JP3734239B2 - Organic film vacuum deposition mask regeneration method and apparatus - Google Patents

Organic film vacuum deposition mask regeneration method and apparatus Download PDF

Info

Publication number
JP3734239B2
JP3734239B2 JP09580999A JP9580999A JP3734239B2 JP 3734239 B2 JP3734239 B2 JP 3734239B2 JP 09580999 A JP09580999 A JP 09580999A JP 9580999 A JP9580999 A JP 9580999A JP 3734239 B2 JP3734239 B2 JP 3734239B2
Authority
JP
Japan
Prior art keywords
mask
organic film
temperature
organic
attached
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09580999A
Other languages
Japanese (ja)
Other versions
JP2000282219A (en
Inventor
英夫 高倉
和正 高津
和則 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP09580999A priority Critical patent/JP3734239B2/en
Publication of JP2000282219A publication Critical patent/JP2000282219A/en
Application granted granted Critical
Publication of JP3734239B2 publication Critical patent/JP3734239B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機膜真空蒸着用マスク再生方法及び装置に関し、例えば有機ELディスプレイなどマスク成膜が必要な有機膜の成膜に用いたマスクに付着した有機膜を除去するマスクの再生方法及び装置に関するものである。
【0002】
【従来の技術】
有機ELのディスプレイなどの製作には、有機膜真空蒸着法によりマスクを用いたマスク成膜技術によるパターニングが行われている。前記マスクに有機膜が堆積してくると前記マスクの開口が目詰まりをおこしたり、堆積した有機膜の影響でパターンずれが発生し素子の不良の原因となる。これを、防止するために一般的には、真空槽を大気に開放し、前記マスクを取り出し堆積した有機膜の除去を行うか、新しいマスクに交換することが行われている。有機膜の除去を行う方法は、大気に取り出し、有機溶剤で有機膜を溶かす方法や、ブラスト処理のような方法により有機膜を削り取るのが一般的なマスクの再生方法である。
【0003】
また、従来の真空処理装置における真空中での堆積膜の除去方法は、例えば特開平8−319586号公報にあるように、図5に示すプラズマ用電極12と対向アース電極13を有する真空槽5に、エッチングガス14を流しプラズマを発生させ、膜(残留生成物)をエッチングする方法が行われている。
【0004】
この方法は、一般的には、真空槽内にプラズマ発生用の電極を持った、プラズマCVD装置、エッチング装置の膜除去、及び副成生物の除去に用いられ、成膜材料を真空槽内に持つ、スパッタリング装置には用いられない。これは、カソードにボンディングされたターゲット材料がエッチングされてしまうからである。
【0005】
【発明が解決しようとする課題】
前記のように、有機ELディスプレイなどのマスク成膜において、マスクに付着した膜を除去せずに成膜を続けると、パターンずれ不良や前記マスクの目詰まりによるパターン不良が発生する。そこで、マスクのクリーニングまたは交換が必要になる。パターンの高精細化が進めば、マスクの目詰まりは、顕著になる。
【0006】
また、有機材料は吸湿性があり、材料の脱ガスや脱水を充分に行わないと有機EL素子などは、寿命が著しく低下することが知られている。
マスクに付着した有機膜を除去するために、真空槽を一旦大気に開放すると、真空槽及び有機材料の水分除去など、成膜できる状態に復帰させるまでに非常に時間がかかり、生産効率が低下してしまう。
【0007】
また、前記マスクを交換した場合、前記マスクの位置合わせをその都度行う必要がある。この作業は、数十μmから数μmの精度で位置合わせする必要があり、作業が煩雑であり、位置調整機構や位置合わせの確認できるモニター機構を取り付けておく必要がある。
【0008】
また、特開平8−319586号公報にあるようなプラズマを発生させ、真空中で膜を除去する方法は、以下の理由で有機膜の真空蒸着には不向きである。
1.膜のエッチングのためだけにプラズマを発生させるための電極、電源が必要となる。
2.プラズマエッチングは、エッチングガスを使用するため排ガス処理装置やガス供給装置などの設備が必要になる。ガス処理設備は、既設の設備を使用できれば、問題ないが、新規に設備しようとすれば、多額の費用が必要である。
3.エッチング電極、電源を有機膜蒸着装置内部に付加させようとすると、電極シールドや、高周波用フィードスルーなど、内部の構造が非常に複雑になる。
4.プラズマによるエッチングの問題点として、プラズマによって発生された反応ガスのラジカルによって蒸発源ルツボ内の有機材料まで除去されてしまうことがある。有機膜蒸着方法においては、前記マスクに付着した有機膜のみを除去する必要がある。
【0009】
本発明は、この様な従来技術の欠点を改善するためになされたものであり、有機膜真空蒸着法において真空槽内の前記マスクに付着した有機膜を、真空槽を大気圧に開放すること無しに、プラズマによるエッチングを使用せずに容易に除去することができる有機膜真空蒸着用マスク再生方法及び装置を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
即ち、本発明の第一の発明は、マスクを用いた有機膜真空蒸着により前記マスクに付着した有機膜を除去するマスクの再生方法において、前記マスクに付着した有機膜を加熱処理により真空を破らずに除去する事を特徴とする有機膜真空蒸着用マスク再生方法である。
【0011】
