sealing member such as a heat melting type member or a thermosetting member is made of a resin in which metal powder is dispersed.
  • the resin in which the metal powder is dispersed has a low resistivity and is close to an electrically conductive state. Therefore, even if external noise enters, the wiring pattern on the wiring board is reduced from the resin. And can be grounded You.
  • Such a structure includes, for example, a step of arranging the first surface of the wiring substrate and the first surface of the functional element in opposite directions, while leaving a gap between at least the wiring substrate and the functional element.
  • the gap may be sealed with a sealing member made of a resin in which a metal powder is dispersed, and then manufactured.
  • the electronic component of the present invention has a wiring board having a first surface and a second surface, and has a first surface and a second surface, wherein the first surface is the same as the first surface of the wiring substrate.
  • a functional element disposed oppositely; a resin in which magnetic substance powder is dispersed; and a gap between the first surface of the wiring substrate and the first surface of the functional element while leaving a gap between the functional element and the first surface of the functional element.
  • a sealing member for sealing the portion.
  • a sealing member such as a heat melting type member or a thermosetting member is made of a resin in which magnetic powder is dispersed.
  • the magnetic material include ferrite.
  • the magnetic substance acts as an electrically conductive state mainly in a high frequency region of 1 GHz or more, so even if external noise is induced, the magnetic substance is further dispersed through the resin in which the magnetic substance powder is dispersed. It can be grounded through a wiring pattern on the wiring board.
  • Such a structure includes, for example, a step of arranging the first surface of the wiring substrate and the first surface of the functional element in opposite directions, while leaving a gap between at least the wiring substrate and the functional element.
  • the cavity may be manufactured by sealing with a sealing member made of a resin in which magnetic powder is dispersed.
  • An electronic component includes a wiring board having a first surface and a second surface, a first surface and a second surface, wherein the first surface faces the first surface of the wiring substrate. And a resin element in which a radio wave absorber material is dispersed, and the gap portion is left while leaving a gap between the first surface of the wiring board and the first surface of the functional element. And a sealing member for sealing the sealing member.
  • a sealing member such as a heat melting type member or a thermosetting member is made of a resin in which a radio wave absorber material is dispersed.
  • a radio wave absorber material As a material for radio wave absorber, carbon, ferrite or Is a mixture of these.
  • the energy of the external electric noise is absorbed by the radio wave absorber, so that the influence of the noise on the surface acoustic wave element, which is a functional element, can be reduced.
  • Such a structure includes, for example, a step of vertically disposing the first surface of the wiring board and the first surface of the functional element, while leaving a gap between at least the wiring board and the functional element.
  • the cavity may be manufactured by sealing with a sealing member made of a resin in which a radio wave absorber material is dispersed.
  • the electronic component of the present invention has a wiring board having a first surface and a second surface, and has a first surface and a second surface, wherein the first surface is the same as the first surface of the wiring substrate.
  • a functional element disposed to face, and a resin containing a conductive filler, wherein the void is left while leaving a void between the first surface of the wiring board and the first surface of the functional element.
  • a sealing member for sealing.
  • a sealing member such as a heat melting type member or a thermosetting member is made of a resin containing a conductive filler.
  • a conductive filler is carbon.
  • the resin containing the conductive filler has a low resistivity and is close to an electrically conductive state, so that even if external noise enters, the wiring pattern on the wiring board from the resin is reduced. And can be grounded.
  • Such a structure includes, for example, a step of arranging the first surface of the wiring substrate and the first surface of the functional element in opposite directions, while leaving a gap between at least the wiring substrate and the functional element.
  • the cavity may be manufactured by sealing with a sealing member made of a resin containing a conductive filler.
  • the electronic component of the present invention has a first surface and a second surface, a wiring board having concave portions formed at two end surfaces, and a first surface and a second surface.
  • a functional element having a first surface opposed to the first surface of the wiring substrate; and a gap between the first surface of the wiring substrate and the first surface of the functional element. Seal the gap while leaving Sealing member, and a pair of protrusions engaging with the respective recesses provided on the wiring board are provided on the two legs so as to face each other, and the first surface of the wiring board and the functional element And a metal plate.
  • the electronic component of the present invention has a first surface and a second surface, a concave portion is formed on each of two end surfaces, and a wiring board having a wiring pattern formed on the inner surface of the concave portion.
  • a functional element having a first surface and a second surface, wherein the first surface is disposed so as to face the first surface of the wiring substrate; and the first surface of the wiring substrate and the function
  • a sealing member that seals the gap while leaving a gap between the first surface of the element and an electrical connection with each wiring pattern on the inner surface of the recess while engaging with each recess provided in the wiring board;
  • a pair of conductive protrusions are provided on the two legs so as to oppose each other, and a metal plate that covers the first surface of the wiring board and the functional element is provided.
  • a metal plate in which a concave portion is formed on at least two side end surfaces of a wiring board and a convex portion is formed on an end portion is provided. It is installed so as to cover at least a part of the resin part, and the concave part formed on the side end surface of the wiring board and the convex part formed on the end part of the metal plate are integrated by holding each other. It is characterized by becoming.
  • the metal plate covers a sealing member such as a heat-meltable member, a thermosetting member, and a wiring board.
  • marking is performed on a flat portion of the metal plate by a method such as a stamp. It can be easily formed.
  • a surface acoustic wave device at least one of the wiring patterns in which a concave wiring pattern is formed on at least two side end surfaces of the wiring substrate on the one main surface.
  • a metal plate that is formed so as to be electrically connected to a part and that has a convex part at the end covers at least a part of a sealing member such as a heat-melting member or a thermosetting member.
  • the concave wiring pattern formed on the side end surface of the wiring board and the convex portion formed on the end of the metal plate are held in contact with each other and integrated. I have.
  • Such a structure includes, for example, a step of arranging the first surface of the wiring substrate and the first surface of the functional element in opposite directions, while leaving a gap between at least the wiring substrate and the functional element.
  • the gap is sealed with a sealing member, and a pair of protrusions provided to face the two legs of the metal plate are provided in the respective recesses provided at the two end surfaces of the wiring board.
  • the functional elements may be respectively covered by the metal plate to cover the first surface of the wiring board and the functional element.
  • a pair of projections provided to face the two legs of the metal plate are respectively engaged with the respective recesses provided on the two end surfaces of the wiring board.
  • the wiring pattern provided on the inner surface may be electrically connected to the wiring pattern provided on the tip of the protrusion, and the first surface of the wiring board and the functional element may be covered with the metal plate. Good.
  • an electronic component includes a wiring board having a first surface and a second surface, and a stepped portion having two end surfaces each having a first surface side as an upper stage, A functional element having a first surface and a second surface, wherein the first surface is disposed so as to face the first surface of the wiring substrate; and a first surface of the wiring substrate and a first surface of the functional element.
  • a sealing member that seals the gap while leaving a gap between the two surfaces, and a pair of protrusions that engage with each stepped portion provided on the wiring board are provided on two legs.
  • a metal plate is provided so as to be opposed to the first surface of the wiring board and covers the functional element.
  • the electronic component of the present invention has a stepped portion having a first surface and a second surface, the first surface being an upper stage on each of two end surfaces, and a wiring pattern being provided on a lower stage.
  • a functional substrate having a first surface and a second surface, wherein the first surface is arranged to face the first surface of the wiring substrate; and When engaging with a sealing member for sealing the gap while leaving a gap between the first surface and the first surface of the functional element, and with each stepped portion provided on the wiring board.
  • Both of the wiring A pair of protrusions electrically connected to the turn are provided on the two legs so as to face each other, and a metal plate covering the first surface of the wiring board and the functional element is provided.
  • a surface acoustic wave device for example, a surface acoustic wave device, a metal plate in which a cutout portion is formed in at least two side end surfaces of a wiring board and a protruding portion is formed in the end portion Is provided so as to cover at least a part of a sealing member such as a heat melting type member or a thermosetting member, and is formed at a notch formed at a side end surface of the wiring board and at an end of the metal plate. It is characterized in that the projected portions are integrated by holding each other.
  • Such a structure includes, for example, a step of arranging the first surface of the wiring substrate and the first surface of the functional element in opposite directions, while leaving a gap between at least the wiring substrate and the functional element.
  • the gap is sealed with a sealing member, and each stepped portion provided at two end surfaces of the wiring board such that the first surface side is an upper stage is opposed to two legs of a metal plate.
  • a pair of protrusions provided as described above may be engaged with each other, and the first surface of the wiring board and the functional element may be covered with the metal plate.
  • a wiring pattern provided on a lower surface of the end surface and a wiring pattern provided on a tip of the protrusion are electrically connected to each other, and The first surface and the functional element may be covered.
  • the metal plate can be accurately fixed to the wiring board, and marking can be easily formed on a flat portion of the metal plate by a method such as a stamp.
  • a notch is formed on at least two side end surfaces of the wiring board, and the cutout is formed on the one main surface.
  • the metal plate having at least a part of the formed wiring pattern and a wiring pattern formed in at least a part of the notch portion is electrically connected, and a metal plate having a protruding portion formed at an end is formed by the heat melting type member.
  • a notch formed on a side end surface of the wiring board and a protrusion formed on an end of the metal plate are installed so as to cover at least a part of a sealing member made of a thermosetting member or the like.
  • the metal plate can form a flat portion on the outer surface of the surface acoustic wave device, it has an effect of being easily formed when printing a mark, in addition to an electromagnetic shielding effect.
  • a concave portion or a notch portion is formed at at least two places on the side end surface of the wiring board, a convex portion or a protruding portion is formed at the end portion of the metal plate, and the heating is performed by covering the functional element.
  • the metal plate is installed so as to cover at least a part of a sealing member made of a fusion mold member, a thermosetting member, or the like, and a concave portion or a notch portion formed on a side end surface of the wiring board is provided.
  • the metal plate can be manufactured by integrating the protrusions or protrusions formed at the ends of the metal plate so as to hold each other. Further, it can be easily manufactured by using a metal plate having at least a part that is flat and formed substantially parallel to the wiring board.
  • a cushioning member is arranged between a sealing member made of a heat melting type member, a thermosetting member, and the like, and a surface acoustic wave element as a functional element.
  • a resin containing a glass filler as a sealing member made of a heat-melting member, a thermosetting member, etc.
  • stress distortion due to curing and thermal expansion of the resin, etc. which is a sealing member, can be alleviated. Can reduce undesirable effects on characteristics.
  • a cushioning material for example, an elastic body such as rubber may be used, or a resin containing a glass filler is used as a sealing member such as a heat melting type member or a thermosetting member. You may do so.
  • a glass filler for example, at least one of a substantially amorphous crushed product, a crystalline crushed product, and a molten crushed product may be used.
  • a surface acoustic wave device by arranging the conductive bonding member at a predetermined position, the reliability can be improved by absorbing a difference in thermal expansion, and the sealing resin is preferably used. No intrusion can be prevented.
  • an electronic component of the present invention for example, a surface acoustic wave device, a buffer is provided between a sealing member made of a heat-melting member, a thermosetting member, and the like, and a surface acoustic wave element that is a functional element.
  • the material sheet can be easily positioned, leading to improved productivity and reliability.
  • An electronic component includes a wiring board having a first surface and a second surface, a first surface and a second surface, wherein the first surface faces the first surface of the wiring substrate.
  • a functional element disposed as follows; a cushioning material disposed on a second surface of the functional element; and a void portion between a first surface of the wiring substrate and a first surface of the functional element.
  • a sealing member for sealing the gap.
  • one aspect of the electronic component of the present invention is the above-described functional element, for example, a surface acoustic wave element, and is sealed with, for example, a cured heat-fusible member, a thermally cured liquid resin, or the like. It is characterized in that a cushioning material is arranged between members. Examples of the cushioning material include a material having high elasticity such as a rubber elastic sheet. Alternatively, two layers of metal foil / paraffin paper may be arranged. Further, these buffer materials may be formed of a conductive material. For example, carbon may be used as the conductive filler together with the sealing member to provide conductivity.
  • the important point is to prevent the shrinkage of the resin during curing from affecting the properties and functions of the surface acoustic wave element as much as possible. With this configuration, the stress distortion of the resin is reduced. be able to. The same applies to the case where low-melting glass is used as the sealing member.
  • Such a structure includes, for example, a step of arranging the first surface of the wiring board and the first surface of the functional element in opposition, and a step of arranging a cushioning material on the second surface of the functional element.
  • the gap may be sealed with a sealing member while the gap is left between the wiring board and the functional element, and the functional element may be manufactured.
  • a buffer material sheet having a shape smaller than the shape of the heat melting type member is adhered to the main surface of the heat melting type member, and the buffer material sheet surface of the heat melting type member has a main surface on which the wiring pattern is formed.
  • the other main surface of the surface acoustic wave element and the cushioning material sheet are adhered to each other by heating, melting, and hardening to cover the element.
  • the device may be manufactured by sealing the element with a wiring board.
  • a buffer material sheet is adhered to one main surface of the functional element, and placed opposite to another main surface of the surface acoustic wave element having the main surface on which the wiring pattern is formed, and heat is applied from above.
  • a liquid resin which is a curable member, is dropped or poured, and is heat-cured so that at least the other main surface of the element and the cushioning sheet are in close contact with each other to cover the element, and the wiring board is used.
  • the device may be manufactured by sealing.
  • the cushioning sheet for example, a material having high elasticity such as a rubber elastic sheet may be used.
  • a metal foil / paraffin paper having two layers may be arranged.
  • the size of the sheet of each layer does not necessarily have to be the same size as long as it is smaller than the flaky resin shape, and may have any shape.
  • An electronic component includes a wiring board having a first surface and a second surface, a first surface and a second surface, wherein the first surface faces the first surface of the wiring substrate. And a resin containing a glass filler, and sealing the gap while leaving a gap between the first surface of the wiring board and the first surface of the functional element. And a sealing member to be provided.
  • the resin serving as the sealing member made of the heat-fusible member or the thermosetting member is made of a resin containing a glass filler. It is characterized by.
  • a glass filler for example, a crushed product of a molten sili force, an amorphous sili force, a crystalline sili force, or Examples include PbO-B203, low melting point glass containing Si02, Al203, PbF2, and the like.
  • the shape of these glass fillers is preferably such that the average particle diameter is usually in the range of about 0.1 / ⁇ ⁇ 50 / zm. Further, the shape may be elongated.
  • a combination of the particles having an average particle diameter of 0.1 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ and the particles having an average particle diameter of 5 ni ⁇ ⁇ 50 ⁇ ⁇ may be used.
  • the thermal expansion coefficient of the resin member which is a heat melting type member
  • the thermal expansion coefficient of the sealing member resin made of a liquid resin to be cured can be reduced. Rate can be approached.
  • the difference in thermal expansion between the constituent elements can be absorbed, the stress distortion can be reduced, and the reliability such as thermal impact can be improved.
  • mechanical strength can be improved.
  • Such a structure includes, for example, a step of arranging the first surface of the wiring substrate and the first surface of the functional element in opposite directions, while leaving a gap between at least the wiring substrate and the functional element.
  • the gap may be manufactured by sealing with a sealing member made of a resin containing a glass filler.
  • an electronic component of the present invention has a first surface and a second surface, a wiring board having a wiring pattern formed on the first surface, and a first surface and a second surface, A wiring pattern is formed on the first surface, the first surface is arranged to face the first surface of the wiring substrate, and the functional element is arranged in a region near the center of the functional element.
  • a sealing member that seals the gap while leaving the gap.
  • the plurality of conductive bonding members are concentratedly arranged at a position facing an area near a central portion of the surface acoustic wave element as the functional element. It is characterized by being.
  • the bonding member has a function of electrically connecting the wiring pattern of the surface acoustic wave element and the wiring pattern of the wiring board. Therefore, poor connection must be avoided.
  • An important factor in connection failure is stress distortion due to the difference in the coefficient of thermal expansion of each component.
  • the concentration of stress strain can be reduced. This is particularly effective when an elongated surface acoustic wave element is used.
  • Such a structure can be achieved, for example, by arranging a joining member for electrically connecting a wiring pattern of a wiring board and a wiring pattern of a functional element in a region near a central portion of the functional element, And the first surface of the functional element are disposed opposite to each other, and the gap is sealed with a sealing member while leaving a gap between at least the wiring substrate and the functional element. You may do so.
  • the electronic component of the present invention has a first surface and a second surface, a wiring board having a wiring pattern formed on the first surface, and a first surface and a second surface, A wiring pattern is formed on the first surface, and the first surface is arranged so as to face the first surface of the wiring board, and the functional element is concentratedly arranged in a region near the center of the functional element.
  • a sealing member for sealing the sealing member.
  • the plurality of conductive bonding members are concentratedly arranged at a position opposed to a central portion vicinity region of the surface acoustic wave element as the functional element.
  • a plurality of other connecting members which are not included in the electrical connection are arranged at positions facing the peripheral region of the element.
  • the connection between the surface acoustic wave element and the wiring board can be made more reliable, and a plurality of bonding members arranged at positions facing the peripheral region of the element, for example, the heating member.
  • the first bonding member that electrically connects the wiring pattern of the wiring board and the wiring pattern of the functional element is concentrated in a region near the center of the functional element.
  • the second bonding member which is arranged and is not confined to the electrical connection between the wiring pattern of the wiring board and the wiring pattern of the functional element, is arranged in the peripheral area of the functional element, and the first surface of the wiring board and the function are arranged.
  • a functional element for example, a surface acoustic wave element, in a functional element mounted on a substrate by a face-down bonding method, a plurality of connection terminals electrically connected to the substrate are provided on one principal surface of the functional element.
  • the elements that are arranged centrally at the center may be used.
  • this functional element may be an element having a relatively elongated shape, which is effective from the viewpoint of the strength of the electronic component.
  • the surface acoustic wave element when the functional element is a surface acoustic wave element, the surface acoustic wave element includes a piezoelectric substrate, a plurality of pairs of comb-shaped electrodes formed on the piezoelectric substrate, and a substantially center of the piezoelectric substrate. And an external connection terminal group provided in a centralized manner.
  • This surface acoustic wave element may further include, for example, a sound absorbing agent formed so as to sandwich the comb-shaped electrode on the piezoelectric substrate.
  • the external connection terminal group may include an external connection terminal that extends to and is electrically connected to the comb-shaped electrode.
  • the surface acoustic wave element By controlling the thickness of the substrate material or the thickness of the conductive material of the wiring pattern partially, or by controlling the height of the conductive bonding member that is the electrical connection part, the surface acoustic wave element, which is a functional element, can be controlled. Since an appropriate amount of gap between the wiring board and the wiring board can be effectively secured, the bonding strength between the surface acoustic wave element and the wiring board can be reduced even in the case of a surface acoustic wave element in which a surface acoustic wave absorbing material is arranged. It is possible to improve the reliability of the connection by keeping it to a sufficient level.
  • An electronic component has a first surface and a second surface, and a first wiring pattern made of a conductive material having a first thickness on a first surface and a second wiring pattern thicker than the first thickness.
  • a functional element having a surface facing the first surface of the wiring substrate; a conductive bonding member disposed between a second wiring pattern of the wiring substrate and the wiring pad of the functional element; And a sealing member that seals the gap while leaving a gap between the first surface of the wiring substrate and the first surface of the functional element.
  • the thickness of the conductive material of at least a part of the wiring pattern formed on the main surface of the wiring board is different from that of the other part of the wiring pattern. It is characterized by being thicker than the thickness. This difference is preferably in the range of 5 to 100 ⁇ . With such a structure, even if the thickness of the conductive bonding member is small, the thickness can be added to the thickness of the conductive material.
  • Such a structure of an electronic component is, for example, such that when forming a wiring pattern of a wiring board, at least a part of the wiring pattern is applied a plurality of times by a screen printing method using a conductive paste and is baked or baked simultaneously. It may be. In this case, it is preferable that the difference between the thickness of the portion that has been applied a plurality of times after firing and the other portion is in the range of 5 to 100 ⁇ .
  • the wiring pattern of a wiring board when forming a wiring pattern of a wiring board, at least a part of the wiring pattern may be formed to be thicker than other parts of the wiring pattern by a film forming method such as evaporation or sputtering.
  • a film forming method such as evaporation or sputtering.
  • the difference in the film thickness to be formed is at least 5 / m or more.
  • the electronic component of the present invention has a first surface and a second surface, a first region made of a substrate material having a first thickness, and a substrate having a second thickness greater than the first thickness.
  • the thickness of the wiring board material in at least a part of the wiring pattern formed on the main surface of the wiring board is different from that of the other parts of the wiring pattern. It is characterized by being thicker than the thickness of the wiring board material in the region. This difference is preferably in the range of 5 to 100 ⁇ .
  • the bonding strength between the surface acoustic wave element and the wiring board can be sufficiently increased, especially in the case of a surface acoustic wave element in which a surface acoustic wave absorber is disposed. Can be kept.
  • Such a structure is, for example, when a wiring board is formed, a green sheet corresponding to a portion opposed to a joining member serving as an electrical connection portion and a region in the vicinity thereof is added and fired, and then the wiring board is formed.
  • a wiring pattern may be formed.
  • the difference between the thickness of the portion to which the green sheet is added and fired and the thickness of the other portion is substantially in the range of 5 to 500 ⁇ .
  • the thickness of the joining member can be added to the thickness of the wiring board material or conductive material in the wiring pattern portion.
  • the bonding strength between the elastic surface acoustic wave element and the wiring board can be effectively secured. Can be maintained sufficiently, the joint strength can be increased, and the connection reliability can be increased.
  • the electronic component of the present invention has a first surface and a second surface, and the first surface has a wiring pattern.
  • a functional element disposed between the wiring pattern on the first surface of the wiring board and the wiring pattern on the first surface of the functional element, and the bumps are stacked in accordance with an interval between the wiring patterns.
  • a plurality of conductive bumps are provided at substantially the same position as a conductive joining member serving as an electrical connection portion. It is characterized by using stacked ones. In this case, the sum of the thicknesses of the plurality of conductive bumps is preferably in the range of 30 to 150 / zm.
  • a conductive pole bump may be used as a conductive bonding member serving as an electrical connection portion, and the thickness of the conductive ball bump may be adjusted by changing the thickness of the conductive thin wire. .
  • a pole bump substantially made of gold, a ball bump made substantially of tin, a ball bump made substantially of lead, or the like as the conductive bump.
  • at least one principal surface or a part of another principal surface of the surface acoustic wave element may be provided with a surface acoustic wave absorbing material thinner than the thickness of the conductive bonding member.
  • Providing a conductive joining member that becomes an electrical connection portion with a controlled thickness in this manner can also effectively secure an appropriate amount of gap between the surface acoustic wave element and the wiring board.
  • the manufacturing is further simplified.
  • a plurality of conductive bumps stacked at substantially the same position may be used as a conductive bonding member serving as an electrical connection portion.
  • the sum of the thicknesses of the plurality of conductive bumps is
  • a conductive pole bump may be used as a conductive bonding member serving as an electrical connection part, and the thickness of the conductive pole bump may be adjusted by changing the thickness of the conductive thin wire. You may do it.
  • the conductive bumps are more preferably substantially gold ball bumps, substantially tin ball bumps, substantially lead ball bumps, and the like.
  • the surface acoustic wave absorbing material is applied to at least one principal surface or a part of another principal surface of the surface acoustic wave element, the surface acoustic wave absorbing material is applied thinner than the thickness of the conductive bonding member. You may do so.
  • the electronic component of the present invention has a first surface and a second surface, a wiring board having a wiring pattern formed on the first surface, and a first surface and a second surface,
  • a functional element which is a surface acoustic wave element having a wiring pattern and a sound absorbing agent formed on a first surface, the first surface being opposed to the first surface of the wiring substrate; and a wiring of the wiring substrate.
  • a conductive bonding member arranged between the pattern and the wiring pattern of the functional element, the conductive bonding member having a height exceeding a thickness of the sound absorbing agent; a first surface of the wiring substrate and a first surface of the functional element; And a sealing member for sealing the gap while leaving the gap therebetween.
  • the electronic component of the present invention has a first surface and a second surface, a wiring board having a wiring pattern formed on the first surface, and a first surface and a second surface, A function as a surface acoustic wave element in which a wiring pattern is formed on a first surface, a sound absorbing agent is formed on a second surface, and the first surface is arranged to face the first surface of the wiring board.
  • An element, a conductive bonding member disposed between a wiring pattern of the wiring board and a wiring pattern of the functional element, and between a first surface of the wiring substrate and a first surface of the functional element.
  • a sealing member for sealing the gap while leaving the gap.
  • the electronic component of the present invention has a first surface and a second surface, a wiring substrate having a wiring pattern formed on the first surface, and a first surface and a second surface, A function as a surface acoustic wave element in which a wiring pattern is formed on a first surface, a sound absorbing agent is formed on a second surface, and the first surface is arranged to face the first surface of the wiring board.
  • a conductive bonding member disposed between a wiring pattern of a board and a wiring pattern of the functional element; a metal foil disposed on a second surface of the functional element; and a first surface of the wiring substrate.
  • a sealing member for sealing the gap while leaving a gap between the functional element and the first surface.
  • another aspect of the surface acoustic wave device is that a surface acoustic wave absorbing material is disposed on at least one principal surface or a part of another principal surface of the surface acoustic wave element, and
  • the thickness of the surface acoustic wave absorber is smaller than the thickness of the joining member. This difference is preferably in the range of 5 to 50 ⁇ .
  • An element with a surface acoustic wave absorber requires that the thickness of the absorber be an appropriate amount. With such a configuration, an appropriate amount of gap between the surface acoustic wave element and the wiring board can be effectively secured even if the thickness of the joining member is small.
  • the electronic component of the present invention includes a wiring board having a first surface and a second surface, a first substrate and a second surface, and the first surface.
  • a functional element disposed to face the first surface of the wiring board; and a void portion while leaving a void between the first surface of the wiring substrate and the first surface of the functional element.
  • a sealing member for sealing For example, a heat melting type member may be used as the sealing member, or a thermosetting member may be used, for example.
  • the heat melting type member refers to a solid state in an initial state such as a pelletized resin powder
  • the thermosetting member refers to a liquid thermosetting resin material such as a liquid.
  • the initial state is a liquid that has fluidity that allows dripping and pouring.
  • a surface acoustic wave device for example, a surface acoustic wave device, a sealing member made of a heat-fusible member for sealing, a thermosetting member, or the like, and a surface acoustic wave element as a functional element are used.
  • a conductive film or a metal foil is formed between them and is connected to the wiring pattern on the wiring board in a direct current or high frequency manner, or, for example, a heat melting type member or a sealing made of a liquid resin to be cured by heating.
  • a metal plate is installed on the wiring board so as to cover at least a part of the heat melting type member, and the metal plate surface can be flattened by bonding, so that it is resistant to external noise and has good marking properties. It is possible to provide an electronic component that is excellent in terms of, for example, a surface acoustic wave device.
  • a surface acoustic wave device for example, a surface acoustic wave device, a frame-shaped insulating member for preventing a sealing resin from flowing into a gap formed between the surface acoustic wave element and the wiring board is necessarily required.
  • This has the advantage that a simple structure can be obtained.
  • a molded flaky resin is used as a sealing member to be heated and melted and cured, or a resin having a property of being cured by, for example, heating or photopolymerization is poured and cured as a sealing member while being dropped.
  • the frame-shaped insulating member is not necessarily required to prevent the sealing resin having a constant viscosity from flowing into the gap formed between the main surface of the surface acoustic wave element on the transducer section side and the wiring board, for example.
  • a surface acoustic wave device having a simple structure can be obtained without being required. Since the electronic component of the present invention does not require a frame-shaped insulating member or a surrounding member, the size of the electronic component can be reduced. Therefore, an electronic component suitable for high-density mounting can be provided. Further, according to the method for manufacturing an electronic component of the present invention, a functional element can be mounted on a wiring board without the need for a frame-shaped insulating member or a surrounding member, and an electronic component smaller than before can be manufactured. be able to. Also, electronic components suitable for high-density mounting can be manufactured.
  • an electronic component of the present invention for example, a surface acoustic wave device
  • resin having a constant viscosity since resin having a constant viscosity is used, the step of forming a frame-shaped insulating member, which is conventionally required, can be omitted.
  • a heat-melting member may be used.
  • a thermosetting member may be used as the sealing member.
  • a frame-shaped member arranged on the first surface of the wiring board and surrounding the void may be further provided. The frame-shaped member may not be used, but by further using the frame-shaped member, a gap between the wiring board and the functional element can be more reliably secured. Therefore, it is possible to more reliably prevent the functional elements such as the surface acoustic wave element, the light receiving element, and the light emitting element from impairing the function due to the sealing member wrapping around the gap.
  • the sealing member may be arranged so as to cover the entire second surface of the functional element. Further, the sealing member may be arranged so as to cover a part of the second surface of the functional element. Further, the sealing member may be arranged so as to expose the entire second surface of the functional element.
  • the semiconductor device may further include a conductive bonding member disposed between the first surface of the wiring board and the first surface of the functional element.
  • a conductive bonding member disposed between the first surface of the wiring board and the first surface of the functional element.
  • the functional element is a surface acoustic wave element, and the connection pattern on the first surface of the wiring board and the connection pattern on the first surface of the surface acoustic wave element are joined by a face down bonding method.
  • a conductive joining member may be further provided.
  • any functional element may be mounted, examples thereof include a surface acoustic wave element, a quartz oscillator, a piezoelectric oscillator, a photocoupler, an EPROM, a CCD, a semiconductor laser, and a light emitting diode.
  • the mounted functional element include a surface acoustic wave element, a quartz oscillator, a piezoelectric oscillator, a photocoupler, an EPROM, a CCD, a semiconductor laser, and a light emitting diode.
  • EPROMs For EPROMs, CCDs, semiconductor lasers, light-emitting diodes and other light-receiving elements, light-emitting elements, or photoelectric conversion elements, use a material that transmits light at least in the area of the wiring board where the functional elements are mounted. It may be.
  • the functional element is a crystal oscillator, and a conductive bonding member for bonding between the connection pattern on the first surface of the wiring substrate and the electrode on the first surface of the crystal oscillator by a face-down bonding method. And a bonding wire for electrically connecting a wiring pattern on a first surface of the wiring substrate to an electrode on a second surface of the crystal unit. May be further provided.
  • the functional element is a piezoelectric vibrator, and a conductive bonding for bonding between the connection pattern on the first surface of the wiring substrate and the electrode on the first surface of the piezoelectric vibrator by a face-down bonding method.
  • a member and a bonding wire for electrically connecting a wiring pattern on a first surface of the wiring substrate to an electrode on a second surface of the piezoelectric vibrator may be further provided.
  • the functional element is a photo power blur having a pair of a light transmitting part and a light receiving part, and the connection pattern on the first surface of the wiring board and the wiring pattern on each first surface of the photo power blur are provided.
  • a surrounding member disposed on the first surface of the wiring board and surrounding the photo-power bra, wherein the sealing member is provided. It may be arranged at least on the surrounding member.
  • a substrate that transmits light may be used as the wiring substrate, and the first surface of the functional element may use an EPROM of a light receiving surface.
  • a substrate that transmits light may be used as the wiring substrate, and a CCD whose first surface is a light receiving surface may be arranged as the functional element.
  • a substrate that transmits light may be used as the wiring substrate, and a semiconductor laser whose first surface is a light emitting surface may be disposed as the functional element.
  • a light-transmitting substrate may be used as the wiring substrate, and a light emitting diode whose first surface is a light-emitting surface and a CCD whose light-receiving surface is a light-receiving surface may be disposed as the functional element.
  • the electronic component of the present invention is an electronic component of the present invention, which has a wiring board having a first surface and a second surface, a first surface and a second surface, and the first surface is A functional element disposed to face the first surface of the wiring board; and a void portion while leaving a void between the first surface of the wiring substrate and the first surface of the functional element.
  • a sealing member for sealing for sealing.
  • a heat melting type member may be used as the sealing member, or a thermosetting member may be used, for example.
  • the heat-melted mold member is in the initial state, for example, in the form of pelletized resin powder.
  • the thermosetting member is a liquid thermosetting material such as a liquid thermosetting resin material that has an initial state of fluidity that allows dripping or pouring. I /
  • the first surface of the wiring substrate and the first surface of the functional element are arranged to face each other, and the first surface of the wiring substrate and the Z or the functional element
  • a heat melting type member is disposed above the second surface of the heat melting type member, and the heat melting type member is heated and melted, and the gap is sealed while leaving at least a gap between the wiring board and the functional element. It may be manufactured by manufacturing.
  • thermosetting member when a liquid thermosetting member is used, the first surface of the wiring substrate and the first surface of the functional element are arranged to face each other, and the first surface of the wiring substrate and Z or the functional element A liquid thermosetting member is poured into a predetermined position from above the second surface, and the poured thermosetting member is heat-cured while leaving a gap between at least the wiring board and the functional element.
  • the gap may be sealed and manufactured.
  • the first surface of the wiring substrate and the first surface of the functional element are arranged to face each other, and the first surface of the wiring substrate and Z or the functional element A liquid thermosetting member is dropped and dropped at a predetermined position from above the second surface, and heat-cured to seal the gap while leaving at least a gap between the wiring substrate and the functional element. It may be manufactured by manufacturing.
  • the electronic component of the present invention has a technology of directly attaching a functional element such as a surface acoustic wave element or a semiconductor element to a package by face-down bonding (ie, without flipping a die and a wire bonding step).
  • a functional element such as a surface acoustic wave element or a semiconductor element
  • face-down bonding ie, without flipping a die and a wire bonding step.
  • a heat melting type member obtained by cold-pressing a powder material, for example, a thermosetting flaky resin, and the resin surface or the whole is melted by heating And hardening, the surface acoustic wave element and the wiring board are separated from the transducer part provided on the surface acoustic wave element and the wiring base.
  • the sealing may be performed while holding a gap between the plate and the plate.
  • a resin having a property of being cured by heating or light polymerization as a sealing member, the surface acoustic wave element and the wiring board are cured by dropping or curing by pouring the resin into a surface acoustic wave element.
  • sealing may be performed while maintaining a gap between the transducer section provided in the wiring board and the wiring board.
  • Wiring boards that form part of electronic components such as surface acoustic wave devices must have wiring patterns formed on only one main surface or over both main surfaces and other main surfaces, depending on the mounting method. Can be. Alternatively, it is a wiring board with built-in functions of resistors, capacitors and coils, in which a wiring pattern is formed on one main surface or on both the main surface and the other main surface, and the built-in functional part Electrically connected ones can be used.
  • the material of the wiring board include ceramics such as alumina, magnesia, and silicon carbide, glass-coated ceramics, ceramic multilayer boards such as alumina having conductors and functional parts incorporated therein, and glass epoxy such as FR-4.
  • a fat substrate can be used.
  • a substrate such as a multilayer substrate or a flexible substrate (including a film carrier) may be used.
  • transducer portion formed of a comb-shaped electrode pattern on one surface and a wiring pattern electrically connected to the transducer portion.
  • the joining member is defined as a means for electrically connecting an element (functional element) and a wiring board, and for fixing both.
  • bumps and conductive resin are used.
  • the bumps include ball bumps and plated bumps
  • the conductive resin includes a conductive paste and an anisotropic conductive resin (ACF). In the present invention, these may be used alone or in combination, and these are included in the present invention.
  • the close contact means a state where two different members are in contact with each other, and a state where both can be easily separated by an external force. There may be a small gap between them.
  • the term “integration” refers to a state in which two different members are in contact with each other and are fixed to such an extent that they cannot be easily separated by external force.
  • the heating may be direct heating or indirect heating, as long as the amount of heat necessary to melt or cure the sealing member is applied.
  • a heating method such as heating by high frequency, heating by electromagnetic waves, heating by ultrasonic waves, and heating by light irradiation may be used.
  • a member for electrically joining a wiring pattern on a wiring board to a wiring pattern on a functional element such as a surface acoustic wave element, for example, a conductive bump may be made of a resin ball or gold (Ai) coated with a conductive metal. ) Or silver (P%, or solder (Sn-based, Pb-based, In-based, etc.)).
  • These conductive bumps electrically connect the wiring pattern on the wiring board and the wiring pattern on the functional element by bonding the wiring board and the functional element at a predetermined temperature and pressure. Thus, a gap is formed and secured between the functional element and the wiring board.
  • a metal bump made of gold, silver, solder, or the like is particularly preferable as the conductive bump.
  • the gap of the void formed in the present invention is determined by the shape of the conductive bonding member, it is desirable to secure 10 to 200 ⁇ , preferably 20 to 80 x m. Also, when the bumps are formed by partially increasing the thickness of the wiring pattern on the wiring board or the wiring pattern on the surface acoustic wave element as the conductive bonding member, the wiring pattern on the wiring board and the surface acoustic wave It is also possible to join the wiring pattern on the element.
  • such an electronic component of the present invention such as a surface acoustic wave device, for example, in a mounting structure in which a surface acoustic wave element is face-down bonded, for example, a flaky resin is used as a resin at the time of sealing, and the resin is heated. The surface or the whole is melted and hardened so that the surface acoustic wave element and the wiring board are sealed while holding a gap between the transducer portion provided in the surface acoustic wave element and the wiring board. You may.
  • the wiring board that forms a part of the surface acoustic wave device of the present invention can have a wiring pattern formed on only the main surface or over both the main surface and the other main surface due to the difference in the mounting method. .
  • a transducer section composed of a comb-shaped electrode pattern and a wiring pattern electrically connected to the transducer section.
  • the conductive ball bumps may be substantially made of gold.
  • the conductive pole bump may be substantially made of tin.
  • the conductive ball bumps may be substantially composed of lead.
  • the conductive ball bump may be substantially composed of tin and lead, or the conductive ball bump may be substantially composed of tin and silver.
  • These conductive bumps electrically connect the wiring pattern on the wiring board and the wiring pattern on the surface acoustic wave element by bonding the wiring board and the surface acoustic wave element at a predetermined temperature and pressure. At the same time, a gap is formed between the surface acoustic wave element and the wiring board to play a role of securing the gap.
  • a conductive ball bump may be used as the conductive bonding member, and the thickness of the conductive ball bump may be adjusted by changing the thickness of the conductive thin wire.
  • a metal bump made of gold, silver, solder, or the like is particularly preferable as the conductive bump.
  • the gap of the void formed in the present invention is determined by the shape of the conductive bonding member, it is desirable to secure 10 to 200 ⁇ , preferably 20 to 80 ⁇ . Also, when a bump is formed by partially increasing the thickness of the wiring pattern on the wiring board or the wiring pattern on the surface acoustic wave element as the conductive bonding member, the wiring pattern on the wiring board and the surface acoustic wave element It can also be joined to the upper wiring pattern. Furthermore, by forming a bonding member to be an electrical connection portion on the wiring pattern of the wiring board first, bonding strength can be increased and connection reliability can be improved.
  • the functional element having the bump is arranged to face the wiring board.
  • the infrared rays may be emitted by, for example, a halogen lamp.
  • the peripheral part of the sealing member and the peripheral part of the wiring board are sealed by a sealing member that covers the functional element except for a gap formed between the functional element and the wiring board. You may make it seal.
  • a sealing member for example, a heat melting type member may be used, or a liquid thermosetting member may be used.
  • a surface acoustic wave device for example, a wiring pattern from one main surface of a wiring board is formed between a peripheral edge of a resin portion and a peripheral edge of the wiring board. It may be exposed. Therefore, since the resin portion does not cover the wiring pattern, the resin portion is continuous with the concave wiring pattern formed on the side end surface of the wiring board.
  • connection portion on the circuit board and the concave wiring pattern formed on the side end surface of the wiring board are easily soldered. Can be connected.
  • an epoxy resin may be used as the resin portion.
  • annular insulating partition wall is formed along the inside of each joining member and / or outside each joining member of the trajectory formed by the plurality of joining members. It is characterized by.
  • annular insulating partitions play a role in securely holding a gap formed between the surface acoustic wave element and the wiring board.
  • a method for manufacturing a surface acoustic wave device as an electronic component of the present invention for example, a bonded surface acoustic wave element and a wiring board are mounted on a wiring board by covering and hardening with a flaky thermosetting resin.
  • a surface acoustic wave device may be constructed. At this time, the surface or the whole of the resin is melted by heating using an epoxy resin molded in a flake shape, and the surface is cured by curing. The wave element and the wiring board may be joined.
  • the viscosity of the resin can be kept high, the resin is prevented from flowing into the void formed in the surface of the transducer portion of the surface acoustic wave element during curing.
  • a frame-shaped insulating partition or dam is not necessarily required because the resin is not a liquid resin.
  • the electronic component of the present invention does not require a frame-shaped insulating member or a surrounding member, the electronic component can be downsized. Therefore, an electronic component suitable for high-density mounting can be provided. Further, according to the method for manufacturing an electronic component of the present invention, a functional element can be mounted on a wiring board without the need for a frame-shaped insulating member or a surrounding member, and an electronic component that is smaller than before can be manufactured. be able to. In addition, electronic components suitable for high-density mounting can be manufactured.
  • a frame-shaped insulating partition by providing a frame-shaped insulating partition, the sealing effect can be further enhanced, and this is included in the present invention. Furthermore, by forming a bonding member to be an electrical connection portion on the wiring pattern of the wiring board first, bonding strength can be increased and connection reliability can be improved.
  • Liquid thermosetting resins used as conventional sealing resin materials have low viscosities of about 15 Pa ⁇ s, and immediately after heating to 100 to 200 ⁇ Since the viscosity does not increase and remains low, without the frame-shaped insulating member, the flow into the gaps of the surface acoustic wave element and the wiring board cannot be maintained, and the surface acoustic wave propagation of the surface acoustic wave element cannot be maintained. There is a drawback that impairs the hindrance function.
  • an example of a resin molded into a flake shape For example, by using an epoxy resin, a high-viscosity state is maintained until melting is started by heating, and by controlling the curing after melting, at least
  • a viscosity of 50 Pa ⁇ s or more is obtained. Therefore, the surface acoustic wave element can be easily covered.
  • thermosetting resin obtained by cold-compacting a powder material into a flake shape such as an epoxy resin, maintains a viscosity state until melting is started by heating and controls curing after melting.
  • a viscosity of at least 50 Pa ⁇ s or more can be obtained. Therefore, the surface acoustic wave element can be easily covered.
  • Such a flaky resin can be easily formed by, for example, cold-press molding a powder made from an epoxy resin into a required shape and weight.
  • a thermosetting resin is preferable as the resin.
  • epoxy resin, silicone resin, urethane resin and the like can be mentioned.
  • An epoxy resin is preferable, and a phenol-based epoxy resin is more preferable.
  • bisphenol A type epoxy resin and phenol nopolak type epoxy resin are suitable for the electronic component of the present invention.
  • the flaky resin is mounted not on the main surface of the surface acoustic wave element on which the wiring pattern is formed but on the other main surface.
  • the flaky resin can be obtained by impregnating a non-woven fabric with a powder raw material and punching and molding the impregnated non-woven fabric, instead of cold compression molding the powder raw material.
  • the powdered raw material is mixed and dispersed with an organic binder (binder), for example, a PVB (polyvinyl butyral) or acrylic binder, and the resulting sheet is punched or cut into flakes of a desired shape. Resin can also be obtained.
  • an organic binder for example, a PVB (polyvinyl butyral) or acrylic binder
  • the flaky resin placed on the surface of the surface acoustic wave element where the transducer section and the wiring pattern electrically connected to the transducer section are not formed is heated and melted and cured at least to the other main parts of the element.
  • the surface acoustic wave element is sealed with the wiring board by covering the element in close contact with the surface.
  • low melting point glass can be used for the same purpose.
  • low-melting glass powder (frit) is cold-pressed into flakes. Is used.
  • a trace amount of wax or polyvinyl alcohol may be used as a binder.
  • the melting point is 250 ⁇ ⁇ 4003 ⁇ 4, more preferably? ⁇ ⁇ ⁇ ⁇ Mi.
  • Lead borosilicate glass is suitable. A material containing a small amount of ZnO, Al203, Ti02, Bi203, PbF2, CuO may be used. Among the components of the lead borosilicate glass, those with PbO of 50% by weight or more are most suitable.
  • bismuth borosilicate glass may be used in addition to the lead borosilicate glass.
  • Such a flaky resin can be easily formed by, for example, cold-press molding a powder made from an epoxy resin into a required shape and weight.
  • the flaky resin is placed not on the main surface on which the wiring pattern of the surface acoustic wave element is formed but on another main surface.
  • the shape of the flaky resin is larger than the shape of the surface acoustic wave element and is substantially equal to or slightly smaller than the shape of the wiring board. More preferably, the shape of the flaky resin is larger than the shape of the surface acoustic wave element and substantially equal to the shape of the wiring board.
  • the size of the flaky resin will be 4 mm 4 mm .
  • this dimension can be appropriately selected depending on the volume of the surface acoustic wave element and the thickness of the flaky resin.
  • the flaky resin placed on the surface of the surface acoustic wave element, on which the transducer section and the wiring pattern electrically connected to the transducer section are not formed, is heated and melted and cured to at least the other elements.
  • the surface acoustic wave element is sealed with the wiring board by covering the element in close contact with the main surface of the element.
  • the heating and melting temperature of the flaky resin is 100 to 200, and the curing time is 20 to 2 hours. You. More preferably, heating at 110-170 ⁇ After melting, curing is performed at about 100 ° C. to about 160 ° C. for 3 hours to 20 hours.
  • the heating may be direct heating or indirect heating, as long as the amount of heat required to melt or harden the sealing member is applied.
  • a heating method such as heating by high frequency, heating by electromagnetic waves, heating by ultrasonic waves, and heating by light irradiation may be used.
  • a sealing member made of a heat-melting flaky resin is melted and then heated and hardened to join the wiring board and the functional element.
  • the wiring board and the functional element may be joined by dropping or pouring water.
  • the method of manufacturing an electronic component of the present invention using such a liquid thermosetting member as a sealing member includes the steps of: (a) disposing the first surface of the wiring board and the first surface of the functional element to face each other; (B) pouring a liquid thermosetting member to a predetermined position from above the first surface and the Z of the wiring board or the second surface of the functional element, and (c) the heat that has been poured. Heat curing the curable member and sealing the gap while leaving at least a gap between the wiring substrate and the functional element.
  • the method for manufacturing an electronic component of the present invention using a liquid thermosetting member as a sealing member includes: (a) a step of disposing the first surface of the wiring board and the first surface of the functional element to face each other; (B) a liquid thermosetting member is dropped from above the first surface and the Z of the wiring substrate or the second surface of the functional element to a predetermined position and heat-cured, and at least the wiring substrate and the function Sealing the gap while leaving a gap between the element and the element.
  • a functional element is positioned at a predetermined position with respect to a wiring board, and the functional element and the wiring board are assembled while maintaining a predetermined interval via a conductive bonding member. While ripening the wiring board and the functional element while leaving a gap therebetween, a liquid member is dropped on the functional element and adheres to the side of the functional element, and the functional element is covered by curing. Alternatively, the functional element may be sealed with the wiring substrate.
  • the electronic component of the present invention includes, for example, a wiring board, and a conductive joint on the wiring board.
  • a functional element electrically connected by a face-down bonding method via a member, and the functional element while heating the wiring board and the functional element while leaving a gap between the wiring board and the functional element.
  • a drip-type member formed by dropping a liquid member onto the side surface of the functional element and hardening the liquid element to cover the functional element; and a peripheral part of the drip-type member and a peripheral part of the wiring board. And a sealing portion in contact with the sealing member.
  • the method of manufacturing the electronic component of the present invention for example, a surface acoustic wave device, which heats and cures a liquid thermosetting member, includes a surface acoustic wave device, which is a functional device, a mounting structure by a face-down bonding method, and a package. While heating the surface acoustic wave element, the liquid member is dropped or poured onto the surface acoustic wave element to increase the viscosity, and the liquid member is wrapped around the surface of the surface acoustic wave element to have an effect as a surface acoustic wave absorbing material.
  • the electronic component for example, the surface acoustic wave element is covered, and the surface acoustic wave element and the wiring board are connected to the transducer section provided on the surface acoustic wave element. It is designed to be able to seal while maintaining a gap between the wiring board and the wiring board.
  • the heating may be direct heating or indirect heating, as long as the amount of heat necessary to melt or harden the sealing member can be applied.
  • a heating method such as high-frequency heating, electromagnetic wave heating, ultrasonic wave heating, light irradiation, or the like may be used.
  • a functional element is positioned at a predetermined position with respect to a wiring board, and the functional element and the wiring board are assembled at a predetermined distance via a conductive bonding member, and assembled.
  • the functional element While heating the wiring board and the functional element while leaving a gap between the BE wire substrate and the functional element, a liquid member is dropped on the functional element and adheres to the side of the functional element to be cured.
  • the functional element may be covered with the wiring board and the functional element may be sealed with the wiring board.
  • Such a structure includes a step of arranging a functional element having a bump on a wiring board, and bonding the wiring board and the functional element while irradiating the wiring board and Z or the bump with infrared rays. And a step between the substrate and the element These may be manufactured by a process of sealing these while leaving a gap.
  • the manufacturing may be performed by a process and a process of sealing these while leaving a gap between the substrate and the element.
  • the infrared rays may be emitted by, for example, a halogen lamp.
  • the peripheral part of the sealing member and the peripheral part of the wiring board are sealed by a sealing member that covers the functional element except for a gap formed between the functional element and the wiring board. You may make it seal.
  • a sealing member for example, a heat melting type member may be used, or a liquid thermosetting member may be used.
  • the method for manufacturing an electronic component of the present invention in which a liquid resin having a property of curing by ripening, photopolymerization, or the like is used as a sealing member to join the wiring board and the functional element by dripping or pouring is used.
  • This has the advantage that a simple structure can be obtained without necessarily requiring a frame-shaped insulating member for preventing the resin from flowing into the gap formed between the functional element, for example, the surface acoustic wave element and the wiring board.
  • the resin wrapping around the side surface of the surface acoustic wave element also acts as a surface acoustic wave absorbing material (sound absorbing material) that absorbs unnecessary surface acoustic waves, thus attenuating unnecessary spurious and creating a surface acoustic wave device. Performance can be improved.
  • the elastic surface wave element is sealed with the wiring board by the curing of the liquid resin.
  • a conductive film or a metal foil is formed between the sealing resin and the surface acoustic wave element, a part of the wiring pattern on the wiring board, for example, a ground pattern is connected, so that external noise is generated. The interference due to the noise is reduced and the noise resistance is improved.
  • a sealing resin is a functional element.
  • the surface acoustic wave absorbing material sound absorption
  • the surface acoustic wave element can be sealed with the wiring board by curing the liquid resin.
  • a conductive film or a metal foil is formed between a sealing resin and a surface acoustic wave element, and a wiring pattern on a wiring board is formed. Because of the connection with a part of, for example, a ground pattern, interference due to external noise or the like can be reduced, and noise resistance can be improved.
  • the metal plate can be flattened by installing a metal plate so that it covers at least a part of the resin on the wiring board.
  • a surface acoustic wave device can be provided.
  • a bonding strength is increased by first forming a conductive bonding member serving as an electrical connection portion on a wiring pattern of a wiring board, The reliability of the connection can be improved.
  • liquid epoxy resin sealing material generally used for sealing a semiconductor may be used.
  • the viscosity is preferably higher, and more preferably 15 Pa ⁇ s or more.
  • a liquid low-melting glass may be used instead of the resin.
  • the glass composition is preferably a lead borosilicate glass, and more preferably a lead borosilicate glass containing PbO in a weight ratio of 50% or more.
  • a liquid resin may be used in combination with a liquid low-melting glass.
  • Such an electronic component of the present invention is a technology for face-down bonding of a functional element, for example, a surface acoustic wave element or a semiconductor element (a technique of directly flipping a chip upside down without a die bonding and a wire bonding step, and directly attaching the chip to a package; Dictionary, Maruzen Co., Ltd., March 5, 1985, page 1189) Electronic components having a mounting structure by the method.
  • the face-down bonding specifically includes a so-called flip-chip method, a beam lead method, a TAB method, and a pedestal method.
  • a heat-melting type member obtained by cold-pressing a powder material for example, a thermosetting flaky resin
  • the surface or the whole of the resin is melted and cured by heat to seal the surface acoustic wave element and the wiring board while holding a gap between the transducer portion provided on the surface acoustic wave element and the wiring board. It may be stopped.
  • a resin having a property of being cured by heating or light polymerization as a sealing member, the surface acoustic wave element and the wiring board are cured by dropping or curing by pouring the resin into a surface acoustic wave element.
  • sealing may be performed while maintaining a gap between the transducer section provided in the wiring board and the wiring board.
  • Wiring boards that form part of electronic components such as surface acoustic wave devices should have wiring patterns formed on only one main surface or on both main surfaces and other main surfaces, depending on the mounting method. Can be. Alternatively, it is a wiring board with built-in resistance, capacitor and coil functions, in which wiring patterns are formed on one main surface or on both the main surface and the other main surface. Electrically connected ones can be used. Examples of the material of the wiring board include ceramics such as alumina, magnesia, and silicon carbide; glass-coated ceramics; ceramic multilayer boards such as aluminum having conductors and functional parts therein; glass epoxy such as FR-4; A resin substrate can be used. A substrate such as a multilayer substrate or a flexible substrate (including a film carrier) may be used.
  • transducer section formed of a comb-shaped electrode pattern on one surface and a wiring pattern electrically connected to the transducer section.
  • the joining member is defined as a means for electrically connecting an element (functional element) and a wiring board, and for fixing both.
  • bumps and conductive resin are used.
  • the bumps include ball bumps and plated bumps
  • the conductive resin includes a conductive paste and an anisotropic conductive resin (ACF). In the present invention, these may be used alone or in combination, and these are included in the present invention.
  • the close contact means a state where two different members are in contact with each other, and a state where both can be easily separated by an external force. There is a small gap between them It doesn't matter.
  • the term “integration” refers to a state in which two different members are in contact with each other and are fixed to such an extent that they cannot be easily separated by an external force.
  • a member for electrically joining a wiring pattern on a wiring board to a wiring pattern on a functional element such as a surface acoustic wave element, for example, a conductive bump is made of a resin ball or gold (Ai) coated with a conductive metal. ), Silver (g), solder (Sn-based, Pb-based, In-based, etc.).
  • These conductive bumps electrically connect the wiring pattern on the wiring board and the wiring pattern on the functional element by joining the wiring board and the functional element at a predetermined temperature and pressure, and also connect the functional element to the functional element. It plays a role of forming and securing a gap between the wiring board and the wiring board.
  • a metal bump made of gold, silver, solder, or the like is particularly preferable as the conductive bump.
  • the space of the void formed in the present invention is determined by the shape of the conductive bonding member, but it is desirable to secure 10 to 200 / zm, preferably 20 to 80zm. Also, when a bump is formed by partially increasing the thickness of the wiring pattern on the wiring board or the wiring pattern on the surface acoustic wave element as the conductive bonding member, the wiring pattern on the wiring board and the surface acoustic wave element The upper wiring pattern can also be joined.
  • a member that electrically connects the wiring pattern on the wiring board and the wiring pattern on the surface acoustic wave element, such as a conductive bump, is made of resin ball, gold ( ⁇ ), silver (), (Sn-based, Pb-based, In-based, etc.).
  • the conductive ball bumps may be substantially made of gold.
  • the conductive ball bump may be substantially made of tin.
  • the conductive pole bump may be made of substantially lead.
  • the conductive ball bumps may be substantially composed of tin and lead, and the conductive pole bumps may be substantially composed of tin and silver.
  • These conductive bumps connect the wiring board and the surface acoustic wave element at a predetermined temperature and pressure. By joining, the wiring pattern on the wiring board and the wiring pattern on the surface acoustic wave element are electrically connected, and the gap between the surface acoustic wave element and the wiring board is formed and secured. Will fulfill.
  • a conductive ball bump may be used as the conductive bonding member, and the thickness of the conductive ball bump may be adjusted by changing the thickness of the conductive thin wire.
  • a metal bump made of gold, silver, solder, or the like is particularly preferable as the conductive bump.
  • the gap of the void formed in the present invention is determined by the shape of the conductive bonding member, it is preferably 10 to 200, preferably 20 to 80 ⁇ . Also, when a bump is formed by partially increasing the thickness of the wiring pattern on the wiring board or the wiring pattern on the surface acoustic wave element as the conductive bonding member, the wiring pattern on the wiring board and the elastic surface are directly formed. The wiring pattern on the wave element can also be joined. Furthermore, by forming a bonding member to be an electrical connection portion on the wiring pattern of the wiring board first, bonding strength can be increased and connection reliability can be improved.
  • Such a structure includes a step of arranging a functional element having a bump on a wiring board, and a step of joining the wiring board and the functional element while irradiating infrared rays to the wiring board and the bump or the bump. And sealing the element while leaving a gap between the substrate and the element.
  • the manufacturing may be performed by a process and a process of sealing these while leaving a gap between the substrate and the element.
  • the infrared rays may be emitted by, for example, a halogen lamp.
  • a peripheral portion of the sealing member and a peripheral portion of the wiring board are sealed by a sealing member that covers the functional element except for a gap formed between the functional element and the wiring board. You may make it seal.
  • a sealing member for example, a heat melting type member may be used, or a liquid thermosetting member may be used.
  • a surface acoustic wave device for example, a wiring pattern from one main surface of a wiring board is formed between a peripheral edge of a resin portion and a peripheral edge of the wiring board. It may be exposed. Therefore, since the resin portion does not cover the wiring pattern, the resin portion is continuous with the concave wiring pattern formed on the side end surface of the wiring board.
  • connection portion on the circuit board and the concave wiring pattern formed on the side end surface of the wiring board are easily soldered. Can be connected.
  • an epoxy resin may be used as the resin portion.
  • annular insulating partition wall is formed along the inside of each joining member and / or outside each joining member of the trajectory formed by the plurality of joining members. It is characterized by.
  • annular insulating partitions play a role in securely holding a gap formed between the surface acoustic wave element and the wiring board.
  • a bonded surface acoustic wave element and a wiring board are mounted on a wiring board by covering and hardening with a flaky thermosetting resin.
  • a surface acoustic wave device may be configured. At this time, the surface or the whole of the resin is melted by heating using an epoxy resin molded in a flake shape, and the surface acoustic wave device is cured by heating. The element and the wiring board may be joined.
  • a frame-shaped insulating partition or dam is not necessarily required because the resin is not a liquid resin.
  • the sealing effect can be further enhanced, and is included in the present invention.
  • a bonding member to be an electrical connection portion on the wiring pattern of the wiring board first, bonding strength can be increased and connection reliability can be improved.
  • a surface acoustic wave device which is a functional device having a main surface on which a wiring pattern is formed.
  • a conductive film is formed over substantially the entire other main surface, and the conductive film and at least a part of the wiring pattern of the wiring board are connected by a conductive material. For this reason, even if external noise is induced, it can be received by the conductive film and grounded through the wiring pattern of the wiring board. It has a so-called electromagnetic shielding effect (shielding effect).
  • This conductive substance may be, for example, a substance obtained by applying a conductive resin paste containing a conductor such as silver and hardening the paste, or using an anisotropic conductive resin in which a conductor is embedded therein. Is also good. Also, a metallic thin wire such as J or Ai or Qx formed by well-known wire bonding may be used. These are electrically connected to a wiring pattern on the wiring board, more specifically, a ground pattern, and serve to conduct. Alternatively, the conductive film and at least a part of the wiring pattern of the wiring board may be connected by dispersing a magnetic material such as ferrite in a liquid resin and dropping and curing the resin as described above. Good.
  • the resin in which the magnetic material is dispersed includes a conductive film formed on the other main surface of the surface acoustic wave element in a high frequency region, for example, a region of 1 GHz or more, and a ground pattern formed on the wiring board. It serves to connect with.
  • a metal foil can be used instead of the conductive film and the conductive material.
  • Another aspect of the method for manufacturing an electronic component and a surface acoustic wave device according to the present invention is a method of mounting a metal foil on another main surface of a surface acoustic wave element having a main surface on which a wiring pattern is formed. An end of the foil is contact-connected to at least a part of a wiring pattern of the wiring board.
  • the metal foil Even if external noise is induced, it can be received by the metal foil and grounded through the wiring pattern of the wiring board.
  • As a material of the metal foil aluminum, copper, nickel, zinc, tin, and the like are preferable.
  • the surface acoustic wave element and the wiring board are assembled while maintaining a predetermined interval via an electrical connection portion, and a metal foil is arranged on another main surface of the surface acoustic wave element.
  • a liquid member is dropped on the element and adheres to the side of the element.
  • the device can be manufactured by enclosing the element with a wiring board, contacting an end of the metallic foil to at least a part of a wiring pattern of the wiring board, and sealing the element with the wiring board.
  • a concave portion or a notch portion is formed in at least two places on a side end surface of a wiring board, and a convex portion or a notch portion is formed on an end portion of a metal plate.
  • the metal plate is provided so as to form a protruding portion and to cover at least a part of the cured liquid resin that covers the surface acoustic wave element, and a concave portion formed on a side end surface of the wiring board.
  • the notch is integrated with a protrusion or a protrusion formed at an end of the metal plate.
  • the metal plate has a structure in which the resin portion or the glass portion and the wiring board are covered. With such a structure, marking can be easily formed on the flat portion of the metal plate by a method such as a stamp. .
  • the metal plate itself by electrically grounding the metal plate itself to a part of the wiring pattern of the wiring board, and more preferably to a grounding pattern, it is possible to provide not only the ease of marking but also the electromagnetic shielding effect, and to prevent external noise. Can increase resistance.
  • a concave portion or a notch portion is formed at at least two places on the side end surface of the wiring board, a convex portion or a projecting portion is formed at an end portion of the metal plate, and the surface acoustic wave element is covered.
  • the metal plate is installed so as to cover at least a part of the formed resin, and a concave portion or a notch portion formed on a side end surface of the wiring board and a convex portion or a protrusion formed at an end portion of the metal plate are provided. It can be manufactured by integrating the parts so that they interlock. Further, it can be easily manufactured by using a metal plate that is at least partially flat and formed in a shape substantially parallel to the wiring board.
  • a conductive bonding member as an electrical connection portion is formed on a wiring pattern formed on at least one main surface of the wiring board. After that, the element and the wiring board are assembled while maintaining a predetermined interval via the electrical connection portion.
  • the thermal history of the interface between the surface acoustic wave element and the conductive connecting member, which is the electrical connection part, during the process can be reduced, so that the bonding strength can be improved and the reliability can be further improved. Can be improved.
  • a bonding member serving as an electrical connection portion is first formed on a wiring pattern of a wiring board, thereby increasing bonding strength and improving connection strength. Reliability can be improved.
  • an electronic component of the present invention for example, a surface acoustic wave device, by using an assembly of wiring substrates, sealing the resin which is a heat-meltable member, and then dividing it collectively, Since the process can be simplified, productivity can be increased. Further, by performing the steps of heating, melting and curing of the resin stepwise, the sealing property can be improved and the reliability can be improved.
  • deterioration of the wiring pattern of the surface acoustic wave element can be reduced. Prevention and improve connectivity.
  • the method of manufacturing an electronic component for example, a surface acoustic wave device, according to the present invention, comprises: This is performed by partially changing the thickness of the conductive material of the pattern, or by controlling the height itself of the conductive joining member that is to be an electrical connection portion.
  • This is performed by partially changing the thickness of the conductive material of the pattern, or by controlling the height itself of the conductive joining member that is to be an electrical connection portion.
  • a proper amount of gap between the functional element for example, the surface acoustic wave element and the wiring board can be effectively secured, so that even in the case of the surface acoustic wave element in which the surface acoustic wave absorbing material is disposed.
  • the bonding strength between the surface acoustic wave element and the wiring board can be sufficiently maintained, and the connection reliability can be improved.
  • the method for manufacturing an electronic component of the present invention for controlling the facing distance in the void portion includes a first wiring pattern made of a conductive material having a first thickness on the first surface and a thickness larger than the first thickness.
  • the method for manufacturing an electronic component of the present invention for controlling the facing distance in the void portion includes a first region made of a substrate material having a first thickness and a second region having a second thickness larger than the first thickness.
  • the method for manufacturing an electronic component of the present invention for controlling the facing distance in the void portion includes the following steps: (a) forming the first surface of the wiring board and the first surface of the functional element; A step of arranging and opposing each other while interposing a conductive bonding member in which bumps are stacked in accordance with an interval between the functional element and the wiring pattern on the first surface; Sealing the gap with a sealing member while leaving a gap therebetween.
  • the method for manufacturing an electronic component of the present invention for controlling the facing distance in the void portion includes a first surface of the wiring substrate and a first surface of the functional element which is a surface acoustic wave element in which a sound absorbing agent is formed on the first surface. And a step of interposing a conductive bonding member having a height exceeding the thickness of the sound absorbing agent in the opposite direction, and leaving a gap between at least the wiring board and the functional element. Sealing the gap with a sealing member.
  • the first surface of the wiring board and the first surface of the functional element which is a surface acoustic wave element are interposed with a conductive bonding member. Forming a sound absorbing agent on the second surface of the functional element. And a step of sealing the gap with a sealing member while leaving a gap between at least the wiring substrate and the functional element.
  • the first surface of the wiring board and the first surface of the functional element which is a surface acoustic wave element are interposed with a conductive bonding member.
  • One aspect of the method of manufacturing the electronic component of the present invention for example, a surface acoustic wave device, for controlling the gap between the functional element and the wiring board is to form the wiring pattern of the wiring board. It is characterized in that at least a part is applied a plurality of times by a screen printing method using a conductive paste and is baked or baked simultaneously. In this case, the thickness of the part that has been applied multiple times after firing is different from that of the other parts.
  • It is preferably in the range of 5 to 100 ⁇ .
  • a film forming method such as evaporation or sputtering. It is characterized in that it is formed thicker than other parts. It is preferable that the difference in the thickness of the film formed is at least 5 ⁇ for the electronic component of the present invention.
  • Another aspect of the method for manufacturing a surface acoustic wave device of the present invention for controlling a gap between a functional element and a wiring board is a method for forming a wiring board, comprising: a portion facing a joining member serving as an electrical connection portion; The method is characterized in that a green sheet corresponding to an area in the vicinity is added and fired, and thereafter, a wiring pattern is formed on the wiring board.
  • the difference between the thickness of the portion fired by adding the green sheet and the thickness of the other portion is substantially in the range of 5 to 500 ⁇ ⁇ .
  • an electrical connection portion is provided in order to secure an appropriate amount of void. It is characterized in that a plurality of conductive bumps are stacked at substantially the same position as a conductive bonding member. In this case, the sum of the thicknesses of the plurality of conductive bumps is preferably in the range of 30 to 150 x m.
  • a conductive ball bump is used as a conductive bonding member serving as an electrical connection portion, and the thickness of the conductive ball bump is adjusted by changing the thickness of a conductive thin wire.
  • the conductive bumps are more preferably ball bumps substantially made of gold, ball bumps substantially made of tin, and ball bumps substantially made of lead.
  • the surface acoustic wave absorbing material is applied to at least one principal surface or a part of another principal surface of the surface acoustic wave element, the surface acoustic wave absorbing material is applied to be thinner than the thickness of the conductive joining member. You may.
  • a bonding member to be an electrical connection portion on the wiring pattern of the wiring board first, bonding strength can be increased and connection reliability can be improved.
  • Examples of the form of the electronic component of the present invention include, for example, a wiring board, and a functional element electrically connected to the wiring board by a face-down bonding method via a conductive bonding member.
  • a sealing portion in which the peripheral portion of the sealing member is in contact with the peripheral portion of the wiring board may be provided.
  • a functional part is mounted on a first surface of the functional element, and a second part of the functional element is provided.
  • the functional element may not be mounted on the surface, and the second surface may be exposed.
  • a functional portion may be mounted on the first surface and the second surface of the functional element, and the functional portion on the second surface may be exposed.
  • the second surface of these functional elements and the wiring board may be electrically connected by bonding wires.
  • a bonding wire may be embedded in the sealing member.
  • the sealing member may be heated and melted while exposing the portion to manufacture the sealing member. Further, the liquid sealing member may be manufactured by being hardened by dropping or pouring.
  • the sealing member may be provided such that a functional part is mounted on the first surface of the functional element, the functional element is not mounted on the second surface of the functional element, and the entire second surface is exposed. May be melted by heating. Alternatively, a liquid sealing member may be dropped and cured so that the entire second surface is exposed.
  • a functional portion is mounted on the first surface and the second surface of the functional element, and the sealing member is heated and melted so that the functional portion on the second surface is exposed. Is also good. Further, a liquid sealing member may be dropped and cured so that the functional portion is exposed.
  • the electronic component of the present invention may be, for example, a wiring board, a functional element electrically connected to the wiring board by a face-down bonding method via a conductive bonding member, and surrounding the functional element.
  • a surrounding member and a sealing member that covers and surrounds the surrounding member may be provided.
  • a functional portion may be mounted on both front and back surfaces of the functional element.
  • a functional part includes, for example, a quartz oscillator.
  • the surface of the functional element opposite to the surface facing the wiring substrate and the wiring substrate are electrically connected to each other.
  • the connection may be made by using.
  • Such a structure includes, for example, a step of positioning a functional element at a predetermined position with respect to a wiring board; a step of assembling the element and the wiring board at a predetermined interval via a conductive bonding member; A step of arranging a surrounding member on the wiring board so as to surround the element; a step of arranging a sealing member on the wiring board and the surrounding member; and a step of heating and melting the sealing member. You may do so.
  • the liquid sealing member may be manufactured by dropping or pouring and curing the liquid sealing member.
  • Examples of the form of the electronic component of the present invention include, for example, a wiring board, and a piezoelectric vibrator in which a first electrode is electrically connected to the wiring board via a conductive bonding member by a face-down bonding method.
  • a connection portion for electrically connecting the second electrode of the piezoelectric vibrator and the wiring substrate i, and a gap formed between the first electrode surface of the piezoelectric vibrator and the wiring substrate are left.
  • a sealing member that covers the functional element, and a sealing portion in which a peripheral portion of the sealing member and a peripheral portion of the wiring board are in contact with each other may be provided.
  • the connection portion may be configured by an electrical connection means such as a bonding wire, an ACF, or a conductive bump.
  • Such a structure includes a step of positioning the piezoelectric vibrator at a predetermined position with respect to the wiring board, and maintaining a predetermined gap between the first electrode of the piezoelectric vibrator and the wiring board via a conductive bonding member. And electrically connecting the second electrode surface of the piezoelectric vibrator to the wiring board by a connecting member, and sealing the wiring board and the piezoelectric vibrator on the wiring board. It may be manufactured by a step of disposing a member and a step of heating and melting the sealing member.
  • the electronic component of the present invention includes a wiring board, and a light transmitting unit and a light receiving unit that form a pair of photo-power bras electrically connected to the wiring board by a face-down bonding method via a conductive bonding material. And a surrounding member surrounding the photo-power bra, and a sealing member for covering and sealing the surrounding member.
  • a pair of photo A step of positioning the light transmitting unit and the light receiving unit to be configured; a step of assembling the photo power blur and the wiring board at a predetermined distance via a conductive bonding member; and surrounding the photo power blur on a wiring board. And a step of disposing a sealing member on the wiring board and the photo-power bra, and a step of ripening and melting the sealing member. .
  • a thermosetting sealing member such as a liquid thermosetting resin may be dropped or poured to be cured.
  • a wiring board that transmits light, a light transmitting unit or a light receiving unit faces the wiring board, and is electrically connected to the wiring board by a face down bonding method via a conductive bonding member.
  • a sealing element for covering the functional element except for a gap formed between the functional element and the wiring substrate; a peripheral portion of the sealing member and the wiring A sealing portion that is in contact with the peripheral portion of the substrate may be provided.
  • Examples of such functional elements include photoelectric conversion devices such as EPROM, CCD, semiconductor lasers, and light emitting diodes.
  • the optical properties of the wiring board may be selected and used as needed.
  • visible light, infrared light, ultraviolet light, or the like may be selectively transmitted, or optically isotropic or anisotropic materials may be used.
  • the functional element is an EPROM
  • the light-transmitting portion of the wiring board may have optical flat characteristics.
  • the functional element is positioned so that a light transmitting unit or a light receiving unit faces the wiring board at a predetermined position with respect to the wiring board transmitting light, Assembling the substrate with a predetermined distance therebetween via a conductive bonding member; disposing a sealing member for the wiring substrate and the element; and sealing the substrate while leaving a gap between the substrate and the element.
  • the members may be manufactured by heating and melting. Alternatively, a liquid sealing member may be cured by dripping or pouring, for example.
  • FIG. 1 is a cross-sectional view of a surface acoustic wave device according to a first embodiment of the present invention and a partial plan view thereof.
  • FIG. 1 is a partial perspective view of a surface acoustic wave device according to a first embodiment of the present invention.
  • FIG. 6 is a plan view of a surface acoustic wave device according to Embodiment 2 of the present invention.
  • FIG. 6 is a partial perspective view of a surface acoustic wave device according to a second embodiment of the present invention.
  • FIG. 9 is an exploded perspective view of a surface acoustic wave device according to a third embodiment of the present invention.
  • FIG. 9 is a manufacturing process diagram of the surface acoustic wave device according to Embodiment 3 of the present invention.
  • FIG. 9 is a sectional view of a surface acoustic wave device according to a fourth embodiment of the present invention.
  • FIG. 9 is a cross-sectional view, a partial plan view, and a partial perspective view of a surface acoustic wave device according to Embodiment 5 of the present invention.
  • FIG. 9 is a cross-sectional view, a partial plan view, and an exploded cross-sectional view of a surface acoustic wave device according to Embodiment 6 of the present invention:
  • FIG. 14 is a cross-sectional view of a surface acoustic wave device according to Embodiment 7 of the present invention.
  • Example 1 is a cross-sectional view of a surface acoustic wave device according to Example 11 of the present invention.
  • FIG. 1 is a cross-sectional view of a surface acoustic wave device according to Examples 12 to 13 of the present invention, and a partial perspective view thereof.
  • FIG. 9 is a diagram illustrating a method of manufacturing the surface acoustic wave device according to Example 14 of the present invention.
  • Fig. 15 is a diagram illustrating a method of manufacturing the surface acoustic wave device according to Example 14 of the present invention.
  • FIG. 9 is a diagram showing heating conditions during the production of the surface acoustic wave device according to Example 15 of the present invention.
  • FIG. 1 is a cross-sectional view of a surface acoustic wave device according to Example 18 of the present invention and a partial plan view thereof.
  • FIG. 9 is a cross-sectional view of a surface acoustic wave device according to Example 19 of the present invention and a partial plan view thereof.
  • FIG. 2 is a cross-sectional view of a surface acoustic wave device according to Example 20 of the present invention and a partial plan view thereof.
  • FIG. 9 is a plan view of a surface acoustic wave device according to Example 20 of the present invention.
  • FIG. 2 is a plan view of a conventional surface acoustic wave device.
  • FIG. 11 is a plan view of a surface acoustic wave device according to Example 21 of the present invention.
  • FIG. 9 is a plan view of a surface acoustic wave device according to Example 21 of the present invention.
  • FIG. 9 is a sectional view of a surface acoustic wave device according to Example 22 of the present invention.
  • Fig. 25 is a sectional view of a surface acoustic wave device according to Example 22 of the present invention.
  • FIG. 9 is a sectional view of a surface acoustic wave device according to Example 23 of the present invention.
  • FIG. 2 is a cross-sectional view and a partial cross-sectional view of a surface acoustic wave device according to Examples 24 to 26 of the present invention. '
  • FIG. 9 is a cross-sectional view and a partial cross-section of a surface acoustic wave device according to Example 27 of the present invention.
  • FIG. 9 is a sectional view of a surface acoustic wave device according to Example 28 of the present invention and a partial plan view thereof.
  • FIG. 13 is a diagram illustrating a manufacturing process of the surface acoustic wave device according to Example 28 of the present invention.
  • Fig. 30 is a diagram illustrating a manufacturing process of the surface acoustic wave device according to Example 28 of the present invention.
  • FIG. 9 is a cross-sectional view, a partial plan view, and a partial perspective view of a surface acoustic wave device according to Example 29 of the present invention.
  • FIG. 9 is a cross-sectional view of a surface acoustic wave device according to Example 30 of the present invention and a partial plan view thereof.
  • FIG. 1 is a cross-sectional view of a surface acoustic wave device according to Examples 31 to 32 of the present invention and a partial perspective view thereof.
  • FIG. 14 is a sectional view of a surface acoustic wave device according to Example 34 of the present invention.
  • FIG. 15 is a sectional view of a surface acoustic wave device according to Example 35 of the present invention.
  • FIG. 13 is a cross-sectional view of a crystal vibrating device according to Example 36 of the present invention.
  • FIG. 13 is a sectional view of a piezoelectric vibrating device according to Embodiment 37 of the present invention.
  • FIG. 9 is a cross-sectional view and a partial perspective view of a photo force bra according to Example 38 of the present invention.
  • FIG. 9 is a cross-sectional view and a partial plan view of an EPROM according to Example 39 of the present invention.
  • FIG. 14 is a cross-sectional view of a CCD according to Example 40 of the present invention.
  • FIG. 13 is a sectional view of a semiconductor laser according to Example 41 of the present invention.
  • FIG. 19 is a diagram illustrating a method for manufacturing the surface acoustic wave device according to Example 42 of the present invention.
  • Fig. 4 2
  • FIG. 13 is a diagram illustrating a method for manufacturing the surface acoustic wave device according to Example 43 of the present invention.
  • Fig. 4 3 is a diagram illustrating a method for manufacturing the surface acoustic wave device according to Example 43 of the present invention.
  • FIG. 15 is a sectional view of a CCD camera according to Embodiment 44 of the present invention.
  • FIG. 16 is a process diagram of a mobile communication device according to Embodiment 45 of the present invention.
  • FIG. 14 is a circuit diagram of an oscillation circuit according to Example 46 of the present invention.
  • Embodiment 1 In the first embodiment, the present invention is applied to a surface acoustic wave device.
  • FIG. 1A is a cross-sectional view of the surface acoustic wave device according to the first embodiment.
  • a wiring board 1 has a conductive wiring pattern 2 formed on both surfaces of an insulating substrate, for example, a resin substrate made of ceramic, glass-coated ceramic, glass epoxy, or the like. Further, on one principal surface of the surface acoustic wave element 3, a transducer section 4 composed of a comb-shaped electrode pattern and a wiring pattern 5 electrically connected to the transducer section are formed. Also, the surfaces of the transducer section 4 and the wiring pattern 5 are disposed so as to face the wiring pattern 2 formed on the wiring board 1.
  • a plurality of conductive patterns are formed by face-down bonding. It is assembled via a conductive bonding member, for example, a bump 6 made of metal. These bumps are made of gold (Ai), silver (g), solder (Sn-based, Pb-based, In-based, etc.). Further, the connection between the surface acoustic wave element 3 and the wiring board 1 by the conductive bumps 6 and the surface acoustic wave element 3 are covered with a resin part 11 such as epoxy.
  • FIG. 2 is a perspective view showing the wiring board 1 for explaining one mode in the first embodiment. That is, the wiring pattern 2 from one main surface of the wiring board is exposed between the peripheral edge of the resin portion (not shown) and the peripheral edge of the wiring board 1. Is continuous with the circular wiring pattern 12 formed on the substrate. For this reason, when electrically connecting each wiring pattern of the wiring board and the surface acoustic wave element by soldering, the wiring pattern of the wiring board is exposed and the solder area becomes large, so that the soldering work becomes easy. And the electrical connection is made reliably.
  • Example 2
  • FIG. 3 is a plan view showing the wiring board 1 according to the second embodiment.
  • FIG. 3 a dotted line 13 indicates a locus 13 formed by the plurality of conductive bumps 13.
  • the position where an annular insulating partition wall is formed along the inside 14 of each bump and the outside 15 of each bump of the trajectory 13 is shown.
  • FIG. 4 is a schematic perspective view of the insulating partition wall 17.
  • the insulating partition 17 may be provided on one of the inside 14 of the bump and the outside 15 of the bump.
  • FIG. 5 is a schematic diagram showing the positional relationship among the resin portion 11, the surface acoustic wave element 3, and the wiring board 1 before assembling the surface acoustic wave device of the present embodiment.
  • 6 (c) shows the steps in order.
  • FIG. 6A shows a state in which the surface acoustic wave element 3 is joined to the wiring board 1 via a plurality of conductive bumps provided on the surface acoustic wave element 3, and as shown in FIG.
  • the molded flaky resin 16 is placed on the wave element 3. Thereafter, by heating at 150 ° C for about 1 minute, the flaky resin 16 melts almost entirely while maintaining high viscosity, and wraps the surface acoustic wave element 3 as shown in Fig. 6 (c). Deformed before overturning The surroundings are joined to the wiring board 1, and then the resin is hardened and the resin shape is determined by subsequent ripening. Subsequent heating, for example, heating at 125 t for 3 hours and further heating at 150 ° C.
  • the heating may be direct heating or indirect heating, as long as the amount of heat necessary to melt or cure the sealing member is applied.
  • a heating method such as heating by high frequency, heating by electromagnetic waves, heating by ultrasonic waves, and heating by light irradiation may be used. This is the same even when not stated otherwise.
  • the resin 16 Since the resin 16 has a sufficiently high thixotropic property and a high viscosity, it does not flow into a part of the transducer surface of the surface acoustic wave element.
  • the frame-shaped insulating member is not necessarily prevented from flowing into the void formed between the main surface of the surface acoustic wave element on the transducer side and the wiring board, for example.
  • This has the advantage that a surface acoustic wave device having a simple structure that can be prevented without being required is obtained.
  • the electronic component of the present invention does not require the frame-shaped insulating member or the surrounding member, the size of the electronic component can be reduced. Therefore, an electronic component suitable for high-density mounting can be provided.
  • a functional element can be mounted on a wiring board without the need for a frame-shaped insulating member or a surrounding member. Can be.
  • electronic components suitable for high-density mounting can be manufactured.
  • the scattering substance of the organic adhesive does not adhere to the comb-shaped electrodes of the surface acoustic wave element 3 so that the surface acoustic wave element can be elastically bonded.
  • the sealing and assembling by mass production can be performed more reliably without lowering the function of the surface acoustic wave element 3, and the yield can be improved.
  • the flaky resin as described above can be easily formed by cold compression molding an epoxy resin, for example, a powder made of an epoxy resin into a required shape and weight.
  • an epoxy resin for example, a powder made of an epoxy resin into a required shape and weight.
  • Nitto Denko Corporation Epoxy EP for sealing is suitable.
  • a reinforcing sheet may be integrally impregnated with a powder made of an epoxy resin as a raw material, and may be cold-punched into a required shape. It is necessary to control the heating, melting and curing conditions of the flaky resin appropriately. It is appropriate to carry out the heat melting and curing at a temperature of 100 to 200 and a curing time of 20 to 2 hours. More preferably, after heating and melting at 110 to 170 ° C. for about 1 minute, curing is performed at 100 ° C. to 160 ° C. for about 3 hours. And may be included in the present invention.
  • FIG. 7 shows a method of manufacturing the surface acoustic wave device according to the fourth embodiment.
  • a shape in which the peripheral portion is hung in advance is positioned in the same manner as in FIG. 6, and placed on the surface of the surface acoustic wave element where the transducer section and its wiring pattern are not formed. And then heat and melt and cure. According to this method, it is possible to shorten the assembling time in covering the back surface of the surface acoustic wave element in close contact with the circuit board and sealing the circuit board.
  • FIG. 47 (a) A method of manufacturing a surface acoustic wave device according to this application example is shown in FIG. 47 (a). That is, in the method of manufacturing the surface acoustic wave device shown in the third embodiment, the positioning means for the flaky resin 16 with respect to the surface acoustic wave device 3, for example, a part of the surface of the flaky resin 16 on the surface acoustic wave device 3 side Is provided with a concave portion. In this concave portion, a concave portion slightly larger than the outer shape of the surface acoustic wave element 3 is provided. By doing so, it becomes convenient when the flaky resin 16 is manually or automatically arranged on the surface acoustic wave element 3.
  • the flaky resin 16 when the flaky resin 16 is placed on the element 3 by vacuum check using an automounter (automatic transfer device), the positioning can be reliably performed, and productivity is improved. It is also possible to provide a slight gap at the bottom of this concave part to form a gap between the top of the element 3 and the resin 16 to slightly form the air part, and the surface acoustic wave caused by the warpage (deformation) of the element 3 Without deteriorating the characteristics. Further, as shown in FIG. 47 (b), when the concave portion 16a formed in the resin 16 is formed in two steps as a shape, a void portion is provided in a narrow concave portion in advance, and then heat melting is performed. A gap is easily formed between the element and the element 3, and the effect of the cushioning material (by gas) is exerted.
  • FIG. 8A is a sectional view of the surface acoustic wave device according to the fifth embodiment.
  • a wiring board 1 has a conductive wiring pattern 2 formed on both surfaces of an insulating substrate, for example, a resin substrate made of ceramic, glass-coated ceramic, glass epoxy, or the like.
  • an insulating substrate for example, a resin substrate made of ceramic, glass-coated ceramic, glass epoxy, or the like.
  • a transducer portion 4 composed of a comb-shaped electrode pattern and a wiring pattern 5 electrically connected to the transducer portion are formed.
  • a conductive film 31 in which aluminum is deposited almost entirely is formed on the other main surface of the surface acoustic wave element 3.
  • the surfaces of the transducer section 4 and the wiring pattern 5 are assembled with the wiring pattern 2 formed on the wiring board 1 by face-down bonding via a plurality of conductive bonding members, for example, bumps 6 made of metal.
  • the two wiring patterns 2 and 5 facing each other are electrically connected, and a gap 10 is formed between the surface acoustic wave element 3 and the wiring board 1.
  • the bumps are made of gold ( ⁇ ), silver (g), solder (Sn-based, Pb-based, In-based, etc.).
  • the conductive film 31 on the other main surface of the surface acoustic wave element 3 and a part of the wiring pattern 2 of the wiring board 1 are electrically connected by the conductive substance 32.
  • connection between the surface acoustic wave element 3 and the wiring board 1 by the conductive bumps 6 and the surface acoustic wave element 3 are made of a resin portion mainly composed of a thermosetting bisphenol A type epoxy resin which is a heat-melting type member.
  • FIG. 8 (b) shows an example of a plan view of the wiring board 1 before being covered with the resin portion 11, and shows another example of the surface acoustic wave element 3.
  • the conductive film 31 formed on the surface is electrically connected to a part of the wiring pattern 2 of the wiring board 1, for example, a ground pattern via the conductive substance 32.
  • the conductive substance 32 includes, for example, an epoxy-based conductive paste including a bonding wire such as a copper wire, an A wire, and a Cu wire, an anisotropic conductive resin (ACF), and the like.
  • examples of the conductive film 31 include an A film, an Ax film, and the like formed by vapor deposition or sputtering.
  • FIG. 9A is a cross-sectional view of the surface acoustic wave device according to the sixth embodiment.
  • a wiring board 1 has conductive wiring patterns 2 formed on both surfaces of an insulating substrate, for example, a resin substrate such as a ceramic, a glass-coated ceramic, and a glass epoxy.
  • an insulating substrate for example, a resin substrate such as a ceramic, a glass-coated ceramic, and a glass epoxy.
  • a transducer portion 4 formed of a comb-shaped electrode pattern and a wiring pattern 5 electrically connected to the transducer portion are formed.
  • the surfaces of the transducer section 4 and the wiring pattern 5 are assembled with the wiring pattern 2 formed on the wiring board 1 by face-down bonding via a plurality of conductive bonding members, for example, bumps 6 made of metal.
  • the two wiring patterns 2 and 5 facing each other are electrically connected, and a gap 10 is formed between the surface acoustic wave element 3 and the wiring board 1.
  • the bumps are made of gold (Ai), silver (fig), solder (Sn-based, Pb-based, In-based, etc.). Further, at least a part of the gap between the other main surface of the surface acoustic wave element 3 and the resin portion 11 is provided with a metal foil 33, and an end 3 4 of the metal foil 3 3 is provided. Are in contact with at least a part of the wiring pattern 2 of the wiring board 1 and are electrically connected. Further, the connection between the surface acoustic wave element 3 and the wiring board 1 by the conductive bumps 6 and the surface acoustic wave element 3 are covered with a resin part 11 of a thermosetting epoxy resin.
  • FIG. 9 (b) shows an example of a plan view of the wiring board 1 before being covered with the resin portion 11, and shows the metallic surface mounted on the other main surface of the surface acoustic wave element 3.
  • An end 34 of the foil 33 contacts a part of the wiring pattern 2 of the wiring board 1, for example, a ground pattern, and is electrically connected.
  • a metallic foil 33 As such a metallic foil 33, a well-known inexpensive aluminum foil such as an aluminum foil can be used. Further, a copper foil, a nickel foil, a zinc foil, a tin foil, or the like may be used. In particular, copper foil is advantageous for higher frequency noise because of its low resistivity.
  • FIG. 9 (c) shows an example of a method for manufacturing a surface acoustic wave device of the present invention
  • the metallic foil 33 is bonded in advance to the resin portion 11 made of the heat-meltable flaky resin 16. Thereafter, the flaky resin may be melted by heat. In this case, the positioning accuracy can be further improved.
  • heating regardless of direct heating or indirect heating, it is only necessary to apply heat required to melt or cure the sealing member.
  • a heating method such as heating by high frequency, heating by electromagnetic waves, heating by ultrasonic waves, and heating by irradiation of light may be used.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Acoustics & Sound (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Wire Bonding (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Combinations Of Printed Boards (AREA)

