US20110052791A1 - Thin film deposition apparatus and method of manufacturing organic light-emitting display apparatus using the same - Google Patents

Thin film deposition apparatus and method of manufacturing organic light-emitting display apparatus using the same Download PDF

Info

Publication number
US20110052791A1
US20110052791A1 US12/869,830 US86983010A US2011052791A1 US 20110052791 A1 US20110052791 A1 US 20110052791A1 US 86983010 A US86983010 A US 86983010A US 2011052791 A1 US2011052791 A1 US 2011052791A1
Authority
US
United States
Prior art keywords
deposition
thin film
chamber
source
film deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/869,830
Other versions
US9450140B2 (en
Inventor
Chang-Mog Jo
Jong-Heon Kim
Yong-Sup Choi
Sang-soo Kim
Hee-Cheol Kang
Young-Mook CHOI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Display Co Ltd
Original Assignee
Samsung Mobile Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR20090079765 priority Critical
Priority to KR10-2009-0079765 priority
Priority to KR1020100011480A priority patent/KR101174877B1/en
Priority to KR10-2010-0011480 priority
Application filed by Samsung Mobile Display Co Ltd filed Critical Samsung Mobile Display Co Ltd
Assigned to SAMSUNG MOBILE DISPLAY CO., LTD. reassignment SAMSUNG MOBILE DISPLAY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHOI, YONG-SUP, CHOI, YOUNG-MOOK, JO, CHANG-MOG, KANG, HEE-CHEOL, KIM, JONG-HEON, KIM, SANG-SOO
Publication of US20110052791A1 publication Critical patent/US20110052791A1/en
Assigned to SAMSUNG DISPLAY CO., LTD. reassignment SAMSUNG DISPLAY CO., LTD. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: SAMSUNG MOBILE DISPLAY CO., LTD.
Application granted granted Critical
Publication of US9450140B2 publication Critical patent/US9450140B2/en
Application status is Active legal-status Critical
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/246Replenishment of source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/568Transferring the substrates through a series of coating stations
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67173Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers in-line arrangement
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • H01L21/67225Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process comprising at least one lithography chamber
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67236Apparatus for manufacturing or treating in a plurality of work-stations the substrates being processed being not semiconductor wafers, e.g. leadframes or chips
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0001Processes specially adapted for the manufacture or treatment of devices or of parts thereof
    • H01L51/0002Deposition of organic semiconductor materials on a substrate
    • H01L51/0008Deposition of organic semiconductor materials on a substrate using physical deposition, e.g. sublimation, sputtering
    • H01L51/001Vacuum deposition
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0001Processes specially adapted for the manufacture or treatment of devices or of parts thereof
    • H01L51/0002Deposition of organic semiconductor materials on a substrate
    • H01L51/0008Deposition of organic semiconductor materials on a substrate using physical deposition, e.g. sublimation, sputtering
    • H01L51/0011Deposition of organic semiconductor materials on a substrate using physical deposition, e.g. sublimation, sputtering selective deposition, e.g. using a mask
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/50Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
    • H01L51/56Processes or apparatus specially adapted for the manufacture or treatment of such devices or of parts thereof
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/28Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including components using organic materials as the active part, or using a combination of organic materials with other materials as the active part
    • H01L27/32Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including components using organic materials as the active part, or using a combination of organic materials with other materials as the active part with components specially adapted for light emission, e.g. flat-panel displays using organic light-emitting diodes [OLED]
    • H01L27/3206Multi-colour light emission
    • H01L27/3211Multi-colour light emission using RGB sub-pixels