前記加熱処理は、マスクを有機膜の有機材料の蒸発温度又は昇華温度以上に昇温し付着した有機膜を除去する事を特徴とする。
前記加熱処理は、輻射加熱または伝導加熱できるヒーターを使用して、有機膜の有機材料の蒸発温度又は昇華温度以上にマスクを昇温し付着した有機膜を除去するのが好ましい。
前記加熱処理は、前記マスクに直接電流を流してジュール熱で有機膜の有機材料の蒸発温度又は昇華温度以上に前記マスクを昇温し付着した有機膜を除去するのが好ましい。
前記加熱処理は、誘導加熱により有機膜の有機材料の蒸発温度又は昇華温度以上に前記マスクを昇温し付着した有機膜を除去するのが好ましい。
【0012】
本発明の第二の発明は、蒸発源、マスク、真空槽および排気装置にて構成される有機膜真空蒸着装置において、有機膜真空蒸着によりマスクに付着した有機膜を加熱処理により真空を破らずに除去するマスク再生手段を具備することを特徴とする有機膜真空蒸着装置である。
【0013】
前記マスク再生手段が、マスクを輻射加熱または伝導加熱できるヒーター、該ヒーターの温度を制御できる電源で構成され、前記マスクに付着した有機膜の有機材料の蒸発温度又は昇華温度以上にマスクをヒーターにより昇温して付着した有機膜を除去する加熱手段からなるのが好ましい。
【0014】
前記マスク再生手段が、マスクに電流を流すことができる配線、フィードスルー及び前記マスクの温度を制御できる電源で構成され、前記マスクに付着した有機膜の有機材料の蒸発温度又は昇華温度以上にマスクを電流のジュール熱により昇温して付着した有機膜を除去する加熱手段からなるのが好ましい。
【0015】
前記マスク再生手段が、誘導加熱するための誘導コイルおよび誘導加熱用高周波電源で構成され、前記マスクに付着した有機膜の有機材料の蒸発温度又は昇華温度以上にマスクを電磁誘導により昇温して付着した有機膜を除去する加熱手段からなるのが好ましい。
【0016】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明の有機膜真空蒸着用マスク再生方法は、マスクを用いた有機膜真空蒸着方法において、前記マスクに付着した有機膜を、加熱処理により真空を破らずに除去する事を特徴とする。
【0017】
また、本発明の有機膜真空蒸着装置は、蒸発源、マスク、真空槽、排気装置にて構成される有機膜真空蒸着装置において、▲1▼前記マスクを輻射加熱、または、伝導加熱できるヒーター、及び、前記ヒーターの温度を制御できる電源で構成され、前記マスクに付着した有機材料の蒸発温度又は昇華温度以上に前記マスクを輻射加熱または伝導加熱できるヒーターにより昇温させることができる事、あるいは▲2▼前記マスクに電流を流すことができる配線、フィードスルー、及び、前記マスクの温度を制御できる電源で構成され、前記マスクに付着した有機材料の蒸発温度又は、昇華温度以上に前記マスクに、電流を流しジュール熱により、前記マスクを昇温させることができる事、または▲3▼誘導加熱するための誘導コイルおよび誘導加熱用高周波電源で構成され、前記マスクを電磁誘導により、材料の蒸発温度又は、昇華温度以上に昇温させることができる事を特徴とする。
【0018】
従来の問題点は、上記のように膜の除去を行うために大気開放すると真空槽、及び有機材料の水分除去など、成膜できる状態に復帰させるまでに非常に時間がかかることであり、前記マスクの位置合わせに、複雑な位置合わせ機構及びモニター機構が必要なことである。
【0019】
また、従来のような、真空中での膜除去には、エッチングガスと、プラズマ電源、電極、排ガス処理設備など多額な投資が必要なこと、プラズマによって発生された反応ガスのラジカルによって蒸発源ルツボ内の有機材料まで除去されてしまう問題がある。
【0020】
本発明では、上記の方法により、真空槽内の前記マスクに付着した膜を、大気圧に開放すること無しに、プラズマによるエッチングを使用せずに、有機膜を除去することができた。
【0021】
有機膜は、真空中で比較的低い(約300℃以下)温度で蒸発又は昇華することから、前記マスクに付着した材料の蒸発温度又は昇華温度より前記マスクを高温に加熱することで膜を除去することができる。この加熱機構により、前記マスクに付着した有機膜は、蒸発し、蒸発した材料は、防着板などの温度の低い部分に再付着する。
【0022】
また、この方法によれば、蒸発源ルツボの直上に輻射熱防止用のシャッターがあれば蒸発源ルツボ内の有機材料が、昇温され蒸発してしまうことは無い。
メンテナンス時の前記マスク交換がないため、前記マスク位置合わせは最初にセットするときに行えば良く、有機膜の除去後のパターニングの再現性が良好であることが確認することができた。
【0023】
前記マスク加熱方法として、次の3つの手段が挙げられる。
1.輻射加熱または伝導加熱できるヒーターにより前記マスクを加熱する。
2.前記マスクに直接電流を流し、ジュール熱で加熱する。
3.誘導加熱コイルと、高周波電源により電磁誘導により前記マスクを加熱する。
【0024】
本発明において用いられる有機膜としては、例えばトリアリールアミン系化合物、フタロシアニン系化合物、キノリン系化合物の金属錯体、スチルベン系化合物、オキサジアゾール系化合物、縮合芳香族環、ヘテロ環系化合物等の膜が挙げられるが、もちろんこれらに限定されるものではない。
【0025】
【実施例】
以下に実施例を挙げて本発明を具体的に説明する。
【0026】
実施例1
図1は本発明の有機膜真空蒸着用マスク再生方法の一実施態様を示す概略図である。同図1は、ヒーターを用いてマスクに付着した膜を除去する方法を示した図である。1は基板及び基板ホルダー、2は基板に有機材料をパターニング蒸着するためのマスク、3は成膜時間を管理するためのシャッター、4は成膜材料を蒸発させるための蒸発源、5は蒸着可能な圧力を維持するための真空槽、6は不要な部分に着膜することを防ぐ防着板、7はヒーター用の温度制御可能な電源、8はマスクに着膜した材料を除去するための加熱ヒーター(今回はシースヒーターを使用した)を示す。
【0027】
実験方法及び結果を以下に示す。
真空槽5内圧力をl×10-4Pa以下に排気した後、蒸発源4(クヌーセンセル)を約250℃にコントロールする。水晶式膜厚モニターにより蒸着速度が安定すること(約0.2nm/s)を確認し、シャッター3を開き成膜を開始する。水晶式膜厚モニターで0.3μmの膜厚が着膜したことを確認しシャッター3を閉める。この膜厚の成膜を10回行い、成膜されたパターンの測定を行った。
【0028】
マスクに、付着した総膜厚は約3μmである。テスト用マスクパターンを図2に示す。穴は50μm角、穴間隔は30μmのパターニングがされている。