Description

明細書 電子部品およびその製造方法 技術分野
本発明は、 弾性表面波装置や EP ROM ( Er a s a b 1 e
P r o g r a mma b l e Re a d — On 1 y Me mo r y、 消去プログラ ム可能読取り専用メモリ ) 、 CCD ( Ch a r g e Co u p l e d
De v i c e 、 荷電結合素子) 、 半導体レーザ、 発光ダイオード等の電子部品お よびその製造方法に係り、 特に基板上にフェースダウンに素子を搭載する電子部 品およびその製造方法に関する。 背景技術
弾性表面波素子は、 その機能上、 表面波の伝搬するト ランスデューサ部表面に 空隙部を必要としており、 該表面に異物層が存在することにより、 表面波の伝搬 に悪影響を生じ、 所望の特性が損なわれる。 そこで、 弾性表面波素子をパッケ一 ジに収納する手段が採られている。 その場合、 I Cなどで用いられている樹脂封 止手段では、 表面波を励起し伝搬するトランスデューサ部を樹脂が覆ってしまう ため適用できず、 通常はメタルパッケージあるいはセラミックパッケージを用い た気密性封止構造と呼ばれる封止手段が多用されている。
ところが、 上記のメタルパッケージやセラミックパッケージを用いた気密性封 止構造は生産性が悪く実装密度も上がらない。 これに対して、 S本国特開平 4 一 565 10号ゃ特開平 5 -55303号に開示されているフェースダウン型の弾 性表面波装置は、 トランスデューサ部およびボンディングパッド部が形成された 弾性表面波素子と、 表面に前記素子のボンディングパッド部と対応する配線パ ターンを有する基板とを、 前記素子のボンディングパッド部と前記基板の配線パ ターンとを一致させかつ前記トランスデューサ部と前記基板との間に空隙部を設 けて、 バンプ等の導電性物質を介して接合すると共に、 樹脂により被覆固定され た弾性表面波装置が提供されている。
しかしながら、 このような弾性表面波装置を製造する場合の封止樹脂としては 液状で熱硬化性のポッティング用エポキシ系榭脂等が用いられるが、 その粘性が 低いために、 樹脂の硬化前にトランスデュ一サ部の表面が前記の液状樹脂で覆わ れてしまう。 このため、 前記素子上のトランスデューサ部により発生される弾性 表面波の伝搬路を囲むよう に、 枠状の絶縁部材もしくはダムを、 樹脂により一体 被覆固定する前に形成しておかねばならないものであった。
以下、 従来の弾性表面波装置について、 図 4 6を参照して説明する。 図 4 6 ( a ) は断面図を示し、 図 4 6 ( b ) は図 4 6 ( a ) 図の線 A— Aに沿って切断 して示す図で、 枠状絶縁部材が形成された配線基板の平面図を示す。 図中、 点線 で示す 2 0 1 , 2 0 2はそれぞれ弾性表面波素子 2 0 3と導電性バンプ 2 0 4の 位置を示す。 図 4 6 ( a ) において、 配線基板 2 0 5は絶縁性基板の両表面およ び両表面に連続した端部面に導電性の配線パターン 2 0 6が形成されている。 弾 性表面波素子 2 0 3の主面にはくし歯型電極パターンからなるトランスデューサ 部 2 0 7と、 このくし歯型電極パターンに電気的に接続されており信号を供給す るための配線パターン 2 0 8が形成されている。 また、 弾性表面波素子 2 0 3の トランスデューサ部 2 0 7と配線基板 2 0 5とは空隙部 2 0 9を形成して対向す るよう に配設されている。 配線パターン 2 0 8と配線基板 2 0 5上の配線パター ン 2 0 6とは、 金( Ai) や銀( g) 等で構成された導電性のバンプ 2 0 4により 電気的に接続されている。 導電性バンプ 2 0 4による弾性表面波素子 2 0 3と配 線基板 2 0 5との接続部および弾性表面波素子 2 0 3は、 エポキシ榭脂等の樹脂 材料 2 1 0で被覆されている。 この場合の封止樹脂材料としては、 液状で熱硬化 性のエポキシ系樹脂等が用いられる。 また、 弾性表面波素子 2 0 3を取り囲む形 で榭脂 2 1 0が硬化するまでにこの樹脂が空隙部 2 0 9に流れてしまうことを防 ぐためにポリイミド榭脂等で形成された枠状の絶縁部材もしくはダム 2 1 1が設 けられている。 さらに、 弾性表面波素子 2 0 3のトランスデューサ部 2 0 7の全 部または一部が素子全体を覆う樹脂 2 1 0が配線基板 2 0 5の周縁部から外側へ 流出しないよう に配線基板 2 0 5上にポリイミド樹脂等で形成された枠状絶縁部 材もしくはダム 2 1 2が設けられている。 図 4 6 ( b ) はこのように弾性表面波 素子 2 3を配線基板に装着する前の枠状絶縁部材もしくはダム 2 1 1および
2 1 2を形成した配線基板 2 0 5の平面図である。
従って、 弾性表面波素子 2 0 3の封止用の樹脂 2 1 0は枠状絶縁部材もしくは ダム 2 1 1により阻まれて、 樹脂 2 1 0が硬化するまでに空隙部 2 0 9内に流れ 込むことはなくなり、 このため、 弾性表面波素子の表面波伝搬路に侵入すること はなく、 弾性表面波素子の表面は中空状に保持され、 特性を損なうことがない。 また、 配線基板上の周縁部に設けたダム 2 1 2により樹脂 2 1 0は配線基板
2 0 5の外側に流れ出ることはない。
しかしながら、 これら枠状の絶縁部材ゃダムの形成は、 例えば感光性ポリイミ ド榭脂等を用いたフォトリ ソグラフィ一工程により行う必要があるが、 工程が増 えるため、 生産コストが多大になり 、 弾性表面波装置の生産性が低いという 問題 点があった。
また、 枠状の絶縁部材ゃダムを形成することによって必然的に弾性表面波素子 の機能面であるトランスデューサ部の有効面積を小さく制限せねばならず、 この ため、 例えば移動体通信用弾性表面波装置として小型化が強く望まれる中、 弾性 表面波装置としての特性 · 機能を十分に発揮させることが不充分であるという問 題点があった。 また、 さらには、 本発明者らの検討によれば、 従来の液状封止榭 脂を用い、 かつ、 枠状の絶縁部材ゃダムを形成したとしても、 弾性表面波素子と これら枠状絶縁部材ゃダムの間隙から毛細管現象によりわずかに樹脂がしみこみ、 表面波伝搬路であるトランスデューサ部に達している場合があり、 このため、 生 産時の良品歩留を低下させてしまう という 問題点を新たに発見した。 発明の開示
本発明は、 かかる事情に鑑みてなされたものである。
本発明の目的は、 電子部品に搭載される素子の特性に悪影饗を与えず、 かつ容 易に樹脂封止できる電子部品おょぴその製造方法を提供することにある。
本発明の目的は、 小型化に適し、 また高密度実装に適した電子部品おょぴその 製造方法を提供することにある。
本発明は、 電子部品に搭載される素子の特性に悪影響を与えず、 かつ容易に樹 脂封止でき、 さらに、 電気的なノイズにも強く、 マーキングも容易で生産性 · 信 頼性を向上させた電子部品およびその製造方法を提供することを目的としてい る。
本発明は、 電子部品に搭載される素子の特性に悪影響を与えず、 かつ容易に樹 脂封止でき、 さらに、 樹脂硬化や熱膨張の差に起因する応力歪みを緩和し、 さら に封止による特性への好ましくない影響を低減し、 生産性 · 信頼性を向上させた 電子部品およびその製造方法を提供することを目的としている。
本発明は、 電子部品に搭載される素子の特性に悪影響を与えず、 かつ容易に樹 脂封止でき、 さらに、 接合部材の厚みによる不具合を解決し、 生産性 · 信頼性を 向上させた電子部品およびその製造方法を提供することを目的としている。 本発明は、 電子部品に搭載される素子の特性に悪影響を与えず、 かつ容易に榭 脂封止でき、 さらに、 封止した樹脂が例えば弾性表面波吸収材として働くために いっそう表面波吸収性能( 吸音効果) を向上させ、 生産性, 信頼性を向上させる ことのできる電子部品およびその製造方法を提供することを目的としている。 また、 本発明は、 外来のノイズが誘起されにくく安定的に動作する、 電磁遮蔽 効果(シールド効果) を有する電子部品およびその製造方法を提供することを目 的としている。
また、 本発明は、 高周波数領域においても外来のノイズが誘起されにくく安定 的に動作する、 電磁遮蔽効果( シールド効果) を有する電子部品およびその製造 方法を提供することを目的としている。
また、 本発明は、 1 G H z 以上の高周波数領域においても外来のノイズが誘起 されにくく安定的に動作する、 電磁遮蔽効果( シールド効果) を有する電子部品 およびその製造方法を提供することを目的としている。
また、 本発明は、 外来のノイズのエネルギーを吸収し、 安定的に動作する、 電 磁遮蔽効果(シールド効果) を有する電子部品およびその製造方法を提供するこ とを目的としている。 また、 本発明は、 熱膨張差などに起因する信頼性の低下を防止するとともに、 封止用榭脂の好ましくない浸入を防止できる電子部品およびその製造方法を提供 することを目的としている。
本発明は、 構成要素の熱膨張差を吸収でき、 応力歪みを緩和し、 熱衝繫性等の 信頼性が高い電子部品およびその製造方法を提供することを目的としている。 さらにまた、 本発明は、 機械的にも強度の信頼性が高い電子部品およびその製 造方法を提供することを目的としている。
また本発明は、 封止部材の弾性表面波素子のトランスデューサ部への浸入を防 止する弾性表面波装置およびその製造方法を提供することを目的としている。 また、 本発明は、 封止部材の特に細長い形状の弾性表面波素子のトランス デューサ部への浸入を防止するとともに強度の大きい弾性表面波装置およびその 製造方法を提供することを目的としている。
本発明は、 搭載する機能素子と、 配線基板との空隙部を有効に確保できる電子 部品およびその製造方法を提供することを目的としている。
さらに本発明は、 搭載する機能素子と、 配線基板との空隙部を有効に確保でき るとともに機能素子と配線基板との間の接合強度を充分に保て、 接続の信頼性の 高い電子部品およびその製造方法を提供することを目的としている。
本発明は、 封止部材の流れ込みを防止する枠状部材を必要とせず、 設計の自由 度の高い電子部品およびその製造方法を提供することを目的としている。
本発明は、 封止部材の流れ込みを防止する枠状部材を必要とせず、 能素子の 機能を十分に発現できる電子部品およびその製造方法を提供することを目的とし ている。
本発明は、 搭載する素子と配線基板との接合強度が大きく、 接続の信頼性が高 い電子部品およびその製造方法を提供することを目的としている。 本発明の電子部品の製造方法は、 (a)配線基板の第 1の面と機能素子の第 1の 面とを対向配置する工程と、 (b)前記配線基板の第 1の面および/または前記機 能素子の第 2の面の上方に加熱溶融型部材を配置する工程と、 (c)前記加熱溶融 型部材を加熱溶融し、 少なくとも前記配線基板と前記機能素子との間に空隙部を 残しつつ当該空隙部を封止する工程とを具備することを特徴とする。
また、 本発明の電子部品の製造方法においては、 (a)工程に先立ち、 前記配線 基板の第 1の面に前記空隙部を囲むよう に枠状部材を配置する工程をさらに有し てもよい。
また、 本発明の電子部品の製造方法においては、 (c)工程において、 前記機能 素子の第 2の面の全面を覆うように前記加熱溶融型部材を加熱溶融してもよい。 また、 本発明の電子部品の製造方法においては、 (c)工程において、 前記機能 素子の第 2の面の全部を露出しつつ前記加熱溶融型部材を加熱溶融してもよい。 また、 本発明の電子部品の製造方法においては、 (c)工程において、 前記機能 素子の第 2の面の一部を露出しつつ前記加熱溶融型部材を加熱溶融してもよい。 また、 本発明の電子部品の製造方法においては、 (a)工程において、 前記配線 基板の第 1の面と前記機能素子の第 1の面とを導電性接合部材を介して対向配置 してもよい。
また、 本発明の電子部品の製造方法においては、 前記機能素子が弾性表面波素 子であり、 (a)工程において、 前記配線基板の第 1の面の接続パターンと前記弾 性表面波素子の第 1の面の接続パターンとを導電性接合部材を介してフェースダ ゥンボンディング方式により対向配置してもよい。
また、 本発明の電子部品の製造方法においては、 前記機能素子が水晶振動子で あり、 (a)工程において、 前記配線基板の第 1の面の接続パターンと前記水晶振 動子の第 1の面の電極とを導電性接合部材を介してフェースダウンボンディング 方式により対向配置するとともに、 前記配線基板の第 1の面の配線パターンと前 記水晶振動子の第 2の面の電極とを電気的接続手段によって電気的に接続し、 ( a)工程と(b)工程との間に、 前記水晶振動子を囲繞するように囲繞部材を前記配 線基板上に配置する工程をさらに有し、 (b)工程において少なくとも前記囲繞部 材上に加熱溶融型部材を配置してもよい。
また、 本発明の電子部品の製造方法においては、 前記機能素子が圧電振動子で あり、 (a)工程において、 前記配線基板の第 1の面の接続パターンと前記圧電振 動子の第 1の面の電極とを導電性接合部材を介してフェースダウンボンディング 方式により対向配置するとともに、 前記配線基板の第 1の面の配線パタ一ンと前 記圧電振動子の第 2の面の電極とを電気的接続手段によって電気的に接続しても よい。
また、 本発明の電子部品の製造方法においては、 前記機能素子が一対の送光部 と受光部を有するフォト力ブラであり、 (a)工程において、 前記配線基板の第 1 の面の接続パターンと前記フォトカプラの各第 1の面の配線パターンとを導電性 接合部材を介してフェースダウンボンディング方式により対向配置し、 (a)工程 と(b)工程との間に、 前記フォト力ブラを囲繞するよう に囲繞部材を前記配線基 板上に配置する工程をさらに有し、 (b)工程において少なくとも前記囲繞部材上 に加熱溶融型部材を配置してもよい。
また、 本発明の電子部品の製造方法においては、 前記配線基板が光を透過する 基板であり、 前記機能素子が E P R O Mであり、 (a)工程において、 前記配線基 板の第 1の面と前記 E P R O Mの受光面とを対向配置してもよい。
また、 本発明の電子部品の製造方法においては、 前記配線基板が光を透過する 基板であり、 前記機能素子が C C Dであり、 (a)工程において、 前記配線基板の 第 1の面と前記 C C Dの受光面とを対向配置してもよい。
また、 本発明の電子部品の製造方法においては、 前記配線基板が光を透過する 基板であり 、 前記機能素子が半導体レーザであり、 (a)工程において、 前記配線 基板の第 1の面と前記半導体レーザの発光面とを対向配置してもよい。
また、 本発明の電子部品の製造方法においては、 前記配線基板が光を透過する 基板であり、 前記機能素子が発光ダイオードであり、 (a)工程において、 前記配 線基板の第 1の面と前記発光ダイオードの発光面とを対向配置してもよい。
また、 本発明の電子部品の製造方法においては、 前記機能素子がバンプを有し、
(a)工程において機能素子のバンプを配線基板に対して対向配置し、 (a)工程と
(b)工程との間に、 前記配線基板および/または前記バンプに対し赤外線を照射 しながら前記配線基板と前記機能素子とを接合する工程とを有してもよい。
また、 本発明の電子部品の製造方法においては、 前記加熱溶融型部材は樹脂で もよい。
また、 本発明の電子部品の製造方法においては、 前記加熱溶融型部材は熱硬化 性樹脂でもよい。
また、 本発明の電子部品の製造方法においては、 前記加熱溶融型部材がェポキ シ榭脂でもよい。
また、 本発明の電子部品の製造方法においては、 前記加熱溶融型部材がフエ ノール系のエポキシ樹脂でもよい。
また、 本発明の電子部品の製造方法においては、 前記加熱溶融型部材がシリ コーン樹脂でもよい。
また、 本発明の電子部品の製造方法においては、 前記加熱溶融型部材が低融点 ガラスでもよい。
また、 本発明の電子部品の製造方法においては、 前記加熱溶融型部材が
2 5 0 ° C乃至 4 0 0 ° Cの融点の低融点ガラスでもよい。
また、 本発明の電子部品の製造方法においては、 前記加熱溶融型部材が
3 2 0。 C乃至 3 5 0 ° Cの融点の低融点ガラスでもよい。
また、 本発明の電子部品の製造方法においては、 前記加熱溶融型部材が硼珪酸 鉛ガラスでもよい。
また、 本発明の電子部品の製造方法においては、 前記加熱溶融型部材が硼珪酸 鉛ガラス及び硼珪酸ビスマスガラスの少なくとも一種でもよい。
また、 本発明の電子部品の製造方法においては、 (a)工程の前に、 前記配線基 板と前記機能素子との間を仮止めする工程を有してもよい。
また、 本発明の電子部品の製造方法においては、 前記加熱溶融型部材が前記機 能素子の形状より大きく、 かつ、 前記配線基板とほぼ等しい形状を有してもよ い。
また、 本発明の電子部品の製造方法においては、 前記加熱溶融型部材は粉末原 料を冷間圧縮成形して得た材料でもよい。
また、 本発明の電子部品の製造方法においては、 加熱溶融前の前記加熟溶融型 部材の形状が、 その周辺部を垂下させた形状のものを用いてもよい。 また、 本発明の電子部品の製造方法においては、 (c)工程において、 複数の加 熱工程を含んでもよい。
また、 本発明の電子部品の製造方法においては、 前記加熱溶融型部材の加熱溶 融と、 その硬化温度が 1 0 0 〜2 0 0 ° C、 硬化時間が 2 0時間〜 2時間で実施 してもよい。
本発明の電子部品は、 第 1の面および第 2の面を有する配線基板と、 第 1の面 および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向して配置され た機能素子と、 前記配線基板の第 1の面と前記機能素子の第 1の面との間に空隙 部を残しつつ当該空隙部を封止する加熱溶融型部材とを具備することを特徴とす る。
また、 本発明の電子部品においては、 前記配線基板の第 1の面に配置され、 前 記空隙部を囲む枠状部材をさらに有してもよい。
また、 本発明の電子部品においては、 前記加熱溶融型部材が、 前記機能素子の 第 2の面の全面を覆うように配置されていてもよい。
また、 本発明の電子部品においては、 前記加熱溶融型部材が、 前記機能素子の 第 2の面の一部を覆うように配置されていてもよい。
また、 本発明の電子部品においては、 前記加熱溶融型部材が、 前記機能素子の 第 2の面の全面を露出するように配置されていてもよい。
また、 本発明の電子部品においては、 前記配線基板の第 1の面と前記機能素子 の第 1の面との間に配置された導電性接合部材をさらに有してもよい。
また、 本発明の電子部品においては、 前記機能素子が弾性表面波素子であり、 前記配線基板の第 1の面の接続パターンと前記弾性表面波素子の第 1の面の接続 パターンとの間をフェースダウンボンディング方式により接合する導電性接合部 材をさらに有してもよい。
また、 本発明の電子部品においては、 前記機能素子が水晶振動子であり、 前記 配線基板の第 1の面の接続パターンと前記水晶振動子の第 1の面の電極との間を フェースダウンボンディング方式により接合する導電性接合部材と、 前記配線基 板の第 1の面の配線パターンと前記水晶振動子の第 2の面の電極とを電気的に接 続する電気的接続手段とをさらに有してもよい。
また、 本発明の電子部品においては、 前記機能素子が圧電振動子であり、 前記 配線基板の第 1の面の接続パターンと前記圧電振動子の第 1の面の電極との間を フェースダウンボンディング方式により接合する導電性接合部材と、 前記配線基 板の第 1の面の配線パターンと前記圧電振動子の第 2の面の電極とを電気的に接 続する電気的接続手段とをさらに有してもよい。
また、 本発明の電子部品においては、 前記機能素子が一対の送光部と受光部を 有するフォト力ブラであり 、 前記配線基板の第 1の面の接続パターンと前記フォ ト力ブラの各第 1の面の配線パターンとの間をフェースダウンボンディング方式 により接合する導電性接合部材と、 前記配線基板の第 1の面上に配置され、 前記 フォト力ブラを囲繞する囲繞部材とをさらに有し、 前記加熱溶融型部材が少なく とも前記囲繞部材上に配置されていてもよい。
また、 本発明の電子部品においては、 前記配線基板が光を透過する基板であり、 前記機能素子がその第 1の面が受光面の E P R O Mとしてもよい。
また、 本発明の電子部品においては、 前記配線基板が光を透過する基板であり、 前記機能素子がその第 1の面が C C Dとしてもよい。
また、 本発明の電子部品においては、 前記配線基板が光を透過する基板であり、 前記機能素子がその第 1の面が発光面の半導体レーザとしてもよい。
また、 本発明の電子部品においては、 前記配線基板が光を透過する基板であり、 前記機能素子がその第 1の面が発光面の発光ダイオードとしてもよい。
また、 本発明の電子部品においては、 前記加熱溶融型部材が樹脂であってもよ い。
また、 本発明の電子部品においては、 前記加熱溶融型部材が熱硬化性樹脂で あってもよい。
また、 本発明の電子部品においては、 前記加熱溶融型部材がエポキシ樹脂で あってもよい。
また、 本発明の電子部品においては、 前記加熱溶融型部材がフエノール系のェ ポキシ樹脂であってもよい。 また、 本発明の電子部品においては、 前記加熱溶融型部材がシリコーン樹脂で あってもよい。
また、 本発明の電子部品においては、 前記加熱溶融型部材は低融点ガラスで あってもよい。
また、 本発明の電子部品においては、 前記加熱溶融型部材が 2 5 0 °
C〜4 0 0 ° Cの融点の低融点ガラスであってもよい。
また、 本発明の電子部品においては、 前記加熱溶融型部材が 3 2 0 ° C乃至 3 5 0 ° Cの融点の低融点ガラスであってもよい。
また、 本発明の電子部品においては、 前記加熱溶融型部材が硼珪酸鉛ガラスで あってもよい。
また、 本発明の電子部品においては、 前記加熱溶融型部材が硼珪酸鉛ガラス及 び硼珪酸ビスマスガラスの少なくとも一種であってもよい。
また、 本発明の電子部品においては、 前記配線基板が、 第 1の面に形成された 第 1の配線パターンと、 第 2の面に形成された第 2の配線パターンと、 当該配線 基板の端面に形成され前記第 1の配線パターンと前記第 2の配線パターンとを接 続する第 3の配線パターンとを有していてもよい。
本発明の電子部品は、 第 1の面および第 2の面を有し、 少なくとも第 1の面に 配線パターンが形成された配線基板と、 第 1の面および第 2の面を有し、 第 1の 面が前記配線基板の第 1の面と対向して配置された機能素子と、 前記機能素子の 第 2の面に形成された導電性膜と、 前記導電性膜と前記配線基板の配線バターン との間を導通する導電物質と、 前記配線基板の第 1の面と前記機能素子の第 1の 面との間に空隙部を残しつつ当該空隙部を封止する封止部材とを具備することを 特徴とする。
また本発明の電子部品は、 第 1の面および第 2の面を有し、 少なくとも第 1の 面に配線パターンが形成された配線基板と、 第 1の面および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向して配置された機能素子と、 前記機能素 子の第 2の面に形成された金属性箔と、 前記金属性箔と前記配線基板の配線パ ターンとの間を導通する導電手段と、 前記配線基板の第 1の面と前記機能素子の 第 1 の面との間に空隙部を残しつつ当該空隙部を封止する封止部材とを具備する ことを特徴とする。
また本発明の電子部品は、 第 1の面および第 2の面を有し、 少なくとも第 1の 面に配線パターンが形成された配線基板と、 第 1の面および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向して配置された機能素子と、 前記機能素 子の第 2の面に形成された導電性膜と、 前記導電性膜と前記配線基板の配線パ ターンとの間を導通する磁性体を分散させた樹脂と、 前記配線基板の第 1の面と 前記機能素子の第 1の面との間に空隙部を残しつつ当該空隙部を封止する封止部 材とを具備することを特徴とする。
また本発明の電子部品は、 第 1の面および第 2の面を有する配線基板と、 第 1 の面および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向して配置 された機能素子と、 金属粉末を分散させた樹脂からなり、 前記配線基板の第 1の 面と前記機能素子の第 1の面との間に空隙部を残しつつ当該空隙部を封止する封 止部材とを具備することを特徴とする。
また本発明の電子部品は、 第 1の面および第 2の面を有する配線基板と、 第 1 の面および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向して配置 された機能素子と、 磁性体粉末を分散させた樹脂からなり、 前記配線基板の第 1 の面と前記機能素子の第 1の面との間に空隙部を残しつつ当該空隙部を封止する 封止部材とを具備することを特徴とする。
また本発明の電子部品は、 第 1の面おょぴ第 2の面を有する配線基板と、 第 1 の面および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向して配置 された機能素子と、 電波吸収体材料を分散させた樹脂からなり、 前記配線基板の 第 1の面と前記機能素子の第 1の面との間に空隙部を残しつつ当該空隙部を封止 する封止部材とを具備することを特徴とする。
また本発明の電子部品は、 第 1の面おょぴ第 2の面を有する配線基板と、 第 1 の面および第 2の面を有し、 第 1 の面が前記配線基板の第 1の面と対向して配置 された機能素子と、 導電性フィラーを含有する樹脂からなり、 前記配線基板の第 1の面と前記機能素子の第 1の面との間に空隙部を残しつつ当該空隙部を封止す る封止部材とを具備することを特徴とする。
また本発明の電子部品は、 第 1の面および第 2の面を有し、 2個所の端面にそ れぞれ凹部が形成された配線基板と、 第 1の面および第 2の面を有し、 第 1の面 が前記配線基板の第 1の面と対向して配置された機能素子と、 前記配線基板の第 1の面と前記機能素子の第 1の面との間に空隙部を残しつつ当該空隙部を封止す る封止部材と、 前記配線基板に設けられた各凹部に係合する一对の凸部が 2本の 脚部に互いに対向するよう に設けられ、 前記配線基板の第 1の面および前記機能 素子を覆う金属板とを具備することを特徴とする。
また本発明の電子部品は、 第 1の面および第 2の面を有し、 2個所の端面にそ れぞれ凹部が形成され、 凹部の内面に配線パターンが形成された配線基板と、 第 1の面おょぴ第 2の面を有し、 第 1 の面が前記配線基板の第 1 の面と対向して配 置された機能素子と、 前記配線基板の第 1の面と前記機能素子の第 1の面との間 に空隙部を残しつつ当該空隙部を封止する封止部材と、 前記配線基板に設けられ た各凹部に係合するとともに凹部内面の各配線バターンに電気的に導通する一対 の凸部が 2本の脚部に互いに対向するよう に設けられ、 前記配線基板の第 1の面 および前記機能素子を覆う金属板とを具備することを特徴とする。
また本発明の電子部品は、 第 1の面および第 2の面を有し、 2個所の端面にそ れぞれ第 1の面側が上段とされた段付き部が形成された配線基板と、 第 1の面お よび第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向して配置された 機能素子と、 前記配線基板の第 1の面と前記機能素子の第 1の面との間に空隙部 を残しつつ当該空隙部を封止する封止部材と、 前記配線基板に設けられた各段付 き部に係合する一対の突出部が 2本の脚部に互いに対向するように設けられ、 前 記配線基板の第 1の面および前記機能素子を覆う金属板とを具備することを特徴 とする。
また本発明の電子部品は、 第 1の面おょぴ第 2の面を有し、 2個所の端面にそ れぞれ第 1の面側が上段とされ、 下段面に配線パターンが設けられたた段付き部 が形成された配線基板と、 第 1の面おょぴ第 2の面を有し、 第 1の面が前記配線 基板の第 1の面と対向して配置された機能素子と、 前記配線基板の第 1の面と前 記機能素子の第 1の面との間に空隙部を残しつつ当該空隙部を封止する封止部材 と、 前記配線基板に設けられた各段付き部に係合するととも下段部の各配線パ ターンに電気的に接続された一対の突出部が 2本の脚部に互いに対向するように 設けられ、 前記配線基板の第 1の面および前記機能素子を覆う金属板とを具備す ることを特徴とする。
また本発明の電子部品は、 第 1の面および第 2の面を有する配線基板と、 第 1 の面および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向して配置 された機能素子と、 前記機能素子の第 2の面に配置された緩衝材と、 前記配線基 板の第 1の面と前記機能素子の第 1の面との間に空隙部を残しつつ当該空隙部を 封止する封止部材とを具備することを特徴とする。
また本発明の電子部品は、 第 1の面おょぴ第 2の面を有する配線基板と、 第 1 の面および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向して配置 された機能素子と、 ガラスフィラーを含有する樹脂からなり、 前記配線基板の第 1の面と前記機能素子の第 1の面との間に空隙部を残しつつ当該空隙部を封止す る封止部材とを具備することを特徴とする。
また本発明の電子部品は、 第 1の面および第 2の面を有し、 第 1の面に配線パ ターンが形成された配線基板と、 第 1の面および第 2の面を有し、 第 1の面に配 線パターンが形成され、 第 1の面が前記配線基板の第 1の面と対向して配置され た機能素子と、 前記機能素子の中央部近傍領域に集中して配置され、 前記配線基 板の配線バターンと前記機能素子の配線バタ一ンとを電気的に接続する接合部材 と、 前記配線基板の第 1の面と前記機能素子の第 1の面との間に空隙部を残しつ つ当該空隙部を封止する封止部材とを具備することを特徴とする。
また本発明の電子部品は、 第 1の面および第 2の面を有し、 第 1の面に配線パ ターンが形成された配線基板と、 第 1の面および第 2の面を有し、 第 1の面に配 線パターンが形成され、 第 1の面が前記配線基板の第 1の面と対向して配置され た機能素子と、 前記機能素子の中央部近傍領域に集中して配置され、 前記配線基 板の配線バターンと前記機能素子の配線バターンとを電気的に接続する第 1の接 合部材と、 前記機能素子の周辺部領域に配置され、 前記配線基板の配線パターン と前記機能素子の配線バターンとの電気的接続に預からない第 2の接合部材と、 前記配線基板の第 1の面と前記機能素子の第 1の面との間に空隙部を残しつつ当 該空隙部を封止する封止部材とを具備することを特徴とする。
また本発明の電子部品は、 第 1の面および第 2の面を有し、 第 1の面に第 1の 厚さの導電材料からなる第 1の配線パターンと第 1の厚さよりも厚い第 2の厚さ の導電材料からなる第 2の配線パターンとが形成された配線基板と、 第 1 の面お よび第 2の面を有し、 第 1の面に配線パターンが形成され、 第 1の面が前記配線 基板の第 1の面と対向して配置された機能素子と、 前記配線基板の第 2の配線パ ターンと前記機能素子の配線バターンとの間に配置された導電性接合部材と、 前 記配線基板の第 1の面と前記機能素子の第 1の面との間に空隙部を残しつつ当該 空隙部を封止する封止部材とを具備することを特徴とする。
また本発明の電子部品は、 第 1の面および第 2の面を有し、 第 1の厚さの基板 材料からなる第 1の領域と第 1の厚さよりも厚い第 2の厚さの基板材料からなる 第 2の領域とを有し、 第 1の面の第 1の領域および第 2の領域に配線パターンと が形成された配線基板と、 第 1 の面および第 2の面を有し、 第 1 の面に配線パ ターンが形成され、 第 1の面が前記配線基板の第 1の面と対向して配置された機 能素子と、 前記配線基板の第 2の領域の配線パターンと前記機能素子の配線パ ターンとの間に配置された導電性接合部材と、 前記配線基板の第 1の面と前記機 能素子の第 1の面との間に空隙部を残しつつ当該空隙部を封止する封止部材とを 具備することを特徴とする。
また本発明の電子部品は、 第 1の面および第 2の面を有し、 第 1の面に配線パ ターンが形成された配線基板と、 第 1の面および第 2の面を有し、 第 1の面に配 線パターンが形成され、 第 1の面が前記配線基板の第 1の面と対向して配置され た機能素子と、 前記配線基板の第 1の面の配線バターンと前記機能素子の第 1の面 の配線パターンとの間に配置され、 これら配線パターン間の間隔に応じてバンプ を積み重ねた導電性接合部材と、 前記配線基板の第 1の面と前記機能素子の第 1 の面との間に空隙部を残しつつ当該空隙部を封止する封止部材とを具備すること を特徴とする。 また本発明の電子部品は、 第 1 の面おょぴ第 2の面を有し、 第 1 の面に配線パ ターンが形成された配線基板と、 第 1の面および第 2の面を有し、 第 1の面に配 線パターンおよび吸音剤が形成され、 第 1の面が前記配線基板の第 1の面と対向 して配置された弾性表面波素子である機能素子と、 前記配線基板の配線パターン と前記機能素子の配線パターンとの間に配置され、 前記吸音剤の厚さを超える高 さの導電性接合部材と、 前記配線基板の第 1 の面と前記機能素子の第 1 の面との 間に空隙部を残しつつ当該空隙部を封止する封止部材とを具備することを特徴と する。
また本発明の電子部品は、 第 1の面および第 2の面を有し、 第 1の面に配線パ ターンが形成された配線基板と、 第 1の面および第 2の面を有し、 第 1の面に配 線パターンが形成され、 第 2の面に吸音剤が形成され、 第 1の面が前記配線基板 の第 1の面と対向して配置された弾性表面波素子である機能素子と、 前記配線基 板の配線パターンと前記機能素子の配線バターンとの間に配置された導電性接合 部材と、 前記配線基板の第 1の面と前記機能素子の第 1の面との間に空隙部を残 しつつ当該空隙部を封止する封止部材とを具備することを特徴とする。
また本発明の電子部品は、 第 1の面および第 2の面を有し、 第 1の面に配線パ ターンが形成された配線基板と、 第 1の面および第 2の面を有し、 第 1の面に配 線パターンが形成され、 第 2の面に吸音剤が形成され、 第 1の面が前記配線基板 の第 1の面と対向して配置された弾性表面波素子である機能素子と、 前記配線基 板の配線バターンと前記機能素子の配線バターンとの間に配置された導電性接合 部材と、 前記機能素子の第 2の面に配置された金属性箔と、 前記配線基板の第 1 の面と前記機能素子の第 1の面との間に空隙部を残しつつ当該空隙部を封止する 封止部材とを具備することを特徴とする。
本発明の電子部品は、 前記封止部材として加熱溶融型部材を用いるようにして もよい。
本発明の電子部品は、 前記封止部材として熱硬化性部材を用いるよう にしても よい。
また本発明の電子部品は、 前記配線基板の第 1の面に配置され、 前記空隙部-を 囲む枠状部材をさらに有するようにしてもよい。
また本発明の電子部品は、 前記封止部材が、 前記機能素子の第 2の面の全面を 覆うように配置するよう にしてもよい。
また本発明の電子部品は、 前記封止部材が、 前記機能素子の第 2の面の一部を 覆うように配置するよう にしてもよい。
また本発明の電子部品は、 前記封止部材が、 前記機能素子の第 2の面の全面を 露出するよう に配置するよう にしてもよい。
また本発明の電子部品は、 前記配線基板の第 1の面と前記機能素子の第 1の面 との間に配置された導電性接合部材をさらに有するよう にしてもよい。
また本発明の電子部品は、 前記機能素子が弾性表面波素子であり、 前記配線基 板の第 1の面の接続パターンと前記弾性表面波素子の第 1の面の接続パターンと の間をフェースダウンボンディング方式により接合する導電性接合部材をさらに 有するようにしてもよい。
また本発明の電子部品は、 前記機能素子が水晶振動子であり、 前記配線基板の 第 1の面の接続パターンと前記水晶振動子の第 1の面の電極との間をフエ一スダ ゥンボンディング方式により接合する導電性接合部材と、 前記配線基板の第 1の 面の配線パターンと前記水晶振動子の第 2の面の電極とを電気的に接続する電気 的接続手段とをさらに有するよう にしてもよい。
また本発明の電子部品は、 前記機能素子が圧電振動子であり 、 前記配線基板の 第 1の面の接続パターンと前記圧電振動子の第 1の面の電極との間をフェースダ ゥンボンディング方式により接合する導電性接合部材と、 前記配線基板の第 1の 面の配線パターンと前記圧電振動子の第 2の面の電極とを電気的に接続する電気 的接続手段とをさらに有するようにしてもよい。
また本発明の電子部品は、 前記機能素子が一対の送光部と受光部を有するフォ ト力ブラであり、 前記配線基板の第 1の面の接続パターンと前記フォト力ブラの 各第 1の面の配線パターンとの間をフェースダウンボンディング方式により接合 する導電性接合部材と、 前記配線基板の第 1の面上に配置され、 前記フォトカブ ラを囲繞する囲繞部材とをさらに有し、 前記封止部材が少なくとも前記囲繞部材 上に配置するよう にしてもよい。
また本発明の電子部品は、 前記配線基板が光を透過する基板であり、 前記機能 素子としてその第 1の面が受光面である E P R O Mを用いるよう にしてもよい。 また本発明の電子部品は、 前記配線基板が光を透過する基板であり、 前記機能 素子としてその第 1の面が受光面である C C Dを用いるようにしてもよい。 また本発明の電子部品は、 前記配線基板が光を透過する基板であり、 前記機能 素子としてその第 1の面が発光面である半導体レーザを用いるよう にしてもよ い。
また本発明の電子部品は、 前記配線基板が光を透過する基板であり、 前記機能 素子としてその第 1の面が発光面である発光ダイオードを用いるようにしてもよ い。
本発明の電子部品の製造方法は、 配線基板の第 1の面と機能素子の第 1の面と を対向配置する工程と、 前記機能素子の第 2の面に導電性膜を形成する工程と、 前記導電性膜と前記配線基板の第 1の面の配線パターンとを導電物質により導通 する工程と、 少なくとも前記配線基板と前記機能素子との間に空隙部を残しつつ 当該空隙部を封止部材により封止する工程とを具備することを特徴とする。 また本発明の電子部品の製造方法は、 配線基板の第 1の面と機能素子の第 1の 面とを対向配置する工程と、 前記機能素子の第 2の面に金属性箔を配置する工程 と、 前記金属性箔と前記配線基板の第 1の面の配線パターンとを導電手段により 導通する工程と、 少なくとも前記配線基板と前記機能素子との間に空隙部を残し つつ当該空隙部を封止部材により封止する工程とを具備することを特徴とする。 また本発明の電子部品の製造方法は、 配線基板の第 1の面と機能素子の第 1の 面とを対向配置する工程と、 前記機能素子の第 2の面に導電性膜を形成する工程 と、 前記導電性膜と前記配線基板の第 1の面の配線パターンとを磁性体を分散さ せた樹脂により導通する工程と、 少なくとも前記配線基板と前記機能素子との間 に空隙部を残しつつ当該空隙部を封止部材により封止する工程とを具備すること を特徴とする。
また本発明の電子部品の製造方法は、 配線基板の第 1の面と機能素子の第 1-の 面とを対向配置する工程と、 少なくとも前記配線基板と前記機能素子との間に空 隙部を残しつつ当該空隙部を金属粉末を分散させた樹脂からなる封止部材により 封止する工程とを具備することを特徴とする。
また本発明の電子部品の製造方法は、 配線基板の第 1の面と機能素子の第 1の 面とを対向配置する工程と、 少なくとも前記配線基板と前記機能素子との間に空 隙部を残しつつ当該空隙部を磁性体粉末を分散させた樹脂からなる封止部材によ り封止する工程とを具備することを特徴とする。
また本発明の電子部品の製造方法は、 配線基板の第 1の面と機能素子の第 1の 面とを対向配置する工程と、 少なくとも前記配線基板と前記機能素子との間に空 隙部を残しつつ当該空隙部を電波吸収体材料を分散させた樹脂からなる封止部材 により封止する工程とを具備することを特徴とする。
また本発明の電子部品の製造方法は、 配線基板の第 1の面と機能素子の第 1の 面とを対向配置する工程と、 少なくとも前記配線基板と前記機能素子との間に空 隙部を残しつつ当該空隙部を導電性フィラーを含有する榭脂からなる封止部材に より封止する工程とを具備することを特徴とする。
また本発明の電子部品の製造方法は、 配線基板の第 1の面と機能素子の第 1の 面とを対向配置する工程と、 少なくとも前記配線基板と前記機能素子との間に空 隙部を残しつつ当該空隙部を封止部材により封止する工程と、 前記配線基板の 2 個所の端面に設けられた各凹部に金属板の 2本の脚部に対向するように設けられ た一対の凸部をそれぞれ係合し、 前記金属板により前記配線基板の第 1の面およ び前記機能 子を覆う工程とを具備することを特徴とする。
また本発明の電子部品の製造方法は、 配線基板の第 1の面と機能素子の第 1の 面とを対向配置する工程と、 少なくとも前記配線基板と前記機能素子との間に空 隙部を残しつつ当該空隙部を封止部材により封止する工程と、 前記配線基板の 2 個所の端面に設けられた各凹部に金属板の 2本の脚部に対向するように設けられ た一対の凸部をそれぞれ係合するとともに、 前記凹部の内面に設けられた配線パ ターンと前記凸部の先端に設けられた配線バターンとを電気的に接続し、 前記金 属板により前記配線基板の第 1の面おょぴ前記機能素子を覆う 工程とを具備する ことを特徴とする。
また本発明の電子部品の製造方法は、 配線基板の第 1の面と機能素子の第 1の 面とを対向配置する工程と、 少なくとも前記配線基板と前記機能素子との間に空 隙部を残しつつ当該空隙部を封止部材により封止する工程と、 前記配線基板の 2 個所の端面に第 1の面側が上段となるよう に設けられた各段付き部に金属板の 2 本の脚部に対向するよう に設けられた一対の突出部をそれぞれ係合し、 前記金属 板により前記配線基板の第 1の面およぴ前記機能素子を覆う工程とを具備するこ とを特徴とする。
また本発明の電子部品の製造方法は、 配線基板の第 1の面と機能素子の第 1の 面とを対向配置する工程と、 少なくとも前記配線基板と前記機能素子との間に空 隙部を残しつつ当該空隙部を封止部材により封止する工程と、 前記配線基板の 2 個所の端面に第 1の面側が上段となるように設けられた各段付き部に金属板の 2 本の脚部に対向するよう に設けられた一対の突出部をそれぞれ係合するとともに、 前記端面の下段面に設けられた配線バターンと前記突出部の先端に設けられた配 線パターンとを電気的に接続し、 前記金属板により前記配線基板の第 1の面およ び前記機能素子を覆う工程とを具備することを特徴とする。
また本発明の電子部品の製造方法は、 配線基板の第 1の面と機能素子の第 1の 面とを対向配置する工程と、 前記機能素子の第 2の面に緩衝材を配置する工程と、 少なくとも前記配線基板と前記機能素子との間に空隙部を残しつつ当該空隙部を 封止部材により封止する工程とを具備することを特徴とする。
また本発明の電子部品の製造方法は、 配線基板の第 1の面と機能素子の第 1の 面とを対向配置する工程と、 少なくとも前記配線基板と前記機能素子との間に空 隙部を残しつつ当該空隙部をガラスフィラーを含有する樹脂からなる封止部材に より封止する工程とを具備することを特徴とする。
また本発明の電子部品の製造方法は、 配線基板の配線バターンと機能素子の配 線バタ一ンとを電気的に接続する接合部材を機能素子の中央部近傍領域に配置し つつ、 配線基板の第 1の面と機能素子の第 1の面とを対向配置する工程と、 少な くとも前記配線基板と前記機能素子との間に空隙部を残しつつ当該空隙部を封止 部材により封止する工程とを具備することを特徴とする。
また本発明の電子部品の製造方法は、 配線基板の配線パターンと機能素子の配 線パターンとを電気的に接続する第 1の接合部材を機能素子の中央部近傍領域に 集中的に配置し、 かつ配線基板の配線バターンと機能素子の配線バタ一ンとの電 気的接続に預からない第 2の接合部材を機能素子の周辺部領域に配置しつつ、 配 線基板の第 1の面と機能素子の第 1の面とを対向配置する工程と、 少なくとも前 記配線基板と前記機能素子との間に空隙部を残しつつ当該空隙部を封止部材によ り封止する工程とを具備することを特徴とする。
また本発明の電子部品の製造方法は、 第 1の面に第 1の厚さの導電材料からな る第 1の配線パターンと第 1の厚さよりも厚い第 2の厚さの導電材料からなる第 2の配線パターンとが形成された配線基板の第 1の面と機能素子の第 1の面とを、 前記配線基板の第 2の配線パターンと前記機能素子の配線バターンとの間に導電 性接合部材を介在させつつ対向配置する工程と、 少なくとも前記配線基板と前記 機能素子との間に空隙部を残しつつ当該空隙部を封止部材により封止する工程と を具備することを特徴とする。
また本発明の電子部品の製造方法は、 第 1の厚さの基板材料からなる第 1の領 域と第 1の厚さよりも厚い第 2の厚さの基板材料からなる第 2の領域とを有し、 第 1の面の第 1の領域および第 2の領域に配線パターンとが形成された配線基板 の第 1の面と機能素子の第 1の面とを、 前記配線基板の第 2の領域の配線パター ンと前記機能素子の配線バターンとの間に導電性接合部材を介在させつつ対向配 置する工程と、 少なくとも前記配線基板と前記機能素子との間に空隙部を残しつ つ当該空隙部を封止部材により封止する工程とを具備することを特徴とする。 また本発明の電子部品の製造方法は、 配線基板の第 1の面と機能素子の第 1の 面とを、 前記配線基板の第 1の面の配線パターンと前記機能素子の第 1の面の配 線パターンとの間の間隔に応じてバンプを積み重ねた導電性接合部材を介在させ つつ対向配置する工程と、 少なくとも前記配線基板と前記機能素子との間に空隙 部を残しつつ当該空隙部を封止部材により封止する工程とを具備することを特徴 とする。 また本発明の電子部品の製造方法は、 配線基板の第 1の面と第 1の面に吸音剤 が形成された弾性表面波素子である機能素子の第 1の面とを、 前記吸音剤の厚さ を超える高さの導電性接合部材を介在させつつ対向配置する工程と、 少なくとも 前記配線基板と前記機能素子との間に空隙部を残しつつ当該空隙部を封止部材に より封止する工程とを具備することを特徴とする。
また本発明の電子部品の製造方法は、 配線基板の第 1の面と弾性表面波素子で ある機能素子の第 1の面とを、 導電性接合部材を介在させつつ対向配置する工程 と、 前記機能素子の第 2の面に吸音剤を形成する工程と、 少なくとも前記配線基 板と前記機能素子との間に空隙部を残しつつ当該空隙部を封止部材により封止す る工程とを具備することを特徴とする。
また本発明の電子部品の製造方法は、 配線基板の第 1の面と弾性表面波素子で ある機能素子の第 1の面とを、 導電性接合部材を介在させつつ対向配置する工程 と、 前記機能素子の第 2の面に吸音剤を形成する工程と、 前記機能素子の第 2の 面に金属性箔を配置する工程と、 少なくとも前記配線基板と前記機能素子との間 に空隙部を残しつつ当該空隙部を封止部材により封止する工程とを具備すること を特徴とする。
また本発明の電子部品の製造方法は、 前記封止部材が加熱溶融型部材からなり、 前記封止工程が、 前記配線基板の第 1の面および Zまたは前記機能素子の第 2の 面の上方に加熱溶融型部材を配置する工程と、 前記加熱溶融型部材を加熱溶融し、 少なくとも前記配線基板と前記機能素子との間に空隙部を残しつつ当該空隙部を 封止する工程とを具備するよう にしてもよい。
また本発明の電子部品の製造方法は、 前記封止部材が熱硬化性部材からなり、 前記封止工程が、 前記配線基板の第 1の面および Zまたは前記機能素子の第 2の 面の上方より液状の前記熱硬化性部材を所定の位置に流し込む工程と、 前記流し 込んだ熱硬化性部材を加熱硬化し、 少なくとも前記配線基板と前記機能素子との 間に空隙部を残しつつ当該空隙部を封止する工程とを具備するよう にしてもよ い。
また本発明の電子部品の製造方法は、 前記封止部材が熱硬化性部材からなり、- 前記封止工程が、 前記配線基板の第 1の面おょぴ Zまたは前記機能素子の第 2の 面の上方より液状の前記熱硬化性部材を所定の位置に滴下しつつ加熱硬化し、 少 なくとも前記配線基板と前記機能素子との間に空隙部を残しつつ当該空隙部を封 止する工程とを具備するよう にしてもよい。
また本発明の電子部品の製造方法は、 対向配置工程に先立ち、 前記配線基板の 第 1の面に前記空隙部を囲むよう に枠状部材を配置する工程をさらに有するよう にしてもよい。
また本発明の電子部品の製造方法は、 封止工程において、 前記機能素子の第 2 の面の全面を覆うように前記封止部材を形成するようにしてもよい。
また本発明の電子部品の製造方法は、 封止工程において、 前記機能素子の第 2 の面の全部を露出しつつ前記封止部材を形成するよう にしてもよい。
また本発明の電子部品の製造方法は、 封止工程において、 前記機能素子の第 2 の面の一部を露出しつつ前記封止部材を形成するよう にしてもよい。
また本発明の電子部品の製造方法は、 対向配置工程において、 前記配線基板の 第 1の面と前記機能素子の第 1の面とを導電性接合部材を介して対向配置するよ うにしてもよい。
また本発明の電子部品の製造方法は、 前記機能素子が弾性表面波素子であり、 対向配置工程において、 前記配線基板の第 1の面の接続パターンと前記弾性表面 波素子の第 1の面の接続パターンとを導電性接合部材を介してフェースダウンポ ンディング方式により対向配置するようにしてもよい。
また本発明の電子部品の製造方法は、 前記機能素子が水晶振動子であり、 対向 配置工程において、 前記配線基板の第 1の面の接続パターンと前記水晶振動子の 第 1の面の電極とを導電性接合部材を介してフェースダウンボンディング方式に より対向配置するとともに、 前記配線基板の第 1の面の配線パターンと前記水晶 振動子の第 2の面の電極とを電気的接続手段によって電気的に接続し、 その後、 前記水晶振動子を囲繞するように囲繞部材を前記配線基板上に配置する工程をさ らに有するするよう にしてもよい。
また本発明の電子部品の製造方法は、 前記機能素子が圧電振動子であり、 対向 配置工程において、 前記配線基板の第 1の面の接続パターンと前記圧電振動子の 第 1の面の電極とを導電性接合部材を介してフェースダウンボンディング方式に より対向配置するとともに、 前記配線基板の第 1の面の配線パターンと前記圧電 振動子の第 2の面の電極とを電気的接続手段によって電気的に接続するよう にし てもよい。
また本発明の電子部品の製造方法は、 前記機能素子が一対の送光部と受光部を 有するフォト力ブラであり、 対向配置工程において、 前記配線基板の第 1の面の 接続パターンと前記フォト力ブラの各第 1の面の配線パターンとを導電性接合部 材を介してフェースダウンボンディング方式により対向配置し、 その後、 前記 フォト力ブラを囲繞するよう に囲繞部材を前記配線基板上に配置する工程をさら に有するようにしてもよい。
また本発明の電子部品の製造方法は、 前記配線基板が光を透過する基板であり、 前記機能素子が E P R O Mであり、 対向配置工程において、 前記配線基板の第 1 の面と前記 E P R O Mの受光面とを対向配置するよう にしてもよい。
また本発明の電子部品の製造方法は、 前記配線基板が光を透過する基板であり、 前記機能素子が C C Dであり、 対向配置工程において、 前記配線基板の第 1の面 と前記 C C Dの受光面とを対向配置するようにしてもよい。
また本発明の電子部品の製造方法は、 前記配線基板が光を透過する基板であ り、 前記機能素子が半導体レーザであり、 対向配置工程において、 前記配線基板 の第 1の面と前記半導体レーザの発光面とを対向配置するようにしてもよい。 また本発明の電子部品の製造方法は、 前記配線基板が光を透過する基板であり、 前記機能素子が発光ダイオードであり、 対向配置工程において、 前記配線基板の 第 1の面と前記発光ダイオードの発光面とを対向配置するよう にしてもよい。 また本発明の電子部品の製造方法は、 前記機能素子がバンプを有し、 対向配置 工程において機能素子のバンプを配線基板に対して対向配置し、 その後、 前記配 線基板および/または前記バンプに対し赤外線を照射しながら前記配線基板と前 記機能素子とを接合する工程をさらに有するようにしてもよい。
本発明に係る電子部品の製造方法は、 複数個の配線基板の集合体に対し所定位 置に複数の機能素子を位置決めする工程と、 前記機能素子と前記配線基板の集合 体とを導電性接合部材を介して所定間隔を維持して組立てる工程と、 前記配線基 板および前記機能素子の集合体に対し加熱溶融型部材を配置する工程と、 前記配 線基板と前記機能素子との間に空隙部を残しつつ前記加熱溶融型部材を加熱溶融 する工程と、 前記複数個の配線基板の集合体を前記加熱溶融型部材とともに分割 して個々の電子部品を得る工程とを具備することを特徴とする。
本発明に係る電子部品の製造方法は、 配線基板に対し所定位置に機能素子を位 置決めする工程と、 前記機能素子と前記配線基板とを導電性接合部材を介して所 定間隔を維持して組み立てる工程と、 前記配線基板に対し加熱溶融型部材を配置 する工程と、 前記配線基板と前記機能素子との間に空隙部を残しつつ前記加熱溶 融型部材を加熱溶融する工程とを具備し、 前記加熱溶融型部材が加熱溶融型薄片 状榭脂であって、 前記薄片状樹脂の加熱溶融、 硬化に係る工程は少なくとも、 ( 1 ) 薄片状樹脂の加熱溶融により樹脂形状を決める段階、 ( 2 ) 樹脂形状を維 持しながらゲル化状態に移行する段階、 ( 3 ) 榭脂の硬化を行う段階、 を含み、 かつ( 2 ) の工程温度が( 1 ) または( 3 ) より低いことを特徴とする。
本発明に係る電子部品の製造方法は、 配線基板に対し所定位置に弾性表面波素 子を位置決めする工程と、 前記弾性表面波素子と前記配線基板とを導電性接合部 材を介して所定間隔を維持して組み立てる工程と、 前記配線基板に対し加熱溶融 型部材を配置する工程と、 前記配線基板と前記弾性表面波素子との間に空隙部を 残しつつ前記加熱溶融型部材を加熱溶融する工程とを具備し、 前記弾性表面波素 子を構成する圧電体から成るゥェハーの一主面上にトランスデューサ部およびこ のトランスデューサ部に電気的に接続する配線パターンを複数個形成し、 該配線 パターン上の一部に複数の接合部材を形成した後、 切断して個々の弾性表面波素 子を形成する際に、 切断時のブレードの速さが毎秒 10ran¾上 50mn¾下であること を特徴とする。
本発明に係る電子部品の製造方法は、 配線基板に対し所定位置に弾性表面波素 子を位笸決めする工程と、 前記弾性表面波素子と前記配線基板とを導電性接合部 材を介して所定間隔を維持して組み立てる工程と、 前記配線基板に対し加熱溶融 型部材を配置する工程と、 前記配線基板と前記弾性表面波素子との間に空隙部を 残しつつ前記加熱溶融型部材を加熱溶融する工程とを具備し、 前記弾性表面波素 子を構成する圧電体から成るゥェハーの一主面上にトランスデューサ部およびこ のトランスデューサ部に電気的に接続する配線パターンを複数個形成し、 該配線 パターン上の一部に複数の接合部材を形成した後、 切断して個々の弾性表面波素 子を形成する際に、 切断時に使用する水の比抵抗が 0 . 0 1 M Q c m以上
1 0 0 M O c m以下であることを特徴とする。
本発明に係る電子部品の製造方法は、 配線基板に対し所定位置に機能素子を位 置決めする工程と、 前記機能素子と前記配線基板とを導電性接合部材を介して所 定間隔を維持して組み立てる工程と、 前記配線基板に対し加熱溶融型部材を配置 する工程と、 前記配線基板と前記機能素子との間に空隙部を残しつつ前記加熱溶 融型部材を加熱溶融する工程とを具備し、 前記導電性接合部材を前記配線基板の 少なくとも一主面に形成された配線パターン上に形成した後、 前記機能素子と前 記配線基板とを該導電性接合部材を介して所定間隔を維持して組み立てることを 特徴とする。
本発明の機能素子は基板上にフェースダウンボンディング方式により搭載され る機能素子において、 前記基板と電気的に接続される複数の接続端子が、 当該機 能素子の一主面のほぼ中央に集中して配置されていることを特徴とする。
また本発明の機能素子は、 前記機能素子として比較的細長い形状の機能素子を 用いるよう にしてもよい。
また本発明の機能素子は、 前記機能素子として弾性表面波素子を用いるように してもよい。
本発明の弾性表面波素子は、 圧電性基板と、 前記圧電性基板上に形成された複 数対の櫛歯状電極と、 前記圧電性基板のほぼ中央に集中して設けられた外部接続 端子群とを具備するよう にしてもよい。
また本発明の弾性表面波素子は、 前記圧電性基板上に前記櫛歯状電極を挟むよ う に形成された吸音剤をさらに具備するよう にしてもよい。
また本発明の弾性表面波素子は、 前記圧電性基板上の両側に、 外部との接続に 預からない電極パッドが設けるよう にしてもよい。
本発明の弾性表面波素子は、 前記外部接続端子群が、 前記櫛歯状電極に延在し て電気的に接続される外部接続端子を有するようにしてもよい。
本発明に係る撮像装置は、 撮像光を入光する光学系と、 第 1 の面および第 2の 面を有する配線基板と、 第 1 の面および第 2の面を有し、 第 1 の面が前記配線基 板の第 1の面と対向して配置された C C D素子と、 前記配線基板の第 1の面と前 記 C C D素子の第 1の面との間に空隙部を残しつつ当該空隙部を封止する加熱溶 融型部材とを具備し、 前記光学系から入光した撮像光を光電変換する C C Dとを 具備することを特徴とする。
本発明に係る移動体通信装置は、 無線周波数帯域におけるバンドパスフィルタ として、 第 1 の面および第 2の面を有する配線基板と、 第 1 の面および第 2の面 を有し、 第 1の面が前記配線基板の第 1の面と対向して配置された弾性表面波素 子と、 前記配線基板の第 1の面と前記弾性表面波素子の第 1の面との間に空隙部 を残しつつ当該空隙部を封止する加熱溶融型部材と具備した弾性表面波フィルタ を用いたことを特徴とする。
本発明に係る移動体通信装置は、 中間周波数帯域におけるバンドパスフィルタ として、 第 1 の面および第 2の面を有する配線基板と、 第 1 の面および第 2の面 を有し、 第 1の面が前記配線基板の第 1の面と対向して配置された弾性表面波素 子と、 前記配線基板の第 1の面と前記弾性表面波素子の第 1の面との間に空隙部 を残しつつ当該空隙部を封止する加熱溶融型部材と具備した弾性表面波フィルタ を用いたことを特徴とする。
本発明に係る移動体通信装置は、 F M変調器の発振器として、 第 1の面および 第 2の面を有する配線基板と、 第 1 の面および第 2の面を有し、 第 1の面が前記 配線基板の第 1の面と対向して配置された弾性表面波素子と、 前記配線基板の第 1の面と前記弾性表面波素子の第 1の面との間に空隙部を残しつつ当該空隙部を 封止する加熱溶融型部材と具備した弾性表面波共振子を用いたことを特徴とす る。
本発明に係る発振回路は、 R Fモジユレータの発振回路に、 第 1 の面および第 2の面を有する配線基板と、 第 1 の面および第 2の面を有し、 第 1 の面が前記配 線基板の第 1の面と対向して配置された弾性表面波素子と、 前記配線基板の第 1 の面と前記弾性表面波素子の第 1の面との間に空隙部を残しつつ当該空隙部を封 止する加熱溶融型部材と具備した弾性表面波共振子を用いたことを特徴とする。 本発明に係る発振回路は、 R Fモジユレータの発振回路に、 第 1 の面および第 2の面を有する配線基板と、 第 1 の面および第 2の面を有し、 第 1 の面が前記配 線基板の第 1の面と対向して配置された水晶振動子と、 前記配線基板の第 1の面 の接続パターンと前記水晶振動子の第 1の面の電極との間をフェースダウンボン ディング方式により接合する導電性接合部材と、 前記配線基板の第 1の面の配線 パターンと前記水晶振動子の第 2の面の電極とを電気的に接続する電気的接続手 段と、 前記配線基板の第 1の面と前記水晶振動子の第 1の面との間に空隙部を残 しつつ当該空隙部を封止する加熱溶融型部材と具備した水晶振動部品を用いたこ とを特徴とする。
また本発明の電子部品の製造方法は、 (a)配線基板の第 1の面と機能素子の第 1の面とを対向配置する工程と、 (b)前記配線基板の第 1の面および Zまたは前 記機能素子の第 2の面の上方より液状の熱硬化性部材を所定の位置に流し込むェ 程と、 (c)前記流し込んだ熱硬化性部材を加熱硬化し、 少なくとも前記配線基板 と前記機能素子との間に空隙部を残しつつ当該空隙部を封止する工程とを具備す ることを特徴とする。
本発明の電子部品の製造方法は、 配線基板に対し所定位置に機能素子を位置決 めする工程と、 前記機能素子と前記配線基板とを導電性接合部材を介して所定間 隔を維持して組み立てる工程と、 前記配線基板に対し加熱溶融型部材を配置する 工程と、 前記配線基板と前記機能素子との間に空隙部を残しつつ前記加熟溶融型 部材を加熱溶融する工程と、 加熱溶融させた前記加熱溶融型部材を硬化させるェ 程とを具備し、 前記導電性接合部材を前記配線基板の少なくとも一主面に形成さ れた配線パターン上に形成した後、 前記機能素子と前記配線基板とを該導電性接 合部材を介して所定間隔を維持して組み立てることを特徴とする。
また本発明の電子部品の製造方法は、 (a)配線基板の第 1の面と機能素子の第 1の面とを対向配置する工程と、 (b)前記配線基板の第 1の面および または前 記機能素子の第 2の面の上方より液状の熱硬化性部材を所定の位置に滴下しつつ 加熱硬化し、 少なくとも前記配線基板と前記機能素子との間に空隙部を残しつつ 当該空隙部を封止する工程とを具備することを特徴とする。
本発明に係る電子部品の製造方法は、 (a)配線基板の第 1の面と機能素子の第 1の面とを対向配置する工程と、 (b)前記配線基板の第 1の面および Zまたは前 記機能素子の第 2の面の上方に加熱溶融型部材を配置する工程と、 (c)前記加熱 溶融型部材を加熱溶融し、 少なぐとも前記配線基板と前記機能素子との間に空隙 部を残しつつ当該空隙部を封止する工程とを具備することを特徴とする。
本発明の電子部品は、 第 1の面および第 2の面を有する配線基板と、 第 1の面 および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向して配置され た機能素子と、 前記配線基板の第 1の面と前記機能素子の第 1の面との間に第 1 の空隙部を残しかつ前記機能素子の第 2の面と前記加熱溶融型部材との間に第 2 の空隙部を残しつつ前記第 1 の空隙部を封止する加熟溶融型部材とを具備するこ とを特徴とする。
本発明の電子部品で製造方法は、 (a)配線基板の第 1 の面と機能素子の第 1 の 面とを対向配置する工程と、 (b)凹状の加熱溶融型部材の底面に熱硬化型緩衝材 を塗布する工程と、 (c)前記配線基板の第 1の面および Zまたは前記機能素子の 第 2の面の上方に前記加熱溶融型部材を前記熱硬化型緩衝材を介在させながら配 置する工程と、 (d)前記加熱溶融型部材を加熱溶融し、 少なくとも前記配線基板 と前記機能素子との間に空隙部を残しつつ当該空隙部を封止する工程とを具備す ることを特徴とする。
前記熱硬化型緩衝材としては、 液状シリコーンが好ましい。
本発明の電子部品は、 第 1の面および第 2の面を有する配線基板と、 第 1の面 およぴ第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向して配置され た機能素子と、 前記配線基板の第 1の面と前記機能素子の第 1の面との間に第 1 の空隙部を残しかつ前記機能素子の第 2の面と前記加熱溶融型部材との間に第 2 の空隙部を残しつつ前記第 1の空隙部を封止する加熱溶融型部材と、 前記機能素 子の第 2の面と前記加熱溶融型部材との間に介在された熱硬化型緩衝材とを具備 することを特徴とする。
前記熱硬化型緩衝材としては、 液状シリコーンが好適である。
前記加熱溶融型部材に前記機能素子に対する位置決め手段を講じてもよい。 前記加熱溶融型部材の形状として、 前記機能素子に対し周辺部が垂下形状を有 するようにしてもよい。
本発明の電子部品ので製造方法は、 (a)配線基板の第 1の面と機能素子の第 1 の面とを対向配置する工程と、 (b)前記機能素子の第 2の面に第 1の充填密度を 有する緩衝材を配置する工程と、 (c)前記配線基板の第 1の面および Zまたは前 記機能素子の第 2の面の上方に前記第 1の充填密度より大きい第 2の充填密度を 有する封止部材を配置する工程と、 (d)前記封止部材により少なくとも前記配線 基板と前記機能素子との間に空隙部を残しつつ当該空隙部を封止する工程とを具 備することを特徴とする。
本発明の電子部品ので製造方法は、 (a)配線基板の第 1の面と機能素子の第 1 の面とを対向配置する工程と、 (b)前記機能素子の第 2の面に第 1および第 2の 充填密度を有する緩衝材を重ねて配置する工程と、 (c)前記配線基板の第 1の面 および Zまたは前記機能素子の第 2の面の上方に前記第 1および第 2の充填密度 より大きい第 3の充填密度を有する封止部材を配置する工程と、 (d)前記封止部 材により少なくとも前記配線基板と前記機能素子との間に空隙部を残しつつ当該 空隙部を封止する工程とを具備することを特徴とする。
本発明の電子部品は、 第 1の面および第 2の面を有する配線基板と、 第 1の面 および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向して配置され た機能素子と、 前記配線基板の第 1の面と前記機能素子の第 1の面との間に空隙 部を残しつつ当該空隙部を封止する加熱溶融型部材と、 前記機能素子と前記加熱 溶融型部材との関係において前記機能素子の変形を防止する変形防止手段とを具 備することを特徴とする。
前記変形防止手段としては、 前記機能素子と前記加熱溶融型部材との間に配置 された緩衝材であることが好ましい。 前記変形防止手段としては、 前記機能素子と前記加熱溶融型部材との間に設け られた空隙であることが好ましい。
前記変形防止手段としては、 前記加熱溶融型部材に含有された多数の気泡であ ることが好ましい。
本発明の電子部品の製造方法によれば、 配線基板の第 1の面と機能素子の第 1 の面とが所定の位置間隔で対向配置され、 前記配線基板の第 1の面おょぴノまた は前記機能素子の第 2の面の上方に加熱溶融型部材が配置されて加熱溶融型部材 は加熱溶融され、 加熱溶融型部材は少なくとも.前記配線基板と前記機能素子との 間に空隙部を残しつつ当該空隙部を封止する。
ここで加熱溶融部材は、 どのような加熱により溶融するものを用いてもよく、 例えば高周波、 電磁波、 超音波、 光の照射等の間接的加熱により溶融する部材を 用いるよう にしてもよい。 ここで加熱とはどのような加熱でもよく、 例えば高 周波、 電磁波、 超音波、 光の照射等の間接的加熱手法を用いるよう にしてもよ い。
本発明の電子部品の製造方法によれば、 一定粘度を有する封止用の樹脂が機能 素子と配線基板とで形成される空隙部に流れ込むのを防止する枠状絶縁部材を必 ずしも必要としないため、 従来必要とした枠状絶縁部材の形成工程を不要とする ことができ、 しかも簡易な構造の電子部品が得られる利点を有する。 また、 封止 用の樹脂として成形した薄片状樹脂を用いて加熱溶融およびその硬化により接合 することにより、 特に機能素子の空隙部に対向する表面に樹脂が流れ込むのを容 易に防ぐことができ、 機能素子に悪影響を生じさせず、 機能素子と配線基板との 間に空隙部を形成し樹脂封止した電子部品を容易に製造することができる。
ここで加熱とはどのような加熱でもよく、 例えば高周波、 電磁波、 超音波、 光 の照射等の間接的加熱手法を用いるよう にしてもよい。
配線基板の材質としては、 アルミナ、 マグネシア、 炭化珪素などのセラミック , ガラス被覆セラミック、 内部に導体や機能部分を内蔵したアルミナなどのセラ ミック多層基板、 F R— 4をはじめとするガラスエポキシ等の榭脂基板を用いる ことができる。 また、 機能素子としては、 例えば、 弾性表面波素子、 水晶振動子、 圧電振動子、 少なくとも一対の送光部と受光部を有するフォト力プラ、 E P R OM、 C C D、 半導体レ一ザ一あるいは発光ダイオードが挙げられる。
本発明の電子部品の製造方法によれば、 機能素子例えば弾性表面波素子や半導 体素子をフェースダウンボンディング(ダイボンディングとワイヤボンディング 工程なしにチップを裏返して直接パッケージにはり付ける技術、 「 科学大辞 典」 丸善株式会社昭和 60年 3月 5日発行第 1189頁参照) 方式により実装すること ができる。 ここで、 フェースダウンボンディングとは、 具体的にはいわゆるフ リ ップチップ方式、 ビームリ ード方式、 T A B方式べデステル方式等を含むもの とする。 本発明では、 封止時の部材として、 加熱溶融型部材、 例えば熱硬化性薄 片状樹脂を用い、 加熱によって該樹脂表面もしくは全体を溶融し硬化させること により 、 機能素子と配線基板とを、 配線基板と対向する機能素子の主面と配線基 板との間に空隙部を保持しながら封止できるようにしたものである。
本発明の電子部品の一部を構成する配線基板は、 実装方式の相違により、 一主 面のみに、 または、 一主面と他の主面の両面にわたって配線パターンを形成する ことができる。 また、 例えば、 弾性表面波素子においては、 空隙部を確保するた めに、 ひとつの面にくし歯型電極パターンからなるトランスデューサ部とそのト ランスデューサ部に電気的に接続する配線バタ一ンを形成することが必要とな る。
機能素子と配線基板とは、 導電性接合部材を介することにより接合させること ができ、 このとき、 本発明にて形成される空隙部の隙間は接合部材の形状により 定まるが 1 0〜2 0 0 μ πι、 好ましくは 2 0〜8 0 / m確保することが望まし い。
本発明において、 導電性接合部材とは、 半導体レーザと配線基板とを電気的に 接続し、 かつ、 両者を固定する手段として定義される。 例えば、 いわゆるバンプ、 導電性樹脂が使われる。 バンプは、 ボールバンプやめつきバンプなどがあり 、 ま た、 導電性樹脂には、 導電性ペーストや異方性導電樹脂などが含まれる。
本発明においては、 これらを単独で用いてもよく、 また、 併用してもよく、-さ らに複合的に組み合わせて用いてもよい、 これらは本発明に包含される。 すなわ ち、 本発明においては導電性接合部材として、 例えばバンプと導電性樹脂とを組 み合わせて用いるようにしてもよいし、 また例えばボールバンプと異方性導電樹 脂とを組み合わせて用いるようにしてもよい。
配線基板上の配線バターンと機能素子上の配線バターンとを電気的に接合する 部材例えば導電性バンプには、 導電性金属めつきした樹脂ボールや金( Ai) や銀 ( g) やはんだ( Sn系、 Pb系、 I n系等) 等からなる金属バンプ等がある。
これらの導電性バンプは、 配線基板と機能素子とを所定の温度、 圧力で接合す ることにより配線基板上の配線バタ一ンと機能素子上の配線バタ一ンとを電気的 に接続するとともに、 機能素子と配線基板との間に空隙部を形成し確保する役割 を果たすことになる。 一定の空隙部を確保するためには金や銀やはんだ等からな る金属バンプが導電性バンプとして特に好ましい。
本発明の電子部品の製造方法においては、 接合された機能素子と配線基板とを 熱硬化性榭脂により覆い固めることにより配線基板上に実装し電子部品を構成す るが、 この時に、 例えば、 熱硬化性榭脂として薄片状に成形されたエポキシ系樹 脂を用い加熱によって該榭脂の表面もしくは全体を溶融し、 かつ、 硬化すること により機能素子と配線基板を接合すると、 榭脂の粘性を高く保持でき、 硬化中に 機能素子の配線基板に对向する側に形成された空隙部に樹脂が流れ込むことを防 ぐことができる。 また、 液状樹脂でないため枠状の絶縁性隔壁やダムを必ずしも 必要としない。 しかし、 枠状の絶縁性隔壁を設けることにより、 一層封止効果を 上げることができ、 本願発明に包含される。
従来の封止樹脂用材料として用いられる液状熱硬化性樹脂例えばエポキシ系 ポッティング榭脂はその粘度が 1 5 P a · s程度と低く、 1 0 0〜2 0 0 に加 熟してもすぐには粘度は高くならず、 低い粘度のままであるため、 枠状絶縁部材 なしでは、 機能素子おょぴ配線基板の空隙部に流れ込み空隙部を維持できず機能 素子の機能を損なう欠点がある。