Abstract

A thin film deposition apparatus used to manufacture large substrates on a mass scale and that allows high-definition patterning, and a method of manufacturing an organic light-emitting display apparatus using the same, the apparatus includes a loading unit fixing a substrate onto an electrostatic chuck; a deposition unit including a chamber maintained in a vacuum state and a thin film deposition assembly disposed in the chamber, separated from the substrate by a predetermined distance, to deposit a thin film on the substrate fixed on the electrostatic chuck; an unloading unit separating the substrate on which a deposition process is completed, from the electrostatic chuck; a first circulation unit sequentially moving the electrostatic chuck on which the substrate is fixed, to the loading unit, the deposition unit, and the unloading unit; and a second circulation unit returning the electrostatic chuck separated from the substrate to the loading unit from the unloading unit, wherein the first circulation unit passes through the chamber when passing through the deposition unit.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of Korean Patent Application Nos. 10-2009-0079765, filed on Aug. 27, 2009, and 10-2010-0011480, filed on Feb. 8, 2010, in the Korean Intellectual Property Office, the disclosures of which are incorporated herein in their entirety by reference.
  • BACKGROUND
  • 1. Field
  • An aspect of the present invention relates to a thin film deposition apparatus and a method of manufacturing an organic light-emitting display apparatus by using the same, and more particularly, to a thin film deposition apparatus that can be easily used to manufacture large substrates on a mass scale and that improves manufacturing yield, and a method of manufacturing an organic light-emitting display apparatus by using the thin film deposition apparatus.
  • 2. Description of the Related Art
  • Organic light-emitting display apparatuses have a larger viewing angle, better contrast characteristics, and a faster response rate than other display apparatuses, and thus have drawn attention as next-generation display apparatuses.
  • An organic light-emitting display apparatus includes intermediate layers, including an emission layer disposed between a first electrode and a second electrode that are arranged opposite to each other. The electrodes and the intermediate layers may be formed using a variety of methods, one of which is a deposition method. When an organic light-emitting display apparatus is manufactured by using the deposition method, a fine metal mask (FMM) having the same pattern as a thin film to be formed is disposed in close contact with a substrate, and a thin film material is deposited over the FMM in order to form the thin film having the desired pattern.
  • However, when the FMM is used, it is not easy to form an organic thin film pattern on a large substrate, such as a mother glass having a large size. In other words, when the large-sized mask is used, the mask may be bent due to self-gravity, and the organic thin film pattern may be distorted due to the bent mask. This is not desirable for high definition patterning which is being increasingly used recently.
  • SUMMARY
  • An aspect of the present invention provides a thin film deposition apparatus that may be easily manufactured, that may be easily used to manufacture large-sized display apparatuses on a mass scale and that allows high-definition patterning, and a method of manufacturing an organic light-emitting display apparatus by using the thin film deposition apparatus.
  • According to an aspect of the present invention, there is provided a thin film deposition apparatus including: a loading unit fixing a substrate that is a deposition target, onto an electrostatic chuck; a deposition unit including a chamber maintained in a vacuum state and a thin film deposition assembly disposed in the chamber, separated from the substrate by a predetermined distance, for depositing a thin film on the substrate fixed on the electrostatic chuck; an unloading unit separating the substrate on which a deposition process is completed, from the electrostatic chuck; a first circulation unit sequentially moving the electrostatic chuck on which the substrate is fixed, to the loading unit, the deposition unit, and the unloading unit; and a second circulation unit returning the electrostatic chuck separated from the substrate to the loading unit from the unloading unit, wherein the first circulation unit is disposed to pass through the chamber when passing through the deposition unit.
  • According to another aspect of the present invention, a plurality of thin film deposition assemblies may be disposed in the chamber.
  • According to another aspect of the present invention, the chamber may include a first chamber and a second chamber each including a plurality of thin film deposition assemblies, and the first chamber and the second chamber may be connected to each other.
  • According to another aspect of the present invention, the first circulation unit or the second circulation unit may include a carrier that allows the electrostatic chuck to be moved.
  • According to another aspect of the present invention, the carrier may include: a support installed to pass through the chamber and including a first support and a second support each extending along the first circulation unit or the second circulation unit; a moving bar disposed on the first support, to support edges of the electrostatic chuck; and a first driving unit interposed between the first support and the moving bar, to allow the moving bar to be moved along the first support.
  • According to another aspect of the present invention, the thin film deposition assembly may include: a deposition source that discharges a deposition material; a deposition source nozzle unit that is disposed at a side of the deposition source and includes a plurality of deposition source nozzles arranged in a first direction; and a patterning slit sheet that is disposed opposite to the deposition source nozzle unit and includes a plurality of patterning slits arranged in a second direction perpendicular to the first direction, and wherein a deposition process is performed while the substrate is moved relative to the thin film deposition assembly in the first direction, and the deposition source, the deposition source nozzle unit, and the patterning slit sheet are integrally formed as one body.
  • According to another aspect of the present invention, the deposition source and the deposition source nozzle unit, and the patterning slit sheet may be integrally connected as one body by a connection member that guides flow of the deposition material.
  • According to another aspect of the present invention, the connection member may seal a space between the deposition source and the deposition source nozzle unit, and the patterning slit sheet.
  • According to another aspect of the present invention, the plurality of deposition source nozzles may be tilted at a predetermined angle.
  • According to another aspect of the present invention, the plurality of deposition source nozzles may include deposition source nozzles arranged in two rows formed in the first direction, and the deposition source nozzles in the two rows are tilted to face each other.
  • According to another aspect of the present invention, the plurality of deposition source nozzles may include deposition source nozzles arranged in two rows formed in the first direction, the deposition source nozzles of a row located at a first side of the patterning slit sheet are arranged to face a second side of the patterning slit sheet, and the deposition source nozzles of the other row located at the second side of the patterning slit sheet are arranged to face the first side of the patterning slit sheet.
  • According to another aspect of the present invention, the thin film deposition assembly may include: a deposition source that discharges a deposition material; a deposition source nozzle unit that is disposed at a side of the deposition source and includes a plurality of deposition source nozzles arranged in a first direction; a patterning slit sheet that is disposed opposite to the deposition source nozzle unit and includes a plurality of patterning slits arranged in the first direction; and a barrier wall assembly that is disposed between the deposition source nozzle unit and the patterning slit sheet in the first direction, and includes a plurality of barrier walls that partition a space between the deposition source nozzle unit and the patterning slit sheet into a plurality of sub-deposition spaces, and wherein the thin film deposition assembly is disposed to be separated from the substrate, and the thin film deposition assembly or the substrate is moved relative to the other.
  • According to another aspect of the present invention, each of the plurality of barrier walls may extend in a second direction that is substantially perpendicular to the first direction.
  • According to another aspect of the present invention, the barrier wall assembly may include a first barrier wall assembly including a plurality of first barrier walls, and a second barrier wall assembly including a plurality of second barrier walls.
  • According to another aspect of the present invention, each of the first barrier walls and each of the second barrier walls may extend in a second direction that is substantially perpendicular to the first direction.
  • According to another aspect of the present invention, the first barrier walls may be arranged to respectively correspond to the second barrier walls.
  • According to another aspect of the present invention, the deposition source and the barrier wall assembly may be separated from each other.
  • According to another aspect of the present invention, the barrier wall assembly and the patterning slit sheet may be separated from each other.
  • The patterning slit sheet may include a first mark, and the substrate may include a second mark, and the thin film deposition assembly may include a camera assembly for capturing a degree of alignment of the first mark and the second mark, and wherein the camera assembly includes: a hood having an opening formed in one end of the hood; a camera installed in the hood; an optical system disposed between the camera and the opening; a protection window disposed between the optical system and the opening; and a heater disposed on the protection window.
  • The patterning slit sheet may include a first mark, and the substrate may include a second mark, and the thin film deposition assembly may further include a camera assembly for capturing a degree of alignment of the first mark and the second mark, and a second driving unit for driving the thin film deposition assembly so as to align the first mark with the second mark by using information about the degree of alignment of the first mark and the second mark obtained by the camera assembly.
  • The thin film deposition apparatus may further include: a source chamber which is connected to the chamber and in which the deposition source of the thin film deposition assembly is accommodated; a valve opening or closing a space between the chamber and the source chamber; and a shutter closing the space between the chamber and the source chamber when the deposition source is located at the chamber.
  • The patterning slit sheet may further include a first mark, and the substrate may include a second mark, and the thin film deposition assembly may include a camera assembly for capturing a degree of alignment of the first mark and the second mark, and wherein the camera assembly includes: a hood having an opening formed in one end of the hood; a camera installed in the hood; an optical system disposed between the camera and the opening; a protection window disposed between the optical system and the opening; and a heater disposed on the protection window.
  • The patterning slit sheet may include a first mark, and the substrate may include a second mark, and the thin film deposition assembly may further include a camera assembly for capturing a degree of alignment of the first mark and the second mark, and a second driving unit for driving the thin film deposition assembly so as to align the first mark with the second mark by using information about the degree of alignment of the first mark and the second mark obtained by the camera assembly.
  • The thin film deposition apparatus may further include: a source chamber which is connected to the chamber and in which the deposition source of the thin film deposition assembly is accommodated; a valve opening or closing a space between the chamber and the source chamber; and a shutter closing the space between the chamber and the source chamber when the deposition source is located at the chamber.
  • According to another aspect of the present invention, there is provided a method of manufacturing an organic light-emitting display apparatus, the method including: fixing a substrate that is a deposition target, on an electrostatic chuck; conveying the electrostatic chuck on which the substrate is fixed, into a chamber that is maintained in a vacuum state by using a first circulation unit installed to pass through the chamber; using a thin film deposition assembly disposed in the chamber and depositing an organic layer on the substrate by moving the substrate or the thin film deposition assembly relative to the other; removing the substrate on which the deposition process is completed, from the chamber by using the first circulation unit; separating the substrate on which the deposition process is completed, from the electrostatic chuck; and fixing the substrate on the electrostatic chuck separated from the substrate by using a second circulation unit installed outside the chamber.
  • According to another aspect of the present invention, a plurality of thin film deposition assemblies may be disposed in the chamber so that a deposition process is continuously performed on the substrate by using each of the thin film deposition assemblies.
  • According to another aspect of the present invention, a plurality of thin film deposition assemblies may be disposed in the chamber, and the chamber may include a first chamber and a second chamber connected to each other so that a deposition process is continuously performed on the substrate while the substrate is moved relative to the thin film deposition assembly in the first and second chambers.
  • The thin film deposition assembly may include: a deposition source that discharges a deposition material; a deposition source nozzle unit that is disposed at a side of the deposition source and includes a plurality of deposition source nozzles arranged in a first direction; and a patterning slit sheet that is disposed opposite to the deposition source nozzle unit and includes a plurality of patterning slits arranged in a second direction that is perpendicular to the first direction, wherein the deposition source, the deposition source nozzle unit, and the patterning slit sheet are integrally formed as one body, and the thin film deposition assembly is disposed to be separated from the substrate so that a deposition process is performed on the substrate while the substrate is moved relative to the thin film deposition assembly in the first direction.
  • The thin film deposition assembly may include: a deposition source that discharges a deposition material; a deposition source nozzle unit that is disposed at a side of the deposition source and includes a plurality of deposition source nozzles arranged in a first direction; a patterning slit sheet that is disposed opposite to the deposition source nozzle unit and includes a plurality of patterning slits arranged in the first direction; and a barrier wall assembly that is disposed between the deposition source nozzle unit and the patterning slit sheet in the first direction, and includes a plurality of barrier walls that partition a space between the deposition source nozzle unit and the patterning slit sheet into a plurality of sub-deposition spaces, and wherein the thin film deposition assembly is disposed to be separated from the substrate so that a deposition process is performed on the substrate while the thin film deposition assembly or the substrate is moved relative to the other.
  • The patterning slit sheet may include a first mark, and the substrate may include a second mark, and the thin film deposition assembly may include a camera assembly for capturing a degree of alignment of the first mark and the second mark, and wherein the camera assembly includes: a hood having an opening formed in one end of the hood; a camera installed in the hood; an optical system disposed between the camera and the opening; a protection window disposed between the optical system and the opening; and a heater disposed on the protection window, and wherein the degree of alignment of the first mark and the second mark is detected while the deposition process is performed.
  • The patterning slit sheet may include a first mark, and the substrate may include a second mark, and the thin film deposition assembly may be driven while the deposition process is performed, so that the first mark and the second mark are aligned with each other.
  • According to another aspect of the present invention, a thin film deposition apparatus may include: a source chamber which is connected to the chamber and in which the deposition source of the thin film deposition assembly is accommodated; a valve opening or closing a space between the chamber and the source chamber; and a shutter closing the space between the chamber and the source chamber when the deposition source is located at the chamber, and the method further including: conveying the deposition source to the source chamber after the deposition process on the substrate is completed; closing the space between the chamber and the source chamber by using the valve; and replacing the deposition source.
  • The patterning slit sheet may include a first mark, and the substrate may include a second mark, and the thin film deposition assembly may include a camera assembly for capturing a degree of alignment of the first mark and the second mark, and wherein the camera assembly includes: a hood having an opening formed in one end of the hood; a camera installed in the hood; an optical system disposed between the camera and the opening; a protection window disposed between the optical system and the opening; and a heater disposed on the protection window, and wherein the degree of alignment of the first mark and the second mark is detected while the deposition process is performed.
  • The patterning slit sheet may include a first mark, and the substrate may include a second mark, and the thin film deposition assembly may be driven while the deposition process is performed, so that the first mark and the second mark are aligned with each other.
  • According to another aspect of the present invention, a thin film deposition apparatus may include: a source chamber which is connected to the chamber and in which the deposition source of the thin film deposition assembly is accommodated; a valve opening or closing a space between the chamber and the source chamber; and a shutter closing the space between the chamber and the source chamber when the deposition source is located at the chamber, and the method further including: conveying the deposition source to the source chamber after the deposition process on the substrate is completed; closing the space between the chamber and the source chamber by using the valve; and replacing the deposition source.
  • Additional aspects and/or advantages of the invention will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and/or other aspects and advantages of the invention will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings of which:
  • FIG. 1 is a schematic view of a thin film deposition apparatus according to an embodiment of the present invention;
  • FIG. 2 illustrates a modified example of the thin film deposition apparatus of FIG. 1;
  • FIG. 3 is a schematic view of an electrostatic chuck, according to an embodiment of the present invention;
  • FIG. 4 is a cross-sectional view of a first circulation unit of the thin film deposition apparatus of FIG. 1;
  • FIG. 5 is a cross-sectional view of a second circulation unit of the thin film deposition apparatus of FIG. 1;
  • FIG. 6 is a perspective view of a thin film deposition assembly according to an embodiment of the present invention;
  • FIG. 7 is a schematic cross-sectional side view of the thin film deposition assembly of FIG. 6, according to an embodiment of the present invention;
  • FIG. 8 is a schematic plan view of the thin film deposition assembly of FIG. 6, according to an embodiment of the present invention;
  • FIG. 9 is a perspective view of a thin film deposition assembly according to another embodiment of the present invention;
  • FIG. 10 is a perspective view of a thin film deposition assembly according to another embodiment of the present invention;
  • FIG. 11 is a perspective view of a thin film deposition assembly according to another embodiment of the present invention;
  • FIG. 12 is a schematic cross-sectional side view of the thin film deposition assembly of FIG. 11, according to an embodiment of the present invention;
  • FIG. 13 is a schematic plan view of the thin film deposition assembly of FIG. 11, according to an embodiment of the present invention;
  • FIGS. 14A and 14B are cross-sectional views of a source chamber, according to an embodiment of the present invention;
  • FIG. 15 is a cross-sectional view of a camera assembly, according to an embodiment of the present invention;
  • FIG. 16 is a perspective view of a thin film deposition assembly according to another embodiment of the present invention; and
  • FIG. 17 is a cross-sectional view of an organic light-emitting display apparatus manufactured by using a thin film deposition apparatus, according to an embodiment of the present invention.
  • DETAILED DESCRIPTION
  • Reference will now be made in detail to the present embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. The embodiments are described below in order to explain the present invention by referring to the figures.
  • The present invention will now be described more fully with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown.
  • Here, when a first element is described as being coupled to a second element, the first element may be not be only directly coupled to the second element but may also be indirectly coupled to the second element via a third element. Moreover, it is to be understood that where is stated herein that one film or layer is “formed on” or “disposed on” a second layer or film, the first layer or film may be formed or disposed directly on the second layer or film or there may be intervening layers or films between the first layer or film and the second layer or film. Further, as used herein, the term “formed on” is used with the same meaning as “located on” or “disposed on” and is not meant to be limiting regarding any particular fabrication process.
  • FIG. 1 is a schematic view of a thin film deposition apparatus according to an embodiment of the present invention, and FIG. 2 illustrates a modified example of the thin film deposition apparatus of FIG. 1. FIG. 3 is a schematic view of an electrostatic chuck 600, according to an embodiment of the present invention.
  • Referring to FIG. 1, the thin film deposition apparatus according to an embodiment of the present invention includes a loading unit 710, a deposition unit 730, an unloading unit 720, a first circulation unit 610, and a second circulation unit 620.
  • The loading unit 710 may include a first rack 712, a transport robot 714, a transport chamber 716, and a first inversion chamber 718.
  • A plurality of substrates 500 on which deposition is not performed, are stacked on the first rack 712, and the transport robot 714 picks up the substrates 500 from the first rack 712, places the substrates 500 on the electrostatic chuck 600 conveyed from the second circulation unit 620 and then conveys the electrostatic chuck 600 on which the substrates 500 are placed, to the transport chamber 716.
  • The first inversion chamber 718 is disposed adjacent to the transport chamber 716, and a first inversion robot 719 located at the first inversion chamber 718 inverts the electrostatic chuck 600 to bar the electrostatic chuck 600 on the first circulation unit 610 of the deposition unit 730.
  • As illustrated in FIG. 3, the electrostatic chuck 600 includes an electrode 602 embedded in a main body 601 formed of dielectric material, wherein the electrode 602 is supplied with power. Such an electrostatic chuck may fix the substrates 500 on a surface of the main body 601 as a high voltage is applied to the electrode 602.
  • Referring to FIG. 1, the transport robot 714 places the substrates 500 on a top surface of the electrostatic chuck 600. In this state, the electrostatic chuck 600 is conveyed to the transport chamber 716. As the first inversion robot 719 inverts the electrostatic chuck 600, the substrates 500 are directed downwards in the deposition unit 730.
  • The unloading unit 720 is constituted to operate in an opposite manner to the loading unit 710 described above. In other words, the substrates 500 and the electrostatic chuck 600 that pass through the deposition unit 730 are inverted by a second inversion robot 729 in a second inversion chamber 728 and are conveyed to an ejection chamber 726, and an ejection robot 724 takes the substrates 500 and the electrostatic chuck 600 out of the ejection chamber 726 and then separates the substrates 500 from the electrostatic chuck 600 to place or stack the substrates 500 on a second rack 722. The electrostatic chuck 600 which is separated from the substrates 500 is returned to the loading unit 710 via the second circulation unit 620.
  • However, aspects of the present invention are not limited thereto. The substrates 500 may be fixed on a bottom surface of the electrostatic chuck 600 from when the substrates 500 are initially fixed on the electrostatic chuck 600, and the electrostatic chuck 600 may be conveyed to the deposition unit 730. In this regard, the first inversion chamber 718, the first inversion robot 719, the second inversion chamber 728, and the second inversion robot 729 are not necessary.
  • The deposition unit 730 includes at least one deposition chamber. According to the embodiment of FIG. 1, the deposition unit 730 may include a first chamber 731, and a plurality of thin film deposition assemblies 100, 200, 300, and 400 are disposed in the first chamber 731. According to the embodiment of FIG. 1, four thin film deposition assemblies including a first thin film deposition assembly 100, a second thin film deposition assembly 200, a third thin film deposition assembly 300, and a fourth thin film deposition assembly 400 are installed in the first chamber 731. However, the number of thin film deposition assemblies to be installed in the first chamber 731 may vary according to a deposition material and a deposition condition. The first chamber 731 has an appropriate degree of vacuum maintained therein when deposition is performed.
  • Also, according to another embodiment of the present invention as illustrated in FIG. 2, the deposition unit 730 includes the first chamber 731 and the second chamber 732 connected to each other, and the first and second thin film deposition assemblies 100 and 200 may be disposed in the first chamber 731, and the third and fourth thin film deposition assemblies 300 and 400 may be disposed in the second chamber 732. Of course, the number of chambers is not limited thereto and may be increased.
  • According to the embodiment of FIG. 1, the electrostatic chuck 600, on which the substrates 500 are disposed, is moved to at least the deposition unit 730 by the first circulation unit 610 and may be sequentially moved to the loading unit 710, the deposition unit 730, and the unloading unit 720. The electrostatic chuck 600 separated from the substrates 500 in the unloading unit 720 is returned to the loading unit 710 by the second circulation unit 620.
  • The first circulation unit 610 is disposed to pass through the first chamber 731 when passing through the deposition unit 730, and the second circulation unit 620 allows the electrostatic chuck 600 to be conveyed to the loading unit 710.
  • FIG. 4 is a cross-sectional view of the first circulation unit 610 of the thin film deposition apparatus of FIG. 1.
  • The first circulation unit 610 includes a first carrier 611 that allows the electrostatic chuck 600 on which the substrates 500 are disposed, to be moved.
  • The first carrier 611 includes a first support 613, a second support 614, a moving bar 615, and a first driving unit 616.
  • The first support 613 and the second support 614 are installed to pass through a chamber of the deposition unit 730, for example, in the embodiment of FIG. 1, the first chamber 731, and in the embodiment of FIG. 2, the first chamber 731 and the second chamber 732.
  • The first support 613 is disposed vertically in the first chamber 731, and the second support 614 is horizontally disposed below the first support 613 in the first chamber 731. As illustrated in FIG. 4, the first support 613 and the second support 614 are disposed perpendicular to each other forming a bent structure. However, aspects of the present invention are not limited thereto. The first support 613 may be disposed above the second support 614, and the second support 614 may be disposed below the first support 613.
  • The moving bar 615 is movable along the first support 613. At least one end of the moving bar 615 is supported by the first support 613, and the other end of the moving bar 615 is formed to be supported by edges of the electrostatic chuck 600. The electrostatic chuck 600 may be fixedly supported on the moving bar 615 and may be moved along the first support 613 due to the moving bar 615. A portion of the moving bar 615 that supports the electrostatic chuck 600 may be bent toward a thin film deposition assembly 100 and may allow the substrates 500 to be close to the thin film deposition assembly 100.
  • The first driving unit 616 is interposed between the moving bar 615 and the first support 613. The first driving unit 616 may include a roller 617 that may be rolled along the first support 613. The first driving unit 616 allows the moving bar 615 to be moved along the first support 613 and may provide a driving power or may transfer a driving power generated by an additional driving source to the moving bar 615. The first driving unit 616 may be any driving device that allows the moving bar 615 to be moved, as well as the roller 617.
  • FIG. 5 is a cross-sectional view of the second circulation unit 620 of the thin film deposition apparatus of FIG. 1.
  • The second circulation unit 620 includes a second carrier 621 that allows the electrostatic chuck 600 that is separated from the substrates 500 to be moved.
  • The second carrier 621 includes a third support 623, the moving bar 615, and the first driving unit 616.
  • The third support 623 extends to the same length as an extended length of the first support 613 of the first carrier 611. The moving bar 615 on which the first driving unit 616 is disposed is supported by the third support 623, and the electrostatic chuck 600 that is separated from the substrates 500 is mounted on the moving bar 615. Structures of the moving bar 615 and the first driving unit 616 are as described above.
  • Next, the thin film deposition assembly 100 disposed in the first chamber 731 will be described. FIG. 6 is a perspective view of the thin film deposition assembly 100 according to an embodiment of the present invention, FIG. 7 is a schematic cross-sectional side view of the thin film deposition assembly 100 of FIG. 6, according to an embodiment of the present invention, and FIG. 8 is a schematic plan view of the thin film deposition assembly 100 of FIG. 6, according to an embodiment of the present invention.
  • Referring to FIGS. 6 through 8, the thin film deposition assembly 100 includes a deposition source 110, a deposition source nozzle unit 120, and a patterning slit sheet 150.
  • In particular, in order to deposit a deposition material 115 emitted from the deposition source 110 and discharged through the deposition source nozzle unit 120 and the patterning slit sheet 150, onto a substrate 500 in a desired pattern, the first chamber 731 should be maintained in a high-vacuum state as in a deposition method using a fine metal mask (FMM). In addition, the temperature of the patterning slit sheet 150 should be sufficiently lower than the temperature of the deposition source 110. In this regard, the temperature of the patterning slit sheet 150 may be about 100° C. or less. The temperature of the patterning slit sheet 150 should be sufficiently low so as to reduce thermal expansion of the patterning slit sheet 150.
  • The substrate 500, which constitutes a deposition target on which the deposition material 115 is to be deposited, is disposed in the first chamber 731. The substrate 500 may be a substrate for flat panel displays. A large substrate, such as a mother glass, for manufacturing a plurality of flat panel displays, may be used as the substrate 500. Other substrates may also be employed.
  • Deposition may be performed while the substrate 500 or the thin film deposition assembly 100 is moved relative to the other.
  • In particular, in the conventional FMM deposition method, the size of the FMM has to be equal to the size of a substrate. Thus, the size of the FMM has to be increased as the substrate becomes larger. However, it is neither simple to manufacture a large FMM nor to extend an FMM to be accurately aligned with a pattern.
  • In order to overcome this problem, in the thin film deposition assembly 100 according to an embodiment of the present invention, deposition may be performed while the thin film deposition assembly 100 or the substrate 500 is moved relative to the other. In other words, deposition may be continuously performed while the substrate 500, which is disposed to face the thin film deposition assembly 100, is moved in a Y-axis direction. In other words, deposition is performed in a scanning manner while the substrate 500 is moved in a direction of arrow A in FIG. 6.
  • In the thin film deposition assembly 100, the patterning slit sheet 150 may be significantly smaller than an FMM used in a conventional deposition method. In other words, in the thin film deposition assembly 100, deposition is continuously performed, i.e., in a scanning manner while the substrate 500 is moved in the Y-axis direction. Thus, lengths of the patterning slit sheet 150 in the X-axis and Y-axis directions may be significantly less than the lengths of the substrate 500 in the X-axis and Y-axis directions. As described above, since the patterning slit sheet 150 may be formed to be significantly smaller than an FMM used in the conventional deposition method, it is relatively easy to manufacture the patterning slit sheet 150 used in the aspects of the present invention. In other words, using the patterning slit sheet 150, which is smaller than an FMM used in the conventional deposition method, is more convenient in all processes, including etching and other subsequent processes, such as precise extension, welding, moving, and cleaning processes, compared to the conventional deposition method using the larger FMM. This is more advantageous for a relatively large display apparatus.
  • The deposition source 110 that contains and heats the deposition material 115 is disposed in an opposite side of the first chamber 731 to the side in which the substrate 500 is disposed. While the deposition material 115 contained in the deposition source 110 is vaporized, the deposition material 115 is deposited on the substrate 500.
  • In particular, the deposition source 110 includes a crucible 112 that is filled with the deposition material 115, and a cooling block 111 that includes a heater (not shown) that heats the crucible 112 to vaporize the deposition material 115, which is contained in the crucible 112, towards a side of the crucible 112, and in particular, towards the deposition source nozzle unit 120. The cooling block 111 prevents radiation of heat from the crucible 112 to outside, i.e., into the first chamber 731.
  • The deposition source nozzle unit 120 is disposed at a side of the deposition source 110, and in particular, at the side of the deposition source 110 facing the substrate 500. The deposition source nozzle unit 120 includes a plurality of deposition source nozzles 121 arranged at equal intervals in the Y-axis direction, i.e., a scanning direction of the substrate 500. The deposition material 110 that is vaporized in the deposition source 110 passes through the deposition source nozzle unit 120 towards the substrate 500. As described above, when the deposition source nozzle unit 120 includes the plurality of deposition source nozzles 121 arranged in the Y-axis direction, that is, the scanning direction of the substrate 500, the size of a pattern formed of the deposition material 115 discharged through the patterning slits 151 of the patterning slit sheet 150 is affected by the size of each deposition source nozzle 121 (since there is only one line of deposition nozzles in the X-axis direction), and thus no shadow zone may be formed on the substrate 500. In addition, since the plurality of deposition source nozzles 121 are arranged in the scanning direction of the substrate 500, even when there is a difference in flux between the deposition source nozzles 121, the difference may be compensated for and deposition uniformity may be maintained constant.
  • The patterning slit sheet 150 and a frame 155 in which the patterning slit sheet 150 is bound are disposed between the deposition source 110 and the substrate 500. The frame 155 may be formed in a lattice shape, similar to a window frame. The patterning slit sheet 150 is bound inside the frame 155. The patterning slit sheet 150 includes a plurality of patterning slits 151 arranged in the X-axis direction. The deposition material 115 that is vaporized in the deposition source 110, passes through the deposition source nozzle unit 120 and the patterning slit sheet 150 towards the substrate 500. The patterning slit sheet 150 may be manufactured by etching, which is the same method as used in a conventional method of manufacturing an FMM, and in particular, a striped FMM. In this regard, the total number of patterning slits 151 may be greater than the total number of deposition source nozzles 121.
  • In addition, the deposition source 110 and the deposition source nozzle unit 120 coupled to the deposition source 110 may be disposed to be separated from the patterning slit sheet 150 by a predetermined distance. Alternatively, the deposition source 110 and the deposition source nozzle unit 120 coupled to the deposition source 110 may be connected to the patterning slit sheet 150 by a first connection member 135. That is, the deposition source 110, the deposition source nozzle unit 120, and the patterning slit sheet 150 may be integrally formed as one body by being connected to each other via the first connection member 135. The first connection member 135 guides the deposition material 121, which is discharged through the deposition source nozzles 121, to move in a substantially straight line through the thin film deposition assembly 100, and not to flow in the X-axis direction. In FIG. 6, the first connection members 135 are formed on left and right sides of the deposition source 110, the deposition source nozzle unit 120, and the patterning slit sheet 150 to guide the deposition material 915 not to flow in the X-axis direction; however, aspects of the present invention are not limited thereto. That is, the first connection member 135 may be formed as a sealed box to guide the flow of the deposition material 915 both in the X-axis and Y-axis directions.
  • As described above, the thin film deposition assembly 100 performs deposition while being moved relative to the substrate 500. In order to move the thin film deposition assembly 100 relative to the substrate 500, the patterning slit sheet 150 is separated from the substrate 500 by a predetermined distance.
  • In particular, in the conventional deposition method using an FMM, deposition is performed with the FMM in close contact with a substrate in order to prevent formation of a shadow zone on the substrate. However, when the FMM is used in close contact with the substrate, the contact may cause defects. In addition, in the conventional deposition method, the size of the mask has to be the same as the size of the substrate since the mask cannot be moved relative to the substrate. Thus, the size of the mask has to be increased as display apparatuses become larger. However, it is not easy to manufacture such a large mask.
  • In order to overcome this problem, in the thin film deposition assembly 100, the patterning slit sheet 150 is disposed to be separated from the substrate 500 by a predetermined distance.
  • As described above, a mask is formed to be smaller than a substrate, and deposition is performed while the mask is moved relative to the substrate. Thus, the mask can be easily manufactured. In addition, defects caused due to the contact between a substrate and an FMM, which occur in the conventional deposition method, may be prevented. Furthermore, since it is unnecessary to dispose the FMM in close contact with the substrate during a deposition process, the manufacturing time may be reduced.
  • FIG. 9 is a perspective view of a thin film deposition assembly 100 according to another embodiment of the present invention. Referring to FIG. 9, the thin film deposition assembly 100 includes a deposition source 110, a deposition source nozzle unit 120, and a patterning slit sheet 150. In particular, the deposition source 110 includes a crucible 112 that is filled with a deposition material 115, and a cooling block 111 that includes a heater (not shown) that heats the crucible 112 to vaporize the deposition material 115, so as to move the vaporized deposition material 115 to the deposition source nozzle unit 120. The cooling block 111 is contained in the crucible 112. The deposition source nozzle unit 120, which has a planar shape, is disposed at a side of the deposition source 110. The deposition source nozzle unit 120 includes a plurality of deposition source nozzles 121 arranged in the Y-axis direction. The patterning slit sheet 150 and a frame 155 are further disposed between the deposition source 110 and the substrate 500. The patterning slit sheet 150 includes a plurality of patterning slits 151 arranged in the X-axis direction. In addition, the deposition source 110 and the deposition source nozzle unit 120 may be connected to the patterning slit sheet 150 by a second connection member 133 (illustrated in FIG. 11).
  • A plurality of deposition source nozzles 121 formed on the deposition source nozzle unit 120 are tilted at a predetermined angle, unlike the thin film deposition assembly 100 described with reference to FIG. 6. In particular, the deposition source nozzles 121 may include deposition source nozzles 121 a and 121 b arranged in respective rows. The deposition source nozzles 121 a and 121 b may be arranged in respective rows to alternate in a zigzag pattern. The deposition source nozzles 121 a and 121 b may be tilted at a predetermined angle on an XZ plane.
  • The deposition source nozzles 121 a and 121 b are arranged to be tilted at a predetermined angle to each other. The deposition source nozzles 121 a in a first row and the deposition source nozzles 121 b in a second row may be tilted to face each other. That is, the deposition source nozzles 121 a of the first row in a left part of the deposition source nozzle unit 121 may be tilted to face a right side portion of the patterning slit sheet 150, and the deposition source nozzles 121 b of the second row in a right part of the deposition source nozzle unit 121 may be tilted to face a left side portion of the patterning slit sheet 150.
  • Due to the structure of the thin film deposition assembly 100 according to the current embodiment, the deposition of the deposition material 115 may be adjusted to lessen a thickness variation between the center and the end portions of the substrate 500 and improve thickness uniformity of the deposition film. Moreover, utilization efficiency of the deposition material 115 may also be improved.
  • FIG. 10 is a perspective view of a thin film deposition assembly according to another embodiment of the present invention. Referring to FIG. 10, the thin film deposition apparatus includes a plurality of thin film deposition assemblies, each of which has the structure of the thin film deposition apparatus 100 illustrated in FIGS. 6 through 8. In other words, the thin film deposition apparatus illustrated in FIG. 10 may include a multi-deposition source that simultaneously discharges deposition materials for forming a red (R) emission layer, a green (G) emission layer, and a blue (B) emission layer.
  • In particular, the thin film deposition apparatus includes a first thin film deposition assembly 100, a second thin film deposition assembly 200, and a third thin film deposition assembly 300. Each of the first thin film deposition assembly 100, the second thin film deposition assembly 200, and the third thin film deposition assembly 300 has the same structure as the thin film deposition assembly 100 described with reference to FIGS. 6 through 8, and thus a detailed description thereof will not be provided here.
  • The deposition sources 110 of the first thin film deposition assembly 100, the second thin film deposition assembly 200 and the third thin film deposition assembly 300 may contain different deposition materials, respectively. The first thin film deposition assembly 100 may contain a deposition material for forming the R emission layer, the second thin film deposition assembly 200 may contain a deposition material for forming the G emission layer, and the third thin film deposition assembly 300 may contain a deposition material for forming the B emission layer.
  • In other words, in a conventional method of manufacturing an organic light-emitting display apparatus, a separate chamber and mask are used to form each color emission layer. However, when the thin film deposition apparatus according to an embodiment of the present invention is used, the R emission layer, the G emission layer and the B emission layer may be formed at the same time with a single multi-deposition source. Thus, the time it takes to manufacture the organic light-emitting display apparatus is significantly reduced. In addition, the organic light-emitting display apparatus may be manufactured with a reduced number of chambers, so that equipment costs are also markedly reduced.
  • Although not illustrated, a patterning slit sheet of the first thin film deposition assembly 100, a patterning slit sheet of the second thin film deposition assembly 200, a patterning slit sheet of the third thin film deposition assembly 300 may be arranged to be offset by a constant distance with respect to each other, in order for deposition regions corresponding to the patterning slit sheets not to overlap on the substrate 500. In other words, when the first thin film deposition assembly 100, the second thin film deposition assembly 200, and the third thin film deposition assembly 300 are used to deposit an R emission layer, a G emission layer and a B emission layer, respectively, patterning slits of the first thin film deposition assembly 100, patterning slits of the second thin film deposition assembly 200, and patterning slits of the second thin film deposition assembly 300 are arranged not to be aligned with each other, in order to form the R emission layer, the G emission layer and the B emission layer in different regions of the substrate 500.
  • In addition, the deposition materials for forming the R emission layer, the G emission layer, and the B emission layer may have different deposition temperatures. Therefore, the temperatures of the deposition sources of the respective first, second, and third thin film deposition assemblies 100, 200, and 300 may be set to be different.
  • Although the thin film deposition apparatus illustrated in FIG. 10 according to a embodiment of the present invention includes three thin film deposition assemblies, the present invention is not limited thereto. In other words, a thin film deposition apparatus according to another embodiment of the present invention may include a plurality of thin film deposition assemblies, each of which contains a different deposition material. For example, a thin film deposition apparatus according to another embodiment of the present invention may include five thin film deposition assemblies respectively containing materials for a R emission layer, a G emission layer, a B emission layer, an auxiliary layer (R′) of the R emission layer, and an auxiliary layer (G′) of the G emission layer.
  • As described above, a plurality of thin layers may be formed at the same time with a plurality of thin film deposition assemblies, and thus manufacturing yield and deposition efficiency are improved. In addition, the overall manufacturing process is simplified, and the manufacturing costs are reduced.
  • FIG. 11 is a perspective view of a thin film deposition assembly 100 according to another embodiment of the present invention, FIG. 12 is a schematic cross-sectional side view of the thin film deposition assembly 100 of FIG. 11, according to an embodiment of the present invention, and FIG. 13 is a schematic plan view of the thin film deposition assembly 100 of FIG. 11, according to an embodiment of the present invention.
  • Referring to FIGS. 11 through 13, the thin film deposition assembly 100 includes a deposition source 110, a deposition source nozzle unit 120, a barrier wall assembly 130, and patterning slits 151.
  • Although a chamber is not illustrated in FIGS. 11 through 13 for convenience of explanation, all the components of the thin film deposition assembly 100 may be disposed within a chamber that has an appropriate degree of vacuum maintained therein. The chamber has an appropriate vacuum maintained therein in order to allow a deposition material to move in a substantially straight line through the thin film deposition assembly 100.
  • The substrate 500, which constitutes a target on which a deposition material 115 is to be deposited, is conveyed into the chamber by using the electrostatic chuck 600. The substrate 500 may be a substrate for flat panel displays. A large substrate, such as a mother glass, for manufacturing a plurality of flat panel displays, may be used as the substrate 500.
  • Deposition may be performed while the substrate 500 or the thin film deposition assembly 100 is moved relative to the other. The substrate 500 may be moved relative to the thin film deposition assembly 100 in a direction A.
  • Like in the above-described embodiment of FIG. 6, in the thin film deposition assembly 100 according to the current embodiment of the present invention, the patterning slit sheet 150 may be significantly smaller than a FMM used in the conventional deposition method. In other words, in the thin film deposition assembly 100, deposition is continuously performed, i.e., in a scanning manner while the substrate 500 is moved in the Y-axis direction. Thus, if a width of the patterning slit sheet 150 in the X-axis direction is substantially the same as a width of the substrate 500 in the X-axis direction, a length of the patterning slit sheet 150 in the Y-axis direction may be significantly less than a length of the substrate 500 in the Y-axis direction. Of course, even when the width of the patterning slit sheet 150 in the X-axis direction is less than the width of the substrate 500 in the X-axis direction, deposition may be sufficiently performed on the entire surface of the substrate 500 in a scanning manner due to relative movement of the substrate 500 and the thin film deposition assembly 100.
  • As described above, since the patterning slit sheet 150 may be formed to be significantly smaller than an FMM used in the conventional deposition method, it is relatively easy to manufacture the patterning slit sheet 150 used in an aspect of the present invention. In other words, using the patterning slit sheet 150, which is smaller than an FMM used in the conventional deposition method, is more convenient in all processes, including etching and subsequent other processes, such as precise extension, welding, moving, and cleaning processes, compared to the conventional deposition method using the larger FMM. This is more advantageous for a relatively large display apparatus.
  • The deposition source 110 that contains and heats the deposition material 115 is disposed in an opposite side of the chamber to the side in which the substrate 500 is disposed.
  • The deposition source 110 includes a crucible 112 that is filled with the deposition material 115, and a cooling block 111 that surrounds the crucible 112. The cooling block 111 prevents radiation of heat from the crucible 112 to outside, i.e., into the chamber. The cooling block 111 may include a heater (not shown) that heats the crucible 112.
  • The deposition source nozzle unit 120 is disposed at a side of the deposition source 110, and in particular, at the side of the deposition source 110 facing the substrate 500. The deposition source nozzle unit 120 includes a plurality of deposition source nozzles 121 arranged in the X-axis direction. The deposition material 115 that is vaporized in the deposition source 110 passes through the plurality of deposition source nozzles 121 of the deposition source nozzle unit 120 towards the substrate 500.
  • The barrier wall assembly 130 is disposed at a side of the deposition source nozzle unit 120. The barrier wall assembly 130 includes a plurality of barrier walls 131, and a barrier wall frame 132 that constitutes an outer wall of the barrier walls 131. The plurality of barrier walls 131 may be arranged parallel to each other at equal intervals in the X-axis direction. In addition, each of the barrier walls 131 may be formed to extend in an YZ plane in FIG. 11, i.e., perpendicular to the X-axis direction. The plurality of barrier walls 131 arranged as described above partition the space between the deposition source nozzle unit 120 and the patterning slit sheet 150 into a plurality of sub-deposition spaces S (illustrated in FIG. 13). In the thin film deposition assembly 100, the deposition space is divided by the barrier walls 131 into the sub-deposition spaces S that respectively correspond to the deposition source nozzles 121 through which the deposition material 115 is discharged, as illustrated in FIG. 13.
  • The barrier walls 131 may be respectively disposed between adjacent deposition source nozzles 121. In other words, each of the deposition source nozzles 121 may be disposed between two adjacent barrier walls 131. The deposition source nozzles 121 may be respectively located at the midpoint between two adjacent barrier walls 131. However, aspects of the present invention are not limited thereto, and the deposition source nozzles 121 may be disposed otherwise. The plurality of deposition source nozzles 121 may be disposed between two adjacent barrier walls 131. Even in this case, the deposition source nozzles 121 may be respectively located at the midpoint between two adjacent barrier walls 131.
  • As described above, since the barrier walls 131 partition the space between the deposition source nozzle unit 120 and the patterning slit sheet 150 into the plurality of sub-deposition spaces S, the deposition material 115 discharged through each of the deposition source nozzles 121 is not mixed with the deposition material 115 discharged through the other deposition source nozzles 121, and passes through patterning slits 151 so as to be deposited on the substrate 500. In other words, the barrier walls 131 guide the deposition material 115, which is discharged through the deposition source nozzles 121, to move in a substantially straight line through the thin film deposition assembly 100, and not to flow in the Z-axis direction.
  • As described above, the deposition material 115 is forced to move in a substantially straight line through the thin film deposition assembly 100 by installing the barrier walls 131, so that a smaller shadow zone may be formed on the substrate 500 compared to a case where no barrier walls are installed. Thus, the thin film deposition assembly 100 and the substrate 500 can be separated from each other by a predetermined distance. This will be described later in detail.
  • The barrier wall frame 132, which forms upper and lower sides of the barrier walls 131, maintains the positions of the barrier walls 131, and guides the deposition material 115, which is discharged through the deposition source nozzles 121, to move in a substantially straight line through the thin film deposition assembly 100, and not to flow in the Y-axis direction.
  • The deposition source nozzle unit 120 and the barrier wall assembly 130 may be separated from each other by a predetermined distance. Thus, heat dissipated from the deposition source 110 may be prevented from being conducted to the barrier wall assembly 130. However, aspects of the present invention are not limited thereto. In other words, when an appropriate insulation unit is disposed between the deposition source nozzle unit 120 and the barrier wall assembly 130, the deposition source nozzle unit 120 and the barrier wall assembly 130 may be combined with each other and may contact each other.
  • In addition, the barrier wall assembly 130 may be constructed to be detachable from the thin film deposition assembly 100. In order to overcome these problems, in the thin film deposition assembly 100, the deposition space is enclosed by using the barrier wall assembly 130, so that the deposition material 115 that remains undeposited is mostly deposited within the barrier wall assembly 130. Thus, since the barrier wall assembly 130 is constructed to be detachable from the thin film deposition assembly 100, when a large amount of the deposition material 115 lies in the barrier wall assembly 130 after a long deposition process, the barrier wall assembly 130 may be detached from the thin film deposition assembly 100 and then placed in a separate deposition material recycling apparatus in order to recover the deposition material 115. Due to the structure of the thin film deposition assembly 100 according to the present embodiment, a reuse rate of the deposition material 115 is increased, so that the deposition efficiency is improved, and thus the manufacturing costs are reduced.
  • The patterning slit sheet 150 and a frame 155 in which the patterning slit sheet 150 is bound are disposed between the deposition source 110 and the substrate 500. The frame 155 may be formed in a lattice shape, similar to a window frame. The patterning slit sheet 150 is bound inside the frame 155. The patterning slit sheet 150 includes a plurality of patterning slits 151 arranged in the X-axis direction. The patterning slit sheet 150 extends in the Y-axis direction. The deposition material 115 that is vaporized in the deposition source 110 and passes through the deposition source nozzles 121, passes through the patterning slits 151 towards the substrate 500.
  • The patterning slit sheet 150 is formed of a metal sheet and is bound on the frame 155 in an extended state. The patterning slits 151 are formed as striped slits in the patterning slit sheet 150 manufactured by etching.
  • In the thin film deposition assembly 100, the total number of patterning slits 151 may be greater than the total number of deposition source nozzles 121. In addition, there may be a greater number of patterning slits 151 than deposition source nozzles 121 disposed between two adjacent barrier walls 131. The number of the patterning slits 151 may correspond to the number of deposition patterns to be formed on the substrate 500.
  • In addition, the barrier wall assembly 130 and the patterning slit sheet 150 may be formed to be separated from each other by a predetermined distance. Alternatively, the barrier wall assembly 130 and the patterning slit sheet 150 may be connected by a separate second connection member 133. The temperature of the barrier wall assembly 130 may increase to 100° C. or higher due to the deposition source 110 whose temperature is high. Thus, in order to prevent the heat of the barrier wall assembly 130 from being conducted to the patterning slit sheet 150, the barrier wall assembly 130 and the patterning slit sheet 150 are separated from each other by a predetermined distance.
  • As described above, the thin film deposition assembly 100 performs deposition while being moved relative to the substrate 500. In order to move the thin film deposition assembly 100 relative to the substrate 500, the patterning slit sheet 150 is separated from the substrate 500 by a predetermined distance. In addition, in order to prevent the formation of a relatively large shadow zone on the substrate 500 when the patterning slit sheet 150 and the substrate 500 are separated from each other, the barrier walls 131 are arranged between the deposition source nozzle unit 120 and the patterning slit sheet 150 to force the deposition material 115 to move in a straight direction. Thus, the size of the shadow zone formed on the substrate 500 is significantly reduced.
  • In particular, in a conventional deposition method using an FMM, deposition is performed with the FMM in close contact with a substrate in order to prevent formation of a shadow zone on the substrate. However, when the FMM is used in close contact with the substrate, defects, such as scratched patterns that have been already formed over the substrate due to the contact between the substrate and the FMM, occur. In addition, in the conventional deposition method, the size of the mask has to be the same as the size of the substrate since the mask cannot be moved relative to the substrate. Thus, the size of the mask has to be increased as display apparatuses become larger. However, it is not easy to manufacture such a large mask.
  • In order to overcome this problem, in the thin film deposition assembly 100 according to an aspect of the present invention, the patterning slit sheet 150 is disposed to be separated from the substrate 500 by a predetermined distance. This may be facilitated by installing the barrier walls 131 to reduce the size of the shadow zone formed on the substrate 500.
  • When a patterning slit sheet is formed to be smaller than a substrate according to an aspect of the present invention and then, the patterning slit sheet is moved relative to the substrate a large mask like in the conventional deposition method using the FMM does not need to be manufactured. In addition, since the substrate and the patterning slit sheet are separated from each other by a predetermined distance, defects caused due to the contact between the substrate and the patterning slit sheet may be prevented. In addition, since it is unnecessary to use the patterning slit sheet in close contact with the substrate during a deposition process, the manufacturing speed may be improved.
  • In the thin film deposition assembly 100, the deposition source 110 may be accommodated in a source chamber 113 connected to a first chamber 731 in which deposition is to be performed, as illustrated in FIGS. 14A and 14B.
  • In other words, the separate source chamber 113 is connected to the first chamber 731 in which deposition is to be performed, and the space between the source chamber 113 and the first chamber 731 is opened or closed by a high-vacuum valve 118.
  • In order to refill a deposition material in the deposition source 110 after a deposition process is completed, the first chamber 731 should be maintained under atmospheric pressure. However, when the first chamber 731 is maintained under atmospheric pressure to refill the deposition source 110, and then is maintained in a vacuum state so as to perform a new deposition process, this process takes a long time and production time increases.
  • To this end, in an embodiment of the present invention, a stage 114 that supports the deposition source 110 is disposed in the source chamber 113, and the stage 114 is connected to bellows 116. The stage 114 is driven as the bellows 116 is driven. Thus, the deposition source 110 can be moved between the source chamber 113 and the first chamber 731.
  • A shutter 117 is disposed around the deposition source 110, and when the deposition source 110 is raised into the first chamber 731, the shutter 117 blocks a connection opening to the source chamber 113 so as to prevent the source chamber 113 from being contaminated due to the deposition material, as illustrated in FIG. 14A. After the deposition process is completed, the deposition source 110 is lowered into the source chamber 113 when the shutter 117 is opened, and the source chamber 113 is closed by the high-vacuum valve 118 in an air-tight state with respect to the first chamber 731, as illustrated in FIG. 14B. In this state, the state of the source chamber 113 is changed to be under atmospheric pressure, and a separate door (not shown) disposed in the source chamber 113 is opened, so that the deposition source 110 may be taken out from the source chamber 113 to refill the deposition material in the deposition source 110. According to the structure, the deposition material may be easily filled in the deposition source 110 without exhausting the first chamber 173.
  • In addition, the thin film deposition assembly 100 may be mounted on the second support 614, as illustrated in FIG. 4. In this regard, a second driving unit 618 is disposed on the second support 614, and the second driving unit 618 is connected to the frame 155 of the thin film deposition assembly 100 and finely adjusts the position of the thin film deposition assembly 100 so that the substrate 500 and the thin film deposition assembly 100 may be aligned with each other. Fine adjustment of the alignment may be performed in real-time while the deposition process is being performed.
  • The thin film deposition assembly 100 may further include a camera assembly 170 for aligning the substrate 500 and the thin film deposition assembly 100 with each other, as illustrated in FIGS. 11 and 13. The camera assembly 170 is used to align a first mark 159 formed on the frame 155 and a second mark 501 formed on the substrate 500 with each other in real-time.
  • The camera assembly 170 may obtain a wide view area within a vacuum chamber in which the deposition process is performed, as illustrated in FIG. 10. In other words, as illustrated in FIG. 15, a camera 172 is disposed in a cylindrical hood 171, and an optical system 173 including a lens is disposed between the camera 172 and an opening 176 of the hood 171. A protection window 174 on which heating patterns 175 are formed, is disposed between the optical system 173 and the opening 176. While the deposition process is performed by using the heating patterns 175, an organic material is not deposited on the surface of the protection window 174. Thus, even when the deposition process is performed, the camera 172 can determine the alignment via the protection window 174 within the vacuum chamber.
  • FIG. 16 is a schematic perspective view of a thin film deposition assembly 100 according to another embodiment of the present invention.
  • Referring to FIG. 16, the thin film deposition assembly 100 includes a deposition source 110, a deposition source nozzle unit 120, a first barrier wall assembly 130, a second barrier wall assembly 140, and a patterning slit sheet 150.
  • Although a chamber is not illustrated in FIG. 16 for convenience of explanation, all the components of the thin film deposition assembly 100 may be disposed within a chamber that has an appropriate degree of vacuum maintained therein. The chamber has an appropriate vacuum maintained therein in order to allow a deposition material to move in a substantially straight line through the thin film deposition assembly 100.
  • The substrate 500, which constitutes a target on which a deposition material 115 is to be deposited, is disposed in the chamber. The deposition source 110 that contains and heats the deposition material 115 is disposed in an opposite side of the chamber to the side in which the substrate 500 is disposed.
  • Detailed structures of the deposition source 110 and the patterning slit sheet 150 are the same as those of FIG. 11 and thus a detailed description thereof will not be provided here. The first barrier wall assembly 130 is the same as the barrier wall assembly 130 described with reference to the embodiment of FIG. 11 and thus a detailed description thereof will not be provided here.
  • The second barrier wall assembly 140 is disposed at a side of the first barrier wall assembly 130. The second barrier wall assembly 140 includes a plurality of second barrier walls 141, and a second barrier wall frame 142 that constitutes an outer wall of the second barrier walls 141.
  • The plurality of second barrier walls 141 may be arranged parallel to each other at equal intervals in the X-axis direction. In addition, each of the second barrier walls 141 may be formed to extend in the YZ plane in FIG. 16, i.e., perpendicular to the X-axis direction.
  • The plurality of first barrier walls 131 and second barrier walls 141 arranged as described above partition the space between the deposition source nozzle unit 120 and the patterning slit sheet 150. In the thin film deposition assembly 100 illustrated in FIG. 16, the deposition space is divided by the first barrier walls 131 and the second barrier walls 141 into sub-deposition spaces that respectively correspond to the deposition source nozzles 121 through which the deposition material 115 is discharged.
  • The second barrier walls 141 may be disposed to correspond respectively to the first barrier walls 131. In other words, the second barrier walls 141 may be respectively disposed to be parallel to and to be on the same plane as the first barrier walls 131. Each pair of the corresponding first and second barrier walls 131 and 141 may be located on the same plane. Although the first barrier walls 131 and the second barrier walls 141 are respectively illustrated as having the same thickness in the X-axis direction, aspects of the present invention are not limited thereto. In other words, the second barrier walls 141, which need to be accurately aligned with the patterning slit sheet 151, may be formed to be relatively thin, whereas the first barrier walls 131, which do not need to be precisely aligned with the patterning slit sheet 550, may be formed to be relatively thick. This makes it easier to manufacture the thin film deposition assembly 100.
  • A plurality of thin film deposition assemblies 100 as described above may be continuously arranged in the first chamber 731, as illustrated in FIG. 1. In this regard, the first through fourth thin film deposition assemblies 100, 200, 300, and 400 (see FIG. 1) may deposit different deposition materials. In this regard, patterns of patterning slits of the first through fourth thin film deposition assemblies 100, 200, 300, and 400 are different from one another, so that a layer forming process including a process of depositing red, green, and blue pixels at one time may be performed.
  • FIG. 17 is a cross-sectional view of an active matrix (AM) organic light-emitting display apparatus manufactured by using a thin film deposition apparatus, according to an embodiment of the present invention.
  • Referring to FIG. 17, the AM organic light-emitting display apparatus is disposed on a substrate 30. The substrate 30 may be formed of a transparent material, for example, glass, and may be also formed of plastic or metal. An insulating layer 31, such as a buffer layer, is formed on the substrate 30.
  • A thin film transistor (TFT) 40, a capacitor 50, and an organic light-emitting device 60 are formed on the insulating layer 31, as illustrated in FIG. 17.
  • A semiconductor active layer 41 is formed on an upper surface of the insulating layer 31 in a predetermined pattern. A gate insulating layer 32 is formed to cover the semiconductor active layer 41. The semiconductor active layer 41 may include a p-type or n-type semiconductor material.
  • A gate electrode 42 of the TFT 40 is formed on an upper surface of the gate insulating layer 32 corresponding to the semiconductor active layer 41. An interlayer insulating layer 33 is formed to cover the gate electrode 42. After the interlayer insulating layer 33 is formed, the gate insulating layer 32 and the interlayer insulating layer 33 are etched by, for example, performing dry etching, to form a contact hole for exposing parts of the semiconductor active layer 41.
  • Next, a source/drain electrode 43 is formed on the interlayer insulating layer 33 to contact the semiconductor active layer 41 through the contact hole. A passivation layer 34 is formed to cover the source/drain electrode 43, and is etched to expose a part of the source/drain electrode 43. A separate insulating layer (not shown) may be further formed on the passivation layer 34 so as to planarize the passivation layer 34.
  • In addition, the organic light-emitting device 60 displays predetermined image information by emitting red, green, or blue light as current flows. The organic light-emitting device 60 includes a first electrode 61 formed on the passivation layer 34. The first electrode 61 is electrically connected to the drain electrode 43 of the TFT 40.
  • A pixel defining layer 35 is formed to cover the first electrode 61. After an opening 64 is formed in the pixel defining layer 35, an organic emission layer 63 is formed in a region defined by the opening 64. A second electrode 62 is formed on the organic emission layer 63.
  • The pixel defining layer 35, which defines individual pixels, is formed of an organic material. The pixel defining layer 35 also planarizes the surface of a region of the substrate 30 where the first electrode 61 is formed, and in particular, the surface of the passivation layer 34.
  • The first electrode 61 and the second electrode 62 are insulated from each other, and respectively apply voltages of opposite polarities to the organic emission layer 63 to induce light emission in the organic emission layer 63.
  • The organic emission layer 63 may be formed of a low-molecular weight organic material or a polymer organic material. When a low-molecular weight organic material is used, the organic emission layer 63 may have a single or multi-layer structure including at least one selected from the group consisting of a hole injection layer (HIL), a hole transport layer (HTL), an emission layer (EML), an electron transport layer (ETL), an electron injection layer (EIL), etc. Examples of available organic materials may include copper phthalocyanine (CuPc), N,N′-di(naphthalene-1-yl)-N,N′-diphenyl-benzidine (NPB), tris-8-hydroxyquinoline aluminum (Alq3), etc. Such a low-molecular weight organic material may be deposited by vacuum deposition using one of the thin film deposition apparatuses or the deposition source 110 described above with reference to FIGS. 1 through 16.
  • First, after the opening 64 is formed in the pixel defining layer 35, the substrate 30 is conveyed into a chamber 731, as illustrated in FIG. 1. A target organic material is deposited by the first through fourth thin film deposition assemblies 100, 200, 300, and 400.
  • After the organic emission layer 63 is formed, the second electrode 62 may be formed by performing the same deposition process as the deposition process required to form the first electrode 61.
  • The first electrode 61 functions as an anode, and the second electrode 62 functions as a cathode. Alternatively, the first electrode 61 may function as a cathode, and the second electrode 62 may function as an anode. The first electrode 61 may be patterned to correspond to individual pixel regions, and the second electrode 62 may be formed to cover all the pixels.
  • The first electrode 61 may be formed as a transparent electrode or a reflective electrode. Such a transparent electrode may be formed of at least one material selected from the group consisting of indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), and indium oxide (In2O3). Such a reflective electrode may be formed by forming a reflective layer by using at least one material selected from the group consisting of silver (Ag), magnesium (Mg), aluminum (Al), platinum (Pt), palladium (Pd), gold (Au), nickel (Ni), neodymium (Nd), iridium (Ir), chromium (Cr), and a compound thereof and by forming a layer by using at least one material selected from the group consisting of ITO, IZO, ZnO, and In2O3on the reflective layer. The first electrode 61 may be formed by forming a layer by, for example, sputtering, and then patterning the layer by, for example, photolithography.
  • The second electrode 62 may also be formed as a transparent electrode or a reflective electrode. When the second electrode 62 is formed as a transparent electrode, the second electrode 62 functions as a cathode. To this end, such a transparent electrode may be formed by depositing a metal having a low work function, such as lithium (Li), calcium (Ca), lithium fluoride/calcium (LiF/Ca), lithium fluoride/aluminum (LiF/Al), aluminum (Al), silver (Ag), magnesium (Mg), or a compound thereof on a surface of the organic emission layer 63 and forming an auxiliary electrode layer or a bus electrode line thereon from ITO, IZO, ZnO, In2O3, or the like. When the second electrode 62 is formed as a reflective electrode, the reflective layer may be formed by depositing at least one material selected from the group consisting of Li, Ca, LiF/Ca, LiF/Al, Al, Ag, Mg, and a compound thereof on the entire surface of the organic emission layer 63. The second electrode 62 may be formed by using the same deposition method as used to form the organic emission layer 63 described above.
  • The thin film deposition assemblies according to the embodiments of the present invention described above may be applied to form an organic layer or an inorganic layer of an organic TFT, and to form layers from various materials.
  • As described above, in a thin film deposition apparatus according to aspects of the present invention and a method of manufacturing an organic light-emitting display apparatus according to the aspects of the present invention by using the thin film deposition apparatus, the thin film deposition apparatus may be easily used to manufacture large substrates on a mass scale. In addition, the thin film deposition apparatus and the organic-light-emitting display apparatus may be easily manufactured, may improve manufacturing yield and deposition efficiency, and may allow deposition materials to be reused.
  • While aspects of the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the following claims.