1回目の成膜では、49μm〜50μmの誤差範囲で成膜ができたのに対し、10回成膜後は、46μm〜49μmの誤差になった。
【0029】
ここで、真空中でマスクを300℃に加熱し、10分保持し、膜の除去を行い、常温になるのを待ち再度成膜を行った。パターンを測定した結果は、49μm〜50μmの誤差範囲に収まった。
この結果より、マスクに付着した膜は、マスクを加熱することにより除去されたと判断できる。
【0030】
実施例2
図3は本発明の有機膜真空蒸着用マスク再生方法の他の実施態様を示す概略図である。同図3は、マスクに直接電流を流し、ジュール熱でマスクを加熱し、マスクに付着した膜を除去する方法を示した図である。1は基板及び基板ホルダー、2は基板に有機材料をパターニング蒸着するためのマスク、3は成膜時間を管理するためのシャッター、4は成膜材料を蒸発させるための蒸発源、5は蒸着可能な圧力を維持するための真空槽、6は不要な部分に着膜することを防ぐ防着板、7はマスク加熱のためのスライダック電源を示す。9は電流を真空槽内に導入するためのフィードスルーを示す。10は真空槽内配線を示す。
【0031】
実施例1と同様の実験を行った。その実験方法及び結果を以下に示す。
真空槽内圧力をl×10-4Pa以下に排気した後、蒸発源(クヌーセンセル)を約250℃にコントロールする。水晶式膜厚モニターにより蒸着速度が安定すること(約0.2nm/s)を確認し、シャッターを開き成膜を開始する。水晶式膜厚モニターで0.3μmの膜厚が着膜したことを確認しシャッターを閉める。この膜厚の成膜を10回行い、成膜されたパターンの測定を行った。
【0032】
テスト用マスクパターンは実施例1と同じ物を使用した。
1回目の成膜では、49μm〜50μmの誤差範囲で成膜ができたのに対し、10回成膜後は、46μm〜49μmの誤差になった。ここで、真空中でマスクを300℃になるようにスライダック電源の電圧を設定し加熱、10分保持し、膜の除去を行い、常温になるのを待ち再度成膜を行った。パターンを測定した結果は、実施例1と同様に49μm〜50μmの誤差範囲に収まった。
この結果より、マスクに付着した膜は、マスクを加熱することにより除去されたと判断できる。
【0033】
実施例3
図4は本発明の有機膜真空蒸着用マスク再生方法の他の実施態様を示す概略図である。同図4は、マスク加熱方法として、誘導加熱を用いてマスクに付着した膜を除去する方法を示した図である。7は誘導加熱用高周波電源を示し、今回は10kHzの周波数の電源を使用した。9は真空槽内に高周波を導入するためのフィードスルー、10は真空槽内配線、11はマスクを誘導加熱するための誘導加熱コイルを示す。誘導コイルは、放電防止のための絶縁処理(セラミックコ―ティング)がなされている。
【0034】
実施例1と同様の実験を行った。その実験方法及び結果を以下に示す。
真空槽内圧力をl×10-4Pa以下に排気した後、蒸発源を(クヌーセンセル)を約250℃にコントロールする。水晶式膜厚モニターにより蒸着速度が安定すること(約0.2nm/s)を確認し、シャッターを開き成膜を開始する。水晶式膜厚モニターで0.3μmの膜厚が着膜したことを確認しシャッターを閉める。この膜厚の成膜を10回行い、成膜されたパターンの測定を行った。
【0035】
テスト用マスクパターンは実施例1と同じ物を使用した。
1回目の成膜では、49μm〜50μmの誤差範囲で成膜ができたのに対し、10回成膜後は、46μm〜49μmの誤差になった。ここで、真空中でマスクを300℃になるように高周波電源の出力を設定し加熱、10分保持し、膜の除去を行い、常温になるのを待ち再度成膜を行った。パターンを測定した結果は、実施例1及び2と同様に49μm〜50μmの誤差範囲に収まった。
この結果より、マスクに付着した膜は、マスクを加熱することにより除去されたと判断できる。
【0036】
【発明の効果】
以上説明した様に、本発明によれば以下に示す効果が得られる。
1)成膜後、容易に有機膜を除去でき、毎回クリーニング可能になるため、実施例に示したように再現性の良いパターニング精度が得られる。
2)真空槽を大気開放するサイクルが延びる。材料の投入サイクルで真空槽を大気開放すれば良く、少なくともクリーニング機構がないときに比べ2〜3倍以上(材料の投入量や膜厚によって異なる)に延びる。
【0037】
真空槽を、一度大気に開放した後、成膜できる状態(真空の圧力、水の分圧など)に戻すまで、真空排気で1時間、ベーキング3時間、ベーキング後の真空排気に5時間、合計9時間を要している。この時間を必要とする回数が減少するため生産効率が向上する。
【0038】
3)マスクをメンテナンス時に取り外さないため、マスクの位置調整は、最初にセットする時のみであリマスクの位置調整機構が必要なくなる。マスク位置調整機構は、方法、形状により価格は異なるが大幅のコストダウンとなる。
4)マスク交換時の、マスク位置調整に要する時間は、1回あたり約4時間必要であるが、この時間が不要となる。
5)マスクに付着した有機膜のみ除去できる。プラズマエッチングのように、蒸発源ルツボに内の材料まで除去してしまうことがない。
【図面の簡単な説明】
【図1】本発明の有機膜真空蒸着用マスク再生方法の一実施態様を示す概略図である。
【図2】本発明の実施例1に使用したテストマスクを示す説明図である。
【図3】本発明の有機膜真空蒸着用マスク再生方法の他の実施態様を示す概略図である。
【図4】本発明の有機膜真空蒸着用マスク再生方法の他の実施態様を示す概略図である。
【図5】従来の真空処理装置を示す説明図である。
【符号の説明】
1 基板および基板ホルダー
2 マスク
3 シャッター
4 蒸発源
5 真空槽
6 防着板
7 電源
8 加熱ヒーター
9 フィードスルー
10 真空内配線
11 誘導加熱コイル
12 プラズマ用電極
13 対向アース電極
14 排気装置
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method and apparatus for regenerating a mask for vacuum deposition of an organic film, and a method and apparatus for regenerating a mask for removing an organic film attached to a mask used for forming an organic film such as an organic EL display that needs to be formed. It is about.