しかしながら、 本発明の電子部品の製造方法によれば、 例えば、 薄片状に成形 されたエポキシ系榭脂を用いることによって加熱により溶融が開始されるまでは 高粘度の状態が保たれ溶融後も硬化を制御することにより、 少なくとも
5 0 P a · s 以上の粘度が得られる。 このため、 容易に機能素子を包覆すること ができる。
このような薄片状樹脂は、 例えば、 エポキシ樹脂を原料とした粉末のものを必 要な形状および重量に冷間圧縮成形して容易に形成できる。 薄片状樹脂等の加熱 溶融型部材は、 機能素子の空隙部を形成する主面ではない他の主面、 例えば、 機 能素子が弾性表面波素子の場合には、 弾性表面波素子の配線バターンが形成され た主面でなく他の主面に載置される。
この場合の薄片状樹脂の形状は機能素子形状より大きく、 かつ、 配線基板形状 とほぼ等しいかやや小さい形状を用いることが好ましい。 より好ましい薄片状樹 脂の形状は機能素子形状より大きく、 かつ、 配線基板形状とほぼ等しいことであ る。
このよう にすることにより 、 薄片状樹脂の機能素子および配線基板に対する位 置決めを確実にすることができる。
なお、 例えば機能素子の形状が 2 m m X 2 m mの寸法に対し、 配線基板形状の 寸法が 4 m m 4 m mの場合、 薄片状樹脂の形状の寸法も 4 m m X 4 m mの大き さが用いられる。
ただし、 この寸法の選択は機能素子の体積と薄片状樹脂の厚みにより適宜選択 し得るものである。
空隙部と対向する面とは反対側の機能素子の面上に載置された薄片状樹脂等の 加熱溶融型部材は、 加熱溶融とその硬化によって少なくとも前記素子の他の主面 に密着または一体化して前記素子を包覆し、 配線基板とで弾性表面波素子を封止 する。
この場合の加熱溶融、 硬化条件は適度に制御することが必要であるが、 本発明 においては、 薄片状樹脂等の加熱溶融型部材の加熱溶融温度が 1 0 0〜2 0 0 、 その硬化時間が 2 0時間〜 2時間で実施される。 より好ましくは、 1 1 0で 〜1 7 0 にて加熱溶融した後、 硬化は 1 0 0 °C〜1 6 0で程度で 3時間〜 2 0 時間実施される。 本発明において電子部品を製造するにあたっては、 加熱溶融型部材のー主面に 該加熱溶融型部材形状より小さい形状の緩衝材シートを接着して該加熱溶融型部 材の緩衝材シート面を配線パターンが形成された主面を有する機能素子の他の主 面上に対向して載置し、 かつ加熱溶融とその硬化によって少なくとも前記素子の 他の主面と該緩衝材シートとが密着して前記素子を包覆するとともに、 配線基板 とで前記素子を封止することもできる。 緩衝材シートとしては、 例えば、 ゴム弾 性体シートのような弾力性に富んだ材料があげられる。 もしくは、 金属箔ゃパラ フィン紙を 2層としたものを配置してもよい。 この場合、 各々の層のシートの大 きさは前記薄片状樹脂形状より小さい形状であれば必ずしも同じ大きさである必 要はなく、 任意の形状のものであってよい。 このような構成とすることにより、 榭脂硬化の際の収縮や熱膨張差により生ずる樹脂の応力歪みを緩和することがで きる。 さらに、 封止用の樹脂部と弾性表面波素子との間に緩衝材シートの位置決 めを容易に行うことができるため、 生産性 · 信頼性の向上につながる。
さらに、 本発明において電子部品を製造するにおいては、 樹脂部の周辺端縁と 配線基板の周辺端縁との間に配線基板の一主面からの配線パターンを露出し樹脂 部が配線パターンを覆ってしまうことがないようにもでき、 この場合には、 配線 バターンは配線基板の側部端面に形成された凹状配線パターンと連続する。
このため、 電子部品を他の受動部品等とともに回路基板に面実装する際に、 回 路基板上の接続部と配線基板の側部端面に形成された凹状配線パタ一ンとをはん だ等で容易に接続することができる。
本発明の電子部品の製造方法によれば、 配線基板と機能素子との電気的接続部 分となる導電性接合部材に接続される配線バターンの高さを配線基板材料厚みま たは配線バターンの導電材料厚みを部分的に変えることによつて制御し、 もしく は電気的接続部分となる導電性接合部材の高さ自体を制御することによって、 機 能素子と配線基板との間の適正量の空隙部を有効に確保できるので、 機能素子が、 例えば、 弾性表面波吸収材が配置された弾性表面波素子である場合にも、 弾性表 面波素子と配線基板との間の接合強度を充分に保て、 接続の信頼性を向上させる ことができる。 本発明の電子部品、 例えば弾性表面波装置の製造方法においては、 配線基板の 配線パターンを形成する際に、 配線パターンの少なくとも一部を導電ペーストを 用いたスクリ ーン印刷法により複数回塗布し、 焼き付けまたは同時焼成すること もできる。
この場合、 複数回塗布した部分の焼成後の厚みは他の部分との差が 5〜100 /z m の範囲にあることが好ましい。
また、 本発明の電子部品の製造方法においては、 配線基板の配線パターンを形 成する際に、 配線パターンの少なくとも一部を蒸着もしくはスパッタ等の成膜方 法により該配線パターンの他の部分より厚く成膜することもできる。
この差は、 少なくとも 0. 5 μ πι|¾上あることが好ましい。
また、 本発明の電子部品の製造方法においては、 配線基板を形成する際に、 電 気的接続部分となる接合部材に対向する部分およびその近傍の領域に相当するグ リ ーンシートを付加して焼成し、 その後該配線基板に配線パターンを形成するこ ともできる。
このグリ ーンシートを付加して焼成した部分の厚みと他の部分の厚みの差は、 実質的に 5〜500 μ π<Ό範囲にあることが好ましい。
このような配線基板の製造方法を用いることによって、 接合部材の厚みが小さ くても、 配線パターン部分の配線基板材料もしくは導電材料の厚みと加えあわせ ることができるため、 機能素子と配線基板との間の適正量の空隙部を有効に確保 できるので、 特に、 弾性表面波吸収材が配置された弾性表面波素子の場合にも、 弾性表面波素子と配線基板との間の接合強度を充分に保つことが可能になり、 接 合強度を上げ、 接続の信頼性を上げることができる。
さらに、 本発明の電子部品においては、 適正量の空隙部を確保するために、 電 気的接続部分となる導電性接合部材としてほぼ同一位置に導電性バンプを複数個 積み重ねたものを用いることもできる。 この場合、 複数個の導電性バンプの厚み の和は 30〜150 μ π^範囲となることが好ましい。 あるいは、 また、 電気的接続部 分となる導電性接合部材として導電性ポールバンプを用い、 かつ、 該導電性ポー ルバンプの厚みを導電性細線の太さを変えることにより調整することができる。 これらの場合、 導電性バンプとして、 実質的に金からなるボールバンプ、 実質的 に錫からなるボールバンプ、 実質的に鉛からなるポールバンプ等がより好ましい。 あるいは、 また、 機能素子の少なくとも一主面もしくは他の主面の一部に機能性 物質を塗布する際、 具体的には、 例えば、 弾性表面波素子の少なくとも一主面も しくは他の主面の一部に弾性表面波吸収材を塗布する際に、 機能物質すなわち弾 性表面波吸収材を導電性接合部材の厚みより薄く塗布することができる。
このように電気的接続部分となる導電性接合部材の厚みを制御することによつ ても、 機能素子と配線基板との間の適正量の空隙部を有効に確保できる。 この場 合、 配線基板の基板材料厚みもしくは導電材料の厚みを部分的に変える必要がな いため、 電子部品の製造がより簡単になる。
また、 本発明に係る電子部品の製造方法においては、 (a)工程の前に、 前記配 線基板と前記機能素子との間を仮止めする工程を有することができる。
仮止めすることにより、 配線基板と前記機能素子との配置を微妙に調節するこ とができ、 したがって、 配線基板と前記機能素子とを正確に对向配置することが できる。
また、 本発明に係る電子部品の製造方法においては、 (a)工程に先立ち、 前記 配線基板の第 1の面に前記空隙部を囲むよう に枠状部材を配置する工程をさらに 有することができる。
本発明に係る電子部品の製造方法において、 封止用の樹脂が機能素子と配線基 板とで形成される空隙部に流れ込むのを防止する枠状部材を配置する工程は、 少 なくとも前記配線基板と前記機能素子との間に空隙部を残しつつ当該空隙部を封 止するためには必ずしも必要ではないが、 空隙部を囲むように枠状部材を配置す ることにより、 一定粘度を有する封止用の樹脂が機能素子と配線基板とで形成さ れる空隙部に流れ込むのをより確実に防止することができる。 なお、 枠状部材と しては、 従来より用いられてきた枠状部材をそのまま用いることができる。
さらに、 本発明に係る電子部品の製造方法においては、 (c)工程において、 前 記機能素子の第 2の面の全面を覆うよう に前記加熱溶融型部材を加熟溶融するこ とができ、 また、 (c)工程において、 前記機能素子の第 2の面の全部を露出しつ つ前記加熱溶融型部材を加熱溶融することができる。 さらに、 (C)工程において、 前記機能素子の第 2の面の一部を露出しつつ前記加熱溶融型部材を加熱溶融する ことができる。
( c)工程において、 前記機能素子の第 2の面の全面を覆うよう に前記加熱溶融 型部材を加熱溶融した場合には、 機能素子の第 2の面を完全に保護することがで きる。 また、 (c)工程において、 前記機能素子の第 2の面の全部を露出あるいは —部を露出しつつ前記加熱溶融型部材を加熱溶融した場合には、 機能素子の第 2 の面が露出するので、 ここに配線パターンをさらに設けておき、 この配線パター ンを介して電子部品同士を積層したり 、 他の電子部品と接続することもできる。 また、 本発明に係る電子部品の製造方法においては、 (a)工程において、 前記 配線基板の第 1の面と前記機能素子の第 1の面とを導電性接合部材を介して対向 配置することができる。 導電性接合部材を介して配線基板の第 1の面と前記機能 素子の第 1の面とを対向配置することにより、 配線基板の第 1の面と前記機能素 子の第 1の面とをすばやく、 しかも確実に配置させることができる。
ここに、 接合部材とは、 素子(機能素子) と配線基板を電気的に接続し、 かつ、 両者を固定する手段として定義される。 例えば、 いわゆるバンプ、 導電性樹脂が 使われる。 バンプは、 ボールバンプやめつきバンプなどがあり、 また、 導電性樹 脂には、 導電性ペーストや異方性導電樹脂などが含まれる。
本発明においては、 これらを単独で用いてもよく、 また、 併用してもよく、 こ れらは本発明に包含される。 配線基板上の配線バターンと弾性表面波素子上の配 線パターンとを電気的に接合する部材例えば導電性バンプには、 導電性金属めつ きした樹脂ポールや金( Ax) や銀( g) やはんだ( Sii系、 Pb系、 I n系等) 等から なる金属バンプ等がある。
これらの導電性バンプは、 配線基板と弾性表面波素子とを所定の温度、 圧力で 接合することにより配線基板上の配線バタ一ンと弾性表面波素子上の配線バタ一 ンとを電気的に接続するとともに、 弾性表面波素子と配線基板との間に空隙部を 形成し確保する役割を果たすことになる。 一定の空隙部を確保するためには金や 銀やはんだ等からなる金属バンプが導電性バンプとして特に好ましい。 さらに、 適正量の空隙部を確保するために、 電気的接続部分となる導電性接合 部材としてほぼ同一位置に導電性バンプを複数個積み重ねたものを用いることも できる。 この場合、 複数個の導電性バンプの厚みの和は 30〜150 μ πίΟ範囲となる ことが好ましい。 あるいは、 また、 電気的接続部分となる導電性接合部材として 導電性ボールバンプを用い、 かつ、 該導電性ボールバンプの厚みを導電性細線の 太さを変えることにより調整することができる。 これらの場合、 導電性バンプと して、 実質的に金からなるボールバンプ、 実質的に錫からなるポールバンプ、 実 質的に鉛からなるポールバンプ等がより好ましい。
さらに、 本発明に係る電子部品の製造方法においては、 前記機能素子として弾 性表面波素子を用い、 このとき、 (a)工程において、 前記配線基板の第 1の面の 接続バターンと前記弾性表面波素子の第 1の面の接続バタ一ンとを導電性接合部 材を介してフェースダウンボンディング方式により対向配置することができる。 本発明は、 弾性表面波素子をフェースダウンボンディングして実装するにおい て、 封止時の加熱溶融型部材として、 例えば薄片状の樹脂を用い、 加熱によって 該樹脂表面もしくは全体を溶融し硬化させることにより 、 弾性表面波素子と配線 基板とを、 弾性表面波素子に設けられたトランスデューサ部と配線基板との間に 空隙部を保持しながら封止できるよう にしたものである。
本発明によれば、 封止用の加熱溶融型部材が弾性表面波素子と配線基板とで形 成される空隙部に流れ込むのを防止する枠状絶縁部材を必ずしも必要とせず、 弾 性表面波装置の構成を簡易にすることができる。 また、 封止用の加熱溶融型部材 として、 例えば成形した薄片状樹脂を用いて加熱溶融およびその硬化により接合 することにより、 特に弾性表面波素子のトランスデューサ部表面に樹脂が流れ込 むのを容易に防ぐことができ、 弾性表面波素子の表面波伝搬路に悪影響を生じさ せず、 弾性表面波素子と配線基板との間に空隙部を形成し榭脂封止した弾性表面 波装置を容易に製造することができる。
本発明によれば、 一定粘度を有する封止用の樹脂が例えば弾性表面波素子のト ランスデューサ部側の主面と配線基板とで形成される空隙部に流れ込むのを枠状 絶縁部材を必ずしも必要とせず防止でき、 簡易な構造の弾性表面波装置が得ら-れ る利点を有する。 本発明の電子部品は枠状絶縁部材ないしは囲繞部材を要しない 分、 電子部品を小型化することができる。 したがって、 高密度実装に適した電子 部品をを提供することができる。 また、 本発明の電子部品の製造方法によれば枠 状絶縁部材ないしは囲繞部材を要せずに機能素子を配線基板上に搭載することが でき、 従来よりも小型化した電子部品を製造することができる。 また、 高密度実 装に適した電子部品を製造することができる。
本発明では、 封止時の部材として、 例えば熱硬化性薄片状樹脂を用い、 加熱に よって該榭脂表面もしくは全体を溶融し硬化させることにより、 弾性表面波素子 と配線基板とを、 弾性表面波素子に設けられたトランスデューサ部と配線基板と の間に空隙部を保持しながら封止できるようにしたものである。
導電性接合部材を介して配線基板の第 1の面と弾性表面波素子のトランス デューサ部側の主面とを対向配置することにより、 配線基板の第 1の面と弾性表 面波素子のトランスデューサ部側の主面とをすばやく、 しかも確実に配置させる ことができる。
なお、 本発明にて形成される空隙部の隙間は導電性接合部材の形状により定ま るが 1 0〜2 0 0 μ ιη、 好ましくは 2 0〜8 0 μ ιη確保することが望ましい。 また、 導電性接合部材として配線基板上の配線バターンまたは弾性表面波素子 上の配線パターンの厚みを部分的に厚くしてバンプを構成した場合、 直接、 配線 基板上の配線バターンと弾性表面波素子上の配線バタ一ンとを接合することもで さる。
さらに、 本発明においては、 複数の接合部材で形成される軌跡の各接合部材内 側およびまたは各接合部材外側に沿って環状の絶縁性隔壁を形成することもでき る。
これらの環状の絶縁性隔壁は弾性表面波素子と配線基板との間に形成される空 隙部を確実に保持する役割を果たす。
さらに、 本発明においては、 配線基板の配線パターン上に電気的接続部分とな る接合部材を先に形成することにより、 接合強度を上げ、 接続の信頼性を向上さ せることができる。 また、 本発明に係る電子部品の製造方法においては、 前記機能素子として水晶 振動子を用い、 このとき、 (a)工程において、 前記配線基板の第 1の面の接続パ ターンと前記水晶振動子の第 1の面の電極とを導電性接合部材を介してフェース ダウンボンディング方式により対向配置するとともに、 前記配線基板の第 1の面 の配線パターンと前記水晶振動子の第 2の面の電極とをボンディングワイヤーに よって電気的に接続し、 (a)工程と(b)工程との間に、 前記水晶振動子を囲繞する よう に囲繞部材を前記配線基板上に配置する工程をさらに有し、 (b)工程におい て少なくとも前記囲繞部材上に加熱溶融型部材を配置することができる。
本発明は、 水晶振動子をフエースダウンボンディングして実装するにおいて、 水晶振動子の振動を確保するため囲繞部材を水晶振動子の周囲に配置し、 前記囲 繞部材上に配置する封止時の加熟溶融型部材として、 例えば薄片状の樹脂を用い、 加熱によって該樹脂表面もしくは全体を溶融し硬化させることにより、 水晶振動 子の振動を確保しつつ水晶振動子と配線基板との間に空隙部を保持しながら封止 できるよう にしたものである。
また、 水晶振動子の周囲に囲繞部材を配置しているので、 ボンディングワイ ヤーを加熱溶融型部材中に封入することなく、 配線基板の第 1の面の配線パター ンと水晶振動子の空隙部に面した面以外の面に形成された電極とをボンディング ヮィャ一等の電気的接続手段によつて電気的に接続することができる。
本発明によれば、 封止用の加熟溶融型部材が水晶振動子と配線基板とで形成さ れる空隙部に流れ込むのを防止する枠状絶縁部材を必ずしも必要とせず、 構成を 簡易にすることができる。 また、 封止用の加熱溶融型部材として、 例えば成形し た薄片状榭脂を用いて加熱溶融およびその硬化により接合することにより、 特に 水晶捩動子と配線基板とにより形成される空隙部に加熱溶融型部材が流れ込むの を容易に防ぐことができ、 水晶振動子の振動に悪影響を生じさせず、 樹脂封止す ることができる。
本発明では、 封止時の部材として、 例えば熱硬化性薄片状樹脂を用い、 加熱に よって該榭脂表面もしくは全体を溶融し硬化させることにより、 水晶振動子と配 線基板との間に空隙部を保持しながら封止できるよう にしたものである。 導電性接合部材を介して配線基板の第 1の面と水晶振動子の第 1の面とを対向 配置することにより、 配線基板の第 1の面と水晶振動子の第 1の面とをすばやく、 しかも確実に配置させることができる。
なお、 本発明にて形成される空隙部の隙間は導電性接合部材の形状により定ま るが 1 0 〜2 0 0 z m、 好ましくは 2 0 〜8 0 m確保することが望ましい。 また、 導電性接合部材として配線基板上の配線パターンまたは水晶振動子の第 1の面上の電極の厚みを部分的に厚くしてバンプを構成した場合、 直接、 配線基 板上の配線バターンと水晶振動子の第 1の面上の電極とを接合することもでき る。
さらに、 本発明においては、 複数の接合部材で形成される軌跡の各接合部材内 側およびまたは各接合部材外側に沿って環状の絶縁性隔壁を形成することもでき る。
これらの環状の絶縁性隔壁は水晶振動子と配線基板との間に形成される空隙部 を確実に保持する役割を果たす。
さらに、 本発明においては、 配線基板の配線パターン上に電気的接続部分とな る接合部材を先に形成することにより、 接合強度を上げ、 接続の信頼性を向上さ せることができる。
さらに、 本発明に係る電子部品の製造方法は、 前記機能素子を圧電振動子とし、 このとき、 (a)工程において、 前記配線基板の第 1の面の接続パターンと前記圧 電振動子の第 1の面の電極とを導電性接合部材を介してフェースダウンボンディ ング方式により対向配置するとともに、 前記配線基板の第 1の面の配線バターン と前記圧電振動子の第 2の面の電極とをボンディングワイヤー等の電気的接続手 段によつて電気的に接続することができる。
本発明は、 圧電振動子をフェースダウンボンディングして実装するにおいて、 圧電振動子上に配置する封止時の加熱溶融型部材として、 例えば薄片状の樹脂を 用い、 加熱によって該榭脂表面もしくは全体を溶融し硬化させることにより 、 圧 電振動子と配線基板との間に空隙部を保持しながら封止できるようにしたもので ある。 なお、 圧電振動子上に封止時の加熟溶融型部材を配置する際、 圧電振動子 と封止時の加熱溶融型部材との間に緩衝材を設けると圧電振動子に加熱溶融型部 材が直接接触することがなく、 圧電振動子は確実にその機能を発揮することがで きる。 この緩衝材は、 圧電振動子の第 2の面より大きいことが望ましい。
また、 ボンディングワイヤーを加熱溶融型部材中に封入しつつ、 配線基板の第 1の面の配線パターンと圧電振動子の空隙部に面した面以外の面に形成された電 極とをボンディングワイヤーによって電気的に接続することができる。
本発明によれぱ、 封止用の加熱溶融型部材が圧電振動子と配線基板とで形成さ れる空隙部に流れ込むのを防止する枠状絶縁部材を必ずしも必要とせず、 構成を 簡易にすることができる。 また、 封止用の加熱溶融型部材として、 例えば成形し た薄片状樹脂を用いて加熱溶融およびその硬化により接合することにより、 圧電 振動子と配線基板とにより形成される空隙部に加熱溶融型部材が流れ込むのを容 易に防ぐことができ、 圧電振動子の振動に悪影響を生じさせず封止することがで さる。
本発明では、 封止時の部材として、 例えば熱硬化性薄片状樹脂を用い、 加熱に よって該樹脂表面もしくは全体を溶融し硬化させることにより、 圧電振動子と配 線基板との間に空隙部を保持しながら封止できるよう にしたものである。
導電性接合部材を介して配線基板の第 1の面と圧電振動子の第 1の面とを対向 配置することにより、 配線基板の第 1の面ど圧電振動子の第 1の面とをすばやく、 しかも確実に配置させることができる。
なお、 本発明にて形成される空隙部の隙間は導電性接合部材の形状により定ま るが 1 0〜2 0 0 μ ιη、 好ましくは 2 0〜8 0 / m確保することが望ましい。 また、 導電性接合部材として配線基板上の配線パターンまたは圧電振動子の第 1の面上の電極の厚みを部分的に厚くしてバンプを構成した場合、 直接、 配線基 板上の配線パターンと圧電振動子の第 1の面上の電極とを接合することもでき る。
さらに、 本発明においては、 複数の接合部材で形成される軌跡の各接合部材内側 およびまたは各接合部材外側に沿って環状の絶縁性隔壁を形成することもできる。 これらの環状の絶縁性隔壁は圧電振動子と配線基板との間に形成される空隙部 を確実に保持する役割を果たす。
さらに、 本発明においては、 配線基板の配線パターン上に電気的接続部分とな る接合部材を先に形成することにより、 接合強度を上げ、 接続の信頼性を向上さ せることができる。
また、 本発明に係る電子部品の製造方法においては、 前記機能素子を一対の送 光部と受光部を有するフォト力ブラとし、 このとき、 (a)工程において、 前記配 線基板の第 1の面の接続パターンと前記フォト力ブラの各第 1の面の配線パター ンとを導電性接合部材を介してフェースダウンボンディング方式により対向配置 し、 (a)工程と(b)工程との間に、 前記フォト力ブラを囲繞するよう に囲繞部材を 前記配線基板上に配置する工程をさらに有し、 (b)工程において少なくとも前記 囲繞部材上に加熱溶融型部材を配置することを特徴とする。
本発明は、 フォト力ブラをフェースダウンボンディングして実装するにおいて、 フォト力ブラの光路を確保するため囲繞部材をフォト力ブラの周囲に配置し、 前 記囲繞部材上に配置する封止時の加熱溶融型部材として、 例えば薄片状の樹脂を 用い、 加熱によって該樹脂表面もしくは全体を溶融し硬化させることにより、 フォト力ブラの光路を確保しつつフォト力ブラと配線基板との間に空隙部を保持 しながら封止できるよう にしたものである。
本発明によれば、 封止用の加熱溶融型部材がフォト力ブラと配線基板とで形成 される空隙部に流れ込むのを防止する枠状絶縁部材を必ずしも必要とせず、 構成 を簡易にすることができる。 また、 封止用の加熱溶融型部材として、 例えば成形 した薄片状樹脂を用いて加熱溶融およびその硬化により接合することにより、 フォト力ブラと配線基板とにより形成される空隙部に樹脂が流れ込むのを容易に 防ぐことができ、 フォト力ブラの光路に悪影響を生じさせず、 樹脂封止すること ができる。
本発明によれば、 封止用の加熱溶融型部材がフォト力ブラと配線基板とで形成 される空隙部に流れ込むのを枠状絶縁部材を必ずしも必要とせず防止でき、 簡易 な構造の電子部品が得られる利点を有する。
本発明では、 封止時の部材として、 例えば熱硬化性薄片状樹脂を用い、 加熱に よって該榭脂表面もしくは全体を溶融し硬化させることにより、 フォト力ブラと 配線基板との間に空隙部を保持しながら封止できるよう にしたものである。
導電性接合部材を介して配線基板の第 1の面とフォト力ブラの各第 1の面とを 対向配置することにより 、 配線基板の第 1の面とフォト力ブラの各の第 1の面と をすばやく、 しかも確実に配置させることができる。
なお、 本発明にて形成される空隙部の隙間は導電性接合部材の形状により定ま るが 1 0〜2 0 0 /z m、 好ましくは 2 0〜8 0 / m確保することが望ましい。 また、 導電性接合部材として配線基板上の配線パターンまたはフォト力ブラの 各第 1の面上の電極の厚みを部分的に厚くしてバンプを構成した場合、 直接、 配 線基板上の配線パターンとフォト力ブラの各第 1の面上の電極とを接合すること もできる。
さらに、 本発明においては、 複数の接合部材で形成される軌跡の各接合部材内 側およびまたは各接合部材外側に沿って環状の絶縁性隔壁を形成することもでき る。
これらの環状の絶縁性隔壁はフオト力ブラと配線基板との間に形成される空隙 部を確実に保持する役割を果たす。
さらに、 本発明においては、 配線基板の配線パターン上に電気的接続部分とな る接合部材を先に形成することにより、 接合強度を上げ、 接続の信頼性を向上さ せることができる。
さらに、 本発明に係る電子部品の製造方法においては、 前記配線基板を光を透 過する基板とし、 前記機能素子を E P R O Mとし、 このとき、 (a)工程において、 前記配線基板の第 1の面と前記 E P R O Mの受光面とを対向配置することができ る。
配線基板としては、 少なくとも E P R O Mに紫外線が照射可能となるよう に、 紫外線透過型の基板を用いればよく、 例えばガラス基板が挙げられる。
本発明は、 E P R O Mをフェースダウンボンディングして実装するにおいて、 封止時の加熱溶融型部材として、 例えば薄片状の樹脂を用い、 加熱によって該樹 脂表面もしくは全体を溶融し硬化させることにより、 E P R O Mと配線基板と-を, EP ROMの受光部と配線基板との間に空隙部を保持しながら封止できるように したものである。
本発明によれば、 封止用の加熱溶融型部材が E P R OMと配線基板とで形成さ れる空隙部に流れ込むのを防止する枠状絶縁部材を必ずしも必要とせず、 実装型 EP ROMの構成を簡易にすることができる。 また、 封止用の加熱溶融型部材と して、 例えば成形した薄片状樹脂を用いて加熱溶融おょぴその硬化により接合す ることにより、 特に E P R OMの受光部に樹脂が流れ込むのを容易に防ぐことが でき E P R OMの光制御に悪影響を生じさせず、 E P R OMと配線基板との間に 空隙部を形成し樹脂封止した実装型 E P R O Mを容易に製造することができる。 本発明では、 封止時の部材として、 例えば熱硬化性薄片状樹脂を用い、 加熱に よって該榭脂表面もしくは全体を溶融し硬化させることにより 、 EPROMと配 線基板とを、 E P R OMに設けられた受光部と配線基板との間に空隙部を保持し ながら封止できるようにしたものである。
導電性接合部材を介して配線基板の第 1の面と EP ROMの受光部側の主面と を対向配置することにより、 配線基板の第 1の面と E PROMの受光部側の主面 とをすばやく、 しかも確実に配置させることができる。
なお、 本発明にて形成される空隙部の隙間は導電性接合部材の形状により定ま るが 1 0〜200 μ m、 好ましくは 20〜80 μ m確保することが望ましい。 また、 導電性接合部材として配線基板上の配線パターンまたは EP ROM上の 配線パターンの厚みを部分的に厚くしてバンプを構成した場合、 直接、 配線基板 上の配線パターンと E P R O M上の配線パタ一ンとを接合することができる。 さらに、 本発明においては、 複数の接合部材で形成される軌跡の各接合部材内 側およびまたは各接合部材外側に沿って環状の絶縁性隔壁を形成することもでき る。
これらの環状の絶縁性隔壁は E P R OMと配線基板との間に形成される空隙部 を確実に保持する役割を果たす。
さらに、 本発明においては、 配線基板の配線パターン上に電気的接続部分とな る接合部材を先に形成することにより 、 接合強度を上げ、 接続の信頼性を向上さ せることができる。
また、 本発明に係る電子部品の製造方法においては、 前記配線基板を光を透過 する基板とし、 前記機能素子を CCDとし、 (a)工程において、 前記配線基板の 第 1の面と前記 CCDの受光面とを対向配置することができる。
配線基板としては、 ォプティカルフラットな特性を有するものであればよく、 例えば C C Dの受光面に紫外線が照射可能となるような紫外線透過型の基板等を 用いればよく、 例えばガラス基板が挙げられる。
本発明は、 CCDをフェースダウンボンディングして実装するにおいて、 封止 時の加熱溶融型部材として、 例えば薄片状の樹脂を用い、 加熱によって該樹脂表 面もしくは全体を溶融し硬化させることにより、 CCDと配線基板とを、 CCD の受光部と配線基板との間に空隙部を保持しながら封止できるようにしたもので ある。
本発明によれば、 封止用の加熱溶融型部材が C C Dと配線基板とで形成される 空隙部に流れ込むのを防止する枠状絶縁部材を必ずしも必要とせず、 実装型
CCDの構成を簡易にすることができる。 また、 封止用の加熱溶融型部材として、 例えば成形した薄片状榭脂を用いて加熟溶融およびその硬化により接合すること により、 特に CCDの受光部に樹脂が流れ込むのを容易に防ぐことができ CCD の制御に悪影饗を生じさせず、 C C Dと配線基板との間に空隙部を形成し樹脂封 止した実装型 C C Dを容易に製造することができる。
本発明では、 封止時の部材として、 例えば熱硬化性薄片状樹脂を用い、 加熱に よって該樹脂表面もしくは全体を溶融し硬化させることにより、 CCDと配線基 板とを、 CCDに設けられた受光部と配線基板との間に空隙部を保持しながら封 止できるようにしたものである。
導電性接合部材を介して配線基板の第 1の面と C C Dの受光部側の主面とを対 向配置することにより、 配線基板の第 1の面と CCDの受光部側の主面とをすば やく、 しかも確実に配置させることができる。
なお、 本発明にて形成される空隙部の隙間は導電性接合部材の形状により定ま るが 10〜200 μιη、 好ましくは 20〜80 m確保することが望ましい。 - また、 導電性接合部材として配線基板上の配線バターンまたは C C D上の配線 パターンの厚みを部分的に厚くしてバンプを構成した場合、 直接、 配線基板上の 配線バターンと C C D上の配線バタ一ンとを接合することができる。
さらに、 本発明においては、 複数の接合部材で形成される軌跡の各接合部材内 側およびまたは各接合部材外側に沿って環状の絶縁性隔壁を形成することもでき る。
これらの環状の絶縁性隔壁は C C Dと配線基板との間に形成される空隙部を確 実に保持する役割を果たす。
さらに、 本発明においては、 配線基板の配線バターン上に電気的接続部分とな る接合部材を先に形成することにより、 接合強度を上げ、 接続の信頼性を向上さ せることができる。
さらに、 本発明に係る電子部品の製造方法においては、 前記配線基板を光を透 過する基板とし、 前記機能素子を半導体レーザとし、 このとき、 (a)工程におい て、 前記配線基板の第 1の面と前記半導体レーザの発光面とを対向配置すること ができる。
配線基板としては、 少なくとも半導体レーザの発光面からレーザ光が配線基板 を透過して外部に出力されるように、 光透過型の基板を用いればよく、 例えばガ ラス基板が挙げられる。
本発明は、 半導体レーザをフェースダウンボンディングして実装するにおいて、 封止時の加熱溶融型部材として、 例えば薄片状の樹脂を用い、 加熱によって該樹 脂表面もしくは全体を溶融し硬化させることにより、 半導体レ一ザと配線基板と を、 半導体レ一ザの発光面と配線基板との間に空隙部を保持しながら封止できる ようにしたものである。
本発明によれば、 封止用の加熱溶融型部材が半導体レーザと配線基板とで形成 される空隙部に流れ込むのを防止する枠状絶縁部材を必ずしも必要とせず、 実装 型半導体レーザの構成を簡易にすることができる。 また、 封止用の加熱溶融型部 材として、 例えば成形した薄片状樹脂を用いて加熱溶融およびその硬化により接 合することにより 、 特に半導体レーザの発光面に樹脂が流れ込むのを容易に防ぐ ことができ半導体レーザの外部への出力に悪影饗を生じさせず、 半導体レーザと 配線基板との間に空隙部を形成し樹脂封止した実装型半導体レ一ザを容易に製造 することができる。
本発明では、 封止時の部材として、 例えば熱硬化性薄片状樹脂を用い、 加熱に よって該樹脂表面もしくは全体を溶融し硬化させることにより、 半導体レーザと 配線基板とを、 半導体レーザに設けられた発光部と配線基板との間に空隙部を保 持しながら封止できるようにしたものである。
導電性接合部材を介して配線基板の第 1の面と半導体レ一ザの発光部側の主面 とを対向配置することにより、 配線基板の第 1の面と半導体レーザの発光部側の 主面とをすばやく、 しかも確実に配置させることができる。
なお、 本発明にて形成される空隙部の隙間は導電性接合部材の形状により定ま るが 1 0〜2 0 0 m、 好ましくは 2 0〜8 0 m確保することが望ましい。 また、 導電性接合部材として配線基板上の配線バターンまたは半導体レ一ザ上 の配線パターンの厚みを部分的に厚くしてバンプを構成した場合、 直接、 配線基 板上の配線パターンと半導体レーザ上の配線パターンとを接合することができ る。
さらに、 本発明においては、 複数の接合部材で形成される軌跡の各接合部材内 側およびまたは各接合部材外側に沿って環状の絶縁性隔壁を形成することもでき る。
これらの環状の絶縁性隔壁は半導体レ一ザと配線基板との間に形成される空隙 部を確実に保持する役割を果たす。
さらに、 本発明においては、 配線基板の配線パターン上に電気的接続部分とな る接合部材を先に形成することにより、 接合強度を上げ、 接続の信頼性を向上さ せることができる。
また、 本発明に係る電子部品の製造方法においては、 前記配線基板を光を透過 する基板とし、 前記機能素子を発光ダイオードとし、 このとき、 (a)工程におい て、 前記配線基板の第 1の面と前記発光ダイオードの発光面とを対向配置するこ とができる。 配線基板としては、 少なくとも発光ダイオードの発光面から光が配線基板を透 過して外部に出力されるように、 光透過型の基板を用いればよく、 例えばガラス 基板が挙げられる。
本発明は、 発光ダイオードをフェースダウンボンディングして実装するにおい て、 封止時の加熱溶融型部材として、 例えば薄片状の樹脂を用い、 加熟によって 該樹脂表面もしくは全体を溶融し硬化させることにより、 発光ダイオードと配線 基板とを、 発光ダイオードの発光面と配線基板との間に空隙部を保持しながら封 止できるようにしたものである。
本発明によれば、 封止用の加熱溶融型部材が発光ダイオードと配線基板とで形 成される空隙部に流れ込むのを防止する枠状絶縁部材を必ずしも必要とせず、 実 装型発光ダイオードの構成を簡易にすることができる。 また、 封止用の加熱溶融 型部材として、 例えば成形した薄片状樹脂を用いて加熱溶融およびその硬化によ り接合することにより、 特に発光ダイオードの発光面に樹脂が流れ込むのを容易 に防ぐことができ発光ダイオードの発する光の外部への出力に悪影響を生じさせ ず、 発光ダイオードと配線基板との間に空隙部を形成し樹脂封止した実装型発光 ダイオードを容易に製造することができる。
本発明では、 封止時の部材として、 例えば熱硬化性薄片状樹脂を用い、 加熱に よって該樹脂表面もしくは全体を溶融し硬化させることにより、 発光ダイオード と配線基板とを、 発光ダイオードの発光部と配線基板との間に空隙部を保持しな がら封止できるようにしたものである。
導電性接合部材を介して配線基板の第 1の面と発光ダイオードの発光部側の主 面とを対向配置することにより、 配線基板の第 1の面と発光ダイオードの発光部 側の主面とをすばやく、 しかも確実に配置させることができる。
なお、 本発明にて形成される空隙部の隙間は導電性接合部材の形状により定ま るが 1 0〜2 0 0 /z m、 好ましくは 2 0〜8 0 μ ιη確保することが望ましい。 また、 導電性接合部材として配線基板上の配線パターンまたは発光ダイオード 上の配線パターンの厚みを部分的に厚くしてバンプを構成した場合、 直接、 配線 基板上の配線バターンと発光ダイオード上の配線バタ一ンとを接合することがで きる。
さらに、 本発明においては、 複数の接合部材で形成される軌跡の各接合部材内 側およびまたは各接合部材外側に沿って環状の絶縁性隔壁を形成することもでき る。
これらの環状の絶縁性隔壁は発光ダイオードと配線基板との間に形成される空 隙部を確実に保持する役割を果たす。
さらに、 本発明においては、 配線基板の配線パターン上に電気的接続部分とな る接合部材を先に形成することにより 、 接合強度を上げ、 接続の信頼性を向上さ せることができる。
さらに、 本発明に係る電子部品の製造方法においては、 前記機能素子にバンプ を設け、 このとき、 (a)工程において機能素子のバンプを配線基板に対して対向 配置し、 (a)工程と(b)工程との間に、 前記配線基板および/または前記バンプに 対し赤外線を照射しながら前記配線基板と前記機能素子とを接合することができ る。
機能素子に設けられたバンプを介して配線基板の第 1の面と機能素子の第 1の 面とを対向配置することにより、 配線基板の第 1の面と機能素子の第 1の面とを すばやく、 しかも確実に配置させることができる。
また、 機能素子上の配線パターンの厚みを部分的に厚くしてバンプを構成した 場合、 直接、 配線基板上の配線パターンと機能素子上の配線パターンとを接合す ることができる。
機能素子に設けられたバンプと配線基板とを対向配置するには、 配線基板を受 け台に固定し、 機能素子をバンプが配線基板に対して所定の位置で対向するよう に真空吸着等により把握することで達成される。 接合に際しては、 機能素子を配 線基板に向かって移動させていくことで、 バンプを介して機能素子と配線基板と が接合される。
本発明において、 バンプとは、 機能素子と配線基板とを電気的に接続し、 ある いは、 両者を固定する手段として定義される。 バンプは、 ポールバンプやめつき バンプなどがあり、 また、 導電性樹脂として導電性ペーストや異方性導電樹脂な どを用いたバンプもある。
本発明においては、 これらを単独で用いてもよく、 また、 併用してもよく、 こ れらは本発明に包含される。
配線基板上の配線パターンと機能素子上の配線バタ一ンとを電気的に接合可能 する導電性バンプには、 導電性金属めつきした樹脂ボールや金( Ai) や銀( ) やはんだ( Sn系、 Pb系、 I n系等) 等からなる金属バンプ等がある。
これらのバンプは、 配線基板と機能素子とを所定の温度、 圧力で接合すること により配線基板と機能素子とを固定し、 さらには配線基板上の配線パターンと発 光ダイオード上の配線パターンとを電気的に接続する。 そして、 機能素子と配線 基板との間に空隙部を形成し確保する役割を果たすことになる。 一定の空隙部を 確保するためには金や銀やはんだ等からなる金属バンプが導電性バンプとして特 に好ましい。
機能素子に設けられたバンプを介して、 機能素子と配線基板とを接合するには、 バンプを接合に必要な温度にまで加熱する必要があるが、 赤外線を用いた加熱に より、 超音波振動方式にみられるような機械的振動を与えることが不要となる。 赤外線を照射して加熱するにあたっては、 機能素子のバンプを形成されていな い面を赤外線により加熱して熱量をバンプに伝熱させパンブを間接的に加熱する こともできるが、 この場合、 機能素子全体が加熱するので、 加熱温度、 加熱時間 に特に注意を要する。 好ましくは、 機能素子のバンプが形成された面と配線基板 の機能素子と対向する面とを直接加熟してバンプを加熱し接合する。
バンプは、 機能素子と配線基板とを接合するに十分な温度、 これはバンプの種 類により異なるが、 通常、 数百度にまで加熱される。 バンプの加熱は速やかに行 われることが好ましいので、 赤外線源としては例えぱハロゲンランプを用いる。 バンプの温度が機能素子と配線基板とを接合するに十分な温度にまで到達した ら、 バンプを介して機能素子と配線基板とを所定の圧力で加圧して機能素子と配 線基板とを接合する。
なお、 本発明にて形成される空隙部の隙間はバンプの形状により定まるが
1 0〜2 0 0 μ πι、 好ましくは 2 0〜8 0 μ ιη確保することが望ましい。 こう して、 バンプを介して機能素子と配線基板とを接合し、 榭脂による封止を 行うことができる。
また、 本発明に係る電子部品の製造方法においては、 前記加熱溶融型部材とし て榭脂、 例えば熱硬化性樹脂を用いることができる。
本発明においては、 接合された機能素子と配線基板とを加熱溶融型部材、 例え ば熱硬化性樹脂により覆い固めることにより配線基板上に実装し電子部品を構成 するが、 この時、 薄片状に成形された樹脂を用い加熱によって該樹脂の表面もし くは全体を溶融し、 かつ、 硬化すると、 機能素子と配線基板とを接合するため、 樹脂の粘性を高く保持でき硬化中に機能素子の第 1の面に形成された空隙部に榭 脂が流れ込むことを確実に防ぐことができる。 なお、 加熱溶融型部材である樹脂 を薄片状に成形するには、 例えば冷間圧縮成形法により成形することができる。 このとき、 加熟溶融型部材を前記機能素子の形状より大きく、 かつ、 前記配線基 板とほぼ等しい形状を有するように成形すると、 加熟溶融型部材の機能素子と配 線基板とに対する位置決めを確実に行うことができ、 機能素子と配線基板とを確 実に封止することができる。 さらに、 加熱溶融前の加熱溶融型部材の形状を、 そ の周辺部を垂下させた形状に加工することで、 機能素子と配線基板とをさらに確 実に封止することができる。
また、 薄片状樹脂の機能素子に対する位置決め手段として、 例えば薄片状榭 脂の機能素子側の表面の一部に凹部を設けることができる。 この凹部は、 機能素 子の外形より若干大きめの凹部を設ける。 こうすることにより、 機能素子上に薄 片状樹脂を手動または自動的に配置する際、 便利になる。 特に、 オートマウンタ ( 自動搬送装置) により薄片状樹脂を真空チャックで素子上に配置する際、 確実 に位置決めが可能となり、 生産性も向上する。 この凹部の底部に若干の隙間を設 け素子と樹脂との間に空隙を形成し、 空気部を若干形成することも可能であり、 素子のそり (変形) による特性を損なうこともない。 また、 樹脂に形成する凹部 の形状として 2段に凹部を形成し、 狭い凹部に空隙部をあらかじめ設けておき、 そして、 加熱溶融すると、 素子との間に空隙ができやすく、 緩衝材(気体によ る) の効果も発揮する。 また、 周辺部を垂下させた樹脂についても、 同様に、 位置決めの効果または緩 衝材(気体による) の効果が得られる。
従来の封止樹脂用材料として用いられる液状熱硬化性樹脂例えばエポキシ系 ポッティング榭脂はその粘度が 1 5 P a · s程度と低く、 1 0 0〜2 0 0 に加 熱してもすぐには粘度は高くならず、 低い粘度のままであるため、 枠状絶縁部材 なしでは、 機能素子および配線基板の空隙部に流れ込み空隙部を維持できず機能 素子の機能を損なう欠点がある。
しかしながら、 樹脂、 例えば粉末原料を必要な形状および重量を有する薄片状 に冷間圧縮成形した熱硬化性樹脂を用いることによって、 加熱により溶融が開始 されるまでは高粘度の状態が保たれ溶融後も硬化を制御することにより 、 少なく とも 5 0 P a · s 以上の粘度が得られる。 このため、 容易に機能素子を包覆する ことができる。
樹脂としては熱硬化性樹脂が好ましく、 例えば、 エポキシ樹脂、 シリコーン樹 脂、 ウレタン樹脂等があげられる。 好ましくは、 エポキシ樹脂であり、 さらには フエノール系のエポキシ樹脂がより好ましい。 特に、 ビスフエノール A型ェポキ シ榭脂やフエノールノボラック型エポキシ樹脂は、 本発明の電子部品の製造方法 に適する。
機能素子の空隙部に面した面とは異なる面上に載置された薄片状樹脂は、 加熱 溶融とその硬化によって少なくとも前記素子の空隙部に面した面とは異なる面に 密着して前記素子を包覆し、 配線基板とで機能素子を封止する。
この場合の加熱溶融、 硬化条件は適度に制御することが必要であるが、 本発明 においては、 加熱溶融型部材、 例えば薄片状榭脂の加熱溶融温度が
1 0 0〜2 0 0 、 その硬化時間が 1時間〜 2時間で実施される。 より好ましく は、 1 1 0 °C〜1 7 0でにて加熱溶融した後、 硬化(冷却) は 1 0 0
〜1 6 0 程度で例えば 1時間実施される。 これにより工程時間の短縮も図る事 ができる。
また、 加熱温度および加熱時間は常に一定である必要はなく、 必要に応じてい くつかの形態をとることができる。 例えば、 1 6 0 程度で 3時間加熟した後、 1
つづいて 1 2 0 程度で 1時間加熱することができる。 こうすることで、 加熱溶 融型部材、 例えば薄片状樹脂は適切な粘度を保ちつつ全体が溶融し、 確実な封止 の形態を保ちつつ硬化することとなる。
また、 樹脂にかえて、 同じ目的で、 低融点ガラスを用いることもできる。 この 場合、 低融点ガラスの粉末(フリ ット) を薄片状に冷間圧縮成形してできたもの を用いる。 成形に必要な場合には、 微量のワックスやポリ ビュルアルコール等を 結合材として用いてもよい。 低融点ガラスの融点としては、 融点が 250で〜 400 、 より好ましくは 300°C〜350°Cであり、 例えば融点が上述した範囲の硼珪酸鉛ガラ スが適する。 硼珪酸鉛ガラスの成分のうち、 P b Oが 50重量0 /。以上のものが最も 適している。 Z n O, A l 203, T i 02, B i 203, P b F 2, C u Oを少量含 んでいるものもよい。 例えぱ硼珪酸ビスマスガラスを用いてもよい。 なお、 これ らのガラスは複合して用いることもできる。
この場合の加熱溶融、 硬化条件は適度に制御することが必要であるが、 本発明 においては、 加熱溶融型部材、 例えば低融点ガラスの加熱溶融温度が 250 〜400で、 その硬化時間が 1時間〜 2時間で実施される。 より好ましくは、 300^: 〜350 にて加熱溶融した後、 硬化は 1 0 0 〜 1 6 0 程度で 1時間〜 2 0時 間実施される。
この場合にも、 加熱温度および加熱時間は常に一定である必要はなく、 必要に 応じていくつかの形態をとることができる。 例えば、 3 0 0で程度で 3時間加熱 した後、 つづいて 1 2 0で程度で 3時間加熱することができる。 こうすることで、 加熱溶融型部材、 例えば低融点ガラスは適切な粘度を保ちつつ全体が溶融し、 確 実な封止の形態を保ちつつ硬化することとなる。
本発明に係る電子部品は、 第 1の面および第 2の面を有する配線基板と、 第 1 の面および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向して配置 された機能素子と、 前記配線基板の第 1の面と前記機能素子の第 1の面との間に 空隙部を残しつつ当該空隙部を封止する加熱溶融型部材とを具備することを特徴 とする。
本発明の電子部品によれば、 配線基板の第 1の面と機能素子の第 1の面とが所 定の位置間隔で対向配置され、 前記配線基板の第 1の面おょぴ Zまたは前記機能 素子の第 2の面の上方に加熱溶融型部材が配置されており、 加熱溶融型部材は少 なくとも前記配線基板と前記機能素子との間に空隙部を残しつつ当該空隙部を封 止している。
本発明の電子部品によれば、 一定粘度を有する封止用の加熱溶融型部材が機能 素子と配線基板とで形成される空隙部に流れ込むのを防止する枠状絶縁部材を必 ずしも必要としないため、 従来必要とした枠状絶縁部材を不要とすることができ、 簡易な構造の電子部品が得られる利点を有する。
配線基板の材質としては、 アルミナ、 マグネシア、 炭化珪素などのセラミック、 ガラス被覆セラミック、 内部に導体や機能部分を内蔵したアルミナなどのセラ ミック多層基板、 F R—4をはじめとするガラスエポキシ等の樹脂基板を用いる ことができる。
また、 機能素子としては、 例えば、 弾性表面波素子、 水晶振動子、 圧電振動子
、 一対の送光部と受光部を有するフォト力ブラ、 E P R O M、 C C D , 半導体 レーザーあるいは発光ダイオードが挙げられる。
本発明の電子部品によれば、 機能素子例えば弾性表面波素子や半導体素子を フェースダウンボンディング(ダイボンディングとワイヤボンディング工程なし にチップを裏返して直接パッケージにはり付ける技術、 「 科学大辞典」 丸善株 式会社昭和 60年 3月 5日発行第 1189頁参照) 方式により実装できる。 ここで、 フェースダウンボンディングとは、 具体的にはいわゆるフリ ップチップ方式、 ビームリード方式、 T A B方式べデステル方式等を含むものとする。 本発明では、 封止時の部材として、 粉末原料を冷間圧縮成形した加熱溶融型部材、 例えば熱硬 化性薄片状樹脂を用い、 加熱によって該樹脂表面もしくは全体を溶融し硬化させ ることにより、 機能素子と配線基板とを、 配線基板と対向する機能素子の主面と 配線基板との間に空隙部を保持しながら封止している。
本発明の電子部品の一部を構成する配線基板は、 実装方式の相違により、 一主 面のみに、 または、 一主面と他の主面の両面、 さらには一主面と他の主面と端面 にわたつて配線パターンを形成することができる。 一主面と他の主面と端面にわ 0
たって配線パターンを形成した場合には、 端面の配線パターンを通じて一主面と 他の主面とに形成された配線パターンを接続することができる。 また、 例えば、 弾性表面波素子においては、 空隙部を確保するために、 ひとつの面にくし歯型電 極パターンからなるトランスデューサ部とそのト ランスデューサ部に電気的に接 続する配線バターンを形成することが必要となる。
機能素子と配線基板とは、 接合部材を介することにより接合させることができ、 このとき、 空隙部の隙間は接合部材の形状により定まるが 1 0〜2 0 0 μ πι、 好 ましくは 2 0〜8 0 μ ιη確保することが望ましい。
本発明において、 導電性接合部材とは、 素子(機能素子) と配線基板を電気的 に接続し、 かつ、 両者を固定する手段として定義される。 例えば、 いわゆるバン プ、 導電性樹脂が使われる。 バンプは、 ボールバンプやめつきバンプなどがあり、 また、 導電性樹脂には、 導電性ペーストや異方性導電榭脂などが含まれる。
本発明においては、 これらを単独で用いてもよく、 また、 併用してもよく、 こ れらは本発明に包含される。
本発明の電子部品においては、 枠状の絶縁性隔壁やダムを必ずしも必要としな い。 しかし、 枠状の絶縁性隔壁を設けることにより、 一層封止効果を上げること ができ、 本願発明に包含される。
従来の封止樹脂用材料として用いられる液状熱硬化性樹脂例えばエポキシ系 ポッティング樹脂はその粘度が 1 5 P a · s程度と低く、 1 0 0〜2 0 0 に加 熱してもすぐには粘度は高くならず、 低い粘度のままであるため、 枠状絶縁部材 なしでは、 機能素子および配線基板の空隙部に流れ込み空隙部を維持できず機能 素子の機能を損なう欠点がある。
しかしながら、 本発明の電子部品によれば、 加熱溶融型部材として、 例えば、 薄片状に成形されたエポキシ系樹脂を用いることによって加熱により溶融が開始 されるまでは高粘度の状態が保たれ溶融後も硬化を制御することにより、 少なく とも 5 0 P a · s 以上の粘度が得られる。 このため、 容易に機能素子が包覆され る。
このような薄片状樹脂は、 例えば、 エポキシ樹脂を原料とした粉末のものを必 要な形状および重量に冷間圧縮成形して容易に形成できる。
空隙部と対向する面とは反対側の機能素子の面上に載置された薄片状樹脂は、 加熱溶融とその硬化によつて少なくとも前記素子の他の主面に密着して前記素子 を包覆し、 配線基板とで弾性表面波素子を封止する。
本発明の電子部品にあっては、 加熱溶融型部材のー主面に該加熱溶融型部材形 状より小さい形状の緩衝材シートを接着して該加熱溶融型部材の緩衝材シート面 を配線パターンが形成された主面を有する弾性表面波素子の他の主面上に対向し て載置し、 かつ加熱溶融とその硬化によって少なくとも前記素子の他の主面と該 緩衝材シートとが密着して前記素子を包覆するとともに、 配線基板とで前記素子 を封止する形態をとることもできる。 緩衝材シートとしては、 例えば、 ゴム弾性 体シート のような弾力性に富んだ材料があげられる。 もしくは、 金属箔ゃパラ フィン紙を 2層としたものを配置してもよい。 この場合、 各々の層のシートの大 きさは前記薄片状樹脂形状より小さい形状であれば必ずしも同じ大きさである必 要はなく、 任意の形状のものであってよい。 このような構成とすることにより、 榭脂硬化の際の収縮や熱膨張差により生ずる樹脂の応力歪みを緩和することがで きる。 さらに、 封止用の樹脂部と機能素子との間に緩衝材シートの位置決めを容 易に行うことができるため、 生産性 · 信頼性の向上につながる。
また、 緩衝材シートの代わりに、 液状シリコーンを樹脂部の機能素子側に塗布 し、 機能素子を覆うよう に、 機能素子上に載置し、 加熱溶融して機能素子を封止 することができる。 その際、 前記の液状シリコーンはゴム状になり、 緩衝材とし て機能する。
また、 緩衝材として樹脂部と素子との間に空隙部(気体) を設けてもよい。 すなわち、 榭脂部の材料として、 エポキシ樹脂の充填密度は小さくし、 樹脂中 に気泡を残し、 加熱溶融後も上記空隙が残るようにしてもよい。 また、 充填剤の 密度の異なる、 つまり気泡の密度の異なる二層の樹脂材料を用いてもよい。 すな わち、 素子に面する側には低充填密度(流動性小なる材料) のエポキシ樹脂、 他 の層には高充填密度(流動性大なる材料) の樹脂を用いることにより、 実現可能 である。 なお、 ここで用いる材料の流動性は硬化剤またはフィラーの量を変える ことにより制御が可能である。
さらに、 本発明の電子部品においては、 樹脂部の周辺端縁と配線基板の周辺端 縁との間に配線基板の一主面からの配線パターンを露出し樹脂部が配線バターン を覆ってしまうことがないようにもでき、 この場合には、 配線パターンは配線基 板の側部端面に形成された凹状配線バターンと連続する。
このため、 電子部品を他の受動部品等とともに回路基板に面実装する際に、 回 路基板上の接続部と配線基板の側部端面に形成された凹状配線バターンとをはん だ等で容易に接続することができる。
本発明の電子部品によれぱ、 配線基板と機能素子との電気的接続部分となる導 電性接合部材に接続される配線バターンの高さを配線基板材料厚みまたは配線パ ターンの導電材料厚みを部分的に変えることによって制御し、 もしくは電気的接 続部分となる導電性接合部材の高さ自体を制御することによって、 機能素子と配 線基板との間の適正量の空隙部を有効に確保できるので、 機能素子が、 例えば、 弾性表面波吸収材が配置された弾性表面波素子である場合にも、 弾性表面波素子 と配線基板との間の接合強度を充分に保て、 接続の信頼性を向上させることがで きる。
本発明の電子部品においては、 配線基板の配線パターンを形成する際に、 配線 パターンの少なくとも一部を導電ペーストを用いたスクリ ーン印刷法により複数 回塗布し、 焼き付けまたは同時焼成することもできる。
この場合、 複数回塗布した部分の焼成後の厚みは他の部分との差が 5 〜100 /z m の範囲にあることが好ましい。
また、 本発明の電子部品においては、 配線基板の配線パターンを形成する際に、 配線パターンの少なくとも一部を蒸着もしくはスパッタ等の成膜方法により該配 線パターンの他の部分より厚くすることもできる。
この差は、 少なくとも 0. 5 μ πι¾上あることが好ましい。
また、 本発明の電子部品においては、 配線基板は、 電気的接続部分となる接合 部材に対向する部分およびその近傍の領域に相当するグリ ーンシートを付加した 構成もとれ、 その後該配線基板に配線パターンが形成されてもよい。 このダリ ーンシートを付加して焼成した部分の厚みと他の部分の厚みの差は、 実質的に 5〜500 /ζ πίΟ範囲にあることが好ましい。
このような配線基板を用いることによって、 接合部材の厚みが小さくても、 配 線パターン部分の配線基板材料もしくは導電材料の厚みと加えあわせることがで きるため、 機能素子と配線基板との間の適正量の空隙部を有効に確保できるので、 特に、 弾性表面波吸収材が配置された弾性表面波素子の場合にも、 弾性表面波素 子と配線基板との間の接合強度を充分に保つことが可能になり、 接合強度を上げ、 接続の信頼性を上げることができる。
さらに、 本発明の電子部品においては、 適正量の空隙部を確保するために、 電 気的接続部分となる導電性接合部材としてほぼ同一位置に導電性バンプを複数個 積み重ねることもできる。 この場合、 複数個の導電性バンプの厚みの和は
30〜150 /ζ π^範囲となることが好ましい。 あるいは、 また、 電気的接続部分とな る導電性接合部材として導電性ポールバンプを用い、 かつ、 該導電性ボールバン ブの厚みを導電性細線の太さを変えることにより調整することができる。 これら の場合、 導電性バンプとして、 実質的に金からなるボールバンプ、 実質的に錫か らなるボールバンプ、 実質的に鉛からなるボールバンプ等がより好ましい。 ある いは、 また、 機能素子の少なくとも一主面もしくは他の主面の一部に機能性物質 を塗布する際、 具体的には、 例えば、 弾性表面波素子の少なくとも一主面もしく は他の主面の一部に弾性表面波吸収材を塗布する際に、 機能物質すなわち弾性表 面波吸収材を導電性接合部材の厚みより薄く塗布することができる。
このよう に電気的接続部分となる導電性接合部材の厚みを制御することによつ ても、 機能素子と配線基板との間の適正量の空隙部を有効に確保できる。 この場 合、 配線基板の基板材料厚みもしくは導電材料の厚みを部分的に変える必要がな い。
また、 本発明に係る電子部品においては、 前記配線基板の第 1の面に前記空隙 部を囲むよう に枠状部材を配置することができる。
本発明に係る電子部品において、 封止用の加熱溶融型部材が機能素子と配線基 板とで形成される空隙部に流れ込むのを防止する枠状部材の配置は、 少なくとも 前記配線基板と前記機能素子との間に空隙部を残しつつ当該空隙部を封止するた めには必ずしも必要ではないが、 空隙部を囲むように枠状部材を配置することに より、 封止用の加熱溶融型部材が機能素子と配線基板とで形成される空隙部に流 れ込むのをより確実に防止することができる。 なお、 枠状部材としては、 従来よ り用いられてきた枠状部材をそのまま用いることができる。
さらに、 本発明に係る電子部品においては、 前記機能素子の第 2の面の全面を 覆うように前記加熱溶融型部材を配置することができ、 また、 前記機能素子の第 2の面の全部を露出することができる。 さらに、 前記機能素子の第 2の面の一部 を露出することができる。
前記機能素子の第 2の面の全面を覆うよう に前記加熱溶融型部材を配置した場 合には、 機能素子の第 2の面を完全に保護することができる。 また、 前記機能素 子の第 2の面の全部を露出あるいは一部を露出した場合には、 機能素子の第 2の 面が露出するので、 ここに配線パターンをさらに設けておき、 この配線パターン を介して電子部品同士を積層したり、 他の電子部品と接続することもできる。 また、 本発明に係る電子部品においては、 前記配線基板の第 1の面と前記機能 素子の第 1の面とを導電性接合部材を介して対向配置する構成をとることができ る。
本発明において、 導電性接合部材とは、 機能素子と配線基板を電気的に接続し、 かつ、 両者を固定する手段として定義される。 例えば、 いわゆるバンプ、 導電性 榭脂が使われる。 バンプは、 ポールバンプやめつきバンプなどがあり、 また、 導 電性樹脂には、 導電性ペーストや異方性導電樹脂などが含まれる。
本発明においては、 これらを単独で用いてもよく、 また、 併用してもよく、 こ れらは本発明に包含される。
配線基板上の配線バターンと弾性表面波素子の第 1の面上の電極とを電気的に 接合する部材例えば導電性バンプには、 導電性金属めつきした樹脂ポ一ルゃ金 ( Ai) や銀( ) やはんだ( Sn系、 Pb系、 I n系等) 等からなる金属バンプ等があ る。
これらの導電性バンプは、 配線基板と機能素子とを所定の温度、 圧力で接合す- ることにより配線基板上の配線パターンと機能素子の第 1の面上の電極とを電^ 的に接続するとともに、 機能素子と配線基板との間に空隙部を形成し確保する役 割を果たすことになる。 一定の空隙部を確保するためには金や銀やはんだ等から なる金属バンプが導電性バンプとして特に好ましい。 さらに、 適正量の空隙部を 確保するために、 電気的接続部分となる導電性接合部材としてほぼ同一位置に導 電性バンプを複数個積み重ねたものを用いることもできる。 この場合、 複数個の 導電性バンプの厚みの和は 30〜150 /i iri 範囲となることが好ましい。 あるいは、 また、 電気的接続部分となる導電性接合部材として導電性ボールバンプを用い、 かつ、 該導電性ポールバンプの厚みを導電性細線の太さを変えることにより調整 することができる。 これらの場合、 導電性バンプとして、 実質的に金からなる ボールバンプ、 実質的に錫からなるボールバンプ、 実質的に鉛からなるポ一ルバ ンプ等がより好ましい。
さらに、 本発明に係る電子部品において、 前記機能素子を弾性表面波素子とし、 前記配線基板の第 1の面の接続パターンと前記弾性表面波素子の第 1の面の接続 パターンとの間をフェースダウンボンディング方式により配置する導電性接合部 材を具備することができる。
本発明は、 弾性表面波素子をフェースダウンボンディングにより実装するにお いて、 封止時の加熱溶融型部材として、 例えば薄片状の樹脂を用い、 機能素子と 配線基板との間に空隙部を保持しながら封止したものである。
本発明によれば、 封止用の加熱溶融型部材が弾性表面波素子と配線基板とで形 成される空隙部に流れ込むのを防止する枠状絶縁部材を必ずしも必要とせず、 簡 易な構成の弾性表面波装置にすることができる。
本発明では、 封止時の部材として、 例えば熱硬化性薄片状樹脂を用い、 機能素 子と配線基板とを、 弾性表面波素子に設けられたトランスデューサ部と配線基板 との間に空隙部を保持しながら封止したものである。
なお、 本発明にて形成される空隙部の隙間は導電性接合部材の形状により定ま るが 1 0〜2 0 0 /z m、 好ましくは 2 0〜8 0 m確保することが望ましい。 また、 導電性接合部材として配線基板上の配線パターンまたは弾性表面波素子 上の配線パターンの厚みを部分的に厚くしてバンプを構成した場合、 直接、 配線 基板上の配線バターンと弾性表面波素子上の配線バタ一ンとを接合することもで さる。
さらに、 本発明においては、 複数の接合部材で形成される軌跡の各接合部材内 側およぴまたは各接合部材外側に沿って環状の絶縁性隔壁を具備することもでき る。
これらの環状の絶縁性隔壁は機能素子と配線基板との間に形成される空隙部を 確実に保持する役割を果たす。
また、 本発明に係る電子部品においては、 前記機能素子を水晶振動子とし、 前 記配線基板の第 1の面の接続パターンと前記水晶振動子の第 1の面の電極とを フェースダウンボンディング方式により対向配置させるための導電性接合部材と、 前記配線基板の第 1の面の配線バターンと前記水晶振動子の第 2の面の電極とを 電気的に接続する例えばボンディングワイヤーとを具備することができる。
本発明によれば、 封止用の加熱溶融型部材が水晶振動子と配線基板とで形成さ れる空隙部に流れ込むのを防止する枠状絶縁部材を必ずしも必要とせず、 構成を 簡易にすることができる。 また、 封止用の加熱溶融型部材として、 例えば成形し た薄片状樹脂を用いて加熱溶融およびその硬化により接合することにより、 特に 水晶振動子と配線基板とにより形成される空隙部に樹脂が流れ込むのを容易に防 ぐことができ、 水晶振動子の振動に悪影饗を生じさせず、 樹脂封止できる。
本発明によれば、 一定粘度を有する封止用の樹脂が水晶振動子と配線基板とで 形成される空隙部に流れ込むのを枠状絶縁部材を必ずしも必要とせず防止でき、 簡易な構造の電子部品とすることができる。
本発明では、 封止時の部材として、 例えば熱硬化性薄片状榭脂を用い、 加熱に よって該樹脂表面もしくは全体を溶融し硬化させることにより、 水晶振動子と配 線基板との間に空隙部を保持しながら封止したものである。
なお、 本発明にて形成される空隙部の隙間は導電性接合部材の形状により定ま るが 1 0〜2 0 0 μ ιη、 好ましくは 2 0〜8 0 /z m確保することが望ましい。 また、 導電性接合部材として配線基板上の配線パターンまたは水晶振動子の第- 1492
1の面上の電極の厚みを部分的に厚くしてバンプを構成した場合、 直接、 配線基 板上の配線バターンと水晶振動子の第 1の面上の電極とを接合することもでき る。
さらに、 本発明においては、 複数の接合部材で形成される軌跡の各接合部材内側 およびまたは各接合部材外側に沿って環状の絶縁性隔壁を具備することもでき る。
これらの環状の絶縁性隔壁は水晶振動子と配線基板との間に形成される空隙部 を確実に保持する役割を果たす。
さらに、 本発明においては、 配線基板の配線パターン上に電気的接続部分とな る接合部材を先に形成することにより、 接合強度を上げ、 接続の信頼性を向上さ せることができる。
なお、 水晶振動子を囲繞するように囲繞部材を前記配線基板上に配置すること もでき、 少なくとも前記囲繞部材上に加熱溶融型部材を配置することができる。 このとき、 水晶振動子の振動は完全に保たれる。
さらに、 本発明に係る電子部品は、 前記機能素子を圧電振動子とすることがで き、 このとき、 フェースダウンボンディング方式により前記配線基板の第 1の面 の接続パターンと前記圧電振動子の第 1の面の電極とを対向配置する導電性接合 部材と、 前記配線基板の第 1の面の配線パターンと前記圧電振動子の第 2の面の 電極とを電気的に接続することができるボンディングワイヤーとを具備する。 本発明は、 圧電振動子をフェースダウンボンディングして実装するにおいて、 圧電振動子上に配置する封止時の加熱溶融型部材として、 例えば薄片状の樹脂を 用い、 圧電振動子と配線基板との間に空隙部を保持しながら封止したものである。 なお、 圧電振動子上に封止時の加熱溶融型部材を配置する際、 圧電振動子と封止 時の樹脂との間に緩衝材を設けることができ、 圧電振動子に加熱溶融型部材が直 接接触することがなく、 圧電振動子は確実にその機能を発揮することができる。 この緩衝材は、 圧電振動子の第 2の面より大きいことが望ましい。
また、 配線基板の第 1の面の配線パターンと圧電振動子の空隙部に面した面以 外の面に形成された電極とを加熱溶融型部材中に封入されたボンディングワイ ヤーによって電気的に接続することができる。
本発明によれば、 封止用の加熱溶融型部材が圧電振動子と配線基板とで形成さ れる空隙部に流れ込むのを防止する枠状絶縁部材を必ずしも必要とせず、 簡易な 構成の電子部品とすることができる。 また、 封止用の加熱溶融型部材として、 例 えば成形した薄片状樹脂を用いて加熱溶融およびその硬化により接合することに より、 圧電振動子と配線基板とにより形成される空隙部に樹脂が流れ込むのを容 易に防ぐことができ、 圧電振動子の振動に悪影響を生じさせず、 樹脂封止でき る。
本発明によれば、 封止用の加熱溶融型部材が圧電振動子と配線基板とで形成さ れる空隙部に流れ込むのを枠状絶縁部材を必ずしも必要とせず防止でき、 簡易な 構造の電子部品が得られる利点を有する。
本発明では、 封止時の部材として、 例えば熱硬化性薄片状樹脂を用い、 加熱に よって該樹脂表面もしくは全体を溶融し硬化させることにより、 圧電振動子と配 線基板との間に空隙部を保^ fしながら封止したものである。
なお、 本発明にて形成される空隙部の隙間は導電性接合部材の形状により定ま るが 1 0〜2 0 0 μ ιη、 好ましくは 2 0〜8 0 /z m確保することが望ましい。 また、 導電性接合部材として配線基板上の配線パターンまたは圧電振動子の第 1の面上の電極の厚みを部分的に厚くしてバンプを構成した場合、 直接、 配線基 板上の配線パターンと圧電振動子の第 1の面上の電極とを接合することもでき る。
さらに、 本発明においては、 複数の導電性接合部材で形成される軌跡の各導電性 接合部材内側およびまたは各導電性接合部材外側に沿って環状の絶縁性隔壁を具 備することもできる。
これらの環状の絶縁性隔壁は圧電振動子と配線基板との間に形成される空隙部 を確実に保持する役割を果たす。
また、 本発明に係る電子部品の製造方法においては、 前記機能素子を一対の送 光部と受光部を有するフォト力ブラとすることができ、 このとき、 フェースダウ ンボンディング方式により前記配線基板の第 1の面の接続パターンと前記フォト - 力ブラの各第 1の面の配線パターンとを対向配置する導電性接合部材と、 前記配 線基板上に前記フォト力ブラを囲繞するような囲繞部材と、 少なくとも前記囲繞 部材上に加熱溶融型部材を具備する。
本発明は、 フォト力ブラをフェースダウンボンディングして実装するにおいて、 フォト力ブラの光路を確保するため囲繞部材をフォト力ブラの周囲に配置し、 前 記囲繞部材上に配置する封止時の加熱溶融型部材として、 例えば薄片状の樹脂を 用い、 フォト力ブラの光路を確保しつつフォト力ブラと配線基板との間に空隙部 を保持しながら封止したものである。
本発明によれば、 封止用の加熱溶融型部材がフォト力ブラと配線基板とで形成 される空隙部に流れ込むのを防止する枠状絶縁部材を必ずしも必要とせず、 構成 を簡易にすることができる。 また、 封止用の加熱溶融型部材として、 例えば成形 した薄片状樹脂を用いて加熱溶融およびその硬化により接合することにより 、 フォト力ブラの光路に悪影響を生じさせず、 樹脂封止することができる。
本発明によれば、 封止用の加熱溶融型部材がフォト力ブラと配線基板とで形成 される空隙部に流れ込むのを枠状絶縁部材を必ずしも必要とせず防止でき、 簡易 な構造の電子部品が得られる利点を有する。
本発明では、 封止時の部材として、 例えば熱硬化性薄片状樹脂を用い、 加熱に よって該樹脂表面もしくは全体を溶融し硬化させることにより 、 フォト力ブラと 配線基板との間に空隙部を保持しながら封止したものである。
なお、 本発明にて形成される空隙部の隙間は導電性接合部材の形状により定ま るが 1 0〜2 0 0 μ ιη、 好ましくは 2 0〜8 0 μ ιη確保することが望ましい。 また、 導電性接合部材として配線基板上の配線パターンまたはフォト力ブラの 各第 1の面上の電極の厚みを部分的に厚くしてバンプを構成した場合、 直接、 配 線基板上の配線パターンとフォト力ブラの各第 1の面上の電極とを接合すること もできる■>
さらに、 本発明においては、 複数の導電性接合部材で形成される軌跡の各導電性 接合部材内側およびまたは各導電性接合部材外側に沿って環状の絶縁性隔壁を具 備することもできる。 これらの環状の絶縁性隔壁はフオト力ブラと配線基板との間に形成される空隙 部を確実に保持する役割を果たす。
さらに、 本発明に係る電子部品においては、 前記配線基板を光を透過する基板 とし、 前記機能素子を EP ROMとできる。
配線基板としては、 少なくとも EP ROMに紫外線が照射可能となるよう に、 紫外線透過型の基板を用いればよく、 例えばガラス基板が挙げられる。
本発明は、 EP ROMをフェースダウンボンディングして実装するにおいて、 封止時の加熱溶融型部材として、 例えば薄片状の樹脂を用い、 EP ROMと配線 基板とを、 E P R OMの受光部と配線基板との間に空隙部を保持しながら封止し たものである。
本発明によれば、 封止用の加熱溶融型部材が E P R OMと配線基板とで形成さ れる空隙部に流れ込むのを防止する枠状絶縁部材を必ずしも必要どせず、 簡易な 構成の実装型 E PRO Mにすることができる。
本発明では、 封止時の部材として、 例えば熟硬化性薄片状樹脂を用い、
E P R OMと配線基板とを、 E P R OMに設けられた受光部と配線基板との間に 空隙部を保持しながら封止したものである。