Claims (37)

1. A thin film deposition apparatus comprising:
a loading unit fixing a substrate that is a deposition target, onto an electrostatic chuck;
a deposition unit comprising a chamber maintained in a vacuum state and a thin film deposition assembly disposed in the chamber, separated from the substrate by a predetermined distance, to deposit a thin film on the substrate fixed on the electrostatic chuck;
an unloading unit separating the substrate on which a deposition process is completed, from the electrostatic chuck;
a first circulation unit sequentially moving the electrostatic chuck on which the substrate is fixed, to the loading unit, the deposition unit, and the unloading unit; and
a second circulation unit returning the electrostatic chuck separated from the substrate to the loading unit from the unloading unit,
wherein the first circulation unit is disposed to pass through the chamber when passing through the deposition unit.
2. The thin film deposition apparatus of claim 1, wherein a plurality of the thin film deposition assemblies are disposed in the chamber.
3. The thin film deposition apparatus of claim 1, wherein the chamber comprises a first chamber and a second chamber each comprising a plurality of thin film deposition assemblies, and the first chamber and the second chamber are connected to each other.
4. The thin film deposition apparatus of claim 1, wherein the first circulation unit or the second circulation unit comprises a carrier that allows the electrostatic chuck to be moved.
5. The thin film deposition apparatus of claim 4, wherein the carrier comprises:
a support installed to pass through the chamber and comprising a first support and a second support each extending along the first circulation unit or the second circulation unit;
a moving bar disposed on the first support, to support edges of the electrostatic chuck; and
a first driving unit interposed between the first support and the moving bar, to allow the moving bar to be moved along the first support.
6. The thin film deposition apparatus of claim 1, wherein the thin film deposition assembly comprises:
a deposition source that discharges a deposition material;
a deposition source nozzle unit that is disposed at a side of the deposition source and comprises a plurality of deposition source nozzles arranged in a first direction; and
a patterning slit sheet that is disposed opposite to the deposition source nozzle unit and comprises a plurality of patterning slits arranged in a second direction perpendicular to the first direction,
wherein the deposition process is performed while the substrate is moved relative to the thin film deposition assembly in the first direction, and
the deposition source, the deposition source nozzle unit, and the patterning slit sheet are integrally formed as one body.
7. The thin film deposition apparatus of claim 6, wherein the deposition source and the deposition source nozzle unit, and the patterning slit sheet are integrally connected as one body by a connection member that guides flow of the deposition material.
8. The thin film deposition apparatus of claim 7, wherein the connection member seals a space between the deposition source and the deposition source nozzle unit, and the patterning slit sheet.
9. The thin film deposition apparatus of claim 6, wherein the plurality of deposition source nozzles are tilted at a predetermined angle.
10. The thin film deposition apparatus of claim 9, wherein the plurality of deposition source nozzles comprise deposition source nozzles arranged in two rows formed in the first direction, and the deposition source nozzles in the two rows are tilted to face each other.
11. The thin film deposition apparatus of claim 9, wherein the plurality of deposition source nozzles comprise deposition source nozzles arranged in two rows formed in the first direction,
the deposition source nozzles of a row located at a first side of the patterning slit sheet are arranged to face a second side of the patterning slit sheet, and
the deposition source nozzles of the other row located at the second side of the patterning slit sheet are arranged to face the first side of the patterning slit sheet.
12. The thin film deposition apparatus of claim 1, wherein the thin film deposition assembly comprises:
a deposition source that discharges a deposition material;
a deposition source nozzle unit that is disposed at a side of the deposition source and comprises a plurality of deposition source nozzles arranged in a first direction;
a patterning slit sheet that is disposed opposite to the deposition source nozzle unit and comprises a plurality of patterning slits arranged in the first direction; and
a barrier wall assembly that is disposed between the deposition source nozzle unit and the patterning slit sheet in the first direction, and comprises a plurality of barrier walls that partition a space between the deposition source nozzle unit and the patterning slit sheet into a plurality of sub-deposition spaces,
wherein the thin film deposition assembly is disposed to be separated from the substrate, and
the thin film deposition assembly or the substrate is moved relative to the other.
13. The thin film deposition apparatus of claim 12, wherein each of the plurality of barrier walls extends in a second direction that is substantially perpendicular to the first direction.
14. The thin film deposition apparatus of claim 12, wherein the barrier wall assembly comprises a first barrier wall assembly comprising a plurality of first barrier walls, and a second barrier wall assembly comprising a plurality of second barrier walls.
15. The thin film deposition apparatus of claim 14, wherein each of the first barrier walls and each of the second barrier walls extend in a second direction that is substantially perpendicular to the first direction.
16. The thin film deposition apparatus of claim 15, wherein the first barrier walls are arranged to respectively correspond to the second barrier walls.
17. The thin film deposition apparatus of claim 12, wherein the deposition source and the barrier wall assembly are separated from each other.
18. The thin film deposition apparatus of claim 12, wherein the barrier wall assembly and the patterning slit sheet are separated from each other.
19. The thin film deposition apparatus of claim 6, wherein the patterning slit sheet comprises a first mark, and the substrate comprises a second mark, and the thin film deposition assembly comprises a camera assembly to determine a degree of alignment of the first mark and the second mark,
wherein the camera assembly comprises:
a hood having an opening formed in one end of the hood;
a camera installed in the hood;
an optical system disposed between the camera and the opening;
a protection window disposed between the optical system and the opening; and
a heater disposed on the protection window.
20. The thin film deposition apparatus of claim 6, wherein the patterning slit sheet comprises a first mark, and the substrate comprises a second mark, and the thin film deposition assembly further comprises a camera assembly to determine a degree of alignment of the first mark and the second mark, and a driving unit to drive the thin film deposition assembly so as to align the first mark with the second mark by using information about a degree of alignment of the first mark and the second mark obtained by the camera assembly.
21. The thin film deposition apparatus of claim 6, further comprising:
a source chamber which is connected to the chamber and in which the deposition source of the thin film deposition assembly is accommodated;
a valve opening or closing a space between the chamber and the source chamber; and
a shutter closing the space between the chamber and the source chamber when the deposition source is located at the chamber.
22. The thin film deposition apparatus of claim 12, wherein the patterning slit sheet comprises a first mark, and the substrate comprises a second mark, and the thin film deposition assembly comprises a camera assembly to determine a degree of alignment of the first mark and the second mark,
wherein the camera assembly comprises:
a hood having an opening formed in one end of the hood;
a camera installed in the hood;
an optical system disposed between the camera and the opening;
a protection window disposed between the optical system and the opening; and
a heater disposed on the protection window.
23. The thin film deposition apparatus of claim 12, wherein the patterning slit sheet comprises a first mark, and the substrate comprises a second mark, and the thin film deposition assembly further comprises a camera assembly to capture a degree of alignment of the first mark and the second mark, and a driving unit to drive the thin film deposition assembly so as to align the first mark with the second mark by using information about a degree of alignment of the first mark and the second mark obtained by the camera assembly.
24. The thin film deposition apparatus of claim 12, further comprising:
a source chamber which is connected to the chamber and in which the deposition source of the thin film deposition assembly is accommodated;
a valve opening or closing a space between the chamber and the source chamber; and
a shutter closing the space between the chamber and the source chamber when the deposition source is located in the chamber.
25. A method of manufacturing an organic light-emitting display apparatus, the method comprising:
fixing a substrate that is a deposition target, on an electrostatic chuck;
conveying the electrostatic chuck on which the substrate is fixed, into a chamber that is maintained in a vacuum state by using a first circulation unit installed to pass through the chamber;
using a thin film deposition assembly disposed in the chamber and depositing an organic layer on the substrate by moving the substrate or the thin film deposition assembly relative to the other;
removing the substrate on which the deposition process is completed, from the chamber by using the first circulation unit;
separating the substrate on which the deposition process is completed, from the electrostatic chuck; and
returning the electrostatic chuck separated from the substrate to a loading unit by using a second circulation unit installed outside the chamber.
26. The method of claim 25, wherein a plurality of the thin film deposition assemblies are disposed in the chamber so that the deposition process is continuously performed on the substrate by using each of the thin film deposition assemblies.
27. The method of claim 25, wherein a plurality of the thin film deposition assemblies are disposed in the chamber, and the chamber comprises a first chamber and a second chamber connected to each other so that the deposition process is continuously performed on the substrate while the substrate is moved relative to the thin film deposition assembly in the first and second chambers.
28. The method of claim 25, wherein the thin film deposition assembly comprises:
a deposition source that discharges a deposition material;
a deposition source nozzle unit that is disposed at a side of the deposition source and comprises a plurality of deposition source nozzles arranged in a first direction; and
a patterning slit sheet that is disposed opposite to the deposition source nozzle unit and comprises a plurality of patterning slits arranged in a second direction that is perpendicular to the first direction,
wherein the deposition source, the deposition source nozzle unit, and the patterning slit sheet are integrally formed as one body, and
the thin film deposition assembly is disposed to be separated from the substrate so that the deposition process is performed on the substrate while the substrate is moved relative to the thin film deposition assembly in the first direction.
29. The method of claim 25, wherein the thin film deposition assembly comprises:
a deposition source that discharges a deposition material;
a deposition source nozzle unit that is disposed at a side of the deposition source and comprises a plurality of deposition source nozzles arranged in a first direction;
a patterning slit sheet that is disposed opposite to the deposition source nozzle unit and comprises a plurality of patterning slits arranged in the first direction; and
a barrier wall assembly that is disposed between the deposition source nozzle unit and the patterning slit sheet in the first direction, and comprises a plurality of barrier walls that partition a space between the deposition source nozzle unit and the patterning slit sheet into a plurality of sub-deposition spaces,
wherein the thin film deposition assembly is disposed to be separated from the substrate so that the deposition process is performed on the substrate while the thin film deposition assembly or the substrate is moved relative to the other.
30. The method of claim 28, wherein the patterning slit sheet comprises a first mark, and the substrate comprises a second mark, and the thin film deposition assembly comprises a camera assembly to capture a degree of alignment of the first mark and the second mark,
wherein the camera assembly comprises:
a hood having an opening formed in one end of the hood;
a camera installed in the hood;
an optical system disposed between the camera and the opening;
a protection window disposed between the optical system and the opening; and
a heater disposed on the protection window, and
wherein the degree of alignment of the first mark and the second mark is detected while the deposition process is performed.
31. The method of claim 28, wherein the patterning slit sheet comprises a first mark, and the substrate comprises a second mark, and the thin film deposition assembly is driven while the deposition process is performed, so that the first mark and the second mark are aligned with each other.
32. The method of claim 28, wherein a thin film deposition apparatus comprises:
a source chamber which is connected to the chamber and in which the deposition source of the thin film deposition assembly is accommodated;
a valve opening or closing a space between the chamber and the source chamber; and
a shutter closing the space between the chamber and the source chamber when the deposition source is located in the chamber, and
the method further comprising:
conveying the deposition source to the source chamber after the deposition process on the substrate is completed;
closing the space between the chamber and the source chamber by using the valve; and
replacing the deposition source.
33. The method of claim 29, wherein the patterning slit sheet comprises a first mark, and the substrate comprises a second mark, and the thin film deposition assembly comprises a camera assembly to capture a degree of alignment of the first mark and the second mark, and
wherein the camera assembly comprises:
a hood having an opening formed in one end of the hood;
a camera installed in the hood;
an optical system disposed between the camera and the opening;
a protection window disposed between the optical system and the opening; and
a heater disposed on the protection window, and
wherein the degree of alignment of the first mark and the second mark is detected while the deposition process is performed.
34. The method of claim 29, wherein the patterning slit sheet comprises a first mark, and the substrate comprises a second mark, and the thin film deposition assembly is driven while the deposition process is performed, so that the first mark and the second mark are aligned with each other.
35. The method of claim 29, wherein a thin film deposition apparatus comprises:
a source chamber which is connected to the chamber and in which the deposition source of the thin film deposition assembly is accommodated;
a valve opening or closing a space between the chamber and the source chamber; and
a shutter closing the space between the chamber and the source chamber when the deposition source is located at the chamber, and
the method further comprising:
conveying the deposition source to the source chamber after the deposition process on the substrate is completed;
closing the space between the chamber and the source chamber by using the valve; and
replacing the deposition source.
36. The thin film deposition apparatus of claim 21, wherein the source chamber comprises a stage and bellows, which move the deposition source between the source chamber and the chamber.
37. The thin film deposition apparatus of claim 24, wherein the source chamber comprises a stage and bellows, which move the deposition source between the source chamber and the chamber.
US12/869,830 2009-08-27 2010-08-27 Thin film deposition apparatus and method of manufacturing organic light-emitting display apparatus using the same Active 2032-09-15 US9450140B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR20090079765 2009-08-27
KR10-2009-0079765 2009-08-27
KR1020100011480A KR101174877B1 (en) 2009-08-27 2010-02-08 The method of film deposition apparatus and the organic light emitting diode display using the same.
KR10-2010-0011480 2010-02-08