[0002]
[Prior art]
In the manufacture of an organic EL display or the like, patterning is performed by a mask film forming technique using a mask by an organic film vacuum deposition method. When an organic film is deposited on the mask, the opening of the mask is clogged, or a pattern shift occurs due to the effect of the deposited organic film, resulting in a defective element. In order to prevent this, generally, the vacuum chamber is opened to the atmosphere, and the mask is taken out and the deposited organic film is removed or replaced with a new mask. As a method for removing the organic film, a general mask regeneration method is a method of removing the organic film by taking it out into the atmosphere and dissolving the organic film with an organic solvent or a method such as blasting.
[0003]
Further, as a method for removing a deposited film in a vacuum in a conventional vacuum processing apparatus, for example, as disclosed in Japanese Patent Application Laid-Open No. 8-319586, a vacuum chamber 5 having a plasma electrode 12 and a counter earth electrode 13 shown in FIG. In addition, a method of etching a film (residual product) by flowing an etching gas 14 to generate plasma is performed.
[0004]
This method is generally used for removing a film of a plasma CVD apparatus, an etching apparatus, and a byproduct having an electrode for generating a plasma in a vacuum chamber, and depositing a film forming material in the vacuum chamber. It is not used for a sputtering apparatus. This is because the target material bonded to the cathode is etched.
[0005]
[Problems to be solved by the invention]
As described above, if the film formation is continued without removing the film attached to the mask in the mask film formation of an organic EL display or the like, pattern misalignment or pattern defect due to clogging of the mask occurs. Therefore, it is necessary to clean or replace the mask. As the pattern becomes more precise, the clogging of the mask becomes more prominent.
[0006]
In addition, organic materials are hygroscopic, and it is known that the lifetime of organic EL elements and the like is significantly reduced unless the materials are sufficiently degassed and dehydrated.
Once the vacuum chamber is opened to the atmosphere in order to remove the organic film adhering to the mask, it takes a very long time to return to a state where the film can be formed, such as removing moisture from the vacuum chamber and organic materials. Resulting in.
[0007]
Further, when the mask is replaced, it is necessary to align the mask each time. This operation needs to be aligned with an accuracy of several tens of μm to several μm, and the operation is complicated, and it is necessary to attach a position adjusting mechanism and a monitor mechanism capable of confirming the alignment.
[0008]
Further, the method of generating plasma and removing the film in a vacuum as disclosed in JP-A-8-319586 is not suitable for vacuum deposition of an organic film for the following reason.
1. An electrode and a power source for generating plasma are required only for etching the film.
2. Since plasma etching uses an etching gas, facilities such as an exhaust gas treatment device and a gas supply device are required. There is no problem as long as existing gas processing facilities can be used, but if new facilities are to be installed, a large amount of cost is required.
3. If an etching electrode and a power source are added to the inside of the organic film deposition apparatus, the internal structure such as an electrode shield and a high-frequency feedthrough becomes very complicated.
4). A problem of etching by plasma is that even an organic material in the evaporation source crucible is removed by radicals of a reaction gas generated by plasma. In the organic film deposition method, it is necessary to remove only the organic film attached to the mask.
[0009]
The present invention has been made in order to improve such a drawback of the prior art. In the organic film vacuum deposition method, the organic film adhered to the mask in the vacuum chamber is opened to the atmospheric pressure. It is another object of the present invention to provide a method and apparatus for regenerating a mask for vacuum deposition of an organic film that can be easily removed without using plasma etching.
[0010]
[Means for Solving the Problems]
That is, according to a first aspect of the present invention, in a method for regenerating a mask in which an organic film attached to the mask is removed by organic film vacuum deposition using a mask, the vacuum is broken by heating the organic film attached to the mask. This is a method for regenerating a mask for vacuum deposition of an organic film, which is characterized in that it is removed without removal.
[0011]
The heat treatment is characterized by removing the attached organic film by raising the temperature of the mask above the evaporation temperature or sublimation temperature of the organic material of the organic film.
The heat treatment is preferably performed by using a heater capable of radiant heating or conduction heating to raise the mask to a temperature equal to or higher than the evaporation temperature or sublimation temperature of the organic material of the organic film to remove the attached organic film.
In the heat treatment, it is preferable that an electric current is directly applied to the mask, and the attached organic film is removed by heating the mask to a temperature equal to or higher than the evaporation temperature or sublimation temperature of the organic material of the organic film by Joule heat.
In the heat treatment, the attached organic film is preferably removed by heating the mask above the evaporation temperature or sublimation temperature of the organic material of the organic film by induction heating.
[0012]
The second invention of the present invention is an organic film vacuum deposition apparatus composed of an evaporation source, a mask, a vacuum tank and an exhaust device, wherein the organic film attached to the mask by the organic film vacuum deposition is not broken by heat treatment. An organic film vacuum vapor deposition apparatus comprising a mask regeneration means for removing the film.