なお、 本発明にて形成される空隙部の隙間は導電性接合部材の形状により定ま るが 10〜200 /zm、 好ましくは 20〜80 /zm確保することが望ましい。 また、 導電性接合部材として配線基板上の配線パターンまたは EP ROM上の 配線パターンの厚みを部分的に厚くしてバンプを構成した場合、 直接、 配線基板 上の配線パターンと EP ROM上の配線パターンとを接合することができる。 さらに、 本発明においては、 複数の導電性接合部材で形成される軌跡の各導電 性接合部材内側およびまたは導電性接合部材外側に沿って環状の絶縁性隔壁を具 備することもできる。
これらの環状の絶縁性隔壁は E P R OMと配線基板との間に形成される空隙部 を確実に保持する役割を果たす。
また、 本発明に係る電子部品においては、 前記配線基板を光を透過する基板と し、 前記機能素子を CCDとし、 前記配線基板の第 1の面と前記 CCDの受光面 1492
とを対向配置できる。
配線基板としては、 オプティカルフラットな特性を有するものであればよく、 例えば C C Dの受光面に紫外線が照射可能となるような紫外線透過型の基板等を 用いればよく、 例えばガラス基板が挙げられる。
本発明は、 C C Dをフェースダウンボンディングして実装するにおいて、 封止 時の加熱溶融型部材として、 例えば薄片状の樹脂を用い、 C C Dと配線基板とを、 C C Dの受光部と配線基板との間に空隙部を保持しながら封止したものである。 本発明によれば、 封止用の加熱溶融型部材が C C Dと配線基板とで形成される 空隙部に流れ込むのを防止する枠状絶縁部材を必ずしも必要とせず、 簡易な構成 の実装型 C C Dとすることができる。
本発明では、 封止時の部材として、 例えば熱硬化性薄片状樹脂を用い、 C C D と配線基板とを、 C C Dに設けられた受光部と配線基板との間に空隙部を保持し ながら封止したものである。
なお、 本発明にて形成される空隙部の隙間は導電性接合部材の形状により定ま るが 1 0〜2 0 0 /x m、 好ましくは 2 0〜8 0 μ ηι確保することが望ましい。 また、 導電性接合部材として配線基板上の配線バターンまたは C C D上の配線 パターンの厚みを部分的に厚くしてバンプを構成した場合、 直接、 配線基板上の 配線パタ一ンと C C D上の配線バタ一ンとを接合することができる。
さらに、 本発明においては、 複数の導電性接合部材で形成される軌跡の各導電 性接合部材内側およびまたは各導電性接合部材外側に沿って環状の絶縁性隔壁を 具備することもできる。
これらの環状の絶縁性隔壁は C C Dと配線基板との間に形成される空隙部を確 実に保持する役割を果たす。
さらに、 本発明に係る電子部品においては、 前記配線基板を光を透過する基板 とし、 前記機能素子を半導体レーザとし、 前記配線基板の第 1の面と前記半導体 レ一ザの発光面とを対向配置できる。
配線基板としては、 少なくとも半導体レーザの発光面からレーザ光が配線基板 を透過して外部に出力されるよう に、 光透過型の基板を用いればよく、 例えばガ- ラス基板が挙げられる。
本発明は、 半導体レーザをフェースダウンボンディングして実装するにおいて、 封止時の加熱溶融型部材として、 例えば薄片状の樹脂を用い、 半導体レーザと配 線基板とを、 半導体レ一ザの発光面と配線基板との間に空隙部を保持しながら封 止したものである。
本発明によれば、 封止用の加熱溶融型部材が半導体レ一ザと配線基板とで形成 される空隙部に流れ込むのを防止する枠状絶縁部材を必ずしも必要とせず、 簡易 な構成の実装型半導体レーザとできる。 また、 封止用の樹脂として.、 例えば成形 した薄片状樹脂を用いて加熱溶融およびその硬化により接合することにより 、 半 導体レーザの外部への出力に悪影響を生じさせず、 半導体レーザと配線基板との 間に空隙部を形成し樹脂封止した実装型半導体レ一ザとすることができる。
本発明では、 封止時の部材として、 例えば熱硬化性薄片状樹脂を用い、 加熱に よって該樹脂表面もしくは全体を溶融し硬化させることにより、 半導体レーザと 配線基板とを、 半導体レーザに設けられた発光部と配線基板との間に空隙部を保 持しながら封止したものである。
なお、 本発明にて形成される空隙部の隙間は適用される電子部品及び導電性接 合部材の形状により定まるが 1 0〜2 0 0 m、 好ましくは 2 0〜8 0 /x m確保 することが望ましい。
また、 導電性接合部材として配線基板上の配線パターンまたは半導体レーザ上 の配線パターンの厚みを部分的に厚くしてバンプを構成した場合、 直接、 配線基 板上の配線パターンと半導体レーザ上の配線パターンとを接合することができ る。
さらに、 本発明においては、 複数の導電性接合部材で形成される軌跡の各導電 性接合部材内側およびまたは各導電性接合部材外側に沿って環状の絶縁性隔壁を 具備することもできる。
これらの環状の絶縁性隔壁は半導体レ一ザと配線基板との間に形成される空隙 部を確実に保持する役割を果たす。
また、 本発明に係る電子部品においては、 前記配線基板を光を透過する基板と- し、 前記機能素子を発光ダイオードとし、 前記配線基板の第 1の面と前記発光ダ ィオードの発光面とを対向配置することができる。
配線基板としては、 少なくとも発光ダイオードの発光面から光が配線基板を透 過して外部に出力されるように、 光透過型の基板を用いればよく、 例えばガラス 基板が挙げられる。
本発明は、 発光ダイオードをフェースダウンボンディングして実装するにおい て、 封止時の加熱溶融型部材として、 例えば薄片状の樹脂を用い、 発光ダイォー ドと配線基板とを、 発光ダイオードの発光面と配線基板との間に空隙部を保持し ながら封止したものである。
本発明によれば、 封止用の加熱溶融型部材が発光ダイオードと配線基板とで形 成される空隙部に流れ込むのを防止する枠状絶縁部材を必ずしも必要とせず、 簡 易な構成の実装型発光ダイオードとすることができる。 また、 封止用の加熱溶融 型部材として、 例えば成形した薄片状樹脂を用いて加熱溶融およびその硬化によ り接合することにより、 特に発光ダイオードの発光面に樹脂が流れ込むのを容易 に防ぐことができ発光ダイオードの発する光の外部への出力に悪影響を生じさせ ず、 発光ダイオードと配線基板との間に空隙部を形成し樹脂封止した実装型発光 ダイオードとすることができる。
本発明では、 封止時の部材として、 例えば熱硬化性薄片状榭脂を用い、 加熱に よって該樹脂表面もしくは全体を溶融し硬化させることにより、 発光ダイオード と配線基板とを、 発光ダイオードの発光部と配線基板との間に空隙部を保持しな がら封止できるようにしたものである。
なお、 本発明にて形成される空隙部の隙間は導電性接合部材の形状により定ま るが 1 0〜2 0 0 /z m、 好ましくは 2 0〜8 0 z m確保することが望ましい。 また、 導電性接合部材として配線基板上の配線パターンまたは発光ダイオード 上の配線パターンの厚みを部分的に厚くしてバンプを構成した場合、 直接、 配線 基板上の配線バターンと発光ダイオード上の配線バターンとを接合することがで きる。
さらに、 本発明においては、 複数の導電性接合部材で形成される軌跡の各導電- 性接合部材内側およびまたは各導電性接合部材外側に沿って環状の絶縁性隔壁を 具備することもできる。
これらの環状の絶縁性隔壁は発光ダイオードと配線基板との間に形成される空 隙部を確実に保持する役割を果たす。
また、 本発明に係る電子部品においては、 前記加熱溶融型部材として樹脂、 例 えば熱可塑性樹脂や熟硬化性樹脂を用いることができる。
本発明においては、 接合された機能素子と配線基板とを薄片状の加熱溶融型部 材、 例えば熱硬化性樹脂により覆い固めることにより配線基板上に実装し電子部 品を構成するが、 この時、 薄片状に成形された樹脂を用い加熱によって該樹脂の 表面もしくは全体を溶融し、 かつ、 硬化すると、 機能素子と配線基板とを接合す るため、 榭脂の粘性を高く保持でき硬化中に機能素子の第 1の面に形成された空 隙部に樹脂が流れ込むことを確実に防ぐことができる。
従来の封止樹脂用材料として用いられる液状熱硬化性樹脂例えばエポキシ系 ポッティング樹脂はその粘度が 1 5 P a · s程度と低く、 1 0 0〜2 0 0 に加 熱してもすぐには粘度は高くならず、 低い粘度のままであるため、 枠状絶縁部材 なしでは、 機能素子および配線基板の空隙部に流れ込み空隙部を維持できず機能 素子の機能を損なう欠点がある。
しかしながら、 樹脂、 例えば粉末原料を必要な形状および重量を有する薄片状 に冷間圧縮成形した熱硬化性樹脂を用いることによって、 加熱により溶融が開始 されるまでは高粘度の状態が保たれ溶融後も硬化を制御することにより、 少なく とも 5 0 P a · s 以上の粘度が得られる。 このため、 機能素子は確実に包覆され る。
榭脂としては熱硬化性樹脂が好ましく、 例えば、 エポキシ樹脂、 シリ コーン樹 脂、 ウレタン樹脂等があげられる。 好ましくは、 エポキシ樹脂であり、 さらには フエノール系のエポキシ樹脂がより好ましい。 特に、 ビスフエノール A型ェポキ シ榭脂やフエノールノボラック型エポキシ榭脂は、 本発明の電子部品に適する。 機能素子の空隙部に面した面とは異なる面上に載置された薄片状樹脂は、 加熱 溶融とその硬化によつて少なくとも前記素子の空隙部に面した面とは異なる面に 密着して前記素子を包覆し、 配線基板とで機能素子を封止する。
本発明においては、 加熱溶融型部材、 例えば薄片状樹脂の加熱溶融温度が
1 0 0〜2 0 0 ^、 より好ましくは、 1 1 0 〜 1 7 0 である。
また、 榭脂にかえて、 同じ目的で、 低融点ガラスを用いることもできる。 この 場合、 低融点ガラスの粉末(フリ ット) を薄片状に冷間圧縮成形してできたもの を用いる。 成形に必要な場合には、 微量のワックスやポリビニルアルコール等を 結合材として用いてもよい。 低融点ガラスの融点としては、 融点が 250¾〜400 、 より好ましくは 300 〜350^であり、 例えば融点が上述した範囲の硼珪酸鉛ガラ スが適する。 硼珪酸鉛ガラスの成分のうち、 P b Oが 50重量0 /o以上のものが最も 適している。 Z n O , A l 203, T i 02, B i 2θ 3, P b F 2, C u Oを少量含 んでいるものもよい。 例えぱ硼珪酸ビスマスガラスを用いてもよい。 なお、 これ らのガラスは複合して用いることもできる。
本発明に係る電子部品の製造方法は、 複数個の配線基板の集合体に対し所定位 置に複数の機能素子を位置決めする工程と、 前記機能素子と前記配線基板の集合 体とを導電性接合部材を介して所定間隔を維持して組立てる工程と、 前記配線基 板および前記機能素子の集合体に対し加熱溶融型部材を配置する工程と、 前記配 線基板と前記機能素子との間に空隙部を残しつつ前記加熱溶融型部材を加熱溶融 する工程と、 前記複数個の配線基板の集合体を前記加熱溶融型部材とともに分割 して個々の電子部品を得る工程とを具備することを特徴とする。
本発明においては、 複数個の配線基板の集合体に対し所定位置に複数の機能素 子が位置决めされ、 前記機能素子と前記配線基板の集合体とは導電性接合部材を 介して所定間隔を維持して組立てられる。 次に、 前記配線基板および前記機能素 子の集合体に対し加熱溶融型部材が配置され、 前記配線基板と前記機能素子との 間に空隙部を残しつつ前記加熱溶融型部材を加熱溶融される。 最後に、 前記加熱 溶融型部材とともに前記複数個の配線基板の集合体が分割されて個々の電子部品 が一度に複数個得られる。
本発明は、 ひとつの配線基板の集合体の上に一括して導電性接合部材と機能素 子である弾性表面波素子を組立て、 その後にひとつの加熱溶融型部材、 例えば薄 片状樹脂を載置し、 封止する、 いわゆる多数個取りであるため、 生産性を向上さ せることができる。
本発明の電子部品の製造方法によれば、 封止用の加熱溶融型部材が機能素子と 配線基板とで形成される各々の空隙部に流れ込むのを防止する枠状絶縁部材を必 ずしも必要としないため、 従来必要とした枠状絶縁部材の形成工程を不要とする ことができ、 しかも簡易な構造の電子部品が一度に複数得られる利点を有する。 また、 封止用の加熱溶融型部材として成形した薄片状樹脂を用いて加熱溶融およ びその硬化により接合することにより、 特に各機能素子の空隙部に対向する表面 に榭脂が流れ込むのを容易に防ぐことができ、 各機能素子に悪影響を生じさせず、 各機能素子と配線基板との間に空隙部を形成し樹脂封止した電子部品を容易に製 造することができる。
配線基板の材質としては、 アルミナ、 マグネシア、 炭化珪素などのセラミック、 ガラス被覆セラミック、 内部に導体や機能部分を内蔵したアルミナなどのセラ ミック多層基板、 F R— 4をはじめとするガラスエポキシ等の樹脂基板を用いる ことができる。 また、 配線基板には、 分割に備えて分割範囲を規定するマーカー を備えることもできる。
また、 機能素子としては、 例えば、 弾性表面波素子、 水晶振動子、 圧電振動子
、 一対の送光部と受光部を有するフォト力ブラ、 E P R O M、 C C D、 半導体 レーザーあるいは発光ダイオードが挙げられる。
本発明の電子部品の製造方法によれば、 複数の機能素子例えば弾性表面波素子 や半導体素子をフェースダウンボンディング(ダイボンディングとワイヤボン デイング工程なしにチップを裏返して直接パッケージにはり付ける技術、 「 科 学大辞典」 丸善株式会社昭和 60年 3月 5日発行第 1189頁参照) 方式により実装す ることができる。 ここで、 フェースダウンボンディングとは、 具体的にはいわゆ るフリ ップチップ方式、 ビームリ ード方式、 T AB方式べデステル方式等を含む ものとする。 本発明では、 封止時の部材として、 例えば熱硬化性薄片状樹脂を用 い、 加熱によって該樹脂表面もしくは全体を溶融し硬化させることにより、 各機 能素子と配線基板とを、 配線基板と対向する各機能素子の主面と配線基板との間 W 702
に空隙部を保持しながら封止できるよう にしたものである。
本発明の電子部品の一部を構成することになる配線基板の各々には、 実装方式 の相違により、 一主面のみに、 または、 一主面と他の主面の両面にわたって配線 パターンを形成することができる。 また、 例えば、 弾性表面波素子においては、 空隙部を確保するために、 ひとつの面にくし歯型電極パターンからなるトランス デューサ部とそのトランスデューサ部に電気的に接続する配線バターンを形成す ることが必要となる。
各機能素子と配線基板とは、 接合部材を介することにより接合させることがで き、 このとき、 本発明にて形成される空隙部の隙間は接合部材の形状により定ま るが 1 0〜2 0 0 μ πι、 好ましくは 2 0〜8 0 μ πι確保することが望ましい。 本発明において、 接合部材とは、 素子(機能素子) と配線基板とを電気的に接 続し、 かつ、 両者を固定する手段として定義される。 例えば、 いわゆるバンプ、 導電性樹脂が使われる。 バンプは、 ボールバンプやめつきバンプなどがあり、 ま た、 導電性樹脂には、 導電性ペーストや異方性導電樹脂などが含まれる。
本発明においては、 これらを単独で用いてもよく、 また、 併用してもよく、 こ れらは本発明に包含される。
配線基板上の配線パターンと素子(機能素子) 上の配線パターンとを電気的に 接合する部材例えば導電性バンプには、 導電性金属めつきした樹脂ボールや金 ( Αι) や銀( fig) やはんだ( Sn系、 Pb系、 In系等) 等からなる金属バンプ等があ る。
これらの導電性バンプは、 配線基板と素子(機能素子) とを所定の温度、 圧力 で接合することにより配線基板上の配線パターンと素子(機能素子) 上の配線パ ターンとを電気的に接続するとともに、 素子(機能素子) と配線基板との間に空 隙部を形成し確保する役割を果たすことになる。 一定の空隙部を確保するために は金や銀やはんだ等からなる金属バンプが導電性バンプとして特に好ましい。 本発明の電子部品の製造方法においては、 接合された各機能素子と配線基板と を 1つの熱硬化性樹脂により覆い固めることにより配線基板上に実装し、 分割し て電子部品を構成するが、 この時に、 例えば、 熱硬化性榭脂として薄片状に成形 されたエポキシ系樹脂を用い加熱によつて該樹脂の表面もしくは全体を溶融し、 かつ、 硬化することにより各機能素子と配線基板を接合すると、 樹脂の粘性を高 く保持でき、 硬化中に各機能素子の配線基板に対向する側に形成された空隙部に 榭脂が流れ込むことを防ぐことができる。 また、 液状樹脂でないため枠状の絶縁 性隔壁やダムを必ずしも必要としない。 しかし、 枠状の絶縁性隔壁を設けること により、 一層封止効果を上げることができ、 本願発明に包含される。
従来の封止榭脂用材料として用いられる液状熱硬化性樹脂例えばエポキシ系 ポッティング榭脂はその粘度が 1 5 P a · s程度と低く、 1 0 0〜2 0 0 に加 熱してもすぐには粘度は高くならず、 低い粘度のままであるため、 枠状絶縁部材 なしでは、 機能素子および配線基板の空隙部に流れ込み空隙部を維持できず機能 素子の機能を損なう欠点がある。
しかしながら、 本発明の電子部品の製造方法によれば、 例えば、 薄片状に成形 されたエポキシ系樹脂を用いることによって加熱により溶融が開始されるまでは 高粘度の状態が保たれ溶融後も硬化を制御することにより、 少なくとも
5 O P a · s 以上の粘度が得られる。 このため、 容易に各機能素子を包覆するこ とができる。
このような薄片状樹脂は、 例えば、 エポキシ樹脂を原料とした粉末のものを必 要な形状および重量に冷間圧縮成形して容易に形成できる。 薄片状榭脂は、 機能 素子の空隙部を形成する主面ではない他の主面、 例えば、 各機能素子が弾性表面 波素子の場合には、 各弾性表面波素子の配線パターンが形成された主面でなく他 の主面側に載置される。
この場合の薄片状樹脂の形状は、 分割後の配線基板形状とほぼ等しいかやや小 さい形状を用いることが好ましい。 より好ましい薄片状樹脂の形状は、 分割前の 配線基板形状とほぼ等しいことである。
このよう にすることにより、 薄片状樹脂の各機能素子および分割前の配線基板 に対する位置決めを確実にすることができる。
ただし、 この寸法の選択は各機能素子の合計の体積と薄片状樹脂の厚みにより 適宜選択し得るものである。 空隙部と対向する面とは反対側の各機能素子の面上に載置された加熱溶 ¾型部 材である薄片状樹脂は、 加熱溶融とその硬化によって少なくとも前記素子の他の 主面に密着して前記素子を包覆し、 配線基板とで機能素子を封止する。
この場合の加熱溶融、 硬化条件は適度に制御することが必要であるが、 本発明 においては、 薄片状樹脂の加熱溶融温度が 1 0 0〜2 0 0 、 その硬化時間が 2 0時間〜 2時間で実施される。 より好ましくは、 1 1 0 °C〜1 7 0 ¾にて加熱 溶融した後、 硬化は 1 0 0 〜1 6 0 程度で 3時間〜 2 0時間実施される。 本発明の電子部品、 例えば弾性表面波装置を製造するにあたっては、 加熱溶融 型部材の一主面に該加熱溶融型部材形状より小さい形状の緩衝材シートを接着し て該加熱溶融型部材の緩衝材シート面を配線パターンが形成された主面を有する 各弾性表面波素子の他の主面上に対向して載置し、 かつ加熱溶融とその硬化に よって少なくとも前記各素子の他の主面と該緩衝材シートとが密着して前記各素 子を包覆するとともに、 配線基板とで前記各素子を封止することもできる。 緩衝 材シートとしては、 例えば、 ゴム弾性体シートのような弾力性に富んだ材料があ げられる。 もしくは、 金属箔ゃパラフィン紙を 2層としたものを配置してもよい。 この場合、 各々の層のシートの大きさは前記加熱溶融型部材形状より小さい形状 であれば必ずしも同じ大きさである必要はなく、 任意の形状のものであってよい。 このような構成とすることにより、 樹脂硬化の際の収縮や熱膨張差により生ずる 樹脂の応力歪みを緩和することができる。 さらに、 封止用の樹脂部と各弾性表面 波素子との間に緩衝材シートの位置決めを容易に行うことができるため、 生産性 • 信頼性の向上につながる。
本発明の電子部品の製造方法によれば、 配線基板と各機能素子との電気的接続 部分となる導電性接合部材に接続される配線パターンの高さを配線基板材料厚み または配線パターンの導電材料厚みを部分的に変えることによって制御し、 もし くは電気的接続部分となる導電性接合部材の高さ自体を制御することによって、 各機能素子と配線基板との間の適正量の空隙部を有効に確保できるので、 機能素 子が、 例えば、 弾性表面波吸収材が配置された弾性表面波素子である場合にも、 各弾性表面波素子と配線基板との間の接合強度を充分に保て、 接続の信頼性を向 上させることができる。
本発明の電子部品、 例えば弾性表面波装置の製造方法においては、 配線基板の 配線パターンを形成する際に、 配線パターンの少なくとも一部を導電ペーストを 用いたスクリ ーン印刷法により複数回塗布し、 焼き付けまたは同時焼成すること も.できる。
この場合、 複数回塗布した部分の焼成後の厚みは他の部分との差が 5〜100 μ ιη の範囲にあることが好ましい。
また、 本発明の電子部品の製造方法においては、 配線基板の配線パターンを形 成する際に、 配線パターンの少なくとも一部を蒸着もしくはスパッタ等の成膜方 法により該配線パターンの他の部分より厚く成膜することもできる。
この差は、 少なくとも 0. 5 / mi¾上あることが好ましい。
また、 本発明の電子部品の製造方法においては、 配線基板を形成する際に、 電 気的接続部分となる接合部材に対向する部分およびその近傍の領域に相当するグ リ ーンシートを付加して焼成し、 その後該配線基板に配線パターンを形成するこ ともできる。
このグリーンシートを付加して焼成した部分の厚みと他の部分の厚みの差は、 実質的に 5 〜500 μ πの範囲にあることが好ましい。 '
このような配線基板の製造方法を用いることによって、 接合部材の厚みが小さ くても、 配線パターン部分の配線基板材料もしくは導電材料の厚みと加えあわせ ることができるため、 各機能素子と配線基板との間の適正量の空隙部を有効に確 保できるので、 特に、 弾性表面波吸収材が配置された弾性表面波素子の場合にも、 弾性表面波素子と配線基板との間の接合強度を充分に保つことが可能になり、 接 合強度を上げ、 接続の信頼性を上げることができる。
さらに、 本発明の電子部品においては、 適正量の空隙部を確保するために、 電 気的接続部分となる導電性接合部材としてほぼ同一位置に導電性バンプを複数個 積み重ねたものを用いるこもできる。 この場合、 複数個の導電性バンプの厚みの 和は 30〜150 ni 範囲となることが好ましい。 あるいは、 また、 電気的接続部分 となる導電性接合部材として導電性ポールバンプを用い、 かつ、 該導電性ボール バンプの厚みを導電性細線の太さを変えることにより調整することができる。 こ れらの場合、 導電性バンプとして、 実質的に金からなるボールバンプ、 実質的に 錫からなるボールバンプ、 実質的に鉛からなるポールバンプ等がより好ましい。 あるいは、 また、 各機能素子の少なくとも一主面もしくは他の主面の一部に機能 性物質を塗布する際、 具体的には、 例えば、 各弾性表面波素子の少なくとも一主 面もしくは他の主面の一部に弾性表面波吸収材を塗布する際に、 機能物質すなわ ち弾性表面波吸収材を導電性接合部材の厚みより薄く塗布することができる。 このよう に電気的接続部分となる導電性接合部材の厚みを制御することによつ ても、 各機能素子と配線基板との間の適正量の空隙部を有効に確保できる。 この 場合、 配線基板の基板材料厚みもしくは導電材料の厚みを部分的に変える必要が ないため、 複数の電子部品の製造がより簡単になる。
本発明に係る電子部品の製造方法は、 配線基板に対し所定位置に機能素子を位 置決めする工程と、 前記機能素子と前記配線基板とを導電性接合部材を介して所 定間隔を維持して組み立てる工程と、 前記配線基板に対し加熱溶融型部材を配置 する工程と、 前記配線基板と前記機能素子との間に空隙部を残しつつ前記加熱溶 融型部材を加熱溶融する工程とを具備し、 前記加熱溶融型部材が加熱溶融型薄片 状榭脂であって、 前記薄片状樹脂の加熱溶融、 硬化に係る工程は少なくとも、 ( 1 ) 薄片状榭脂の加熱溶融により榭脂形状を決める段階、 ( 2 ) 樹脂形状を維 持しながらゲル化状態に移行する段階、 ( 3 ) 樹脂の硬化を行う段階、 を含み、 かつ( 2 ) の工程温度が( 1 ) または( 3 ) より低いことを特徴とする。
本発明において、 機能素子は配線基板に対して所定に位置に配置される。 次に、 機能素子と前記配線基板とは導電性接合部材を介して所定間隔を維持して組み立 てられ、 配線基板に対して加熱溶融型薄片状樹脂が配置される。 そして、 加熱溶 融型薄片状樹脂は前記配線基板と前記機能素子との間に空隙部を残しつつ加熱溶 融' 硬化される。 このとき、 加熟溶融 · 硬化の工程は、 複数の温度条件、 すなわ ち、 ( 1 ) 薄片状樹脂の加熱溶融により樹脂形状を決める段階、 ( 2 ) 樹脂形状 を維持しながらゲル化状態に移行する段階、 ( 3 ) 樹脂の硬化を行う段階に少な くともさらされ、 ( 2 ) の温度が最も低くなるように制御される。 このように、 加熱溶融 · 硬化の工程に複数の段階的な温度条件をもたらすこと により、 榭脂が機能素子と配線基板とで形成される空隙部に流れ込むのを防ぎつ つ機能素子と配線基板とを確実に封止することができる。
本発明の電子部品の製造方法によれば、 一定粘度を有する封止用の樹脂が機能 素子と配線基板とで形成される空隙部に流れ込むのを防止する枠状絶縁部材を必 ずしも必要としないため、 従来必要とした枠状絶縁部材の形成工程を不要とする ことができ、 しかも簡易な構造の電子部品が得られる利点を有する。 また、 封止 用の榭脂として成形した薄片状樹脂を用いて加熱溶融およびその硬化により接合 することにより、 特に機能素子の空隙部に対向する表面に樹脂が流れ込むのを容 易に防ぐことができ、 機能素子に悪影響を生じさせず、 機能素子と配線基板との 間に空隙部を形成し樹脂封止した電子部品を容易に製造することができる。
配線基板の材質としては、 アルミナ、 マグネシア、 炭化珪素などのセラミック、 ガラス被覆セラミック、 内部に導体や機能部分を内蔵したアルミナなどのセラ ミック多層基板、 F R— 4をはじめとするガラスエポキシ等の榭脂基板を用いる ことができる。
また、 機能素子としては、 例えば、 弾性表面波素子、 水晶振動子、 圧電振動子 、.一対の送光部と受光部を有するフォト力ブラ、 E P R O M、 C C D , 半導体 レ一ザ一あるいは発光ダイオードが挙げられる。
本発明の電子部品の製造方法によれば、 機能素子例えば弾性表面波素子や半導 体素子をフェースダウンボンディング(ダイボンディングとワイヤボンディング 工程なしにチップを裏返して直接パッケージにはり付ける技術、 「科学大辞 典」 丸善株式会社昭和 60年 3月 5日発行第 1189頁参照) 方式により実装すること ができる。 ここで、 フェースダウンボンディングとは、 具体的にはいわゆるフ リ ップチップ方式、 ビームリード方式、 T AB方式べデステル方式等を含むもの とする。 本発明では、 封止時の部材として、 粉末原料を冷間圧縮成形した加熱溶 融型部材、 例えば熱硬化性薄片状樹脂を用い、 加熱によって該樹脂表面もしくは 全体を溶融し硬化させることにより、 機能素子と配線基板とを、 配線基板と対向 する機能素子の主面と配線基板との間に空隙部を保持しながら封止できるよ に したものである。
本発明の電子部品の一部を構成する配線基板は、 実装方式の相違により、 一主 面のみに、 または、 一主面と他の主面の両面にわたって配線パターンを形成する ことができる。 また、 例えば、 弾性表面波素子においては、 空隙部を確保するた めに、 ひとつの面にくし歯型電極パターンからなるトランスデューサ部とそのト ランスデューサ部に電気的に接続する配線バターンを形成することが必要とな る。
機能素子と配線基板とは、 接合部材を介することにより接合させることができ、 このとき、 本発明にて形成される空隙部の隙間は接合部材の形状により定まるが 1 0〜2 0 0 μ m、 好ましくは 2 0〜8 0 /z m確保することが望ましい。
本発明において、 接合部材とは、 素子(機能素子) と配線基板とを電気的に接 続し、 かつ、 両者を固定する手段として定義される。 例えば、 いわゆるバンプ、 導電性樹脂が使われる。 バンプは、 ボールバンプやめつきバンプなどがあり 、 ま た、 導電性樹脂には、 導電性ペーストや異方性導電樹脂などが含まれる。
本発明においては、 これらを単独で用いてもよく、 また、 併用してもよく、 こ れらは本発明に包含される。
配線基板上の配線パターンと素子(機能素子) 上の配線パターンとを電気的に 接合する部材例えば導電性バンプには、 導電性金属めつきした樹脂ポ一ルゃ金 ( Ai) や銀( g) やはんだ( Sn系、 Pb系、 In系等) 等からなる金属バンプ等があ る。
これらの導電性バンプは、 配線基板と素子(機能素子) とを所定の温度、 圧力 で接合することにより配線基板上の配線パターンと素子(機能素子) 上の配線パ ターンとを電気的に接続するとともに、 素子(機能素子) と配線基板との間に空 隙部を形成し確保する役割を果たすことになる。 一定の空隙部を確保するために は金や銀やはんだ等からなる金属バンプが導電性バンプとして特に好ましい。 本発明の電子部品の製造方法においては、 接合された機能素子と配線基板とを 薄片状の例えば熱硬化性榭脂により覆い固めることにより配線基板上に実装し電 子部品を構成するが、 この時に、 熟硬化性榭脂として薄片状に成形されたェポキ' シ系榭脂を用い加熱によって該樹脂の表面もしくは全体を溶融し、 かつ、 硬化す ることにより機能素子と配線基板を接合すると、 樹脂の粘性を高く保持でき、 硬 化中に機能素子の配線基板に対向する側に形成された空隙部に樹脂が流れ込むこ とを防ぐことができる。 また、 液状樹脂でないため枠状の絶縁性隔壁やダムを必 ずしも必要としない。 しかし、 枠状の絶縁性隔壁を設けることにより、 一層封止 効果を上げることができ、 本願発明に包含される。
従来の封止樹脂用材料として用いられる液状熱硬化性樹脂例えばエポキシ系 ポッティング樹脂はその粘度が 1 5 P a · s程度と低く、 1 0 0〜2 0 0 に加 熱してもすぐには粘度は高くならず、 低い粘度のままであるため、 枠状絶縁部材 なしでは、 機能素子および配線基板の空隙部に流れ込み空隙部を維持できず機能 素子の機能を損なう欠点がある。
しかしながら、 本発明の電子部品の製造方法によれば、 薄片状に成形された例 えばエポキシ系樹脂を用いることによつて加熱により溶融が開始されるまでは高 粘度の状態が保たれ溶融後も硬化を制御することにより、 少なくとも
5 0 P a · s 以上の粘度が得られる。 このため、 容易に機能素子を包覆すること ができる。
このような薄片状樹脂は、 例えば、 エポキシ樹脂を原料とした粉末のものを必 要な形状および重量に冷間圧縮成形して容易に形成できる。 薄片状樹脂は、 機能 素子の空隙部を形成する主面ではない他の主面、 例えば、 機能素子が弾性表面波 素子の場合には、 弾性表面波素子の配線パターンが形成された主面でなく他の主 面に載笸される。
この場合の薄片状樹脂の形状は機能素子形状より大きく、 かつ、 配線基板形状 とほぼ等しいかやや小さい形状を用いることが好ましい。 より好ましい薄片状榭 脂の形状は機能素子形状より大きく、 かつ、 配線基板形状とほぼ等しいことであ る。 このよう にすることにより、 薄片状樹脂の機能素子および配線基板に対する 位置決めを確実にすることができる。 また、 薄片状樹脂の形状を、 その周囲を垂 下した形とすると機能素子と配線基板との封止をより確実にできるので好まし い。 なお、 例えば機能素子の形状が 2 m m X 2 m mの寸法に対し、 配線基板形状の 寸法が 4 m m X 4 m mの場合、 薄片状樹脂の形状の寸法も 4 m m X 4 m mの大き さが用いられる。
ただし、 この寸法の選択は機能素子の体積と薄片状樹脂の厚みにより適宜選択 し得るものである。
空隙部と対向する面とは反対側の機能素子の面上に載置された薄片状榭脂は、 加熱溶融とその硬化によって少なくとも前記素子の他の主面に密着して前記素子 を包覆し、 配線基板とで機能素子を封止する。.
樹脂としては熱硬化性樹脂が好ましく、 例えば、 エポキシ樹脂、 シリコーン榭 脂、 ウレタン樹脂等があげられる。 好ましくは、 エポキシ樹脂であり、 さらには フエノール系のエポキシ樹脂がより好ましい。 特に、 ビスフエノール A型ェポキ シ樹脂ゃフエノールノポラック型エポキシ樹脂は、 本発明の電子部品の製造方法 に適する。
機能素子の空隙部に面した面とは異なる面上に載置された薄片状榭脂は、 加熱 溶融とその硬化によって少なくとも前記素子の空隙部に面した面とは異なる面に 密着して前記素子を包覆し、 配線基板とで機能素子を封止する。 本発明において、 加熱溶融、 硬化条件は適度に制御することが必要であるが、 本発明においては、 1 1 0 〜 1 7 0 ^にて加熱溶融した後、 ゲル化温度は 9 0 〜1 5 0 程度で 例えば 0 . 5時間実施され、 硬化は 1 0 0 °C〜1 6 0 程度で 3時間〜 2 0時間 実施される。
本発明の電子部品、 例えば弾性表面波装置を製造するにあたっては、 加熱溶融 型部材のー主面に該加熱溶融型部材形状より小さい形状の緩衝材シートを接着し て該加熱溶融型部材の緩衝材シート面を配線パターンが形成された主面を有する 弾性表面波素子の他の主面上に対向して載置し、 かつ加熱溶融とその硬化によつ て少なくとも前記素子の他の主面と該緩衝材シートとが密着して前記素子を包覆 するとともに、 配線基板とで前記素子を封止することもできる。 緩衝材シートと しては、 例えば、 ゴム弾性体シート のような弾力性に富んだ材料があげられる。 もしくは、 金属箔ゃパラフィン紙を 2層としたものを配置してもよい。 この場合、 各々の層のシートの大きさは前記薄片状樹脂形状より小さい形状であれば必ずし も同じ大きさである必要はなく、 任意の形状のものであってよい。 このような構 成とすることにより、 樹脂硬化の際の収縮や熱膨張差により生ずる樹脂の応力歪 みを緩和することができる。 さらに、 封止用の樹脂部と弾性表面波素子との間に 緩衝材シートの位置決めを容易に行うことができるため、 生産性' 信頼性の向上 につながる。
さらに、 本発明の電子部品、 例えば、 弾性表面波装置を製造するにおいては、 樹脂部の周辺端縁と配線基板の周辺端縁との間に配線基板の一主面からの配線パ ターンを露出し樹脂部が配線パターンを覆ってしまうことがないようにもでき、 この場合には、 配線バターンは配線基板の側部端面に形成された凹状配線パタ一 ンと連続する。
このため、 弾性表面波装置を他の受動部品等とともに回路基板に面実装する際 に、 回路基板上の接続部と配線基板の側部端面に形成された凹状配線バターンと をはんだ等で容易に接続することができる。
本発明の電子部品の製造方法によれぱ、 配線基板と機能素子との電気的接続部 分となる導電性接合部材に接続される配線パターンの高さを配線基板材料厚みま たは配線バターンの導電材料厚みを部分的に変えることによつて制御し、 もしく は電気的接続部分となる導電性接合部材の高さ自体を制御することによって、 機 能素子と配線基板との間の適正量の空隙部を有効に確保できるので、 機能素子が、 例えば、 弾性表面波吸収材が配置された弾性表面波素子である場合にも、 弾性表 面波素子と配線基板との間の接合強度を充分に保て、 接続の信頼性を向上させる ことができる。
本発明の電子部品、 例えば弾性表面波装置の製造方法においては、 配線基板の 配線パタ ンを形成する際に、 配線パターンの少なくとも一部を導電ペーストを 用いたスクリ ーン印刷法により複数回塗布し、 焼き付けまたは同時焼成すること もできる。
この場合、 複数回塗布した部分の焼成後の厚みは他の部分との差が 5〜100 m の範囲にあることが好ましい。 また、 本発明の電子部品の製造方法においては、 配線基板の配線パターンを形 成する際に、 配線パターンの少なくとも一部を蒸着もしくはスパッタ等の成膜方 法により該配線パターンの他の部分より厚く成膜することもできる。
この差は、 少なくとも 0. 5 /ζ π ^上あることが好ましい。
また、 本発明の電子部品の製造方法においては、 配線基板を形成する際に、 電 気的接続部分となる接合部材に対向する部分およびその近傍の領域に相当するグ リ ーンシートを付加して焼成し、 その後該配線基板に配線パターンを形成するこ ともできる。
このグリ ーンシートを付加して焼成した部分の厚みと他の部分の厚みの差は、 実質的に 5〜500 μ π ^範囲にあることが好ましい。
このような配線基板の製造方法を用いることによって、 接合部材の厚みが小さ くても、 配線パターン部分の配線基板材料もしくは導電材料の厚みと加えあわせ ることができるため、 機能素子と配線基板との間の適正量の空隙部を有効に確保 できるので、 特に、 弾性表面波吸収材が配置された弾性表面波素子の場合にも、 弾性表面波素子と配線基板との間の接合強度を充分に保つことが可能になり、 接 合強度を上げ、 接続の信頼性を上げることができる。
さらに、 本発明の電子部品においては、 適正量の空隙部を確保するために、 電 気的接続部分となる導電性接合部材としてほぼ同一位置に導電性バンプを複数個 積み重ねたものを用いるこもできる。 この場合、 複数個の導電性バンプの厚みの 和は 30〜150 /ζ π^範囲となることが好ましい。 あるいは、 また、 電気的接続部分 となる導電性接合部材として導電性ボールバンプを用い、 かつ、 該導電性ボール バンプの厚みを導電性細線の太さを変えることにより調整することができる。 こ れらの場合、 導電性バンプとして、 実質的に金からなるボールバンプ、 実質的に 錫からなるボールバンプ、 実質的に鉛からなるボールバンプ等がより好ましい。 あるいは、 また、 機能素子の少なくとも一主面もしくは他の主面の一部に機能性 物質を塗布する際、 具体的には、 例えば、 弾性表面波素子の少なくとも一主面も しくは他の主面の一部に弾性表面波吸収材を塗布する際に、 機能物質すなわち弾 性表面波吸収材を導電性接合部材の厚みより薄く塗布することができる。 このように電気的接続部分となる導電性接合部材の厚みを制御することによつ ても、 機能素子と配線基板との間の適正量の空隙部を有効に確保できる。 この場 合、 配線基板の基板材料厚みもしくは導電材料の厚みを部分的に変える必要がな いため、 電子部品の製造がより簡単になる。
本発明に係る電子部品の製造方法は、 配線基板に対し所定位置に弾性表面波素 子を位置決めする工程と、 前記弾性表面波素子と前記配線基板とを導電性接合部 材を介して所定間隔を維持して組み立てる工程と、 前記配線基板に対し加熱溶融 型部材を配置する工程と、 前記配線基板と前記弾性表面波素子との間に空隙部を 残しつつ前記加熱溶融型部材を加熱溶融する工程とを具備し、 前記弾性表面波素 子を構成する圧電体から成るゥヱハーの一主面上にトランスデューサ部およびこ のトランスデューサ部に電気的に接続する配線パターンを複数個形成し、 該配線 パターン上の一部に複数の接合部材を形成した後、 切断して個々の弾性表面波素 子を形成する際に、 切断時のブレードの速さが毎秒 lOrrn^上 50mn ^下であること を特徴とする。
本発明においては、 配線基板に対し所定位置に弾性表面波素子が位置決めされ る。 このとき、 弾性表面波素子を構成する圧電体から成るウェハーの一主面上に トランスデューサ部およびこのトランスデューサ部に電気的に接続する配線パ ターンが複数個形成され、 この配線バターンの一部には複数の接合部材が形成さ れている。 次に、 弾性表面波素子と配線基板とはこの接合部材を介して所定間隔 を維持して組み立てられる。 次いで、 前記配線基板に対し加熱溶融型部材が配置 され、 前記配線基板と前記弾性表面波素子との間に空隙部を残しつつ前記加熱溶 融型部材は加熱溶融される。 最後に、 複数個形成された配線パターンに対応して 移動の速さが毎秒 lOmn^上 50im ^下となるよう に調整されたブレードにより切断 され、 個々の弾性表面波装置が形成される。
こうしたブレードとしては、 ダイヤモンドカツタのような切断部材を適当に用 いることができる。
このような弾性表面波素子を作製する際の圧電体ゥェハーの切断条件を最適に 制御することにより、 切断する際に生ずる静電気による障害を回避することがで きる。 より、 具体的には、 弾性表面波素子のトランスデューサ部もしくは電極配 線バターンの変質を防ぐことができる。
本発明は、 ひとつの圧電体の上に複数のトランスデューサ部およびこのトラン スデューサ部に電気的に接続する配線パターンを形成しておき、 一括して導電性 接合部材と弾性表面波素子を組立て、 例えば薄片状榭脂を載置して封止した後、 切断して複数の弾性表面波装置を得るものであるため、 生産性を向上させること ができる。
本発明の電子部品の製造方法によれば、 封止用の加熱溶融型部材が弾性表面波 素子と配線基板とで形成される各々の空隙部に流れ込むのを防止する枠状絶縁部 材を必ずしも必要としないため、 従来必要とした枠状絶縁部材の形成工程を不要 とすることができ、 しかも簡易な構造の電子部品が一度に複数得られる利点を有 する。 また、 封止用の加熱溶融型部材として成形した薄片状樹脂を用いて加熱溶 融およびその硬化により接合することにより、 弾性表面波素子の空隙部に対向す る表面に加熱溶融型部材が流れ込むのを容易に防ぐことができ、 弾性表面波素子 に悪影響を生じさせず、 弾性表面波素子と配線基板との間に空隙部を形成し樹脂 封止した弾性表面波装置を容易に製造することができる。
配線基板の材質としては、 アルミナ、 マグネシア、 炭化珪素などのセラミック、 ガラス被覆セラミック、 内部に導体や機能部分を内蔵したアルミナなどのセラ ミック多層基板、 F R— 4をはじめとするガラスエポキシ等の樹脂基板を用いる ことができる。 また、 配線基板には、 分割に備えて分割範囲を規定するマーカー を備えることもできる。
本発明の電子部品の製造方法によれぱ、 弾性表面波素子をフエ一スダウンボン ディング(ダイボンディングとワイヤボンディング工程なしにチップを裏返して 直接パッケージにはり付ける技術、 「 科学大辞典」 丸善株式会社昭和 60年 3月 5 日発行第 1189頁参照) 方式により実装することができる。 ここで、 フェースダウ ンボンディングとは、 具体的にはいわゆるフリ ップチップ方式、 ビームリード方 式、 T A B方式べデステル方式等を含むものとする。 本発明では、 封止時の部材 として、 例えば熱硬化性薄片状樹脂を用い、 加熟によって該樹脂表面もしくは全 体を溶融し硬化させることにより、 弾性表面波素子と配線基板とを、 配線基板と 対向する弾性表面波素子の主面と配線基板との間に空隙部を保持しながら封止で きるようにしたものである。
本発明の電子部品の一部を構成することになる配線基板の各々には、 実装方式 の相違により、 一主面のみに、 または、 一主面と他の主面の両面にわたって配線 パターンを形成することができる。 また、 弾性表面波素子においては、 空隙部を 確保するために、 ひとつの面にくし歯型電極パターンからなるトランスデューサ 部とそのトランスデューサ部に電気的に接続する配線パターンを形成することが 必要となる。
弾性表面波素子と配線基板とは、 導電性接合部材を介することにより接合させ ることができ、 このとき、 本発明にて形成される空隙部の隙間は導電性接合部材 の形状により定まるが 1 0〜2 0 0 / m、 好ましくは 2 0〜8 0 μ ιη確保するこ とが望ましい。
本発明において、 導電性接合部材とは、 弾性表面波素子と配線基板とを電気的 に接続し、 かつ、 両者を固定する手段として定義される。 例えば、 いわゆるバン プ、 導電性樹脂が使われる。 バンプは、 ボールバンプやめつきバンプなどがあり、 また、 導電性樹脂には、 導電性ペーストや異方性導電樹脂などが含まれる。
本発明においては、 これらを単独で用いてもよく、 また、 併用してもよく、 こ れらは本発明に包含される。
配線基板上の配線バターンと弾性表面波素子上の配線パターンとを電気的に接 合する部材例えば導電性バンプには、 導電性金属めつきした樹脂ボールや金
( Αι) や銀( g) やはんだ( Sn系、 Pb系、 I n系等) 等からなる金属バンプ等があ る。
これらの導電性バンプは、 配線基板と弾性表面波素子とを所定の温度、 圧力で 接合することにより配線基板上の配線パターンと弾性表面波素子上の配線パタ一 ンとを電気的に接続するとともに、 弾性表面波素子と配線基板との間に空隙部を 形成し確保する役割を果たすことになる。 一定の空隙部を確保するためには金や 銀やはんだ等からなる金属バンプが導電性バンプとして特に好ましい。 本発明の電子部品の製造方法においては、 接合された弾性表面波素子と配線基 板とを加熱溶融型部材により覆い固めることにより配線基板上に実装し、 分割し て弾性表面波装置を構成するが、 この時に、 例えば、 加熱溶融型部材として薄片 状に成形されたエポキシ系樹脂を用い加熱によって該榭脂の表面もしくは全体を 溶融し、 かつ、 硬化することにより弾性表面波素子と配線基板を接合すると、 樹 脂の粘性を高く保持でき、 硬化中に弾性表面波素子の配線基板に対向する側に形 成された空隙部に樹脂が流れ込むことを防ぐことができる。 また、 液状樹脂でな いため枠状の絶縁性隔壁やダムを必ずしも必要としない。 しかし、 枠状の絶縁性 隔壁を設けることにより 、 一層封止効果を上げることができ、 本願発明に包含さ れる。
従来の封止樹脂用材料として用いられる液状熱硬化性樹脂例えばエポキシ系 ポッティング榭脂はその粘度が 1 5 P a · s程度と低く、 1 0 0〜2 0 0 に加 熱してもすぐには粘度は高くならず、 低い粘度のままであるため、 枠状絶縁部材 なしでは、 機能素子および配線基板の空隙部に流れ込み空隙部を維持できず機能 素子の機能を損なう欠点がある。
しかしながら、 本発明の電子部品の製造方法によれば、 例えば、 薄片状に成形 されたエポキシ系樹脂を用いることによつて加熱により溶融が開始されるまでは 高粘度の状態が保たれ溶融後も硬化を制御することにより、 少なくとも
5 0 P a · s 以上の粘度が得られる。 このため、 容易に弾性表面波素子を包覆す ることができる。
このような薄片状樹脂は、 例えば、 エポキシ榭脂を原料とした粉末のものを必 要な形状および重量に冷間圧縮成形して容易に形成できる。 薄片状樹脂は、 弾性 表面波素子の空隙部を形成する主面ではない他の主面、 すなわち弾性表面波素子 の配線バターンが形成された主面でなく他の主面側に載置される。
この場合の薄片状樹脂の形状は、 分割後の配線基板形状とほぼ等しいかやや小 さい形状を用いることが好ましい。 より好ましい薄片状樹脂の形状は、 分割前の 配線基板形状とほぼ等しいことである。
このよう にすることにより、 薄片状樹脂の弾性表面波素子および分割前の配線 基板に対する位笸決めを確実にすることができる。
ただし、 この寸法の選択は弾性表面波素子の合計の体積と薄片状樹脂の厚みに より適宜選択し得るものである。
空隙部と対向する面とは反対側の弾性表面波素子の面上に載置された薄片状樹 脂は、 加熱溶融とその硬化によって少なくとも前記素子の他の主面に密着して前 記素子を包覆し、 配線基板とで弾性表面波素子を封止する。
この場合の加熱溶融、 硬化条件は適度に制御することが必要であるが、 本発明 においては、 薄片状樹脂の加熱溶融温度が 1 0 0〜2 0 0 ^、 その硬化時間が 2 0時間〜 2時間で実施される。 より好ましくは、 1 1 0 〜 1 7 0 tにて加熱 溶融した後、 硬化は 1 0 0 〜1 6 0 程度で 3時間〜 2 0時間実施される。 本発明の電子部品、 弾性表面波装置を製造するにあたっては、 加熱溶融型部材 の一主面に該加熱溶融型部材形状より小さい形状の緩衝材シートを接着して該加 熱溶融型部材の緩衝材シート面を配線パターンが形成された主面を有する弾性表 面波素子の他の主面上に対向して載置し、 かつ加熱溶融とその硬化によつて少な くとも前記各素子の他の主面と該緩衝材シートとが密着して弾性表面波素子を包 覆するとともに、 配線基板とで弾性表面波素子を封止することもできる。 緩衝材 シートとしては、 例えば、 ゴム弾性体シートのような弾力性に富んだ材料があげ られる。 もしくは、 金属箔ゃパラフィン紙を 2層としたものを配置してもよい。 この場合、 各々の層のシートの大きさは前記薄片状樹脂形状より小さい形状であ れば必ずしも同じ大きさである必要はなく、 任意の形状のものであってよい。 こ のような構成とすることにより、 樹脂硬化の際の収縮や熱膨張差により生ずる樹 脂の応力歪みを緩和することができる。 さらに、 封止用の樹脂部と弾性表面波素 子との間に緩衝材シートの位置決めを容易に行うことができるため、 生産性' 信 頼性の向上につながる。
本発明の電子部品の製造方法によれば、 配線基板と弾性表面波素子との電気的 接続部分となる導電性接合部材に接続される配線バターンの高さを配線基板材料 厚みまたは配線パターンの導電材料厚みを部分的に変えることによつて制御し、 もしくは電気的接続部分となる導電性接合部材の高さ自体を制御することによつ て、 弾性表面波素子と配線基板との間の適正量の空隙部を有効に確保できるので、 弾性表面波吸収材が配置された弾性表面波素子である場合にも、 弾性表面波素子 と配線基板との間の接合強度を充分に保て、 接続の信頼性を向上させることがで きる。
本発明の電子部品、 弾性表面波装置の製造方法においては、 配線基板の配線パ ターンを形成する際に、 配線パターンの少なくとも一部を導電ペーストを用いた スクリ ーン印刷法により複数回塗布し、 焼き付けまたは同時焼成することもでき る。
この場合、 複数回塗布した部分の焼成後の厚みは他の部分との差が 5〜100 /z m の範囲にあることが好ましい。
また、 本発明の電子部品の製造方法においては、 配線基板の配線パターンを形 成する際に、 配線パターンの少なくとも一部を蒸着もしくはスパッタ等の成膜方 法により該配線パターンの他の部分より厚く成膜することもできる。
この差は、 少なくとも 0. 5 μ πι¾上あることが好ましい。
また、 本発明の電子部品の製造方法においては、 配線基板を形成する際に、 電 気的接続部分となる接合部材に対向する部分およびその近傍の領域に相当するグ リ ーンシートを付加して焼成し、 その後該配線基板に配線パターンを形成するこ ともできる。
このダリ ーンシートを付加して焼成した部分の厚みと他の部分の厚みの差は、 実質的に 5〜500 μ πί7)範囲にあることが好ましい。
このような配線基板の製造方法を用いることによって、 接合部材の厚みが小さ くても、 配線バターン部分の配線基板材料もしくは導電材料の厚みと加えあわせ ることができるため、 弾性表面波素子と配線基板との間の適正量の空隙部を有効 に確保できるので、 特に、 弾性表面波吸収材が配置された弾性表面波素子の場合 にも、 弾性表面波素子と配線基板との間の接合強度を充分に保つことが可能にな り、 接合強度を上げ、 接続の信頼性を上げることができる。
さらに、 本発明の電子部品においては、 適正量の空隙部を確保するために、 電 気的接続部分となる導電性接合部材としてほぼ同一位置に導電性バンプを複数個 積み重ねたものを用いることもできる。 この場合、 複数個の導電性バンプの厚み の和は 30〜150 /i iri 範囲となることが好ましい。 あるいは、 また、 電気的接続部 分となる導電性接合部材として導電性ボールバンプを用い、 かつ、 該導電性ポー ルバンプの厚みを導電性細線の太さを変えることにより調整することができる。 これらの場合、 導電性バンプとして、 実質的に金からなるボールバンプ、 実質的 に錫からなるボールバンプ、 実質的に鉛からなるボールバンプ等がより好ましい。 あるいは、 弾性表面波素子の少なくとも一主面もしくは他の主面の一部に弾性表 面波吸収材を塗布する際に、 機能物質すなわち弾性表面波吸収材を導電性接合部 材の厚みより薄く塗布することができる。
このよう に電気的接続部分となる導電性接合部材の厚みを制御することによつ ても、 弾性表面波素子と配線基板との間の適正量の空隙部を有効に確保できる。 この場合、 配線基板の基板材料厚みもしくは導電材料の厚みを部分的に変える必 要がないため、 複数の電子部品の製造がより簡単になる。
本発明に係る電子部品の製造方法は、 配線基板に対し所定位置に弾性表面波素 子を位置決めする工程と、 前記弾性表面波素子と前記配線基板とを導電性接合部 材を介して所定間隔を維持して組み立てる工程と、 前記配線基板に対し加熱溶融 型部材を配置する工程と、 前記配線基板と前記弾性表面波素子との間に空隙部を 残しつつ前記加熱溶融型部材を加熱溶融する工程とを具備し、 前記弾性表面波素 子を構成する圧電体から成るゥェハーの一主面上にトランスデューサ部およびこ のトランスデューサ部に電気的に接続する配線パターンを複数個形成し、 該配線 パターン上の一部に複数の接合部材を形成した後、 切断して個々の弾性表面波素 子を形成する際に、 切断時に使用する水の比抵抗が 0 . 0 1 Μ Ω ο m以上
1 0 0 Μ Ω <= m以下であることを特徴とする。
本発明においては、 配線基板に対し所定位置に弾性表面波素子が位置決めされ る。 このとき、 弾性表面波素子を構成する圧電体から成るウェハーの一主面上に トランスデューサ部およびこのトランスデューサ部に電気的に接続する配線パ ターンが複数個形成され、 この配線バターンの一部には複数の接合部材が形成さ れている。 次に、 弾性表面波素子と配線基板とはこの接合部材を介して所定間隔 を維持して組み立てられる。 次いで、 前記配線基板に対し加熱溶融型部材が配置 され、 前記配線基板と前記弾性表面波素子との間に空隙部を残しつつ前記加熱溶 融型部材は加熱溶融される。 最後に、 複数個形成された配線パターンに対応して 比抵抗が 0 . 0 1 M Q c m以上 1 0 0 M Q c m以下となるよう に調整された水に より切断され、 個々の弾性表面波装置が形成される。
このような弾性表面波素子を作製する際の圧電体ゥェハーの切断条件を最適に 制御することにより、 切断する際に生ずる静電気による障害を回避することがで きる。 より、 具体的には、 弾性表面波素子のトランスデューサ部もしくは電極配 線バターンの変質を防ぐことができる。
本発明は、 ひとつの圧電体の上に複数のトランスデューサ部およびこのトラン スデューサ部に電気的に接続する配線パターンを形成しておき、 一括して導電性 接合部材と弾性表面波素子を組立て、 例えば薄片状樹脂を載置して封止した後、 切断して複数の弾性表面波装置を得るものであるため、 生産性を向上させること ができる。
本発明の電子部品の製造方法によれば、 封止用の加熱溶融型部材が弾性表面波 素子と配線基板とで形成される各々の空隙部に流れ込むのを防止する枠状絶縁部 材を必ずしも必要としないため、 従来必要とした枠状絶縁部材の形成工程を不要 とすることができ、 しかも簡易な構造の電子部品が一度に複数得られる利点を有 する。 また、 封止用の加熱溶融型部材として成形した薄片状樹脂を用いて加熱溶 融およびその硬化により接合することにより、 弾性表面波素子の空隙部に対向す る表面に加熱溶融型部材が流れ込むのを容易に防ぐことができ、 弾性表面波素子 に悪影響を生じさせず、 弾性表面波素子と配線基板との間に空隙部を形成し封止 した弾性表面波装置を容易に製造することができる。
配線基板の材質としては、 アルミナ、 マグネシア、 炭化珪素などのセラミック、 ガラス被覆セラミック、 内部に導体や機能部分を内蔵したアルミナなどのセラ ミック多層基板、 F R— 4をはじめとするガラスエポキシ等の樹脂基板を用いる ことができる。 また、 配線基板には、 分割に備えて分割範囲を規定するマーカー を備えることもできる。 本発明の電子部品の製造方法によれば、 弾性表面波素子をフエースダウンボン ディング(ダイボンディングとワイヤボンディング工程なしにチップを裏返して 直接パッケージにはり付ける技術、 「 科学大辞典」 丸善株式会社昭和 60年 3月 5 日発行第 1189頁参照) 方式により実装することができる。 ここで、 フェースダウ ンボンディングとは、 具体的にはいわゆるフリ ップチップ方式、 ビームリ ード方 式、 T A B方式ぺデステル方式等を含むものとする。 本発明では、 封止時の部材 として、 例えば熱硬化性薄片状樹脂を用い、 加熱によって該樹脂表面もしくは全 体を溶融し硬化させることにより、 弾性表面波素子と配線基板とを、 配線基板と 対向する弾性表面波素子の主面と配線基板との間に空隙部を保持しながら封止で きるようにしたものである。
本発明の電子部品の一部を構成することになる配線基板の各々には、 実装方式 の相違により、 一主面のみに、 または、 一主面と他の主面の両面にわたって配線 パターンを形成することができる。 また、 弾性表面波素子においては、 空隙部を 確保するために、 ひとつの面にくし歯型電極パターンからなるトランスデューサ 部とそのトランスデューサ部に電気的に接続する配線パターンを形成することが 必要となる。
弾性表面波素子と配線基板とは、 接合部材を介することにより接合させること ができ、 このとき、 本発明にて形成される空隙部の隙間は接合部材の形状により 定まるが 1 0〜2 0 0 μ ιη、 好ましくは 2 0〜8 0 μ πι確保することが望まし い。
本発明において、 接合部材とは、 弾性表面波素子と配線基板とを電気的に接続 し、 かつ、 両者を固定する手段として定義される。 例えば、 いわゆるバンプ、 導 電性樹脂が使われる。 バンプは、 ボールバンプやめつきバンプなどがあり、 また、 導電性樹脂には、 導電性ペーストや異方性導電樹脂などが含まれる。
本発明においては、 これらを単独で用いてもよく、 また、 併用してもよく、 こ れらは本発明に包含される。
配線基板上の配線バターンと弾性表面波素子上の配線パタ一ンとを電気的に接 合する部材例えば導電性バンプには、 導電性金属めつきした樹脂ポールや金 - ( Ai) や銀( P、 やはんだ( Sn系、 Pb系、 I n系等) 等からなる金属バンプ等があ る。
これらの導電性バンプは、 配線基板と弾性表面波素子とを所定の温度、 圧力で 接合することにより配線基板上の配線バターンと弾性表面波素子上の配線バタ一 ンとを電気的に接続するとともに、 弾性表面波素子と配線基板との間に空隙部を 形成し確保する役割を果たすことになる。 一定の空隙部を確保するためには金や 銀やはんだ等からなる金属バンプが導電性バンプとして特に好ましい。
本発明の電子部品の製造方法においては、 接合された弾性表面波素子と配線基 板とを加熱溶融型部材により覆い固めることにより配線基板上に実装し、 分割し て弾性表面波装置を構成するが、 この時に、 例えば、 熱硬化性樹脂として薄片状 に成形されたエポキシ系樹脂を用い加熱によつて該樹脂の表面もしくは全体を溶 融し、 かつ、 硬化することにより弾性表面波素子と配線基板を接合すると、 榭脂 の粘性を高く保持でき、 硬化中に弾性表面波素子の配線基板に対向する側に形成 された空隙部に樹脂が流れ込むことを防ぐことができる。 また、 液状樹脂でない ため枠状の絶縁性隔壁やダムを必ずしも必要としない。 しかし、 枠状の絶縁性隔 壁を設けることにより、 一層封止効果を上げることができ、 本願発明に包含され る。
従来の封止榭脂用材料として用いられる液状熱硬化性樹脂例えばエポキシ系 ポッティング樹脂はその粘度が 1 5 P a · s程度と低く、 1 0 0〜2 0 0 に加 熱してもすぐには粘度は高くならず、 低い粘度のままであるため、 枠状絶縁部材 なしでは、 機能素子および配線基板の空隙部に流れ込み空隙部を維持できず機能 素子の機能を損なう欠点がある。
しかしながら、 本発明の電子部品の製造方法によれば、 例えば、 薄片状に成形 されたエポキシ系樹脂を用いることによつて加熱により溶融が開始されるまでは 高粘度の状態が保たれ溶融後も硬化を制御することにより、 少なくとも
5 0 P a · s 以上の粘度が得られる。 このため、 容易に弾性表面波素子を包覆す ることができる。
このような薄片状樹脂は、 例えば、 エポキシ樹脂を原料とした粉末のものを必 要な形状および重童に冷間圧縮成形して容易に形成できる。 薄片状榭脂は、 弾性 表面波素子の空隙部を形成する主面ではない他の主面、 すなわち弾性表面波素子 の配線パターンが形成された主面でなく他の主面側に載笸される。
この場合の薄片状榭脂の形状は、 分割後の配線基板形状とほぼ等しいかやや小 さい形状を用いることが好ましい。 より好ましい薄片状樹脂の形状は、 分割前の 配線基板形状とほぼ等しいことである。
このようにすることにより、 薄片状榭脂の弾性表面波素子および分割前の配線 基板に対する位置決めを確実にすることができる。
ただし、 この寸法の選択は弾性表面波素子の合計の体積と薄片状樹脂の厚みに より適宜選択し得るものである。
空隙部と対向する面とは反対側の弾性表面波素子の面上に載置された薄片状樹 脂は、 加熱溶融とその硬化によって少なくとも前記素子の他の主面に密着して前 記素子を包覆し、 配線基板とで弾性表面波素子を封止する。
この場合の加熟溶融、 硬化条件は適度に制御することが必要であるが、 本発明 においては、 薄片状樹脂の加熱溶融温度が 1 0 0〜2 0 0で、 その硬化時間が 2 0時間〜 2時間で実施される。 より好ましくは、 1 1 0 〜 1 7 0でにて加熱 溶融した後、 硬化は 1 0 0で〜 1 6 0 ¾程度で 3時間〜 2 0時間実施される。 本発明の電子部品、 弾性表面波装置を製造するにあたっては、 加熱溶融型部材 の一主面に該加熱溶融型部材形状より小さい形状の緩衝材シートを接着して該加 熱溶融型部材の緩衝材シート面を配線パターンが形成された主面を有する弾性表 面波素子の他の主面上に対向して載置し、 かつ加熱溶融とその硬化によつて少な くとも前記各素子の他の主面と該緩衝材シートとが密着して弾性表面波素子を包 稷するとともに、 配線基板とで弾性表面波素子を封止することもできる。 緩衝材 シートとしては、 例えば、 ゴム弾性体シートのような弾力性に富んだ材料があげ られる。 もしくは、 金属箔ゃパラフィン紙を 2層としたものを配置してもよい。 この場合、 各々の層のシートの大きさは前記薄片状樹脂形状より小さい形状であ れば必ずしも同じ大きさである必要はなく、 任意の形状のものであってよい。 こ のような構成とすることにより、 樹脂硬化の際の収縮や熱膨張差により生ずる-樹 脂の応力歪みを緩和することができる。 さらに、 封止用の樹脂部と弾性表面波素 子との間に緩衝材シートの位置決めを容易に行うことができるため、 生産性 · 信 頼性の向上につながる。
本発明の電子部品の製造方法によれば、 配線基板と弾性表面波素子との電気的 接続部分となる導電性接合部材に接続される配線バターンの高さを配線基板材料 厚みまたは配線パタ一ンの導電材料厚みを部分的に変えることによつて制御し、 もしくは電気的接続部分となる導電性接合部材の高さ自体を制御することによつ て、 弾性表面波素子と配線基板との間の適正量の空隙部を有効に確保できるので、 弾性表面波吸収材が配置された弾性表面波素子である場合にも、 弾性表面波素子 と配線基板との間の接合強度を充分に保て、 接続の信頼性を向上させることがで さる。
本発明の電子部品、 弾性表面波装置の製造方法においては、 配線基板の配線パ ターンを形成する際に、 配線パターンの少なくとも一部を導電ペーストを用いた スクリ ーン印刷法により複数回塗布し、 焼き付けまたは同時焼成することもでき る。
この場合、 複数回塗布した部分の焼成後の厚みは他の部分との差が 5〜100 μ πι の範囲にあることが好ましい。
また、 本発明の電子部品の製造方法においては、 配線基板の配線パターンを形 成する際に、 配線パターンの少なくとも一部を蒸着もしくはスパッタ等の成膜方 法により該配線バターンの他の部分より厚く成膜することもできる。
この差は、 少なくとも 0. 5 μ ιπ{¾上あることが好ましい。
また、 本発明の電子部品の製造方法においては、 配線基板を形成する際に、 電 気的接続部分となる接合部材に対向する部分およびその近傍の領域に相当するグ リーンシートを付加して焼成し、 その後該配線基板に配線パターンを形成するこ ともできる。
このグリ ーンシートを付加して焼成した部分の厚みと他の部分の厚みの差は、 実質的に 5〜500 μ πί 範囲にあることが好ましい。
このような配線基板の製造方法を用いることによって、 接合部材の厚みが小さ くても、 配線パターン部分の配線基板材料もしくは導電材料の厚みと加えあわせ ることができるため、 弾性表面波素子と配線基板との間の適正量の空隙部を有効 に確保できるので、 特に、 弾性表面波吸収材が配置された弾性表面波素子の場合 にも、 弾性表面波素子と配線基板との間の接合強度を充分に保つことが可能にな り、 接合強度を上げ、 接続の信頼性を上げることができる。
さらに、 本発明の電子部品においては、 適正量の空隙部を確保するために、 電 気的接続部分となる導電性接合部材としてほぼ同一位置に導電性バンプを複数個 積み重ねたものを用いることもできる。 この場合、 複数個の導電性バンプの厚み の和は 30〜150 μ π^範囲となることが好ましい。 あるいは、 また、 電気的接続部 分となる導電性接合部材として導電性ポールバンプを用い、 かつ、 該導電性ボー ルバンプの厚みを導電性細線の太さを変えることにより調整することができる。 これらの場合、 導電性バンプとして、 実質的に金からなるボールバンプ、 実質的 に錫からなるポールバンプ、 実質的に鉛からなるポールバンプ等がより好ましい。 あるいは、 弾性表面波素子の少なくとも一主面もしくは他の主面の一部に弾性表 面波吸収材を塗布する際に、 機能物質すなわち弾性表面波吸収材を導電性接合部 材の厚みより薄く塗布することができる。
このように電気的接続部分となる導電性接合部材の厚みを制御することによつ ても、 弾性表面波素子と配線基板との間の適正量の空隙部を有効に確保できる。 この場合、 配線基板の基板材料厚みもしくは導電材料の厚みを部分的に変える必 要がないため、 複数の電子部品の製造がより簡単になる。
本発明に係る電子部品の製造方法は、 配線基板に対し所定位置に機能素子を位 置決めする工程と、 前記機能素子と前記配線基板とを導電性接合部材を介して所 定間隔を維持して組み立てる工程と、 前記配線基板に対し加熱溶融型部材を配置 する工程と、 前記配線基板と前記機能素子との間に空隙部を残しつつ前記加熱溶 融型部材を加熱溶融する工程とを具備し、 前記導電性接合部材を前記配線基板の 少なくとも一主面に形成された配線パターン上に形成した後、 前記機能素子と前 記配線基板とを該導電性接合部材を介して所定間隔を維持して組み立てることを 特徴とする。 本発明においては、 配線基板に対し所定位置に機能素子が位置決めされる。 こ のとき、 配線基板の少なくとも一主面に形成された配線バターン上に導電性接合 部材が形成されている。 次に、 機能素子と配線基板とはこの接合部材を介して所 定間隔を維持して組み立てられる。 次いで、 前記配線基板に対し加熱溶融型部材 が配置され、 前記配線基板と前記機能素子との間に空隙部を残しつつ前記加熱溶 融型部材は加熱溶融される。
このようにすることにより機能素子と導電性接合部材との接合の界面に対する 工程中の熟履歴をより少なくできるため、 接合強度を向上でき、 さらに信頼性の 向上をはかることができる。
本発明の電子部品の製造方法によれば、 封止用の加熱溶融型部材が機能素子と 配線基板とで形成される各々の空隙部に流れ込むのを防止する枠状絶縁部材を必 ずしも必要としないため、 従来必要とした枠状絶縁部材の形成工程を不要とする ことができ、 しかも簡易な構造の電子部品が得られる利点を有する。 また、 封止 用の加熱溶融型部材として成形した薄片状樹脂を用いて加熱溶融およびその硬化 により接合することにより、 機能素子の空隙部に対向する表面に樹脂が流れ込む のを容易に防ぐことができ、 機能素子に悪影饗を生じさせず、 機能素子と配線基 板との間に空隙部を形成し榭脂封止した電子部品を容易に製造することができ る。
配線基板の材質としては、 アルミナ、 マグネシア、 炭化珪素などのセラミック、 ガラス被覆セラミック、 内部に導体や機能部分
蔵したアルミナなどのセラミック多層基板、 F R— 4をはじめとするガラスェポ キシ等の樹脂基板を用いることができる。 また、 配線基板には、 分割に備えて分 割範囲を規定するマーカーを備えることもできる。
また、 機能素子としては、 例えば、 弾性表面波素子、 水晶振動子、 圧電振動子 、 一対の送光部と受光部を有するフォト力ブラ、 E P R O M、 C C D、 半導体 レーザーあるいは発光ダイオードが挙げられる。
本発明の電子部品の製造方法によれば、 機能素子をフェースダウンボンディン グ(ダイボンディングとワイヤボンディング工程なしにチップを裏返して直接 パッケージにはり付ける技術、 「 科学大辞典」 丸善株式会社昭和 60年 3月 5日発 行第 1189頁参照) 方式により実装することができる。 ここで、 フェースダウンボ ンデイングとは、 具体的にはいわゆるフリ ップチップ方式、 ビームリ ード方式、 T A B方式べデステル方式等を含むものとする。 本発明では、 封止時の部材とし て、 例えば熱硬化性薄片状樹脂を用い、 加熱によって該樹脂表面もしくは全体を 溶敲し硬化させることにより、 弾性表面波素子と配線基板とを、 配線基板と対向 する弾性表面波素子の主面と配線基板との間に空隙部を保持しながら封止できる ようにしたものである。
本発明の電子部品の一部を構成することになる配線基板の各々には、 実装方式 の相違により、 一主面のみに、 または、 一主面と他の主面の両面にわたって配線 パターンを形成することができる。
機能素子と配線基板とは、 配線基板に形成された接合部材を介することにより 接合しており、 このとき、 本発明にて形成される空隙部の隙間は接合部材の形状 により定まるが 1 0〜2 0 0 μ ιη、 好ましくは 2 0〜8 0 /z m確保することが望 ましい。
本発明において、 接合部材とは、 素子(機能素子) と配線基板とを電気的に接 続し、 かつ、 両者を固定する手段として定義される。 例えば、 いわゆるバンプ、 導電性榭脂が使われる。 バンプは、 ポールバンプやめつきバンプなどがあり 、 ま た、 導電性樹脂には、 導電性ペーストや異方性導電樹脂などが含まれる。
本発明においては、 これらを単独で用いてもよく、 また、 併用してもよく、 こ れらは本発明に包含される。
配線基板上の配線パターンと素子(機能素子) 上の配線パターンとを電気的に 接合する部材例えば導電性バンプには、 導電性金属めつきした樹脂ポールや金 ( Ai) や銀( g) やはんだ( Sn系、 Pb系、 In系等) 等からなる金属バンプ等があ る。
これらの導電性バンプは、 配線基板と素子(機能素子) とを所定の温度、 圧力 で接合することにより配線基板上の配線パターンと素子(機能素子) 上の配線パ ターンとを電気的に接続するとともに、 素子(機能素子) と配線基板との間に空 隙部を形成し確保する役割を果たすことになる。 一定の空隙部を確保するために は金や銀やはんだ等からなる金属バンプが導電性バンプとして特に好ましい。 本発明の電子部品の製造方法においては、 接合された機能素子と配線基板とを 加熱溶融型部材、 例えば熱硬化性榭脂により覆い固めることにより配線基板上に 実装し、 分割して弾性表面波装置を構成するが、 この時に、 例えば、 熟硬化性榭 脂として薄片状に成形されたエポキシ系樹脂を用い加熱によって該樹脂の表面も しくは全体を溶融し、 かつ、 硬化することにより機能素子と配線基板を接合する と、 樹脂の粘性を高く保持でき、 硬化中に機能素子の配線基板に対向する側に形 成された空隙部に樹脂が流れ込むことを防ぐことができる。 また、 液状榭脂でな いため枠状の絶縁性隔壁やダムを必ずしも必要としない。 しかし、 枠状の絶縁性 隔壁を設けることにより、 一層封止効果を上げることができ、 本願発明に包含さ れる。
従来の封止樹脂用材料として用いられる液状熟硬化性榭脂例えばエポキシ系 ポッティング榭脂はその粘度が 1 5 P a · s程度と低く、 1 0 0〜2 0 0 に加 熟してもすぐには粘度は高くならず、 低い粘度のままであるため、 枠状絶縁部材 なしでは、 機能素子およぴ配線基板の空隙部に流れ込み空隙部を維持できず機能 素子の機能を損なう欠点がある。
しかしながら、 本発明の電子部品の製造方法によれば、 例えば、 薄片状に成形 されたエポキシ系榭脂を用いることによって加熟により溶融が開始されるまでは 高粘度の状態が保たれ溶融後も硬化を制御することにより、 少なくとも
5 0 P a · s 以上の粘度が得られる。 このため、 容易に弾性表面波素子を包覆す ることができる。 このような薄片状榭脂は、 例えば、 エポキシ樹脂を原料とした粉末のものを必 要な形状および重量に冷間圧縮成形して容易に形成できる。 薄片状樹脂は、 機能 素子の空隙部を形成する主面ではない他の主面側に載置される。