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/943,221 US20130298829A1 (en) 2009-08-27 2013-07-16 Thin film deposition apparatus and method of manufacturing organic light-emitting display apparatus using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/943,221 Division US20130298829A1 (en) 2009-08-27 2013-07-16 Thin film deposition apparatus and method of manufacturing organic light-emitting display apparatus using the same

Publications (2)

Publication Number Publication Date
US20110052791A1 true US20110052791A1 (en) 2011-03-03
US9450140B2 US9450140B2 (en) 2016-09-20

Family

ID=43221846

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/869,830 Active 2032-09-15 US9450140B2 (en) 2009-08-27 2010-08-27 Thin film deposition apparatus and method of manufacturing organic light-emitting display apparatus using the same
US13/943,221 Abandoned US20130298829A1 (en) 2009-08-27 2013-07-16 Thin film deposition apparatus and method of manufacturing organic light-emitting display apparatus using the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/943,221 Abandoned US20130298829A1 (en) 2009-08-27 2013-07-16 Thin film deposition apparatus and method of manufacturing organic light-emitting display apparatus using the same

Country Status (4)

Country Link
US (2) US9450140B2 (en)
EP (1) EP2290118B1 (en)
JP (1) JP5677785B2 (en)
CN (1) CN102005541B (en)

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100307409A1 (en) * 2009-06-05 2010-12-09 Samsung Mobile Display Co., Ltd. Thin film deposition apparatus
US20100310768A1 (en) * 2009-06-08 2010-12-09 Samsung Mobile Display Co., Ltd. Thin film deposition apparatus
US20100330265A1 (en) * 2009-06-24 2010-12-30 Samsung Mobile Display Co., Ltd. Thin film deposition apparatus
US20110088622A1 (en) * 2009-10-19 2011-04-21 Samsung Mobile Display Co., Ltd. Thin film deposition apparatus
US20110123707A1 (en) * 2009-11-20 2011-05-26 Samsung Mobile Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US20110165320A1 (en) * 2010-01-06 2011-07-07 Samsung Mobile Display Co., Ltd. Deposition source, thin film deposition apparatus and method of manufacturing organic light-emitting display apparatus
US20110186820A1 (en) * 2010-02-01 2011-08-04 Samsung Mobile Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US20120288619A1 (en) * 2011-05-11 2012-11-15 Choi Young-Mook Electrostatic chuck, thin film deposition apparatus including the electrostatic chuck, and method of manufacturing organic light emitting display apparatus by using the thin film deposition apparatus
US20120299016A1 (en) * 2011-05-25 2012-11-29 Myong-Hwan Choi Organic layer deposition apparatus and method of manufacturing organic light emitting display device using the organic layer deposition apparatus
US20140014921A1 (en) * 2012-07-16 2014-01-16 Samsung Display Co., Ltd. Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus by using the same, and organic light-emitting display apparatus manufactured by the method
US20140037849A1 (en) * 2012-07-31 2014-02-06 Sung-Joong Joo Depositing apparatus and method for measuring deposition quantity using the same
US8833294B2 (en) 2010-07-30 2014-09-16 Samsung Display Co., Ltd. Thin film deposition apparatus including patterning slit sheet and method of manufacturing organic light-emitting display device with the same
US20140284559A1 (en) * 2013-03-20 2014-09-25 Samsung Display Co., Ltd. Method of manufacturing organic light-emitting display apparatus, deposition apparatus using the method, and organic light-emitting display apparatus manufactured by using the method
US20140291619A1 (en) * 2013-03-27 2014-10-02 Samsung Display Co., Ltd. Method for manufacturing organic light emitting display apparatus and organic light emitting display apparatus manufactured by the same
US8852687B2 (en) 2010-12-13 2014-10-07 Samsung Display Co., Ltd. Organic layer deposition apparatus
US8859043B2 (en) 2011-05-25 2014-10-14 Samsung Display Co., Ltd. Organic layer deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US8859325B2 (en) 2010-01-14 2014-10-14 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US8865252B2 (en) 2010-04-06 2014-10-21 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US20140312316A1 (en) * 2013-04-18 2014-10-23 Samsung Display Co., Ltd. Deposition apparatus, method of manufacturing organic light-emitting display apparatus by using same, and organic light-emitting display apparatus manufactured by using deposition apparatus
US20140315344A1 (en) * 2013-04-18 2014-10-23 Samsung Display Co., Ltd. Deposition apparatus, organic light emitting display apparatus, and method of manufacturing organic light emitting display apparatus using the deposition apparatus
US8871542B2 (en) 2010-10-22 2014-10-28 Samsung Display Co., Ltd. Method of manufacturing organic light emitting display apparatus, and organic light emitting display apparatus manufactured by using the method
US20140329349A1 (en) * 2013-05-02 2014-11-06 Samsung Display Co., Ltd. Organic layer deposition apparatus, and method of manufacturing organic light-emitting display apparatus by using the same
US8882922B2 (en) 2010-11-01 2014-11-11 Samsung Display Co., Ltd. Organic layer deposition apparatus
US8894458B2 (en) 2010-04-28 2014-11-25 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US8906731B2 (en) 2011-05-27 2014-12-09 Samsung Display Co., Ltd. Patterning slit sheet assembly, organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus, and the organic light-emitting display apparatus
US8916237B2 (en) 2009-05-22 2014-12-23 Samsung Display Co., Ltd. Thin film deposition apparatus and method of depositing thin film
US8936956B2 (en) 2013-05-27 2015-01-20 Samsung Display Co., Ltd. Substrate moving unit for deposition, deposition apparatus including the same, method of manufacturing organic light-emitting display apparatus by using the deposition apparatus, and organic light-emitting display apparatus manufactured by using the method
US8945682B2 (en) 2013-05-16 2015-02-03 Samsung Display Co., Ltd. Deposition apparatus, method for manufacturing organic light emitting display apparatus, and organic light emitting display apparatus
US8951610B2 (en) 2011-07-04 2015-02-10 Samsung Display Co., Ltd. Organic layer deposition apparatus
US8956697B2 (en) 2012-07-10 2015-02-17 Samsung Display Co., Ltd. Method of manufacturing organic light-emitting display apparatus and organic light-emitting display apparatus manufactured by using the method
US8969858B2 (en) 2012-11-08 2015-03-03 Samsung Display Co., Ltd. Organic light emitting display apparatus and method of manufacturing the same
US8968829B2 (en) 2009-08-25 2015-03-03 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US8973525B2 (en) 2010-03-11 2015-03-10 Samsung Display Co., Ltd. Thin film deposition apparatus
US9012258B2 (en) 2012-09-24 2015-04-21 Samsung Display Co., Ltd. Method of manufacturing an organic light-emitting display apparatus using at least two deposition units
US9018647B2 (en) 2010-09-16 2015-04-28 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US20150179710A1 (en) * 2013-12-23 2015-06-25 Samsung Display Co., Ltd. Method of manufacturing organic light emitting display apparatus
US9121095B2 (en) 2009-05-22 2015-09-01 Samsung Display Co., Ltd. Thin film deposition apparatus
US9206501B2 (en) 2011-08-02 2015-12-08 Samsung Display Co., Ltd. Method of manufacturing organic light-emitting display apparatus by using an organic layer deposition apparatus having stacked deposition sources
US9246135B2 (en) * 2012-07-10 2016-01-26 Samsung Display Co., Ltd. Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus using the same, and organic light-emitting display apparatus manufactured using the method
US9249493B2 (en) 2011-05-25 2016-02-02 Samsung Display Co., Ltd. Organic layer deposition apparatus and method of manufacturing organic light-emitting display apparatus by using the same
US9279177B2 (en) 2010-07-07 2016-03-08 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US9306191B2 (en) 2012-10-22 2016-04-05 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
US9388488B2 (en) 2010-10-22 2016-07-12 Samsung Display Co., Ltd. Organic film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US9450140B2 (en) 2009-08-27 2016-09-20 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display apparatus using the same
US9461277B2 (en) 2012-07-10 2016-10-04 Samsung Display Co., Ltd. Organic light emitting display apparatus
US9466647B2 (en) 2012-07-16 2016-10-11 Samsung Display Co., Ltd. Flat panel display device and method of manufacturing the same
US9478337B2 (en) * 2015-01-22 2016-10-25 Samsung Display Co., Ltd. Magnet plate
US9496524B2 (en) 2012-07-10 2016-11-15 Samsung Display Co., Ltd. Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus using the same, and organic light-emitting display apparatus manufactured using the method
US9512515B2 (en) 2011-07-04 2016-12-06 Samsung Display Co., Ltd. Organic layer deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US9570714B2 (en) 2012-08-03 2017-02-14 Samsung Display Co., Ltd Organic layer deposition assembly, organic layer deposition apparatus, organic light-emitting display apparatus and method of manufacturing the same
TWI575090B (en) * 2011-12-16 2017-03-21 Samsung Display Co Ltd Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus using the same, and organic light-emitting display apparatus
US9624580B2 (en) 2009-09-01 2017-04-18 Samsung Display Co., Ltd. Thin film deposition apparatus
US9748483B2 (en) 2011-01-12 2017-08-29 Samsung Display Co., Ltd. Deposition source and organic layer deposition apparatus including the same
US10137533B2 (en) 2012-12-27 2018-11-27 Samsung Display Co., Ltd. Multi-functional apparatus for testing and etching substrate and substrate processing apparatus including the same
US10246769B2 (en) 2010-01-11 2019-04-02 Samsung Display Co., Ltd. Thin film deposition apparatus
GB2567967A (en) * 2017-10-31 2019-05-01 Lg Display Co Ltd Ultra-fine pattern deposition apparatus, ultra-fine pattern deposition method using the same, and light-emitting display device manufactured by ultra-fine

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102433540A (en) * 2011-08-30 2012-05-02 费绍栋 Window type device for detecting surface parameters of material in direct contact way in vacuum environment
KR20140000041A (en) * 2012-06-22 2014-01-02 삼성디스플레이 주식회사 Apparatus for organic layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR20140007685A (en) * 2012-07-10 2014-01-20 삼성디스플레이 주식회사 Apparatus for organic layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR20140060171A (en) * 2012-11-09 2014-05-19 삼성디스플레이 주식회사 Apparatus for organic layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR20140131127A (en) * 2013-05-03 2014-11-12 삼성디스플레이 주식회사 Deposition apparatus, method for manufacturing organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the same
KR20140135562A (en) * 2013-05-16 2014-11-26 삼성디스플레이 주식회사 Apparatus for organic layer deposition, and method for manufacturing of organic light emitting display apparatus using the same
KR20140136758A (en) * 2013-05-21 2014-12-01 삼성디스플레이 주식회사 Deposition source and organic layer depositoin apparatus
KR20140146448A (en) * 2013-06-17 2014-12-26 삼성디스플레이 주식회사 Apparatus for organic layer deposition, and method for manufacturing of organic light emitting display apparatus using the same
KR20150018228A (en) * 2013-08-09 2015-02-23 삼성디스플레이 주식회사 Deposition apparatus, method for manufacturing organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the same
KR101673016B1 (en) * 2013-08-27 2016-11-07 삼성디스플레이 주식회사 Thin film encapsulation manufacturing device and manufacturing method of display apparatus using the same
CN106956928A (en) * 2017-04-20 2017-07-18 东旭科技集团有限公司 Conveying device and glass base plate production system