[0013]
The mask regeneration means is composed of a heater capable of radiantly or conductively heating the mask, and a power source capable of controlling the temperature of the heater, and the mask is heated by the heater above the evaporation temperature or sublimation temperature of the organic material of the organic film attached to the mask. It is preferable to comprise a heating means for removing the attached organic film by raising the temperature.
[0014]
The mask regeneration means is composed of wiring capable of flowing current to the mask, feedthrough, and a power source capable of controlling the temperature of the mask, and the mask is higher than the evaporation temperature or sublimation temperature of the organic material of the organic film attached to the mask. It is preferable to comprise a heating means for removing the attached organic film by raising the temperature by Joule heat of current.
[0015]
The mask regeneration means comprises an induction coil for induction heating and a high frequency power source for induction heating, and the mask is heated by electromagnetic induction above the evaporation temperature or sublimation temperature of the organic material of the organic film attached to the mask. It preferably comprises a heating means for removing the attached organic film.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The organic film vacuum deposition mask regeneration method of the present invention is characterized in that in the organic film vacuum deposition method using a mask, the organic film adhered to the mask is removed by heat treatment without breaking the vacuum.
[0017]
The organic film vacuum vapor deposition apparatus of the present invention is an organic film vacuum vapor deposition apparatus comprising an evaporation source, a mask, a vacuum tank, and an exhaust device. (1) A heater capable of radiant heating or conductive heating of the mask, And a power source capable of controlling the temperature of the heater, and the mask can be heated by a heater capable of radiant heating or conduction heating above the evaporation temperature or sublimation temperature of the organic material attached to the mask, or ▲ 2 ▼ Consists of wiring that allows current to flow through the mask, feedthrough, and a power source that can control the temperature of the mask, and the evaporation temperature of the organic material attached to the mask or the sublimation temperature above the mask, The mask can be heated by Joule heat by passing an electric current, or (3) induction coil and induction for induction heating Comprises a thermally high-frequency power source, by electromagnetic induction the mask, the evaporation temperature of the material or, characterized in that it is possible to raise the temperature above the sublimation temperature.
[0018]
The conventional problem is that when the atmosphere is opened to remove the film as described above, it takes a very long time to return to a state where the film can be formed, such as a vacuum chamber and moisture removal of the organic material. In order to align the mask, a complicated alignment mechanism and a monitor mechanism are required.
[0019]
Moreover, the conventional film removal in vacuum requires a large investment such as etching gas, plasma power source, electrode, exhaust gas treatment equipment, etc., and the evaporation source crucible by radicals of the reaction gas generated by plasma. There is a problem that even organic materials inside are removed.
[0020]
In the present invention, the organic film can be removed by the above method without using plasma etching without opening the film attached to the mask in the vacuum chamber to atmospheric pressure.
[0021]
Since the organic film evaporates or sublimates at a relatively low temperature (about 300 ° C. or less) in vacuum, the film is removed by heating the mask to a temperature higher than the evaporation temperature or sublimation temperature of the material attached to the mask. can do. By this heating mechanism, the organic film adhering to the mask evaporates, and the evaporated material is reattached to a low temperature part such as a deposition preventing plate.
[0022]
Further, according to this method, if there is a shutter for preventing radiant heat directly above the evaporation source crucible, the organic material in the evaporation source crucible is not heated and evaporated.
Since the mask is not replaced during maintenance, the mask alignment may be performed at the time of initial setting, and it was confirmed that the reproducibility of patterning after the removal of the organic film is good.
[0023]
The mask heating method includes the following three means.
1. The mask is heated by a heater capable of radiant heating or conduction heating.
2. An electric current is directly applied to the mask and heated by Joule heat.
3. The mask is heated by electromagnetic induction using an induction heating coil and a high frequency power source.
[0024]
Examples of the organic film used in the present invention include films of triarylamine compounds, phthalocyanine compounds, quinoline compound metal complexes, stilbene compounds, oxadiazole compounds, condensed aromatic rings, heterocyclic compounds, and the like. Of course, it is not limited to these.
[0025]
【Example】
The present invention will be specifically described below with reference to examples.
[0026]
Example 1
FIG. 1 is a schematic view showing an embodiment of a method for regenerating a mask for vacuum deposition of an organic film according to the present invention. FIG. 1 is a view showing a method of removing a film attached to a mask using a heater. DESCRIPTION OF SYMBOLS 1 is a board | substrate and a substrate holder, 2 is a mask for patterning vapor deposition of an organic material to a board | substrate, 3 is a shutter for managing film-forming time, 4 is an evaporation source for evaporating film-forming material, 5 is vapor deposition possible A vacuum chamber for maintaining a sufficient pressure, 6 is a deposition preventing plate for preventing deposition on unnecessary portions, 7 is a temperature controllable power source for the heater, and 8 is for removing material deposited on the mask. A heater (this time using a sheath heater) is shown.
[0027]
Experimental methods and results are shown below.
After evacuating the pressure in the vacuum chamber 5 to 1 × 10 −4 Pa or less, the evaporation source 4 (Knusen cell) is controlled to about 250 ° C. After confirming that the deposition rate is stable (about 0.2 nm / s) by a quartz film thickness monitor, the shutter 3 is opened and film formation is started. After confirming that a film thickness of 0.3 μm has been deposited on a quartz film thickness monitor, the shutter 3 is closed. This film thickness was formed 10 times, and the pattern formed was measured.
[0028]
The total film thickness attached to the mask is about 3 μm. A test mask pattern is shown in FIG. The holes are patterned to be 50 μm square and the hole interval is 30 μm.
In the first film formation, the film could be formed in an error range of 49 μm to 50 μm, but after the 10th film formation, the error was 46 μm to 49 μm.