この場合の薄片状榭脂の形状は、 分割後の配線基板形状とほぼ等しいかやや小 さい形状を用いることが好ましい。 より好ましい薄片状樹脂の形状は、 分割前の 配線基板形状とほぼ等しいことである。
このようにすることにより、 薄片状樹脂の機能素子および分割前の配線基板に 対する位笸決めを確実にすることができる。
ただし、 この寸法の選択は機能素子の合計の体積と薄片状榭脂の厚みにより適 宜選択し得るものである。
空隙部と対向する面とは反対側の機能素子の面上に載置された薄片状樹脂等の 加熱溶融型部材は、 加熱溶融とその硬化によって少なくとも前記素子の他の主面 に密着して前記素子を包覆し、 配線基板とで機能素子を封止する。
この場合の加熱溶融、 硬化条件は適度に制御することが必要であるが、 本発明 においては、 薄片状榭脂の加熱溶融温度が 1 0 0〜2 0 0 ¾、 その硬化時間が 2 0時間〜 2時間で実施される。 より好ましくは、 1 1 0で〜 1 7 0 ^にて加熱 溶融した後、 硬化は 1 0 0 〜 1 6 0 ^程度で 3時間〜 2 0時間実施される。 本発明の電子部品を製造するにあたっては、 加熱溶融型部材のー主面に該加熱 溶融型部材形状より小さい形状の緩衝材シートを接着して該加熱溶融型部材の緩 衝材シート面を配線バターンが形成された主面を有する機能素子の他の主面上に 対向して載置し、 かつ加熱溶融とその硬化によって少なくとも前記各素子の他の 主面と該緩衝材シートとが密着して機能素子を包覆するとともに、 配線基板とで 機能素子を封止することもできる。 緩衝材シートとしては、 例えば、 ゴム弾性体 シートのような弾力性に富んだ材料があげられる。 もしくは、 金属箔ゃパラフィ ン紙を 2層としたものを配置してもよい。 この場合、 各々の層のシートの大きさ は前記薄片状樹脂形状より小さい形状であれば必ずしも同じ大きさである必要は なく、 任意の形状のものであってよい。 このような構成とすることにより、 樹脂 硬化の際の収縮や熱膨張差により生ずる榭脂の応力歪みを緩和することができる。 さらに、 封止用の樹脂部と機能素子との間に緩衝材シートの位置決めを容易に行 うことができるため、 生産性' 信頼性の向上につながる。
本発明の電子部品の製造方法によれば、 配線基板と機能素子との電気的接続部 分となる導電性接合部材に接続される配線バターンの高さを配線基板材料厚みま たは配線パターンの導電材料厚みを部分的に変えることによって制御し、 もし-く は電気的接続部分となる導電性接合部材の高さ自体を制御することによって、 機 能素子と配線基板との間の適正量の空隙部を有効に確保できるので、 弾性表面波 吸収材のような機能物質が配置された機能素子である場合にも、 機能素子と配線 基板との間の接合強度を充分に保て、 接続の信頼性を向上させることができる。 本発明の電子部品の製造方法においては、 配線基板の配線バターンを形成する 際に、 配線パターンの少なくとも一部を導電ペーストを用いたスクリ ーン印刷法 により複数回塗布し、 焼き付けまたは同時焼成することもできる。
この場合、 複数回塗布した部分の焼成後の厚みは他の部分との差が 5〜100 /ζ πι の範囲にあることが好ましい。 また、 本発明の電子部品の製造方法においては、 配線基板の配線パターンを形 成する際に、 配線パターンの少なくとも一部を蒸着もしくはスパッタ等の成膜方 法により該配線パターンの他の部分より厚く成膜することもできる。
この差は、 少なくとも 0. 5 /i m¾上あることが好ましい。
また、 本発明の電子部品の製造方法においては、 配線基板を形成する際に、 電 気的接続部分となる接合部材に対向する部分およびその近傍の領域に相当するグ リーンシートを付加して焼成し、 その後該配線基板に配線パターンを形成するこ ともできる。
このグリ ーンシートを付加して焼成した部分の厚みと他の部分の厚みの差は、 実質的に 5〜500 μ πί^範囲にあることが好ましい。
このような配線基板の製造方法を用いることによって、 接合部材の厚みが小さ くても、 配線バターン部分の配線基板材料もしくは導電材料の厚みと加えあわせ ることができるため、 機能素子と配線基板との間の適正量の空隙部を有効に確保 できるので、 特に、 機能物質が配置された機能素子の場合にも、 機能素子と配線 基板との間の接合強度を充分に保つことが可能になり、 接合強度を上げ、 接続の 信頼性を上げることができる。
さらに、 本発明の電子部品においては、 導電性バンプの厚みの和は 30〜150 /z m の範囲となることが好ましい。 あるいは、 また、 電気的接続部分となる導電性接 合部材として導電性ボールバンプを用い、 かつ、 該導電性ボールバンプの厚みを 導電性細線の太さを変えることにより調整することができる。 これらの場合、 導 電性バンプとして、 実質的に金からなるポールバンプ、 実質的に錫からなるボー ルバンプ、 実質的に鉛からなるポールバンプ等がより好ましい。 あるいは、 機能 素子の少なくとも一主面もしくは他の主面の一部に機能物質を導電性接合部材の 厚みより薄く塗布することができる。
このよう に電気的接続部分となる導電性接合部材の厚みを制御することによつ ても、 機能素子と配線基板との間の適正量の空隙部を有効に確保できる。 この場 合、 配線基板の基板材料厚みもしくは導電材料の厚みを部分的に変える必要がな いため、 複数の電子部品の製造がより簡単になる。
以下に説明する本発明の電子部品は、 第 1の面および第 2の面を有する配線基 板と、 第 1の面および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対 向して配置された機能素子と、 前記配線基板の第 1の面と前記機能素子の第 1の 面との間に空隙部を残しつつ当該空隙部を封止する封止部材とを具備したもので ある。
このような電子部品は例えば、 配線基板の第 1の面と機能素子の第 1の面とを 対向配置し、 前記配線基板の第 1の面および または前記機能素子の第 2の面の 上方に加熱溶融型部材を配置し、 前記加熱溶融型部材を加熱溶融し、 少なくとも 前記配線基板と前記機能素子との間に空隙部を残しつつ当該空隙部を封止して製 造するようにしてもよい。
また例えば、 配線基板の第 1の面と機能素子の第 1の面とを対向配置し、 前記 配線基板の第 1の面および Zまたは前記機能素子の第 2の面の上方より液状の熱 硬化性部材を所定の位置に流し込み、 この流し込んだ熱硬化性部材を加熱硬化し、 少なくとも前記配線基板と前記機能素子との間に空隙部を残しつつ当該空隙部を 封止して製造するようにしてもよい。
また例えば、 配線基板の第 1の面と機能素子の第 1の面とを対向配置し、 前記 配線基板の第 1の面および Zまたは前記機能素子の第 2の面の上方より液状の熱 硬化性部材を所定の位置に滴下しつつ加熱硬化し、 少なくとも前記配線基板と前 記機能素子との間に空隙部を残しつつ当該空隙部を封止して製造するようにして もよい。
ここで、 加熱溶融型部材を溶融し、 あるいは熱硬化性部材を硬化させるなどの 加熟手段はどのような加熱手段を用いてもよく、 例えば高周波、 電磁波、 超音波, 光の照射等の間接的加熱手法を用いるようにしてもよい。
本発明の電子部品例えば弾性表面波装置によれば、 封止用の樹脂が弾性表面波 素子と配線基板とで形成される空隙部に流れ込むのを防止する枠状絶縁部材を必 ずしも必要とせず簡易な構造が得られる利点を有する。 また、 封止用の樹脂とし て、 例えば成形した薄片状樹脂を用いて加熱溶融およびその硬化により接合する ことにより、 特に弾性表面波素子のトランスデューサ部表面に樹脂が流れ込むの を容易に防ぐことができ、 弾性表面波素子の表面波伝搬路に悪影響を生じさせず、 弾性表面波素子と配線基板との間に空隙部を形成し樹脂封止した弾性表面波装置 を容易に提供できる。
また、 封止用の樹脂として例えば液状樹脂を流し込み、 あるいは滴下して硬化 させ接合することにより、 封止用の樹脂が機能素子である弾性表面波素子と配線 基板とで形成される空隙部に流れ込むのを防止するための枠状絶縁部材を必ずし も必要とせず簡易な構造が得られる利点を有する。 また、 弾性表面波素子の側面 部に回り込んだ樹脂が不要な弾性表面波を吸収する弾性表面波吸収材( 吸音材) としても作用するため、 不要なスプリァスを減衰させ、 弾性表面波装置としての 性能を向上させることができる。 さらに、 液状樹脂の硬化により配線基板とで弾 性表面波素子を封止できる。
そして、 本発明の電子部品は、 第 1の面および第 2の面を有し、 少なくとも第 1の面に配線パターンが形成された配線基板と、 第 1の面および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向して配置された機能素子と、 前記機能 素子の第 2の面に形成された導電性膜と、 前記導電性膜と前記配線基板の配線パ ターンとの間を導通する導電物質と、 前記配線基板の第 1の面と前記機能素子の 第 1の面との間に空隙部を残しつつ当該空隙部を封止する封止部材とを具備する ことを特徴とする。 すなわち、 本発明の電子部品例えば弾性表面波装置のひとつの態様は、 配線パ ターンが形成された一主面を有する機能素子である弾性表面波素子の他の主面上 にほぼ全面にわたって導電膜が形成されており、 該導電膜と前記配線基板の配線 バターンの少なくとも一部とが導電性物質により接続されていることを特徴とし ている。 このため、 外来のノイズが誘起されても導電膜でこれを受け、 配線基板 の配線パターンを通じて接地することができる。 いわゆる電磁遮蔽効果(シール ド効果) を有する。
この導電性物質は、 いわゆる銀のような伝導体を含む導電性樹脂であってもよ い。 また、 導体を埋め込んだ異方性導電樹脂であってもよい。 または、 アルミ二 ゥムゃ金や銅やはんだ線等の細いボンディングワイヤをもちいて接続されていて もよい。
このような構造は、 例えば、 配線基板の第 1の面と機能素子の第 1の面とを対 向配置する工程と、 前記機能素子の第 2の面に導電性膜を形成する工程と、 前記 導電性膜と前記配線基板の第 1の面の配線バターンとを導電物質により導通する 工程と、 少なくとも前記配線基板と前記機能素子との間に空隙部を残しつつ当該 空隙部を封止部材により封止して製造するよう にしてもよい。
また本発明の電子部品は、 第 1の面および第 2の面を有し、 少なくとも第 1の 面に配線パターンが形成された配線基板と、 第 1の面および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向して配置された機能素子と、 前記機能素 子の第 2の面に形成された金属性箔と、 前記金属性箔と前記配線基板の配線パ ターンとの間を導通する導電手段と、 前記配線基板の第 1の面と前記機能素子の 第 1の面との間に空隙部を残しつつ当該空隙部を封止する封止部材とを具備する ことを特徴とする。
この導電膜と導電性物質に替えて、 金属箔を用いることができる。 すなわち、 本発明の電子部品例えば弾性表面波装置の別の態様は、 配線パターンが形成され た一主面を有する弾性表面波素子の他の主面と、 前記樹脂部との間隙の少なくと も一部に金属性箔が設置されており、 該金属性箔の端部が前記配線基板の配線パ ターンの少なくとも一部に接触接続されていることを特徴としている。 このため、 外来のノイズが誘起されても金属性箔でこれを受け、 配線基板の配線バターンを 通じて接地することができる。
このような構造は、 例えば、 配線基板の第 1の面と機能素子の第 1の面とを対 向配置する工程と、 前記機能素子の第 2の面に金属性箔を配置する工程と、 前記 金属性箔と前記配線基板の第 1の面の配線バターンとを導電手段により導通する 工程と、 少なくとも前記配線基板と前記機能素子との間に空隙部を残しつつ当該 空隙部を封止部材により封止して製造するよう にしてもよい。
このような構造は、 例えば、 加熱溶融型部材である薄片状樹脂の一主面に該薄 片状榭脂形状より小さい形状の金属箔を接着して該樹脂の金属箔面を前記配線パ ターンが形成された主面を有する弾性表面波素子の他の主面上に対向して載置し、 かつ加熱溶融とその硬化によつて少なくとも前記素子の他の主面と該金属箔とが 密着して前記素子を包覆するとともに、 該金属性箔の端部を前記配線基板の配線 パターンの少なくとも一部に接触接続させ、 配線基板とで前記素子を封止するこ とにより製造することができる。
また例えば、 このような構造は、 弾性表面波素子と配線基板とを電気的接続部 分を介して所定間隔を維持して組み立て、 金属箔を弾性表面波素子の他の主面上 に配置し、 配線基板および弾性表面波素子を加熱しながら該素子に対して液状部 材を滴下して該素子の側部に付着させその硬化によって、 少なくとも前記素子の 他の主面と該金属箔とが密着して前記素子を包覆するとともに、 該金属性箔の端 部を前記配線基板の配線パターンの少なくとも一部に接触接続させ、 配線基板と で前記素子を封止することにより製造することができる。
金属性箔としては、 アルミニウム箔、 銅箔、 ニッケル箔、 亜鉛箔、 錫箔のよう な安価なものを用いることができる。 この場合、 金属箔と素子とは密着してはい るが、 必ずしも一体化している必要はない。 むしろ、 微小な間隙があることに よって、 デバイスの長期の周波数変動を非常に小さくできるという優れた効果が ある。
また本発明の電子部品は、 第 1の面および第 2の面を有し、 少なくとも第 1の 面に配線パターンが形成された配線基板と、 第 1の面および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向して配置された機能素子と、 前記機能素 子の第 2の面に形成された導電性膜と、 前記導電性膜と前記配線基板の配線パ ターンとの間を導通する磁性体を分散させた樹脂と、 前記配線基板の第 1の面と 前記機能素子の第 1の面との間に空隙部を残しつつ当該空隙部を封止する封止部 材とを具備することを特徴とする。
すなわち、 本発明の電子部品例えば弾性表面波装置の別の態様は、 配線パター ンが形成された一主面を有する弾性表面波素子の他の主面上にほぼ全面にわたつ て導電性膜が形成されており、 かつ、 該導電膜と前記配線基板の配線パターンの 少なくとも一部とが、 磁性体を分散させた樹脂により接続されていることを特徴 としている。 磁性体としては、 フェライトなどが適する。 この場合、 磁性体は主 として 1 G H z 以上の高周波数領域で電気的に導通状態として作用するため、 外 来のノィズが誘起されても導電膜でこれを受け、 磁性体を分散させた樹脂を介し、 さらに配線基板上の配線バターンを通じて接地することができる。
このような構造は、 例えば、 配線基板の第 1の面と機能素子の第 1の面とを対 向配置する工程と、 前記機能素子の第 2の面に導電性膜を形成する工程と、 前記 導電性膜と前記配線基板の第 1の面の配線パターンとを磁性体を分散させた樹脂 により導通する工程と、 少なくとも前記配線基板と前記機能素子との間に空隙部 を残しつつ当該空隙部を封止部材により封止して製造するようにしてもよい。 また本発明の電子部品は、 第 1の面および第 2の面を有する配線基板と、 第 1 の面および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向して配置 された機能素子と、 金属粉末を分散させた樹脂からなり、 前記配線基板の第 1の 面と前記機能素子の第 1の面との間に空隙部を残しつつ当該空隙部を封止する封 止部材とを具備することを特徴とする。
すなわち、 本発明の電子部品例えば弾性表面波装置の別の態様は、 加熱溶融型 部材、 熱硬化性部材などの封止部材が金属粉末を分散させた樹脂からなることを 特徴としている。 この場合、 高周波数領域においては金属粉末を分散させた樹脂 は抵抗率が小さくなり、 電気的に導通状態に近くなるため、 外来のノイズが入つ てきても榭脂から配線基板上の配線バターンに流れていき、 接地することができ る。
このような構造は、 例えば、 配線基板の第 1の面と機能素子の第 1の面とを対 向配置する工程と、 少なくとも前記配線基板と前記機能素子との間に空隙部を残 しつつ当該空隙部を金属粉末を分散させた樹脂からなる封止部材により封止して 製造するようにしてもよい。
また本発明の電子部品は、 第 1の面および第 2の面を有する配線基板と、 第 1 の面および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向して配置 された機能素子と、 磁性体粉末を分散させた辦脂からなり、 前記配線基板の第 1 の面と前記機能素子の第 1の面との間に空隙部を残しつつ当該空隙部を封止する 封止部材とを具備することを特徴とする。
すなわち、 本発明の電子部品例えば弾性表面波装置の別の態様は、 加熱溶融型 部材、 熱硬化性部材などの封止部材が磁性体粉末を分散させた樹脂からなること を特徴としている。 磁性体としては、 例えばフェライトがあげられる。 この場合、 磁性体は主として 1 G H z 以上の高周波数領域で電気的に導通状態として作用す るため、 外来のノイズが誘起されても、 磁性体粉末を分散させた樹脂を介し、 さ らに配線基板上の配線パターンを通じて接地することができる。
このような構造は、 例えば、 配線基板の第 1の面と機能素子の第 1の面とを対 向配置する工程と、 少なくとも前記配線基板と前記機能素子との間に空隙部を残 しつつ当該空隙部を磁性体粉末を分散させた樹脂からなる封止部材により封止し て製造するようにしてもよい。
本発明の電子部品は、 第 1の面および第 2の面を有する配線基板と、 第 1の面 および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向して配置され た機能素子と、 電波吸収体材料を分散させた樹脂からなり、 前記配線基板の第 1 の面と前記機能素子の第 1の面との間に空隙部を残しつつ当該空隙部を封止する 封止部材とを具備することを特徴とする。
すなわち、 本発明の電子部品例えば弾性表面波装置の別の態様は、 加熱溶融型 部材、 熱硬化性部材などの封止部材が電波吸収体材料を分散させた樹脂からなる ことを特徴としている。 電波吸収体材料としては、 カーボン、 フェライトもしく はこれらの混合体等が有効である。 この場合、 外来の電気的ノイズは電波吸収体 によりそのエネルギーを吸収されてしまうため、 機能素子である弾性表面波素子 へのノイズの影饗を軽減することができる。
このような構造は、 例えば、 配線基板の第 1の面と機能素子の第 1の面とを对 向配置する工程と、 少なくとも前記配線基板と前記機能素子との間に空隙部を残 しつつ当該空隙部を電波吸収体材料を分散させた樹脂からなる封止部材により封 止して製造するよう にしてもよい。
また本発明の電子部品は、 第 1の面および第 2の面を有する配線基板と、 第 1 の面および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向して配置 された機能素子と、 導電性フィラーを含有する樹脂からなり、 前記配線基板の第 1の面と前記機能素子の第 1の面との間に空隙部を残しつつ当該空隙部を封止す る封止部材とを具備することを特徴とする。
すなわち、 本発明の電子部品例えば弾性表面波装置の別の態様は、 加熱溶融型 部材、 熱硬化性部材などの封止部材が導電性フィラ一を含有する樹脂からなるこ とを特徴としている。 導電性フイラ一としては、 例えば、 カーボンがあげられる。 この場合、 高周波数領域においては導電性フィラーを含有させた樹脂は抵抗率が 小さくなり、 電気的に導通状態に近くなるため、 外来のノイズが入ってきても榭 脂から配線基板上の配線バターンに流れていき、 接地することができる。
これらは、 いずれも外来の電気的ノイズ等に対する、 いわゆる電磁遮蔽効果 (シールド効果) を有する。
このような構造は、 例えば、 配線基板の第 1の面と機能素子の第 1の面とを対 向配置する工程と、 少なくとも前記配線基板と前記機能素子との間に空隙部を残 しつつ当該空隙部を導電性フィラーを含有する樹脂からなる封止部材により封止 して製造するよう にしてもよい。
また本発明の電子部品は、 第 1の面および第 2の面を有し、 2個所の端面にそ れぞれ凹部が形成された配線基板と、 第 1の面および第 2の面を有し、 第 1 の面 が前記配線基板の第 1の面と対向して配置された機能素子と、 前記配線基板の第 1の面と前記機能素子の第 1の面との間に空隙部を残しつつ当該空隙部を封止す る封止部材と、 前記配線基板に設けられた各凹部に係合する一対の凸部が 2本の 脚部に互いに対向するよう に設けられ、 前記配線基板の第 1の面および前記機能 素子を稷ぅ金属板とを具備することを特徴とする。
また本発明の電子部品は、 第 1の面おょぴ第 2の面を有し、 2個所の端面にそ れぞれ凹部が形成され、 凹部の内面に配線パターンが形成された配線基板と、 第 1の面および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向して配 置された機能素子と、 前記配線基板の第 1の面と前記機能素子の第 1の面との間 に空隙部を残しつつ当該空隙部を封止する封 部材と、 前記配線基板に設けられ た各凹部に係合するとともに凹部内面の各配線パターンに電気的に導通する一対 の凸部が 2本の脚部に互いに対向するよう に設けられ、 前記配線基板の第 1の面 および前記機能素子を覆う金属板とを具備することを特徴とする。
すなわち、 本発明の電子部品例えば弾性表面波装置の別の態様は、 配線基板の 少なくとも 2個所の側部端面に凹部が形成されており、 かつ、 端部に凸部が形成 された金属板が前記樹脂部の少なくとも一部を覆うよう に設置され、 該配線基板 の側部端面に形成された凹部と該金属板の端部に形成された凸部が保持し合うこ とにより一体化されて成ることを特徴としている。
すなわち、 金属板が加熱溶融型部材、 熱硬化性部材などの封止部材および配線 基板を覆う構造で、 このような構造にすることにより、 金属板の平坦部に例えば スタンプ等の方法によりマーキングを容易に形成することができる。
また、 本発明の電子部品例えば弾性表面波装置の別の態様は、 配線基板の少な くとも 2個所の側部端面に凹部形状の配線バターンが前記一主面に形成された配 線パターンの少なくとも一部と電気的に接続されて形成されており、 かつ端部に 凸部が形成された金属板が加熱溶融型部材、 熱硬化性部材などの封止部材の少な くとも一部を覆うように設置され、 該配線基板の側部端面に形成された凹部配線 パターンと該金属板の端部に形成された凸部が保持し合うことにより接触接続さ れ一体化されて成ることを特徴としている。
このように、 金属板自体を電気的に接地することにより 、 マーキングの容易性 とともに電磁遮蔽効果をもたせることができ、 外来ノイズに対する耐性を上げる ことができる。
このような構造は、 例えば、 配線基板の第 1の面と機能素子の第 1の面とを対 向配置する工程と、 少なくとも前記配線基板と前記機能素子との間に空隙部を残 しつつ当該空隙部を封止部材により封止し、 前記配線基板の 2個所の端面に設け られた各凹部に金属板の 2本の脚部に対向するように設けられた一対の凸部をそ れぞれ係合し、 前記金属板により前記配線基板の第 1の面おょぴ前記機能素子を 覆うようにしてもよい。
また例えば、 配線基板の第 1の面と機能素子の第 1の面とを対向配置する工程 と、 少なくとも前記配線基板と前記機能素子との間に空隙部を残しつつ当該空隙 部を封止部材により封止し、 前記配線基板の 2個所の端面に設けられた各凹部に 金属板の 2本の脚部に対向するよう に設けられた一対の凸部をそれぞれ係合する とともに、 前記凹部の内面に設けられた配線パターンと前記凸部の先端に設けら れた配線パターンとを電気的に接続し、 前記金属板により前記配線基板の第 1の 面および前記機能素子を覆うよう にしてもよい。
また、 本発明の電子部品は、 第 1の面および第 2の面を有し、 2個所の端面に それぞれ第 1 の面側が上段とされた段付き部が形成された配線基板と、 第 1の面 および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向して配置され た機能素子と、 前記配線基板の第 1の面と前記機能素子の第 1の面との間に空隙 部を残しつつ当該空隙部を封止する封止部材と、 前記配線基板に設けられた各段 付き部に係合する一対の突出部が 2本の脚部に互いに対向するよう に設けられ、 前記配線基板の第 1の面および前記機能素子を覆う金属板とを具備することを特 徴とする。
また、 本発明の電子部品は、 第 1の面および第 2の面を有し、 2個所の端面に それぞれ第 1の面側が上段とされ、 下段面に配線パターンが設けられたた段付き 部が形成された配線基板と、 第 1 の面および第 2の面を有し、 第 1 の面が前記配 線基板の第 1の面と対向して配置された機能素子と、 前記配線基板の第 1の面と 前記機能素子の第 1の面との間に空隙部を残しつつ当該空隙部を封止する封止部 材と、 前記配線基板に設けられた各段付き部に係合するととも下段部の各配線パ ターンに電気的に接続された一対の突出部が 2本の脚部に互いに対向するように 設けられ、 前記配線基板の第 1の面および前記機能素子を覆う金属板とを具備す ることを特徴とする。
すなわち、 本発明の電子部品例えば弾性表面波装置の別の態様は、 配線基板 の少なくとも 2個所の側部端面に切り欠き部が形成されており、 かつ端部に突出 部が形成された金属板が加熱溶融型部材、 熱硬化性部材などの封止部材の少なく とも一部を覆うよう に設置され、 該配線基板の側部端面に形成された切り欠き部 と該金属板の端部に形成された突出部が保持し合うことにより一体化されて成る ことを特徴としている。
このような構造は、 例えば、 配線基板の第 1の面と機能素子の第 1の面とを対 向配置する工程と、 少なくとも前記配線基板と前記機能素子との間に空隙部を残 しつつ当該空隙部を封止部材により封止し、 前記配線基板の 2個所の端面に第 1 の面側が上段となるように設けられた各段付き部に金属板の 2本の脚部に対向す るよう に設けられた一対の突出部をそれぞれ係合し、 前記金属板により前記配線 基板の第 1の面および前記機能素子を覆うようにしてもよい。
また例えば、 配線基板の第 1の面と機能素子の第 1の面とを対向配置する工程 と、 少なくとも前記配線基板と前記機能素子との間に空隙部を残しつつ当該空隙 部を封止部材により封止し、 前記配線基板の 2個所の端面に第 1の面側が上段と なるように設けられた各段付き部に金属板の 2本の脚部に対向するよう に設けら れた一対の突出部をそれぞれ係合するとともに、 前記端面の下段面に設けられた 配線パターンと前記突出部の先端に設けられた配線バターンとを電気的に接続し、 前記金属板により前記配線基板の第 1の面および前記機能素子を覆うようにして もよい。
このような構造とすることにより、 金属板を配線基板により精度よく固定でき、 金属板の平坦部に例えばスタンプ等の方法によりマーキングを容易に形成するこ とができる。
さらに、 本発明の電子部品例えば弾性表面波装置の別の態様は、 配線基板の少 なくとも 2個所の側部端面に切り欠き部が形成されており、 前記一主面に形成さ れた配線パターンの少なくとも一部と該切り欠き部の少なくとも一部に形成され た配線パターンが電気的に接続されており、 かつ端部に突出部が形成された金属 板が前記加熱溶融型部材、 熱硬化性部材などからなる封止部材の少なくとも一部 を覆うよう に設置され、 該配線基板の側部端面に形成された切り欠き部と該金属 板の端部に形成された突出部が保持し合うことにより該切り欠き部に形成された 配線バタ一ンと該金属板の端部に形成された突出部とが接触接続され一体化され て成ることを特徴としている。
このような構造とすることにより、 金属板は弾性表面波装置の外部表面に平坦 部を形成できるため、 電磁遮蔽効果とともに、 マークを印字する際に容易に形成 できるという効果を有する。
このような構造は、 配線基板の側部端面の少なくとも 2個所に凹部もしくは切 り欠き部を形成し、 金属板の端部に凸部もしくは突出部を形成し、 かつ機能素子 を包覆した加熱溶融型部材、 熱硬化性部材などからなる封止部材の少なくとも一 部を ¾うよう に該金厲板を設置し、 該配線基板の側部端面に形成された凹部もし くは切り欠き部と該金属板の端部に形成された凸部もしくは突出部が保持し合う ように一体化することにより製造できる。 また、 少なくとも一部が平坦でありか つ配線基板とほぼ平行に形成された形状の金属板を用いることにより容易に製造 できる。
本発明の電子部品例えば弾性表面波装置においては、 加熱溶融型部材、 熱硬化 性部材などからなる封止部材と、 機能素子である弾性表面波素子との間に緩衝材 を配置することにより、 もしくは加熱溶融型部材、 熱硬化性部材などからなる封 止部材としてガラスフィラーを含む樹脂を用いることにより、 封止部材である樹 脂などの硬化や熱膨張による応力歪みを緩和でき、 さらに封止による特性への好 ましくない影響を低減することができる。 このような緩衝材としては、 例えば、 ゴムのような弾性体を用いるようにしてもよいし、 また例えば加熱溶融型部材、 熱硬化性部材などの封止部材としてガラスフイラ一を含有する樹脂を用いるよう にしてもよい。 ガラスフイラ一は、 例えば実質的に無定形シリ力、 結晶性シリ力 破砕品、 溶融シリ 力破砕品の少なくとも 1種を用いるよう にしてもよい。 また、 本発明の電子部品例えば弾性表面波装置においては、 導電性接合部材を 所定の位置に配置することにより、 熱膨張差の吸収により信頼性を向上でき、 ま た、 封止用樹脂の好ましくない浸入を防止できる。
さらに、 本発明の電子部品、 例えば弾性表面波装置の製造方法によれば、 加熱 溶融型部材、 熱硬化性部材などからなる封止部材と、 機能素子である弾性表面波 素子との間に緩衝材シートの位置決めを容易に行うことができ、 生産性 · 信頼性 の向上につながる。
本発明の電子部品は、 第 1の面および第 2の面を有する配線基板と、 第 1の面 および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向して配置され た機能素子と、 前記機能素子の第 2の面に配置された緩衝材と、 前記配線基板の 第 1の面と前記機能素子の第 1の面との間に空隙部を残しつつ当該空隙部を封止 する封止部材とを具備することを特徴とする。
すなわち、 本発明の電子部品例えば弾性表面波装置のひとつの態様は、 前記の 機能素子、 例えば弾性表面波素子と、 例えば硬化させた加熱溶融型部材、 熱硬化 させた液状樹脂などからなら封止部材との間に緩衝材を配置したことを特徴とし ている。 緩衝材としては、 例えば、 ゴム弾性体シートのような弾力性に富んだ材 料があげられる。 もしくは、 金属箔ゃパラフィン紙を 2層としたものを配置して もよい。 また、 これらの緩衝材を導電性物質により形成するようにしてもよい。 例えば、 封止部材とともに導電性フィラ一としてカーボンをもちいて導電性をも たせるよう にしてもよい。
重要な点は、 樹脂の硬化時における収縮が弾性表面波素子の特性 · 機能に影響 を極力及ぼさないようにすることであって、 このような構成とすることにより、 樹脂の応力歪みを緩和することができる。 封止部材として、 低融点ガラスを用い る場合にも全く同じである。
このような構造は、 例えば、 配線基板の第 1の面と機能素子の第 1の面とを対 向配置する工程と、 前記機能素子の第 2の面に緩衝材を配置する工程と、 少なく とも前記配線基板と前記機能素子との間に空隙部を残しつつ当該空隙部を封止部 材により封止して製造するようにしてもよい。 例えば加熱溶融型部材のー主面に該加熱溶融型部材形状より小さい形状の緩衝 材シートを接着して該加熱溶融型部材の緩衝材シート面を前記配線パターンが形 成された主面を有する弾性表面波素子の他の主面上に対向して载置し、 かつ加熱 溶融とその硬化によって少なくとも前記素子の他の主面と該緩衝材シートとが密 着して前記素子を包覆するとともに、 配線基板とで前記素子を封止して製造する ようにしてもよい。
また例えば、 機能素子の一主面に緩衝材シートを接着して前記配線パターンが 形成された主面を有する弾性表面波素子の他の主面上に対向して載置し、 上方か ら熱硬化性部材である液状の樹脂を滴下または流し込み、 かつ加熱硬化させて、 少なくとも前記素子の他の主面と該緩衝材シートとが密着して前記素子を包覆す るとともに、 配線基板とで前記素子を封止して製造するようにしてもよい。
緩衝材シートとしては、 例えば、 ゴム弾性体シートのような弾力性に富んだ材 料を用いるようにしてもよい。 もしくは、 金属箔ゃパラフィン紙を 2層としたも のを配置するよう にしてもよい。 この場合、 各々の層のシートの大きさは前記薄 片状樹脂形状より小さい形状であれば必ずしも同じ大きさである必要はなく、 任 意の形状のものであってよい。 このような構成とすることにより、 榭脂硬化の際 の収縮や熱膨張差により生ずる樹脂の応力歪みを緩和することができる。 さらに、 封止用の樹脂部と弾性表面波素子との間に緩衝材シートの位置決めを容易に行う ことができるため、 生産性, 信頼性の向上につながる。
本発明の電子部品は、 第 1の面および第 2の面を有する配線基板と、 第 1の面 および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向して配置され た機能素子と、 ガラスフィラーを含有する樹脂からなり、 前記配線基板の第 1の 面と前記機能素子の第 1の面との間に空隙部を残しつつ当該空隙部を封止する封 止部材とを具備することを特徴とする。
また、 本発明の電子部品、 例えば弾性表面波装置のひとつの態様は、 前記の加 熱溶融型部材または熱硬化性部材などからなる封止部材である樹脂がガラスフィ ラーを含有する樹脂からなることを特徴としている。 ガラスフイラ一としては、 例えば、 溶融シリ力や、 無定形シリ力、 結晶性シリ力の破砕品、 もしくは、 P b O—B 203系や S i 02、 A l 203、 P b F 2等を含んだ低融点ガラス等があ げられる。 これらのガラスフィラーの形状は、 平均粒径が通常 0. Ι μ π ^ら 50 /z m の大きさの範囲が好ましい。 また、 細長い形状であってもよい。 また、 平均粒径 が 0. Ι μ ώ^ら Ι μ πί^ものと、 平均粒径が 5 ni^ら 50 μ πί^ものを組み合わせて用 いてもよい。 このような構成とすることによって、 加熱溶融型部材である樹脂乃 至は硬化させる液状樹脂などからなる封止部材榭脂の熱膨張率を小さくでき、 弾 性表面波素子や配線基板の熱膨張率に近づけることができる。 この結果、 構成要 素の熱膨張差を吸収でき、 応力歪みを緩和し、 熱衝箄性等の信頼性を向上させる ことができる。 また、 このようなガラスフィラーを含有した樹脂とすることによ り、 機械的にも強度を向上させることができる。
このような構造は、 例えば、 配線基板の第 1の面と機能素子の第 1の面とを対 向配置する工程と、 少なくとも前記配線基板と前記機能素子との間に空隙部を残 しつつ当該空隙部をガラスフィラーを含有する樹脂からなる封止部材により封止 して製造するよう にしてもよい。
また、 本発明の電子部品は、 第 1の面および第 2の面を有し、 第 1の面に配線 パターンが形成された配線基板と、 第 1の面および第 2の面を有し、 第 1の面に 配線パターンが形成され、 第 1の面が前記配線基板の第 1の面と対向して配置さ れた機能素子と、 前記機能素子の中央部近傍領域に集中して配置され、 前記配線 基板の配線バターンと前記機能素子の配線バターンとを電気的に接続する接合部 材と、 前記配線基板の第 1の面と前記機能素子の第 1の面との間に空隙部を残し つつ当該空隙部を封止する封止部材とを具備することを特徴とする。
すなわち、 本発明の電子部品例えば弾性表面波装置の別の態様は、 前記複数の 導電性接合部材が前記機能素子である弾性表面波素子の中央部近傍領域に対向し た位置に集中して配置されていることを特徴としている。 この場合の接合部材は 弾性表面波素子の配線パターンと配線基板の配線パターンを電気的に接続する機 能をもっている。 したがって、 接続不良は避けなければならない。 接続不良の要 因として、 重要なものが各構成要素の熱膨張率の差による応力歪みである。 しか しながら、 接続部分を前記弾性表面波素子の中央部近傍領域に集中することによ り、 応力歪みの集中を緩和することができる。 これは、 特に細長い形状の弾性表 面波素子を用いる場合に有効である。
このような構造は、 例えば、 配線基板の配線パターンと機能素子の配線パター ンとを電気的に接続する接合部材を機能素子の中央部近傍領域に配置しつつ、 配 線基板の第 1の面と機能素子の第 1の面とを対向配置する工程と、 少なくとも前 記配線基板と前記機能素子との間に空隙部を残しつつ当該空隙部を封止部材によ り封止して製造するようにしてもよい。
また本発明の電子部品は、 第 1の面および第 2の面を有し、 第 1の面に配線パ ターンが形成された配線基板と、 第 1の面および第 2の面を有し、 第 1の面に配 線パターンが形成され、 第 1の面が前記配線基板の第 1の面と対向して配置され た機能素子と、 前記機能素子の中央部近傍領域に集中して配置され、 前記配線基 板の配線パターンと前記機能素子の配線バターンとを電気的に接続する第 1の接 合部材と、 前記機能素子の周辺部領域に配置され、 前記配線基板の配線パターン と前記機能素子の配線バターンとの電気的接続に預からない第 2の接合部材と、 前記配線基板の第 1の面と前記機能素子の第 1の面との間に空隙部を残しつつ当 該空隙部を封止する封止部材とを具備することを特徴とする。
すなわち、 本発明の電子部品例えば弾性表面波装置の別の態様は、 前記複数の 導電性接合部材が前記機能素子である弾性表面波素子の中央部近傍領域に対向し た位置に集中して配置されており、 かつ、 電気的接続に預からない他の複数の接 合部材が前記素子の周辺部領域に対向した位置に配置されていることを特徴とし ている。 このような構成とすることによって、 弾性表面波素子と配線基板との接 続をより確実にできるとともに、 前記素子の周辺部領域に対向した位置に配置さ れた複数の接合部材、 例えば前記加熱溶融型部材である薄片状樹脂、 熱硬化性部 材である液状樹脂などからなる封止部材の弾性表面波素子のトランスデューサ部 への浸入を防止する効果を有する。 また、 この効果は、 特に細長い形状の弾性表 面波素子を用いる場合に有効である。
このような構造は、 例えば、 配線基板の配線パターンと機能素子の配線パター ンとを電気的に接続する第 1の接合部材を機能素子の中央部近傍領域に集中的に 配置し、 かつ配線基板の配線バターンと機能素子の配線バターンとの電気的接続 に預からない第 2の接合部材を機能素子の周辺部領域に配置しつつ、 配線基板の 第 1の面と機能素子の第 1の面とを対向配置する工程と、 少なくとも前記配線基 板と前記機能素子との間に空隙部を残しつつ当該空隙部を封止部材により封止し て製造するよう にしてもよい。
このような機能素子例えば弾性表面波素子としては、 基板上にフェースダウン ボンディング方式により搭載される機能素子において、 前記基板と電気的に接続 される複数の接続端子が、 当該機能素子の一主面のほぼ中央に集中して配置され た素子を用いるよう にしてもよい。 また、 この機能素子が比較的細長い形状の素 子でもよく、 電子部品の強度面からも有効である。
例えば機能素子が弾性表面波素子である場合には、 弾性表面波素子は、 圧電性 基板と、 前記圧電性基板上に形成された複数対の櫛歯状電極と、 前記圧電性基板 のほぼ中央に集中して設けられた外部接続端子群とを具備するようにしてもよい。 この弾性表面波素は、 例えば前記圧電性基板上に前記櫛歯状電極を挟むよう に形 成された吸音剤をさらに具備するようにしてもよい。
さらに、 前記圧電性基板上の両側に、 外部との接続に預からない電極パッドが 設けるよう にしてもよい。 このような外部との接続に預からない電極パッドは、 封止部材の流入を防止するともに、 機能素子が比較的長い形状を有している場合 には、 強度を維持することができる。 また、 前記外部接続端子群は、 前記櫛歯状 電極に延在して電気的に接続される外部接続端子を有するようにしてもよい。 本発明の電子部品、 例えば弾性表面波装置およびその製造方法によれば、 配線 基板と弾性表面波素子との電気的接続部分となる導電性接合部材に接続される配 線バターンの高さを配線基板材料厚みまたは配線バターンの導電材料厚みを部分 的に変えることによって制御し、 もしくは電気的接続部分となる導電性接合部材 の高さ自体を制御することによって、 機能素子である弾性表面波素子と配線基板 との間の適正量の空隙部を有効に確保できるので、 弾性表面波吸収材が配置され た弾性表面波素子の場合にも、 弾性表面波素子と配線基板との間の接合強度を充 分に保て、 接続の信頼性を向上させることができる。 本発明の電子部品は、 第 1の面および第 2の面を有し、 第 1の面に第 1の厚さ の導電材料からなる第 1 の配線パターンと第 1の厚さよりも厚い第 2の厚さの導 電材料からなる第 2の配線パターンとが形成された配線基板と、 第 1の面および 第 2の面を有し、 第 1 の面に配線パターンが形成され、 第 1の面が前記配線基板 の第 1の面と対向して配置された機能素子と、 前記配線基板の第 2の配線パター ンと前記機能素子の配線パダーンとの間に配置された導電性接合部材と、 前記配 線基板の第 1の面と前記機能素子の第 1の面との間に空隙部を残しつつ当該空隙 部を封止する封止部材とを具備することを特徴とする。
すなわち、 本発明の電子部品例えば弾性表面波装置のひとつの態様は、 配線基 板の主面に形成された配線バターンの少なくとも一部の導電材料の厚みが該配線 パターンの他の部分の導電材料の厚みより厚いことを特徴としている。 この差は 5〜1 0 0 μ πιの範囲にあることが好ましい。 このような構造とすることによつ て、 導電性接合部材の厚みが小さくても、 導電材料の厚みと加えあわせることが できるため、 機能素子である弾性表面波素子と配線基板との間の適正量の空隙部 を有効に確保できるので、 特に、 弾性表面波吸収材が配置された弾性表面波素子 の場合にも、 弾性表面波素子と配線基板との間の接合強度を充分に保つことがで 含る。
このような電子部品の構造は例えば、 線基板の配線パターンを形成する際に、 配線パターンの少なくとも一部を導電ペーストを用いたスクリ ーン印刷法により 複数回塗布し、 焼き付けまたは同時焼成するようにしてもよい。 この場合、 複数 回塗布した部分の焼成後の厚みは他の部分との差が 5〜1 0 0 μ ιηの範囲にある ことが好ましい。
また例えば、 配線基板の配線パターンを形成する際に、 配線パターンの少なく とも一部を蒸着もしくはスパッタ等の成膜方法により該配線バターンの他の部分 より厚く成膜するようにしてもよい。 本発明の電子部品においては、 成膜する膜 厚の差は少なくとも 5 / m以上あることが好ましい。
また本発明の電子部品は、 第 1の面および第 2の面を有し、 第 1の厚さの基板 材料からなる第 1の領域と第 1の厚さよりも厚い第 2の厚さの基板材料からなる 第 2の領域とを有し、 第 1の面の第 1の領域および第 2の領域に配線パターンと が形成された配線基板と、 第 1 の面および第 2の面を有し、 第 1の面に配線パ ターンが形成され、 第 1の面が前記配線基板の第 1の面と対向して配置された機 能素子と、 前記配線基板の第 2の領域の配線パターンと前記機能素子の配線パ ターンとの間に配置された導電性接合部材と、 前記配線基板の第 1の面と前記機 能素子の第 1の面との間に空隙部を残しつつ当該空隙部を封止する封止部材とを 具備することを特徴とする。
すなわち、 本発明の電子部品例えば弾性表面波装置の別の態様は、 配線基板の 主面に形成された配線バターンのすくなくとも一部の領域の配線基板材料の厚み が該配線パターンの他の部分の領域の配線基板材料の厚みより厚いことを特徴と している。 この差は 5〜1 0 0 μ ιηの範囲にあることが好ましい。 このような構 造とすることによって、 導電性接合部材の厚みが小さくても、 配線基板材料の厚 みと加えあわせることができるため、 機能素子である弾性表面波素子と配線基板 との間の適正量の空隙部を有効に確保できるので、 特に、 弾性表面波吸収材が配 置された弾性表面波素子の場合にも、 弾性表面波素子と配線基板との間の接合強 度を充分に保つことができる。
このような構造は例えば、 配線基板を形成する際に、 電気的接続部分となる接 合部材に対向する部分およびその近傍の領域に相当するグリーンシートを付加し て焼成し、 その後該配線基板に配線パターンを形成するようにしてもよい。
このグリ 一ンシートを付加して焼成した部分の厚みと他の部分の厚みの差は、 実質的に 5〜5 0 0 μ πιの範囲にあることが好ましい。
このような配線基板の製造方法を採用すれば、 接合部材の厚みが小さくても、 配線バターン部分の配線基板材料もしくは導電材料の厚みと加えあわせることが できるため、 弾性表面波素子と配線基板との間の適正量の空隙部を有効に確保で きるので、 特に、 弾性表面波吸収材が配置された弾性表面波素子の場合にも、 弾 性表面波素子と配線基板との間の接合強度を充分に保つことが可能になり、 接合 強度を上げ、 接続の信頼性を上げることができる。
また本発明の電子部品は、 第 1の面および第 2の面を有し、 第 1の面に配線パ P T JP96 01492
ターンが形成された配線基板と、 第 1の面および第 2の面を有し、 第 1の面に配 線パターンが形成され、 第 1の面が前記配線基板の第 1の面と対向して配置され た機能素子と、 前記配線基板の第 1の面の配線パターンと前記機能素子の第 1の面 の配線パターンとの間に配置され、 これら配線パターン間の間隔に応じてバンプ を積み重ねた導電性接合部材と、 前記配線基板の第 1の面と前記機能素子の第 1 の面との間に空隙部を残しつつ当該空隙部を封止する封止部材とを具備すること を特徴とする。
すなわち、 本発明の電子部品例えば弾性表面波装置の別の態様としては、 適正 量の空隙部を確保するために、 電気的接続部分となる導電性接合部材としてほぼ 同一位置に導電性バンプを複数個積み重ねたものを用いることを特徴としている。 この場合、 複数個の導電性バンプの厚みの和は 3 0〜1 5 0 /z mの範囲となるこ とが好ましい。 あるいは、 また、 電気的接続部分となる導電性接合部材として導 電性ポールバンプを用い、 かつ、 該導電性ボールバンプの厚みを導電性細線の太 さを変えることにより調整するよう にしてもよい。 これらの場合、 導電性バンプ として、 実質的に金からなるポールバンプ、 実質的に錫からなるボールバンプ、 実質的に鉛からなるボールバンプ等を用いることがより好ましい。 あるいは、 ま た、 弾性表面波素子の少なくとも一主面もしくは他の主面の一部に導電性接合部 材の厚みより薄い弾性表面波吸収材を備えるようにしてもよい。
このように厚みを制御した電気的接続部分となる導電性接合部材を具備するこ とによっても、 弾性表面波素子と配線基板との間の適正量の空隙部を有効に確保 できる。 この場合、 配線基板の基板材料厚みもしくは導電材料の厚みを部分的に 変える必要がないため、 製造もより簡単になる。
このような構造は、 適正量の空隙部を確保するために、 電気的接続部分となる 導電性接合部材として、 ほぼ同一位置に導電性バンプを複数個積み重ねたものを 用いるようにしてもよい。 この場合、 複数個の導電性バンプの厚みの和は
3 0〜1 5 0 μ πιの範囲となるように調節することが好ましい。 あるいは、 また、 電気的接続部分となる導電性接合部材として導電性ポールバンプを用い、 かつ、 該導電性ポールバンプの厚みを導電性細線の太さを変えることにより繭整するよ うにしてもよい。 これらの場合、 導電性バンプとして、 実質的に金からなるボー ルバンプ、 実質的に錫からなるボールバンプ、 実質的に鉛からなるボールバンプ 等がより好ましい。 あるいは、 また、 弾性表面波素子の少なくとも一主面もしく は他の主面の一部に弾性表面波吸収材を塗布する際に弾性表面波吸収材を導電性 接合部材の厚みより薄く塗布するようにしてもよい。
このよう に電気的接続部分となる導電性接合部材の厚みを制御することによつ ても、 弾性表面波素子と配線基板との間の適正量の空隙部を有効に確保できる。 この場合、 配線基板の基板材料厚みもしくは導電材料の厚みを部分的に変える必 要がないため、 製造がより簡単になる。
また本発明の電子部品は、 第 1の面および第 2の面を有し、 第 1の面に配線パ ターンが形成された配線基板と、 第 1の面および第 2の面を有し、 第 1の面に配 線パターンおよび吸音剤が形成され、 第 1の面が前記配線基板の第 1の面と対向 して配置された弾性表面波素子である機能素子と、 前記配線基板の配線パターン と前記機能素子の配線バターンとの間に配置され、 前記吸音剤の厚さを超える高 さの導電性接合部材と、 前記配線基板の第 1の面と前記機能素子の第 1の面との 間に空隙部を残しつつ当該空隙部を封止する封止部材とを具備することを特徴と する。
また本発明の電子部品は、 第 1の面および第 2の面を有し、 第 1の面に配線パ ターンが形成された配線基板と、 第 1の面および第 2の面を有し、 第 1の面に配 線パターンが形成され、 第 2の面に吸音剤が形成され、 第 1の面が前記配線基板 の第 1の面と対向して配置された弾性表面波素子である機能素子と、 前記配線基 板の配線パターンと前記機能素子の配線バターンとの間に配置された導電性接合 部材と、 前記配線基板の第 1の面と前記機能素子の第 1の面との間に空隙部を残 しつつ当該空隙部を封止する封止部材とを具備することを特徴とする。
また本発明の電子部品は、 第 1の面および第 2の面を有し、 第 1の面に配線パ ターンが形成された配線基板と、 第 1の面および第 2の面を有し、 第 1の面に配 線パターンが形成され、 第 2の面に吸音剤が形成され、 第 1の面が前記配線基板 の第 1の面と対向して配置された弾性表面波素子である機能素子と、 前記配線基 P T JP96 01 2
板の配線バターンと前記機能素子の配線バターンとの間に配置された導電性接合 部材と、 前記機能素子の第 2の面に配置された金属性箔と、 前記配線基板の第 1 の面と前記機能素子の第 1の面との間に空隙部を残しつつ当該空隙部を封止する 封止部材とを具備することを特徴とする。
すなわち、 本発明の弾性表面波装置の別の態様は、 弾性表面波素子の少なくと も一主面もしくは他の主面の一部に弾性表面波吸収材を配置しており 、 かつ該弾 性表面波吸収材の厚み寸法が前記接合部材の厚み寸法より小さいことを特徴とし ている。 この差は 5〜5 0 μ ιηの範囲にあることが好ましい。 弾性表面波吸収材 を配置した素子は、 その吸収材の厚みが適正量であることを必要とする。 このよ うな構成にすることによって、 接合部材の厚みが小さくても、 弾性表面波素子と 配線基板との間の適正量の空隙部を有効に確保できる。
このよう に本発明の電子部品は、 本発明の電子部品は、 第 1の面および第 2の 面を有する配線基板と、 第 1 の面および第 2の面を有し、 第 1 の面が前記配線基 板の第 1の面と対向して配置された機能素子と、 前記配線基板の第 1の面と前記 機能素子の第 1の面との間に空隙部を残しつつ当該空隙部を封止する封止部材と を具備したものである。 封止部材として例えば加熱溶融型部材をもちいるように してもよいし、 また例えば熱硬化性部材を用いるようにしてもよい。
ここで加熱溶融型部材は、 例えばペレット状にしたの樹脂粉末など、 初期の状 態が固体形状のものをいい、 また、 熱硬化性部材は、 例えば液体状の熱硬化性榭 脂材料など、 初期の状態が滴下や流し込みが可能な程度の流動性を有する液体状 のものをレ、う。
このような本発明の電子部品例えば弾性表面波装置によれば、 封止用の加熱溶 融型部材、 熱硬化性部材などからなる封止部材と、 機能素子である弾性表面波素 子との間に、 導電膜または金属箔が形成され配線基板上の配線バターンと直流ま たは高周波的に接続されていることにより、 もしくは、 例えば加熱溶融型部材ゃ 加熱硬化させる液状の樹脂などからなる封止用部材として磁性体、 金属粉末、 導 電性フイラ一もしくは電波吸収体を分散させた樹脂を用いることにより、 耐ノィ ズ性が向上するため、 外来の電気的ノイズに強い電子部品、 弾性表面波装置を提 供できる。 また、 配線基板に加熱溶融型部材の少なくとも一部を被覆するように 金属板を設置し、 嚙み合わせることにより、 金属板表面部を平坦にできるため、 外来のノイズに強く、 かつ、 マーキング性にも優れる電子部品、 例えば弾性表面 波装置を提供できる。
また、 本発明の電子部品例えば弾性表面波装置によれば、 封止用の樹脂が弾性 表面波素子と配線基板とで形成される空隙部に流れ込むのを防止する枠状絶縁部 材を必ずしも必要とせず簡易な構造が得られる利点を有する。 また、 封止部材と して例えば成形した薄片状樹脂を用い加熱溶融して硬化させたり、 また封止部材 として例えば加熱、 光重合などにより硬化する性質を有する樹脂を流し込みまた は滴下しつつ硬化させて接合することにより、 特に弾性表面波素子のトランス デューサ部表面に樹脂が流れ込むのを容易に防ぐことができ、 弾性表面波素子の 表面波伝搬路に悪影響を生じさせず、 弾性表面波素子と配線基板との間に空隙部 を形成し樹脂封止した弾性表面波装置を容易に提供できる。 本発明によれば、 一 定粘度を有する封止用の樹脂が例えば弾性表面波素子のトランスデューサ部側の 主面と配線基板とで形成される空隙部に流れ込むのを枠状絶縁部材を必ずしも必 要とせず防止でき、 簡易な構造の弾性表面波装置が得られる利点を有する。 本発 明の電子部品は枠状絶縁部材ないしは囲繞部材を要しない分、 電子部品を小型化 することができる。 したがって、 高密度実装に適した電子部品をを提供すること ができる。 また、 本発明の電子部品の製造方法によれば枠状絶縁部材ないしは囲 繞部材を要せずに機能素子を配線基板上に搭載することができ、 従来よりも小型 化した電子部品を製造することができる。 また、 高密度実装に適した電子部品を 製造することができる。
また、 本発明の電子部品例えば弾性表面波装置の製造方法によれば、 一定粘度 の榭脂を用いるため、 従来必要とした枠状絶縁部材の形成工程を不要とすること ができる。
上述のような本発明の電子部品の封止部材としては、 例えば加熱溶融型部材を 用いるよう にしてもよい。 また、 封止部材として例えば熱硬化性部材を用いるよ うにしてもよい。 また、 配線基板の第 1の面に配置され、 空隙部を囲む枠状部材をさらに有する ようにしてもよい。 枠状部材は用いなくともよいが、 枠状部材をさらに用いるこ とにより、 より確実に配線基板と機能素子との間の空隙を確保される。 したがつ て、 封止部材の空隙部への回り込みなどによる、 例えば弾性表面波素子、 受光素 子、 発光素子などの機能素子の機能阻害がより確実に防止される。
また、 封止部材を、 機能素子の第 2の面の全面を覆うように配置するよう にし てもよい。 また、 封止部材を、 機能素子の第 2の面の一部を覆うように配置する よう にしてもよい。 さらに、 封止部材を、 機能素子の第 2の面の全面を露出する よう に配置するよう にしてもよい。
また、 配線基板の第 1の面と前記機能素子の第 1の面との間に配置された導電 性接合部材をさらに有するよう にしてもよい。 例えばこの導電性接合部材により、 配線基板の第 1の面と機能素子の第 1の面との間隔を調節するようにしてもよい。 そして、 前記機能素子が弾性表面波素子であり、 前記配線基板の第 1の面の接 続パターンと前記弾性表面波素子の第 1の面の接続パターンとの間をフェースダ ゥンボンディング方式により接合する導電性接合部材をさらに有するようにして もよい。 このよう に電気的接続部分となる導電性接合部材の厚みを制御すること によつても、 機能素子である弾性表面波素子と配線基板との間の空隙の適正な間 隔が有効に確保される。
搭載する機能素子はどのようなものでもよいが、 例えば弾性表面波素子、 水晶 振動子、 圧電振動子、 フォトカプラ、 E P R O M、 C C D , 半導体レーザ、 発光 ダイオードなどを一例として挙げることができる。 搭載する機能素子が
E P R O M、 C C D , 半導体レーザ、 発光ダイオードをはじめとする受光素子、 発光素子、 あるいは光電変換素子である場合には、 配線基板の、 少なくとも機能 素子を搭載する領域に、 光を透過する材料を用いるよう にしてもよい。
例えば前記機能素子が水晶振動子であり、 前記配線基板の第 1の面の接続パ ターンと前記水晶振動子の第 1の面の電極との間をフェースダウンボンディング 方式により接合する導電性接合部材と、 前記配線基板の第 1の面の配線パターン と前記水晶振動子の第 2の面の電極とを電気的に接続するボンディングワイヤ とをさらに有するようにしてもよい。
また、 前記機能素子が圧電振動子であり 、 前記配線基板の第 1の面の接続パ ターンと前記圧電振動子の第 1の面の電極との間をフェースダウンボンディング 方式により接合する導電性接合部材と、 前記配線基板の第 1の面の配線パターン と前記圧電振動子の第 2の面の電極とを電気的に接続するボンディングワイヤー とをさらに有するようにしてもよい。
また、 前記機能素子が一対の送光部と受光部を有するフォト力ブラであり、 前 記配線基板の第 1 の面の接続パターンと前記フォト力ブラの各第 1の面の配線パ ターンとの間をフェースダウンボンディング方式により接合する導電性接合部材 と、 前記配線基板の第 1 の面上に配置され、 前記フォト力ブラを囲繞する囲繞部 材とをさらに有し、 前記封止部材が少なくとも前記囲繞部材上に配置するよう に してもよい。
また、 前記配線基板として光を透過する基板を用い、 前記機能素子としてその 第 1の面が受光面の E P R O Mをもちいるよう にしてもよい。
また、 前記配線基板として光を透過する基板を用い、 前記機能素子としてその 第 1の面が受光面の C C Dを配置するようにしてもよい。
また、 前記配線基板として光を透過する基板を用い、 前記機能素子としてその 第 1の面が発光面の半導体レーザを配置するようにしてもよい。
また、 前記配線基板として光を透過する基板を用い、 前記機能素子としてその 第 1の面が発光面の発光ダイオード第 1の面が受光面の C C Dを配置するように してもよい。
このよう に本発明の電子部品は、 本発明の電子部品は、 第 1の面および第 2の 面を有する配線基板と、 第 1の面および第 2の面を有し、 第 1の面が前記配線基 板の第 1の面と対向して配置された機能素子と、 前記配線基板の第 1の面と前記 機能素子の第 1の面との間に空隙部を残しつつ当該空隙部を封止する封止部材と を具備したものである。 封止部材として例えば加熱溶融型部材をもちいるように してもよいし、 また例えば熱硬化性部材を用いるよう にしてもよい。
ここで加熱溶融型部材は、 例えばペレット状にしたの樹脂粉末など、 初期の状 態が固体形状のものをいい、 また、 熱硬化性部材は、 例えば液体状の熱硬化性樹 脂材料など、 初期の状態が滴下や流し込みが可能な程度の流動性を有する液体状 のものを I /、う。
例えば封止部材として加熱溶融型部材を用いる場合には、 配線基板の第 1の面 と機能素子の第 1 の面とを対向配置し、 前記配線基板の第 1の面および Zまたは 前記機能素子の第 2の面の上方に加熱溶融型部材を配置し、 前記加熱溶融型部材 を加熱溶融し、 少なくとも前記配線基板と前記機能素子との間に空隙部を残しつ つ当該空隙部を封止して製造するよう にしてもよい。
また例えば液状の熱硬化性部材を用いる場合には、 配線基板の第 1の面と機能 素子の第 1の面とを対向配置し、 前記配線基板の第 1の面および Zまたは前記機 能素子の第 2の面の上方より液状の熱硬化性部材を所定の位置に流し込み、 この 流し込んだ熱硬化性部材を加熱硬化し、 少なくとも前記配線基板と前記機能素子 との間に空隙部を残しつつ当該空隙部を封止して製造するよう にしてもよい。 また例えば液状の熱硬化性部材を用いる場合には、 配線基板の第 1の面と機能 素子の第 1の面とを対向配置し、 前記配線基板の第 1の面および Zまたは前記機 能素子の第 2の面の上方より液状の熱硬化性部材を所定の位置に滴下しつつ加熱 硬化し、 少なくとも前記配線基板と前記機能素子との間に空隙部を残しつつ当該 空隙部を封止して製造するよう にしてもよい。
そしてこのような本発明の電子部品は、 機能素子例えば弾性表面波素子や半導 体素子をフェースダウンボンディング( ダイボンディングとワイヤボンディング 工程なしにチップを裏返して直接パッケージにはり付ける技術、 「 科学大辞 典」 丸善株式会社昭和 60年 3月 5日発行第 1189頁参照) 方式による実装構造を有 する電子部品に関する。 ここで、 フェースダウンボンディングは、 具体的にはい わゆるフリ ップチップ方式、 ビームリ ード方式、 T A B方式べデステル方式等を 含むものとする。 本発明の電子部品としては、 封止時の部材として、 例えば粉末 原料を冷間圧縮成形した加熱溶融型部材、 例えば熱硬化性薄片状樹脂を用い、 加 熱によって該榭脂表面もしくは全体を溶融し硬化させることにより、 弾性表面波 素子と配線基板とを、 弾性表面波素子に設けられたトランスデューサ部と配線基 板との間に空隙部を保持しながら封止するよう にしてもよい。 また、 加熱や光重 合により硬化する性質を有する樹脂を封止部材として用いて、 滴下しながら硬化 させあるいは流し込んで硬化させるなどして、 弾性表面波素子と配線基板とを、 弾性表面波素子に設けられたトランスデューサ部と配線基板との間に空隙部を保 持しながら封止するよう にしてもよい。
弾性表面波装置等の電子部品の一部を構成する配線基板は、 実装方式の相違に より 、 一主面のみに、 または、 一主面と他の主面の両面にわたって配線パターン を形成することができる。 もしくは、 その内部に抵抗やコンデンサやコイルの機 能を内蔵した配線基板であって、 一主面もしくは一主面と他の主面の両面にわ たって配線パターンが形成され、 内蔵の機能部分と電気的に接続されたものを用 いることができる。 配線基板の材質としては、 アルミナ、 マグネシア、 炭化珪素 などのセラミック、 ガラス被覆セラミック、 内部に導体や機能部分を内蔵したァ ルミナなどのセラミック多層基板、 F R— 4をはじめとするガラスエポキシ等の 榭脂基板を用いることができる。 多層基板、 フレキシブル基板(フィルムキヤリ ァを含む) などの基板を用いるようにしてもよい。
また、 空隙部を確保する必要から、 弾性表面波素子においては、 ひとつの面に くし齒型電極パターンからなるトランスデューサ部とそのトランスデューサ部に 電気的に接続する配線バターンを形成するこどが必要となる。
本発明において、 接合部材とは、 素子(機能素子) と配線基板を電気的に接続 し、 かつ、 両者を固定する手段として定義される。 例えば、 いわゆるバンプ、 導 電性樹脂が使われる。 バンプは、 ボールバンプやめつきバンプなどがあり、 また、 導電性榭脂には、 導電性ペーストや異方性導電樹脂( A C F ) などが含まれる。 本発明においては、 これらを単独で用いてもよく、 また、 併用してもよく、 こ れらは本発明に包含される。
また、 本発明において、 密着とは、 2つの異なる部材が接している状態をいい、 外力により両者を容易に分離できる状態をいう。 両者の間に微小な間隙があって もかまわない。 一方、 一体化とは、 2 つの異なる部材が接しており、 かつ、 外力 により容易に分離し得ない程度に固着されている状態をいうものとする。 また、 本発明において加熱とは直接的加熱、 間接的加熱を問わず、 封止部材を 溶融させ、 あるいは硬化させるのに必要な熱量を加えられればよい。 例えば、 高 周波による加熱、 電磁波による加熱、 超音波による加熱、 光の照射による加熱等 の加熱手法を用いるよう にしてもよい。
配線基板上の配線パターンと例えば弾性表面波素子のような機能素子上の配線 パターンとを電気的に接合する部材例えば導電性バンプには、 導電性金属めつき を施した樹脂ボールや金( Ai) や銀( P%、 やはんだ( Sn系、 Pb系、 I n系等) 等か らなる金属バンプ等が用いられる。
これらの導電性バンプは、 配線基板と機能素子とを所定の温度、 圧力で接合す ることにより配線基板上の配線バタ一ンと機能素子上の配線バタ一ンとを電気的 に接続するとともに、 機能素子と配線基板との間に空隙部を形成し確保する役割 を果たすことになる。 一定の空隙部を確保するためには金や銀やはんだ等からな る金属バンプが導電性バンプとして特に好ましい。
なお、 本発明にて形成される空隙部の隙間は導電性接合部材の形状により定ま るが 1 0〜2 0 0 μ ιη、 好ましくは 2 0〜8 0 x m確保することが望ましい。 また、 導電性接合部材として配線基板上の配線パターンまたは弾性表面波素子 上の配線パターンの厚み.を部分的に厚くしてバンプを構成した場合、 直接、 配線 基板上の配線バターンと弾性表面波素子上の配線バタ一ンとを接合することもで さる。
このような本発明の電子部品例えば弾性表面波装置の例としては、 弾性表面波 素子を例えばフェースダウンボンディングする実装構造において、 封止時の樹脂 として例えば薄片状の樹脂を用い、 加熱によって該樹脂表面もしくは全体を溶融 し硬化させることにより、 弾性表面波素子と配線基板とを、 弾性表面波素子に設 けられたトランスデューサ部と配線基板との間に空隙部を保持しながら封止する ようにしてもよい。
本発明の弾性表面波装置の一部を構成する配線基板は、 実装方式の相違により、 —主面のみに、 または、 一主面と他の主面の両面にわたって配線パターンを形成 することができる。 また、 弾性表面波素子においては、 空隙部を確保するために、 ひとつの面にくし歯型電極パターンからなるトランスデューサ部とそのトランス デューサ部に電気的に接続する配線バターンを形成することが必要となる。 配線基板上の配線バターンと弾性表面波素子上の配線バターンとを電気的に接 合する部材例えば導電性バンプには、 導電性金属めつきした樹脂ボールや金 ( Ai) や銀( g) やはんだ( Sn系、 Pb系、 I n系等) 等からなる金属バンプ等があ る。
例えぱ、 導電性ボールバンプは実質的に金からなるものをもちいるようにして もよい。 また、 導電性ポールバンプが実質的に錫からなるものを用いるよう にし てもよい。 また、 導電性ボールバンプが実質的に鉛からなるものを用いるように してもよい。 さらに、 導電性ボールバンプが実質的に錫および鉛からなるものを 用いるよう にしてもよく、 導電性ボールバンプが実質的に錫および銀からなるも のを用いるようにしてもよい。
これらの導電性バンプは、 配線基板と弾性表面波素子とを所定の温度、 圧力で 接合することにより配線基板上の配線バターンと弾性表面波素子上の配線バタ一 ンとを電気的に接続するとともに、 弾性表面波素子と配線基板との間に空隙部を 形成し確保する役割を果たすことになる。 導電性接合部材として導電性ボールバ ンプを用い、 かつ、 該導電性ボールバンプの厚みを導電性細線の太さを変えるこ とにより調整するようにしてもよい。 一定の空隙部を確保するためには金や銀や はんだ等からなる金属バンプが導電性バンプとして特に好ましい。
なお、 本発明にて形成される空隙部の隙間は導電性接合部材の形状により定ま るが 1 0〜2 0 0 μ ιη、 好ましくは 2 0〜8 0 μ ιη確保することが望ましい。 また、 導電性接合部材として配線基板上の配線パターンまたは弾性表面波素子 上の配線パターンの厚みを部分的に厚くしてバンプを構成した場合、 直接、 配線 基板上の配線バターンと弾性表面波素子上の配線バタ一ンとを接合することもで きる。 さらに、 配線基板の配線パターン上に電気的接続部分となる接合部材を先 に形成することにより、 接合強度を上げ、 接続の信頼性を向上させることができ る。
このような構造は、 配線基板に対しバンプを有する機能素子を対向して配置す 96 01492
る工程と、 前記配線基板および Zまたは前記バンプに対し赤外線を照射しながら 前記配線基板と前記機能素子とを接合する工程と、 前記基板と前記素子との間に 空隙部を残しつつこれらを封止する工程とにより製造するよう にしてもよい。 また、 配線基板の所定の位置にバンプを有する機能素子を配置する工程と、 前 記配線基板および または前記機能素子の背面から赤外線を照射しながら前記配 線基板と前記機能素子とを接合する工程と、 前記基板と前記素子との間に空隙部 を残しつつこれらを封止する工程とにより製造するよう にしてもよレ、。
赤外線は例えばハロゲンランプなどにより発光させて用いるようにしてもよ い。
さらに、 この機能素子と前記配線基板との間に形成される空隙部を残して前記 機能素子を包覆する封止部材により 、 この封止部材の周辺部と前記配線基板の周 辺部とを封止するようにしてもよい。 封止部材は、 例えば加熱溶融型部材を用い るよう にしてもよいし、 液状の熱硬化性部材を用いるよう にしてもよい。
さらに、 本発明の電子部品例えば弾性表面波装置のひとつの態様としては、 例 えば樹脂部の周辺端縁と配線基板の周辺端縁との間に配線基板の一主面からの配 線パターンを露出させるようにしてもよい。 したがって、 樹脂部が配線パターン を覆ってしまうことがないため、 この配線基板の側部端面に形成された凹状配線 パターンと連続することになる。
このため、 弾性表面波装置を他の受動部品等とともに回路基板に面実装する際 に、 回路基板上の接続部と配線基板の側部端面に形成された凹状配線バターンと をはんだ等で容易に接続することができる。
また、 本発明の電子部品である弾性表面波装置においては、 樹脂部として例え ばエポキシ系樹脂を用いるようにしてもよい。
さらに、 本発明の電子部品である弾性表面波装置においては、 複数の接合部材 で形成される軌跡の各接合部材内側およびまたは各接合部材外側に沿って環状の 絶縁性隔壁が形成されていることを特徴としている。
これらの環状の絶縁性隔壁は弾性表面波素子と配線基板との間に形成される空 隙部を確実に保持する役割を果たす。 本発明の電子部品である弾性表面波装置の製造方法の例としては、 例えば接合 された弾性表面波素子と配線基板とを薄片状の熱硬化性樹脂により覆い固めるこ とにより配線基板上に実装し弾性表面波装置を構成するようにしてもよく、 この 時に薄片状に成形されたエポキシ系樹脂を用い加熱によって該榭脂の表面もしく は全体を溶融し、 かつ、 硬化することにより弾性表面波素子と配線基板を接合す るよう にしてもよい。 このような製造方法によれば、 樹脂の粘性を高く保持する ことができるから、 硬化中に弾性表面波素子のトランスデューサ部表面に形成さ れた空隙部への榭脂の流れ込みが防止される。 また、 この場合、 液状樹脂でない ため枠状の絶縁性隔壁やダムを必ずしも必要としない。 本発明によれば、 一定粘 度を有する封止用の樹脂が例えば弾性表面波素子のトランスデューサ部側の主面 と配線基板とで形成される空隙部に流れ込むのを枠状絶縁部材を必ずしも必要と せず防止でき、 簡易な構造の弾性表面波装置が得られる利点を有する。 本発明の 電子部品は枠状絶縁部材ないしは囲繞部材を要しない分、 電子部品を小型化する ことができる。 したがって、 高密度実装に適した電子部品をを提供することがで きる。 また、 本発明の電子部品の製造方法によれば枠状絶縁部材ないしは囲繞部 材を要せずに機能素子を配線基板上に搭載することができ、 従来よりも小型化し た電子部品を製造することができる。 また、 高密度実装に適した電子部品を製造 することができる。
しかし、 枠状の絶縁性隔壁を設けることにより、 一層封止効果を上げることが でき、 本願発明に包含される。 さらに、 配線基板の配線パターン上に電気的接続 部分となる接合部材を先に形成することにより 、 接合強度を上げ、 接続の信頼性 を向上させることができる。
従来の封止榭脂用材料として用いられる液状熱硬化性樹脂例えばエポキシ系 ポッティング榭脂はその粘度が 1 5 P a · s程度と低く、 1 0 0〜2 0 0 ^に加 熱してもすぐには粘度は高くならず、 低い粘度のままであるため、 枠状絶縁部材 なしでは、 弾性表面波素子および配線基板の空隙部に流れ込み空隙部を維持でき ず弾性表面波素子の表面波伝搬を妨げ機能を損なう欠点がある。