Citations (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4416217A (en) * 1981-07-31 1983-11-22 Ulvac Seimaku Kabushiki Kaisha Apparatus for forming an inhomogeneous optical layer
US4468648A (en) * 1982-10-15 1984-08-28 Mamoru Uchikune Switchable permanent magnetic chuck
US4687939A (en) * 1983-11-07 1987-08-18 Hitachi, Ltd. Method and apparatus for forming film by ion beam
US4792378A (en) * 1987-12-15 1988-12-20 Texas Instruments Incorporated Gas dispersion disk for use in plasma enhanced chemical vapor deposition reactor
US4901667A (en) * 1985-08-09 1990-02-20 Hitachi, Ltd. Surface treatment apparatus
US5454847A (en) * 1992-09-18 1995-10-03 Alcatel Alsthom Compagnie Generale D'electricite Vapor deposition method for depositing a film of fluorine-containing glass on a substrate
US5460654A (en) * 1992-07-01 1995-10-24 Fujitsu Limited Apparatus for generating raw material gas used in apparatus for growing thin film
US5487609A (en) * 1991-05-13 1996-01-30 Thk Co., Ltd. Slide unit for linear motion
US5742129A (en) * 1995-02-21 1998-04-21 Pioneer Electronic Corporation Organic electroluminescent display panel with projecting ramparts and method for manufacturing the same
US5909995A (en) * 1996-10-15 1999-06-08 Balzers Aktiengesellschaft Transport device for workpieces in a vacuum system
US6091195A (en) * 1997-02-03 2000-07-18 The Trustees Of Princeton University Displays having mesa pixel configuration
US6099649A (en) * 1997-12-23 2000-08-08 Applied Materials, Inc. Chemical vapor deposition hot-trap for unreacted precursor conversion and effluent removal
US20010004186A1 (en) * 1999-12-10 2001-06-21 Song Gi-Young Shadow mask frame assembly for flat CRT
US20010006827A1 (en) * 1999-12-27 2001-07-05 Semiconductor Energy Laboratory Co., Ltd. Film formation apparatus and method for forming a film
US6274198B1 (en) * 1997-02-24 2001-08-14 Agere Systems Optoelectronics Guardian Corp. Shadow mask deposition
US6280821B1 (en) * 1998-09-10 2001-08-28 Ppg Industries Ohio, Inc. Reusable mask and method for coating substrate
US20010019807A1 (en) * 1999-12-24 2001-09-06 Tsutomu Yamada Deposition mask and manufacturing method thereof, and electroluminescence display device and manufacturing method thereof
US20010026638A1 (en) * 2000-03-28 2001-10-04 Katsuya Sangu Positioning apparatus used in a process for producing multi-layered printed circuit board and method of using the same
US20010034175A1 (en) * 2000-02-16 2001-10-25 Toshihiko Miyazaki Method and apparatus for manufacturing image displaying apparatus
US20020011785A1 (en) * 1998-11-18 2002-01-31 Ching W. Tang A full color active matrix organic electroluminescent display panel having an integrated shadow mask
US20020017245A1 (en) * 2000-06-22 2002-02-14 Matsushita Electric Works, Ltd. Apparatus for and method of vacuum vapor deposition and organic electroluminescent device
US20020036759A1 (en) * 2000-09-25 2002-03-28 Masaru Ise Automatic exposing apparatus for both sides and exposing method thereof for works
US6371451B1 (en) * 1999-10-29 2002-04-16 Korea Institute Of Science And Technology Scent diffusion apparatus and method
US20020050061A1 (en) * 2000-06-29 2002-05-02 Daido Komyoji Method and apparatus for forming pattern onto panel substrate
US20020076847A1 (en) * 2000-09-28 2002-06-20 Tsutomu Yamada Method of attaching layer material and forming layer in predetermined pattern on substrate using mask
US6417034B2 (en) * 2000-05-01 2002-07-09 Nec Corporation Manufacturing method for organic EL device
US6443597B1 (en) * 1999-09-01 2002-09-03 Sony Corporation Plane display unit and plane display device
US20020168577A1 (en) * 2001-05-11 2002-11-14 Jin-Mo Yoon Method of crystallizing amorphous silicon
US6483690B1 (en) * 2001-06-28 2002-11-19 Lam Research Corporation Ceramic electrostatic chuck assembly and method of making
US20020179013A1 (en) * 2001-05-23 2002-12-05 Junji Kido Successive vapour deposition system, vapour deposition system, and vapour deposition process
US20020187253A1 (en) * 2001-04-20 2002-12-12 Eastman Kodak Company Reusable mass-sensor in manufacture of organic light-emitting devices
US20020197393A1 (en) * 2001-06-08 2002-12-26 Hideaki Kuwabara Process of manufacturing luminescent device
US20020194727A1 (en) * 2001-06-22 2002-12-26 Mirae Corporation Transfer for tray feeder
US20030021886A1 (en) * 2000-02-23 2003-01-30 Baele Stephen James Method of printing and printing machine
US6541130B2 (en) * 1999-05-12 2003-04-01 Pioneer Corporation Organic electroluminescence multi-color display and method of fabricating the same
US6554969B1 (en) * 2001-07-11 2003-04-29 Advanced Micro Devices, Inc. Acoustically enhanced deposition processes, and systems for performing same
US20030101937A1 (en) * 2001-11-28 2003-06-05 Eastman Kodak Company Thermal physical vapor deposition source for making an organic light-emitting device
US20030101932A1 (en) * 2001-12-05 2003-06-05 Samsung Nec Mobile Display Co., Ltd. Tension mask assembly for use in vacuum deposition of thin film of organic electroluminescent device
US6579422B1 (en) * 1999-07-07 2003-06-17 Sony Corporation Method and apparatus for manufacturing flexible organic EL display
US20030117602A1 (en) * 2001-12-26 2003-06-26 Pentax Corporation Projection aligner
US20030118950A1 (en) * 2000-08-07 2003-06-26 Ching-Ian Chao Method of manufacturing full-color organic electro-luminescent device
US20030124764A1 (en) * 2001-12-12 2003-07-03 Shunpei Yamazaki Film formation apparatus and film formation method and cleaning method
US6589673B1 (en) * 1999-09-29 2003-07-08 Junji Kido Organic electroluminescent device, group of organic electroluminescent devices
US20030164934A1 (en) * 1997-03-25 2003-09-04 Nikon Corporation Stage apparatus, exposure apparatus and method for exposing substrate plate
US20030168013A1 (en) * 2002-03-08 2003-09-11 Eastman Kodak Company Elongated thermal physical vapor deposition source with plural apertures for making an organic light-emitting device
US20030173896A1 (en) * 2002-02-14 2003-09-18 Vladimir Grushin Electroluminescent iridium compounds with phosphinoalkoxides and phenylpyridines or phenylpyrimidines and devices made with such compounds
US6650023B2 (en) * 2001-09-13 2003-11-18 Lg Electronics Inc. Apparatus for depositing thin film
US20030221620A1 (en) * 2002-06-03 2003-12-04 Semiconductor Energy Laboratory Co., Ltd. Vapor deposition device
US20030221614A1 (en) * 2002-06-03 2003-12-04 Samsung Nec Mobile Display Co., Ltd., Ulsan-City, Republic Of Korea Mask and mask frame assembly for evaporation
US20030232563A1 (en) * 2002-05-09 2003-12-18 Isao Kamiyama Method and apparatus for manufacturing organic electroluminescence device, and system and method for manufacturing display unit using organic electroluminescence devices
US20040016907A1 (en) * 2000-05-19 2004-01-29 Eastman Kodak Company Method of using predoped materials for making an organic light-emitting device
US20040029028A1 (en) * 2002-08-05 2004-02-12 Nec Plasma Display Coropration Method for measuring gap between mask and substrate of display panel
US6699324B1 (en) * 1999-01-26 2004-03-02 Klaus Berdin Method for coating the inside of pipes and coating system
US20040056244A1 (en) * 2002-09-23 2004-03-25 Eastman Kodak Company Device for depositing patterned layers in OLED displays
US20040086639A1 (en) * 2002-09-24 2004-05-06 Grantham Daniel Harrison Patterned thin-film deposition using collimating heated mask asembly
US20040096771A1 (en) * 2000-09-29 2004-05-20 Motofumi Kashiwagi Photoresist composition for forming an insulation film, insulation film for organic electroluminescence element and method for itis formation
US6749906B2 (en) * 2002-04-25 2004-06-15 Eastman Kodak Company Thermal physical vapor deposition apparatus with detachable vapor source(s) and method
US20040115338A1 (en) * 2002-09-05 2004-06-17 Sanyo Electric Co., Ltd. Manufacturing method of organic electroluminescent display device
US20040123804A1 (en) * 2002-09-20 2004-07-01 Semiconductor Energy Laboratory Co., Ltd. Fabrication system and manufacturing method of light emitting device
US20040127066A1 (en) * 2002-12-31 2004-07-01 Yun-Ho Jung Mask for sequential lateral solidification and crystallization method using thereof
US20040134428A1 (en) * 2002-10-24 2004-07-15 Koji Sasaki Thin-film deposition device
US20040142108A1 (en) * 2002-12-03 2004-07-22 Mitsuro Atobe Mask vapor deposition method, mask vapor deposition system, mask, process for manufacturing mask, apparatus for manufacturing display panel, display panel, and electronic device
US20040144321A1 (en) * 2003-01-28 2004-07-29 Eastman Kodak Company Method of designing a thermal physical vapor deposition system
US20040194702A1 (en) * 2002-06-17 2004-10-07 Koji Sasaki Thin film-forming apparatus
US20050016461A1 (en) * 2003-07-22 2005-01-27 Eastman Kodak Company Thermal physical vapor deposition source using pellets of organic material for making oled displays
US20050031836A1 (en) * 2003-03-27 2005-02-10 Toshimitsu Hirai Pattern forming method, pattern forming apparatus, device manufacturing method, conductive film wiring, electro-optical device, and electronic apparatus
US20050037136A1 (en) * 2003-07-28 2005-02-17 Katsuya Yamamoto Mask for deposition, film formation method using the same and film formation equipment using the same
US20050166842A1 (en) * 2004-02-02 2005-08-04 Fujitsu Limited Vapor deposition mask and organic EL display device manufacturing method
US20050263074A1 (en) * 2004-06-01 2005-12-01 Tohoku Pioneer Corporation Film formation source, vacuum film formation apparatus, organic EL panel and method of manufacturing the same
US20060012771A1 (en) * 2004-07-19 2006-01-19 Samsung Electronics Co., Ltd. System and method for manufacturing a flat panel display
US6995035B2 (en) * 2003-06-16 2006-02-07 Eastman Kodak Company Method of making a top-emitting OLED device having improved power distribution
US20060102078A1 (en) * 2004-11-18 2006-05-18 Intevac Inc. Wafer fab
US20060144325A1 (en) * 2005-01-05 2006-07-06 Samsung Sdi Co., Ltd. Driving shaft of effusion cell for deposition system and deposition system having the same
US20060164786A1 (en) * 2003-07-08 2006-07-27 Toshiki Kobayashi Electrostatic chuck for substrate stage, electrode used for the chuck, and treating system having the chuck and electrode
US20060174829A1 (en) * 2005-02-07 2006-08-10 Semes Co., Ltd. Apparatus for processing substrate
US20060205101A1 (en) * 2004-12-03 2006-09-14 Lee Jae-Ho Laser irradiation device, patterning method and method of fabricating organic light emitting display (OLED) using the patterning method
US20060255722A1 (en) * 2005-05-16 2006-11-16 Yasuo Imanishi Organic electroluminescence device and organic electroluminescence system
US20060278522A1 (en) * 2005-06-13 2006-12-14 Lg.Philips Lcd Co., Ltd. Sputtering apparatus and driving method thereof
US20070009652A1 (en) * 2005-04-20 2007-01-11 Dieter Manz Continuous OLED coating machine
US20070046913A1 (en) * 2005-08-26 2007-03-01 Nikon Corporation Holding unit, assembly system, sputtering unit, and processing method and processing unit
US20070077358A1 (en) * 2005-08-31 2007-04-05 Jeong Min J Apparatus for depositing an organic layer and method for controlling a heating unit thereof
US20070178708A1 (en) * 2006-01-27 2007-08-02 Canon Kabushiki Kaisha Vapor deposition system and vapor deposition method for an organic compound
US20070275497A1 (en) * 2006-05-24 2007-11-29 Kwack Jin-Ho Method of aligning a substrate, mask to be aligned with the same, and flat panel display apparatus using the same
US20070297887A1 (en) * 2004-11-15 2007-12-27 Keiichi Tanaka Substrate Carrying Device, Substrate Carrying Method, and Exposure Device
US20080018236A1 (en) * 2004-09-08 2008-01-24 Toray Industries, Inc. Organic Electroluminescent Device and Manufacturing Method Thereof
US20080057183A1 (en) * 2006-08-31 2008-03-06 Spindler Jeffrey P Method for lithium deposition in oled device
US20080115729A1 (en) * 2006-11-16 2008-05-22 Yamagata Promotional Organization For Industrial Technology Evaporation source and vacuum evaporator using the same
US20080131587A1 (en) * 2006-11-30 2008-06-05 Boroson Michael L Depositing organic material onto an oled substrate
US20080216741A1 (en) * 2001-10-26 2008-09-11 Hermosa Thin Film Co., Ltd. Dynamic film thickness control system/method and its utilization
US20080298947A1 (en) * 2007-05-29 2008-12-04 Lg Display Co., Ltd. Apparatus for transferring substrates
US20090017192A1 (en) * 2007-07-12 2009-01-15 Hiroyasu Matsuura Vapor deposition method and apparatus
US20090153033A1 (en) * 2007-12-12 2009-06-18 Dong-Won Lee Organic light emitting diode device and method of manufacturing the same
US20090232976A1 (en) * 2008-03-11 2009-09-17 Samsung Sdi Co., Ltd. Evaporating method for forming thin film
US20090229524A1 (en) * 2006-07-03 2009-09-17 Yas Co., Ltd. Multiple Nozzle Evaporator for Vacuum Thermal Evaporation
US20100130020A1 (en) * 2008-11-26 2010-05-27 Semes Co., Ltd. Substrate chucking member, substrate processing, apparatus having the member, and method of processing substrate using the member
US20100156279A1 (en) * 2008-12-19 2010-06-24 Shinichiro Tamura Organic emitting device
US7964037B2 (en) * 2006-07-13 2011-06-21 Canon Kabushiki Kaisha Deposition apparatus
US20110241438A1 (en) * 2010-04-01 2011-10-06 Samsung Electronics Co., Ltd., Wireless power transmission apparatus and wireless power transmission method