[0029]
Here, the mask was heated to 300 ° C. in a vacuum, held for 10 minutes, the film was removed, and the film was formed again after waiting to reach room temperature. The result of measuring the pattern was within an error range of 49 μm to 50 μm.
From this result, it can be determined that the film attached to the mask has been removed by heating the mask.
[0030]
Example 2
FIG. 3 is a schematic view showing another embodiment of the organic film vacuum deposition mask regeneration method of the present invention. FIG. 3 is a diagram showing a method of removing a film attached to the mask by flowing a current directly through the mask, heating the mask with Joule heat. DESCRIPTION OF SYMBOLS 1 is a board | substrate and a substrate holder, 2 is a mask for patterning vapor deposition of an organic material to a board | substrate, 3 is a shutter for managing film-forming time, 4 is an evaporation source for evaporating film-forming material, 5 is vapor deposition possible A vacuum chamber for maintaining a sufficient pressure, 6 is a deposition preventing plate for preventing unnecessary film deposition, and 7 is a slidac power source for heating the mask. Reference numeral 9 denotes a feedthrough for introducing an electric current into the vacuum chamber. Reference numeral 10 denotes a vacuum chamber wiring.
[0031]
The same experiment as in Example 1 was performed. The experimental method and results are shown below.
After evacuating the pressure in the vacuum chamber to 1 × 10 −4 Pa or less, the evaporation source (Knusen cell) is controlled to about 250 ° C. After confirming that the deposition rate is stable (about 0.2 nm / s) by a quartz film thickness monitor, the shutter is opened and film formation is started. After confirming that the film thickness of 0.3μm is deposited on the quartz film thickness monitor, close the shutter. This film thickness was formed 10 times, and the pattern formed was measured.
[0032]
The same test mask pattern as in Example 1 was used.
In the first film formation, the film could be formed in an error range of 49 μm to 50 μm, but after the 10th film formation, the error was 46 μm to 49 μm. Here, the voltage of the slidac power supply was set so that the mask would be 300 ° C. in a vacuum, heated and held for 10 minutes, the film was removed, and the film was formed again after waiting to reach room temperature. The result of measuring the pattern was within the error range of 49 μm to 50 μm, as in Example 1.
From this result, it can be determined that the film attached to the mask has been removed by heating the mask.
[0033]
Example 3
FIG. 4 is a schematic view showing another embodiment of the organic film vacuum deposition mask regeneration method of the present invention. FIG. 4 is a diagram showing a method of removing a film attached to the mask using induction heating as a mask heating method. Reference numeral 7 represents a high frequency power source for induction heating, and this time a power source having a frequency of 10 kHz was used. 9 is a feedthrough for introducing a high frequency into the vacuum chamber, 10 is a wiring in the vacuum chamber, and 11 is an induction heating coil for induction heating of the mask. The induction coil is subjected to insulation treatment (ceramic coating) for preventing discharge.
[0034]
The same experiment as in Example 1 was performed. The experimental method and results are shown below.
After evacuating the pressure in the vacuum chamber to 1 × 10 −4 Pa or less, the evaporation source (Knusen cell) is controlled at about 250 ° C. After confirming that the deposition rate is stable (about 0.2 nm / s) by a quartz film thickness monitor, the shutter is opened and film formation is started. After confirming that the film thickness of 0.3μm is deposited on the quartz film thickness monitor, close the shutter. This film thickness was formed 10 times, and the pattern formed was measured.
[0035]
The same test mask pattern as in Example 1 was used.
In the first film formation, the film could be formed in an error range of 49 μm to 50 μm, but after the 10th film formation, the error was 46 μm to 49 μm. Here, the output of the high-frequency power source was set so that the mask would be 300 ° C. in vacuum, heated and held for 10 minutes, the film was removed, and the film was formed again after waiting for the temperature to reach room temperature. The result of measuring the pattern was within the error range of 49 μm to 50 μm, as in Examples 1 and 2.
From this result, it can be determined that the film attached to the mask has been removed by heating the mask.
[0036]
【The invention's effect】
As described above, according to the present invention, the following effects can be obtained.
1) After the film formation, the organic film can be easily removed and can be cleaned every time, so that the patterning accuracy with good reproducibility can be obtained as shown in the embodiment.
2) The cycle for opening the vacuum chamber to the atmosphere is extended. What is necessary is just to open the vacuum chamber to the atmosphere in the material charging cycle.
[0037]
Once the vacuum chamber is opened to the atmosphere, it is 1 hour for evacuation, 3 hours for baking, and 5 hours for evacuation after baking until it returns to a state where it can be deposited (vacuum pressure, partial pressure of water, etc.) It takes 9 hours. Since the number of times that this time is required is reduced, the production efficiency is improved.
[0038]
3) Since the mask is not removed at the time of maintenance, the repositioning position adjustment mechanism is not necessary only when the mask is adjusted for the first time. The cost of the mask position adjusting mechanism varies greatly depending on the method and shape, but the cost is greatly reduced.
4) The time required to adjust the mask position when replacing the mask is about 4 hours per time, but this time becomes unnecessary.
5) Only the organic film attached to the mask can be removed. Unlike the plasma etching, the material inside the evaporation source crucible is not removed.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing one embodiment of a method for regenerating a mask for vacuum deposition of an organic film of the present invention.
FIG. 2 is an explanatory diagram showing a test mask used in Example 1 of the present invention.
FIG. 3 is a schematic view showing another embodiment of the method for regenerating a mask for vacuum deposition of an organic film of the present invention.
FIG. 4 is a schematic view showing another embodiment of the organic film vacuum deposition mask regeneration method of the present invention.