しかしながら、 本発明の弾性表面波装置によれば、 薄片状に成形された榭脂例 えば、 エポキシ系榭脂を用いることによって加熱により溶融が開始されるまでは 高粘度の状態が保たれ溶融後も硬化を制御することにより、 少なくとも
5 0 P a · s 以上の粘度が得られる。 このため、 容易に弾性表面波素子を包覆す ることができる。
例えば、 粉末原料を薄片状に冷間圧縮成形した熱硬化性樹脂例えば、 エポキシ 系樹脂を用いることによって加熱により溶融が開始されるまでは髙粘度の状態が 保たれ溶融後も硬化を制御することにより 、 少なくとも 5 0 P a · s 以上の粘度 が得られる。 このため、 容易に弾性表面波素子を包覆することができる。
このような薄片状樹脂は、 例えば、 エポキシ樹脂を原料とした粉末のものを必 要な形状および重量に冷間圧縮成形して容易に形成できる。 この場合、 榭脂とし ては熱硬化性樹脂が好ましい。 例えば、 エポキシ樹脂、 シリコーン樹脂、 ウレタ ン榭脂等があげられる。 好ましくは、 エポキシ樹脂であり、 さらにはフエノール 系のエポキシ樹脂がより好ましい。 特に、 ビスフエノール A型エポキシ樹脂や フエノールノポラック型エポキシ樹脂は、 本発明の電子部品に適する。 薄片状樹 脂は、 弾性表面波素子の配線バタ一ンが形成された主面でなく他の主面に載置さ れる。
また、 薄片状樹脂は、 粉末原料を冷間圧縮成形して得る代わりに、 粉末原料を 不織布に含浸させ、 これを打ち抜き成形して、 所望形状の樹脂を得ることができ る。 また、 粉末原料を有機系結合剤( バインダ) 、 例えば P V B (ポリビニルブ チラール) 系、 またはアクリル系のバインダと混合分散し、 シート成形したもの を、 打ち抜き成形もしくは切断して、 所望の形状の薄片状樹脂を得ることもでき る。
弾性表面波素子のトランスデューサ部およびこのトランスデューサ部に電気的 に接続する配線パターンが形成されていない面上に載置された薄片状樹脂は、 加 熱溶融とその硬化によって少なくとも前記素子の他の主面に密着して前記素子を 包覆し、 配線基板とで弾性表面波素子を封止する。
また、 樹脂にかえて、 同じ目的で、 低融点ガラスを用いることもできる。 この 場合、 低融点ガラスの粉末(フリ ット) を薄片状に冷間圧縮成形してできたもの を用いる。 成形に必要な場合には、 微量のワックスやポリ ビニルアルコール等を 結合材として用いてもよい。 低融点ガラスとしては、 融点が 250^〜400¾、 より 好ましくは?ひひ^〜 ミ。^の硼珪酸鉛ガラスが適する。 Z n O, Al 203, Ti 02, Bi 203, P b F 2, C u Oを少量含んでいるものもよい。 硼珪酸鉛ガ ラスの成分のうち、 P b Oが 50重量%以上のものが最も適している。
低融点ガラスは硼珪酸鉛ガラス以外にも、 例えば硼珪酸ビスマスガラスを用い るよう にしてもよい。
このような薄片状樹脂は、 例えば、 エポキシ樹脂を原料とした粉末のものを必 要な形状および重量に冷間圧縮成形して容易に形成できる。 薄片状樹脂は、 弾性 表面波素子の配線パターンが形成された主面でなく他の主面に載置される。 この場合の薄片状樹脂の形状は弾性表面波素子形状より大きく、 かつ、 配線基 板形状とほぼ等しいかやや小さい形状を用いることが好ましい。 より好ましい薄 片状樹脂の形状は弾性表面波素子形状より大きく、 かつ、 配線基板形状とほぼ等 しいことである。
このよう にすることにより、 薄片状樹脂の弾性表面波素子および配線基板に対 する位置決めを確実にすることができる。
なお、 例えば弾性表面波素子の形状が 2 mm X2 mmの寸法に対し、 配線基板 形状の寸法が 4 mm X4 mmの場合、 薄片状樹脂の形状の寸法も 4 mm 4 mm の大きさが用いられる。
ただし、 この寸法の選択は弾性表面波素子の体積と薄片状樹脂の厚みにより適 宜選択し得るものである。
弾性表面波素子のトランスデューサ部およびこのトランスデューサ部に電気的 に接続する配線バターンが形成されていない面上に載置された薄片状樹脂は、 加 熱溶融とその硬化によつて少なくとも前記素子の他の主面に密着して前記素子を 包覆し、 配線基板とで弾性表面波素子を封止する。
この場合の加熱溶融、 硬化条件は適度に制御することが必要であるが、 本発明 においては、 薄片状榭脂の加熱溶融温度が 100 〜 200 、 その硬化時間が 20時間〜 2時間で実施される。 より好ましくは、 1 1 0 〜 1 70 ^にて加'熱 溶融した後、 硬化は 1 0 0 °C〜1 6 0 程度で 3時間〜 2 0時間実施される。 こ こで加熱は直接的加熱、 間接的加熱を問わず、 封止部材を溶融させ、 あるいは硬 化させるのに必要な熱量を加えられればよい。 例えば、 高周波による加熱、 電磁 波による加熱、 超音波による加熱、 光の照射による加熱等の加熱手法を用いるよ うにしてもよい。
ここでは、 加熱溶融型の薄片状樹脂からなる封止部材を溶融させたあと加熱硬 化させて配線基板と機能素子を接合する例について説明したが、 前述のよう に、 加熱硬化型の液状樹脂を滴下させたり流し込んだりして配線基板と機能素子を接 合するよう にしてもよレ、。
このような液状の熱硬化性部材を封止部材として用いた本発明の電子部品の製 造方法は、 (a)配線基板の第 1 の面と機能素子の第 1 の面とを対向配置する工程 と、 (b)前記配線基板の第 1の面および Zまたは前記機能素子の第 2の面の上方 より液状の熱硬化性部材を所定の位置に流し込む工程と、 (c)前記流し込んだ熱 硬化性部材を加熱硬化し、 少なくとも前記配線基板と前記機能素子との間に空隙 部を残しつつ当該空隙部を封止する工程とを具備することを特徴とする。
また液状の熱硬化性部材を封止部材として用いた本発明の電子部品の製造方法 は、 (a)配線基板の第 1の面と機能素子の第 1の面とを対向配置する工程と、 (b) 前記配線基板の第 1の面および Zまたは前記機能素子の第 2の面の上方より液状 の熱硬化性部材を所定の位置に滴下しつつ加熱硬化し、 少なくとも前記配線基板 と前記機能素子との間に空隙部を残しつつ当該空隙部を封止する工程とを具備す ることを特徴とする。
また例えば、 配線基板に対し所定位置に機能素子を位置決めし、 前記機能素子 と前記配線基板とを導電性接合部材を介して所定間隔を維持して組み立て、 前記 E線基板と前記機能素子との間に空隙部を残しつつ前記配線基板および前記機能 素子を加熟しながら前記機能素子に対して液状部材を滴下して前記機能素子の側 部に付着させその硬化によつて前記機能素子を包覆するとともに前記配線基板と で前記機能素子を封止するよう にしてもよい。
また、 本発明の電子部品は例えば、 配線基板と、 この配線基板上に導電性接合 部材を介してフェースダウンボンディング方式により電気的に接続された機能素 子と、 配線基板と前記機能素子との間に空隙部を残しつつ前記配線基板および前 記機能素子を加熱しながら前記機能素子に対して液状部材を滴下して前記機能素 子の側部に付着させその硬化によって前記機能素子を包覆してなる滴下型部材と、 この滴下型部材の周辺部と前記配線基板の周辺部とが接触された封止部とを具備 するよう にしてもよい。
液状の熱硬化性部材を加熱硬化させる本発明の電子部品例えば弾性表面波装置 の製造方法は、 機能素子である弾性表面波素子を.フェースダウンボンディング方 式による実装構造を構成し、 さらに、 パッケージと弾性表面波素子を加熱しなが ら液状部材を弾性表面波素子の上に滴下または流し込んで粘性を上げ、 弾性表面 波素子の側面に回り込ませて弾性表面波吸収材としての効果を持たせ、 さらに、 配線基板にまで達した後に硬化させることによつて電子部品例えば弾性表面波素 子を包覆し、 弾性表面波素子と配線基板とを弾性表面波素子に設けられたトラン スデューサ部と配線基板との間に空隙部を保持しながら封止できるよう にしたも のである。
ここで、 本発明において加熱とは直接的加熱、 間接的加熱を問わず、 封止部材 を溶融させ、 あるいは硬^させるのに必要な熱量を加えられればよい。 例えば、 高周波による加熱、 電磁波による加熱、 超音波による加熱、 光の照射による加熱 等の加熱手法を用いるようにしてもよい。
また例えば、 配線基板に対し所定位置に機能素子を位置決めし、 前記機能素子 と前記配線基板とを導電性接合部材を介して所定間隔を維持して組み立て、 前記
BE線基板と前記機能素子との間に空隙部を残しつつ前記配線基板および前記機能 素子を加熱しながら前記機能素子に対して液状部材を滴下して前記機能素子の側 部に付着させその硬化によって前記機能素子を包覆するとともに前記配線基板と で前記機能素子を封止するようにしてもよい。
このような構造は、 配線基板に対しバンプを有する機能素子を対向して配置す る工程と、 前記配線基板および Zまたは前記バンプに対し赤外線を照射しながら 前記配線基板と前記機能素子とを接合する工程と、 前記基板と前記素子との間に 空隙部を残しつつこれらを封止する工程とにより製造するようにしてもよい。 また、 配線基板の所定の位置にバンプを有する機能素子を配置する工程と、 前 記配線基板および Zまたは前記機能素子の背面から赤外線を照射しながら前記配 線基板と前記機能素子とを接合する工程と、 前記基板と前記素子との間に空隙部 を残しつつこれらを封止する工程とにより製造するよう にしてもよい。
赤外線は例えばハロゲンランプなどにより発光させて用いるようにしてもよ い。
さらに、 この機能素子と前記配線基板との間に形成される空隙部を残して前記 機能素子を包覆する封止部材により 、 この封止部材の周辺部と前記配線基板の周 辺部とを封止するようにしてもよい。 封止部材は、 例えば加熱溶融型部材を用い るよう にしてもよいし、 液状の熱硬化性部材を用いるよう にしてもよい。
加熟、 光重合などにより硬化する性質を有する液状樹脂を封止部材として用い 滴下させたり流し込んだりして配線基板と機能素子を接合する本発明の電子部品 の製造方法においては、 封止用の樹脂が機能素子、 例えば弾性表面波素子と配線 基板とで形成される空隙部に流れ込むのを防止するための枠状絶縁部材を必ずし も必要とせず簡易な構造が得られる利点を有する。 また、 弾性表面波素子の側面 部に回り込んだ樹脂が不要な弾性表面波を吸収する弾性表面波吸収材( 吸音材) としても作用するため、 不要なスブリアスを減衰させ、 弾性表面波装置としての 性能を向上させることができる。 さらに、 液状樹脂の硬化により配線基板とで弾 性表面波素子が封止される。
また、 封止用の樹脂と弾性表面波素子との間に、 導電膜または金属箔を形成す れば、 配線基板上の配線パターンの一部、 例えば接地パターンと接続されるため に、 外来ノイズ等による干渉が低減され、 耐ノイズ性が向上する。
この液状の熱硬化性部材を加熱硬化させる本発明の電子部品、 例えば弾性表面 波装置の製造方法においても、 封止用の樹脂が機能素子である弾性表面波素子と
E線基板とで形成される空隙部に流れ込むのを防止するための枠状絶縁部材を必 ずしも必要とせず簡易な構造が得られる利点を有する。 また、 弾性表面波素子の 側面部に回り込んだ榭脂が不要な弾性表面波を吸収する弾性表面波吸収材( 吸音 材) としても作用するため、 不要なスプリァスを減衰させ、 弾性表面波装置とし ての性能を向上させることができる。 さらに、 液状樹脂の硬化により配線基板と で弾性表面波素子を封止できる。
また、 本発明の電子部品および弾性表面波装置の製造方法によれば、 封止用の 樹脂と弾性表面波素子との間に、 導電膜または金属箔を形成し、 配線基板上の配 線パターンの一部、 例えば接地パターンと接続するために、 外来ノイズ等による 干渉を低減でき、 耐ノイズ性を向上させることができる。
また、 配線基板に樹脂の少なくとも一部を被覆するよう に金属板を設置し嚙み 合わせることにより金属板表面部を平坦にできるため、 外来のノイズに強く、 か つマーキング性にも優れた弾性表面波装置を提供できる。
さらに、 本発明の電子部品および弾性表面波装置の製造方法によれば、 配線基 板の配線バターン上に電気的接続部分となる導電性接合部材を先に形成すること により、 接合強度を上げ、 接続の信頼性を向上させることができる。
素子を封止する工程で用いられる液状部材は、 半導体の封止に一般的に用いら れる液状のエポキシ系樹脂封止材を用いるよう にしてもよい。 また、 その粘度は 高い方が好ましく、 1 5 P a · s 以上がより好ましい。
また、 榭脂にかえて、 液状の低融点ガラスを用いてもよい。 この場合のガラス 組成としては、 硼珪酸鉛ガラスが好ましく、 ざらには、 P b Oが 5 0 %以上重量 比で含有される硼珪酸鉛ガラスがより好ましい。 また、 液状樹脂を液状の低融点 ガラスと組み合わせて用いてもよい。
そしてこのような本発明の電子部品は、 機能素子例えば弾性表面波素子や半導 体素子をフェースダウンボンディング(ダイボンディングとワイヤボンディング 工程なしにチップを裏返して直接パッケージにはり付ける技術、 「 科学大辞 典」 丸善株式会社昭和 60年 3月 5日発行第 1189頁参照) 方式による実装構造を有 する電子部品に関する。 ここで、 フェースダウンボンディングは、 具体的にはい わゆるフリ ップチップ方式、 ビームリード方式、 T A B方式べデステル方式等を 含むものとする。 本発明の電子部品としては、 封止時の部材として、 例えば粉末 原料を冷間圧縮成形した加熱溶融型部材、 例えば熱硬化性薄片状樹脂を用い、 加 熱によって該樹脂表面もしくは全体を溶融し硬化させることにより、 弾性表面波 素子と配線基板とを、 弾性表面波素子に設けられたトランスデューサ部と配線基 板との間に空隙部を保持しながら封止するよう にしてもよい。 また、 加熱や光重 合により硬化する性質を有する樹脂を封止部材として用いて、 滴下しながら硬化 させあるいは流し込んで硬化させるなどして、 弾性表面波素子と配線基板とを、 弾性表面波素子に設けられたトランスデューサ部と配線基板との間に空隙部を保 持しながら封止するよう にしてもよい。
弾性表面波装置等の電子部品の一部を構成する配線基板は、 実装方式の相違に より、 一主面のみに、 または、 一主面と他の主面の両面にわたって配線パターン を形成することができる。 もしくは、 その内部に抵抗やコンデンサやコイルの機 能を内蔵した配線基板であって、 一主面もしくは一主面と他の主面の両面にわ たって配線バターンが形成され、 内蔵の機能部分と電気的に接続されたものを用 いることができる。 配線基板の材質としては、 アルミナ、 マグネシア、 炭化珪素 などのセラミック、 ガラス被覆セラミック、 内部に導体や機能部分を內蔵したァ ルミナなどのセラミック多層基板、 F R— 4をはじめとするガラスエポキシ等の 榭脂基板を用いることができる。 多層基板、 フレキシブル基板( フィルムキヤリ ァを含む) などの基板を用いるよう にしてもよい。
また、 空隙部を確保する必要から、 弾性表面波素子においては、 ひとつの面に くし歯型電極パターンからなるトランスデューサ部とそのトランスデューサ部に 電気的に接続する配線パターンを形成することが必要となる。
本発明において、 接合部材とは、 素子(機能素子) と配線基板を電気的に接続 し、 かつ、 両者を固定する手段として定義される。 例えば、 いわゆるバンプ、 導 電性榭脂が使われる。 バンプは、 ボールバンプやめつきバンプなどがあり、 また、 導電性樹脂には、 導電性ペーストや異方性導電榭脂( A C F ) などが含まれる。 本発明においては、 これらを単独で用いてもよく、 また、 併用してもよく、 こ れらは本発明に包含される。
また、 本発明において、 密着とは、 2つの異なる部材が接している状態をいい、 外力により両者を容易に分離できる状態をいう。 両者の間に微小な間隙があって もかまわない。 一方、 一体化とは、 2つの異なる部材が接しており、 かつ、 外力 により容易に分離し得ない程度に固着されている状態をいうものとする。
配線基板上の配線バターンと例えば弾性表面波素子のような機能素子上の配線 パターンとを電気的に接合する部材例えば導電性バンプには、 導電性金属めつき を施した樹脂ボールや金( Ai) や銀( g) やはんだ( Sn系、 Pb系、 I n系等) 等か らなる金属バンプ等が用いられる。
これらの導電性バンプは、 配線基板と機能素子とを所定の温度、 圧力で接合す ることにより配線基板上の配線バターンと機能素子上の配線バターンとを電気的 に接続するとともに、 機能素子と配線基板との間に空隙部を形成し確保する役割 を果たすことになる。 一定の空隙部を確保するためには金や銀やはんだ等からな る金属バンプが導電性バンプとして特に好ましい。
なお、 本発明にて形成される空隙部の隙間は導電性接合部材の形状により定ま るが 1 0〜2 0 0 /z m、 好ましくは 2 0〜8 0 z m確保することが望ましい。 また、 導電性接合部材として配線基板上の配線パターンまたは弾性表面波素子 上の配線パターンの厚みを部分的に厚くしてバンプを構成した場合、 直接、 配線 基板上の配線バターンと弾性表面波素子上の配線パタ一ンとを接合することもで きる。
配線基板上の配線パターンと弾性表面波素子上の配線パターンとを電気的に接 合する部材例えば導電性バンプには、 導電性金属めつきした樹脂ボールや金 ( Αι) や銀( ) やはんだ( Sn系、 Pb系、 I n系等) 等からなる金属バンプ等があ る。
例えば、 導電性ボールバンプは実質的に金からなるものをもちいるようにして もよい。 また、 導電性ボールバンプが実質的に錫からなるものを用いるよう にし てもよい。 また、 導電性ポールバンプが実質的に鉛からなるものを用いるように してもよい。 さらに、 導電性ボールバンプが実質的に錫および鉛からなるものを 用いるよう にしてもよく、 導電性ポールバンプが実質的に錫および銀からなるも のを用いるようにしてもよい。
これらの導電性バンプは、 配線基板と弾性表面波素子とを所定の温度、 圧力で 接合することにより配線基板上の配線バターンと弾性表面波素子上の配線バタ一 ンとを電気的に接続するとともに、 弾性表面波素子と配線基板との間に空隙部を 形成し確保する役割を果たすことになる。 導電性接合部材として導電性ボールバ ンプを用い、 かつ、 該導電性ボールバンプの厚みを導電性細線の太さを変えるこ とにより調整するよう にしてもよい。 一定の空隙部を確保するためには金や銀や はんだ等からなる金属バンプが導電性バンプとして特に好ましい。
なお、 本発明にて形成される空隙部の隙間は導電性接合部材の形状により定ま るが 1 0〜2 0 0 好ましくは 2 0〜8 0 μ πι確保することが望ましい。 また、 導電性接合部材として配線基板上の配線パターンまたは弾性表面波素子 上の配線パターンの厚みを部分的に厚くしてバンプを構成した場合、 直接、 配線 基板上の配線バタ一ンと弾性表面波素子上の配線バターンとを接合することもで きる。 さらに、 配線基板の配線パターン上に電気的接続部分となる接合部材を先 に形成することにより、 接合強度を上げ、 接続の信頼性を向上させることができ る。
このような構造は、 配線基板に対しバンプを有する機能素子を対向して配置す る工程と、 前記配線基板および Ζまたは前記バンプに対し赤外線を照射しながら 前記配線基板と前記機能素子とを接合する工程と、 前記基板と前記素子との間に 空隙部を残しつつこれらを封止する工程とにより製造するようにしてもよい。 また、 配線基板の所定の位置にバンプを有する機能素子を配置する工程と、 前 記配線基板および/または前記機能素子の背面から赤外線を照射しながら前記配 線基板と前記機能素子とを接合する工程と、 前記基板と前記素子との間に空隙部 を残しつつこれらを封止する工程とにより製造するよう にしてもよい。
赤外線は例えばハロゲンランプなどにより発光させて用いるようにしてもよ い。
さらに、 この機能素子と前記配線基板との間に形成される空隙部を残して前記 機能素子を包覆する封止部材により、 この封止部材の周辺部と前記配線基板の周 辺部とを封止するようにしてもよい。 封止部材は、 例えば加熱溶融型部材を用い るよう にしてもよいし、 液状の熱硬化性部材を用いるようにしてもよい。 さらに、 本発明の電子部品例えば弾性表面波装置のひとつの態様としては、 例 えば樹脂部の周辺端縁と配線基板の周辺端縁との間に配線基板の一主面からの配 線パターンを露出させるよう にしてもよい。 したがって、 樹脂部が配線パターン を覆ってしまうことがないため、 この配線基板の側部端面に形成された凹状配線 バターンと連続することになる。
このため、 弾性表面波装置を他の受動部品等とともに回路基板に面実装する際 に、 回路基板上の接続部と配線基板の側部端面に形成された凹状配線パターンと をはんだ等で容易に接続することができる。
また、 本発明の電子部品である弾性表面波装置においては、 樹脂部として例え ばエポキシ系樹脂を用いるようにしてもよい。
さらに、 本発明の電子部品である弾性表面波装置においては、 複数の接合部材 で形成される軌跡の各接合部材内側およびまたは各接合部材外側に沿つて環状の 絶縁性隔壁が形成されていることを特徴としている。
これらの環状の絶縁性隔壁は弾性表面波素子と配線基板との間に形成される空 隙部を確実に保持する役割を果たす。
本発明の電子部品である弾性表面波装置の製造方法の例としては、 例えば接合 された弾性表面波素子と配線基板とを薄片状の熱硬化性樹脂により覆い固めるこ とにより配線基板上に実装し弾性表面波装置を構成するようにしてもよく、 この 時に薄片状に成形されたエポキシ系樹脂を用い加熱によって該樹脂の表面もしく は全体を溶融し、 かつ、 硬化することにより弾性表面波素子と配線基板を接合す るよう にしてもよい。 このような製造方法によれば、 榭脂の粘性を高く保持する ことができるから、 硬化中に弾性表面波素子のトランスデューサ部表面に形成さ れた空隙部への榭脂の流れ込みが防止される。 また、 この場合、 液状樹脂でない ため枠状の絶縁性隔壁やダムを必ずしも必要としない。 しかし、 枠状の絶縁性隔 壁を設けることにより、 一層封止効果を上げることができ、 本願発明に包含され る。 さらに、 配線基板の配線パターン上に電気的接続部分となる接合部材を先に 形成することにより、 接合強度を上げ、 接続の信頼性を向上させることができ る。 また、 熱硬化性部材を封止材料として用いる本発明の電子部品および弾性表面 波装置の製造方法のひとつの態様は、 配線パターンが形成されたー主面を有する 機能素子である弾性表面波素子の他の主面上にほぼ全面にわたって導電性膜を形 成し、 かつ、 該導電膜と配線基板の配線パターンの少なくとも一部とを導電性物 質により接続したことを特徴としている。 このため、 外来のノイズが誘起されて も導電膜でこれを受け、 配線基板の配線パタ一ンを通じて接地することができる。 いわゆる電磁遮蔽効果( シールド効果) を有する。
この導電性物質は、 例えば、 銀のような伝導体を含む導電性樹脂ペーストを塗 布し焼き固めたものでもよいし、 また、 導体をその内部に埋め込んだ異方性導電 榭脂を用いてもよい。 また、 よく知られたワイヤボンディングにより形成される Jまたは Aiまたは Qxのような金属性細線でもよい。 これらは、 電気的に配線基板 上の配線パターン、 より詳しくは接地パターンに電気的に接続され、 導通する役 割を果たす。 また、 該導電膜と前記配線基板の配線パターンの少なくとも一部と をフェライト等の磁性体を液状樹脂に分散させ、 この榭脂を前述のように例えば 滴下して硬化させることにより接続してもよい。 この場合、 磁性体を分散させた 榭脂は高周波領域、 例えば、 1 G H z 以上の領域で弾性表面波素子の他の主面に 形成された導電膜と、 配線基板上に形成された接地バターンとを接続する役割を 果たす。
この導電膜と導電性物質に替えて、 金属箔を用いることができる。 本発明の電 子部品および弾性表面波装置の製造方法の他の態様は、 金属箔を配線バターンが 形成されたー主面を有する弾性表面波素子の他の主面上に載置し前記金属箔の端 部を前記配線基板の配線バターンの少なくとも一部に接触接続させたことを特徴 としている。
このため、 外来のノイズが誘起されても金属性箔でこれを受け、 配線基板の配 線パターンを通じて接地することができる。 金属箔の材料としては、 アルミニゥ ム、 銅、 ニッケル、 亜鉛、 錫などが好ましい。
このような構造は、 弾性表面波素子と配線基板とを電気的接続部分を介して所 定間隔を維持して組み立て、 金属箔を弾性表面波素子の他の主面上に配置し、 配 線基板および弾性表面波素子を加熱しながら該素子に対して液状部材を滴下して 該素子の側部に付着させその硬化によって、 少なくとも前記素子の他の主面と該 金属箔とが密着して前記素子を包覆するとともに、 該金属性箔の端部を前記配線 基板の配線バターンの少なくとも一部に接触接続させ、 配線基板とで前記素子を 封止することにより製造することができる。
また、 本発明の電子部品および弾性表面波装置の製造方法の他の態様は、 配線 基板の側部端面の少なくとも 2個所に凹部もしくは切り欠き部を形成し、 金属板 の端部に凸部もしくは突出部を形成し、 かつ、 弾性表面波素子を包覆した硬化さ せた液状樹脂の少なくとも一部を被覆するよう に該金属板を設置し、 該配線基板 の側部端面に形成された凹部もしくは切り欠き部と該金属板の端部に形成された 凸部もしくは突出部が嚙み合うように一体化したことを特徴としている。
すなわち、 金属板が樹脂部またはガラス部および配線基板を被覆した構造で、 このような構造にすることにより、 金属板の平坦部に例えばスタンプ等の方法に よりマーキングを容易に形成することができる。
この金属板として、 少なくともその一部が平坦でありかつ配線基板とほぼ平行 に形成された形状の金属板を用いると、 マーキングの際の平坦部がより大きく確 保できるため、 より好ましい形態となる。
また、 この金属板自体を配線基板の配線パターンの一部と、 より好ましくは接 地パターンと、 電気的に接地することにより、 マーキングの容易性とともに電磁 遮蔽効果をもたせることができ、 外来ノィズに対する耐性を上げることができ る。
このような構造は、 配線基板の側部端面の少なくとも 2個所に凹部もしくは切 り欠き部を形成し、 金属板の端部に凸部もしくは突出部を形成し、 かつ弾性表面 波素子を包覆した樹脂の少なくとも一部を被覆するように該金属板を設置し、 該 配線基板の側部端面に形成された凹部もしくは切り欠き部と該金属板の端部に形 成された凸部もしくは突出部が嚙み合うよう に一体化することにより製造できる。 また、 少なくとも一部が平坦でありかつ配線基板とほぼ平行に形成された形状の 金属板を用いることにより容易に製造できる。 さらに、 本発明の電子部品、 例えば弾性表面波装置の製造方法の他の態様は、 電気的接続部分である導電性接合部材を前記配線基板の少なくとも一主面に形成 された配線パターン上に形成した後、 前記素子と配線基板とを該電気的接続部分 を介して所定間隔を維持して組み立てることを特徴としている。
このよう にすることにより、 弾性表面波素子と電気的接続部分である導電性接 合部材との接合の界面に対する工程中の熱履歴をより少なくできるため、 接合強 度を向上でき、 さらに信頼性の向上をはかることができる。
さらに、 本発明の電子部品例えば弾性表面波装置の製造方法によれば、 配線基 板の配線バターン上に電気的接続部分となる接合部材を先に形成することにより、 接合強度を上げ、 接続の信頼性を向上させることができる。
また、 本発明の電子部品、 例えば弾性表面波装置の製造方法によれば、 配線基 板の集合体を用い、 加熱溶融型部材である榭脂を封止した後に一括して分割する ことにより、 工程が簡略化できるので、 生産性を上げることができる。 また、 榭 脂の加熱 · 溶融 · 硬化に係る工程温度を段階的に行うことにより、 封止性が改良 でき、 信頼性を向上させることができる。
また、 本発明の弾性表面波装置の製造方法によれば、 弾性表面波素子を形成す る圧電体ウェハーの切断時の条件を最適化することにより、 弾性表面波素子の配 線パターンの変質を防ぎ、 接続性を向上させることができる。
本発明の電子部品例えば弾性表面波装置の製造方法は、 配線基板と弾性表面波 素子との電気的接続部分となる導電性接合部材に接続される配線パターンの高さ を配線基板材料厚みまたは配線バターンの導電材料厚みを部分的に変えることに よって制御し、 もしくは電気的接続部分となる導電性接合部材の高さ自体を制御 するものである。 このような制御によって、 機能素子、 例えば弾性表面波素子と 配線基板との間の適正量の空隙部を有効に確保できるので、 弾性表面波吸収材が 配置された弾性表面波素子の場合にも、 弾性表面波素子と配線基板との間の接合 強度を充分に保て、 接続の信頼性が向上する。
すなわち空隙部での対向間隔を制御する本発明の電子部品の製造方法は、 第 1 の面に第 1 の厚さの導電材料からなる第 1の配線パターンと第 1の厚さよりも厚 い第 2の厚さの導電材料からなる第 2の配線パターンとが形成された配線基板の 第 1 の面と機能素子の第 1 の面とを、 前記配線基板の第 2の配線パターンと前記 機能素子の配線パターンとの間に導電性接合部材を介在させつつ対向配置するェ 程と、 少なくとも前記配線基板と前記機能素子との間に空隙部を残しつつ当該空 隙部を封止部材により封止する工程とを具備することを特徴とする。
また、 空隙部での対向間隔を制御する本発明の電子部品の製造方法は、 第 1の 厚さの基板材料からなる第 1の領域と第 1 の厚さよりも厚い第 2の厚さの基板材 料からなる第 2の領域とを有し、 第 1 の面の第 1 の領域および第 2の領域に配線 パターンとが形成された配線基板の第 1の面と機能素子の第 1の面とを、 前記配 線基板の第 2の領域の配線バターンと前記機能素子の配線パターンとの間に導電 性接合部材を介在させつつ対向配置する工程と、 少なくとも前記配線基板と前記 機能素子との間に空隙部を残しつつ当該空隙部を封止部材により封止する工程と を具備することを特徴とする。
また空隙部での対向間隔を制御する本発明の電子部品の製造方法は、 配線基板 の第 1 の面と機能素子の第 1の面とを、 前記配線基板の第 1の面の配線パターン と前記機能素子の第 1の面の配線パターンとの間の間隔に応じてバンプを積み重 ねた導電性接合部材を介在させつつ対向配置する工程と、 少なくとも前記配線基 板と前記機能素子との間に空隙部を残しつつ当該空隙部を封止部材により封止す る工程とを具備することを特徴とする。
また空隙部での対向間隔を制御する本発明の電子部品の製造方法は、 配線基板 の第 1の面と第 1の面に吸音剤が形成された弾性表面波素子である機能素子の第 1 の面とを、 前記吸音剤の厚さを超える高さの導電性接合部材を介在させつつ対 向配置する工程と、 少なくとも前記配線基板と前記機能素子との間に空隙部を残 しつつ当該空隙部を封止部材により封止する工程とを具備することを特徴とす る。
また空隙部での対向間隔を制御する本発明の電子部品の製造方法は、 配線基板 の第 1の面と弾性表面波素子である機能素子の第 1 の面とを、 導電性接合部材を 介在させつつ対向配置する工程と、 前記機能素子の第 2の面に吸音剤を形成する 工程と、 少なくとも前記配線基板と前記機能素子との間に空隙部を残しつつ当該 空隙部を封止部材により封止する工程とを具備することを特徴とする。
また空隙部での対向間隔を制御する本発明の電子部品の製造方法は、 配線基板 の第 1の面と弾性表面波素子である機能素子の第 1の面とを、 導電性接合部材を 介在させつつ対向配置する工程と、 前記機能素子の第 2の面に吸音剤を形成する 工程と、 前記機能素子の第 2の面に金属性箔を配置する工程と、 少なくとも前記 配線基板と前記機能素子との間に空隙部を残しつつ当該空隙部を封止部材により 封止する工程とを具備することを特徴とする。
このような、 機能素子と配線基板との間隙を制御する本発明の電子部品、 例え ば弾性表面波装置の製造方法のひとつの態様は、 配線基板の配線パターンを形成 する際に、 配線パターンの少なくとも一部を導電ペーストを用いたスクリ ーン印 刷法により複数回塗布し、 焼き付けまたは同時焼成することを特徴としている。 この場合、 複数回塗布した部分の焼成後の厚みは他の部分との差が
5〜1 0 0 μ πιの範囲にあることが好ましい。
また、 本発明の弾性表面波装置の製造方法の他の態様は、 配線基板の配線パ ターンを形成する際に、 配線パターンの少なくとも一部を蒸着もしくはスパッタ 等の成膜方法により該配線パターンの他の部分より厚く成膜することを特徴とし ている。 この成膜する膜厚の差は、 少なくとも本発明の電子部品は、 5 μ πι以上 あることが好ましい。
また、 機能素子と配線基板との間隙を制御する本発明の弾性表面波装置の製造 方法の別の態様は、 配線基板を形成する際に、 電気的接続部分となる接合部材に 対向する部分およびその近傍の領域に相当するグリーンシートを付加して焼成し、 その後該配線基板に配線バターンを形成することを特徴としている。
このグリ ーンシートを付加して焼成した部分の厚みと他の部分の厚みの差は、 実質的に 5〜500 μ π^範囲にあることが好ましい。
このような配線基板の製造方法を用いることによって、 接合部材の厚みが小さ くても、 配線バターン部分の配線基板材料もしくは導電材料の厚みと加えあわせ ることができるため、 弾性表面波素子と配線基板との間の適正量の空隙部を有効 に確保できるので、 特に、 弾性表面波吸収材が配置された弾性表面波素子の場合 にも、 弾性表面波素子と配線基板との間の接合強度を充分に保つことが可能にな り、 接合強度を上げ、 接続の信頼性を上げることができる。
さらに、 機能素子と配線基板との間隙を制御する本発明の電子部品例えば弾性 表面波装置の製造方法の別の態様としては、 適正量の空隙部を確保するために、 電気的接続部分となる導電性接合部材としてほぼ同一位置に導電性バンプを複数 個積み重ねたものを用いることを特徴としている。 この場合、 複数個の導電性バ ンプの厚みの和は 3 0〜1 5 0 x mの範囲となることが好ましい。 あるいは、 ま た、 電気的接続部分となる導電性接合部材として導電性ボールバンプを用い、 か つ、 該導電性ボールバンプの厚みを導電性細線の太さを変えることにより調整す ることを特徴としている。 これらの場合、 導電性バンプとして、 実質的に金から なるボールバンプ、 実質的に錫からなるボールバンプ、 実質的に鉛からなるボー ルバンブ等がより好ましい。 あるいは、 また、 弾性表面波素子の少なくとも一主 面もしくは他の主面の一部に弾性表面波吸収材を塗布する際に弾性表面波吸収材 を導電性接合部材の厚みより薄く塗布するようにしてもよい。
このよう に電気的接続部分となる導電性接合部材の厚みを制御することによつ ても、 弾性表面波素子と配線基板との間の適正量の空隙部を有効に確保できる。 この場合、 配線基板の基板材料厚みもしくは導電材料の厚みを部分的に変える必 要がないため、 製造がより簡単になる。
さらに、 配線基板の配線バターン上に電気的接続部分となる接合部材を先に形 成することにより 、 接合強度を上げ、 接続の信頼性を向上させることができる。 このような本発明の電子部品の形態としては、 例えば配線基板と、 この配線基 板上に導電性接合部材を介してフェースダウンボンディング方式により電気的に 接続された機能素子と、 の機能素子の第 1の面と前記配線基板との間に形成され る空隙部を残し、 かつ前記機能素子の第 2の面の全部または一部を露出しつつ前 記機能素子を包覆する封止部材と、 この封止部材の周辺部と前記配線基板の周辺 部とが接触された封止部とを具備するようにしてもよい。
また、 前記機能素子の第 1の面に機能部分が搭載され、 前記機能素子の第 2の 面に機能素子が搭載されず、 かつ前記第 2の面を露出させるよう にしてもよい。 また、 前記機能素子の第 1の面および第 2の面に機能部分が搭載され、 かつ前 記第 2の面の前記機能部分を露出させるようにしてもよい。
そして、 これら機能素子の第 2の面と前記配線基板とがボンディングワイヤー によつて電気的に接続させるよう にしてもよい。
さらに、 ボンディングワイヤーを前記封止部材に埋め込むようにしてもよい。 このような構造は、 配線基板に対し所定の位置に機能素子を位置決めする工程 と、 前記素子と配線基板とを導電性接合部材を介して所定間隔を維持して組み立 てる工程と、 前記配線基板及び素子に対し封止部材を配置する工程と、 前記機能 素子の第 1の面と前記配線基板との間に形成される空隙部を残し、 かつ前記機能 素子の第 2の面の全部または一部を露出しつつ前記封止部材を加熱溶融させて製 造するよう にしてもよい。 また、 液状の封止部材を滴下または流し込むなどして 硬化させて製造するよう にしてもよい。
また、 前記機能素子の第 1の面に機能部分が搭載され、 前記機能素子の第 2の 面に機能素子が搭載されず、 かつ前記第 2の面の全部が露出するように前記封止 部材を加熱溶融するよう にしてもよい。 また、 第 2の面の全面が露出するように 液状の封止部材を滴下させて硬化させるようにしてもよい。
また、 前記機能素子の第 1の面および第 2の面に機能部分が搭載され、 かつ前 記第 2の面の前記機能部分が露出するように前記封止部材を加熱溶融するように してもよい。 また、 機能部分が露出するよう に液状の封止部材を滴下させて硬化 させるよう にしてもよい。
また本発明の電子部品の形態としては、 例えば、 配線基板と、 この配線基板上 に導電性接合部材を介してフェースダウンボンディング方式により電気的に接続 された機能素子と、 この機能素子を囲繞する囲繞部材と、 この囲繞部材を包覆し て封止する封止部材とを具備するようにしてもよい。
また、 機能素子の表裏両面に機能部分が搭載されていてもよい。 このような機 能部分としては例えば水晶振動子などがある。
また、 機能素子の配線基板との対向面の反対面と配線基板とが電気的接続手段 により接続するよう にしてもよい。
このような構造は、 例えば配線基板に対し所定の位置に機能素子を位置決めす る工程と、 前記素子と配線基板とを導電性接合部材を介して所定間隔を維持して 組み立てる工程と、 前記機能素子を囲繞するように囲繞部材を前記配線基板上に 配置する工程と、 前記配線基板および前記囲繞部材上に封止部材を配置する工程 と、 前記封止部材を加熱溶融する工程とにより製造するようにしてもよい。 また、 液状の封止部材を滴下または流し込むなどして硬化させて製造するようにしても よい。
また本発明の電子部品の形態としては、 例えば、 配線基板と、 この配線基板上 に導電性接合部材を介してフェースダウンボンディング方式により第 1の電極が 電気的に接続された圧電振動子と、 この圧電振動子の第 2の電極と前記配線基板 iを電気的に接続する接続部と、 前記圧電振動子の第 1の電極面と前記配線基板 との間に形成される空隙部を残して前記機能素子を包覆する封止部材と、 前記封 止部材の周辺部と前記配線基板の周辺部とが接触された封止部とを具備するよう にしてもよい。 また、 接続部は例えばボンディングワイヤー、 A C F、 導電性バ ンプなどの電気的接続手段により構成するようにしてもよい。
このような構造は、 配線基板に対し所定の位置に圧電振動子を位置決めするェ 程と、 前記圧電振動子の第 1の電極と配線基板とを導電性接合部材を介して所定 間隔を維持して組み立てる工程と、 前記圧電振動子の第 2の電極面と前記配線基 板とを接続部材によつて電気的に接続する工程と、 記配線基板およぴ前記圧電振 動子上に封止部材を配置する工程と、 前記封止部材を加熱溶融する工程とにより 製造するようにしてもよい。
また本発明の電子部品としては、 配線基板と、 この配線基板上に導電性接合部 材を介してフェースダウンボンディング方式により電気的に接続された一対の フォト力ブラを構成する送光部と受光部と、 前記フォト力ブラを囲繞する囲繞部 材と、 前記囲繞部材を包稷して封止する封止部材とを具備するようにしてもよ い。
このような構造は、 例えば配線基板に対し所定の位置に一対のフォト力ブラを 構成する送光部と受光部を位置決めする工程と、 前記フォト力ブラと配線基板と を導電性接合部材を介して所定間隔を維持して組み立てる工程と、 配線基板上に 前記フォト力ブラを囲繞するよう に囲繞部材を配置する工程と、 前記配線基板お よび前記フォト力ブラ上に封止部材を配置する工程と、 前記封止部材を加熟溶融 する工程とにより製造するようにしてもよい。 また、 例えば液状の熱硬化性樹脂 などの熱硬化性封止部材を滴下させあるいは流し込むなどして硬化させるよう に してもよい。
また本発明の電子部品としては、 光を透過する配線基板と、 送光部または受光 部が前記配線基板と対向し、 前記配線基板上に導電性接合部材を介してフェース ダウンボンディング方式により電気的に接続された機能素子と、 この機能素子と 前記配線基板との間に形成される空隙部を残して前記機能素子を包覆する封止部 材と、 この封止部材の周辺部と前記配線基板の周辺部とが接触された封止部とを 具備するよう にしてもよい。 このような機能素子としては、 例えば E P R O M、 C C D , 半導体レーザ、 発光ダイオードなどをはじめとする光電変換デバイスを 挙げることができる。 配線基板の光学的性質は必要に応じて選択して用いるよう にすればよい。 例えば、 可視光線、 赤外線、 紫外線などを選択的に透過するよう にしてもよいし、 また、 光学的に等方的でも、 異方性を有するものでもよい。 例 えば、 機能素子が E P R O Mの場合、 配線基板の透光部はオプティカルフラット な特性を有するよう にしてもよい。
また、 本発明の電子部品の製造方法は、 光を透過する配線基板に対し所定の位 置に送光部または受光部が前記配線基板と対向するよう に機能素子を位置決めし、 前記素子と配線基板とを導電性接合部材を介して所定間隔を維持して組み立て、 前記配線基板及び素子に対し封止部材を配置し、 前記基板と前記素子との間に空 隙部を残しつつ前記封止部材を加熱溶融させて製造するようにしてもよい。 また、 液状の封止部材を滴下または流し込むなどして硬化させて製造するよう にしても よい。 図面の簡単な説明 図 1
本発明の実施例 1に係る弾性表面波装置の断面図およびその部分平面図であ る。
図 2
本発明の実施例 1に係る弾性表面波装置の部分的斜視図である。
図 3
本発明の実施例 2に係る弾性表面波装置の平面図である。
図 4
本発明の実施例 2に係る弾性表面波装置の部分的斜視図である。
図 5
本発明の実施例 3に係る弾性表面波装置の分解斜視図である。
図 6
本発明の実施例 3に係る弾性表面波装置の製造工程図である。
図 7
本発明の実施例 4に係る弾性表面波装置の断面図である。
図 8
本発明の実施例 5に係る弾性表面波装置の断面図、 その部分平面図および分 部的斜視図である。
図 9
本発明の実施例 6に係る弾性表面波装置の断面図、 その部分平面図および分 解断面図である:
図 1 0
本発明の実施例 7に係る弾性表面波装置の断面図である。
図 1 1
本発明の実施例 8〜1 0に係る弾性表面波装置の断面図である。
図 1 2
本発明の実施例 1 1 に係る弾性表面波装置の断面図である。
図 1 3 本発明の実施例 1 2〜1 3に係る弾性表面波装置の断面図およびその部分斜 視図である。
図 1 4
本発明の実施例 1 4に係る弾性表面波装置の製造方法を示す図である。 図 1 5
本発明の実施例 1 5に係る弾性表面波装置の製造時の加熱条件を示す図であ る。
図 1 6
本発明の実施例 1 8に係る弾性表面波装置の断面図およびその部分平面図で ある。
図 1 7
本発明の実施例 1 9に係る弾性表面波装置の断面図およびその部分平面図で ある。
図 1 8
本発明の実施例 2 0に係る弾性表面波装置の断面図およびその部分平面図で ある。
図 1 9
本発明の実施例 2 0に係る弾性表面波素子の平面図である。
図 2 0
従来の弾性表面波素子の平面図である c
図 2 1
従来の弾性表面波素子の平面図である- 図 2 2
本発明の実施例 2 1に係る弾性表面波装置の平面図である。
図 2 3
本発明の実施例 2 1 に係る弾性表面波素子の平面図である。
図 2 4
本発明の実施例 2 2に係る弾性表面波装置の断面図である。 図 2 5
本発明の実施例 2 3に係る弾性表面波装置の断面図である。
図 2 6
本発明の実施例 2 4〜2 6に係る弾性表面波装置の断面図およびその部分断 面図である。'
図 2 7
本発明の実施例 2 7に係る弾性表面波装置の断面図およびその部分断面であ る。
図 2 8
本発明の実施例 2 8に係る弾性表面波装置の断面図およびその部分平面図で ある。
図 2 9
本発明の実施例 2 8に係る弾性表面波装置の製造工程を示す図である。 図 3 0
本発明の実施例 2 9に係る弾性表面波装置の断面図、 その部分平面図および 部分的斜視図である。
図 3 1
本発明の実施例 3 0に係る弾性表面波装置の断面図およびその部分平面図で ある。
図 3 2
本発明の実施例 3 1 〜3 2に係る弾性表面波装置の断面図およびその部分斜 視図である。
図 3 3
本発明の実施例 3 4に係る弾性表面波装置の断面図である。
図 3 4
本発明の実施例 3 5に係る弾性表面波装置の断面図である。
図 3 5
本発明の実施例 3 6に係る水晶振動装置の断面図である。 図 3 6
本発明の実施例 3 7に係る圧電振動装置の断面図である。
図 3 7
本発明の実施例 3 8に係るフォト力ブラの断面図および部分的斜視図であ る。
図 3 8
本発明の実施例 3 9に係る E P R O Mの断面図およびその部分平面図であ る。
図 3 9
本発明の実施例 4 0に係る C C Dの断面図である。
図 4 0
本発明の実施例 4 1 に係る半導体レーザの断面図である。
図 4 1
本発明の実施例 4 2に係る弾性表面波装置の製造方法を示す図である。 図 4 2
本発明の実施例 4 3に係る弾性表面波装置の製造方法を示す図である。 図 4 3
本発明の実施例 4 4に係る C C Dカメラの断面図である。
図 4 4
本発明の実施例 4 5に係る移動体通信装置のプロソク図である。
図 4 5
本発明の実施例 4 6に係る発振回路の回路図である。
図 4 6
従来の弾性表面波装置の断面図およびその部分平面図である。
図 4 7
本発明の他の実施例に係る弾性表面波装置の製造方法を示す図である。 図 4 8
本発明の他の実施例に係る弾性表面波装置の製造方法を示す図である。 図 4 9
本発明の他の実施例に係る弾性表面波装置の製造方法を示す図である。 発明を実施するための最良の形態
以下、 本発明の実施形態を実施例により説明する。 実施例 1
実施例 1は本発明を弾性表面波装置に適用したものである。
図 1 ( a ) は、 実施例 1の弾性表面波装置の断面図である。
図 1 において、 配線基板 1 は絶縁性基板例えばセラミック、 ガラス被覆セラ ミックおよびガラスエポキシ等の樹脂基板の両表面上に導電性の配線パターン 2 が形成されている。 また、 弾性表面波素子 3 の一主面にはくし歯型電極パターン からなるトランスデューサ部 4と、 このトランスデューサ部に電気的に接続する 配線パターン 5が形成されている。 また、 ト ランスデューサ部 4および配線パ ターン 5の面は、 配線基板 1 に形成された配線パターン 2と対向して配設されて いる。 そして、 対向した上記両配線パターン 2, 5を電気的に接続しかつ、 弾性 表面波素子 3と配線基板 1 との間に空隙部 1 0を形成するため、 フェースダウン ボンデ'ィングにより複数の導電性接合部材例えば金属からなるバンプ 6を介し て組み立てられる。 このバンプは、 金( Ai) や銀( g) あるいははんだ( Sn系、 Pb系、 I n系等) 等で構成されている。 さらに、 導電性バンプ 6による弾性表面波 素子 3と配線基板 1 との接続部および弾性表面波素子 3は、 エポキシ等の樹脂部 1 1で包覆されている。
図 1 ( b ) は、 図 1 ( a) の A - Aに沿って切断して示す平面図であり、 図中導 電性バンプ 6および弾性表面波素子 3は点線で示した位置に配置される。 そして、 配線パターン 2の端部位置において弾性表面波素子側との間で導電性バンプ 6が 介挿され、 弾性表面波素子 3と配線基板 1 とはフェースダウンボンデ'イングに より導電性バンプ 6を介して電気的に接続される =
図 2は、 実施例 1 における一態様を説明する配線基板 1を示す斜視図である。 すなわち、 図示しない樹脂部の周辺端縁と配線基板 1の周辺端縁との間に配線基 板の一主面からの配線パターン 2が露出しておりこの配線パターン 2が配線基板 1 の側壁端面に形成された回状配線パターン 1 2と連続している。 このため、 配 線基板と弾性表面波素子の各配線パターンをはんだにより電気的接続を行う 際、 配線基板の配線パターンが露出し、 かつはんだ面積が大となるため、 はんだ付け 作業が容易となり 、 かつ確実に電気的接続が行われる。 実施例 2
図 3は、 実施例 2の配線基板 1を示す平面図である。
図 3において、 点線で示す 1 3は複数の導電性バンプ 1 3で形成される軌跡 1 3を示している。 軌跡 1 3の各バンプ内側 1 4および各バンプ外側 1 5に沿つ て環状の絶縁性隔壁が形成される位置を示している。 このの絶縁性隔壁を設けた ことにより、 樹脂部 1 1の粘性が多少低下しても封止が確実に行える利点がある。 図 4に、 この絶縁性隔壁 1 7の概略的斜視図を示す。 この絶縁性隔壁 1 7は、 バ ンプ内側 1 4またはバンプ外側 1 5のう ち一方に設けられるものであってもよ い。 実施例 3
図 5および図 6を参照して実施例 3に係る弾性表面波素子の製造方法を説明す る。
図 5は本実施例の弾性表面波装置を組立てる前の樹脂部 1 1 、 弾性表面波素子 3、 配線基板 1の各々の位置関係を示している概略図であり、 図 6 ( a ) 〜図 6 ( c ) は工程を順に示すものである。
すなわち、 図 6 ( a ) では配線基板 1 に弾性表面波素子 3に設けた複数の導電 性バンプを介して弾性表面波素子 3を接合した状態を示し、 図 6 ( b ) のように 弾性表面波素子 3上に、 成形した薄片状樹脂 1 6を載置する。 この後、 1 5 0 °C で 1分間前後加熱することにより、 薄片状樹脂 1 6が高い粘性を保ちながらほぼ 全体が溶融し、 図 6 ( c ) に示すよう に弾性表面波素子 3を包覆するまでに変形 し周囲は配線基板 1 と接合し、 その後、 引続く加熟により樹脂は硬化によって樹 脂形状が定まることとなる。 引続く加熱は、 例えば 1 2 5 tで 3時間加熱し、 さ らに 1 5 0 °Cで 3時間加熱することにより硬化が完了する。 ここで加熱とは直接 的加熱、 間接的加熱を問わず、 封止部材を溶融させ、 あるいは硬化させるのに必 要な熱量を加えられればよい。 例えば、 高周波による加熱、 電磁波による加熱、 超音波による加熱、 光の照射による加熱等の加熱手法を用いるようにしてもよい。 このことは特に述べない場合にも同様である。
なお、 樹脂 1 6は充分チキソ性が高く、 粘性も高いため、 弾性表面波素子のト ランスデューサ一部表面に流れ込むことはない。
本発明によれば、 一定粘度を有する封止用の樹脂が例えば弾性表面波素子のト ランスデューサ部側の主面と配線基板とで形成される空隙部に流れ込むのを枠状 絶縁部材を必ずしも必要とせず防止でき、 簡易な構造の弾性表面波装置が得られ る利点を有する。 このよう に本発明の電子部品は枠状絶縁部材ないしは囲繞部材 を要しない分、 電子部品を小型化することができる。 したがって、 高密度実装に 適した電子部品をを提供することができる。 また、 本発明の電子部品の製造方法 によれば枠状絶縁部材ないしは囲繞部材を要せずに機能素子を配線基板上に搭載 することができ、 従来よりも小型化した電子部品を製造することができる。 また、 高密度実装に適した電子部品を製造することができる。
また、 配線基板 1 に弾性表面波素子 3を予め、 有機性接着剤で仮止めしておけ ば、 有機性接着剤の飛散物質が弾性表面波素子 3のくし型電極に付着することな く弾性表面波素子 3の機能を低下させることもなく量産による封止組立てもより 確実にでき、 歩留まりも向上させることができる。
なお、 上記のような薄片状樹脂は、 エポキシ系樹脂例えばエポキシ樹脂を原料 とした粉末のものを必要な形状および重量に冷間圧縮成形して容易に形成でき、 例えば日東電工( 株) 製の封止用エポキシペレット E P等が適する。
また、 エポキシ樹脂を原料とした粉末を補強用シート ( フィルム) に一体含浸 させ、 冷間にて必要な形状に打ち抜きしたものを用いてもよい。 また、 薄片状樹 脂の加熱溶融、 硬化条件は適度に制御することが必要であるが、 薄片状樹脂の加 熱溶融、 硬化温度が 1 0 0〜2 0 0 、 その硬化時間が 2 0時間〜 2時間で実施 されることが適切である。 なお、 より好ましくは、 1 1 0で〜 1 7 0 °Cにて 1分 前後加熱溶融した後、 硬化は 1 0 0 °C〜1 6 0で程度で 3時間加熱するというよ う に段階を経由してもよく本発明に包含される。 実施例 4
実施例 4に係る弾性表面波装置の製造方法を図 7に示す。
すなわち、 薄片状樹脂の形状として、 予め周辺部を垂下させた形状のものを図 6と同様に位置決めし、 弾性表面波素子のトランスデューサ部およびその配線パ ターンが形成されていない面上に載置し、 加熱溶融、 硬化させる方法である。 この方法によれば弾性表面波素子の裏面に密着して包覆し、 配線基板と封止さ せる上で、 組み立て時間を短縮することができる。
この応用例に係る弾性表面波装置の製造方法を図 4 7 ( a ) に示す。 すなわち、 実施例 3に示した弾性表面波素子の製造方法において、 薄片状樹脂 1 6の弾性表 面波素子 3に対する位置決め手段例えば薄片状樹脂 1 6の弾性表面波素子 3側の 表面の一部に凹部を設ける。 この凹部は弾性表面波素子 3の外形より若干大きめ の凹部を設ける。 こうすることにより 、 弾性表面波素子 3上に薄片状樹脂 1 6を 手動または自動的に配置する際、 便利になる。 特に、 オートマウンタ( 自動搬送 装置) により薄片状樹脂 1 6をバキュームチェックで素子 3上に配置する際、 確 実に位置決めが可能となり、 生産性も向上する。 この凹部の底部に若干の隙間を 設け素子 3上と樹脂 1 6との間に空隙を形成し、 空気部を若干形成することも可 能であり、 素子 3のそり ( 変形) による弾性表面波の特性を損なうこともない。 また、 図 4 7 ( b ) に示すよう に、 樹脂 1 6に形成する凹部 1 6 a の形状として 二段に凹部を形成し、 狭い凹部に空隙部をあらかじめ設けておき、 そして加熱溶 融すると、 素子 3との間に空隙ができやすく、 緩衝材( 気体による) の効果も発 揮する。
なお、 このような凹部は図 4 7 ( c ) 、 ( d ) に示すよう に実施例 4にも応用 することができる。 実施例 5
図 8 ( a ) は、 実施例 5に係る弾性表面波装置の断面図である。 図において、 配線基板 1 は絶.縁性基板例えばセラミック、 ガラス被覆セラミックおよびガラス エポキシ等の樹脂基板の両表面上に導電性の配線パターン 2が形成されている。 また、 弾性表面波素子 3 の一主面にはくし歯型電極パターンからなるトランス デューサ部 4と、 このトランスデューサ部に電気的に接続する配線パターン 5が 形成されている。 また、 弾性表面波素子 3の他の主面には、 図 8 ( c ) に示すよ う に、 ほぼ全面にわたってアルミ二ゥムを蒸着した導電性膜 3 1が形成されてい る。 また、 トランスデューサ部 4および配線パターン 5の面は、 配線基板 1 に形 成された配線パターン 2とフェースダウンボンディングにより複数の導電性接合 部材例えば金属からなるバンプ 6を介して組み立てられる。 そして、 対向した上 記両配線パターン 2, 5を電気的に接続し、 かつ、 弾性表面波素子 3と配線基板 1との間に空隙部 1 0が形成されている。 上記バンプは、 金( Αι) や銀( g) あ るいははんだ( Sn系、 Pb系、 I n系等) 等で構成されている。 さらに、 弾性表面波 素子 3の他の主面の導電性膜 3 1と配線基板 1 の配線パターン 2の一部とは、 導 電性物質 3 2によって電気的に接続されている。 さらに、 導電性バンプ 6による 弾性表面波素子 3と配線基板 1との接続部および弾性表面波素子 3は、 加熱溶融 型部材である熱硬化性ビスフエノ一ル A型エポキシ樹脂を主体とする樹脂部 1 1 で包覆されている- 図 8 ( b ) は、 樹脂部 1 1により包覆する前の配線基板 1の平面図の一例を示 したものであり、 弾性表面波素子 3の他の主面に形成された導電性膜 3 1は、 配 線基板 1 の配線パターン 2 の一部、 例えば接地パターンに、 導電性物質 3 2を介 して電気的に接続されている。
前記導電性物質 3 2としては、 例えば、 Αι線や A線や Cu線等のボンディングヮ ィャ、 を含むエポキシ系導電性ペースト 、 異方性導電樹脂( A C F ) 等が含ま れる。 また、 前記、 導電性膜 3 1 としては、 例えば、 蒸着またはスパッタ等によ り製膜した A膜、 Ax膜等が含まれる。
この場合、 外来の電気的ノイズ等に対する、 いわゆる電磁遮蔽効果( シールド 効果) を有する。 実施例 6
図 9 ( a ) は、 実施例 6 に係る弾性表面波装置の断面図である。 図において、 配線基板 1 は絶縁性基板例えばセラミ ック、 ガラス被覆セラミ ックおよびガラス エポキシ等の樹脂基板の両表面上に導電性の配線バタ一ン 2が形成されている。 また、 弾性表面波素子 3 の一主面にはく し歯型電極パターンからなるトランス デューサ部 4と、 このトランスデューサ部に電気的に接続する配線パターン 5が 形成されている。 また、 ト ランスデューサ部 4および配線パターン 5 の面は、 配 線基板 1 に形成された配線パターン 2 とフェースダウンボンディングにより複数 の導電性接合部材例えば金属からなるバンプ 6を介して組み立てられる。 そして、 対向した上記両配線パターン 2, 5 を電気的に接続しかつ、 弾性表面波素子 3 と 配線基板 1 との間に空隙部 1 0が形成されている。 上記バンプは、 金( Ai) や銀 ( fig) あるいははんだ( Sn系、 Pb系、 I n系等) 等で構成されている。 さらに、 弹 性表面波素子 3の他の主面と樹脂部 1 1 との間隙の少なく とも一部に、 金属性箔 3 3が設置されており、 この金属性箔 3 3 の端部 3 4が配線基板 1 の配線パター ン 2の少なく とも一部に接触し電気的に接続されている。 さらに、 導電性バンプ 6による弾性表面波素子 3 と配線基板 1 との接続部および弾性表面波素子 3 は、 熱硬化性エポキシ樹脂の樹脂部 1 1 で包覆されている。
図 9 ( b ) は、 樹脂部 1 1 により包覆する前の配線基板 1 の平面図の一例を示 したものであり 、 弾性表面波素子 3 の他の主面上に載置された金属性箔 3 3の端 部 3 4が配線基板 1 の配線パターン 2 の一部、 例えば接地パターンに接触し、 電 気的に接続されている。
このような金属性箔 3 3 は、 アルミホイルなどのよく知られた安価なアルミ二 ゥム箔を使用することができる。 また、 銅箔、 ニッケル箔、 亜鉛箔、 錫箔などで もよい。 特に、 銅箔は、 比抵抗が小さいため、 より 高い周波数のノイズに対して 有利である。
図 9 ( c ) は、 本発明の弾性表面波装置の製造方法の一例を示したものであり 、 金属性箔 3 3を加熱溶融型薄片状樹脂 1 6からなる樹脂部 1 1側に予め接着した. 後に、 薄片状樹脂を加熱溶融硬化させてもよい。 この場合は、 さらに位置合わせ 精度を向上させることができる。 加熱については直接的加熱、 間接的加熱を問わ ず、 封止部材を溶融させ、 あるいは硬化させるのに必要な熱量を加えられればよ い。 例えば、 高周波による加熱、 電磁波による加熱、 超音波による加熱、 光の照 射による加熱等の加熱手法を用いるよう にしてもよい。
この場合、 外来の電気的ノイズ等に対する、 いわゆる電磁遮蔽効果(シールド 効果) を有する。
実施例 7
図 1 0は、 実施例 7に係る弾性表面波装置の断面図である。 図において、 配線 基板 1は絶縁性基板例えばセラミック、 ガラス被覆セラミックおよびガラスェポ キシ等の樹脂基板の両表面上に導電性の配線パターン 2が形成されている。 また, 弾性表面波素子 3 の一主面にはくし歯型電極パターンからなるトランスデューサ 部 4と、 このトランスデューサ部に電気的に接続する配線パターン 5が形成され ている。 また、 弾性表面波素子 3の他の主面には、 ほぼ全面にわたってアルミ二 ゥムを蒸着した導電性膜 3 1が形成されている。 また、 ト ランスデューサ部 4お よび配線パターン 5 の面は、 配線基板 1 に形成された配線パターン 2とフェース ダウンボンディングにより複数の導電性接合部材例えば金属からなるバンプ 6を 介して組み立てられる。 そして、 対向した上記両配線パターン 2 , 5を電気的に 接続しかつ、 弾性表面波素子 3と配線基板 1 との間に空隙部 1 0が形成されてい る。 上記バンプは、 金( A や銀( あるいははんだ( Sn系、 Pb系、 In系等) 等で構成されている。 さらに、 弾性表面波素子 3の他の主面の導電性膜 3 1 と配 線基板 1 の配線パターン 2 の一部とは、 N i , F eもしくは C oを主成分とする フェライトからなる磁性体を分散させた樹脂 3 5によって接続されている。 さら に、 導電性バンプ 6による弾性表面波素子 3と配線基板 1 との接続部および弾性 表面波素子 3は、 熱硬化性エポキシ樹脂の樹脂部 1 1で包覆されている。 この場合、 磁性体は主として 1 GHz 以上の高周波数領域で電気的に導通状態 として作用するため、 外来のノイズが誘起されても導電膜でこれを受け、 磁性体 を分散させた樹脂を介し、 さらに配線基板上の配線バターンを通じて接地するこ とができる。
また、 熱硬化性エポキシ樹脂の樹脂部 1 1 のかわり に、 P b O 7 5 %, B 203 5 %, S i 02 1 %, そのほか Z n O, Al 2〇3, Ti 02, B i 2θ3, P b F 2, C u〇を少量含む低融点ガラスのフリ ント を成形した加熱溶融型部材 を用いることができ、 同様な効果が得られる。 実施例 8〜1 0
図 1 1 は、 実施例 8〜1 0に係る弾性表面波装置の断面図である。 図において、 配線基板 1 は絶縁性基板例えばセラミ ック、 ガラス被覆セラミ ックおよぴガラス エポキシ等の樹脂基板の両表面上に導電性の配線バタ一ン 2が形成されている。 また、 弾性表面波素子 3 の一主面にはく し歯型電極パターンからなるトランス デューサ部 4と、 このトランスデューサ部に電気的に接続する配線パターン 5が 形成されている。 また、 ト ランスデューサ部 4および配線パターン 5 の面は、 配 線基板 1 に形成された配線パターン 2 とフヱ一スダウンボンディングにより複数 の導電性接合部材例えば金属からなるバンプ 6を介して組み立てられる。 そして、 対向した上記両配線パターン 2, 5を電気的に接続しかつ、 弾性表面波素子 3 と 配線基板 1 との間に空隙部 1 0が形成されている。 上記バンプは、 金( Ai) や銀 ( g) あるいははんだ( Sn系、 Pb系、 In系等) 等で構成されている。
実施例 8においては、 さらに、 導電性バンプ 6による弾性表面波素子 3 と配線 基板 1 との接続部および弾性表面波素子 3 は、 例えばエポキシ系樹脂等に金属粉 末を分散させた樹脂 3 6からなる樹脂部で包覆されている。 この場合、 高周波数 領域においては金属粉末を分散させた樹脂は抵抗率が小さくなり 、 電気的に導通 状態に近くなるため、 外来のノイズが入ってきても樹脂から配線基板上の配線パ ターンに流れていき、 接地することができる。
実施例 9においては、 さらに、 導電性バンプ 6 による弾性表面波素子 3 と配線 基板 1との接続部およぴ弾性表面波素子 3は、 F e, C oもしくは N i を主成分 とするフェライトからなる磁性体粉末を分散させた樹脂 3 6からなる樹脂部で包 覆されている。 この場合、 磁性体は主として 1 G H z 以上の高周波数領域で電気 的に導通状態として作用するため、 外来のノイズが誘起されても、 磁性体粉末を 分散させた樹脂を介し、 さらに配線基板上の配線バターンを通じて接地すること ができる。
実施例 1 0においては、 さらに、 導電性バンプ 6による弾性表面波素子 3と配 線基板 1との接続部および弾性表面波素子 3は、 電波吸収体材料を分散させた樹 脂 3 6からなる樹脂部で包覆されている。 電波吸収体材料としては、 カーボン、 フェライトもしくは両者の混合体等が有効である。 この場合、 外来の電気的ノィ ズは電波吸収体によりそのエネルギーを吸収されてしまうため、 弾性表面波素子 へのノイズの影響を軽減することができる。
なお、 図 1 1に示すよう に、 弾性表面波素子 3とこれを包覆する樹脂 3 6との 間に、 敢えて所定の空隙を設けるよう にしてもよい。 この樹脂 3 6は、 図 1 に示 した榭脂部 1 1であってもよいし、 他の封止部材であってもよい。 この空隙は、 封止部材である加熱溶融部材の加熱溶融後の硬化の工程において、 弾性表面波素 子 3の反りを防止するものである。 すなわち、 弾性表面波素子 3 と樹脂部との間 に空隙がなく弾性表面波素子 3と樹脂部とが密着していると、 樹脂部である加熱 溶融部材の硬化時の縮みに伴って弾性表面波素子 3が反ることになるが、 この空 隙によりこのような反りは防止される。 実施例 1 1
図 1 2は、 実施例 1 1 に係る弾性表面波装置の断面図である。 図において、 配 線基板 1は絶縁性基板例えばセラミック、 ガラス被覆セラミックおよびガラスェ ポキシ等の樹脂基板の両表面上に導電性の配線パターン 2が形成されている。 ま た、 弾性表面波素子 3の一主面にはくし歯型電極パターンからなるトランス デューサ部 4と、 このトランスデューサ部に電気的に接続する配線パターン 5が 形成されている e また、 トランスデューサ部 4および配線パターン 5の面は、 配 線基板 1 に形成された配線パターン 2 とフェースダウンボンディングにより複数 の導電性接合部材例えば金属からなるバンプ 6を介して組み立てられる。 そして、 対向した上記両配線パターン 2, 5を電気的に接続しかつ、 弾性表面波素子 3と 配線基板 1 との間に空隙部 1 0が形成されている。 上記バンプは、 金( Ai) や銀 ( g) あるいははんだ( Sn系、 Pb系、 I n系等) 等で構成されている。 さらに、 導 電性バンプ 6による弾性表面波素子 3 と配線基板 1 との接続部および弾性表面波 素子 3 は、 例えばカーボンからなる導電性フィラ一を含有する樹脂 4 0からなる 樹脂部で包覆されている。 この場合、 高周波数領域においては導電性フィラーを 含有させた樹脂は抵抗率が小さくなり 、 電気的に導通状態に近くなるため、 外来 のノィズが入つてきても樹脂から配線基板上の配線バターンに流れていき、 接地 することができる。 すなわち、 外来の電気的ノイズ等に対する、 いわゆる電磁遮 蔽効果( シールド効果) を有する。 実施例 1 2〜: 1 3
図 1 3 ( a ) は、 実施例 1 2 に係る弾性表面波装置の断面図である。 図におい て、 配線基板 1 は絶縁性基板例えばセラミ ック、 ガラス被覆セラミ ックおよびガ ラスエポキシ等の樹脂基板の両表面上に導電性の配線パターン 2が形成されてい る。 また、 弾性表面波素子 3 の一主面にはくし歯型電極パターンからなるトラン スデューサ部 4と、 このトランスデューサ部に電気的に接続する配線パターン 5 が形成されている。 また、 ト ランスデューサ部 4および配線パターン 5 の面は、 配線基板 1 に形成された配線パターン 2 とフェースダウンボンディングにより複 数の導電性接合部材例えば金属からなるバンプ 6を介して組み立てられる。 そし て、 対向した上記両配線パターン 2, 5を電気的に接続しかつ、 弾性表面波素子 3 と配線基板 1 との間に空隙部 1 0が形成されている。 上記バンプは、 金( Αι) や銀( ^g) あるいははんだ( Sn系、 Pb系、 I n系等) 等で構成されている。 さらに、 導電性バンプ 6による弾性表面波素子 3 と配線基板 1 との接続部および弾性表面 波素子 3は、 樹脂部 1 1 で包覆されている。 さらに、 配線基板 1 の少なく とも 2 個所の側部端面に凹部 4 2が形成されており 、 かつ、 端部に凸部 4 3が形成され た金属板が前記樹脂部 1 1 の少なく とも一部を被覆するよう に設置され、 さらに 配線基板 1 の側部端面に形成された凹部 4 2 と該金属板の端部に形成された凸部 4 3が嚙み合う ことにより金属板 4 1 と配線基板 1 とが一体化されている。
このよう な構造にすることにより 、 容易に金属板に平坦部を形成することがで き、 金属板の平坦部に、 例えばスタンプ等の方法によりマーキングを容易に形成 することができる。
さらに、 金属板 4 1 自体を例えば接触接続等の方法により 、 配線基板 1 の配線 パターン 2の一部、 すなわち接地パターンに電気的に接続し接地することにより 、 マーキングの容易性とともに電磁遮蔽効果をもたせることができ、 外来ノイズに 対する耐性を上げることができる。
図 1 3 ( b ) は、 実施例 1 3に係る弾性表面波装置の断面図であり 、 図 1 3 ( c ) は斜視図を示したものである。 図において、 配線基板 1 は絶縁性基板例え ばセラミック、 ガラス被覆セラミ ックおよびガラスエポキシ等の樹脂基板の両表 面上に導電性の配線パターン 2が形成されている。 また、 弾性表面波素子 3の一 主面にはくし歯型電極パターンからなるトランスデューサ部 4 と、 このト ランス デューサ部に電気的に接続する配線パターン 5が形成されている。 また、 トラン スデューサ部 4および配線パターン 5 の面は、 配線基板 1 に形成された配線パ ターン 2とフェースダウンボンディングにより複数の導電性接合部材例えば金属 からなるバンプ 6を介して組み立てられる。 そして、 対向した上記両配線パター ン 2 , 5を電気的に接続しかつ、 弾性表面波素子 3 と配線基板 1 との間に空隙部 1 0が形成されている。 上記バンプは、 金( Ai) や銀( あるいははんだ( Sn 系、 Pb系、 I n系等) 等で構成されている。 さらに、 導電性バンプ 6による弾性表 面波素子 3 と配線基板 1 との接続部および弾性表面波素子 3は、 樹脂部 1 1 で包 覆されている。 さらに、 配線基板 1 の少なく とも 2個所の側部端面に切り欠き部 4 4が形成されており 、 かつ、 端部に突出部 4 5が形成された金属板 4 1 が前記 樹脂部 1 1 の少なくとも一部を被覆するよう に設置され、 さらに配線基板 1 の側 部端面に形成された切り欠き部 4 4 と該金属板の端部に形成された突出部 4 5が 嚙み合うことにより金属板 4 1 と配線基板 1 とが一体化されている。 このような構造とすることにより 、 金属板を配線基板により精度よく 固定でき, 金属板の平坦部に例えばスタンプ等の方法によりマーキングを容易に形成するこ とができる。
さらに、 金属板 4 1 自体を例えば接触接続等の方法により 、 配線基板 1 の配線 パターン 2の一部、 すなわち接地パターンに電気的に接続し接地することにより 、 マーキングの容易性とともに電磁遮蔽効果をもたせることができ、 外来ノイズに 対する耐性を上げることができる。
配線基板 1 の側部端面への凹部 4 2もしく は切り欠き部 4 4の形成方法として は、 例えば、 配線基板を製造する際にダリ ーンシート を 2層ないし 3層等の構造 にし重ね合わせることにより 、 製造できる。 または、 機械的にこれらを形成して もよい。 実施例 14
図 1 4は、 実施例 1 4に係る弾性表面波装置の製造方法を説明するための斜視 図である。 図 1 4 ( a ) において、 複数個の配線基板の集合体 5 0が設置され、 分割が容易であるよう にまた分割後に個々の配線基板 1 となるよう に機械的に溝 もしく はミ シン目 5 2が形成されている。
この複数個の配線基板の集合体に対し、 それぞれの所定位置に弾性表面波素子 を複数個位置決めし、 前記素子 3 と配線基板の集合体 5 0とを電気的接続部分 ( 図示せず) を介して所定間隔を維持して組立てを行う。
さらに、 前記配線基板の集合体 5 0に対し加熟溶融型薄片状樹脂 5 1 を位置決 めし、 加熱溶融を行い硬化させる。