Family Cites Families (425)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57194252U (en) 1981-06-02 1982-12-09
JPH0669025B2 (en) * 1984-12-07 1994-08-31 シャープ株式会社 Semiconductor crystal growth apparatus
JPH0522405Y2 (en) 1985-12-05 1993-06-08
US4918517A (en) * 1989-01-26 1990-04-17 Westinghouse Electric Corp. System and process for video monitoring a welding operation
JPH02247372A (en) 1989-03-17 1990-10-03 Mitsubishi Electric Corp Thin film formation
JP2732539B2 (en) * 1989-10-06 1998-03-30 日本電気株式会社 Vacuum deposition apparatus
JPH0827568B2 (en) 1990-07-02 1996-03-21 三田工業株式会社 Transfer sheet separation device in the image forming apparatus
GB2248852A (en) * 1990-10-16 1992-04-22 Secr Defence Vapour deposition
JP3125279B2 (en) 1991-02-25 2001-01-15 三菱重工業株式会社 Vacuum deposition for the graphite crucible
JP2534431Y2 (en) 1991-08-30 1997-04-30 大日本スクリーン製造株式会社 Substrate transfer apparatus
JPH0598425A (en) 1991-10-04 1993-04-20 Mitsubishi Electric Corp Thin film forming device
JPH05230628A (en) 1992-02-18 1993-09-07 Fujitsu Ltd Metal film forming device and metal recovery method in metal film forming device
WO1994001354A1 (en) 1992-07-07 1994-01-20 Ebara Corporation Magnetically levitated carrying apparatus
USRE39024E1 (en) 1994-04-28 2006-03-21 Nikon Corporation Exposure apparatus having catadioptric projection optical system
JPH0995776A (en) 1995-09-29 1997-04-08 Sony Corp Vacuum deposition device
JPH1050478A (en) 1996-04-19 1998-02-20 Toray Ind Inc Organic field emission element and manufacture thereof
US6469439B2 (en) 1999-06-15 2002-10-22 Toray Industries, Inc. Process for producing an organic electroluminescent device
KR100257219B1 (en) 1997-10-23 2000-05-15 박용관 Method and device for making a safety operation of a polyethylene gas pipe valve arrangement
JP3948082B2 (en) 1997-11-05 2007-07-25 カシオ計算機株式会社 Method of manufacturing an organic electroluminescence element
US6337102B1 (en) 1997-11-17 2002-01-08 The Trustees Of Princeton University Low pressure vapor phase deposition of organic thin films
JP2000068054A (en) 1998-08-26 2000-03-03 Hokuriku Electric Ind Co Ltd Manufacture of el element
US6222198B1 (en) 1998-11-20 2001-04-24 Mems Optical Inc. System and method for aligning pattern areas on opposing substrate surfaces
US6610150B1 (en) 1999-04-02 2003-08-26 Asml Us, Inc. Semiconductor wafer processing system with vertically-stacked process chambers and single-axis dual-wafer transfer system
JP3734239B2 (en) 1999-04-02 2006-01-11 キヤノン株式会社 The organic layer vacuum deposition mask reproducing method and apparatus
KR20000019254U (en) 1999-04-07 2000-11-06 손대균 Roundin WheeL
JP2001028325A (en) 1999-07-13 2001-01-30 Tdk Corp Method and device for transfer chip part, and electrode- forming device
JP2001052862A (en) 1999-08-04 2001-02-23 Hokuriku Electric Ind Co Ltd Manufacture of organic el element and device therefor
JP4187367B2 (en) 1999-09-28 2008-11-26 三洋電機株式会社 The organic light emitting device, manufacturing apparatus and a manufacturing method thereof that
US20090208754A1 (en) 2001-09-28 2009-08-20 Vitex Systems, Inc. Method for edge sealing barrier films
KR20010039298A (en) 1999-10-29 2001-05-15 김영남 Field emission display
KR100302159B1 (en) 1999-10-29 2001-09-22 최중호 Scent diffusion apparatus and method therefor
KR100653515B1 (en) 1999-12-30 2006-12-04 주식회사 팬택앤큐리텔 Mobile station for mobile communication system
KR20010092914A (en) 2000-03-27 2001-10-27 윤종용 Electrical static chuck comprising a shadow ring
KR20020000201A (en) 2000-06-23 2002-01-05 최승락 Method cleaning Liquid Chrystal Display using Laser and Vapor Phase
JP2002075638A (en) 2000-08-29 2002-03-15 Nec Corp Vapor deposition method of mask and vapor deposition device
KR100726132B1 (en) 2000-10-31 2007-06-12 엘지.필립스 엘시디 주식회사 A method for fabricating array substrate for liquid crystal display device and the same
US7078070B2 (en) 2000-11-07 2006-07-18 Helix Technology Inc. Method for fabricating an organic light emitting diode
US6468496B2 (en) 2000-12-21 2002-10-22 Arco Chemical Technology, L.P. Process for producing hydrogen peroxide
KR100625403B1 (en) 2000-12-22 2006-09-18 주식회사 하이닉스반도체 Virtual Channel SDRAM
KR100698033B1 (en) 2000-12-29 2007-03-23 엘지.필립스 엘시디 주식회사 Organic Electroluminescence Device and Fabrication Method for the same
KR100463212B1 (en) 2001-05-19 2004-12-23 주식회사 아이엠티 Apparatus for dry surface-cleaning of materials
KR20020091457A (en) 2001-05-30 2002-12-06 주식회사 현대 디스플레이 테크놀로지 Method for control color property of tft-lcd
JP2003077662A (en) 2001-06-22 2003-03-14 Junji Kido Method and device for manufacturing organic electroluminescent element
JP2003003250A (en) 2001-06-22 2003-01-08 Alps Electric Co Ltd Vacuum deposition polymerization system and method for depositing organic film using the system
KR100732742B1 (en) 2001-06-27 2007-06-27 주식회사 하이닉스반도체 Method for Monitoring Focus
KR100397635B1 (en) 2001-08-09 2003-09-13 박수관 Mask holding apparatus in the process of the O-EL display and method thereof
JP3705237B2 (en) 2001-09-05 2005-10-12 ソニー株式会社 Manufacturing system and a method of manufacturing a display device using the organic electroluminescent element
KR100730111B1 (en) 2001-10-26 2007-06-19 삼성에스디아이 주식회사 Frame for mask of organic EL display devices
KR100430336B1 (en) 2001-11-16 2004-05-03 정광호 Apparatus for manufacturing organic electro-luminescent light emitting devices for mass production
KR100450978B1 (en) 2001-11-26 2004-10-02 주성엔지니어링(주) electrostatic chuck
JP2003159786A (en) 2001-11-28 2003-06-03 Seiko Epson Corp Ejection method and its apparatus, electro-optic device, method and apparatus for manufacturing the device, color filter, method and apparatus for manufacturing the filter, device with substrate, and method and apparatus for manufacturing the device
JP2003197531A (en) 2001-12-21 2003-07-11 Seiko Epson Corp Patterning device, patterning method, method of manufacturing electronic element, method of manufacturing circuit board, method of manufacturing electronic device, electrooptical device and its manufacturing method, and electronic apparatus
US20090169868A1 (en) 2002-01-29 2009-07-02 Vanderbilt University Methods and apparatus for transferring a material onto a substrate using a resonant infrared pulsed laser
US6897164B2 (en) 2002-02-14 2005-05-24 3M Innovative Properties Company Aperture masks for circuit fabrication
US7006202B2 (en) 2002-02-21 2006-02-28 Lg.Philips Lcd Co., Ltd. Mask holder for irradiating UV-rays
KR100595310B1 (en) 2002-02-22 2006-07-03 엘지.필립스 엘시디 주식회사 Device for fixing mask and Ultraviolet irradiating device using the same
JP3481232B2 (en) 2002-03-05 2003-12-22 三洋電機株式会社 Method of producing an organic electroluminescent panel
JP2003297562A (en) 2002-03-29 2003-10-17 Sanyo Electric Co Ltd Vapor deposition method
KR100501306B1 (en) 2002-04-01 2005-07-18 (주) 휴네텍 method of manufacturing a light guiding panel and an apparatus for the same, and a particle blasting apparatus for manufacturing the light guiding panel
KR100469252B1 (en) 2002-04-12 2005-02-02 엘지전자 주식회사 Shadow Mask and Full Color Organic Electroluminescence Display Device Using the same
JP2003321767A (en) 2002-04-26 2003-11-14 Seiko Epson Corp Vapor deposition method for thin film, organic electroluminescence device, method for manufacturing organic electroluminescence device, and electronic apparatus
BRPI0309631A2 (en) 2002-05-03 2016-11-01 Government Of The United Of America As Represented By The Secretary Of The Health And Human Services tetravalent dengue vaccine containing a trivial deletion of 30 nucleotides at UTR-31 'of dengue types 1,2,3, and 4, or antigenic chimeric dengue virus 1,2,3 and 4
US20030221616A1 (en) 2002-05-28 2003-12-04 Micron Technology, Inc. Magnetically-actuatable throttle valve
JP4030350B2 (en) 2002-05-28 2008-01-09 株式会社アルバック Split electrostatic chuck
KR100908232B1 (en) 2002-06-03 2009-07-20 삼성모바일디스플레이주식회사 Thin film deposition mask frame assembly of the organic EL device
JP2004086136A (en) 2002-07-01 2004-03-18 Seiko Epson Corp Method of manufacturing optical transceiver and adjustment device thereof
JP4286496B2 (en) 2002-07-04 2009-07-01 株式会社半導体エネルギー研究所 Evaporation apparatus and a thin film manufacturing method
MY144124A (en) 2002-07-11 2011-08-15 Molecular Imprints Inc Step and repeat imprint lithography systems
JP2004043898A (en) 2002-07-12 2004-02-12 Canon Electronics Inc Vapor deposition mask, and organic electroluminescence display device
KR100397196B1 (en) 2002-08-27 2003-09-13 에이엔 에스 주식회사 Organic material point source feeding unit in organic semiconductor device and method thereof
JP2004091858A (en) 2002-08-30 2004-03-25 Toyota Industries Corp Vacuum evaporation system and method for manufacturing evaporated film-applied product
JP2004103269A (en) * 2002-09-05 2004-04-02 Sanyo Electric Co Ltd Manufacture method for organic electroluminescence display device
JP2004103341A (en) 2002-09-09 2004-04-02 Matsushita Electric Ind Co Ltd Manufacturing method of organic electroluminescent element
JP2004107764A (en) 2002-09-20 2004-04-08 Ulvac Japan Ltd Thin film-forming apparatus
US7067170B2 (en) 2002-09-23 2006-06-27 Eastman Kodak Company Depositing layers in OLED devices using viscous flow
JP4139186B2 (en) 2002-10-21 2008-08-27 新日鐵化学株式会社 Vacuum vapor deposition apparatus
KR100504477B1 (en) 2002-11-05 2005-08-03 엘지전자 주식회사 Heating source apparatus for Organic electron luminescence
KR100532657B1 (en) 2002-11-18 2005-12-02 주식회사 야스 Apparatus for controlling deposition zone of homogeneously mixed layer in multi source co-deposition
JP4072422B2 (en) 2002-11-22 2008-04-09 三星エスディアイ株式会社 Mask structure and a manufacturing method thereof for deposition, and a method of manufacturing an organic el device using the same
JP2004199919A (en) 2002-12-17 2004-07-15 Tohoku Pioneer Corp Method for manufacturing organic el display panel
JP2004207142A (en) 2002-12-26 2004-07-22 Seiko Epson Corp Manufacturing method for organic electroluminescent device, organic electroluminescent device, and electronic equipment
JP4430010B2 (en) 2003-01-24 2010-03-10 株式会社半導体エネルギー研究所 The light-emitting device
US7211461B2 (en) 2003-02-14 2007-05-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing apparatus
JP2004255058A (en) 2003-02-27 2004-09-16 Techno Morioka Kk Sterilizing apparatus and method
EP1458019A3 (en) 2003-03-13 2005-12-28 VenTec Gesellschaft für Venturekapital und Unternehmensberatung Mobile transportable electrostatic substrate holders
JP4230258B2 (en) 2003-03-19 2009-02-25 東北パイオニア株式会社 Organic el panel, a method of manufacturing an organic el panel
KR100520305B1 (en) 2003-04-04 2005-10-13 한국전자통신연구원 Gap measurement device for measuring a gap between a mask and a substrate using a laser displacement sensor, and measuring method thereof
JP3915734B2 (en) 2003-05-12 2007-05-16 ソニー株式会社 Method of manufacturing a display device using the evaporation mask, and this, as well as a display device
JP2004342455A (en) 2003-05-15 2004-12-02 Tokki Corp Flat panel display manufacturing device
JP2007500794A (en) 2003-05-16 2007-01-18 エスブイティー アソーシエイツ インコーポレイテッド Thin film deposition evaporator
JP2004349101A (en) * 2003-05-22 2004-12-09 Seiko Epson Corp Film forming method, film forming device, manufacturing method of organic electroluminescent device, and organic electroluminescent device
JP2004355975A (en) 2003-05-29 2004-12-16 Sony Corp Manufacturing method of display device
KR100517255B1 (en) 2003-06-20 2005-09-27 주식회사 야스 Linear type nozzle evaporation source for manufacturing a film of OLEDs
US7410919B2 (en) 2003-06-27 2008-08-12 International Business Machines Corporation Mask and substrate alignment for solder bump process
KR100724478B1 (en) 2003-06-30 2007-06-04 엘지.필립스 엘시디 주식회사 Fabrication method for liquid crystal display device
JP4599871B2 (en) 2003-06-30 2010-12-15 ブラザー工業株式会社 Droplet ejection device
JP4124046B2 (en) 2003-07-10 2008-07-23 株式会社大阪チタニウムテクノロジーズ Deposition method and the vapor deposition apparatus of the metal oxide coating
EP2369035B9 (en) 2003-08-04 2014-05-21 LG Display Co., Ltd. Evaporation source
KR100542997B1 (en) 2003-08-07 2006-01-20 삼성에스디아이 주식회사 FPD and Method of fabricating the same
KR100656845B1 (en) 2003-08-14 2006-12-13 엘지전자 주식회사 Source for depositing electroluminescent layer
KR20050028943A (en) 2003-09-17 2005-03-24 삼성전자주식회사 System for controling pressure of low pressure-chemical vapor deposition equipment
US7339139B2 (en) 2003-10-03 2008-03-04 Darly Custom Technology, Inc. Multi-layered radiant thermal evaporator and method of use
KR100889764B1 (en) 2003-10-04 2009-03-20 삼성모바일디스플레이주식회사 Mask frame assembly for depositing thin layer of organic electro luminescence device and deposition method using the same
US20050079418A1 (en) 2003-10-14 2005-04-14 3M Innovative Properties Company In-line deposition processes for thin film battery fabrication
JP4547599B2 (en) 2003-10-15 2010-09-22 京セラ株式会社 Image display device
KR20050039140A (en) 2003-10-24 2005-04-29 삼성전자주식회사 Baratron sensor
CN1618716B (en) 2003-11-12 2011-03-16 周星工程股份有限公司 Loading lock and loading lock chamber therewith
KR100520159B1 (en) 2003-11-12 2005-10-10 삼성전자주식회사 Apparatus and method for interference cancellation of ofdm system using multiple antenna
JP2005163099A (en) 2003-12-02 2005-06-23 Seiko Epson Corp Mask, method of producing mask, method of producing organic el apparatus, and organic el apparatus
JP2005165015A (en) 2003-12-03 2005-06-23 Seiko Epson Corp Mask for film deposition, film deposition device, electro-optical device, and electronic appliance
KR200342433Y1 (en) 2003-12-04 2004-02-21 현대엘씨디주식회사 Crucible for deposting organic matter of high pressure spouting type
JP2005174843A (en) 2003-12-15 2005-06-30 Sony Corp Deposition mask and its manufacturing method
KR101061843B1 (en) 2003-12-19 2011-09-02 삼성전자주식회사 Silicon crystallization method using a mask, and this for a polycrystalline
EP1548147A1 (en) 2003-12-26 2005-06-29 Seiko Epson Corporation Thin film formation method
JP4475967B2 (en) 2004-01-29 2010-06-09 三菱重工業株式会社 Vacuum deposition machine
JP2005213616A (en) 2004-01-30 2005-08-11 Advanced Pdp Development Corp Vapor deposition method, vapor deposition apparatus and method for manufacturing plasma display panel
US20050166844A1 (en) 2004-02-03 2005-08-04 Nicholas Gralenski High reflectivity atmospheric pressure furnace for preventing contamination of a work piece
JP2005235568A (en) 2004-02-19 2005-09-02 Seiko Epson Corp Deposition device and manufacturing device of organic el device
KR100712096B1 (en) 2004-02-19 2007-04-27 삼성에스디아이 주식회사 fabricating method of organic light emitting display device
JP4366226B2 (en) 2004-03-30 2009-11-18 東北パイオニア株式会社 The method of manufacturing an organic el panel, the film deposition apparatus of the organic el panel
JP2005293968A (en) 2004-03-31 2005-10-20 Sanyo Electric Co Ltd Manufacturing method of organic electroluminescent element
JP2005296737A (en) 2004-04-07 2005-10-27 Mikuni Corp Beat plate
US7273526B2 (en) 2004-04-15 2007-09-25 Asm Japan K.K. Thin-film deposition apparatus
US20050244580A1 (en) 2004-04-30 2005-11-03 Eastman Kodak Company Deposition apparatus for temperature sensitive materials
US7302990B2 (en) 2004-05-06 2007-12-04 General Electric Company Method of forming concavities in the surface of a metal component, and related processes and articles
JP4734508B2 (en) 2004-06-21 2011-07-27 京セラ株式会社 El display and a method of manufacturing the same
KR100696472B1 (en) 2004-07-15 2007-03-19 삼성에스디아이 주식회사 Mask for an evaporation, method of manufacturing an organic electroluminesence device thereused
JP4545504B2 (en) 2004-07-15 2010-09-15 株式会社半導体エネルギー研究所 Film forming method, a manufacturing method of a light-emitting device
KR20060008602A (en) 2004-07-21 2006-01-27 엘지전자 주식회사 Method for depositing organic electroluminescent layer
JP4121514B2 (en) 2004-07-22 2008-07-23 シャープ株式会社 The organic light emitting device, and a display device including the same
US7449831B2 (en) 2004-08-02 2008-11-11 Lg Display Co., Ltd. OLEDs having inorganic material containing anode capping layer
US7273663B2 (en) 2004-08-20 2007-09-25 Eastman Kodak Company White OLED having multiple white electroluminescence units
JP2006057173A (en) 2004-08-24 2006-03-02 Tohoku Pioneer Corp Film deposition source, vacuum film deposition apparatus and method for producing organic el panel
KR100579406B1 (en) 2004-08-25 2006-05-12 삼성에스디아이 주식회사 Vertical Moving Type Apparatus for Depositing Organic Material
KR100623696B1 (en) 2004-08-30 2006-09-19 삼성에스디아이 주식회사 organic electro-luminescence display device with high efficiency and method of fabricating the same
KR101070539B1 (en) 2004-09-08 2011-10-05 도레이 카부시키가이샤 Deposition mask and manufacturing method of organic electroluminescent device using the same
KR20060028115A (en) 2004-09-24 2006-03-29 삼성탈레스 주식회사 Method for inputting hangul in mobile phone
KR100719991B1 (en) 2004-09-30 2007-05-21 산요덴키가부시키가이샤 Electroluminescence element
KR101121417B1 (en) 2004-10-28 2012-03-15 주성엔지니어링(주) Manufacturing apparatus for display device
KR100669757B1 (en) 2004-11-12 2007-01-16 삼성에스디아이 주식회사 Organic electroluminescent device
KR100968191B1 (en) 2004-11-16 2010-07-06 인터내셔널 비지네스 머신즈 코포레이션 Organic light emitting devices comprising dielectric capping layers
KR100708654B1 (en) 2004-11-18 2007-04-18 삼성에스디아이 주식회사 Mask assembly and mask frame assembly using the same
US8128753B2 (en) 2004-11-19 2012-03-06 Massachusetts Institute Of Technology Method and apparatus for depositing LED organic film
US7748343B2 (en) 2004-11-22 2010-07-06 The Board Of Trustees Of The University Of Illinois Electrohydrodynamic spraying system
KR20060056706A (en) 2004-11-22 2006-05-25 주식회사 하이닉스반도체 Method for forming semiconductor device
KR100603403B1 (en) 2004-11-25 2006-07-20 삼성에스디아이 주식회사 Mask frame assembly, and method of manufacturing an organic electroluminesence device thereused
KR100700013B1 (en) 2004-11-26 2007-03-26 삼성에스디아이 주식회사 Organic Electroluminescence Display Device and Fabricating Method of the same
KR100708655B1 (en) 2004-11-27 2007-04-18 삼성에스디아이 주식회사 Organic electroluminescence display
KR20060060994A (en) 2004-12-01 2006-06-07 삼성에스디아이 주식회사 Deposition source and deposition apparatus therewith
KR20060065978A (en) 2004-12-11 2006-06-15 비오이 하이디스 테크놀로지 주식회사 Slit mask
JP4553124B2 (en) 2004-12-16 2010-09-29 株式会社日立ハイテクノロジーズ Vacuum deposition method and el display panel
JP4331707B2 (en) 2004-12-16 2009-09-16 三星モバイルディスプレイ株式會社 Alignment system, vertical tray transfer device and deposition device having the same
KR100827738B1 (en) 2004-12-20 2008-05-07 고쿠리츠 다이가쿠 호진 큐슈 코교 다이가쿠 Non-contact convey device by superconducting magnetic levitation
JP4510609B2 (en) 2004-12-21 2010-07-28 株式会社アルバック Substrate and mask alignment method and an organic thin film deposition method and an alignment device
KR20060073367A (en) 2004-12-24 2006-06-28 엘지전자 주식회사 Apparatus for organic matter treatment of cleaning room
KR20060075887A (en) 2004-12-29 2006-07-04 매그나칩 반도체 유한회사 Method for forming metal-line of semiconductor device
KR101157322B1 (en) 2004-12-31 2012-06-15 엘지디스플레이 주식회사 Transfer unit of sputtering system
KR100645719B1 (en) 2005-01-05 2006-11-14 삼성에스디아이 주식회사 Effusion cell for depositing material and deposition apparatus having it
KR100600357B1 (en) 2005-01-05 2006-07-18 삼성에스디아이 주식회사 Apparatus for sealing the driving shaft for the effusion cell in the deposition system and deposition system having it
KR100796148B1 (en) 2005-01-05 2008-01-21 삼성에스디아이 주식회사 Vertical movement type effusion cell for depositing material and deposition system having it
US7538828B2 (en) 2005-01-10 2009-05-26 Advantech Global, Ltd Shadow mask deposition system for and method of forming a high resolution active matrix liquid crystal display (LCD) and pixel structures formed therewith
KR101200693B1 (en) 2005-01-11 2012-11-06 김명희 Linear type multi-point crucible assembly for large-size oled deposition process
KR20060083510A (en) 2005-01-17 2006-07-21 삼성전자주식회사 Photomask apparatus removing defective byproducts of a photomask
JP2006210038A (en) 2005-01-26 2006-08-10 Seiko Epson Corp Manufacturing method of mask
KR100666574B1 (en) 2005-01-31 2007-01-09 삼성에스디아이 주식회사 Vapor deposition source
JP4440837B2 (en) 2005-01-31 2010-03-24 三星モバイルディスプレイ株式會社 Evaporation source and adopted evaporation apparatus so
KR100661908B1 (en) 2005-02-07 2006-12-28 세메스 주식회사 Apparatus for treating substrates
KR20060092387A (en) 2005-02-17 2006-08-23 비오이 하이디스 테크놀로지 주식회사 Multi slit mask
KR20060098755A (en) 2005-03-07 2006-09-19 에스케이씨 주식회사 Vacuum deposition apparatus and method of organic light emitting diode
KR20130070657A (en) * 2005-03-18 2013-06-27 가부시키가이샤 알박 Method of film formation, film formation apparatus, permanent magnet, and process for producing permanent magnet
KR100687007B1 (en) 2005-03-22 2007-02-26 세메스 주식회사 Apparatus for depositing organic film used in manufacturing organicelectro luminescence device
JP2006275433A (en) 2005-03-29 2006-10-12 National Institute Of Advanced Industrial & Technology Absorption type small cooling and refrigerating device
KR100705316B1 (en) 2005-03-30 2007-04-09 엘지전자 주식회사 Apparatus and method of clamping mask for organic electro luminescence display device
KR100719314B1 (en) 2005-03-31 2007-05-17 세메스 주식회사 Apparatus for transferring substrate and apparatus for depositing organic film on substrate
KR100637714B1 (en) 2005-03-31 2006-10-25 세메스 주식회사 Apparatus for treating substrate
JP4777682B2 (en) 2005-04-08 2011-09-21 株式会社ブイ・テクノロジー Scan exposure apparatus
KR100703427B1 (en) 2005-04-15 2007-04-03 삼성에스디아이 주식회사 Vapor deposition source and Vapor deposition apparatus having thereof
KR100773249B1 (en) 2005-04-18 2007-11-05 엘지전자 주식회사 Mask used for forming an electroluminescent layer
JP4701815B2 (en) 2005-04-26 2011-06-15 株式会社アルバック The film-forming apparatus
JP2006330684A (en) * 2005-04-26 2006-12-07 Kyocera Corp Mask cleaning apparatus, mask cleaning method, method of forming vapor-deposited film, device for manufacturing el display device, and method of manufacturing el display device
WO2006117871A1 (en) 2005-04-28 2006-11-09 Shin-Etsu Engineering Co., Ltd. Electrostatic chuck apparatus
KR20060114462A (en) 2005-04-29 2006-11-07 엘지전자 주식회사 Apparatus and method of clamping mask for organic electro luminescence display device
KR100810632B1 (en) 2005-04-29 2008-03-06 삼성에스디아이 주식회사 Organic Electro-Luminescence Display Device
KR101219036B1 (en) 2005-05-02 2013-01-07 삼성디스플레이 주식회사 OLED display
KR100700493B1 (en) 2005-05-24 2007-03-28 삼성에스디아이 주식회사 Catalytic Enhanced Chemical Vapor Deposition Apparatus having Effective filament of Arrangement Structure
KR100670344B1 (en) 2005-05-30 2007-01-16 삼성에스디아이 주식회사 Apparatus for aligning substrate and mask and method of aligning substrate and mask
KR100797787B1 (en) 2005-06-03 2008-01-24 주식회사 아이엠티 Dry cleaning system using a laser
KR20060127743A (en) 2005-06-06 2006-12-13 스미토모덴키고교가부시키가이샤 Nitride semiconductor substrate and method for manufacturing the same
JP4591222B2 (en) 2005-06-09 2010-12-01 セイコーエプソン株式会社 Electro-optical device and an image forming apparatus
US7296673B2 (en) 2005-06-10 2007-11-20 Applied Materials, Inc. Substrate conveyor system
US20070017445A1 (en) 2005-07-19 2007-01-25 Takako Takehara Hybrid PVD-CVD system
EP1752554B1 (en) 2005-07-28 2007-10-17 Applied Materials GmbH & Co. KG Vaporizing device
CN100451838C (en) 2005-07-29 2009-01-14 友达光电股份有限公司 Aligning system and aligning method
JP4959961B2 (en) 2005-07-29 2012-06-27 株式会社ジャパンディスプレイセントラル A method of manufacturing an organic el element
JP4655812B2 (en) 2005-08-08 2011-03-23 カシオ計算機株式会社 Musical tone generating apparatus, and program
JP4873399B2 (en) 2005-08-08 2012-02-08 五鈴精工硝子株式会社 Method for producing a gradient index optical element having infrared absorbing ability
KR101173512B1 (en) 2005-08-25 2012-08-14 히다치 조센 가부시키가이샤 Alignment device for vacuum deposition
KR100729089B1 (en) 2005-08-26 2007-06-14 삼성에스디아이 주식회사 Organic light emitting display and method for fabricating the same
WO2007023941A1 (en) 2005-08-26 2007-03-01 Nikon Corporation Holding apparatus, assembly system, sputtering apparatus, machining method and machining apparatus
JP4789551B2 (en) 2005-09-06 2011-10-12 株式会社半導体エネルギー研究所 Organic el film forming apparatus
US7531470B2 (en) * 2005-09-27 2009-05-12 Advantech Global, Ltd Method and apparatus for electronic device manufacture using shadow masks
KR20070035796A (en) 2005-09-28 2007-04-02 엘지전자 주식회사 Apparatus for fabricating organic electro luminescence display device
KR20070037848A (en) 2005-10-04 2007-04-09 삼성전자주식회사 Organic light emitting diode display
KR100697663B1 (en) 2005-10-27 2007-03-20 세메스 주식회사 Apparatus for deposition organic compounds
JP4767000B2 (en) 2005-11-28 2011-09-07 日立造船株式会社 Vacuum vapor deposition apparatus
KR101254335B1 (en) 2005-11-29 2013-04-12 황창훈 In-line equipment using metal-plate belt source for OLED manufacturing
KR100741142B1 (en) 2005-11-29 2007-07-23 주식회사 알파로보틱스 Linear guide apparatus with plural tables
JP4666219B2 (en) 2005-12-02 2011-04-06 セイコーエプソン株式会社 container
KR100696547B1 (en) 2005-12-09 2007-03-19 삼성에스디아이 주식회사 Method for depositing film
KR100696550B1 (en) 2005-12-09 2007-03-19 삼성에스디아이 주식회사 Deposition apparatus
US20070137568A1 (en) 2005-12-16 2007-06-21 Schreiber Brian E Reciprocating aperture mask system and method
KR100696554B1 (en) 2005-12-16 2007-03-19 삼성에스디아이 주식회사 Deposition apparatus
US20070148337A1 (en) 2005-12-22 2007-06-28 Nichols Jonathan A Flame-perforated aperture masks
KR100752321B1 (en) 2005-12-23 2007-08-29 주식회사 두산 White light emitting oragnic electroluminecent device
KR100729097B1 (en) 2005-12-28 2007-06-08 삼성에스디아이 주식회사 Evaporation source and method for thin film evaporation using the same
KR101340899B1 (en) 2006-01-06 2013-12-13 삼성디스플레이 주식회사 Nozzle apparatus for organic light emitting device
JP4692290B2 (en) 2006-01-11 2011-06-01 セイコーエプソン株式会社 Mask and a film forming method
US7645483B2 (en) 2006-01-17 2010-01-12 Eastman Kodak Company Two-dimensional aperture array for vapor deposition
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
KR20070080635A (en) 2006-02-08 2007-08-13 주식회사 아바코 Organic boat
FR2897164B1 (en) 2006-02-09 2008-03-14 Commissariat Energie Atomique Realization of cavities that can be filled with a fluid material in a composed optical microtechnological
US20070190235A1 (en) 2006-02-10 2007-08-16 Semiconductor Energy Laboratory Co., Ltd. Film forming apparatus, film forming method, and manufacturing method of light emitting element
KR100736218B1 (en) 2006-02-21 2007-06-29 (주)얼라이드 테크 파인더즈 The plasma source with structure of multi-electrode from one side to the other
KR20070084973A (en) 2006-02-22 2007-08-27 삼성전기주식회사 High power semiconductor laser device
JP2007227086A (en) 2006-02-22 2007-09-06 Tokyo Electron Ltd Deposition apparatus and method of manufacturing light emitting element
JP2009531535A (en) 2006-03-03 2009-09-03 ガードギール,プラサード Apparatus and method for chemical vapor deposition of a wide range multi atomic layer thin film
KR100994505B1 (en) 2006-03-06 2010-11-15 엘아이지에이디피 주식회사 Electrostatic Chuck having bi-polar electrode pattern
US8691323B2 (en) 2006-03-06 2014-04-08 Nalco Company Method and apparatus for monitoring and controlling the application of performance enhancing materials to creping cylinders
JP2007242436A (en) 2006-03-09 2007-09-20 Seiko Epson Corp Manufacturing method of organic electroluminescent device, and organic electroluminescent device
KR100768212B1 (en) 2006-03-28 2007-10-18 삼성에스디아이 주식회사 Depositing method of thin film and manufacturing method of organic light emitting display device
KR20070098122A (en) 2006-03-31 2007-10-05 삼성전자주식회사 Equipment for manufacturing semiconductor device
JP2007291506A (en) 2006-03-31 2007-11-08 Canon Inc Film deposition method
JP4948021B2 (en) 2006-04-13 2012-06-06 株式会社アルバック Catalytic chemical vapor deposition apparatus
KR20070105595A (en) 2006-04-27 2007-10-31 두산메카텍 주식회사 Evaporation apparatus
TWI342721B (en) * 2006-05-18 2011-05-21 Au Optronics Corp Shadow mask and evaporation device incorporating the same and method for manufacturing organic light emitting diode panel incoporating the same
KR20070112668A (en) 2006-05-22 2007-11-27 세메스 주식회사 Linear type evaporator for manufacturing elements of organic semiconductor device
KR100770653B1 (en) 2006-05-25 2007-10-29 에이엔 에스 주식회사 Depositing apparatus forming thin film
KR101248004B1 (en) 2006-06-29 2013-03-27 엘지디스플레이 주식회사 A deposit system for OLED and method of fabricating of OLED using the same
KR100800125B1 (en) 2006-06-30 2008-01-31 세메스 주식회사 Source shutter and substrate control method of Organic Light-Emitting DeviceOLED evaporation apparatus
WO2008004792A1 (en) 2006-07-03 2008-01-10 Yas Co., Ltd. Multiple nozzle evaporator for vacuum thermal evaporation
KR101264329B1 (en) 2006-07-18 2013-05-14 삼성디스플레이 주식회사 Substrate alignment method using a mask, and he
US7910386B2 (en) 2006-07-28 2011-03-22 General Electric Company Method of making organic light emitting devices
KR100723627B1 (en) 2006-08-01 2007-05-23 세메스 주식회사 Evaporator for organic thin film vapor deposition
KR100815265B1 (en) 2006-08-28 2008-03-19 주식회사 대우일렉트로닉스 Method for manufacturing micro heater and crucible, and vacuum deposition apparatus of organic substances having the micro heater and crucible
JP4971723B2 (en) 2006-08-29 2012-07-11 キヤノン株式会社 Method of manufacturing an organic light emitting display device
US7322248B1 (en) 2006-08-29 2008-01-29 Eastman Kodak Company Pressure gauge for organic materials
US20080241805A1 (en) 2006-08-31 2008-10-02 Q-Track Corporation System and method for simulated dosimetry using a real time locating system
KR100787457B1 (en) 2006-08-31 2007-12-26 삼성에스디아이 주식회사 Substrate aligning apparatus and manufacturing apparatus for organic light emitting device comprising the same
JP5063969B2 (en) 2006-09-29 2012-10-31 東京エレクトロン株式会社 Deposition apparatus, a control apparatus for vapor deposition apparatus, using the control method and the vapor deposition apparatus of the deposition apparatus
KR100739309B1 (en) 2006-10-13 2007-07-06 삼성에스디아이 주식회사 Mask for thin layer vacuum evaporationand organic electro-luminescence display device
KR100823508B1 (en) 2006-10-19 2008-04-21 삼성에스디아이 주식회사 Evaporation source and organic matter sputtering apparatus with the same
JP4809186B2 (en) 2006-10-26 2011-11-09 京セラ株式会社 Organic el display and a method of manufacturing the same
KR100836471B1 (en) 2006-10-27 2008-06-09 삼성에스디아이 주식회사 Mask and deposition apparatus using the same
KR100839380B1 (en) 2006-10-30 2008-06-19 삼성에스디아이 주식회사 Vacuum evaporation apparatus for organic light emission display
KR100823511B1 (en) 2006-11-10 2008-04-21 삼성에스디아이 주식회사 Organic light emission display and fabrication method thereof
KR20080045886A (en) 2006-11-21 2008-05-26 삼성전자주식회사 Big-size hybrid open mask and manufacturing is packaged and manufacturing method of organic electro-luminescence display the same
KR20080046761A (en) 2006-11-23 2008-05-28 엘지디스플레이 주식회사 Apparatus for transferring substrate and apparatus for manufacturing thin film having the same
KR20080048653A (en) 2006-11-29 2008-06-03 엘지디스플레이 주식회사 Mask apparatus and method of fabricating flat display using the same
US8092601B2 (en) 2006-12-13 2012-01-10 Ascentool, Inc. System and process for fabricating photovoltaic cell
KR20080055124A (en) 2006-12-14 2008-06-19 엘지디스플레이 주식회사 Apparatus for evaporation
JP2008153543A (en) 2006-12-19 2008-07-03 Shinko Electric Ind Co Ltd Electrostatic chuck
KR20080057080A (en) * 2006-12-19 2008-06-24 삼성전자주식회사 Deposition apparatus and deposition method using the same
JP2008156686A (en) 2006-12-22 2008-07-10 Seiko Epson Corp Mask, and mask vapor-deposition apparatus
KR20080060400A (en) 2006-12-27 2008-07-02 엘지디스플레이 주식회사 Method of manufacturing array substrate and method of manufacturing organic light emitting device using the method
KR20080061774A (en) 2006-12-28 2008-07-03 엘지전자 주식회사 Apparatus and method of aligning mask of liquid crystal display
KR20080061132A (en) 2006-12-28 2008-07-02 엘지디스플레이 주식회사 Apparatus for forming organic layer
KR20080061666A (en) 2006-12-28 2008-07-03 세메스 주식회사 Apparatus and method for depositing organic film on substrate
KR20080062212A (en) 2006-12-29 2008-07-03 세메스 주식회사 Apparatus for depositing organic film on substrate
KR100899279B1 (en) 2007-01-26 2009-05-27 창원대학교 산학협력단 Cooling equipment for Linear Motors by Combination of a Plate Cooler on the Upper Side and Conducting Sheet at the Side
JP2008196003A (en) 2007-02-13 2008-08-28 Seiko Epson Corp Mask for vapor deposition, mask vapor deposition method, and method for producing organic electroluminescence apparatus
KR101403328B1 (en) 2007-02-16 2014-06-05 엘아이지에이디피 주식회사 Electro-Static Chuck Having Embossing Electrode Pattern and Method for Processing Substrate Using The Same
WO2008121793A1 (en) 2007-03-30 2008-10-09 The Penn State Research Foundation Mist fabrication of quantum dot devices
JP4909152B2 (en) 2007-03-30 2012-04-04 キヤノン株式会社 Vapor deposition apparatus and a deposition method
KR101394922B1 (en) 2007-03-30 2014-05-14 엘지디스플레이 주식회사 A liquid crystal display device
KR100830318B1 (en) 2007-04-12 2008-05-16 삼성에스디아이 주식회사 Light emitting display device and fabrication method for the same
JP2008274373A (en) 2007-05-02 2008-11-13 Optnics Precision Co Ltd Mask for vapor deposition
JP2008285719A (en) 2007-05-17 2008-11-27 Fujifilm Corp Vacuum deposition method
KR20080102898A (en) 2007-05-22 2008-11-26 삼성전자주식회사 An white-emitting organic light emitting diode, a method for preparing the same and a deposition device for an in-line deposition system
KR101409524B1 (en) 2007-05-28 2014-06-20 엘지디스플레이 주식회사 Apparatus for transferring substrates
JP2008300056A (en) 2007-05-29 2008-12-11 Shinko Electric Co Ltd Mask alignment device
US8142606B2 (en) 2007-06-07 2012-03-27 Applied Materials, Inc. Apparatus for depositing a uniform silicon film and methods for manufacturing the same
KR20080109559A (en) 2007-06-13 2008-12-17 주식회사 하이닉스반도체 Mask providing locally modified illumination and manufacturing method therefor
JP5277571B2 (en) 2007-06-18 2013-08-28 セイコーエプソン株式会社 Manufacturing method and a manufacturing method of the droplet discharge head of the nozzle substrate
US9513412B2 (en) 2007-06-19 2016-12-06 3M Innovative Properties Company Systems and methods for fabricating displacement scales
JP2009016385A (en) 2007-06-29 2009-01-22 Canon Inc Stage apparatus, exposure apparatus, and method of manufacturing device
JP5132213B2 (en) 2007-07-18 2013-01-30 富士フイルム株式会社 Vapor deposition apparatus and a deposition method, and an electronic device and an organic electroluminescence device having a layer which is patterned using the method
KR20090017910A (en) 2007-08-16 2009-02-19 엘지디스플레이 주식회사 Shadow mask and method of forming organic electroluminescene device using the same
JP2009049223A (en) 2007-08-21 2009-03-05 Seiko Epson Corp Light emitting device
JP2009054512A (en) * 2007-08-29 2009-03-12 Seiko Epson Corp Mask
JP5201932B2 (en) 2007-09-10 2013-06-05 株式会社アルバック Feeder, and an organic deposition apparatus
WO2009034915A1 (en) 2007-09-10 2009-03-19 Ulvac, Inc. Evaporation apparatus
JP2009076227A (en) * 2007-09-19 2009-04-09 Seiko Epson Corp Manufacturing method of mask and mask
JP4904237B2 (en) 2007-09-25 2012-03-28 ヤマハ発動機株式会社 The substrate processing apparatus, a surface mounting machine, printing machine, inspection machine, and coater
KR20090038733A (en) 2007-10-16 2009-04-21 주식회사 실트론 Heat treatment method for improvement of surface roughness of soi-wafer and apparatus for the same
KR100972636B1 (en) 2007-10-22 2010-07-27 네오뷰코오롱 주식회사 Deposition Mask Unit
KR100790718B1 (en) 2007-11-05 2008-01-02 삼성전기주식회사 High power semiconductor laser device
JP5280667B2 (en) 2007-11-08 2013-09-04 株式会社ジャパンディスプレイ The cleaning method of preparation and deposition mask organic el display device
KR100889872B1 (en) 2007-11-08 2009-03-24 (주)와이티에스 The align system's display glass substrate of align straight line degree automatic camera adjusted methods
KR100928136B1 (en) 2007-11-09 2009-11-25 삼성모바일디스플레이주식회사 Linear organic material deposition apparatus
KR100908658B1 (en) 2007-11-20 2009-07-21 엘지디스플레이 주식회사 OLED display
JP5046882B2 (en) 2007-11-21 2012-10-10 三菱重工業株式会社 The in-line film-formation apparatus
KR100903624B1 (en) 2007-11-23 2009-06-18 삼성모바일디스플레이주식회사 Mask assembly for thin film vapor deposition of flat panel display
KR100979189B1 (en) 2007-12-20 2010-08-31 다이나믹솔라디자인 주식회사 Consecutive substrate processing system
US8298338B2 (en) 2007-12-26 2012-10-30 Samsung Electronics Co., Ltd. Chemical vapor deposition apparatus
JP4725577B2 (en) 2007-12-28 2011-07-13 カシオ計算機株式会社 Method for manufacturing a display device
JP2009170200A (en) * 2008-01-15 2009-07-30 Sony Corp Method of manufacturing display device
KR20090079765A (en) 2008-01-17 2009-07-22 이태환 A power-driven machinery that is utilized gravity
KR101415551B1 (en) 2008-01-25 2014-07-04 (주)소슬 Electrostatic chuck, method of manufacturing the same and apparatus for processing a substrate including the same
KR100964224B1 (en) 2008-02-28 2010-06-17 삼성모바일디스플레이주식회사 Evaporating apparatus and method for forming thin film
US20090218219A1 (en) * 2008-02-29 2009-09-03 Semiconductor Energy Laboratory Co., Ltd. Manufacturing Apparatus
KR101352567B1 (en) 2008-03-04 2014-01-24 삼성테크윈 주식회사 Linear Transfer Stage Apparatus
KR100922763B1 (en) 2008-03-13 2009-10-21 삼성모바일디스플레이주식회사 Organic light emitting display apparatus and method of manufacturing thereof
KR20090107702A (en) 2008-04-10 2009-10-14 엘지디스플레이 주식회사 Thin-film Deposition Method and Device
US7943202B2 (en) 2008-05-07 2011-05-17 Qualcomm Mems Technologies, Inc. Apparatus and methods for providing a static interferometric display device
KR100953658B1 (en) 2008-06-05 2010-04-20 삼성모바일디스플레이주식회사 Organic light emitting diode display device
JPWO2009153856A1 (en) 2008-06-17 2011-11-24 キヤノンアネルバ株式会社 Adhesion-preventing cover with a carrier and adhesion-preventing cover attachment apparatus
KR20100000128A (en) 2008-06-24 2010-01-06 엘지디스플레이 주식회사 A deposition mask unit for fabrication of organic light emitting display device
JP5368013B2 (en) 2008-06-24 2013-12-18 共同印刷株式会社 Method of manufacturing a flexible organic el display
KR20100002381A (en) 2008-06-30 2010-01-07 (주)드림젯코리아 The flat-board printer
KR20100026655A (en) 2008-09-01 2010-03-10 삼성모바일디스플레이주식회사 Mask for thin film deposition and manufacturing method of oled using the same
KR100961110B1 (en) 2008-09-02 2010-06-07 삼성엘이디 주식회사 Ac driving light emitting device
WO2010036805A2 (en) 2008-09-24 2010-04-01 Massachusetts Institute Of Technology Photon processing with nanopatterned materials
KR101592013B1 (en) 2008-10-13 2016-02-05 삼성디스플레이 주식회사 The organic light emitting display device and a method of manufacturing the same
KR101487382B1 (en) 2008-10-22 2015-01-29 주식회사 원익아이피에스 In-line type semiconductor manufacturing device
JP5157825B2 (en) 2008-10-29 2013-03-06 ソニー株式会社 A method of manufacturing an organic el display
JP5074368B2 (en) 2008-12-15 2012-11-14 株式会社日立ハイテクノロジーズ The film-forming apparatus
KR101117645B1 (en) 2009-02-05 2012-03-05 삼성모바일디스플레이주식회사 Mask Assembly and Deposition Apparatus using the same for Flat Panel Display
KR20100099806A (en) 2009-03-04 2010-09-15 삼성전자주식회사 Holographic exposure apparatus
US9062369B2 (en) 2009-03-25 2015-06-23 Veeco Instruments, Inc. Deposition of high vapor pressure materials
JP5277059B2 (en) * 2009-04-16 2013-08-28 株式会社日立ハイテクノロジーズ Film deposition apparatus and a film forming system
US8202671B2 (en) 2009-04-28 2012-06-19 Nikon Corporation Protective apparatus, mask, mask forming apparatus, mask forming method, exposure apparatus, device fabricating method, and foreign matter detecting apparatus
KR101108151B1 (en) 2009-04-30 2012-01-31 삼성모바일디스플레이주식회사 Evaporating apparatus
JP5323581B2 (en) 2009-05-08 2013-10-23 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Deposition method and the vapor deposition apparatus
JP5623786B2 (en) 2009-05-22 2014-11-12 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Thin film deposition apparatus
TWI472639B (en) 2009-05-22 2015-02-11 Samsung Display Co Ltd Thin film deposition apparatus
KR101074790B1 (en) 2009-05-22 2011-10-19 삼성모바일디스플레이주식회사 Apparatus for thin layer deposition
KR101067709B1 (en) 2009-05-28 2011-09-28 주식회사 태성기연 Apparatus for transferring of glass panel with magnetic levitationtechnology
KR20100130786A (en) 2009-06-04 2010-12-14 삼성모바일디스플레이주식회사 Depositing apparatus and manufacturing method of organic light emitting diode thereused
US8882921B2 (en) 2009-06-08 2014-11-11 Samsung Display Co., Ltd. Thin film deposition apparatus
KR101074792B1 (en) 2009-06-12 2011-10-19 삼성모바일디스플레이주식회사 Apparatus for thin layer deposition
TW201043729A (en) 2009-06-15 2010-12-16 Nat Univ Chung Cheng Method and system of forming film by employing supercritical vapor deposition
KR101097311B1 (en) 2009-06-24 2011-12-21 삼성모바일디스플레이주식회사 Organic light emitting display apparatus and apparatus for thin layer deposition for manufacturing the same
KR101117719B1 (en) 2009-06-24 2012-03-08 삼성모바일디스플레이주식회사 Apparatus for thin layer deposition
KR101117720B1 (en) 2009-06-25 2012-03-08 삼성모바일디스플레이주식회사 Apparatus for thin layer deposition and method of manufacturing organic light emitting device using the same
KR101169001B1 (en) 2009-07-10 2012-07-26 주식회사 엔씰텍 Evaporation Donor Substrate of Evaporation Device, Method for making Layers using the same and Method for Fabricating of Organic Light Emitting Diode Display
KR101127575B1 (en) 2009-08-10 2012-03-23 삼성모바일디스플레이주식회사 Apparatus for thin film deposition having a deposition blade
US20110033621A1 (en) 2009-08-10 2011-02-10 Samsung Mobile Display Co., Ltd. Thin film deposition apparatus including deposition blade
JP5676175B2 (en) 2009-08-24 2015-02-25 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Method of manufacturing a thin film deposition apparatus and the organic light emitting display using the same
KR101127578B1 (en) 2009-08-24 2012-03-23 삼성모바일디스플레이주식회사 Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
JP5328726B2 (en) 2009-08-25 2013-10-30 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Method of manufacturing a thin film deposition apparatus and the organic light emitting display device using the same
KR20110021090A (en) 2009-08-25 2011-03-04 엘지디스플레이 주식회사 Shadow mask for fabricating the organic electroluminescent device
US8486737B2 (en) 2009-08-25 2013-07-16 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
JP5677785B2 (en) 2009-08-27 2015-02-25 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Method of manufacturing a thin film deposition apparatus and the organic light emitting display using the same
JP5611718B2 (en) 2009-08-27 2014-10-22 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Method of manufacturing a thin film deposition apparatus and the organic light emitting display using the same
KR101174877B1 (en) 2009-08-27 2012-08-17 삼성디스플레이 주식회사 The method of film deposition apparatus and the organic light emitting diode display using the same.
US8696815B2 (en) 2009-09-01 2014-04-15 Samsung Display Co., Ltd. Thin film deposition apparatus
US20110052795A1 (en) 2009-09-01 2011-03-03 Samsung Mobile Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
JP5502092B2 (en) 2009-09-15 2014-05-28 シャープ株式会社 Vapor deposition method and the vapor deposition apparatus
KR20110032589A (en) 2009-09-23 2011-03-30 엘지디스플레이 주식회사 Organic light emitting diode device
CN102024908A (en) 2009-09-23 2011-04-20 乐金显示有限公司 The organic light emitting device and manufacturing method thereof
US8876975B2 (en) 2009-10-19 2014-11-04 Samsung Display Co., Ltd. Thin film deposition apparatus
KR101146982B1 (en) 2009-11-20 2012-05-22 삼성모바일디스플레이주식회사 Aapparatus for thin layer deposition and method of manufacturing organic light emitting display apparatus
KR101030030B1 (en) 2009-12-11 2011-04-20 삼성모바일디스플레이주식회사 Mask assembly
KR101084184B1 (en) 2010-01-11 2011-11-17 삼성모바일디스플레이주식회사 Apparatus for thin layer deposition
US20110262625A1 (en) 2010-01-11 2011-10-27 Hyun-Sook Park Thin film deposition apparatus
KR101174875B1 (en) 2010-01-14 2012-08-17 삼성디스플레이 주식회사 The film deposition apparatus, a method of manufacturing an organic light emitting display device using the same and therefore the organic light-emitting display device manufactured in accordance
KR101193186B1 (en) 2010-02-01 2012-10-19 삼성디스플레이 주식회사 Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
WO2011096030A1 (en) 2010-02-03 2011-08-11 シャープ株式会社 Vapor deposition mask, vapor deposition device, and vapor deposition method
JP4745447B2 (en) 2010-02-04 2011-08-10 キヤノンアネルバ株式会社 Substrate transfer apparatus and a vacuum processing apparatus
KR101174879B1 (en) 2010-03-09 2012-08-17 삼성디스플레이 주식회사 Thin film deposition mask frame assembly and method for its assembly
KR101156441B1 (en) 2010-03-11 2012-06-18 삼성모바일디스플레이주식회사 Apparatus for thin layer deposition
KR100965416B1 (en) 2010-03-12 2010-06-24 엘아이지에이디피 주식회사 Electrostatic Chuck having multi-electrode pattern
US8894458B2 (en) 2010-04-28 2014-11-25 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
KR101801351B1 (en) 2010-04-28 2017-11-27 삼성디스플레이 주식회사 Apparatus for thin layer deposition and method for manufacturing of organic light emitting display apparatus using the same and organic light emitting display apparatus using the same
KR101779475B1 (en) 2010-06-22 2017-09-19 엘지디스플레이 주식회사 Organic electro-luminescence device and method for fabricating of the same
KR101223723B1 (en) 2010-07-07 2013-01-18 삼성디스플레이 주식회사 Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR101146997B1 (en) 2010-07-12 2012-05-23 삼성모바일디스플레이주식회사 A tension apparatus for patterning slit sheet
KR101146996B1 (en) 2010-07-12 2012-05-23 삼성모바일디스플레이주식회사 Method for manufacturing of organic light emitting display apparatus
KR101182448B1 (en) 2010-07-12 2012-09-12 삼성디스플레이 주식회사 Apparatus for thin layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR101673017B1 (en) 2010-07-30 2016-11-07 삼성디스플레이 주식회사 Apparatus for thin layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR101678056B1 (en) 2010-09-16 2016-11-22 삼성디스플레이 주식회사 Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR20120029166A (en) 2010-09-16 2012-03-26 삼성모바일디스플레이주식회사 Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR20120029895A (en) 2010-09-17 2012-03-27 삼성모바일디스플레이주식회사 Apparatus for thin layer deposition and method for manufacturing of organic light emitting display apparatus using the same
US8022448B1 (en) 2010-10-05 2011-09-20 Skyworks Solutions, Inc. Apparatus and methods for evaporation including test wafer holder
KR101723506B1 (en) 2010-10-22 2017-04-19 삼성디스플레이 주식회사 Apparatus for organic layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR101738531B1 (en) 2010-10-22 2017-05-23 삼성디스플레이 주식회사 Method for manufacturing of organic light emitting display apparatus, and organic light emitting display apparatus manufactured by the method
JP2012095448A (en) 2010-10-27 2012-05-17 Canon Inc Charging circuit and charging system of secondary battery
KR20120045865A (en) 2010-11-01 2012-05-09 삼성모바일디스플레이주식회사 Apparatus for organic layer deposition
KR20120057290A (en) 2010-11-26 2012-06-05 삼성모바일디스플레이주식회사 Apparatus for thin layer deposition
KR20120060498A (en) 2010-12-02 2012-06-12 주식회사 케이씨텍 Transfer device for large area substrate
KR20120065789A (en) 2010-12-13 2012-06-21 삼성모바일디스플레이주식회사 Apparatus for organic layer deposition
KR101223725B1 (en) 2011-01-10 2013-01-17 삼성디스플레이 주식회사 Organic light emitting display device and manufacturing method thereof
KR101760897B1 (en) 2011-01-12 2017-07-25 삼성디스플레이 주식회사 Deposition source and apparatus for organic layer deposition having the same
WO2012099012A1 (en) 2011-01-20 2012-07-26 シャープ株式会社 Crucible and deposition apparatus
WO2012121139A1 (en) 2011-03-10 2012-09-13 シャープ株式会社 Vapour deposition device, vapour deposition method, and organic el display device
US8962077B2 (en) 2011-03-14 2015-02-24 Sharp Kabushiki Kaisha Vapor deposition particle emitting device, vapor deposition apparatus, vapor deposition method
JP2012211352A (en) 2011-03-30 2012-11-01 Hitachi High-Technologies Corp Evaporation source, organic el-device manufacturing device and organic el-device manufacturing method
KR101857992B1 (en) 2011-05-25 2018-05-16 삼성디스플레이 주식회사 Patterning slit sheet assembly, apparatus for organic layer deposition, method for manufacturing organic light emitting display apparatus and organic light emitting display apparatus
KR101840654B1 (en) 2011-05-25 2018-03-22 삼성디스플레이 주식회사 Apparatus for organic layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR101852517B1 (en) 2011-05-25 2018-04-27 삼성디스플레이 주식회사 Apparatus for organic layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR20120131548A (en) 2011-05-25 2012-12-05 삼성디스플레이 주식회사 Apparatus for thin layer deposition
KR20120131543A (en) 2011-05-25 2012-12-05 삼성디스플레이 주식회사 Apparatus for thin layer deposition, frame sheet assembly for the same, and method for manufacturing of organic light emitting display apparatus using the same
US8614144B2 (en) 2011-06-10 2013-12-24 Kabushiki Kaisha Toshiba Method for fabrication of interconnect structure with improved alignment for semiconductor devices
KR101880721B1 (en) 2011-06-21 2018-07-23 삼성디스플레이 주식회사 Manufacturing method of thin film transistor, the thin film transistor manufactured by the same, manufacturing method of organic light emitting apparatus and the organic light emitting apparatus manufactured by the same
KR101705823B1 (en) 2011-06-30 2017-02-13 삼성디스플레이 주식회사 Organic light emitting display apparatus
KR20130004830A (en) 2011-07-04 2013-01-14 삼성디스플레이 주식회사 Apparatus for thin layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR101826068B1 (en) 2011-07-04 2018-02-07 삼성디스플레이 주식회사 Apparatus for thin layer deposition
KR20130015144A (en) 2011-08-02 2013-02-13 삼성디스플레이 주식회사 Deposition source, apparatus for organic layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR20130069037A (en) 2011-12-16 2013-06-26 삼성디스플레이 주식회사 Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus
KR20130095063A (en) 2012-02-17 2013-08-27 삼성디스플레이 주식회사 Apparatus for deposition a organic layer and the method for manufacturing of organic light emitting display apparatus using the same
KR101906358B1 (en) 2012-02-21 2018-10-11 삼성디스플레이 주식회사 Depositing apparatus and method for manufacturing organic light emitting diode display using the same
KR20140000041A (en) 2012-06-22 2014-01-02 삼성디스플레이 주식회사 Apparatus for organic layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR20140007684A (en) 2012-07-10 2014-01-20 삼성디스플레이 주식회사 Apparatus for organic layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
US9461277B2 (en) 2012-07-10 2016-10-04 Samsung Display Co., Ltd. Organic light emitting display apparatus
US9496524B2 (en) 2012-07-10 2016-11-15 Samsung Display Co., Ltd. Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus using the same, and organic light-emitting display apparatus manufactured using the method
KR20140007685A (en) 2012-07-10 2014-01-20 삼성디스플레이 주식회사 Apparatus for organic layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR20140007686A (en) 2012-07-10 2014-01-20 삼성디스플레이 주식회사 Method for manufacturing of organic light emitting display apparatus and organic light emitting display apparatus manufactured by the method
KR20140010303A (en) 2012-07-16 2014-01-24 삼성디스플레이 주식회사 Apparatus for organic layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR101944918B1 (en) 2012-08-03 2019-02-08 삼성디스플레이 주식회사 Organic layer deposition assembly, apparatus for organic layer deposition, organic light emitting display apparatus and method for manufacturing the same
KR20140038196A (en) 2012-09-20 2014-03-28 삼성디스플레이 주식회사 Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus
KR20140038748A (en) 2012-09-21 2014-03-31 삼성디스플레이 주식회사 Apparatus for organic layer deposition, organic light emitting display apparatus and method for manufacturing the same
KR20140039607A (en) 2012-09-24 2014-04-02 삼성디스플레이 주식회사 Apparatus for organic layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR20140050994A (en) 2012-10-22 2014-04-30 삼성디스플레이 주식회사 Organic light emitting display apparatus and method for manufacturing the same
KR20140060171A (en) 2012-11-09 2014-05-19 삼성디스플레이 주식회사 Apparatus for organic layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR20150052996A (en) 2013-11-07 2015-05-15 삼성디스플레이 주식회사 Substrate transferring apparatus and thin film deposition apparatus having the same