FIG. 5 is an explanatory view showing a conventional vacuum processing apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Board | substrate and board | substrate holder 2 Mask 3 Shutter 4 Evaporation source 5 Vacuum tank 6 Attachment plate 7 Power supply 8 Heating heater 9 Feedthrough 10 In-vacuum wiring 11 Induction heating coil 12 Plasma electrode 13 Opposite ground electrode 14 Exhaust device

Claims (9)

マスクを用いた有機膜真空蒸着により前記マスクに付着した有機膜を除去するマスクの再生方法において、前記マスクに付着した有機膜を加熱処理により真空を破らずに除去する事を特徴とする有機膜真空蒸着用マスク再生方法。A method of regenerating a mask that removes an organic film attached to the mask by vacuum vapor deposition using an organic mask, wherein the organic film attached to the mask is removed by heat treatment without breaking the vacuum. A method for regenerating a mask for vacuum deposition. 前記加熱処理が、マスクを有機膜の有機材料の蒸発温度又は昇華温度以上に昇温し付着した有機膜を除去する事を特徴とする請求項1に記載の有機膜真空蒸着用マスク再生方法。2. The method for regenerating a mask for vacuum deposition of an organic film according to claim 1, wherein the heat treatment is performed by elevating the mask to an evaporation temperature or a sublimation temperature of the organic material of the organic film to remove the attached organic film. 前記加熱処理が、輻射加熱または伝導加熱できるヒーターを使用して、有機膜の有機材料の蒸発温度又は昇華温度以上にマスクを昇温し付着した有機膜を除去する事を特徴とする請求項1または2に記載の有機膜真空蒸着用マスク再生方法。2. The heat treatment is performed by using a heater capable of radiant heating or conductive heating to raise the mask to a temperature equal to or higher than the evaporation temperature or sublimation temperature of the organic material of the organic film to remove the attached organic film. Or a method for regenerating a mask for vacuum deposition of an organic film according to 2; 前記加熱処理が、前記マスクに直接電流を流してジュール熱で有機膜の有機材料の蒸発温度又は昇華温度以上に前記マスクを昇温し付着した有機膜を除去する事を特徴とする請求項1または2に記載の有機膜真空蒸着用マスク再生方法。2. The heat treatment is characterized in that an electric current is directly applied to the mask and the mask is heated to a temperature equal to or higher than the evaporation temperature or sublimation temperature of the organic material of the organic film by Joule heat to remove the attached organic film. Or a method for regenerating a mask for vacuum deposition of an organic film according to 2; 前記加熱処理が、誘導加熱により有機膜の有機材料の蒸発温度又は昇華温度以上に前記マスクを昇温し付着した有機膜を除去する事を特徴とする請求項1または2に記載の有機膜真空蒸着用マスク再生方法。3. The organic film vacuum according to claim 1, wherein the heat treatment is performed by heating the mask to a temperature equal to or higher than an evaporation temperature or a sublimation temperature of an organic material of the organic film by induction heating to remove the attached organic film. Deposition mask regeneration method. 蒸発源、マスク、真空槽および排気装置にて構成される有機膜真空蒸着装置において、有機膜真空蒸着によりマスクに付着した有機膜を加熱処理により真空を破らずに除去するマスク再生手段を具備することを特徴とする有機膜真空蒸着装置。In an organic film vacuum deposition apparatus composed of an evaporation source, a mask, a vacuum chamber, and an exhaust device, a mask regeneration means for removing an organic film attached to the mask by organic film vacuum deposition without breaking the vacuum by heat treatment is provided. An organic film vacuum deposition apparatus characterized by that. 前記マスク再生手段が、マスクを輻射加熱または伝導加熱できるヒーター、該ヒーターの温度を制御できる電源で構成され、前記マスクに付着した有機膜の有機材料の蒸発温度又は昇華温度以上にマスクをヒーターにより昇温して付着した有機膜を除去する加熱手段からなる請求項6に記載の有機膜真空蒸着装置。The mask regeneration means is composed of a heater capable of radiantly or conductively heating the mask, and a power source capable of controlling the temperature of the heater, and the mask is heated by the heater above the evaporation temperature or sublimation temperature of the organic material of the organic film attached to the mask. The organic film vacuum deposition apparatus according to claim 6, comprising heating means for removing the attached organic film by raising the temperature. 前記マスク再生手段が、マスクに電流を流すことができる配線、フィードスルー及び前記マスクの温度を制御できる電源で構成され、前記マスクに付着した有機膜の有機材料の蒸発温度又は昇華温度以上にマスクを電流のジュール熱により昇温して付着した有機膜を除去する加熱手段からなる請求項6に記載の有機膜真空蒸着装置。The mask regeneration means is composed of wiring capable of flowing current to the mask, feedthrough, and a power source capable of controlling the temperature of the mask, and the mask is higher than the evaporation temperature or sublimation temperature of the organic material of the organic film attached to the mask. 7. The organic film vacuum deposition apparatus according to claim 6, comprising heating means for removing the attached organic film by raising the temperature by Joule heat of electric current. 前記マスク再生手段が、誘導加熱するための誘導コイルおよび誘導加熱用高周波電源で構成され、前記マスクに付着した有機膜の有機材料の蒸発温度又は昇華温度以上にマスクを電磁誘導により昇温して付着した有機膜を除去する加熱手段からなる請求項6に記載の有機膜真空蒸着装置。The mask regeneration means comprises an induction coil for induction heating and a high frequency power source for induction heating, and the mask is heated by electromagnetic induction above the evaporation temperature or sublimation temperature of the organic material of the organic film attached to the mask. The organic film vacuum deposition apparatus according to claim 6, comprising heating means for removing the adhered organic film.