この後、 図 1 4 ( b ) のよう に、 複数個の配線基板の集合体 5 0を前記薄片状 樹脂 5 1 とともに溝もしくはミシン目 5 2 に沿って分割して個々の弾性表面波装 置を得る。
この場合、 ひとつの配線基板の集合体の上に一括して接合部材と弾性表面波素 子を組立て、 その後にひとつの薄片状樹脂を載置し、 封止する、 いわゆる多数個 取りであるため、 生産性を向上させることができる。 実施例 1 5
実施例 1 5として、 4 mm X4 mm XO . 5 mmの形状の配線基板に、 バンプ 数 6、 形状 2 mm X2 mmの弾性表面波素子( 中心周波数 1 . 5 GHz ) を
3 0 /zmの空隙を介して接合し電気的に接続したものに、 薄片状樹脂(形状
4 mm X4 mm XO . 4 mm) を載置し、 加熱溶融および硬化の条件を変えて封 止性能を評価した実施例について説明する。
図 1 5は、 評価で用いた加熱溶融および硬化の時間に対する温度プロファイル を示したものである。 また、 表 1には評価基準となる硬化状態、 封止気密性、 弹 性表面波素子の周波数特性についてそれぞれ 1 0個ずつ評価した結果を示す。 な お、 この場合の評価は、 硬化状態は目視、 封止気密性は不活性液体中への浸積に よる泡が無いこと、 周波数特性は最小挿入損失が 3 d B以内であることを良とし ている。 榭脂材料 Aおよび Bは、 本発明の薄片状樹脂(熱硬化性エポキシ樹脂) の場合であり、 Aはガラス転移温度 1 6 2 °Cのビスフエノール A型エポキシ樹脂、 Bは 1 3 5 のフエノールノポラック型結晶性エポキシ樹脂を用いたものである。 比較例として、 従来のポッティング用液状樹脂( ガラス転移温度 1 3 0 °C) によ る場合を Cとして示してある。
【 表 1 】
加熱 溶戳 硬化 (1 ) 硬化 (2 )
i化状 S 封 止
No 樹腌
時閲 u SS. 時間 気密性 判 定 材料 T 1 t 1 Τ 2 t 2 T 3 t 3 良品数 良品数 良品数
(。c) (秒) CO (H) (。C) (Η)
1 A 110 600 110 4 150 16 9/10 9/10 10/10 良
2 A 120 600 110 4 150 16 10/10 10/10 10/10 良
3 A 130 420 110 4 150 16 10/10 10/10 10/10 良
4 A 140 360 120 4 150 6 10/10 10/10 10/10 良
5 A 150 120 120 4 150 6 10/10 10/10 10/10 良 実
6 A 160 90 120 4 150 6 10/10 10/10 10/10 良
7 A 160 60 - 一 150 10 10/10 10/10 10/10 良
8 A 170 90 120 4 150 6 10/10 10/10 10/10 良
9 A 180 60 120 4 150 6 10/10 10/10 10/10 良 例
10 A 180 60 120 4 150 16 10/10 10/10 10/10 良
11 A 190 30 120 4 150 6 10/10 10/10 9/10 良
12 B 110 420 100 4 130 6 10/10 9/10 9/10 良
13 B 120 210 100 4 130 6 10/10 10/10 10/10 良
14 B 120 120 100 4 130 6 10/10 10/10 10/10 良
15 B 130 180 100 4 130 6 10/10 10/10 10/10 良
16 B 140 120 100 4 130 6 10/10 9/10 9/10 良
1 C (漓下) 80 1 150 3 10/10 10/10 0/10 不 良
2 A 90 600 110 4 150 6 0/10 0/10 9/10 不 良 比
3 A 210 30 120 4 150 6 5/10 10/10 1/10 不 良
4 A 160 90 120 1 150 0. 5 3/10 3/10 9/10 不 良 較
5 B 90 900 100 4 130 6 0/10 0/10 1/10 不 良
6 B 100 600 100 4 130 6 3/10 0/10 0/10 不 良 例
7 B 150 60 150 4 130 6 10/10 3/10 2/10 不 良
8 B 120 60 120 0. 5 130 1 8/10 0/10 9/10 不 良 表 1から明らかなよう に、 薄片状樹脂の加熱溶融、 硬化に係る工程を 3段階、 すなわち、 ( 1 ) 薄片状樹脂の加熱溶融により樹脂形状を決める段階、 ( 2 ) 樹 脂形状を維持しながらゲル化状態に移行する段階、 ( 3 ) 樹脂の硬化を行う段階、 とし、 かつ( '2 ) の工程温度を( 1 ) または( 3 ) より低くすることによって、 封止性を向上できる。
しかしながら、 ( 1 ) の工程温度をガラス転移温度に対して高すぎたり、 低す ぎたりする場合には、 比較例から明らかなよう にょい封止性は得られない。 実施例 1 6
実施例 1 6に係る弾性表面波装置の製造方法として、 圧電体から成るウェハー の一主面上にトランスデューサ部およびこのトランスデューサ部に電気的に接続 する配線パターンを複数個形成し、 該配線パターン上の一部に複数の接合部材と して Aiバンプを形成した後、 切断して個々の弾性表面波素子を形成する際に、 切 断時のブレードの速さおよび切断時に使用する水の比抵抗を変えて、 切断状態を 評価した実施例について説明する。 圧電体ウェハ一として、 焦電係数が
2 . 3 X I 0 · 5 C /^ deg' m 2 )である 3 6 ° Yカット L i T a 〇3の 3インチ ウェハーを用い、 所定のくし歯型電極パターンからなるトランスデューサ一部と これに電気的に接続され信号を供給するための配線パターンとを^膜にて P E P 等の方法により形成した。 この配線パターンの一部に Aiバンプを形成した後、 こ のウェハーを 2 m m X 2 m mの大きさの個々の弾性表面波素子に切断し、 切断後 の弾性表面波素子 5 0個について切断状態を評価した結果を表 2に示す。 また、 比較例として、 本発明の範囲外の切断条件による結果を示す。
【 表 2 】
放電によると
切断スビード
No 水の比抵抗
みられる
(mm/秒) 電極腐食 チップ欠け
( Q c m) 判 定 パターン破壊
1 10 13 0/50 0/50 0/50 良 実
2 10 0.3 0/50 .0/50 0/50 良
3 25 13 0/50 0/50 0/50 良
4 25 0.3 0/50 0/50 0/50
例 良
5 50 13 0/50 0/50 0/50 良
6 50 0.3 0/50 0/50 0/50 良
1 0.3 13 0/50 30/50 0/50 不 良
2 0.3 0.3 10/50 10/50 0/50 不 良
3 0.3 0.004 50/50 5/50 0/50 不 良 比
4 3 13 0/50 5/50 0/50 不 良
5 3 0.3 5/50 20/50 0/50 不 良 餃
6 3 0.004 50/50 3/50 0/50 不 良
7 10 0.004 50/50 3/50 0/50 不 良 例
8 25 0.004 50/50 3/50 0/50 不 良
9 50 0.004 30/50 0/50 0/50 不 良
10 75 13 0/50 0/50 28/50 不 良
11 75 0.3 0/50 0/50 30/50 不 良
12 75 0.004 0/50 0/50 24/50 不 良
表 2から明らかなよう に、 圧電体から成るゥェハーの一主面上にトランス デューサ部およびこのトランスデューサ部に電気的に接続する配線バタ一ンを複 数個形成し、 該配線パターン上の一部に複数の接合部材を形成した後、 切断して 個々の弾性表面波素子を形成する際に、 切断時のスピードを毎秒 lOnm以上 50mn¾ 下とし、 かつ、 切断時に使用する水の比抵抗を 0 . 0 1 M Q c m以上
1 0 0 O c m以下とし、 切断条件を制御することにより 、 切断する際に生ずる 静電気による障害を回避することができる。 より 、 具体的には、 弾性表面波素子 のトランスデューサ部もしくは電極配線パターンの破壊' 変質を防ぐことができ る。
なお、 圧電体ウェハ一として、 3 6 ° Yカット L i T a 03を用いたが、 他の ウェハーでも同様な結果が得られた。 実施例 1 7
実施例 1 7の弾性表面波装置の製造方法について説明する。
まず、 電気的接続部分となる接合部材を配線基板の少なくとも一主面に形成さ れた配線パターン上に形成した。 配線基板の配線パターン上には Aiめっきを施し てある。 この場合の接合部材として、 Aiバンプを用いた。 その後、 配線基板に対 し所定位置に弾性表面波素子を位置決めし、 弾性表面波素子と配線基板とを電気 的接続部分を介して所定間隔を維持して組み立てた。 この際に、 素子を加熱する とともに超音波を併用して接合を行った。 その後、 配線基板に対し加熱溶融型薄 片状樹脂を位置決めし、 前記薄片状樹脂を加熱溶融して、 前記基板と前記素子と の間に空隙部を残した構造の弾性表面波装置を得た。
比較のため、 電気的接合部分である接合部材を、 弾性表面波素子を形成する ウェハーの一主面上にトランスデューサ部およびこのトランスデューサ部に電気 的に接続する配線バターンを複数個形成した後、 該配線バターン上の一部に超音 波併用加熱により形成し、 切断して得た個々の弾性表面波素子を用い、 その後、 配線基板に対し所定位置に弾性表面波素子を位置決めし、 弾性表面波素子と配線 基板とを電気的接続部分を介して所定間隔を維持して組み立てた。 この際に、 素 子を加熱するとともに超音波を併用して接合を行った。 その後、 配線基板に対し 加熱溶融型薄片状樹脂を位置決めし、 前記薄片状樹脂を加熱溶融して、 前記基板 と前記素子との間に空隙部を残した構造の、 比較例の弾性表面波装置を得た。 これらに対して 200 の条件で高温放置試験を 100時間課してその後に特性が劣 化した弾性表面波装置の数を比較した。 特性劣化は最小挿入損失の変化が 1 d B 以上の場合と判定した。 結果は、 本発明の弾性表面波装置の製造方法である接合 部材を先に配線基板の配線パターン上に形成した場合には、 特性劣化が 1/ 50で あつたのに対して、 接合部材を先にウェハ一の配線パターン上に形成した比較例 の場合には、 特性劣化が 10/ 50であった。
この結果から明らかなよう に、 電気的接続部分である導電性接合部材を前記配 線基板の少なくとも一主面に形成された配線パターン上に形成した後、 前記素子 と配線基板とを該導電性接合部材を介して所定間隔を維持して組み立てることに より、 弾性表面波素子と電気的接続部分である導電性接合部材との接合の界面に 対する工程中の熱履歴をより少なくできるため、 接合強度を向上でき、 さらに信 頼性の向上をはかることができる。 以上の実施例 5 〜1 3における各弾性表面波装置を実際に作成しノイズレベル 等を測定した結果を表 3に示す。
【 表 3 】
Xチと配尋 イ ズ レベル
N o 実 X例 No. 用 途 基 £の Μ» バンプ材質 * 子 材 質 素子サイズ E 配鋒基板 ノ
線基 £ サイズ (相対
( M m) (mm) 材 質 )
(mm) (シ な 100と Τί)
1 5 移 動 体 20 A u 1.7x1.4 アルミナ 3.8x3.8 30
1 Τ β 03
ガラス
2 6 T V 30 S n - A g U i N b 03 9.0x1.5 es 12.0X4.0 | 35
ミ ミ,?
3 7 移 動 体 25 A < u L i N b Og 2.0x2.0 « 5 X I < * · 4.8x5.2 ! 42
4 8 T V 35 P b - S m L i T a3 12.0x3.0 ぺ _ 55ィ 15.0x5.01 58
5 9 T V 35 A 1 水 Λ 12.0x3.0 アルミナ 15.0x5.0 j 6 0
6 1 0 T V 35 C u L i T a 03 12.0x3.0 «5 Κί 15.0x5.0 48
ガラス被
1 1 移 動 体 20 1 n - S n L i T » 03 1.7x1.4 s 3.8x3.8 53
" "i
8 1 2 移 動 体 25 A u L i N b 03 1.7x1.4 アルミナ 3. Bx3. B 28
9 1 3 移 動 体 25 A u し i N b 03 1.7x1.4 アルミナ 3.BX3.8 25
1 0 1 移 動 体 30 い T e3 2.0x2.0 アルミナ 4.0x4.0
1 1 1 5 移 動 体 30 A u L i T a 03 2.0x2.0 アルミナ 4.0X4.0
1 2 1 6 移 動 体 30 A u L i T o。3 2.0 2.0 アルミナ 4.0X4.0
1 3 1 7 移 動 体 30 A u し i N b 0, 2.0x2.0 アルミナ 4.0x4.0
実施例 1 8
図 1 6 ( a ) は、 実施例 1 8 に係る弾性表面波装置の断面図である。 図におい て、 配線基板 1 は絶縁性基板例えばセラミ ック、 ガラス被覆セラミ ックおよびガ ラスエポキシ等の樹脂基板の両表面上に導電性の配線パターン 2が形成されてい る。 また、 弾性表面波素子 3 の一主面にはく し歯型電極パターンからなるトラン スデューサ部 4と、 このトランスデューサ部に電気的に接続する配線パターン 5 が形成されている。 また、 ト ランスデューサ部 4および配線パターン 5 の面は、 配線基板 1 に形成された配線パターン 2 とフェースダウンボンディングにより複 数の導電性接合部材例えば金属からなるバンプ 6を介して組み立てられる。 そし て、 対向した上記両配線パターン 2 , 5を電気的に接続しかつ、 弾性表面波素子 3 と配線基板 1 との間に空隙部 1 0が形成されている。 上記バンプは、 金( Ai) や銀( g) あるいははんだ( Sn系、 Pb系、 I n系等) 等で構成されている。 さらに、 弾性表面波素子 3の他の主面と樹脂部 1 1 の間の少なく とも一部に緩衝材 6 0が 配置されている。 さらに、 導電性バンプ 6 による弾性表面波素子 3 と配線基板 1 との接続部および弾性表面波素子 3は、 加熱溶融型部材である熱硬化性ビスフエ ノール A型エポキシ樹脂を主体とする樹脂部 1 1 で包覆されている。
図 1 6 ( b ) は、 樹脂部 1 1 により包覆する前の配線基板 1 の平面図の一例を 示したものであり 、 弾性表面波素子 3の他の主面には緩衝材 6 0が載置されてい る。
緩衝材としては、 例えばゴム弾性体シート のよう な弾力性に富んだ材料があげ られる。 もしくは、 金属箔ゃパラフィン紙を 2層としたものを配置してもよい。 このような構成とすることにより 、 樹脂の硬化時における収縮に伴う応力歪みを 緩和することができる。 このような緩衝材は、 弾性表面波素子 3の他の主面の全 面を覆うよう に配置してもよいし、 一部を覆う よう に配置してもよい。
なお、 このよう な緩衝材は、 次のよう な製造工程によって形成してもよい。 すなわち、 図 4 8 ( a ) に示すよう に凹状の樹脂部 1 1 の底部に液状シリ コ ー ン 3 0 0を塗布する。 次に、 弾性表面波素子 3を覆う よう に凹状の樹脂部 1 1 を 載せる。 そして、 凹状の樹脂部 1 1 を加熱溶融して弾性表面波素子 3を封止する。 その際、 図 4 8 ( b ) に示すように、 前記の液状シリコーン 3 0 0はゴム状にな り、 これが緩衝材となる。 この場合、 液状シリ コーン 3 0 0は、 加熱溶融後は緩 衝材の機能をもつが、 その前段階においていわば糊のような役割を果たし、 加熱 溶融型部材を位置決めするこになる。
また、 緩衝材としていくつかの^"料を挙げたが、 樹脂部 1 1 と素子 3との間に 空隙部(気体) を設けてもよい。 すなわち、 図 4 9 ( a ) に示すよう に、 樹脂 6 0の材料としてエポキシ樹脂の充填密度は小さくし、 すなわち冷間圧縮成形の 成形密度を第 1実施例のものより小さくし、 樹脂中に気泡を残し、 加熱溶融後も 上記空隙が残るようにしてもよい。 また、 図 4 9 ( b ) に示すよう に、 充填材の 密度の異なるつまり気泡の密度の異なる 2層の樹脂材料を用いてもよい。 すなわ ち、 素子 3に面する側には低充填密度( 流動性小なる材料).のエポキシ樹脂 6 0 b 、 他の層には第 1 のの実施例に用いられたような高充填密度( 流動性大な る材料) の樹脂 6 0 aを用いることにより 、 実現可能とする。 なお、 ここで用い る材料の流動性は硬化剤またはフィラー材の量を変えることによって制御が可能 である。
とになる。 実施例 1 9
図 1 7 ( a ) は、 実施例 1 9に係る弾性表面波装置の断面図である。 図におい て、 配線基板 1は絶縁性基板例えばセラミック、 ガラス被覆セラミックおよびガ ラスエポキシ等の樹脂基板の両表面上に導電性の配線パターン 2が形成されてい る。 また、 弾性表面波素子 3 の一主面にはくじ歯型電極パターンからなるトラン スデューサ部 4と、 このトランスデューサ部に電気的に接続する配線パターン 5 が形成されている: また、 ト ランスデューサ部 4および配線パターン 5 の面は、 配線基板 1に形成された配線パターン 2とフェースダウンボンディングにより複 数の導電性接合都材例えば金属からなるバンプ 6を介して組み立てられる。 そし て、 対向した上記両配線パターン 2 , 5を電気的に接続しかつ、 弾性表面波素子 3と配線基板 1 との間に空隙部 1 0が形成されている。 上記バンプは、 金( Ai) や銀( g) あるいははんだ( Sn系、 Pb系、 I n系等) 等で構成されている。 さらに, 導電性バンプ 6による弾性表面波素子 3 と配線基板 1 との接続部および弾性表面 波素子 3は、 ガラスフイラ一を含有する樹脂 6 1からなる熱硬化性エポキシ樹脂 の樹脂部 1 1で包覆されている。
図 1 7 ( b ) は、 前記ガラスフィラーを含有する樹脂 6 1からなる樹脂部 1 1 により包覆する前の配線基板 1 の平面図の一例を示したものである。
ガラスフイラ一としては、 例えば、 溶融シリ 力や、 無定形シリ 力、 結晶性シリ 力もしくは、 P b O— B 20 3系や S i 0 2、 A.l 20 3、 Ρ b F 2等を含んだ低融点 ガラス等があげられる。 ここでは溶融シリ カの破砕品を使用した。 その形状は、 平均粒径が 0. 5 ni^ら 5 /z iri 大きさの範囲で分散していた。 このよう な構造とす ることにより 、 樹脂部の熱膨張率を小さくでき、 弾性表面波素子や配線基板の熱 膨張率に近づけることができるため、 応力歪みを緩和し、 熱衝繫性等の信頼性を 向上させることができ、 機械的強度を向上させることができる。 実施例 2 0
図 1 8 ( a ) は、 実施例 2 0に係る弾性表面波装置の断面図を示したもので、 加熱溶融型部材 1 1 を省いた状態を示すものである。 図において、 配線基板 1 は 絶縁性基板例えばセラミ ック、 ガラス被覆セラミ ックおよびガラスエポキシ等の 樹脂基板の両表面上に導電性の配線パターン 2が形成されている。 また、 弾性表 面波素子 3の一主面にはくし歯型電極パターンからなるトランスデューサ部 4と、 このトランスデューサ部に電気的に接続する配線パターン 5が形成されている。 また、 トランスデューサ部 4および配線パターン 5の面は、 配線基板 1 に形成さ れた配線パターン 2 とフェースダウンボンディングにより複数の導電性接合部材 例えば金属からなるバンプ 6を介して組み立てられる。 そして、 対向した上記両 配線パターン 2 , 5を電気的に接続しかつ、 弾性表面波素子 3 と配線基板 1 との 間に空隙部 1 0が形成されている。 上記バンプは、 金( Ai) や銀( g) あるいは はんだ( Sn系、 Pb系、 I n系等) 等で構成されている。 さらに、 導電性バンプ 6に よる弾性表面波素子 3 と配線基板 1 との接続部および弾性表面波素子 3 は、 熱硬 化性エポキシ樹脂の樹脂部( 図示しない) で包覆されている。
図 1 8 ( b ) は、 さらに弾性表面波素子 3を省いた状態の平面図を示すもので ある。 ここで、 接合部材 6が配置されるべき位置 6 6は、 弾性表面波素子 3の長 辺 w a に対して中央部近傍領域 w bに配置されている。 より好ましい形態は、
\^ 1> // &が0 . 7 5より小さいことである。
図 1 9はこの実施例の弾性表面波素子 3の平面図である。
同図に示すよう に、 比較的細長い矩形の圧電性基板 1 0 0上には、 複数対の櫛 歯状電極 1 0 2が形成されている。 また、 圧電性基板 1 0 0上には、 櫛歯状電極 1 0 2を挟むよう に吸音剤 1 0 4が形成されている。 さらに、 圧電性基板 1 0 0 上のほぼ中央の両側には、 複数の外部接続端子 1 0 1が集中して設けられている。 そして、 このほぼ中央に設けられた外部接続端子 1 0 1 とこれに接続される比較 的外側の櫛歯状電極 1 0 2とは、 外部接続端子 1 0 1を延在することで電気的に 接続されている。
因みにこの種の従来の弾性表面波素子の構成を図 2 0に示す。 従来の弾性表面 波素子の外部接続端子 1 0 1 は、 各電極に最も近くなる、 つまり延在部が生じな いような位置に配置されている。
さらに、 弾性表面波素子としてそれほど細長くない形状のものを図 2 1 に示す。 なお、 符号 1 0 3は反射器部である。 この形状の弾性表面波素子は、 本発明に係 る弾性表面波装置に適用することができる。
このよう に、 複数の接合部材を前記素子の中央部近傍領域に対向した位置に集 中して配置することによって、 各構成要素の熱膨張率の差による応力歪みの集中 を緩和することができる。 これは、 特に細長い形状の弾性表面波素子 3を用いる 場合には非常に有効である。 また、 いうまでもなく、 接合部材 6は、 配線基板 1 側に先に形成するか、 弾性表面波素子 3側に先に形成するかは、 任意であり、 い ずれの場合も本発明の範囲に含まれる。 実施例 2 1
図 2 2は、 実施例 2 1 に係る弾性表面波装置を示したものであり、 加熱溶融型 部材 1 1および弾性表面波素子 3を省いた状態の平面図を示すものである。 図に おいて、 配線基板 1は絶縁性基板例えばセラミック、 ガラス被覆セラミックおよ びガラスエポキシ等の樹脂基板の両表面上に導電性の配線バターン 2が形成され ている。 また、 弾性表面波素子( 図示しない) の一主面にはくし歯型電極パター ンからなるトランスデューサ部と、 このトランスデューサ部に電気的に接続する 配線パターン 5が形成されている。 また、 トランスデューサ部および配線パター ンの面は、 配線基板 1に形成された配線パターン 2とフヱ一スダウンボンディン グにより複数の導電性接合部材例えば金属からなるバンプ 6を介して組み立てら れる。 弾性表面波素子 3が配置されるべき位置 6 3は配線基板 1のほぼ中央部に ある。 また、 対向した上記両配線パターン 2, 5を電気的に接続しかつ、 弾性表 面波素子 3と配線基板 1 との間に空隙部( 図示しない) が形成されている。 上記 バンプは、 金( Ai) や銀( あるいははんだ( Sn系、 Pb系、 I n系等) 等で構成 されている。 さらに、 導電性バンプ 6による弾性表面波素子 3と配線基板 1 との 接続部および弾性表面波素子 3は、 熱硬化性エポキシ樹脂の樹脂部( 図示しな い) で包覆されている。 ここで、 前記の電気的接続に預かる複数の接合部材 6 7 は弾性表面波素子の中央部近傍領域に対向した位置に集中して配置されている。 さらに、 電気的接続に預からない複数の接合部材 6 8は弾性表面波素子の周辺部 領域に対向した位置に配置されている。
図 2 3はこの実施例の弾性表面波素子 3の平面図である。
同図に示すよう に、 比較的細長い矩形の圧電性基板 1 0 0上のほぼ中央には、 —対の櫛歯状電極 1 0 2が形成されている。 また、 圧電性基板 1 0 0上には、 櫛 歯状電極 1 0 2を挟むよう に反射部 1 0 3が形成されている。 さらに、 圧電性基 板 1 0 0上のほぼ中央の両側には、 複数の外部接続端子 1 0 1 が集中して設けら れている。 そして、 圧電性基板 1 0 0上の比較的外側には、 電気的接続に預から ないボンディングパット部 1 0 5が設けられている。
このよう にすると、 弾性表面波素子 3と配線基板 1 との接続をより確実にでき るとともに、 弾性表面波素子 3の周辺部領域に対向した位置に配置された複数の 接合部材 6 8が前記薄片状樹脂の弾性表面波素子のトランスデューサ部への浸入 を防止する。 また、 この効果は、 特に細長い形状の弾性表面波素子を用いる場合 に有効である。 また、 いうまでもなく、 接合部材 6は、 配線基板 1側に先に形成 するか、 弾性表面波素子 3側に先に形成するかは、 任意であり 、 いずれの場合も 本発明の範囲に含まれる。 実施例 2 2
図 2 4は、 実施例 2 2に係る弾性表面波装置の断面図である。 図において、 配 線基板 1は絶縁性基板例えばセラミック、 ガラス被覆セラミックおよびガラスェ ポキシ等の樹脂基板の両表面上に導電性の配線パターン 2が形成されている。 前 記導電性の配線パターン 2の一部は、 その導電材料の厚みが他の部分より厚い配 線パターン 7 1となっている。 また、 弾性表面波素子 3の一主面にはくし歯型電 極パターンからなるトランスデューサ部 4と、 このトランスデューサ部に電気的 に接続する配線パターン 5が形成されている。 さらに、 弾性表面波素子 3の一主 面には弾性表面波吸収材 7 0が配置されている。 また、 トランスデューサ部 4お よび配線パターン 5の面は、 配線基板 1 に形成された導電材料の厚みが厚い配線 パターン 7 1とフェースダウンボンディングにより複数の導電性接合部材例えば 金属からなるバンプ 6を介して組み立てられる。 そして、 対向した上記両配線パ ターン 7 1 と 5を電気的に接続しかつ、 弾性表面波素子 3と配線基板 1 との間に 空隙部 1 0が形成されている。 上記バンプは、 金( Ai) や銀( g) あるいははん だ( Sn系、 Pb系、 I n系等) 等で構成されている。 さらに、 導電性バンプ 6による 弾性表面波素子 3と配線基板 1 との接続部および弾性表面波素子 3は、 加熱溶融 型部材である熱硬化性エポキシ榭脂を主体とする樹脂部 1 1で包覆されている。 このような構造にすると、 導電性接合部材 6の厚みが小さくても、 導電材料の 厚みと加えあわせることができるため、 弾性表面波素子 3と配線基板 1 との間の 適正量の空隙部を有効に確保できる。 導電材料の厚みが厚いパターン 7 1 と通常 の配線パターンの厚みの差は実質的に 5〜100 rriO範囲となるよう にする。
このような構造を得るためには、 配線基板の配線パターンを形成する際に、 次 の方法を任意に選択することができる。 A l 2 03やガラスセラミ ック ( いわゆる低温焼成基板) 等のセラミ ックを配線 基板として用いる場合には、 配線基板を焼成する前の生の状態のシート の配線パ ターンを形成すべき部分に、 導電性ペースト 、 例えばタングステンのペーストを スクリ ーン印刷法により塗布し、 乾燥させた後、 セラミ ックと導電性ペーストを 同時焼成する。 こう して配線基板上に配線パターン 2が形成される。 このとき、 配線パターンの少なくとも一部の必要な個所にスクリ ーン印刷法を複数回繰り返 すことにより 、 その部分の導電性ペーストの厚みは他の部分より厚く形成できる。 したがって、 同時焼成後の配線基板には、 導電材料の厚みが厚い配線パターンの 部分 7 1が容易に形成できる。
セラミックまたはガラスエポキシなどを配線基板として用いる場合には、 これ に替えて、 焼成後のセラミ ックもしく は型成形後のガラスエポキシに対して、 配 線パターンの少なくとも一部を導電ペースト を用いたスクリ ーン印刷法により複 数回塗布し、 焼き付けることにより 、 導電材料の厚みが厚い配線パターン 7 1を 形成することができる。
また、 さらに、 配線基板の配線パターンを形成する際に、 導電性金属の蒸着も しくはスパッタ等の真空成膜法を単独で用いることも上記のスクリ ーン印刷法と 併せて用いることもできる。 この場合、 厚みを必要とする部分以外の領域をマス クする等の方法により 、 配線パターンの必要とする部分を蒸着もしくはスパッタ 等の成膜方法により他の部分より厚く成膜することができる。 実施例 2 3
図 2 5は、 実施例 2 3に係る弾性表面波装置の断面図である。 図において、 配 線基板 1 は絶縁性基板例えばセラミ ック、 ガラス被覆セラミックおよびガラスェ ポキシ等の樹脂基板の両表面上に導電性の配線パターン 2が形成されている。 ま た、 配線基板 1 の配線パターン 2の一部は、 配線基板材料の厚みが他の部分より 厚い領域 7 2 に形成されている。 また、 弾性表面波素子 3の一主面にはくし歯型 電極パターンからなるトランスデューサ部 4 と、 このトランスデューサ部に電気 的に接続する配線パターン 5が形成されている。 さらに、 弾性表面波素子 3の一 主面には弾性表面波吸収材 7 0が配置されている。 また、 トランスデューサ部 4 および配線パターン 5の面は、 配線基板 1 に形成された配線基板材料の厚みが他 の部分より厚い領域 7 2の配線パターン 2とフェースダウンボンディングにより 複数の導電性接合部材例えば金属からなるバンプ 6を介して組み立てられる。 そ して、 対向した上記両配線パターン 2 , 5を電気的に接続しかつ、 弾性表面波素 子 3と配線基板 1との間に空隙部 1 0が形成されている。 上記バンプは、 金 ( Ax) や銀( ) あるいははんだ( Sn系、 Pb系、 I n系等) 等で構成されている。 さらに、 導電性バンプ 6による弾性表面波素子 3と配線基板 1 との接続部およぴ 弾性表面波素子 3は、 熱硬化性エポキシ榭脂の樹脂部 1 1で包覆されている。 このような構造とすることによって、 導電性接合部材の厚みが小さくても、 配 線基板材料の厚みと加えあわせることができるため、 弾性表面波素子と配線基板 との間の適正量の空隙部を有効に確保できる。 配線基板材料の厚みの差は
5〜100 i iri 範囲にあることが好ましい。
このような構造を得るためには、 配線基板を形成する際に、 次の方法を任意に 選択することができる。
例えば、 A l 2 03やガラスセラミック等のセラミックを用いて配線基板を形成 する際に、 焼成前のセラミックダリ ーンシートに対し電気的接続部分となる接合 部材に対向する部分およびその近傍の領域に相当する部分のグリ ーンシートを付 加して焼成することによって、 配線基板材料の厚みが他の部分より厚い領域 7 2 を容易に形成することができる。 この厚みの差は実質的に 5 SOO ia より好ま しくは 5〜100 /z mである。
また、 ガラスエポキシやベークライト等の配線基板の場合には、 必要とする配 線基板の領域のみを複数枚はりあわせることにより 、 配線基板材料の厚みが他の 部分より厚い領域 7 2を容易に形成できる。 実施例 2 4〜2 6
図 2 6 ( a ) は、 実施例 2 4に係る弾性表面波装置の断面図である。 図におい て、 配線基板 1 は絶縁性基板例えばセラミック、 ガラス被覆セラミックおよびガ ラスエポキシ等の樹脂基板の両表面上に導電性の配線パターン 2が形成されてい る。 また、 弾性表面波素子 3の一主面にはくし歯型電極パターンからなるトラン スデューサ部 4と、 このトランスデューサ部に電気的に接続する配線パターン 5 が形成されている。 さらに、 弾性表面波素子 3の一主面には弾性表面波吸収材 7 0が配置されている。 また、 トランスデューサ部 4および配線パターン 5 の面 は、 配線基板 1に形成された配線パターン 2とフェースダウンボンディングによ り複数の導電性金属バンプ 6を複数個ずつほぼ同一位置に積み重ねた接合部材 7 5を介して組み立てられる。 そして、 対向した上記両配線パターン 2, 5を電 気的に接続しかつ、 弾性表面波素子 3と配線基板 1 との間に空隙部 1 0が形成さ れている。 上記バンプは、 金( Ai) や銀( g) あるいははんだ( Sn系、 Pb系、 I n 系等) 等で構成されている。 さらに、 導電性バンプ 6による弾性表面波素子 3と 配線基板 1 との接続部および弾性表面波素子 3は、 熱硬化性エポキシ樹脂の樹脂 部 1 1で包覆されている。
図 2 6 ( b ) は、 図 2 6 ( a ) の部分拡大図を示したもので、 弾性表面波吸収 材 7 0の厚み w a は、 ほぼ同一位置に積み重ねられた導電性接合部材 7 5の高さ (配線パターンの厚みを含める) w bよりも小さレ、: w bは実質的に 30〜150 /z m の範囲にあることが好ましい。
このよう に電気的接続部分となる導電性接合部材の厚みを制御することによつ ても、 弾性表面波素子と配線基板との間の適正量の空隙部を有効に確保できる。 この場合、 配線基板の基板材料厚みもしくは導電材料の厚みを部分的に変える必 要がないため、 製造がより簡単になる。
図 2 6 ( c ) は、 実施例 2 5に係る弾性表面波装置の断面図を示したものであ る。 この例においては、 弾性表面波素子 3の一主面には弾性表面波吸収材 7 0が 配置されている。 また、 さらに、 弾性表面波素子 3の他の主面には弾性表面波吸 収材 7 0 bが配置されている。
図 2 6 ( d ) は、 実施例 2 6に係る弾性表面波装置の断面図を示したものであ る。 この例においては、 榭脂部 1 1 と弾性表面波素子 3 の他の主面に配置された 弾性表面波吸収材 7 0 b との間に金属箔 7 6が設置され、 その一部が配線基板 1 上の配線パターン 2 bに接触接続されている。 このため、 外来のノイズが誘起さ れても金属箔が存在することにより、 電磁的に遮蔽できるいわゆるシールド効果 を持たせることができる。 実施例 2 7
図 2 7 ( a ) は、 実施例 2 7に係る弾性表面波装置の断面図を示したものであ る。 図において、 配線基板 1 は絶縁性基板例えばセラミック、 ガラス被覆セラ ミックおよびガラスエポキシ等の樹脂基板の両表面上に導電性の配線パターン 2 が形成されている。 また、 弾性表面波素子 3 の一主面にはくし歯型電極パターン からなるト ランスデューサ部 4と、 このト ランスデュ一サ部に電気的に接続する 配線パターン 5が形成されている。 さらに、 弾性表面波素子 3 の一主面には弾性 表面波吸収材 7 0が配置されている。 また、 ト ランスデューサ部 4および配線パ ターン 5の面は、 配線基板 1 に形成された配線パターン 2とフェースダウンボン ディングにより複数の導電性接合部材例えば金属バンプ 6を介して組み立てられ る。 そして、 対向した上記両配線パターン 2, 5を電気的に接続しかつ、 弾性表 面波素子 3と配線基板 1 との間に空隙部 1 0が形成されている。 上記バンプは、 金( Ai) や銀( g) あるいははんだ( Sn系、 Pb系、 I n系等) 等で構成されている。 さらに、 導電性バンプ 6による弾性表面波素子 3と配線基板 1 との接続部および 弾性表面波素子 3は、 熟硬化性エポキシ樹脂の樹脂部 1 1で包覆されている。 図 2 7 ( b ) は、 図 2 7 ( a ) の部分拡大図を示したもので、 弾性表面波吸収 材 7 0の厚み w a は、 複数の導電性接合部材 6 の高さ ( 配線パターンの厚みを含 める) w bよりも小さくなつている。
このような構造は、 導電性接合部材として、 導電性のボールバンプ、 例えば Ai バンプもしくははんだバンプを用い、 ボールバンプを形成する際の導電性細線 (ワイヤ) の太さもしくは径をかえることにより、 ボールの大きさを変えること ができるため、 ボールバンプを弾性表面波素子 3側か配線基板 1側かいずれに形 成するかにかかわらず容易に形成できる。 上記の太さもしくは径をかえる方法と しては、 バンプ自体を大きさをかえる他、 バンプ形成時にバンプに対する圧力を 弱くする等の方法がある。
また、 弾性表面波吸収材 7 0を配置する際の方法として、 有機溶剤などの希釈 剤で弾性表面波吸収材を薄め、 塗布してもよい。 この場合、 有機溶剤としては、 テルビネオール、 石油ナフサ等を用いることができる。 弾性表面波吸収材の乾燥 工程でこれらの有機溶剤は揮発するため、 その結果、 弾性表面波吸収材 7 0の厚 み w aを薄く形成することができ、 w bより小さくすることができる。 また、 い うまでもなく、 導電性接合部材 6は、 配線基板 1側に先に形成するか、 弾性表面 波素子 3側に先に形成するかは、 任意であり、·いずれの場合も本発明の範囲に含 まれる。 実施例 2 8
図 2 8 ( a ) は、 実施例 2 8に係る弾性表面波装置の断面図である。
図において、 配線基板 1は絶縁性基板例えばセラミック、 ガラス被覆セラミッ クおよびガラスエポキシ等の樹脂基板の両表面上に導電性の配線パターン 2が形 成されている。 また、 弾性表面波素子 3の一主面にはくし歯型電極パターンから なるトランスデューサ部 4と、 このトランスデューサ部に電気的に接続する配線 パターン 5が形成されている。 また、 ト ランスデューサ部 4および配線パターン 5の面は、 配線基板 1に形成された配線パターン 2 フェースダウンボンディング により複数の導電性接合部材例えば金属からなるバンプ 6を介して組み立てられ る。 そして、 対向した上記両配線パターン 2, 5を電気的に接続しかつ、 弾性表 面波素子 3と配線基板 1 との間に空隙部 1 0が形成されている。 上記バンプは、 金( Ai) や銀( g) あるいははんだ( Sn系、 Pb系、 I n系等) 等で構成されている。 さらに、 導電性バンプ 6による弾性表面波素子 3と配線基板 1 との接続部および 弾性表面波素子 3は、 エポキシ等の樹脂またはガラス 1 1で包覆されている。 図 2 8 ( b ) は、 図 2 8 ( a ) の線 A— Aに沿って切断して示す平面図であり、 図中、 バンプ 6及び弾性表面波素子 3は 2点鎖線で想像線を示している。 そして、 配線パターン 2の端部位置には弾性表面波素子側に設けられた導電性バンプ 6と の電気的接続位置を示しており、 弾性表面波素子 3と配線基板 1 とはフェースダ ゥンボンディングにより導電性バンプ 6を介して電気的に接続される。
図 2 9は、 図 2 8の弾性表面波装置の製造方法を説明する図であり、 ( a ) 〜 ( c ) は工程を順に示すものである。
すなわち、 図 2 9 ( a ) では配線基板 1 に弾性表面波素子 3に設けた複数の導 電性バンプ 6を介して弾性表面波素子 3を接合した状態を示し、 さらに、 配線基 板 1が 1 5 0で〜 2 0 0 程度の温度に加熱されており、 またエポキシ系の液状 樹脂 8 0が用意されている。 この場合の粘性は低く調整されている。 続いて、 図 2 9 ( b ) のよう に、 液状樹脂 8 0を弾性表面波素子 3の他の主面上に滴下させ ると、 該素子 3の側部に樹脂が回り込み、 さらに加熱されているため液状樹脂の 粘度が上がり、 滴下された樹脂 8 3がその形状に保持される。 さらに、 図 2 9 ( c ) に示すように、 液状樹脂 8 0をその量を制御しながら滴下することによつ て、 高い粘性を保ちながら弾性表面波素子 3を包覆するまでに変形し、 周囲は配 線基板 1と接合し、 その後引き続く加熱により樹脂 1 1 は硬化し榭脂形状が定ま ることになる。 引き続く加熱は、 例えば 1 2 5 °Cで 3時間加熱し、 さらに
1 5 0でで 6時間程度加熱することにより硬化が完了する。
なお、 榭脂 1 1または 8 3は充分、 粘性を高くすることによって、 弾性表面波 素子 3のト ランスデューサ部表面に流れ込むことはない。 したがって、 弾性表面 波装置の機能に障害となることはない。
また、 樹脂のかわりに P b O 7 5 %, B 203 5 %, S i θ 2 1 %を含有 する硼珪酸鉛ガラスを用い、 同様に行っても、 滴下された液状ガラスが冷却して 固化し、 同じ効果が得られた。 実施例 2 9
図 3 0 ( a ) は、 実施例 2 9に係る弾性表面波装置の断面図である。
図において、 配線基板 1は絶縁性基板例えばセラミック、 ガラス被覆セラミッ クおよびガラスエポキシ等の樹脂基板の両表面上に導電性の配線バターン 2が形 成されている。 また、 弾性表面波素子 3の一主面にはくし歯型電極パターンから なるトランスデューサ部 4と、 このトランスデューサ部に電気的に接続する配線 パターン 5が形成されている。
また、 弾性表面波素子 3の他の主面には、 図 3 0 ( c ) に示すよう に、 ほぼ全 面にわたって導電性膜 3 1が形成されている。
また、 トランスデューサ部 4および配線パターン 5の面は、 配線基板 1に形成 された配線パターン 2とフェースダウンボンディングにより複数の導電性接合部 材例えば金属からなるバンプ 6を介して組み立てられる。 そして、 対向した上記 両配線パターン 2 , 5を電気的に接続しかつ、 弾性表面波素子 3と配線基板 1 と の間に空隙部 1 0が形成されている。 上記バンプは、 金( Αι) や銀( あるい ははんだ( Sn系、 Pb系、 I n系等〉 等で構成されている。 さらに、 弾性表面波素子 3の他の主面の導電性膜 3 1 と配線基板 1 の配線バタ一ン 2の一部とは、 導電性 物質 3 2によって電気的に接続されている。
さらに、 導電性バンプ 6による弾性表面波素子 3と配線基板 1 との接続部およ び弾性表面波素子 3は、 上記した滴下によりエポキシ等の樹脂またはガラス 1 1 で包覆されている。
図 3 0 ( b ) は、 榭脂 1 1により包覆する前の配線基板 1の平面図の一例を示 したものであり、 弾性表面波素子 3の他の主面に形成された導電性膜 3 1は、 配 線基板 1 の配線パターン 2の一部、 例えば接地パターンに、 導電性物質 3 2を介 して電気的に接続されている。
前記導電性物質 3 2としては、 例えば、 Ai線や A線等のボンディングワイヤ、 gを含むエポキシ系導電性ペースト 、 異方性導電樹脂( A C F ) 等が含まれる。 また、 前記、 導電性膜 3 1 としては、 例えば、 蒸着またはスパッタ等により成膜 した 1膜、 Αα膜等が含まれる。
この場合、 外来の電気的ノイズ等に対する、 いわゆる電磁遮蔽効果(シールド 効果) を有する。
また、 導電性物質 3 2の代わりに、 フェライト等の磁性体を分散させた樹脂に よって接続することもできる。 この場合、 磁性体は主として 1 G H z 以上の高周 波数領域で電気的に導通状態として作用するため、 外来のノイズが誘起されても 導電膜でこれを受け、 磁性体を分散させた樹脂を介し、 さらに配線基板上の配線 パターンを通じて接地することができる。 実施例 3 0
図 3 1 ( a ) は、 実施例 3 0に係る弾性表面波装置の断面図である。
図において、 配線基板 1 は絶縁性基板例えばセラミック、 ガラス被覆セラミッ クおよぴガラスエポキシ等の樹脂基板の両表面上に導電性の配線パターン 2が形 成されている。 また、 弾性表面波素子 3の一主面にはくし歯型電極パターンから なるトランスデューサ部 4と、 このトランスデューサ部に電気的に接続する配線 パターン 5が形成されている。
また、 トランスデューサ部 4および配線パターン 5 の面は、 配線基板 1に形成 された配線パターン 2とフェースダウンボンディングにより複数の導電性接合部 材例えば金属からなるバンプ 6を介して組み立てられる。 そして、 対向した上記 両配線パターン 2, 5を電気的に接続しかつ、 弾性表面波素子 3と配線基板 1と の間に空隙部 1 0が形成されている。 上記バンプは、 金( Ai) や銀( g) あるい ははんだ( Sn系、 Pb系、 I n系等) 等で構成されている。 さらに、 弾性表面波素子 3の他の主面と樹脂部 1 1 との間隙の少なくとも一部に、 金属性箔 3 3が設置さ れており、 この金属性箔 3 3 の端部 3 4が配線基板 1 の配線パターン 2 の少なく とも一部に接触し電気的に接続されている。
さらに、 導電性バンプ 6による弾性表面波素子 3と配線基板 1 との接続部およ び弾性表面波素子 3は、 例えばエポキシ等の樹脂またはガラス 1 1などを滴下し たり流し込んだりして硬化させた封止部材により包覆されている。
図 3 1 ( b ) は、 樹脂 1 1を滴下したり流し込んだりして硬化させて包覆する 前の配線基板 1の平面図の一例を示したものであり、 弾性表面波素子 3の他の主 面上に載置された金属性箔 3 3 の端部 3 4が配線基板 1 の配線パターン 2 の一部、 例えば接地パターンに接触し、 電気的に接続されている。
このような金属性箔 3 3は、 アルミ ホイルや銅箔などのよく知られた安価なも のを使用することができる。 したがって、 外来の電気的ノイズ等に对する、 いわ ゆる電磁遮蔽効果( シールド効果) を有する。 実施例 3 1、 3 2
図 3 2 ( a ) は、 実施例 3 1 に係る弾性表面波装置の断面図である。
図において、 配線基板 1 は絶縁性基板例えばセラミ ック、 ガラス被覆セラミッ クおよびガラスエポキシ等の樹脂基板の両表面上に導電性の配線パターン 2が形 成されている。 また、 弾性表面波素子 3 の一主面にはく し歯型電極パターンから なるトランスデューサ部 4と、 このトランスデューサ部に電気的に接続する配線 パターン 5が形成されている。 また、 ト ランスデューサ部 4および配線パターン 5の面は、 配線基板 1 に形成された配線パターン 2 とフェースダウンボンディン グにより複数の導電性接合部材例えば金属からなるバンプ 6を介して組み立てら れる。 そして、 対向した上記両配線パターン 2, 5を電気的に接続しかつ、 弾性 表面波素子 3 と配線基板 1 との間に空隙部 1 0が形成されている。 上記バンプは、 金( Αα) や銀( %、 あるいははんだ( Sn系、 Pb系、 I n系等) 等で構成されている。 さらに、 導電性バンプ 6 による弾性表面波素子 3 と配線基板 1 との接続部および 弾性表面波素子 3 は、 上記した滴下により樹脂またはガラス 1 1 で包覆されてい る。
さらに、 配線基板 1 の少なくとも 2個所の側部端面に凹部 4 2が形成されてお り 、 かつ、 端部に凸部 4 3が形成された金属板が前記樹脂 1 1 の少なく とも一部 を被覆するよう に設置され、 さらに配線基板 1 の側部端面に形成された凹部 4 2 と該金属板の端部に形成された凸部 4 3が嚙み合う ことにより 金属板 4 1 と配線 基板 1 とが一体化されている。
このような構造にすることにより 、 容易に金属板に平坦部を形成することがで き、 金属板の平坦部に、 例えばスタンプ等の方法によりマ一キングを容易に形成 することができる。
さらに、 金属板 4 1 自体を例えば接触接続等の方法により 、 配線基板 1 の配線 パターン 2 の一部、 すなわち接地パターンに電気的に接続し接地することにより 、 マーキングの容易性とともに電磁遮蔽効果をもたせることができ、 外来ノイズに 対する耐性を上げることができる。
図 3 2 ( b ) は、 実施例 3 2 に係る弾性表面波装置の断面図であり 、 ( c ) は 斜視図を示したものである。
図において、 配線基板 1は絶縁性基板例えばセラミック、 ガラス被覆セラミッ クおよびガラスエポキシ等の樹脂基板の両表面上に導電性の配線パターン 2が形 成されている。 また、 弾性表面波素子 3の一主面にはくし齒型電極パターンから なるトランスデューサ部 4と、 このトランスデューサ部に電気的に接続する配線 パターン 5が形成されている。 また、 トランスデューサ部 4および配線パターン 5の面は、 配線基板 1に形成された配線パターン 2とフェースダウンボンディン グにより複数の導電性接合部材例えば金属からなるバンプ 6を介して組み立てら れる。 そして、 対向した上記両配線パターン 2, 5を電気的に接続しかつ、 弾性 表面波素子 3と配線基板 1 との間に空隙部 1 0が形成されている。 上記バンプは、 金( Ai) や銀( g) あるいははんだ( Sn系、 Pb系、 I n系等) 等で構成されている。 さらに、 導電性バンプ 6による弾性表面波素子 3と配線基板 1 との接続部および 弾性表面波素子 3は、 上記した滴下により樹脂またはガラス 1 1で包覆されてい る。 さらに、 配線基板 1の少なくとも 2個所の側部端面に切り欠き部 4 4が形成 されており、 かつ、 端部に突出部 4 5が形成された金属板 4 1が前記樹脂 1 1の 少なくとも一部を被覆するように設置され、 さらに配線基板 1の側部端面に形成 された切り欠き部 4 4と該金属板の端部に形成された突出部 4 5が嚙み合うこと により金属板 4 1 と配線基板 1 とが一体化されている。
このような構造とすることにより、 金属板を配線基板により精度よく固定でき、 金属板の平坦部に例えばスタンプ等の方法によりマーキングを容易に形成するこ とができる。
さらに、 金属板 4 1 自体を例えば接触接続等の方法により、 配線基板 1の配線 パターン 2 の一部、 すなわち接地パターンに電気的に接続し接地することにより、 マーキングの容易性とともに電磁遮蔽効果をもたせることができ、 外来ノイズに 対する耐性を上げることができる。
配線基板 1の側部端面への凹部 4 2もしくは切り欠き部 4 4の形成方法として は、 例えば、 配線基板を製造する際にグリ ーンシートを 2層ないし 3層等の構造 にし重ね合わせることにより 、 製造できる。 または、 機械的にこれらを形成して ょい 実施例 3 3
実施例 3 3に係る弾性表面波装置について説明する。
まず、 電気的接続部分となる導電性接合部材を配線基板の少なくとも一主面に 形成された配線パターン上に形成した。 配線基板の配線パターン上には Aiめっき を施してある。 この場合の接合部材として、 Aiバンプを用いた。 その後、 配線基 板に対し所定位置に弾性表面波素子を位置決めし、 弾性表面波素子と配線基板と を電気的接続部分を介して所定間隔を維持して組み立てた。 この際に、 素子を加 熱するとともに超音波を併用して接合を行った。 その後、 パッケージと弾性表面 波素子を 1 5 0 °C〜2 0 0 °Cに加熱しながら液状樹脂を弾性表面波素子の上に滴 下して粘性を上げ、 弾性表面波素子の側面に回り込ませて弾性表面波吸収材とし ての効果を持たせ、 さらに、 配線基板にまで達した後に硬化させることによって 弾性表面波素子を包覆し、 弾性表面波素子と配線基板とを弾性表面波素子に設け られたトランスデューサ部と配線基板との間に空隙部を残した構造の弾性表面波 装置を得た。
比較のため、 電気的接合部分である導電性接合部材を、 弾性表面波素子を形成 するウェハーの一主面上にトランスデューサ部およびこのトランスデューサ部に 電気的に接続する配線バタ一ンを複数個形成した後、 該配線バタ一ン上の一部に 超音波併用加熱により形成し、 切断して得た個々の弾性表面波素子を用い、 その 後、 配線基板に対し所定位置に弾性表面波素子を位置決めし、 弾性表面波素子と 配線基板とを電気的接続部分を介して所定間隔を維持して組み立てた。 この際に、 素子を加熱するとともに超音波を併用して接合を行った。 その後、 パッケージと 弾性表面波素子を加熱しながら液状樹脂を弾性表面波素子の上に滴下して粘性を 上げ、 弾性表面波素子の側面に回り込ませて弾性表面波吸収材としての効果を持 たせ、 さらに、 配線基板にまで達した後に硬化させることによって弾性表面波素 子を包覆し、 弾性表面波素子と配線基板とを弾性表面波素子に設けられたトラン スデューサ部と配線基板との間に空隙部を残した構造の弾性表面波装置を得た。 これらに対して 200 の条件で高温放置試験を 100時間課してその後に特性が劣 化した弾性表面波装置の数を比較した。 特性劣化は最小挿入損失の変化が 1 d B 以上の場合と判定した。 結果は、 本発明の弾性表面波装置の製造方法である接合 部材を先に配線基板の配線パターン上に形成した場合には、 特性劣化が 1/ 50で あつたのに対して、 接合部材を先にウェハ一の配線パターン上に形成した比較例 の場合には、 特性劣化が 14/ 50であった。
この結果から明らかなよう に、 電気的接続部分である導電性接合部材を前記配 線基板の少なくとも一主面に形成された配線パターン上に形成した後、 前記素子 と配線基板とを該電気的接続部分を介して所定間隔を維持して組み立てることに より、 弾性表面波素子と電気的接続部分である接合部材との接合の界面に対する 工程中の熱履歴をより少なくできるため、 接合強度を向上でき、 さらに信頼性の 向上をはかることができる。 実施例 3 4、 3 5
図 3 3は実施例 3 4に係る弾性表面波装置の断面図である。 図において、 配線 基板 1 は絶縁性基板例えばセラミック、 ガラス被覆セラミックおよびガラスェポ キシ等の樹脂基板の両表面上に導電性の配線パターン 2が形成されている。 また、 弾性表面波素子 3の一主面にはくし歯型電極パターンからなるトランスデューサ 部 4と、 このトランスデューサ部に電気的に接続する配線パターン 5が形成され ている。 また、 ト ランスデューサ部 4および配線パターン 5 の面は、 配線基板 1 に形成された配線パターン 2とフェースダウンボンディングにより複数の導電性 接合部材例えば金属からなるバンプ 6を介して組み立てられる。 そして、 对向し た上記両配線パターン 2, 5を電気的に接続し、 かつ、 弾性表面波素子 3と配線 基板 1 との間に空隙部 1 0が形成されている。 上記バンプは、 金( Ai) や銀
( ) あるいは:まんだ( Sn系、 Pb系、 I n系等) 等で構成されている。 さらに、 導 電性バンプ 6による弾性表面波素子 3と配線基板 1 との接続部およぴ弹性表面波 素子 3は、 加熱溶融型部材である熱硬化性ビスフエノール A型エポキシ樹脂を主 体とする樹脂部 1 1で包覆されている。 弾性表面波素子 3の他の主面の全面は、 樹脂部 1 1 が包覆されずに露出されている。 なお、 図 3 4の実施例 3 5の如く弾 性表面波素子 3の他の主面の一部の面だけを、 樹脂部 1 1 が包覆されずに露出さ れないよう に構成してもよい。 その場合、 たとえば弾性表面波素子 3 の他の主面 に他の配線パターン電極 4 , を設けたり 、 これらと配線基板 1 の配線パターンと をワイヤボンディング 6 , により接続するよう にしてもよい。 その場合、 ワイヤ ボンディング 6 ' については、 樹脂部 1 1 に包覆されるよう に構成してもよい。 これによりワイヤボンディング 6 ' の機械的強度を高めることができる。 しかし、 ワイヤボンディング 6 ' を露出することも可能である。 実施例 3 6
図 3 5は実施例 3 6に係る水晶振動装置の断面図である。 図において、 配線基 板 1 は絶縁性基板例えばセラミック、 ガラス被覆セラミ ックおよびガラスェポキ シ等の樹脂基板の両表面上に導電性の配線パターン 2が形成されている。また、 水晶振動子 9 0の両面にはそれぞれ電極 9 1 、 9 2が形成されている。 電極 9 1 の面はワイヤボンディング 9 4によって配線基板 1 上の配線パターン 2 に接続さ れている。 また、 電極 9 2 の面は、 配線基板 1 に形成された配線パターン 2 と フェースダウンボンディングにより複数の導電性接合部材例えば金属からなるバ ンプ 6を介して組み立てられる。 そして、 水晶振動子 9 0と配線基板 1 との間に 空隙部 1 0が形成されている。 上記バンプは、 金( Ai) や銀( g) あるいははん だ( Sn系、 Pb系、 I n系等) 等で構成されている。 さらに、 導電性バンプ 6による 弾性表面波素子 3 と配線基板 1 との接続部および弾性表面波素子 3は、 加熱溶融 型部材である熱硬化性ビスフエノール A型エポキシ樹脂を主体とする樹脂部 1 1 で包覆されている。 実施例 3 7
図 3 6は実施例 3 7に係る圧電振動装置の断面図である。 図において、 配線基 板 1 は絶縁性基板例えばセラミック、 ガラス被覆セラミ ックおよびガラスェポキ シ等の樹脂基板の両表面上に導電性の配線パターン 2が形成されている。 また、 圧電素子 9 5の両面にはそれぞれ電極 9 6 、 9 7が形成されている。 電極 9 6の 面はワイヤボンディング 9 4によって配線基板 1上の配線パターン 2に接続され ている。 また、 電極 9 7の面は、 配線基板 1に形成された配線パターン 2と フェースダウンボンディングにより複数の導電性接合部材例えば金属からなるバ ンプ 6を介して組み立てられる。 上記バンプは、 金( Ai) や銀( g) あるいはは んだ( Sn系、 Pb系、 I n系等) 等で構成されている。 さらに、 圧電素子 9 5の上部 には緩衝材 9 8が載置されている。 さらに、 導電性バンプ 6による圧電素子 9 5 と配線基板 1 との接続部は、 加熱溶融型部材である熱硬化性ビスフエノール A型 エポキシ樹脂を主体とする樹脂部 1 1で包覆されている。
このような構成を採用することによって、 圧電素子から発生する波と配線基板 1により反射された波との干渉を低減することができるという効果がある。 実施例 3 8
図 3 7 ( a) は実施例 3 8に係るフォト力ブラの断面図である。 図において、 配線基板 1は絶縁性基板例えばセラミック、 ガラス被覆セラミックおよびガラス エポキシ等の樹脂基板の両表面上に導電性の配線バターン 2が形成されている。 この配線パターン上にフォト力ブラの送光部 9 9および受光部 1 0 0が導電性接 合部材例えば導電性バンプ 6を介して載置され接合されている。 上記バンプは、 金( Αα) や銀( ) あるいははんだ( Sn系、 Pb系、 I n系等) 等で構成されている。 図 3 7 ( b ) に示すよう に、 送光部 9 9および受光部 1 0 0の上部にはコの字状 の絶縁性部材 1 0 1が配置されている。 さらに、 導電性バンプ 6によるフォト力 ブラの送光部 9 9およぴ受光部 1 0 0さらに絶縁性材料 1 0 1 と配線基板 1 との 接続部は、 加熱溶融型部材である熱硬化性ビスフエノール A型エポキシ樹脂を主 体とする樹脂部 1 1で包覆されている。
このような構成を採用することによって、 実装型フォト力ブラを容易に作成す ることができる。 実施例 3 9 図 38 ( a) は実施例 39に係る EP ROMの断面図、 ( b) はその平面図であ る。 図において、 少なく とも紫外線を透過する基板( フィルタが形成されている ものも含む。 ) 例えばガラス基板 1 1 0の両表面上には、 導電性の配線パターン 1 1 1 が形成され、 一方のガラス基板 1 1 0上には、 EP ROM1 14が対向し て配置される。 そして、 対向したガラス基板 1 1 0と EP ROM1 14を電気的 に接続しかつ、 ガラス基板 1 1 0と EP R OM1 1 4 との間に空隙部 1 1 3 を形 成するため、 フェースダウンボンデ'ィングにより複数の導電性接合部材例えば 金属からなるバンプ 1 1 2を介して組み立てられる。 このバンプは、 金( Ai) や 銀( g) あるいははんだ( Sn系、 Pb系、 In系等) 等で構成されている。 さらに、 導電性バンプ 6によるガラス基板 1 1 0と E P R OM1 1 4との接続部およぴ EP ROM1 14は、 エポキシ等の樹脂部 1 1 5で包覆されている。 上記
EP ROM1 14は紫外線により初期化される。 EP ROM1 14の紫外線受光 面とガラス基板 1 1 0とは対向するよう に配置されている。 つまり 、
EP ROM1 14は、 ガラス基板 1 1 0の裏面より透過した紫外線により初期化 される。
このような構成を採用することによって、 実装型 E P R〇Mを容易に作成する ことができる。 実施例 40
図 3 9は実施例 40に係る CCDの断面図である。 図において、 少なく とも可 視光を透過する基板( フィルタが形成されているものも含む。 ) 例えばガラス基 板(ォプティカルフラットな特性を有することが好ましい。 ) 1 1 6 の両表面上 には、 導電性の配線パターン 1 1 1 が形成され、 一方のガラス基板 1 1 6上には、 〇〇0素子1 1 7が対向して配置される。 そして、 対向したガラス基板 1 1 6 と 0じ0素子1 1 7を電気的に接続しかつ、 ガラス基板 1 1 6と CCD素子 1 1 7 との間に空隙部 1 1 3を形成するため、 フェースダウンボンデ'ィングにより複 数の導電性接合部材例えば金属からなるバンプ 1 1 2 を介して組み立てられる。 このバンプは、 金( A や銀( g) あるいははんだ( Sn系、 Pb系、 In系等) 等で 構成されている。 さらに、 導電性バンプ 6によるガラス基板 1 1 6と
C C D 1 1 7との接続部および C C D 1 1 7は、 エポキシ等の樹脂部 1 1 5で包 覆されている。 そして、 上記 C C D 1 1 7の撮像面とガラス基板 1 1 6とは対向 するように配置されている。 つまり 、 〇〇0素子1 1 7は、 ガラス基板 1 1 6の 裏面より撮像光を受光する。
このような構成を採用することによって、 実装型 C C Dを容易に作成すること ができる。
このような基板はカメラや密着型センサ等にも用いることができる。 実施例 4 1
図 4 0は実施例 4 1に係る半導体レーザの断面図である。 図において、 少なく ともレーザ光を透過する基板( フィルタが形成されているものも含む。 ) 例えば ガラス基板 1 1 8の両表面上には、 導電性の配線パターン 1 1 1が形成され、 ガ ラス基板 1 1 6の一方の面には、 半導体レーザ素子 1 1 9が対向して配置される。 そして、 対向したガラス基板 1 1 8と半導体レーザ素子 1 1 9を電気的に接続し かつ、 ガラス基板 1 1 8と半導体レーザ素子 1 1 9 との間に空隙部 1 1 3を形成 するため、 フェースダウンボンデ'ィングにより複数の導電性接合部材例えば金 属からなるバンプ 1 1 2を介して組み立てられる。 このバンプは、 金( Αι) や銀 ( ) あるいははんだ( Sn系、 Pb系、 I n系等) 等で構成されている。 さらに、 導 電性バンプ 6によるガラス基板 1 1 8と半導体レーザ素子 1 1 9との接続部およ び半導体レーザ素子 1 1 9は、 エポキシ等の樹脂部 1 1 5で包覆されている。 そ して、 上記半導体レーザ素子 1 1 9の発光面とガラス基板 1 1 8とは対向するよ うに配置されている。 つまり、 半導体レーザ素子 1 1 9より発光されたレーザ光 は、 ガラス基板 1 1 8を透過して外部に出力される。
このような構成を採用することによって、 実装型半導体レーザを容易に作成す ることができる。
このような基板は半導体レーザに代えて発光ダイオードにも用いることができ る。 実施例 4 2
図 4 1は実施例 4 2に係る弾性表面波装置の製造方法を説明するための図であ る。 図において、 加圧ヘッド 1 2 0にはバンプ 1 2 1が形成された機能素子例え ば弾性表面波素子 1 2 2が真空吸着などの手段により把持される。 その下方では 基板例えば配線基板 1 2 3が受け台 1 2 4上に準備される。 1 2 5は赤外線源で, 1 2 6は反射板である。 赤外線源 1 2 5としてはハロゲンランプなどを用いる。 ハロゲンランプは強烈な赤外線を発するため、 反射板 1 2 6の表面は金メツキな どにより酸化が進行しないよう 工夫しておく。 この状態で赤外線源 1 2 5から発 したエネルギーを弾性表面波素子 1 2 2及び配線基板 1 2 3の接合面に照射し フェースダウンボンディングに必要な温度まで加熱する。 この加熱温度と加熱時 間は機能素子や基板の材質、 形状、 及びバンプの材質などにより異なるが、 例え ば錫を主体としたバンプの場合は 5秒程度でフェースダウンボンディングに必要 な 2 5 0 °C程度まで昇温させることも可能である。 赤外線によりフェースダウン ボンディングが可能な温度になったか否かについては放射温度計などで測定し、 管理するとよい。 所定の温度になった時点で加圧ヘッド 1 2 0を下降させ、 バン プを介して弾性表面波素子 1 2 2を配線基板 1 2 3に加圧すれば、 赤外線により 加熱され溶融したバンプ 1 2 1が配線基板 1 2 3にも結合し、 フェースダウンボ ンデイングが完了する。 通常、 フェースダウンボンディングに必要な温度は数 百。 Cだが、 ハロゲンランプを用いれば、 最高温度としては 8 0 0度程度まで昇温 させることができるため、 超音波振動などによる加熱方法を取る必要はない。 従って、 弾性表面波素子や配線基板に無理な力や振動を与える必要がなく、 弹 性表面波素子等の機能素子の発生は極めて少ない。 実施例 4 3
図 4 2は実施例 4 3を説明するための図である。 この実施例は、 実施例 4 2の 変形例である。 この方法では、 受け台 1 2 4に、 予め、 配線基板 1 2 3とバンプ 1 2 1形成された機能素子例えば弾性表面波素子 1 2 2を位置決め設定しておき、 上方に設けた赤外線源 1 2 5から弾性表面波素子 1 2 2 の背後に赤外線を照射し、 弾性表面波素子 1 2 2を伝わった熱でバンプ 1 2 1を溶融させてフェースダウン ボンディングを行う。 この場合は弾性表面波素子 1 2 2等の機能素子の、 赤外線 源側の表面温度がかなり高くなるため、 機能素子の材質などによっては電気的特 性が劣化する可能性もあるので、 温度管理を十分に行う必要がある。 実施例 4 4
図 4 3は実施例 4 4に係る撮像装置の断面図である。 図に示すように、 円筒状 の筐体 1 2 7内の一方の端部には、 撮像光を取り込むための光学系 1 2 8が配置 されている。 光学系 1 2 8の背後には、 C C D素子 1 2 9が配置されている。 こ の C C D素子 1 2 9は、 例えば実施例 4 0における C C Dが使われる。 C C D素 子 1 2 9は、 その背後に配置された配線基板 1 3 0に接続されている。 配線基板
1 3 0は、 その背後に配置されたカメラケーブル部 1 3 1に接続されている。 力 メラケーブル部 1 3 1を介し筐体 1 2 7の他方の端部より、 ケーブル 1 3 2が引 き出されている。 実施例 4 5
図 4 4は実施例 4 5に係る移動体通信装置の構成を示すブロック図である。 移 動体通信装置としては、 例えば自動車電話や携帯電話等がある。 図に示すように、 アンテナ 1 3 3を介して受信した受信波は、 アンテナ共用器 1 3 4により受信系 に分離される。 分離された受信信号は、 アンプ 1 3 5により増幅された後、 受信 用バンドパスフィルタ 1 3 6により所望の帯域が抽出され、 ミキサ 1 3 7に入力 される。 ミキサ 1 3 7には、 P L L発振器 1 3 8により発振された局発信号が局 発フィルタ 1 3 9を介して入力されている。 ミキサ 1 3 7の出力は、 I Fフィルタ
1 4 0 、 F M復調器 1 4 1を介してスピーカ 1 4 2より受信音として出力される。 —方、 マイク 1 4 3より入力された送話音は、 F M変調器 1 4 5を介してミキサ 1 4 5に入力される。 ミキサ 1 4 5には、 P L L発振器 1 4 6により発振された 局発信号が入力されている。 ミキサ 1 4 5 の出力は、 送信用バンドパスフィルタ 1 4 7、 パワーアンプ 1 4 8およびアンテナ共用器 1 3 5を介してアンテナ 1 3 3より送信波として出力される。
本発明に係る各弾性表面波装置は、 この移動体装置の各部に使用することがで きる。 例えば送信用バンドパスフィルタ 1 4 7、 受信用バンドパスフィルタ 1 3 6、 局発フィルタ 1 3 9およびアンテナ共用器 1 3 4には、 本発明に係る弾 性表面波装置が R F段のフィルタとして使われる。 I Fフィルタ 1 4 0には、 本 発明に係る弾性表面波装置がチャネル選局に不可欠な狭帯域の I F段のフィルタ として使われる。 F M変調器 1 4 4には、 本発明に係る弾性表面波装置が音声の F M変調における弾性表面波共振子として使われる。 実施例 4 6
図 4 5は実施例 4 6に係る V T Rや C A T Vに用いられる R Fモジユレータの 発振回路の回路図である。 図に示す共振子として本発明に係る弾性表面波装置を 用いることができる。 また、 同様に共振子として本発明に係る水晶振動装置( 実 施例 3 6参照) を用いることができる。 以上幾つかの実施例につき説明したが、 本発明は上述した実施例に限定されな い。 たとえば各実施例に記載された事項の組み合わせによる電子部品あるいはそ の製造方法は当然本出願の開示の範囲であるし、 本発明の範囲に含まれる。 産業上の利用可能性
本発明の電子部品およびその製造方法によれば、 成形された薄片状樹脂を用い、 加熱によって溶融し、 更に硬化させることにより、 電子部品を包覆するとともに 配線基板とで、 電子部品を封止するものであるため、 電子部品を簡易構造とでき るほか、 電子部品の電気的特性に悪影響を生じさせず、 かつ容易に樹脂封止でき、 従来の液状樹脂と比べて、 作業時の取扱いも簡単となり 、 生産性向上に寄与する ことができ、 工業的価値は大である。
さらに、 電気的なノイズにも強く、 マーキングも容易であり 、 電子部品の電気 的特性に悪影饗を生じさせず、 かつ容易に樹脂封止でき、 従来の液状樹脂と比べ て、 作業時の取扱いも簡単となり、 生産性向上に寄与することができ、 工業的価 値は大である。
またさらに、 封止用の加熱溶融型部材と弾性表面波素子との間に緩衝材を配置 することにより、 もしくは封止用の加熱溶融型部材としてガラスフィラーを含む 樹脂を用いることにより、 さらには、 接合部材を所定の位置に配置することによ り、 樹脂の硬化や熱膨張差による応力歪みの吸収により信頼性を向上でき、 また、 封止用樹脂の好ましくない浸入を防止でき、 さらに封止による特性への好ましく ない影響を低減することができる。 また、 本発明の電子部品、 弾性表面波装置の 製造方法によれば、 封止用の加熱溶融型部材と機能素子である弾性表面波素子と の間に緩衝材シートの位置決めを容易に行うことができ、 生産性. 信頼性の向上 に寄与することができ、 工業的価値は大である。
さらに、 例えば弾性表面波吸収材を必要とする弾性表面波素子と配線基板との 接合を強固にでき、 適正量の空隙部を形成することができるため、 特性の向上、 生産性' 信頼性の向上に寄与することができ、 工業的価値は大である。
また、 弾性表面波素子の側面部に回り込んだ樹脂が不要な弾性表面波を吸収す る弾性表面波吸収材( 吸音材) としても作用するため、 不要なスプリァスを減衰 させ、 弾性表面波装置としての性能を向上させることができる。 さらに、 液状樹 脂の硬化または低融点ガラスの滴下および固化により配線基板とで弾性表面波素 子を封止できるため、 弾性表面波装置を簡易構造とできるほか、 さらに、 電気的 なノイズにも強く、 マーキングも容易であり 、 表面波伝搬路に悪影響を生じさせ ず、 かつ容易に樹脂封止でき、 従来の液状樹脂を用いた製造方法と比べて、 作業 時の取扱いも簡単となり、 生産性向上に寄与することができ、 工業的価値は大で ある。
さらに、 本発明の電子部品の製造方法によれば、 赤外線により接合面を効率よ く非接触加熱することが可能で、 チップ割れなどの不良品を発生することなく、 安定したボンディングを行う事ができる。
さらに本発明の電子部品によれば、 加熱溶融型部材を封止部材として用い、 力 [1 熱によつて溶融し更に硬化させることにより電子部品を包覆するとともに配線基 板とで電子部品を封止し、 また、 封止用の樹脂として例えば液状樹脂を流し込み、 あるいは滴下して硬化させ接合することにより電子部品を包覆するとともに配線 基板とで電子部品を封止し、 封止用の樹脂が機能素子である弾性表面波素子と配 線基板とで形成される空隙部に流れ込むのを防止するための枠状絶縁部材を必ず しも必要とせず簡易な構造が得られる。 このため、 電子部品の小型化を図ること ができ、 また、 電子部品を高密度で実装することができる。