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4416217A (en) * 1981-07-31 1983-11-22 Ulvac Seimaku Kabushiki Kaisha Apparatus for forming an inhomogeneous optical layer
US4468648A (en) * 1982-10-15 1984-08-28 Mamoru Uchikune Switchable permanent magnetic chuck
US4687939A (en) * 1983-11-07 1987-08-18 Hitachi, Ltd. Method and apparatus for forming film by ion beam
US4901667A (en) * 1985-08-09 1990-02-20 Hitachi, Ltd. Surface treatment apparatus
US4792378A (en) * 1987-12-15 1988-12-20 Texas Instruments Incorporated Gas dispersion disk for use in plasma enhanced chemical vapor deposition reactor
US5487609A (en) * 1991-05-13 1996-01-30 Thk Co., Ltd. Slide unit for linear motion
US5460654A (en) * 1992-07-01 1995-10-24 Fujitsu Limited Apparatus for generating raw material gas used in apparatus for growing thin film
US5454847A (en) * 1992-09-18 1995-10-03 Alcatel Alsthom Compagnie Generale D'electricite Vapor deposition method for depositing a film of fluorine-containing glass on a substrate
US5742129A (en) * 1995-02-21 1998-04-21 Pioneer Electronic Corporation Organic electroluminescent display panel with projecting ramparts and method for manufacturing the same
US5909995A (en) * 1996-10-15 1999-06-08 Balzers Aktiengesellschaft Transport device for workpieces in a vacuum system
US6091195A (en) * 1997-02-03 2000-07-18 The Trustees Of Princeton University Displays having mesa pixel configuration
US6274198B1 (en) * 1997-02-24 2001-08-14 Agere Systems Optoelectronics Guardian Corp. Shadow mask deposition
US20030164934A1 (en) * 1997-03-25 2003-09-04 Nikon Corporation Stage apparatus, exposure apparatus and method for exposing substrate plate
US6099649A (en) * 1997-12-23 2000-08-08 Applied Materials, Inc. Chemical vapor deposition hot-trap for unreacted precursor conversion and effluent removal
US6280821B1 (en) * 1998-09-10 2001-08-28 Ppg Industries Ohio, Inc. Reusable mask and method for coating substrate
US20020011785A1 (en) * 1998-11-18 2002-01-31 Ching W. Tang A full color active matrix organic electroluminescent display panel having an integrated shadow mask
US6699324B1 (en) * 1999-01-26 2004-03-02 Klaus Berdin Method for coating the inside of pipes and coating system
US6541130B2 (en) * 1999-05-12 2003-04-01 Pioneer Corporation Organic electroluminescence multi-color display and method of fabricating the same
US6579422B1 (en) * 1999-07-07 2003-06-17 Sony Corporation Method and apparatus for manufacturing flexible organic EL display
US6443597B1 (en) * 1999-09-01 2002-09-03 Sony Corporation Plane display unit and plane display device
US6589673B1 (en) * 1999-09-29 2003-07-08 Junji Kido Organic electroluminescent device, group of organic electroluminescent devices
US6371451B1 (en) * 1999-10-29 2002-04-16 Korea Institute Of Science And Technology Scent diffusion apparatus and method
US20010004186A1 (en) * 1999-12-10 2001-06-21 Song Gi-Young Shadow mask frame assembly for flat CRT
US20010019807A1 (en) * 1999-12-24 2001-09-06 Tsutomu Yamada Deposition mask and manufacturing method thereof, and electroluminescence display device and manufacturing method thereof
US20010006827A1 (en) * 1999-12-27 2001-07-05 Semiconductor Energy Laboratory Co., Ltd. Film formation apparatus and method for forming a film
US20010034175A1 (en) * 2000-02-16 2001-10-25 Toshihiko Miyazaki Method and apparatus for manufacturing image displaying apparatus
US20030021886A1 (en) * 2000-02-23 2003-01-30 Baele Stephen James Method of printing and printing machine
US20010026638A1 (en) * 2000-03-28 2001-10-04 Katsuya Sangu Positioning apparatus used in a process for producing multi-layered printed circuit board and method of using the same
US6417034B2 (en) * 2000-05-01 2002-07-09 Nec Corporation Manufacturing method for organic EL device
US20040016907A1 (en) * 2000-05-19 2004-01-29 Eastman Kodak Company Method of using predoped materials for making an organic light-emitting device
US20020017245A1 (en) * 2000-06-22 2002-02-14 Matsushita Electric Works, Ltd. Apparatus for and method of vacuum vapor deposition and organic electroluminescent device
US20020050061A1 (en) * 2000-06-29 2002-05-02 Daido Komyoji Method and apparatus for forming pattern onto panel substrate
US20030118950A1 (en) * 2000-08-07 2003-06-26 Ching-Ian Chao Method of manufacturing full-color organic electro-luminescent device
US20020036759A1 (en) * 2000-09-25 2002-03-28 Masaru Ise Automatic exposing apparatus for both sides and exposing method thereof for works
US20020076847A1 (en) * 2000-09-28 2002-06-20 Tsutomu Yamada Method of attaching layer material and forming layer in predetermined pattern on substrate using mask
US20040096771A1 (en) * 2000-09-29 2004-05-20 Motofumi Kashiwagi Photoresist composition for forming an insulation film, insulation film for organic electroluminescence element and method for itis formation
US20020187253A1 (en) * 2001-04-20 2002-12-12 Eastman Kodak Company Reusable mass-sensor in manufacture of organic light-emitting devices
US20020168577A1 (en) * 2001-05-11 2002-11-14 Jin-Mo Yoon Method of crystallizing amorphous silicon
US20020179013A1 (en) * 2001-05-23 2002-12-05 Junji Kido Successive vapour deposition system, vapour deposition system, and vapour deposition process
US20020197393A1 (en) * 2001-06-08 2002-12-26 Hideaki Kuwabara Process of manufacturing luminescent device
US20020194727A1 (en) * 2001-06-22 2002-12-26 Mirae Corporation Transfer for tray feeder
US6483690B1 (en) * 2001-06-28 2002-11-19 Lam Research Corporation Ceramic electrostatic chuck assembly and method of making
US6554969B1 (en) * 2001-07-11 2003-04-29 Advanced Micro Devices, Inc. Acoustically enhanced deposition processes, and systems for performing same
US6650023B2 (en) * 2001-09-13 2003-11-18 Lg Electronics Inc. Apparatus for depositing thin film
US20080216741A1 (en) * 2001-10-26 2008-09-11 Hermosa Thin Film Co., Ltd. Dynamic film thickness control system/method and its utilization
US20030101937A1 (en) * 2001-11-28 2003-06-05 Eastman Kodak Company Thermal physical vapor deposition source for making an organic light-emitting device
US20030101932A1 (en) * 2001-12-05 2003-06-05 Samsung Nec Mobile Display Co., Ltd. Tension mask assembly for use in vacuum deposition of thin film of organic electroluminescent device
US20030124764A1 (en) * 2001-12-12 2003-07-03 Shunpei Yamazaki Film formation apparatus and film formation method and cleaning method
US20030117602A1 (en) * 2001-12-26 2003-06-26 Pentax Corporation Projection aligner
US20030173896A1 (en) * 2002-02-14 2003-09-18 Vladimir Grushin Electroluminescent iridium compounds with phosphinoalkoxides and phenylpyridines or phenylpyrimidines and devices made with such compounds
US20030168013A1 (en) * 2002-03-08 2003-09-11 Eastman Kodak Company Elongated thermal physical vapor deposition source with plural apertures for making an organic light-emitting device
US6749906B2 (en) * 2002-04-25 2004-06-15 Eastman Kodak Company Thermal physical vapor deposition apparatus with detachable vapor source(s) and method
US20030232563A1 (en) * 2002-05-09 2003-12-18 Isao Kamiyama Method and apparatus for manufacturing organic electroluminescence device, and system and method for manufacturing display unit using organic electroluminescence devices
US20030221620A1 (en) * 2002-06-03 2003-12-04 Semiconductor Energy Laboratory Co., Ltd. Vapor deposition device
US20030221614A1 (en) * 2002-06-03 2003-12-04 Samsung Nec Mobile Display Co., Ltd., Ulsan-City, Republic Of Korea Mask and mask frame assembly for evaporation
US20040194702A1 (en) * 2002-06-17 2004-10-07 Koji Sasaki Thin film-forming apparatus
US20040029028A1 (en) * 2002-08-05 2004-02-12 Nec Plasma Display Coropration Method for measuring gap between mask and substrate of display panel
US20040115338A1 (en) * 2002-09-05 2004-06-17 Sanyo Electric Co., Ltd. Manufacturing method of organic electroluminescent display device
US20040123804A1 (en) * 2002-09-20 2004-07-01 Semiconductor Energy Laboratory Co., Ltd. Fabrication system and manufacturing method of light emitting device
US20120214263A1 (en) * 2002-09-20 2012-08-23 Semiconductor Energy Laboratory Co., Ltd. Fabrication System and Manufacturing Method of Light Emitting Device
US20040056244A1 (en) * 2002-09-23 2004-03-25 Eastman Kodak Company Device for depositing patterned layers in OLED displays
US20040086639A1 (en) * 2002-09-24 2004-05-06 Grantham Daniel Harrison Patterned thin-film deposition using collimating heated mask asembly
US20040134428A1 (en) * 2002-10-24 2004-07-15 Koji Sasaki Thin-film deposition device
US20040142108A1 (en) * 2002-12-03 2004-07-22 Mitsuro Atobe Mask vapor deposition method, mask vapor deposition system, mask, process for manufacturing mask, apparatus for manufacturing display panel, display panel, and electronic device
US20040127066A1 (en) * 2002-12-31 2004-07-01 Yun-Ho Jung Mask for sequential lateral solidification and crystallization method using thereof
US20040144321A1 (en) * 2003-01-28 2004-07-29 Eastman Kodak Company Method of designing a thermal physical vapor deposition system
US20050031836A1 (en) * 2003-03-27 2005-02-10 Toshimitsu Hirai Pattern forming method, pattern forming apparatus, device manufacturing method, conductive film wiring, electro-optical device, and electronic apparatus
US6995035B2 (en) * 2003-06-16 2006-02-07 Eastman Kodak Company Method of making a top-emitting OLED device having improved power distribution
US20060164786A1 (en) * 2003-07-08 2006-07-27 Toshiki Kobayashi Electrostatic chuck for substrate stage, electrode used for the chuck, and treating system having the chuck and electrode
US20050016461A1 (en) * 2003-07-22 2005-01-27 Eastman Kodak Company Thermal physical vapor deposition source using pellets of organic material for making oled displays
US20050037136A1 (en) * 2003-07-28 2005-02-17 Katsuya Yamamoto Mask for deposition, film formation method using the same and film formation equipment using the same
US20050166842A1 (en) * 2004-02-02 2005-08-04 Fujitsu Limited Vapor deposition mask and organic EL display device manufacturing method
US20050263074A1 (en) * 2004-06-01 2005-12-01 Tohoku Pioneer Corporation Film formation source, vacuum film formation apparatus, organic EL panel and method of manufacturing the same
US20060012771A1 (en) * 2004-07-19 2006-01-19 Samsung Electronics Co., Ltd. System and method for manufacturing a flat panel display
US20080018236A1 (en) * 2004-09-08 2008-01-24 Toray Industries, Inc. Organic Electroluminescent Device and Manufacturing Method Thereof
US20070297887A1 (en) * 2004-11-15 2007-12-27 Keiichi Tanaka Substrate Carrying Device, Substrate Carrying Method, and Exposure Device
US20060102078A1 (en) * 2004-11-18 2006-05-18 Intevac Inc. Wafer fab
US20060205101A1 (en) * 2004-12-03 2006-09-14 Lee Jae-Ho Laser irradiation device, patterning method and method of fabricating organic light emitting display (OLED) using the patterning method
US20060144325A1 (en) * 2005-01-05 2006-07-06 Samsung Sdi Co., Ltd. Driving shaft of effusion cell for deposition system and deposition system having the same
US20060174829A1 (en) * 2005-02-07 2006-08-10 Semes Co., Ltd. Apparatus for processing substrate
US20070009652A1 (en) * 2005-04-20 2007-01-11 Dieter Manz Continuous OLED coating machine
US20060255722A1 (en) * 2005-05-16 2006-11-16 Yasuo Imanishi Organic electroluminescence device and organic electroluminescence system
US20060278522A1 (en) * 2005-06-13 2006-12-14 Lg.Philips Lcd Co., Ltd. Sputtering apparatus and driving method thereof
US20070046913A1 (en) * 2005-08-26 2007-03-01 Nikon Corporation Holding unit, assembly system, sputtering unit, and processing method and processing unit
US20070077358A1 (en) * 2005-08-31 2007-04-05 Jeong Min J Apparatus for depositing an organic layer and method for controlling a heating unit thereof
US20070178708A1 (en) * 2006-01-27 2007-08-02 Canon Kabushiki Kaisha Vapor deposition system and vapor deposition method for an organic compound
US20070275497A1 (en) * 2006-05-24 2007-11-29 Kwack Jin-Ho Method of aligning a substrate, mask to be aligned with the same, and flat panel display apparatus using the same
US20090229524A1 (en) * 2006-07-03 2009-09-17 Yas Co., Ltd. Multiple Nozzle Evaporator for Vacuum Thermal Evaporation
US7964037B2 (en) * 2006-07-13 2011-06-21 Canon Kabushiki Kaisha Deposition apparatus
US20080057183A1 (en) * 2006-08-31 2008-03-06 Spindler Jeffrey P Method for lithium deposition in oled device
US20080115729A1 (en) * 2006-11-16 2008-05-22 Yamagata Promotional Organization For Industrial Technology Evaporation source and vacuum evaporator using the same
US20080131587A1 (en) * 2006-11-30 2008-06-05 Boroson Michael L Depositing organic material onto an oled substrate
US20080298947A1 (en) * 2007-05-29 2008-12-04 Lg Display Co., Ltd. Apparatus for transferring substrates
US20090017192A1 (en) * 2007-07-12 2009-01-15 Hiroyasu Matsuura Vapor deposition method and apparatus
US20090153033A1 (en) * 2007-12-12 2009-06-18 Dong-Won Lee Organic light emitting diode device and method of manufacturing the same
US20090232976A1 (en) * 2008-03-11 2009-09-17 Samsung Sdi Co., Ltd. Evaporating method for forming thin film
US20100130020A1 (en) * 2008-11-26 2010-05-27 Semes Co., Ltd. Substrate chucking member, substrate processing, apparatus having the member, and method of processing substrate using the member
US20100156279A1 (en) * 2008-12-19 2010-06-24 Shinichiro Tamura Organic emitting device
US20110241438A1 (en) * 2010-04-01 2011-10-06 Samsung Electronics Co., Ltd., Wireless power transmission apparatus and wireless power transmission method