Claims

請求の範囲
1 . ( a)配線基板の第 1の面と機能素子の第 1の面とを対向配置する工程と、
(b)前記配線基板の第 1の面およぴ または前記機能素子の第 2の面の上方に 加熱溶融型部材を配置する工程と、
( c)前記加熱溶融型部材を加熱溶融し、 少なくとも前記配線基板と前記機能素 子との間に空隙部を残しつつ当該空隙部を封止する工程と
を具備することを特徴とする電子部品の製造方法。
2 . ( a)工程に先立ち、 前記配線基板の第 1の面に前記空隙部を囲むように枠状 部材を配置する工程をさらに有することを特徴とする請求項 1記載の電子部品の 製造方法。
3 . ( c)工程において、 前記機能素子の第 2の面の全面を覆うよう に前記加熱溶 融型部材を加熱溶融することを特徴とする請求項 1記載の電子部品の製造方法。
4 . ( c)工程において、 前記機能素子の第 2の面の全部を露出しつつ前記加熱溶 融型部材を加熱溶融することを特徴とする請求項 1記載の電子部品の製造方法。
5 . ( c)工程において、 前記機能素子の第 2の面の一部を露出しつつ前記加熱溶 融型部材を加熱溶融することを特徴とする請求項 1記載の電子部品の製造方法。
6 . ( a)工程において、 前記配線基板の第 1 の面と前記機能素子の第 1の面とを 導電性接合部材を介して対向配置することを特徴とする請求項 1記載の電子部品 の製造方法。
7 . 前記機能素子が弾性表面波素子であり、
( a)工程において、 前記配線基板の第 1の面の接続パターンと前記弾性表面波 素子の第 1の面の接続バターンとを導電性接合部材を介してフェ一スダウンボン デイング方式により対向配置することを特徴とする請求項 1記載の電子部品の製 造方法。
8 . 前記機能素子が水晶振動子であり 、
( a)工程において、 前記配線基板の第 1 の面の接続パターンと前記水晶振動子 の第 1の面の電極とを導電性接合部材を介してフェースダウンボンディング方式 により対向配置するとともに、 前記配線基板の第 1の面の配線パターンと前記水 晶振動子の第 2の面の電極とを電気的接続手段によつて電気的に接続し、
( a)工程と(b)工程との間に、 前記水晶振動子を囲繞するよう に囲繞部材を前記 配線基板上に配置する工程をさらに有し、
(b)工程において少なくとも前記囲繞部材上に加熱溶融型部材を配置する ことを特徴とする請求項 1記載の電子部品の製造方法。
9 . 前記機能素子が圧電振動子であり、
( a)工程において、 前記配線基板の第 1 の面の接続パターンと前記圧電振動子 の第 1の面の電極とを導電性接合部材を介してフェースダウンボンディング方式 により対向配置するとともに、 前記配線基板の第 1 の面の配線パターンと前記圧 電振動子の第 2の面の電極とを電気的接続手段によつて電気的に接続する ことを特徴とする請求項 1記載の電子部品の製造方法。
1 0 . 前記機能素子が一対の送光部と受光部を有するフォト力ブラであり、
( a)工程において、 前記配線基板の第 1の面の接続パターンと前記フォトカプ ラの各第 1の面の配線パターンとを導電性接合部材を介してフエ一スダウンボン ディング方式により対向配置し、
( a)工程と(b)工程との間に、 前記フォト力ブラを囲繞するよう に囲繞部材を前 記配線基板上に配置する工程をさらに有し、
( b)工程において少なくとも前記囲繞部材上に加熱溶融型部材を配置する ことを特徴とする請求項 1記載の電子部品の製造方法。
1 1 . 前記配線基板が光を透過する基板であり、
前記機能素子が E P R O Mであり、
( a)工程において、 前記配線基板の第 1の面と前記 E P R O Mの受光面とを対 向配置する
ことを特徴とする請求項 1記載の電子部品の製造方法。
1 2 . 前記配線基板が光を透過する基板であり、
前記機能素子が C C Dであり、
( a)工程において、 前記配線基板の第 1の面と前記 C C Dの受光面とを対向配 置する
ことを特徴とする請求項 1記載の電子部品の製造方法。
1 3 . 前記配線基板が光を透過する基板であり 、
前記機能素子が半導体レーザであり 、
( a)工程において、 前記配線基板の第 1の面と前記半導体レーザの発光面とを 対向配置する
ことを特徴とする請求項 1記載の電子部品の製造方法。
1 4 . 前記配線基板が光を透過 る基板であり 、
前記機能素子が発光ダイオードであり、
( a)工程において、 前記配線基板の第 1 の面と前記発光ダイオードの発光面と を対向配置する
ことを特徴とする請求項 1記載の電子部品の製造方法。
1 5 . 前記機能素子がバンプを有し、
( a)工程において機能素子のバンプを配線基板に対して対向配置し、
( a)工程と(b)工程との間に、 前記配線基板および Zまたは前記バンプに対し赤 外線を照射しながら前記配線基板と前記機能素子とを接合する工程と
を有することを特徴とする請求項 1記載の電子部品の製造方法。
1 6 . 前記加熱溶融型部材は樹脂であることを特徴とする請求項 1記載の電子部 品の製造方法。
1 . 前記加熱溶融型部材は熱硬化性樹脂であることを特徴とする請求項 1記載 の電子部品の製造方法。
1 8 . 前記加熱溶融型部材がエポキシ樹脂であることを特徴とする請求項 1記載 の電子部品の製造方法。
1 9 . 前記加熱溶融型部材がフエノール系のエポキシ樹脂であることを特徴とす る請求項 1記載の電子部品の製造方法。
2 0 . 前記加熱溶融型部材がシリコーン樹脂であることを特徴とする請求項 1記 載の電子部品の製造方法。
2 1 . 前記加熱溶融型部材が低融点ガラスであることを特徴とする請求項 1記載 の電子部品の製造方法。
2 2 . 前記加熱溶融型部材が 2 5 0 ° C乃至 4 0 0 0 Cの融点の低融点ガラスで あることを特徴とする請求項 1記載の電子部品の製造方法。
2 3 . 前記加熟溶融型部材が 3 2 0 ° C乃至 3 5 0 ° Cの融点の低融点ガラスで あることを特徴とする請求項 1記載の電子部品の製造方法。
2 4 . 前記加熱溶融型部材が硼珪酸鉛ガラスであることを特徴とする請求項 1記 載の電子部品の製造方法。
2 5 . 前記加熱溶融型部材が硼珪酸鉛ガラス及び硼珪酸ビスマスガラスの少なく とも一種であることを特徴とする請求項 1記載の電子部品の製造方法。
2 6 . ( a)工程の前に、 前記配線基板と前記機能素子との間を仮止めする工程を 有することを特徴とする請求項 1記載の電子部品の製造方法。
2 7 . 前記加熱溶融型部材が前記機能素子の形状より大きく、 かつ、 前記配線基 板とほぼ等しい形状を有することを特徴とする請求項 1記載の電子部品の製造方 法。
2 8 . 前記加熱溶融型部材は粉末原料を冷間庄縮成形して得た材料であることを 特徴とする請求項 1記載の電子部品の製造方法。
2 9 . 加熱溶融前の前記加熱溶融型部材の形状が、 その周辺部を垂下させた形状 のものを用いることを特徴とする請求項 1記載の電子部品の製造方法。
3 0 . ( c)工程において、 複数の加熱工程を含むことを特徴とする請求項 1記載 の電子部品の製造方法。
3 1 . 前記加熱溶融型部材の加熱溶融と、 その硬化温度が 1 0 0〜2 0 0 ° C、 硬化時間が 2 0時間〜 2時間で実施されることを特徴とする請求項 1 6記載の電 子部品の製造方法:
3 2 . 第 1の面および第 2の面を有する配線基板と、
第 1 の面および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向し て配置された機能素子と、
前記配線基板の第 1の面と前記機能素子の第 1の面との間に空隙部を残しつつ 当該空隙部を封止する加熱溶融型部材と を具備することを特徴とする電子部品。
3 3 . 前記配線基板の第 1の面に配置され、 前記空隙部を囲む枠状部材をさらに 有することを特徴とする請求項 3 2記載の電子部品。
3 4 . 前記加熱溶融型部材が、 前記機能素子の第 2の面の全面を覆うよう に配置 されていることを特徴とする請求項 3 2記載の電子部品。
3 5 . 前記加熱溶融型部材が、 前記機能素子の第 2の面の一部を覆うよう に配置 されていることを特徴とする請求項 3 2記載の電子部品。
3 6 . 前記加熱溶融型部材が、 前記機能素子の第 2の面の全面を露出するように 配置されていることを特徴とする請求項 3 2記載の電子部品。
3 7 . 前記配線基板の第 1の面と前記機能素子の第 1の面との間に配置された導 電性接合部材をさらに有することを特徴とする請求項 3 2記載の電子部品。
3 8 . 前記機能素子が弾性表面波素子であり、
前記配線基板の第 1の面の接続パターンと前記弾性表面波素子の第 1の面の接 続パターンとの間をフェースダウンボンディング方式により接合する導電性接合 部材をさらに有することを特徴とする請求項 3 2記載の電子部品。
3 9 . 前記機能素子が水晶振動子であり 、
前記配線基板の第 1の面の接続パターンと前記水晶振動子の第 1の面の電極と の間をフェースダウンボンディング方式により接合する導電性接合部材と、 前記配線基板の第 1の面の配線パターンと前記水晶振動子の第 2の面の電極と を電気的に接続する電気的接続手段とをさらに有することを特徴とする請求項 3 2記載の電子部品。
4 0 . 前記機能素子が圧電振動子であり 、
前記配線基板の第 1の面の接続パターンと前記圧電振動子の第 1の面の電極と の間をフェースダウンボンディング方式により接合する導電性接合部材と、 前記配線基板の第 1の面の配線パターンと前記圧電振動子の第 2の面の電極と を電気的に接続する電気的接続手段とをさらに有することを特徴とする請求項 3 2記載の電子部品。
4 1 . 前記機能素子が一対の送光部と受光部を有するフォト力ブラであり、 前記配線基板の第 1 の面の接続パターンと前記フォト力ブラの各第 1 の面の配 線パターンとの間をフェースダウンボンディング方式により接合する導電性接合 部材と、
前記配線基板の第 1 の面上に配置され、 前記フォト力ブラを囲繞する囲繞部材 とをさらに有し、
前記加熱溶融型部材が少なくとも前記囲繞部材上に配置されていることを特徴 とする請求項 3 2記載の電子部品。
4 2 . 前記配線基板が光を透過する基板であり 、
前記機能素子がその第 1 の面が受光面の E P R O Mであることを特徴とする請 求項 3 2記載の電子部品。
4 3 . 前記配線基板が光を透過する基板であり 、
前記機能素子がその第 1 の面が C C Dであることを特徴とする請求項 3 2記載 の電子部品。
4 4 . 前記配線基板が光を透過する基板であり 、
前記機能素子がその第 1 の面が発光面の半導体レーザであることを特徴とする 請求項 3 2記載の電子部品。
4 5 . 前記配線基板が光を透過する基板であり 、
前記機能素子がその第 1 の面が発光面の発光ダイオードであることを特徴とす る請求項 3 2記載の電子部品。
4 6 . 前記加熱溶融型部材が樹脂であることを特徴とする請求項 3 2記載の電子
4 7 . 前記加熱溶融型部材が熱硬化性樹脂であることを特徴とする請求項 3 2記 載の電子部品。
4 8 . 前記加熱溶融型部材がエポキシ樹脂であることを特徴とする請求項 3 2記 載の電子部品。
4 9 . 前記加熱溶融型部材がフエノール系のエポキシ樹脂であることを特徴とす る請求項 3 2記載の電子部品。
5 0 . 前記加熱溶融型部材がシリ コーン樹脂であることを特徴とする請求項 3 2 記載の電子部
5 1 . 前記加熱溶融型部材は低融点ガラスであることを特徴とする請求項 3 2記 載の電子部品。
5 2 . 前記加熱溶融型部材が 2 5 0 ° C〜4 0 0 ° Cの融点の低融点ガラスであ ることを特徴とする請求項 3 2記載の電子部品。
5 3 . 前記加熱溶融型部材が 3 2 0 ° C乃至 3 5 0 ° Cの融点の低融点ガラスで あることを特徴とする請求項 3 2記載の電子部品。
5 4 . 前記加熱溶融型部材が硼珪酸鉛ガラスであることを特徴とする請求項 3 2 記載の電子部品。
5 5 . 前記加熱溶融型部材が硼珪酸鉛ガラス及び硼珪酸ビスマスガラスの少なく とも一種であることを特徴とする請求項 3 2記載の電子部品。
5 6 . 前記配線基板が、 第 1 の面に形成された第 1 の配線パターンと、 第 2 の面 に形成された第 2の配線バターンと、 当該配線基板の端面に形成され前記第 1の 配線パターンと前記第 2の配線パターンとを接続する第 3の配線パターンとを有 することを特徴とする請求項 3 2記載の電子部 P
叩 c
5 7 . 第 1の面および第 2の面を有し、 少なくとも第 1の面に配線パタ一ンが形 成された配線基板と、
第 1の面および第 2の面を有し、 第 1 の面が前記配線基板の第 1の面と対向し て配置された機能素子と、
前記機能素子の第 2の面に形成された導電性膜と、
前記導電性膜と前記配線基板の配線バターンとの間を導通する導電物質と、 前記配線基板の第 1の面と前記機能素子の第 1の面との間に空隙部を残しつつ 当該空隙部を封止する封止部材と
を具備することを特徴とする電子部品。
5 8 . 第 1の面および第 2の面を有し、 少なくとも第 1の面に配線バタ一ンが形 成された配線基板と、
第 1の面および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向し て配置された機能素子と、 前記機能素子の第 2の面に形成された金属性箔と、
前記金属性箔と前記配線基板の配線パターンとの間を導通する導電手段と、 前記配線基板の第 1の面と前記機能素子の第 1の面との間に空隙部を残しつつ 当該空隙部を封止する封止部材と
を具備することを特徴とする電子部品。
5 9 . 第 1の面および第 2の面を有し、 少なくとも第 1の面に配線パターンが形 成された配線基板と、
第 1の面おょぴ第 2の面を有し、 第 1 の面が前記配線基板の第 1の面と対向し て配置された機能素子と、
前記機能素子の第 2の面に形成された導電性膜と、
前記導電性膜と前記配線基板の配線パターンとの間を導通する磁性体を分散さ せた樹脂と、
前記配線基板の第 1の面と前記機能素子の第 1の面との間に空隙部を残しつつ 当該空隙部を封止する封止部材と
を具備することを特徴とする電子部品。
6 0 . 第 1 の面および第 2の面を有する配線基板と、
第 1の面および第 2の面を有し、 第 1 の面が前記配線基板の第 1の面と対向し て配置された機能素子と、
金属粉末を分散させた樹脂からなり、 前記配線基板の第 1の面と前記機能素子 の第 1の面との間に空隙部を残しつつ当該空隙部を封止する封止部材と
を具備することを特徴とする電子部品。
6 1 . 第 1の面および第 2の面を有する配線基板と、
第 1の面および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向し て配置された機能素子と、
磁性体粉末を分散させた樹脂からなり、 前記配線基板の第 1の面と前記機能素 子の第 1の面との間に空隙部を残しつつ当該空隙部を封止する封止部材と を具備することを特徴とする電子部品。
6 2 . 第 1の面および第 2の面を有する配線基板と、 第 1の面および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向し て配置された機能素子と、
電波吸収体材料を分散させた樹脂からなり、 前記配線基板の第 1の面と前記機 能素子の第 1の面との間に空隙部を残しつつ当該空隙部を封止する封止部材と を具備することを特徴とする電子部品。
6 3 . 第 1の面および第 2の面を有する配線基板と、
第 1の面およぴ第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向し て配置された機能素子と、
導電性フィラーを含有する樹脂からなり 、 前記配線基板の第 1 の面と前記機能 素子の第 1の面との間に空隙部を残しつつ当該空隙部を封止する封止部材と を具備することを特徴とする電子部品。
6 4 . 第 1 の面および第 2 の面を有し、 2個所の端面にそれぞれ凹部が形成され た配線基板と、
第 1の面および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向し て配置された機能素子と、
前記配線基板の第 1の面と前記機能素子の第 1の面との間に空隙部を残しつつ 当該空隙部を封止する封止部材と、
前記配線基板に設けられた各凹部に係合する一対の凸部が 2本の脚部に互いに 対向するよう に設けられ、 前記配線基板の第 1の面および前記機能素子を覆う金 属板と
を具備することを特徴とする電子部品。
6 5 . 第 1の面および第 2の面を有し、 2個所の端面にそれぞれ凹部が形成され、 凹部の内面に配線バターンが形成された配線基板と、
第 1の面および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向し て配置された機能素子と、
前記配線基板の第 1の面と前記機能素子の第 1の面との間に空隙部を残しつつ 当該空隙部を封止する封止部材と、
前記配線基板に設けられた各凹部に係合するとともに凹部内面の各配線バタ一 ンに電気的に導通する一対の凸部が 2本の脚部に互いに対向するよう に設けられ, 前記配線基板の第 1の面および前記機能素子を覆う金属板と
を具備することを特徴とする電子部品。
6 6 . 第 1の面および第 2の面を有し、 2個所の端面にそれぞれ第 1の面側が上 段とされた段付き部が形成された配線基板と、
第 1の面および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向し て配置された機能素子と、
前記配線基板の第 1の面と前記機能素子の第 1 の面との間に空隙部を残しつつ 当該空隙部を封止する封止部材と、
前記配線基板に設けられた各段付き部に係合する一対の突出部が 2本の脚部に 互いに対向するよう に設けられ、 前記配線基板の第 1 の面おょぴ前記機能素子を 覆う金属板と
を具備することを特徴とする電子部品。
6 7 . 第 1 の面および第 2の面を有し、 2個所の端面にそれぞれ第 1 の面側が上 段とされ、 下段面に配線バターンが設けられたた段付き部が形成された配線基板 と、
第 1の面および第 2の面を有し、 第 1 の面が前記配線基板の第 1の面と对向し て配置された機能素子と、
前記配線基板の第 1の面と前記機能素子の第 1 の面との間に空隙部を残しつつ 当該空隙部を封止する封止部材と、
前記配線基板に設けられた各段付き部に係合するととも下段部の各配線バタ一 ンに電気的に接続された一対の突出部が 2本の脚部に互いに対向するように設け られ、 前記配線基板の第 1の面および前記機能素子を覆う金属板と
を具備することを特徴とする電子部品。
6 8 . 第 1 の面および第 2の面を有する配線基板と、
第 1の面および第 2の面を有し、 第 1 の面が前記配線基板の第 1の面と対向し て配置された機能素子と、
前記機能素子の第 2の面に配置された緩衝材と、 前記配線基板の第 1の面と前記機能素子の第 1の面との間に空隙部を残しつつ 当該空隙部を封止する封止部材と
を具備することを特徴とする電子部品。
6 9 . 第 1 の面および第 2の面を有する配線基板と、
第 1の面および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向し て配置された機能素子と、
ガラスフィラーを含有する樹脂からなり 、 前記配線基板の第 1の面と前記機能 素子の第 1の面との間に空隙部を残しつつ当該空隙部を封止する封止部材と を具備することを特徴とする電子部品。
7 0 . 第 1の面および第 2の面を有し、 第 1の面に配線パターンが形成された配 線 ½板と、
第 1の面および第 2の面を有し、 第 1の面に配線パターンが形成され、 第 1の 面が前記配線基板の第 1の面と対向して配置された機能素子と、
前記機能素子の中央都近傍領域に集中して配置され、 前記配線基板の配線パ ターンと前記機能素子の配線バタ一ンとを電気的に接続する接合部材と、 前記配線基板の第 1の面と前記機能素子の第 1の面との間に空隙部を残しつつ 当該空隙部を封止する封止部材と
を具備することを特徴とする電子部品。
7 1 . 第 1の面および第 2の面を有し、 第 1の面に配線バターンが形成された配 線基板と、
第 1 の面および第 2の面を有し、 第 1 の面に配線バターンが形成され、 第 1 の 面が前記配線基板の第 1の面と対向して配置ざれた機能素子と、
前記機能素子の中央部近傍領域に集中して配置され、 前記配線基板の配線パ ターンと前記機能素子の配線パターンとを電気的に接続する第 1の接合部材と、 前記機能素子の周辺部領域に配置され、 前記配線基板の配線パタ一ンと前記機 能素子の配線パターンとの電気的接続に預からない第 2の接合部材と、
前記配線基板の第 1の面と前記機能素子の第 1の面との間に空隙部を残しつつ 当該空隙部を封止する封止部材と を具備することを特徴とする電子部品。
7 2 . 第 1の面および第 2の面を有し、 第 1の面に第 1の厚さの導電材料からな る第 1の配線パターンと第 1の厚さよりも厚い第 2の厚さの導電材料からなる第 2の配線パターンとが形成された配線基板と、
第 1 の面および第 2の面を有し、 第 1 の面に配線バターンが形成され、 第 1 の 面が前記配線基板の第 1の面と対向して配置された機能素子と、
前記配線基板の第 2の配線パターンと前記機能素子の配線パターンとの間に配 置された導電性接合部材と、
前記配線基板の第 1の面と前記機能素子の第 1 の面との間に空隙部を残しつつ 当該空隙部を封止する封止部材と
を具備することを特徴とする電子部品。
7 3 . 第 1の面および第 2の面を有し、 第 1の厚さの基板材料からなる第 1の領 域と第 1の厚さよりも厚い第 2の厚さの基板材料からなる第 2 の領域とを有し、 第 1の面の第 1の領域および第 2の領域に配線パターンとが形成された配線基板 と、
第 1 の面およぴ第 2の面を有し、 第 1 の面に配線バターンが形成され、 第 1の 面が前記配線基板の第 1の面と対向して配置された機能素子と、
前記配線基板の第 2の領域の配線バタ一ンと前記機能素子の配線バターンとの 間に配置された導電性接合部材と、
前記配線基板の第 1の面と前記機能素子の第 1 の面との間に空隙部を残しつつ 当該空隙部を封止する封止部材と
を具備することを特徴とする電子部品。
7 4 . 第 1の面および第 2の面を有し、 第 1の面に配線パタ一ンが形成された配 線基极と、
第 1 の面おょぴ第 2の面を有し、 第 1の面に配線パターンが形成され、 第 1の 面が前記配線基板の第 1の面と対向して配置された機能素子と、
前記配線基板の第 1の面の配線バターンと前記機能素子の第 1の面の配線パタ一 ンとの間に配置され、 これら配線パターン間の間隔に応じてバンプを積み重ねた 導電性接合部材と、
前記配線基板の第 1の面と前記機能素子の第 1の面との間に空隙部を残しつつ 当該空隙部を封止する封止部材と
を具備することを特徴とする電子部品。
7 5 . 第 1の面およぴ第 2の面を有し、 第 1の面に配線パターンが形成された配 線基板と、
第 1 の面および第 2の面を有し、 第 1 の面に配線パターンおよび吸音剤が形成 され、 第 1の面が前記配線基板の第 1の面と対向して配置された弾性表面波素子 である機能素子と、
前記配線基板の配線バターンと前記機能素子の配線バターンとの間に配置され、 前記吸音剤の厚さを超える高さの導電性接合部材と、
前記配線基板の第 1の面と前記機能素子の第 1 の面との間に空隙部を残しつつ 当該空隙部を封止する封止部材と
を具備することを特徴とする電子部品。
7 6 . 第 1 の面および第 2の面を有し、 第 1 の面に配線パターンが形成された配 線基板と、
第 1の面および第 2.の面を有し、 第 1の面に配線パターンが形成され、 第 2の 面に吸音剤が形成され、 第 1の面が前記配線基板の第 1の面と対向して配置され た弾性表面波素子である機能素子と、
前記配線基板の配線バターンと前記機能素子の配線バターンとの間に配置され た導電性接合部材と、
前記配線基板の第 1の面と前記機能素子の第 1の面との間に空隙部を残しつつ 当該空隙部を封止する封止部材と
を具備することを特徴とする電子部品。
7 7 . 第 1 の面および第 2の面を有し、 第 1 の面に配線パターンが形成された配 線基板と、
第 1の面および第 2の面を有し、 第 1の面に配線パターンが形成され、 第 2の 面に吸音剤が形成され、 第 1の面が前記配線基板の第 1 の面と対向して配置され た弾性表面波素子である機能素子と、
前記配線基板の配線パターンと前記機能素子の配線パターンとの間に配置され た導電性接合部材と、
前記機能素子の第 2の面に配置された金属性箔と、
前記配線基板の第 1の面と前記機能素子の第 1の面との間に空隙部を残しつつ 当該空隙部を封止する封止部材と
を具備することを特徴とする電子部品。
7 8 . 前記封止部材が加熱溶融型部材からなることを特徴とする請求項 5 7乃至 7 7記載の電子部品。
7 9 . 前記封止部材が熱硬化性部材からなることを特徴とする請求項 5 7乃至
7 7記載の電子部品。
8 0 . 前記配線基板の第 1の面に配置され、 前記空隙部を囲む枠状部材をさらに 有することを特徴とする請求項 5 7乃至 7 7記載の電子部品。
8 1 . 前記封止部材が、 前記機能素子の第 2の面の全面を覆うよう に配置されて いることを特徴とする請求項 5 7乃至 7 7記載の電子部品。
8 2 . 前記封止部材が、 前記機能素子の第 2の面の一部を覆うよう に配置されて いることを特徴とする請求項 5 7乃至 7 7記載の電子部品。
8 3 . 前記封止部材が、 前記機能素子の第 2の面の全面を露出するよう に配置さ れていることを特徴とする請求項 5 7乃至 7 7記載の電子部品。
8 4 . 前記配線基板の第 1の面と前記機能素子の第 1 の面との間に配置された導 電性接合部材をさらに有することを特徴とする請求項 5 7乃至 6 9記載の電子部
P
8 5 . 前記機能素子が弾性表面波素子であり 、
前記配線基板の第 1の面の接続パターンと前記弾性表面波素子の第 1の面の接 続パターンとの間をフェースダウンボンディング方式により接合する導電性接合 部材をさらに有することを特徴とする請求項 5 7乃至 7 7記載の電子部品。
8 6 . 前記機能素子が水晶振動子であり、
前記配線基板の第 1の面の接続パターンと前記水晶振動子の第 1の面の電極と の間をフェースダウンボンディング方式により接合する導電性接合部材と、 前記配線基板の第 1の面の配線パターンと前記水晶振動子の第 2の面の電極と を電気的に接続する電気的接続手段とをさらに有することを特徴とする請求項 5 7乃至 7 7記載の電子部品。
8 7 . 前記機能素子が圧電振動子であり、
前記配線基板の第 1の面の接続パターンと前記圧電振動子の第 1の面の電極と の間をフェースダウンボンディング方式により接合する導電性接合部材と、 前記配線基板の第 1の面の配線パターンと前記圧電振動子の第 2の面の電極と を電気的に接続する電気的接続手段とをさらに有することを特徴とする請求項 5 7乃至 7 7記載の電子部品。
8 8 . 前記機能素子が一対の送光部と受光部を有するフォトカプラであり、 前記配線基板の第 1の面の接続パターンと前記フォト力ブラの各第 1の面の配 線パターンとの間をフェースダウンボンディング方式により接合する導電性接合 部材と、
前記配線基板の第 1 の面上に配置され、 前記フォト力ブラを囲繞する囲繞部材 とをさらに有し、
前記封止部材が少なくとも前記囲繞部材上に配置されていることを特徴とする 請求項 5 7乃至 7 7記載の電子部品。
8 9 . 前記配線基板が光を透過する基板であり 、
前記機能素子がその第 1の面が受光面の E P R O Mであることを特徴とする請 求項 5 7乃至 7 7記載の電子部品。
9 0 . 前記配線基板が光を透過する基板であり、
前記機能素子がその第 1の面が C C Dであることを特徴とする請求項 5 7乃至 7 7記載の電子部品。
9 1 . 前記配線基板が光を透過する基板であり、
前記機能素子がその第 1の面が発光面の半導体レーザであることを特徴とする 請求項 5 7乃至 7 7記載の電子部品。
9 2 . 前記配線基板が光を透過する基板であり 、 前記機能素子がその第 1 の面が発光面の発光ダイオードであることを特徴とす る請求項 5 7乃至 7 7記載の電子部品。
9 3 . 配線基板の第 1 の面と機能素子の第 1 の面とを対向配置する工程と、 前記機能素子の第 2の面に導電性膜を形成する工程と、
前記導電性膜と前記配線基板の第 1 の面の配線パターンとを導電物質により導 通する工程と、
少なくとも前記配線基板と前記機能素子との間に空隙部を残しつつ当該空隙部 を封止部材により封止する工程と
を具備することを特徴とする電子部品の製造方法。
9 4 . 配線基板の第 1 の面と機能素子の第 1 の面とを対向配置する工程と、 前記機能素子の第 2の面に金属性箔を配置する工程と、
前記金属性箔と前記配線基板の第 1 の面の配線バターンとを導電手段により導 通する工程と、
少なく とも前記配線基板と前記機能素子との間に空隙部を残しつつ当該空隙部 を封止部材により封止する工程と
を具備することを特徴とする電子部品の製造方法。
9 5 . 配線基板の第 1の面と機能素子の第 1 の面とを対向配置する工程と、 前記機能素子の第 2の面に導電性膜を形成する工程と、
前記導電性膜と前記配線基板の第 1 の面の配線バターンとを磁性体を分散させ た樹脂により導通する工程と、
少なくとも前記配線基板と前記機能素子との間に空隙部を残しつつ当該空隙部 を封止部材により封止する工程と
を具備することを特徴とする電子部品の製造方法。
9 6 . 配線基板の第 1 の面と機能素子の第 1 の面とを対向配置する工程と、 少なくとも前記配線基板と前記機能素子との間に空隙部を残しつつ当該空隙部 を金属粉末を分散させた樹脂からなる封止部材により封止する工程と
を具備することを特徴とする電子部品の製造方法。
9 7 . 配線基板の第 1 の面と機能素子の第 1 の面とを対向配置する工程と、 少なくとも前記配線基板と前記機能素子との間に空隙部を残しつつ当該空隙部 を磁性体粉末を分散させた樹脂からなる封止部材により封止する工程と
を具備することを特徴とする電子部品の製造方法。
9 8 . 配線基板の第 1の面と機能素子の第 1の面とを対向配置する工程と、 少なくとも前記配線基板と前記機能素子との間に空隙部を残しつつ当該空隙部 を電波吸収体材料を分散させた樹脂からなる封止部材により封止する工程と を具備することを特徴とする電子部品の製造方法。
9 9 . 配線基板の第 1の面と機能素子の第 1 の面とを対向配置する工程と、 少なくとも前記配線基板と前記機能素子との間に空隙部を残しつつ当該空隙部 を導電性フィラーを含有する樹脂からなる封止部材により封止する工程と を具備することを特徴とする電子部品の製造方法。
1 0 0 . 配線基板の第 1の面と機能素子の第 1の面とを対向配置する工程と、 少なくとも前記配線基板と前記機能素子との間に空隙部を残しつつ当該空隙部 を封止部材により封止する工程と、
前記配線基板の 2個所の端面に設けられた各凹部に金属板の 2本の脚部に対向 するように設けられた一対の凸部をそれぞれ係合し、 前記金属板により前記配線 基板の第 1の面および前記機能素子を覆う 工程と
を具備することを特徴とする電子部品の製造方法。
1 0 1 . 配線基板の第 1の面と機能素子の第 1 の面とを対向配置する工程と、 少なくとも前記配線基板と前記機能素子との間に空隙部を残しつつ当該空隙部 を封止部材により封止する工程と、
前記配線基板の 2個所の端面に設けられた各凹部に金属板の 2本の脚部に対向 するよう に設けられた一対の凸部をそれぞれ係合するとともに、 前記凹部の内面 に設けられた配線バターンと前記凸部の先端に設けられた配線バタ一ンとを電気 的に接続し、 前記金属板により前記配線基板の第 1の面および前記機能素子を覆 う 工程と
を具備することを特徴とする電子部品の製造方法。
1 0 2 . 配線基板の第 1の面と機能素子の第 1 の面とを対向配置する工程と、 少なくとも前記配線基板と前記機能素子との間に空隙部を残しつつ当該空隙部 を封止部材により封止する工程と、
前記配線基板の 2個所の端面に第 1 の面側が上段となるよう に設けられた各段 付き部に金属板の 2本の脚部に対向するよう に設けられた一対の突出部をそれぞ れ係合し、 前記金属板により前記配線基板の第 1の面および前記機能素子を覆う 工程と
を具備することを特徴とする電子部品の製造方法。
1 0 3 . 配線基板の第 1の面と機能素子の第 1の面とを対向配置する工程と、 少なくとも前記配線基板と前記機能素子との間に空隙部を残しつつ当該空隙部 を封止部材により封止する工程と、
前記配線基板の 2個所の端面に第 1 の面側が上段となるよう に設けられた各段 付き部に金属板の 2本の脚部に対向するよう に設けられた一対の突出部をそれぞ れ係合するとともに、 前記端面の下段面に設けられた配線パターンと前記突出部 の先端に設けられた配線パターンとを電気的に接続し、 前記金属板により前記配 線基板の第 1の面おょぴ前記機能素子を覆う 工程と
を具備することを特徴とする電子部品の製造方法。
1 0 4 . 配線基板の第 1 の面と機能素子の第 1 の面とを対向配置する工程と、 前記機能素子の第 2の面に緩衝材を配置する工程と、
少なくとも前記配線基板と前記機能素子との間に空隙部を残しつつ当該空隙部 を封止部材により封止する工程と
を具備することを特徴とする電子部品の製造方法。
1 0 5 . 配線基板の第 1の面と機能素子の第 1の面とを対向配置する工程と、 少なくとも前記配線基板と前記機能素子との間に空隙部を残しつつ当該空隙部 をガラスフイラ一を含有する樹脂からなる封止部材により封止する工程と を具備することを特徴とする電子部品の製造方法。
1 0 6 . 配線基板の配線パターンと機能素子の配線パターンとを電気的に接続す る接合部材を機能素子の中央部近傍領域に配置しつつ、 配線基板の第 1の面と機 能素子の第 1の面とを対向配置する工程と、 少なくとも前記配線基板と前記機能素子との間に空隙部を残しつつ当該空隙部 を封止部材により封止する工程と
を具備することを特徴とする電子部品の製造方法。
1 0 7 . 配線基板の配線パターンと機能素子の配線パターンとを電気的に接続す る第 1の接合部材を機能素子の中央部近傍領域に集中的に配置し、 かつ配線基板 の配線バターンと機能素子の配線バターンとの電気的接続に預からない第 2の接 合部材を機能素子の周辺部領域に配置しつつ、 配線基板の第 1 の面と機能素子の 第 1の面とを対向配置する工程と、
少なくとも前記配線基板と前記機能素子との間に空隙部を残しつつ当該空隙部 を封止部材により封止する工程と
を具備することを特徴とする電子部品の製造方法。
1 0 8 . 第 1 の面に第 1 の厚さの導電材料からなる第 1 の配線パターンと第 1の 厚さよりも厚い第 2の厚さの導電材料からなる第 2の配線バタ一ンとが形成され た配線基板の第 1の面と機能素子の第 1 の面とを、 前記配線基板の第 2の配線パ ターンと前記機能素子の配線バターンとの間に導電性接合部材を介在させつつ対 向配置する工程と、
少なくとも前記配線基板と前記機能素子との間に空隙部を残しつつ当該空隙部 を封止部材により封止する工程と
を具備することを特徴とする電子部品の製造方法。
1 0 9 . 第 1の厚さの基板材料からなる第 1の領域と第 1の厚さよりも厚い第 2 の厚さの基板材料からなる第 2の領域とを有し、 第 1 の面の第 1 の領域および第 2の領域に配線パターンとが形成された配線基板の第 1 の面と機能素子の第 1の 面とを、 前記配線基板の第 2の領域の配線パターンと前記機能素子の配線パター ンとの間に導電性接合部材を介在させつつ対向配置する工程と、
少なくとも前記配線基板と前記機能素子との間に空隙部を残しつつ当該空隙部 を封止部材により封止する工程と
を具備することを特徴とする電子部品の製造方法。
1 1 0 . 配線基板の第 1 の面と機能素子の第 1 の面とを、 前記配線基板の第 1の 面の配線バターンと前記機能素子の第 1の面の配線バターンとの間の間隔に応じ てバンプを積み重ねた導電性接合部材を介在させつつ対向配置する工程と、 少なくとも前記配線基板と前記機能素子との間に空隙部を残しつつ当該空隙部 を封止部材により封止する工程と
を具備することを特徴とする電子部品の製造方法。
1 1 1 . 配線基板の第 1の面と第 1 の面に吸音剤が形成された弾性表面波素子で ある機能素子の第 1の面とを、 前記吸音剤の厚さを超える高さの導電性接合部材 を介在させつつ対向配置する工程と、
少なくとも前記配線基板と前記機能素子との間に空隙部を残しつつ当該空隙部 を封止部材により封止する工程と
を具備することを特徴とする電子部品の製造方法。
1 1 2 . 配線基板の第 1の面と弾性表面波素子である機能素子の第 1の面とを、 導電性接合部材を介在させつつ対向配置する工程と、
前記機能素子の第 2の面に吸音剤を形成する工程と、
少なくとも前記配線基板と前記機能素子との間に空隙部を残しつつ当該空隙部 を封止部材により封止する工程と
を具備することを特徴とする電子部品の製造方法。
1 1 3 . 配線基板の第 1 の面と弾性表面波素子である機能素子の第 1の面とを、 導電性接合部材を介在させつつ対向配置する工程と、
前記機能素子の第 2の面に吸音剤を形成する工程と、
前記機能素子の第 2の面に金属性箔を配置する工程と、
少なくとも前記配線基板と前記機能素子との間に空隙部を残しつつ当該空隙部 を封止部材により封止する工程と
を具備することを特徴とする電子部品の製造方法。
1 1 4 . 前記封止部材が加熱溶融型部材からなり、
前記封止工程が、
前記配線基板の第 1の面およびノまたは前記機能素子の第 2の面の上方に加熱 溶融型部材を配置する工程と、 前記加熱溶融型部材を加熱溶融し、 少なくとも前記配線基板と前記機能素子と の間に空隙部を残しつつ当該空隙部を封止する工程と
を具備することを特徴とする請求項 9 3乃至 1 1 3記載の電子部品の製造方 法。
1 1 5 . 前記封止部材が熱硬化性部材からなり、
前記封止工程が、
前記配線基板の第 1の面および または前記機能素子の第 2の面の上方より液 状の前記熱硬化性部材を所定の位置に流し込む工程と、
前記流し込んだ熱硬化性部材を加熱硬化し、 少なくとも前記配線基板と前記機 能素子との間に空隙部を残しつつ当該空隙部を封止する工程と
を具備することを特徴とする請求項 9 3乃至 1 1 3記載の電子部品の製造方 法。
1 1 6 . 前記封止部材が熱硬化性部材からなり 、
前記封止工程が、
前記配線基板の第 1の面および/または前記機能素子の第 2の面の上方より液 状の前記熱硬化性部材を所定の位置に滴下しつつ加熱硬化し、 少なくとも前記配 線基板と前記機能素子との間に空隙部を残しつつ当該空隙部を封止する工程と を具備することを特徴とする請求項 9 3乃至 1 1 3記載の電子部品の製造方 法。
1 1 7 . 対向配置工程に先立ち、 前記配線基板の第 1の面に前記空隙部を囲むよ うに枠状部材を配置する工程をさらに有することを特徴とする請求項 9 3乃至
1 1 3記載の電子部品の製造方法。
1 1 8 . 封止工程において、 前記機能素子の第 2の面の全面を覆うよう に前記封 i部材を形成することを特徴とする請求項 9 3乃至 1 1 3記載の電子部品の製造 方法。
1 1 9 . 封止工程において、 前記機能素子の第 2の面の全部を露出しつつ前記封 止部材を形成することを特徴とする請求項 9 3乃至 1 1 3記載の電子部品の製造 方法。
1 2 0 . 封止工程において、 前記機能素子の第 2の面の一部を露出しつつ前記封 止部材を形成することを特徴とする請求項 9 3乃至 1 1 3記載の電子部品の製造 方法。
1 2 1 . 対向配置工程において、 前記配線基板の第 1 の面と前記機能素子の第 1 の面とを導電性接合部材を介して対向配置することを特徴とする請求項 9 3乃至 1 1 3記載の電子部品の製造方法。
1 2 2 . 前記機能素子が弾性表面波素子であり 、
対向配置工程において、 前記配線基板の第 1 の面の接続パターンと前記弾性表 面波素子の第 1の面の接続パターンとを導電性接合部材を介してフェースダウン ボンディング方式により対向配置することを特徴とする請求項 9 3乃至 1 1 3記 載の電子部品の製造方法。
1 2 3 . 前記機能素子が水晶振動子であり 、
対向配置工程において、 前記配線基板の第 1 の面の接続パターンと前記水晶振 動子の第 1の面の電極とを導電性接合部材を介してフェースダウンボンディング 方式により対向配置するとともに、 前記配線基板の第 1 の面の配線パターンと前 記水晶振動子の第 2の面の電極とを電気的接続手段によって電気的に接続し、 その後、 前記水晶振動子を囲繞するよう に囲繞部材を前記配線基板上に配置す る工程をさらに有する
ことを特徴とする請求項 9 3乃至 1 1 3記載の電子部品の製造方法。
1 2 4 . 前記機能素子が圧電振動子であり、
対向配置工程において、 前記配線基板の第 1 の面の接続パターンと前記圧電振 動子の第 1の面の電極とを導電性接合部材を介してフェースダウンボンディング 方式により対向配置するとともに、 前記配線基板の第 1 の面の配線パターンと前 記圧電振動子の第 2の面の電極とを電気的接続手段によって電気的に接続する ことを特徴とする請求項 9 3乃至 1 1 3記載の電子部品の製造方法。
1 2 5 . 前記機能素子が一対の送光部と受光部を有するフォト力ブラであり 、 対向配置工程において、 前記配線基板の第 1 の面の接続パターンと前記フォト 力ブラの各第 1の面の配線パターンとを導電性接合部材を介してフェースダウン ボンディング方式により対向配置し、
その後、 前記フォト力ブラを囲繞するよう に囲繞部材を前記配線基板上に配置 する工程をさらに有する
ことを特徴とする請求項 93乃至 1 13記載の電子部品の製造方法。
126. 前記配線基板が光を透過する基板であり、
前記機能素子が E PRO Mであり、
対向配置工程において、 前記配線基板の第 1の面と前記 EP ROMの受光面と を対向配置する
ことを特徴とする請求項 93乃至 1 13記載の電子部品の製造方法。
127. 前記配線基板が光を透過する基板であり、
前記機能素子が CCDであり、
対向配置工程において、 前記配線基板の第 1 の面と前記 CCDの受光面とを対 向配置する
ことを特徴とする請求項 93乃至 1 13記載の電子部品の製造方法。
128. 前記配線基板が光を透過する基板であり、
前記機能素子が半導体レーザであり、
対向配置工程において、 前記配線基板の第 1の面と前記半導体レーザの発光面 とを対向配置する
ことを特徴とする請求項 93乃至 1 13記載の電子部品の製造方法。
129. 前記配線基板が光を透過する基板であり、
前記機能素子が発光ダイオードであり 、
対向配置工程において、 前記配線基板の第 1 の面と前記発光ダイオードの発光 面とを対向配置する
ことを特徴とする請求項 93乃至 1 13記載の電子部品の製造方法。
130. 前記機能素子がバンプを有し、
対向配置工程において機能素子のバンプを配線基板に対して対向配置し、 その後、 前記配線基板および/または前記バンプに対し赤外線を照射しながら 前記配線基板と前記機能素子とを接合する工程をさらに有することを特徴とする 請求項 9 3乃至 1 1 3記載の電子部品の製造方法。
1 3 1 . 複数個の配線基板の集合体に対し所定位置に複数の機能素子を位置決め する工程と、
前記機能素子と前記配線基板の集合体とを導電性接合部材を介して所定間隔を 維持して組立てる工程と、
前記配線基板およぴ前記機能素子の集合体に対し加熱溶融型部材を配置するェ 程と、
前記配線基板と前記機能素子との間に空隙部を残しつつ前記加熱溶融型部材を 加熱溶融する工程と、
前記複数個の配線基板の集合体を前記加熱溶融型部材とともに分割して個々の 電子部品を得る工程と
を具備することを特徴とする電子部品の製造方法。
1 3 2 . 配線基板に対し所定位置に機能素子を位置決めする工程と、
前記機能素子と前記配線基板とを導電性接合部材を介して所定間隔を維持して 組み立てる工程と、
前記配線基板に対し加熱溶融型部材を配置する工程と、
前記配線基板と前記機能素子との間に空隙部を残しつつ前記加熱溶融型部材を 加熱溶融する工程とを具備し、
前記加熱溶融型部材が加熱溶融型薄片状樹脂であって、
前記薄片状樹脂の加熱溶融、 硬化に係る工程は少なくとも、
( 1 ) 薄片状樹脂の加熱溶融により樹脂形状を決める段階、
( 2 ) 樹脂形状を維持しながらゲル化状態に移行する段階、
( 3 ) 樹脂の硬化を行う段階、 を含み、
かつ( 2 ) の工程温度が( 1 ) または( 3 ) より低いことを特徴とする電子部 品の製造方法。
1 3 3 . 配線基板に対し所定位置に弾性表面波素子を位置決めする工程と、 前記弾性表面波素子と前記配線基板とを導電性接合部材を介して所定間隔を維 持して組み立てる工程と、 前記配線基板に対し加熱溶融型部材を配置する工程と、
前記配線基板と前記弾性表面波素子との間に空隙部を残しつつ前記加熱溶融型 部材を加熱溶融する工程とを具備し、
前記弾性表面波素子を構成する圧電体から成るゥェハーの一主面上にトランス デューサ部およぴこのトランスデューサ部に電気的に接続する配線バタ一ンを複 数個形成し、 該配線パターン上の一部に複数の接合部材を形成した後、 切断して 個々の弾性表面波素子を形成する際に、 切断時のブレードの速さが毎秒 lOraii ^上 50ran^下であることを特徴とする電子部品の製造方法。
1 3 4 . 配線基板に対し所定位置に弾性表面波素子を位置決めする工程と、 前記弾性表面波素子と前記配線基板とを導電性接合部材を介して所定間隔を維 持して組み立てる工程と、
前記配線基板に対し加熟溶融型部材を配置する工程と、
前記配線基板と前記弾性表面波素子との間に空隙部を残しつつ前記加熱溶融型 部材を加熱溶融する工程とを具備し、
前記弾性表面波素子を構成する圧電体から成るゥェハーの一主面上にトランス デューサ部およびこのトランスデューサ部に電気的に接続する配線バタ一ンを複 数個形成し、 該配線パターン上の一部に複数の接合部材を形成した後、 切断して 個々の弾性表面波素子を形成する際に、 切断時に使用する水の比抵抗が 0 . 0 1 M Q c m以上 1 0 0 Μ Ω ο m以下であることを特徴とする電子部品の製造方 法。
1 3 5 . 配線基板に対し所定位置に機能素子を位置決めする工程と、
前記機能素子と前記配線基板とを導電性接合部材を介して所定間隔を維持して 組み立てる工程と、
前記配線基板に対し加熱溶融型部材を配置する工程と、
前記配線基板と前記機能素子との間に空隙部を残しつつ前記加熱溶融型部材を 加熟溶融する工程とを具備し、
前記導電性接合部材を前記配線基板の少なくとも一主面に形成された配線パ ターン上に形成した後、 前記機能素子と前記配線基板とを該導電性接合部材を介 して所定間隔を維持して組み立てることを特徴とする電子部品の製造方法。
1 36 . 基板上にフェースダウンボンディング方式により搭載される機能素子に おいて、
前記基板と電気的に接続される複数の接続端子が、 当該機能素子の一主面のほ ぼ中央に集中して配置されていることを特徴とする機能素子。
137 . 前記機能素子が比較的細長い形状であることを特徴とする請求項 1 36 記載の機能素子。
138 . 前記機能素子が弾性表面波素子であることを特徴とする請求項 1 3 6ま たは 1 3 7記載の機能素子。
1 39 . 圧電性基板と、
前記圧電性基板上に形成された複数対の櫛歯状電極と、
前記圧電性基板のほぼ中央に集中して設けられた外部接続端子群と
を具備することを特徴とする弾性表面波素子。
140. 前記圧電性基板上に前記櫛歯状電極を挟むよう に形成された吸音剤をさ らに具備することを特徴とする請求項 1 3 9記載の弾性表面波素子。
14 1 . 前記圧電性基板上の両側に、 外部との接続に預からない電極パッドが設 けられていることを特徴とする請求項 1 3 9または 1 40記載の弾性表面波素 子。
142 . 前記外部接続端子群が、 前記櫛歯状電極に延在して電気的に接続される 外部接続端子を有することを特徴とする請求項 1 39乃至 14 1記載の弾性表面 波素子。
143 . 撮像光を入光する光学系と、
第 1 の面および第 2の面を有する配線基板と、 第 1 の面および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向して配置された CCD素子と、 前記配 線基板の第 1の面と前記 CCD素子の第 1 の面との間に空隙部を残しつつ当該空 隙部を封止する加熱溶融型部材とを具備し、 前記光学系から入光した撮像光を光 電変換する CCDと
を具備することを特徴とする撮像装置。
1 4 4 . 無線周波数帯域におけるバンドパスフィルタとして、
第 1 の面および第 2の面を有する配線基板と、 第 1 の面および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向して配置された弾性表面波素子と、 前 記配線基板の第 1の面と前記弾性表面波素子の第 1の面との間に空隙部を残しつ つ当該空隙部を封止する加熱溶融型部材と具備した弾性表面波フィルタを用いた ことを特徴とする移動体通信装置。
1 4 5 . 中間周波数帯域におけるバンドパスフィルタとして、
第 1 の面および第 2の面を有する配線基板と、 第 1 の面および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向して配置された弾性表面波素子と、 前 記配線基板の第 1の面と前記弾性表面波素子の第 1の面との間に空隙部を残しつ つ当該空隙部を封止する加熱溶融型部材と具備した弾性表面波フィルタを用いた ことを特徴とする移動体通信装置。
1 4 6 . F M変調器の発振器として、
第 1 の面および第 2の面を有する配線基板と、 第 1 の面および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向して配置された弾性表面波素子と、 前 記配線基板の第 1の面と前記弾性表面波素子の第 1の面との間に空隙部を残しつ つ当該空隙部を封止する加熱溶融型部材と具備した弾性表面波共振子を用いたこ とを特徴とする移動体通信装置。
1 4 7 . R Fモジユレータの発振回路に、
第 1 の面および第 2の面を有する配線基板と、 第 1 の面および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向して配置された弾性表面波素子と、 前 記配線基板の第 1の面と前記弾性表面波素子の第 1の面との間に空隙部を残しつ つ当該空隙部を封止する加熱溶融型部材と具備した弾性表面波共振子を用いたこ とを特徴とする発振回路。
1 4 8 . R Fモジユレータの発振回路に、
第 1の面および第 2の面を有する配線基板と、 第 1 の面および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向して配置された水晶振動子と、 前記配 線基板の第 1の面の接続パターンと前記水晶振動子の第 1の面の電極との間を フェースダウンボンディング方式により接合する導電性接合部材と、
前記配線基板の第 1の面の配線パターンと前記水晶振動子の第 2の面の電極と を電気的に接続する電気的接続手段と、
前記配線基板の第 1の面と前記水晶振動子の第 1の面との間に空隙部を残しつ つ当該空隙部を封止する加熱溶融型部材と具備した水晶振動部品を用いたことを 特徴とする発振回路。
1 4 9 . ( a)配線基板の第 1の面と機能素子の第 1の面とを対向配置する工程 と、
(b)前記配線基板の第 1の面および/または前記機能素子の第 2の面の上方よ り液状の熱硬化性部材を所定の位置に流し込む工程と、
( c)前記流し込んだ熱硬化性部材を加熱硬化し、 少なくとも前記配線基板と前 記機能素子との間に空隙部を残しつつ当該空隙部を封止する工程と
を具備することを特徴とする電子部品の製造方法。
1 5 0 . ( a)配線基板の第 1の面と機能素子の第 1の面とを対向配置する工程 と、
(b)前記配線基板の第 1の面および Zまたは前記機能素子の第 2の面の上方よ り液状の熱硬化性部材を所定の位置に滴下しつつ加熱硬化し、 少なくとも前記配 線 板と目 U記
機能素子との間に空隙部を残しつつ当該空隙部を封止する工程と
を具備することを特徴とする電子部品の製造方法。
1 5 1 . 配線基板に対し所定位置に機能素子を位置決めする工程と、
前記機能素子と前記配線基板とを導電性接合部材を介して所定間隔を維持して 組み立てる工程と、
前記配線基板に対し加熱溶融型部材を配置する工程と、
前記配線基板と前記機能素子との間に空隙部を残しつつ前記加熱溶融型部材を 加熱溶融する工程と、 加熱溶融させた前記加熱溶融型部材を硬化させる工程とを 具備し、
前記導電性接合部材を前記配線基板の少なくとも一主面に形成された配線パ ターン上に形成した後、 前記機能素子と前記配線基板とを該導電性接合部材を介 して所定間隔を維持して組み立てることを特徴とする電子部品の製造方法。
1 5 2 . (a)配線基板の第 1の面と機能素子の第 1の面とを対向配置する工程
(b)前記配線基板の第 1の面および Zまたは前記機能素子の第 2の面の上方に 加熱溶融型部材を配置する工程と、
(c)前記加熱溶融型部材を加熱溶融し、 少なくとも前記配線基板と前記機能素 子との間に第 1の空隙部を残しかつ前記機能素子の第 2の面と前記加熱溶融型部 材との間に第 2の空隙部を残しつつ前記第 1の空隙部を封止する工程と
を具備することを特徴とする電子部品の製造方法。
1 5 3 . 第 1の面および第 2の面を有する配線基板と、
第 1の面おょぴ第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向し て配置された機能素子と、
前記配線基板の第 1の面と前記機能素子の第 1の面との間に第 1の空隙部を残 しかつ前記機能素子の第 2の面と前記加熱溶融型部材との間に第 2の空隙部を残 しつつ前記第 1 の空隙部を封止する加熱溶融型部材と
を具備することを特徴とする電子部品。
1 5 4 . ( a)配線基板の第 1の面と機能素子の第 1の面とを対向配置する工程 と、
( b)凹状の加熱溶融型部材の底面に熱硬化型緩衝材を塗布する工程と、
(c)前記配線基板の第 1の面および Zまたは前記機能素子の第 2の面の上方に 前記加熱溶融型部材を前記熱硬化型緩衝材を介在させながら配置する工程と、
( d)前記加熱溶融型部材を加熱溶融し、 少なくとも前記配線基板と前記機能素 子との間に空隙部を残しつつ当該空隙部を封止する工程と
を具備することを特徴とする電子部品の製造方法。
1 5 5 . 前記熱硬化型緩衝材が液状シリコーンであることを特徴とする請求項 1 5 4記載の電子部品の製造方法。
1 5 6 . 第 1 の面および第 2の面を有する配線基板と、 第 1の面および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向し て配置された機能素子と、
前記配線基板の第 1の面と前記機能素子の第 1の面との間に第 1の空隙部を残 しかつ前記機能素子の第 2の面と前記加熱溶融型部材との間に第 2の空隙部を残 'しつつ前記第 1の空隙部を封止する加熱溶融型部材と、
前記機能素子の第 2の面と前記加熱溶融型部材との間に介在された熱硬化型緩 衝材と
を具備することを特徴とする電子部品。
1 5 7 . 前記熱硬化型緩衝材が液状シリコーンであることを特徴とする請求項 1 5 6載の電子部品。
1 5 8 . 前記加熱溶融型部材に前記機能素子に対する位置決め手段が講じられて いることを特徴とする請求項 1記載の電子部品の製造方法。
1 5 9 . 前記加熱溶融型部材の形状が前記機能素子に対し周辺部が垂下形状を有 することを特徴とする請求項 1 5 8記載の電子部品の製造方法。
1 6 0 . ( a)配線基板の第 1の面と機能素子の第 1 の面とを対向配置する工程 と、
(b)前記機能素子の第 2の面に第 1の充填密度を有する緩衝材を配置する工程
( c)前記配線基板の第 1の面およびノまたは前記機能素子の第 2の面の上方に 前記第 1 の充填密度より大きい第 2の充填密度を有する封止部材を配置する工程 と、
( d)前記封止部材により少なくとも前記配線基板と前記機能素子との間に空隙 部を残しつつ当該空隙部を封止する工程と
を具備することを特徴とする電子部品の製造方法。
1 6 1 . ( a)配線基板の第 1の面と機能素子の第 1の面とを対向配置する工程 と、
(b)前記機能素子の第 2の面に第 1および第 2の充填密度を有する緩衝材を重 ねて配置する工程と、 (c)前記配線基板の第 1の面おょぴノまたは前記機能素子の第 2の面の上方に 前記第 1および第 2の充填密度より大きい第 3の充填密度を有する封止部材を配 置する工程と、
(d)前記封止部材により少なくとも前記配線基板と前記機能素子との間に空隙 部を残しつつ当該空隙部を封止する工程と
を具備することを特徴とする電子部品の製造方法。
1 6 2 . 第 1の面および第 2の面を有する配線基板と、
第 1の面および第 2の面を有し、 第 1の面が前記配線基板の第 1の面と対向し て配置された機能素子と、
前記配線基板の第 1の面と前記機能素子の第 1の面との間に空隙部を残しつつ 当該空隙部を封止する加熱溶融型部材と、
前記機能素子と前記加熱溶融型部材との関係において前記機能素子の変形を防 止する変形防止手段と
を具備することを特徴とする電子部品。
1 6 3 . 前記変形防止手段が前記機能素子と前記加熱溶融型部材との間に配置さ れた緩衝材であることを特徴とする請求項 1 6 2記載の電子部品。
1 6 4 . 前記変形防止手段が前記機能素子と前記加熱溶融型部材との間に設けら れた空隙であることを特徴とする請求項 1 6 2記載の電子部品。
1 6 5 . 前記変形防止手段が前記加熱溶融型部材に含有された多数の気泡である ことを特徴とする請求項 1 6 2記載の電子部品。
PCT/JP1996/001492 1995-06-30 1996-05-31 Composant electronique et son procede de fabrication WO1997002596A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1019970709809A KR19990028493A (ko) 1995-06-30 1996-05-31 전자부품 및 그 제조방법
US08/973,858 US6262513B1 (en) 1995-06-30 1996-05-31 Electronic component and method of production thereof
JP50497697A JP3825475B2 (ja) 1995-06-30 1996-05-31 電子部品の製造方法
EP96920032A EP0840369A4 (en) 1995-06-30 1996-05-31 ELECTRONIC COMPONENT AND ITS MANUFACTURING METHOD
US09/772,859 US6754950B2 (en) 1995-06-30 2001-01-31 Electronic component and method of production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/164379 1995-06-30
JP16437995 1995-06-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US08/973,858 A-371-Of-International US6262513B1 (en) 1995-06-30 1996-05-31 Electronic component and method of production thereof
US09/774,047 Division US6628043B2 (en) 1995-06-30 2001-01-31 Electronic component and method of production thereof

Publications (1)

Publication Number Publication Date
WO1997002596A1 true WO1997002596A1 (fr) 1997-01-23

Family

ID=15792014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/001492 WO1997002596A1 (fr) 1995-06-30 1996-05-31 Composant electronique et son procede de fabrication

Country Status (6)

Country Link
US (3) US6262513B1 (ja)
EP (1) EP0840369A4 (ja)
JP (1) JP3825475B2 (ja)
KR (1) KR19990028493A (ja)
CN (1) CN1146029C (ja)
WO (1) WO1997002596A1 (ja)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0862213A2 (en) * 1997-02-27 1998-09-02 Oki Electric Industry Co., Ltd. Semiconductor apparatus, circuit board and combination thereof
WO1999043084A1 (de) * 1998-02-18 1999-08-26 Epcos Ag Verfahren zur herstellung eines elektronischen bauelements, insbesondere eines mit akustischen oberflächenwellen arbeitenden ofw-bauelements
JP2000151347A (ja) * 1998-11-06 2000-05-30 Hitachi Media Electoronics Co Ltd 表面実装型弾性表面波フィルタ
EP1076930A1 (en) * 1998-04-08 2001-02-21 CTS Corporation Surface acoustic wave device package and method
JP2002203989A (ja) * 2000-12-21 2002-07-19 Lumileds Lighting Us Llc 発光装置及びその製造方法
JP2003017979A (ja) * 2001-06-28 2003-01-17 Nagase Chemtex Corp 弾性表面波デバイスおよびその製法
WO2004032321A1 (ja) * 2002-10-04 2004-04-15 Toyo Communication Equipment Co., Ltd. 表面実装型sawデバイスの製造方法
US6873034B2 (en) 2002-02-20 2005-03-29 Sharp Kabushiki Kaisha Solid-state imaging device, method for producing same, and mask
JP2006295164A (ja) * 2005-04-06 2006-10-26 Korea Advanced Inst Of Sci Technol イメージセンサモジュール及びその製造方法
US7134196B2 (en) 2000-12-18 2006-11-14 Tdk Corporation Electronic device and manufacturing same
JP2007051184A (ja) * 2005-08-16 2007-03-01 Shin Etsu Chem Co Ltd 熱硬化型エポキシ樹脂組成物及びそれを用いた半導体装置
JP2007104401A (ja) * 2005-10-05 2007-04-19 Sony Corp 半導体装置及びその製造方法
US7261792B2 (en) 2002-12-06 2007-08-28 Murata Manufacturing Co., Ltd. Method of producing piezoelectric component and piezoelectric component
JP2007250852A (ja) * 2006-03-16 2007-09-27 Asahi Glass Co Ltd 発光装置の製造方法
US7816794B2 (en) 2004-12-24 2010-10-19 Fujitsu Media Devices Limited Electronic device and method of fabricating the same
US8093101B2 (en) 2006-11-14 2012-01-10 Taiyo Yuden Co., Ltd. Electronic device and method of fabricating the same
KR101129107B1 (ko) 2007-12-11 2012-03-23 가부시키가이샤 무라타 세이사쿠쇼 표면파 장치 및 듀플렉서
JP2017005161A (ja) * 2015-06-12 2017-01-05 株式会社東芝 基板装置
JP2018093138A (ja) * 2016-12-07 2018-06-14 株式会社東芝 基板装置
WO2020130051A1 (ja) * 2018-12-20 2020-06-25 株式会社村田製作所 弾性波素子および弾性波装置
JP2020123906A (ja) * 2019-01-31 2020-08-13 株式会社大真空 圧電振動デバイス
TWI707192B (zh) * 2019-03-08 2020-10-11 大陸商三贏科技(深圳)有限公司 結構光投射模組及其電子裝置
TWI806637B (zh) * 2022-05-31 2023-06-21 安碁科技股份有限公司 石英振盪器及其製作方法
KR102718488B1 (ko) * 2018-12-20 2024-10-16 가부시키가이샤 무라타 세이사쿠쇼 탄성파 소자 및 탄성파 장치

Families Citing this family (179)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0900477B1 (de) * 1996-05-24 2001-07-18 Epcos Ag Elektronisches bauelement, insbesondere mit akustischen oberflächenwellen arbeitendes bauelement - ofw-bauelement
DE19756325A1 (de) * 1997-12-18 1999-07-01 Daimler Chrysler Ag Halbleiterscheibe mit integrierten Einzelbauelementen, Verfahren und Vorrichtung zur Herstellung einer Halbleiterscheibe
JPH11233684A (ja) * 1998-02-17 1999-08-27 Seiko Epson Corp 半導体装置用基板、半導体装置及びその製造方法並びに電子機器
JPH11239037A (ja) * 1998-02-20 1999-08-31 Nec Corp 弾性表面波装置
JP3514361B2 (ja) * 1998-02-27 2004-03-31 Tdk株式会社 チップ素子及びチップ素子の製造方法
DE19828653A1 (de) * 1998-06-26 2000-01-05 Siemens Ag Chipmodul zum Einbau in einen Chipkartenträger sowie Verfahren zu dessen Herstellung
DE19832706C2 (de) * 1998-07-14 2000-08-03 Siemens Ag Halbleiterbauelement im Chip-Format und Verfahren zu seiner Herstellung
JP2000252787A (ja) * 1998-12-28 2000-09-14 Toshiba Corp 弾性表面波装置および弾性表面波装置用の外囲器
FR2789822B1 (fr) * 1999-02-12 2001-06-08 Thomson Csf Dispositif a ondes de surface connecte a une embase avec un adhesif conducteur
JP3712035B2 (ja) * 1999-04-28 2005-11-02 株式会社村田製作所 表面波装置の製造方法
JP3539315B2 (ja) * 1999-06-22 2004-07-07 株式会社村田製作所 電子デバイス素子の実装方法、および弾性表面波装置の製造方法
JP2001024312A (ja) * 1999-07-13 2001-01-26 Taiyo Yuden Co Ltd 電子装置の製造方法及び電子装置並びに樹脂充填方法
FR2799883B1 (fr) 1999-10-15 2003-05-30 Thomson Csf Procede d'encapsulation de composants electroniques
JP3607160B2 (ja) * 2000-04-07 2005-01-05 三菱電機株式会社 撮像装置
DE20011590U1 (de) * 2000-07-03 2000-09-07 Infineon Technologies AG, 81541 München Halbleiterchip-Modul mit Schutzfolie
JPWO2002005424A1 (ja) 2000-07-06 2004-01-08 株式会社東芝 弾性表面波装置及びその製造方法
JP2002057253A (ja) * 2000-08-10 2002-02-22 Nec Corp 半導体装置およびその製造方法
JP2002064224A (ja) * 2000-08-18 2002-02-28 Agilent Technologies Japan Ltd 発光ダイオード及びその製造方法
DE10042229A1 (de) * 2000-08-28 2002-03-28 Epcos Ag Elektrisches Bauelement, Verfahren zu dessen Herstellung und dessen Verwendung
JP2002076313A (ja) * 2000-08-28 2002-03-15 Canon Inc 固体撮像装置
DE10049288B4 (de) * 2000-10-04 2004-07-15 Infineon Technologies Ag Elektronische Bauteile und eine Folienband zum Verpacken von Bonddrahtverbindungen elektronischer Bauteile sowie deren Herstellungsverfahren
US6580165B1 (en) * 2000-11-16 2003-06-17 Fairchild Semiconductor Corporation Flip chip with solder pre-plated leadframe including locating holes
KR20020041870A (ko) * 2000-11-29 2002-06-05 이형도 내충격성을 갖는 수정 진동자
EP1361657B1 (en) * 2001-02-06 2013-07-24 Panasonic Corporation Surface acoustic wave device
JP2002319787A (ja) * 2001-02-15 2002-10-31 Sumitomo Electric Ind Ltd 電磁波吸収材料
JP3703725B2 (ja) * 2001-03-01 2005-10-05 寛治 大塚 バス終端方法、終端抵抗器、配線基板およびその製造方法
JP2002344284A (ja) * 2001-03-14 2002-11-29 Murata Mfg Co Ltd 弾性表面波装置、および、これを搭載した通信装置
JP3718131B2 (ja) * 2001-03-16 2005-11-16 松下電器産業株式会社 高周波モジュールおよびその製造方法
EP1381156A4 (en) * 2001-04-19 2004-09-08 Matsushita Electric Ind Co Ltd SURFACE ACOUSTIC WAVE PROCESSING DEVICE AND MANUFACTURING METHOD THEREOF, AND ELECTRONIC COMPONENT USING THE SAME
JP3743302B2 (ja) * 2001-04-25 2006-02-08 株式会社村田製作所 電子部品及び電子部品の基板電極形成方法
JP2002345084A (ja) * 2001-05-16 2002-11-29 Citizen Electronics Co Ltd スピーカ
DE10136402C2 (de) * 2001-07-26 2003-07-31 Fraunhofer Ges Forschung Physikalisch aktives Pflaster und Verfahren zur Herstellung
US6759266B1 (en) * 2001-09-04 2004-07-06 Amkor Technology, Inc. Quick sealing glass-lidded package fabrication method
US6710264B2 (en) * 2001-11-16 2004-03-23 Hewlett-Packard Development Company, L.P. Method and apparatus for supporting a circuit component having solder column interconnects using external support
US7023066B2 (en) * 2001-11-20 2006-04-04 Knowles Electronics, Llc. Silicon microphone
US6649446B1 (en) 2001-11-29 2003-11-18 Clarisay, Inc. Hermetic package for multiple contact-sensitive electronic devices and methods of manufacturing thereof
US6621379B1 (en) 2001-11-29 2003-09-16 Clarisay, Incorporated Hermetic package for surface acoustic wave device and method of manufacturing the same
US6507097B1 (en) 2001-11-29 2003-01-14 Clarisay, Inc. Hermetic package for pyroelectric-sensitive electronic device and method of manufacturing the same
JP3907461B2 (ja) * 2001-12-03 2007-04-18 シャープ株式会社 半導体モジュールの製造方法
FR2833754B1 (fr) * 2001-12-13 2004-03-05 Gemplus Card Int Poignee permanente d'enrobage de puce retournee
DE10164502B4 (de) * 2001-12-28 2013-07-04 Epcos Ag Verfahren zur hermetischen Verkapselung eines Bauelements
JP3687610B2 (ja) * 2002-01-18 2005-08-24 セイコーエプソン株式会社 半導体装置、回路基板及び電子機器
CN100386005C (zh) * 2002-01-24 2008-04-30 三菱麻铁里亚尔株式会社 印刷电路板及具有屏蔽结构的电子器件和无线通信装置
JP4166997B2 (ja) * 2002-03-29 2008-10-15 富士通メディアデバイス株式会社 弾性表面波素子の実装方法及び樹脂封止された弾性表面波素子を有する弾性表面波装置
US7276802B2 (en) * 2002-04-15 2007-10-02 Micron Technology, Inc. Semiconductor integrated circuit package having electrically disconnected solder balls for mounting
US6639150B1 (en) 2002-04-23 2003-10-28 Clarisay, Inc. Hermetic package for surface acoustic wave device having exposed device substrate contacts and method of manufacturing the same
US7324148B2 (en) * 2002-04-26 2008-01-29 Olympus Optical Co., Ltd. Camera and image pickup device unit used therefor having a sealing structure between a dust proofing member and an image pick up device
JP2004064554A (ja) * 2002-07-30 2004-02-26 Olympus Corp カメラ及びこれに用いる撮像素子ユニット
US7154206B2 (en) * 2002-07-31 2006-12-26 Kyocera Corporation Surface acoustic wave device and method for manufacturing same
JP2004079801A (ja) * 2002-08-19 2004-03-11 Fujitsu Ltd コンデンサ装置及びその製造方法
JP3533665B1 (ja) * 2002-12-17 2004-05-31 オムロン株式会社 電子部品モジュールの製造方法、並びに電磁波読み取り可能なデータキャリアの製造方法。
US7652359B2 (en) 2002-12-27 2010-01-26 Semiconductor Energy Laboratory Co., Ltd. Article having display device
EP1437683B1 (en) * 2002-12-27 2017-03-08 Semiconductor Energy Laboratory Co., Ltd. IC card and booking account system using the IC card
DE10300958A1 (de) * 2003-01-13 2004-07-22 Epcos Ag Modul mit Verkapselung
JP2004221232A (ja) * 2003-01-14 2004-08-05 Nitto Denko Corp 半導体装置および半導体装置の製造方法
JP3832828B2 (ja) * 2003-03-20 2006-10-11 日本航空電子工業株式会社 コネクタ
JPWO2004089049A1 (ja) * 2003-03-28 2006-07-06 Tdk株式会社 多層基板およびその製造方法
US6917090B2 (en) * 2003-04-07 2005-07-12 Micron Technology, Inc. Chip scale image sensor package
US7919787B2 (en) * 2003-06-27 2011-04-05 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Semiconductor device with a light emitting semiconductor die
WO2005022654A2 (en) 2003-08-28 2005-03-10 Matsushita Electric Industrial Co.,Ltd. Semiconductor light emitting device, light emitting module, lighting apparatus, display element and manufacturing method of semiconductor light emitting device
US7566001B2 (en) 2003-08-29 2009-07-28 Semiconductor Energy Laboratory Co., Ltd. IC card
JP4170862B2 (ja) * 2003-09-05 2008-10-22 アルプス電気株式会社 電子回路ユニット
US7239023B2 (en) * 2003-09-24 2007-07-03 Tai-Saw Technology Co., Ltd. Package assembly for electronic device
EP1523043B1 (en) * 2003-10-06 2011-12-28 Semiconductor Energy Laboratory Co., Ltd. Optical sensor and method for manufacturing the same
EP1542272B1 (en) * 2003-10-06 2016-07-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US7427805B2 (en) * 2003-10-14 2008-09-23 Shen Ming-Tung Light-emitting diode chip package body and packaging method thereof
US7525449B1 (en) 2003-10-20 2009-04-28 Teleflex Megatech, Inc. Status light for switch on boat steering wheel
US7405540B2 (en) * 2003-10-20 2008-07-29 Teleflex Megatech, Inc. Secondary power supply system and method of activating subsystems from a vehicle steering wheel
JP3915806B2 (ja) * 2003-11-11 2007-05-16 セイコーエプソン株式会社 電気光学装置および電子機器
DE10353679A1 (de) * 2003-11-17 2005-06-02 Siemens Ag Kostengünstige, miniaturisierte Aufbau- und Verbindungstechnik für LEDs und andere optoelektronische Module
JP3776907B2 (ja) * 2003-11-21 2006-05-24 ローム株式会社 回路基板
JP4099505B2 (ja) * 2003-11-27 2008-06-11 京セラ株式会社 圧力センサ装置
JP4099504B2 (ja) * 2003-11-27 2008-06-11 京セラ株式会社 圧力センサ装置
CN100567976C (zh) * 2003-12-30 2009-12-09 3M创新有限公司 表面声波传感器组件和传感器盒
JP2005203889A (ja) * 2004-01-13 2005-07-28 Fujitsu Media Device Kk 弾性表面波デバイス
US7339198B2 (en) * 2004-01-16 2008-03-04 Yu-Nung Shen Light-emitting diode chip package body and packaging method thereof
TWI263403B (en) * 2004-01-22 2006-10-01 Murata Manufacturing Co Electronic component manufacturing method
US6992400B2 (en) 2004-01-30 2006-01-31 Nokia Corporation Encapsulated electronics device with improved heat dissipation
US7672759B1 (en) 2004-02-24 2010-03-02 Teleflex Megatech, Inc. Communication with a steering wheel switch
US20050224967A1 (en) * 2004-04-01 2005-10-13 Brandenburg Scott D Microelectronic assembly with underchip optical window, and method for forming same
US7122874B2 (en) * 2004-04-12 2006-10-17 Optopac, Inc. Electronic package having a sealing structure on predetermined area, and the method thereof
JP3998658B2 (ja) * 2004-04-28 2007-10-31 富士通メディアデバイス株式会社 弾性波デバイスおよびパッケージ基板
US20050242425A1 (en) * 2004-04-30 2005-11-03 Leal George R Semiconductor device with a protected active die region and method therefor
JP4754185B2 (ja) * 2004-05-27 2011-08-24 リンテック株式会社 半導体封止用樹脂シートおよびこれを用いた半導体装置の製造方法
US8240539B2 (en) * 2004-05-28 2012-08-14 Panasonic Corporation Joining apparatus with UV cleaning
WO2006009051A1 (ja) * 2004-07-22 2006-01-26 Toray Industries, Inc. 感光性ペーストおよびディスプレイパネル用部材の製造方法
CN101023343A (zh) * 2004-08-20 2007-08-22 诺和诺德公司 用于生产细小传感器的制造工艺
DE102004060358A1 (de) * 2004-09-30 2006-04-13 Osram Opto Semiconductors Gmbh Verfahren zum Herstellen von Lumineszenzdiodenchips und Lumineszenzdiodenchip
JP2006108341A (ja) * 2004-10-05 2006-04-20 Seiko Epson Corp 半導体装置の製造方法、半導体装置、及び金型
US7135981B1 (en) 2004-10-12 2006-11-14 Teleflex Megatech Inc. Fuel level variation detector for marine vehicle
JP2006135771A (ja) * 2004-11-08 2006-05-25 Renesas Technology Corp 電子部品モジュール
US7259499B2 (en) * 2004-12-23 2007-08-21 Askew Andy R Piezoelectric bimorph actuator and method of manufacturing thereof
JP4645233B2 (ja) * 2005-03-03 2011-03-09 パナソニック株式会社 弾性表面波装置
ITRM20050093A1 (it) * 2005-03-04 2006-09-05 Consiglio Nazionale Ricerche Procedimento micromeccanico superficiale di fabbricazione di trasduttori ultracustici capacitivi microlavorati e relativo trasduttore ultracustico capacitivo microlavorato.
JP2006311380A (ja) * 2005-04-28 2006-11-09 Epson Toyocom Corp 圧電振動子及び圧電発振器
US7038321B1 (en) * 2005-04-29 2006-05-02 Delphi Technologies, Inc. Method of attaching a flip chip device and circuit assembly formed thereby
KR100691160B1 (ko) * 2005-05-06 2007-03-09 삼성전기주식회사 적층형 표면탄성파 패키지 및 그 제조방법
US20070002551A1 (en) * 2005-07-01 2007-01-04 Hon Hai Precision Industry Co., Ltd. Printed circuit board assembly
US7566591B2 (en) * 2005-08-22 2009-07-28 Broadcom Corporation Method and system for secure heat sink attachment on semiconductor devices with macroscopic uneven surface features
JP4585419B2 (ja) * 2005-10-04 2010-11-24 富士通メディアデバイス株式会社 弾性表面波デバイスおよびその製造方法
KR20070045922A (ko) * 2005-10-28 2007-05-02 마츠시타 덴끼 산교 가부시키가이샤 고체 촬상장치의 제조방법 및 고체 촬상장치
JP2007173431A (ja) * 2005-12-21 2007-07-05 Epson Toyocom Corp 圧電デバイス
TWI301657B (en) * 2006-01-27 2008-10-01 Siliconware Precision Industries Co Ltd Flip-chip semiconductor device and method for fabricating the same
US7649235B2 (en) * 2006-02-07 2010-01-19 Panasonic Corporation Electronic component package
US7382081B2 (en) * 2006-02-27 2008-06-03 Matsushita Electric Industrial Co., Ltd. Electronic component package
JP3940423B1 (ja) * 2006-03-02 2007-07-04 ソニーケミカル&インフォメーションデバイス株式会社 機能素子実装モジュール及びその製造方法
JP5035241B2 (ja) * 2006-05-18 2012-09-26 旭硝子株式会社 発光装置の製造方法および発光装置
US7555824B2 (en) * 2006-08-09 2009-07-07 Hrl Laboratories, Llc Method for large scale integration of quartz-based devices
JP5083710B2 (ja) * 2006-09-19 2012-11-28 セイコーエプソン株式会社 圧電デバイス及び圧電デバイスの製造方法
US8207589B2 (en) 2007-02-15 2012-06-26 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and electronic device, and method for manufacturing photoelectric conversion device
JP2008227079A (ja) * 2007-03-12 2008-09-25 Nec Electronics Corp 半導体装置およびその製造方法
KR101380388B1 (ko) 2007-06-21 2014-04-02 서울반도체 주식회사 가요성을 구비한 발광 다이오드 및 그 제조 방법
US7847387B2 (en) * 2007-11-16 2010-12-07 Infineon Technologies Ag Electrical device and method
CN101868916A (zh) * 2007-11-20 2010-10-20 日本无线株式会社 表面声波元件和液态材料特性测量装置
DE102008022977A1 (de) * 2008-05-09 2009-04-09 Siemens Medical Instruments Pte. Ltd. Schaltung mit selbsthaftender Kapselung, Herstellungsverfahren und Hörhilfe
WO2009144960A1 (ja) * 2008-05-30 2009-12-03 三洋電機株式会社 半導体モジュール、半導体モジュールの製造方法および携帯機器
US7906376B2 (en) * 2008-06-30 2011-03-15 Intel Corporation Magnetic particle-based composite materials for semiconductor packages
US8023269B2 (en) * 2008-08-15 2011-09-20 Siemens Energy, Inc. Wireless telemetry electronic circuit board for high temperature environments
JP4760884B2 (ja) * 2008-09-26 2011-08-31 セイコーエプソン株式会社 水晶振動子パッケージ、電子部品の実装構造体、及び電子部品の製造方法
WO2010038229A2 (en) * 2008-10-02 2010-04-08 Audio Pixels Ltd. Actuator apparatus with comb-drive component and methods useful for manufacturing and operating same
CN102047404B (zh) * 2008-12-16 2013-07-10 松下电器产业株式会社 半导体装置和倒装芯片安装方法及倒装芯片安装装置
US9117580B2 (en) 2009-02-27 2015-08-25 Cyntec Co., Ltd. Choke
US9208937B2 (en) 2009-02-27 2015-12-08 Cyntec Co., Ltd. Choke having a core with a pillar having a non-circular and non-rectangular cross section
USRE48472E1 (en) 2009-02-27 2021-03-16 Cyntec Co., Ltd. Choke having a core with a pillar having a non-circular and non-rectangular cross section
JP5045769B2 (ja) 2009-03-04 2012-10-10 株式会社デンソー センサ装置の製造方法
US8071893B2 (en) * 2009-03-04 2011-12-06 Apple Inc. Methods and apparatus for shielding circuitry from interference
US8159830B2 (en) * 2009-04-17 2012-04-17 Atmel Corporation Surface mounting chip carrier module
US8787752B2 (en) 2009-08-21 2014-07-22 California Institute Of Technology Systems and methods for optically powering transducers and related transducers
US9691734B1 (en) 2009-12-07 2017-06-27 Amkor Technology, Inc. Method of forming a plurality of electronic component packages
JP5451357B2 (ja) * 2009-12-14 2014-03-26 キヤノン株式会社 液体噴射記録ヘッドおよび液体噴射記録ヘッドの製造方法
JP2011199577A (ja) * 2010-03-19 2011-10-06 Seiko Epson Corp パッケージ、電子デバイス、および電子デバイスの製造方法
DE102010003562B4 (de) * 2010-03-31 2021-11-04 Taiwan Semiconductor Manufacturing Company, Ltd. Verfahren und Wiederaufschmelzsystem zum Verbinden eines Halbleiterchips mit einem Gehäusesubstrat
JP2012056194A (ja) * 2010-09-09 2012-03-22 Seiko Epson Corp 圧電素子、圧電アクチュエーター、液体噴射ヘッド、および液体噴射装置
CN103444077B (zh) * 2011-03-22 2016-10-19 株式会社村田制作所 电子部件模块的制造方法及电子部件模块
US8536626B2 (en) 2011-04-28 2013-09-17 Honeywell International Inc. Electronic pH sensor die packaging
JP5776971B2 (ja) * 2011-05-16 2015-09-09 Nltテクノロジー株式会社 接続構造及び当該接続構造を備える表示装置
JP5688149B2 (ja) * 2011-07-29 2015-03-25 京セラ株式会社 弾性波装置を有する電子部品
US9386703B2 (en) * 2011-09-15 2016-07-05 Kyocera Corporation Electronic device
US8440543B2 (en) * 2011-09-19 2013-05-14 Teledyne Scientific & Imaging, Llc Hybrid circuit structure and partial backfill method for improving thermal cycling reliability of same
US20130181232A1 (en) * 2012-01-17 2013-07-18 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Optocoupler with Surface Functional Coating Layer
US9031102B2 (en) 2012-03-01 2015-05-12 California Institute Of Technology Methods of modulating microlasers at ultralow power levels, and systems thereof
CN103367172A (zh) * 2012-03-27 2013-10-23 南亚科技股份有限公司 接合线固定方法
WO2013172442A1 (ja) * 2012-05-18 2013-11-21 株式会社村田製作所 水晶振動子
CN105408740A (zh) 2012-07-25 2016-03-16 加州理工学院 具有功能化栅电极和基电极的纳米柱场效应和结型晶体管
JP2014033389A (ja) * 2012-08-06 2014-02-20 Seiko Epson Corp 振動デバイス、電子デバイス、電子機器、および移動体
WO2014074180A1 (en) 2012-11-09 2014-05-15 California Institute Of Technology Nanopillar field-effect and junction transistors
JP6183739B2 (ja) * 2012-11-13 2017-08-23 パナソニックIpマネジメント株式会社 超音波センサ
KR20140116678A (ko) * 2013-03-25 2014-10-06 삼성전기주식회사 박막형 공통모드필터 및 그 제조방법
CN104079249B (zh) * 2013-03-27 2018-05-04 精工爱普生株式会社 电子器件、电子设备、移动体、电子器件的制造方法
US9312233B2 (en) * 2013-06-27 2016-04-12 Intel Corporation Method of forming molded panel embedded die structure
US10224260B2 (en) * 2013-11-26 2019-03-05 Infineon Technologies Ag Semiconductor package with air gap
US9627346B2 (en) * 2013-12-11 2017-04-18 Taiwan Semiconductor Manufacturing Company, Ltd. Underfill pattern with gap
AT515443B1 (de) * 2014-02-28 2019-10-15 At & S Austria Tech & Systemtechnik Ag Verfahren zum Herstellen einer Leiterplatte sowie Leiterplatte
US9331000B2 (en) * 2014-04-02 2016-05-03 Kyocera America, Inc. Heat management in electronics packaging
US9508623B2 (en) * 2014-06-08 2016-11-29 UTAC Headquarters Pte. Ltd. Semiconductor packages and methods of packaging semiconductor devices
JP6451169B2 (ja) * 2014-09-18 2019-01-16 富士ゼロックス株式会社 粉体塗装装置、プログラム、及び粉体塗装方法
JP2016186526A (ja) * 2015-03-27 2016-10-27 セイコーエプソン株式会社 電気光学装置の製造方法、電気光学装置、および電子機器
BR112017021128A2 (pt) * 2015-05-05 2018-07-03 Saint-Gobain Glass France vidraça com elemento de conexão elétrica e elemento conector anexado a ele
US9595501B1 (en) 2015-10-30 2017-03-14 Automated Assembly Corporation Wire bonded electronic devices to round wire
US10823355B2 (en) * 2016-01-27 2020-11-03 Lite-On Electronics (Guangzhou) Limited Light-emitting module for vehicle lamp
TWM521008U (zh) * 2016-01-27 2016-05-01 Lite On Technology Corp 車燈裝置及其發光模組
JP6727937B2 (ja) * 2016-06-10 2020-07-22 日本電波工業株式会社 電子デバイス
JP6520845B2 (ja) 2016-06-29 2019-05-29 株式会社村田製作所 電子部品装置、回路基板への電子部品装置の実装方法、および、回路基板への電子部品装置の実装構造
DE102016112566B4 (de) * 2016-07-08 2022-10-06 Richard Fritz Holding Gmbh Verbindungsanordnung für einen elektrisch leitenden Kontakt sowie Verfahren zur Herstellung einer solchen Verbindungsanordnung
US10381325B1 (en) 2017-08-04 2019-08-13 Automated Assembly Corporation Guide posts for wire bonding
US11685102B2 (en) * 2017-11-08 2023-06-27 Hytech Worldwide, Inc. Three dimensional thermoforming and lamination
US10171133B1 (en) 2018-02-20 2019-01-01 Automated Assembly Corporation Transponder arrangement
JP7372747B2 (ja) * 2018-03-16 2023-11-01 日東電工株式会社 配線回路基板およびその製造方法
US11784622B2 (en) 2018-08-30 2023-10-10 Skyworks Solutions, Inc. Laser-marked packaged surface acoustic wave devices
CN108880502B (zh) * 2018-09-19 2023-11-14 刘月 一种高性能表面波滤波器
JP2020102472A (ja) * 2018-12-19 2020-07-02 株式会社東芝 プリント基板
US11244876B2 (en) 2019-10-09 2022-02-08 Microchip Technology Inc. Packaged semiconductor die with micro-cavity
CN110752191B (zh) * 2019-10-29 2022-02-01 维沃移动通信有限公司 器件封装模块、器件封装模块的制备方法及电子设备
EP3836010B1 (en) 2019-12-12 2024-07-24 Fingerprint Cards Anacatum IP AB A biometric sensor module for card integration
JP2021150849A (ja) * 2020-03-19 2021-09-27 株式会社村田製作所 高周波モジュール及び通信装置
US11605571B2 (en) * 2020-05-29 2023-03-14 Qualcomm Incorporated Package comprising a substrate, an integrated device, and an encapsulation layer with undercut
US20220337217A1 (en) * 2021-04-19 2022-10-20 Skyworks Solutions, Inc. Cap substrate for acoustic wave device
US20240088081A1 (en) * 2022-09-14 2024-03-14 Qualcomm Incorporated Die package with sealed die enclosures
CN117769108A (zh) * 2022-09-23 2024-03-26 鹏鼎控股(深圳)股份有限公司 电路板及其制造方法

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53129299A (en) * 1977-04-18 1978-11-11 Mitsubishi Electric Corp Semitransparent epoxy resin composition
JPS5561125A (en) * 1978-10-31 1980-05-08 Toshiba Corp Packaging method for elastic surface wave element
JPS5692011A (en) * 1979-12-26 1981-07-25 Nitto Electric Ind Co Ltd Production of epoxy resin molding material
JPS57173345U (ja) * 1981-04-24 1982-11-01
JPS5963736A (ja) * 1982-10-04 1984-04-11 Matsushita Electronics Corp 樹脂封止型半導体装置の製造方法
JPS62205635A (ja) * 1986-03-06 1987-09-10 Sharp Corp ハイブリツド集積回路の製造方法
JPS6425428A (en) * 1987-07-22 1989-01-27 Toshiba Corp Connection of element
JPS6484752A (en) * 1987-09-28 1989-03-30 Nec Corp Manufacture of photocoupler
JPH03289208A (ja) * 1990-04-04 1991-12-19 Sumitomo Metal Ind Ltd 圧電振動子
JPH04217335A (ja) * 1990-12-18 1992-08-07 Sumitomo Electric Ind Ltd 半導体素子とその作製方法
JPH057121A (ja) * 1991-06-26 1993-01-14 Miyota Kk 樹脂モールドタイプ水晶振動子の製造方法
JPH0555303A (ja) * 1991-08-29 1993-03-05 Toshiba Corp 電子部品装置
JPH05206523A (ja) * 1992-01-27 1993-08-13 Toshiba Chem Corp 光半導体封止用エポキシ樹脂組成物
JPH05218230A (ja) * 1992-01-30 1993-08-27 Nec Corp 半導体装置
JPH05235688A (ja) * 1992-02-20 1993-09-10 Hitachi Ltd 弾性表面波装置及びこれを用いた移動無線端末
JPH05235203A (ja) * 1992-02-26 1993-09-10 Matsushita Electric Works Ltd 半導体装置
JPH05315397A (ja) * 1992-05-08 1993-11-26 Matsushita Electric Ind Co Ltd 半導体装置の封止方法と封止構造
JPH06151626A (ja) * 1992-11-09 1994-05-31 Sumitomo Electric Ind Ltd 半導体パッケージ
JPH06204293A (ja) * 1992-12-28 1994-07-22 Rohm Co Ltd 半導体装置
JPH06295937A (ja) * 1993-03-26 1994-10-21 Nec Corp 光電素子の実装方法
JPH0758149A (ja) * 1993-08-11 1995-03-03 Nec Corp チップ部品の実装方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216147A (en) 1975-07-30 1977-02-07 Hitachi Ltd Pacage method for surface elastic wave element
JPS5411696A (en) * 1977-06-27 1979-01-27 Toshiba Corp Sealing method of electronic components
JPS5687912A (en) * 1979-12-20 1981-07-17 Toshiba Corp Elastic surface wave filter
JPS57173345A (en) 1981-04-17 1982-10-25 Hitachi Ltd Rotor coil for rotary electric machine
JPS6298340A (ja) * 1985-10-25 1987-05-07 Fuji Photo Film Co Ltd 印画紙保留装置
JPS62109420A (ja) * 1985-11-07 1987-05-20 Alps Electric Co Ltd 弾性表面波素子
US5010270A (en) * 1986-12-22 1991-04-23 Raytheon Company Saw device
JPS6437132U (ja) * 1987-08-31 1989-03-06
JPH01128438A (ja) * 1987-11-12 1989-05-22 Nitto Denko Corp 封止材
JPH01133328A (ja) 1987-11-18 1989-05-25 Nitto Denko Corp 半導体素子の封止方法
JPH02179018A (ja) * 1988-12-28 1990-07-12 Murata Mfg Co Ltd 表面実装型表面波デバイス
JPH0456510A (ja) 1990-06-26 1992-02-24 Clarion Co Ltd 弾性表面波装置
US5043534A (en) * 1990-07-02 1991-08-27 Olin Corporation Metal electronic package having improved resistance to electromagnetic interference
JP2673993B2 (ja) * 1990-07-02 1997-11-05 日本無線株式会社 表面弾性波装置
WO1992002040A1 (en) * 1990-07-25 1992-02-06 Dsm N.V. Package for incorporating an integrated circuit and a process for the production of the package
US5120678A (en) * 1990-11-05 1992-06-09 Motorola Inc. Electrical component package comprising polymer-reinforced solder bump interconnection
JPH04170811A (ja) * 1990-11-05 1992-06-18 Fujitsu Ltd 弾性表面波デバイス
JPH04271611A (ja) * 1991-02-27 1992-09-28 Clarion Co Ltd 弾性表面波コンボルバ装置
JP3189324B2 (ja) * 1991-09-28 2001-07-16 株式会社村田製作所 弾性表面波装置の実装方法
US5469333A (en) * 1993-05-05 1995-11-21 International Business Machines Corporation Electronic package assembly with protective encapsulant material on opposing sides not having conductive leads
JPH05291864A (ja) * 1992-04-10 1993-11-05 Matsushita Electric Ind Co Ltd 弾性表面波素子実装回路とその製造方法
JPH05335878A (ja) * 1992-05-29 1993-12-17 Meidensha Corp 表面実装型弾性表面波素子
JPH0677758A (ja) * 1992-08-27 1994-03-18 Mitsubishi Electric Corp 弾性表面波装置及びマイクロ波集積回路装置
US5428188A (en) * 1992-10-09 1995-06-27 U.S. Terminals, Inc. Low-cost package for electronic components
US5414214A (en) * 1992-10-16 1995-05-09 Motorola, Inc. Resistance heated, sealed microfabricated device package method and apparatus
US5459368A (en) * 1993-08-06 1995-10-17 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave device mounted module
JP3301262B2 (ja) * 1995-03-28 2002-07-15 松下電器産業株式会社 弾性表面波装置
JP3328102B2 (ja) * 1995-05-08 2002-09-24 松下電器産業株式会社 弾性表面波装置及びその製造方法
JPH08316778A (ja) * 1995-05-23 1996-11-29 Mitsumi Electric Co Ltd 表面弾性波デバイスの実装構造
US5852870A (en) * 1996-04-24 1998-12-29 Amkor Technology, Inc. Method of making grid array assembly
US5969461A (en) * 1998-04-08 1999-10-19 Cts Corporation Surface acoustic wave device package and method

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53129299A (en) * 1977-04-18 1978-11-11 Mitsubishi Electric Corp Semitransparent epoxy resin composition
JPS5561125A (en) * 1978-10-31 1980-05-08 Toshiba Corp Packaging method for elastic surface wave element
JPS5692011A (en) * 1979-12-26 1981-07-25 Nitto Electric Ind Co Ltd Production of epoxy resin molding material
JPS57173345U (ja) * 1981-04-24 1982-11-01
JPS5963736A (ja) * 1982-10-04 1984-04-11 Matsushita Electronics Corp 樹脂封止型半導体装置の製造方法
JPS62205635A (ja) * 1986-03-06 1987-09-10 Sharp Corp ハイブリツド集積回路の製造方法
JPS6425428A (en) * 1987-07-22 1989-01-27 Toshiba Corp Connection of element
JPS6484752A (en) * 1987-09-28 1989-03-30 Nec Corp Manufacture of photocoupler
JPH03289208A (ja) * 1990-04-04 1991-12-19 Sumitomo Metal Ind Ltd 圧電振動子
JPH04217335A (ja) * 1990-12-18 1992-08-07 Sumitomo Electric Ind Ltd 半導体素子とその作製方法
JPH057121A (ja) * 1991-06-26 1993-01-14 Miyota Kk 樹脂モールドタイプ水晶振動子の製造方法
JPH0555303A (ja) * 1991-08-29 1993-03-05 Toshiba Corp 電子部品装置
JPH05206523A (ja) * 1992-01-27 1993-08-13 Toshiba Chem Corp 光半導体封止用エポキシ樹脂組成物
JPH05218230A (ja) * 1992-01-30 1993-08-27 Nec Corp 半導体装置
JPH05235688A (ja) * 1992-02-20 1993-09-10 Hitachi Ltd 弾性表面波装置及びこれを用いた移動無線端末
JPH05235203A (ja) * 1992-02-26 1993-09-10 Matsushita Electric Works Ltd 半導体装置
JPH05315397A (ja) * 1992-05-08 1993-11-26 Matsushita Electric Ind Co Ltd 半導体装置の封止方法と封止構造
JPH06151626A (ja) * 1992-11-09 1994-05-31 Sumitomo Electric Ind Ltd 半導体パッケージ
JPH06204293A (ja) * 1992-12-28 1994-07-22 Rohm Co Ltd 半導体装置
JPH06295937A (ja) * 1993-03-26 1994-10-21 Nec Corp 光電素子の実装方法
JPH0758149A (ja) * 1993-08-11 1995-03-03 Nec Corp チップ部品の実装方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0840369A4 *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0862213A2 (en) * 1997-02-27 1998-09-02 Oki Electric Industry Co., Ltd. Semiconductor apparatus, circuit board and combination thereof
EP0862213B1 (en) * 1997-02-27 2004-05-06 Oki Electric Industry Co., Ltd. Semiconductor apparatus, circuit board and combination thereof
US6722030B1 (en) 1998-02-18 2004-04-20 Epcos Ag Process for manufacturing an electronic component, in particular a surface-wave component working with acoustic surface waves
WO1999043084A1 (de) * 1998-02-18 1999-08-26 Epcos Ag Verfahren zur herstellung eines elektronischen bauelements, insbesondere eines mit akustischen oberflächenwellen arbeitenden ofw-bauelements
EP1076930A4 (en) * 1998-04-08 2001-11-14 Cts Corp HOUSING AND MANUFACTURING METHOD FOR ACOUSTIC SURFACE WAVE ARRANGEMENT
EP1076930A1 (en) * 1998-04-08 2001-02-21 CTS Corporation Surface acoustic wave device package and method
JP2000151347A (ja) * 1998-11-06 2000-05-30 Hitachi Media Electoronics Co Ltd 表面実装型弾性表面波フィルタ
US7134196B2 (en) 2000-12-18 2006-11-14 Tdk Corporation Electronic device and manufacturing same
JP2002203989A (ja) * 2000-12-21 2002-07-19 Lumileds Lighting Us Llc 発光装置及びその製造方法
JP2003017979A (ja) * 2001-06-28 2003-01-17 Nagase Chemtex Corp 弾性表面波デバイスおよびその製法
US6873034B2 (en) 2002-02-20 2005-03-29 Sharp Kabushiki Kaisha Solid-state imaging device, method for producing same, and mask
WO2004032321A1 (ja) * 2002-10-04 2004-04-15 Toyo Communication Equipment Co., Ltd. 表面実装型sawデバイスの製造方法
US7183124B2 (en) 2002-10-04 2007-02-27 Toyo Communication Equipment Co., Ltd. Surface mount saw device manufacturing method
US7261792B2 (en) 2002-12-06 2007-08-28 Murata Manufacturing Co., Ltd. Method of producing piezoelectric component and piezoelectric component
US7816794B2 (en) 2004-12-24 2010-10-19 Fujitsu Media Devices Limited Electronic device and method of fabricating the same
JP2006295164A (ja) * 2005-04-06 2006-10-26 Korea Advanced Inst Of Sci Technol イメージセンサモジュール及びその製造方法
JP4611235B2 (ja) * 2005-04-06 2011-01-12 韓国科学技術院 イメージセンサモジュール及びその製造方法
JP2007051184A (ja) * 2005-08-16 2007-03-01 Shin Etsu Chem Co Ltd 熱硬化型エポキシ樹脂組成物及びそれを用いた半導体装置
JP2007104401A (ja) * 2005-10-05 2007-04-19 Sony Corp 半導体装置及びその製造方法
JP2007250852A (ja) * 2006-03-16 2007-09-27 Asahi Glass Co Ltd 発光装置の製造方法
US8093101B2 (en) 2006-11-14 2012-01-10 Taiyo Yuden Co., Ltd. Electronic device and method of fabricating the same
KR101129107B1 (ko) 2007-12-11 2012-03-23 가부시키가이샤 무라타 세이사쿠쇼 표면파 장치 및 듀플렉서
JP2017005161A (ja) * 2015-06-12 2017-01-05 株式会社東芝 基板装置
JP2018093138A (ja) * 2016-12-07 2018-06-14 株式会社東芝 基板装置
WO2020130051A1 (ja) * 2018-12-20 2020-06-25 株式会社村田製作所 弾性波素子および弾性波装置
CN113243083A (zh) * 2018-12-20 2021-08-10 株式会社村田制作所 弹性波元件以及弹性波装置
CN113243083B (zh) * 2018-12-20 2024-07-30 株式会社村田制作所 弹性波元件以及弹性波装置
KR102718488B1 (ko) * 2018-12-20 2024-10-16 가부시키가이샤 무라타 세이사쿠쇼 탄성파 소자 및 탄성파 장치
JP2020123906A (ja) * 2019-01-31 2020-08-13 株式会社大真空 圧電振動デバイス
TWI707192B (zh) * 2019-03-08 2020-10-11 大陸商三贏科技(深圳)有限公司 結構光投射模組及其電子裝置
TWI806637B (zh) * 2022-05-31 2023-06-21 安碁科技股份有限公司 石英振盪器及其製作方法

Also Published As

Publication number Publication date
US6754950B2 (en) 2004-06-29
US6628043B2 (en) 2003-09-30
EP0840369A4 (en) 2001-12-19
US20020149298A1 (en) 2002-10-17
CN1194058A (zh) 1998-09-23
US20010009342A1 (en) 2001-07-26
US6262513B1 (en) 2001-07-17
JP3825475B2 (ja) 2006-09-27
KR19990028493A (ko) 1999-04-15
EP0840369A1 (en) 1998-05-06
CN1146029C (zh) 2004-04-14

Similar Documents

Publication Publication Date Title
WO1997002596A1 (fr) Composant electronique et son procede de fabrication
US20220158061A1 (en) Optical-semiconductor device and method for manufacturing the same
US7940146B2 (en) Boundary acoustic wave element, boundary acoustic wave device, and manufacturing methods for the same
US6710682B2 (en) Surface acoustic wave device, method for producing the same, and circuit module using the same
US7486160B2 (en) Electronic component and manufacturing method thereof
US6498422B1 (en) Electronic component such as an saw device and method for producing the same
JP4712632B2 (ja) 弾性波デバイス及びその製造方法
US20040159960A1 (en) Electronic device and method of manufacturing the same
EP2485284B1 (en) Light emitting device
US6698084B2 (en) Method for manufacturing radio frequency module components with surface acoustic wave element
JP2005505939A (ja) 電気的な素子のカプセル化方法およびこれによりカプセル化された表面弾性波素子
KR20080080413A (ko) 마이크로 전자 기계 장치 및 그 제조방법
JP3523502B2 (ja) 圧電振動子用容器ならびに圧電振動子およびその製造方法
JP2826049B2 (ja) 半導体装置およびその製造方法
JP2007104458A (ja) 薄膜圧電共振子デバイスおよびその製造方法
JP4388209B2 (ja) 光半導体素子収納用パッケージ
JPH10163647A (ja) 電子部品の封止構造
JP2008108782A (ja) 電子装置およびその製造方法
JP2005020464A (ja) 光半導体装置およびその製造方法
CN113597669A (zh) 电子部件及其制造方法
JP4582922B2 (ja) 電子部品装置及びその製造方法
KR100848364B1 (ko) 전자 소자 패키지 및 전자 소자 패키징 방법
KR100437490B1 (ko) 표면 탄성파 필터용 에어 캐비티 패키지
JP6940373B2 (ja) 受光装置
JPH09181120A (ja) 半導体装置およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96196393.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1019970709809

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 08973858

Country of ref document: US

Ref document number: 1996920032

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996920032

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970709809

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1019970709809

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1996920032

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1996920032

Country of ref document: EP