Cited By (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9121095B2 (en) 2009-05-22 2015-09-01 Samsung Display Co., Ltd. Thin film deposition apparatus
US9873937B2 (en) 2009-05-22 2018-01-23 Samsung Display Co., Ltd. Thin film deposition apparatus
US8916237B2 (en) 2009-05-22 2014-12-23 Samsung Display Co., Ltd. Thin film deposition apparatus and method of depositing thin film
US8882920B2 (en) 2009-06-05 2014-11-11 Samsung Display Co., Ltd. Thin film deposition apparatus
US20100307409A1 (en) * 2009-06-05 2010-12-09 Samsung Mobile Display Co., Ltd. Thin film deposition apparatus
US20100310768A1 (en) * 2009-06-08 2010-12-09 Samsung Mobile Display Co., Ltd. Thin film deposition apparatus
US8882921B2 (en) 2009-06-08 2014-11-11 Samsung Display Co., Ltd. Thin film deposition apparatus
US8790750B2 (en) 2009-06-24 2014-07-29 Samsung Display Co., Ltd. Thin film deposition apparatus
US20100330265A1 (en) * 2009-06-24 2010-12-30 Samsung Mobile Display Co., Ltd. Thin film deposition apparatus
US8968829B2 (en) 2009-08-25 2015-03-03 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US9450140B2 (en) 2009-08-27 2016-09-20 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display apparatus using the same
US9624580B2 (en) 2009-09-01 2017-04-18 Samsung Display Co., Ltd. Thin film deposition apparatus
US8876975B2 (en) * 2009-10-19 2014-11-04 Samsung Display Co., Ltd. Thin film deposition apparatus
US20110088622A1 (en) * 2009-10-19 2011-04-21 Samsung Mobile Display Co., Ltd. Thin film deposition apparatus
US9224591B2 (en) 2009-10-19 2015-12-29 Samsung Display Co., Ltd. Method of depositing a thin film
US8951349B2 (en) 2009-11-20 2015-02-10 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US20110123707A1 (en) * 2009-11-20 2011-05-26 Samsung Mobile Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US9660191B2 (en) 2009-11-20 2017-05-23 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US20110165320A1 (en) * 2010-01-06 2011-07-07 Samsung Mobile Display Co., Ltd. Deposition source, thin film deposition apparatus and method of manufacturing organic light-emitting display apparatus
US10287671B2 (en) 2010-01-11 2019-05-14 Samsung Display Co., Ltd. Thin film deposition apparatus
US10246769B2 (en) 2010-01-11 2019-04-02 Samsung Display Co., Ltd. Thin film deposition apparatus
US8859325B2 (en) 2010-01-14 2014-10-14 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US20110186820A1 (en) * 2010-02-01 2011-08-04 Samsung Mobile Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US8882556B2 (en) 2010-02-01 2014-11-11 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US8973525B2 (en) 2010-03-11 2015-03-10 Samsung Display Co., Ltd. Thin film deposition apparatus
US9453282B2 (en) 2010-03-11 2016-09-27 Samsung Display Co., Ltd. Thin film deposition apparatus
US8865252B2 (en) 2010-04-06 2014-10-21 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US9136310B2 (en) 2010-04-28 2015-09-15 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US8894458B2 (en) 2010-04-28 2014-11-25 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US9279177B2 (en) 2010-07-07 2016-03-08 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US8833294B2 (en) 2010-07-30 2014-09-16 Samsung Display Co., Ltd. Thin film deposition apparatus including patterning slit sheet and method of manufacturing organic light-emitting display device with the same
US9018647B2 (en) 2010-09-16 2015-04-28 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US9388488B2 (en) 2010-10-22 2016-07-12 Samsung Display Co., Ltd. Organic film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US8871542B2 (en) 2010-10-22 2014-10-28 Samsung Display Co., Ltd. Method of manufacturing organic light emitting display apparatus, and organic light emitting display apparatus manufactured by using the method
US8882922B2 (en) 2010-11-01 2014-11-11 Samsung Display Co., Ltd. Organic layer deposition apparatus
US8852687B2 (en) 2010-12-13 2014-10-07 Samsung Display Co., Ltd. Organic layer deposition apparatus
US9748483B2 (en) 2011-01-12 2017-08-29 Samsung Display Co., Ltd. Deposition source and organic layer deposition apparatus including the same
US20120288619A1 (en) * 2011-05-11 2012-11-15 Choi Young-Mook Electrostatic chuck, thin film deposition apparatus including the electrostatic chuck, and method of manufacturing organic light emitting display apparatus by using the thin film deposition apparatus
US9234270B2 (en) * 2011-05-11 2016-01-12 Samsung Display Co., Ltd. Electrostatic chuck, thin film deposition apparatus including the electrostatic chuck, and method of manufacturing organic light emitting display apparatus by using the thin film deposition apparatus
US8859043B2 (en) 2011-05-25 2014-10-14 Samsung Display Co., Ltd. Organic layer deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US20120299016A1 (en) * 2011-05-25 2012-11-29 Myong-Hwan Choi Organic layer deposition apparatus and method of manufacturing organic light emitting display device using the organic layer deposition apparatus
US9249493B2 (en) 2011-05-25 2016-02-02 Samsung Display Co., Ltd. Organic layer deposition apparatus and method of manufacturing organic light-emitting display apparatus by using the same
US8906731B2 (en) 2011-05-27 2014-12-09 Samsung Display Co., Ltd. Patterning slit sheet assembly, organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus, and the organic light-emitting display apparatus
US9512515B2 (en) 2011-07-04 2016-12-06 Samsung Display Co., Ltd. Organic layer deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US8951610B2 (en) 2011-07-04 2015-02-10 Samsung Display Co., Ltd. Organic layer deposition apparatus
TWI570978B (en) * 2011-07-04 2017-02-11 Samsung Display Co Ltd Organic layer deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US9777364B2 (en) 2011-07-04 2017-10-03 Samsung Display Co., Ltd. Organic layer deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US9206501B2 (en) 2011-08-02 2015-12-08 Samsung Display Co., Ltd. Method of manufacturing organic light-emitting display apparatus by using an organic layer deposition apparatus having stacked deposition sources
TWI575090B (en) * 2011-12-16 2017-03-21 Samsung Display Co Ltd Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus using the same, and organic light-emitting display apparatus
US9496524B2 (en) 2012-07-10 2016-11-15 Samsung Display Co., Ltd. Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus using the same, and organic light-emitting display apparatus manufactured using the method
US9246135B2 (en) * 2012-07-10 2016-01-26 Samsung Display Co., Ltd. Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus using the same, and organic light-emitting display apparatus manufactured using the method
US9461277B2 (en) 2012-07-10 2016-10-04 Samsung Display Co., Ltd. Organic light emitting display apparatus
US8956697B2 (en) 2012-07-10 2015-02-17 Samsung Display Co., Ltd. Method of manufacturing organic light-emitting display apparatus and organic light-emitting display apparatus manufactured by using the method
US20140014921A1 (en) * 2012-07-16 2014-01-16 Samsung Display Co., Ltd. Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus by using the same, and organic light-emitting display apparatus manufactured by the method
US9466647B2 (en) 2012-07-16 2016-10-11 Samsung Display Co., Ltd. Flat panel display device and method of manufacturing the same
US20140037849A1 (en) * 2012-07-31 2014-02-06 Sung-Joong Joo Depositing apparatus and method for measuring deposition quantity using the same
CN103572215A (en) * 2012-07-31 2014-02-12 三星显示有限公司 Depositing apparatus and method for measuring deposition quantity using the same
US9724715B2 (en) * 2012-07-31 2017-08-08 Samsung Display Co., Ltd Depositing apparatus and method for measuring deposition quantity using the same
KR101938365B1 (en) 2012-07-31 2019-04-12 삼성디스플레이 주식회사 Depositing apparatus and method for measuring deposition quantity using the same
KR20140017337A (en) * 2012-07-31 2014-02-11 삼성디스플레이 주식회사 Depositing apparatus and method for measuring deposition quantity using the same
US9570714B2 (en) 2012-08-03 2017-02-14 Samsung Display Co., Ltd Organic layer deposition assembly, organic layer deposition apparatus, organic light-emitting display apparatus and method of manufacturing the same
US9012258B2 (en) 2012-09-24 2015-04-21 Samsung Display Co., Ltd. Method of manufacturing an organic light-emitting display apparatus using at least two deposition units
US9306191B2 (en) 2012-10-22 2016-04-05 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
US8969858B2 (en) 2012-11-08 2015-03-03 Samsung Display Co., Ltd. Organic light emitting display apparatus and method of manufacturing the same
US10137533B2 (en) 2012-12-27 2018-11-27 Samsung Display Co., Ltd. Multi-functional apparatus for testing and etching substrate and substrate processing apparatus including the same
US20140284559A1 (en) * 2013-03-20 2014-09-25 Samsung Display Co., Ltd. Method of manufacturing organic light-emitting display apparatus, deposition apparatus using the method, and organic light-emitting display apparatus manufactured by using the method
US20140291619A1 (en) * 2013-03-27 2014-10-02 Samsung Display Co., Ltd. Method for manufacturing organic light emitting display apparatus and organic light emitting display apparatus manufactured by the same
US20140315344A1 (en) * 2013-04-18 2014-10-23 Samsung Display Co., Ltd. Deposition apparatus, organic light emitting display apparatus, and method of manufacturing organic light emitting display apparatus using the deposition apparatus
US9455170B2 (en) * 2013-04-18 2016-09-27 Samsung Display Co., Ltd. Deposition apparatus, organic light emitting display apparatus, and method of manufacturing organic light emitting display apparatus using the deposition apparatus
US20140312316A1 (en) * 2013-04-18 2014-10-23 Samsung Display Co., Ltd. Deposition apparatus, method of manufacturing organic light-emitting display apparatus by using same, and organic light-emitting display apparatus manufactured by using deposition apparatus
US9534288B2 (en) * 2013-04-18 2017-01-03 Samsung Display Co., Ltd. Deposition apparatus, method of manufacturing organic light-emitting display apparatus by using same, and organic light-emitting display apparatus manufactured by using deposition apparatus
US20140329349A1 (en) * 2013-05-02 2014-11-06 Samsung Display Co., Ltd. Organic layer deposition apparatus, and method of manufacturing organic light-emitting display apparatus by using the same
US8945682B2 (en) 2013-05-16 2015-02-03 Samsung Display Co., Ltd. Deposition apparatus, method for manufacturing organic light emitting display apparatus, and organic light emitting display apparatus
US8936956B2 (en) 2013-05-27 2015-01-20 Samsung Display Co., Ltd. Substrate moving unit for deposition, deposition apparatus including the same, method of manufacturing organic light-emitting display apparatus by using the deposition apparatus, and organic light-emitting display apparatus manufactured by using the method
US9496317B2 (en) * 2013-12-23 2016-11-15 Samsung Display Co., Ltd. Method of manufacturing organic light emitting display apparatus
US20150179710A1 (en) * 2013-12-23 2015-06-25 Samsung Display Co., Ltd. Method of manufacturing organic light emitting display apparatus
US9478337B2 (en) * 2015-01-22 2016-10-25 Samsung Display Co., Ltd. Magnet plate
GB2567967A (en) * 2017-10-31 2019-05-01 Lg Display Co Ltd Ultra-fine pattern deposition apparatus, ultra-fine pattern deposition method using the same, and light-emitting display device manufactured by ultra-fine

Also Published As

Publication number Publication date
EP2290118A3 (en) 2011-06-29
JP2011049167A (en) 2011-03-10
US20130298829A1 (en) 2013-11-14
CN102005541A (en) 2011-04-06
EP2290118B1 (en) 2019-05-22
CN102005541B (en) 2013-08-14
US9450140B2 (en) 2016-09-20
JP5677785B2 (en) 2015-02-25
EP2290118A2 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
KR100991174B1 (en) Evaporation method, evaporation device and method of fabricating light emitting device
US7309269B2 (en) Method of fabricating light-emitting device and apparatus for manufacturing light-emitting device
KR100991445B1 (en) Method of manufacturing a light-emitting device
KR100956097B1 (en) Vapor deposition device
US20090170227A1 (en) Mask and container and manufacturing
JP4493926B2 (en) manufacturing device
US20030162314A1 (en) Fabrication system and a fabrication method of light emitting device
JP4545504B2 (en) Film forming method, a manufacturing method of a light-emitting device
CN1679375B (en) Fabrication system, light-emitting device and fabricating method of organic compound-containing layer
JP5322354B2 (en) manufacturing device
US9260778B2 (en) Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus using the same, and organic light-emitting display apparatus manufactured using the method
JP5993577B2 (en) The deposition source and the organic film vapor deposition apparatus having the same
JP5190253B2 (en) The method for manufacturing a mixed layer, a method for manufacturing a light emitting device
US8747558B2 (en) Manufacturing apparatus
KR101193186B1 (en) Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR101084184B1 (en) Apparatus for thin layer deposition
CN102195007B (en) Thin film deposition apparatus
KR101223723B1 (en) Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
CN202786403U (en) Organic layer deposition equipment and organic light-emitting display device
CN102456852B (en) The organic layer deposition apparatus and use of apparatus for manufacturing the organic light emitting display method
CN100510158C (en) Deposition method and method for manufacturing display device
JP5328726B2 (en) Method of manufacturing a thin film deposition apparatus and the organic light emitting display device using the same
JP5677827B2 (en) Thin film deposition apparatus, an organic light emitting display device manufacturing method and an organic light-emitting display device manufactured by this using the same
US7928652B2 (en) Organic EL emitting layer having specific concentration profile
KR101097311B1 (en) Organic light emitting display apparatus and apparatus for thin layer deposition for manufacturing the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAMSUNG MOBILE DISPLAY CO., LTD., KOREA, REPUBLIC

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JO, CHANG-MOG;KIM, JONG-HEON;CHOI, YONG-SUP;AND OTHERS;REEL/FRAME:025208/0977

Effective date: 20101012

AS Assignment

Owner name: SAMSUNG DISPLAY CO., LTD., KOREA, REPUBLIC OF

Free format text: MERGER;ASSIGNOR:SAMSUNG MOBILE DISPLAY CO., LTD.;REEL/FRAME:028816/0306

Effective date: 20120702

STCF Information on status: patent grant

Free format text: PATENTED CASE