JP09580999A 1999-04-02 1999-04-02 Organic film vacuum deposition mask regeneration method and apparatus Expired - Fee Related JP3734239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09580999A JP3734239B2 (en) 1999-04-02 1999-04-02 Organic film vacuum deposition mask regeneration method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09580999A JP3734239B2 (en) 1999-04-02 1999-04-02 Organic film vacuum deposition mask regeneration method and apparatus

Publications (2)

Publication Number Publication Date
JP2000282219A JP2000282219A (en) 2000-10-10
JP3734239B2 true JP3734239B2 (en) 2006-01-11

Family

ID=14147764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09580999A Expired - Fee Related JP3734239B2 (en) 1999-04-02 1999-04-02 Organic film vacuum deposition mask regeneration method and apparatus

Country Status (1)

Country Link
JP (1) JP3734239B2 (en)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030010288A1 (en) * 2001-02-08 2003-01-16 Shunpei Yamazaki Film formation apparatus and film formation method
SG149680A1 (en) * 2001-12-12 2009-02-27 Semiconductor Energy Lab Film formation apparatus and film formation method and cleaning method
US20030221620A1 (en) * 2002-06-03 2003-12-04 Semiconductor Energy Laboratory Co., Ltd. Vapor deposition device
US20040086639A1 (en) * 2002-09-24 2004-05-06 Grantham Daniel Harrison Patterned thin-film deposition using collimating heated mask asembly
WO2004054325A1 (en) 2002-12-12 2004-06-24 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, manufacturing apparatus, film-forming method, and cleaning method
JP2004300495A (en) * 2003-03-31 2004-10-28 Nippon Seiki Co Ltd Evaporation mask and evaporation method using the same
JP4352880B2 (en) 2003-12-02 2009-10-28 セイコーエプソン株式会社 Cleaning method and cleaning device
JP5179739B2 (en) 2006-09-27 2013-04-10 東京エレクトロン株式会社 Vapor deposition apparatus, vapor deposition apparatus control apparatus, vapor deposition apparatus control method, and vapor deposition apparatus usage method
JP5173175B2 (en) 2006-09-29 2013-03-27 東京エレクトロン株式会社 Vapor deposition equipment
JP5043394B2 (en) 2006-09-29 2012-10-10 東京エレクトロン株式会社 Vapor deposition apparatus and operation method thereof
JP5020650B2 (en) 2007-02-01 2012-09-05 東京エレクトロン株式会社 Vapor deposition apparatus, vapor deposition method, and vapor deposition apparatus manufacturing method
EP1998389B1 (en) 2007-05-31 2018-01-31 Applied Materials, Inc. Method of cleaning a patterning device, method of depositing a layer system on a substrate, system for cleaning a patterning device, and coating system for depositing a layer system on a substrate
KR101193189B1 (en) 2009-08-25 2012-10-19 삼성디스플레이 주식회사 Apparatus for thin layer deposition and method for manufacturing of organic light emitting display apparatus using the same
US8486737B2 (en) 2009-08-25 2013-07-16 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
JP5328726B2 (en) 2009-08-25 2013-10-30 三星ディスプレイ株式會社 Thin film deposition apparatus and organic light emitting display device manufacturing method using the same
JP5677785B2 (en) 2009-08-27 2015-02-25 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Thin film deposition apparatus and organic light emitting display device manufacturing method using the same
US8876975B2 (en) 2009-10-19 2014-11-04 Samsung Display Co., Ltd. Thin film deposition apparatus
KR101084184B1 (en) 2010-01-11 2011-11-17 삼성모바일디스플레이주식회사 Apparatus for thin layer deposition
KR101174875B1 (en) 2010-01-14 2012-08-17 삼성디스플레이 주식회사 Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR101193186B1 (en) 2010-02-01 2012-10-19 삼성디스플레이 주식회사 Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR101156441B1 (en) 2010-03-11 2012-06-18 삼성모바일디스플레이주식회사 Apparatus for thin layer deposition
KR101202348B1 (en) 2010-04-06 2012-11-16 삼성디스플레이 주식회사 Apparatus for thin layer deposition and method for manufacturing of organic light emitting display apparatus using the same
US8894458B2 (en) 2010-04-28 2014-11-25 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
KR101131355B1 (en) * 2010-05-10 2012-04-04 도요타지도샤가부시키가이샤 Masking jig, substrate heating device, and coating method
KR101223723B1 (en) 2010-07-07 2013-01-18 삼성디스플레이 주식회사 Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR101723506B1 (en) 2010-10-22 2017-04-19 삼성디스플레이 주식회사 Apparatus for organic layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR101738531B1 (en) 2010-10-22 2017-05-23 삼성디스플레이 주식회사 Method for manufacturing of organic light emitting display apparatus, and organic light emitting display apparatus manufactured by the method
KR20120045865A (en) 2010-11-01 2012-05-09 삼성모바일디스플레이주식회사 Apparatus for organic layer deposition
TWI427839B (en) * 2010-12-03 2014-02-21 Ind Tech Res Inst Apparatuses and methods of depositing film patterns
KR20120065789A (en) 2010-12-13 2012-06-21 삼성모바일디스플레이주식회사 Apparatus for organic layer deposition
JP5697427B2 (en) * 2010-12-14 2015-04-08 株式会社アルバック Vacuum deposition apparatus and thin film manufacturing method
KR101760897B1 (en) 2011-01-12 2017-07-25 삼성디스플레이 주식회사 Deposition source and apparatus for organic layer deposition having the same
KR101852517B1 (en) 2011-05-25 2018-04-27 삼성디스플레이 주식회사 Apparatus for organic layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR101840654B1 (en) 2011-05-25 2018-03-22 삼성디스플레이 주식회사 Apparatus for organic layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR101857249B1 (en) 2011-05-27 2018-05-14 삼성디스플레이 주식회사 Patterning slit sheet assembly, apparatus for organic layer deposition, method for manufacturing organic light emitting display apparatus and organic light emitting display apparatus
KR101826068B1 (en) 2011-07-04 2018-02-07 삼성디스플레이 주식회사 Apparatus for thin layer deposition
CN102650031A (en) * 2012-04-19 2012-08-29 彩虹(佛山)平板显示有限公司 Method for removing organic matters attached onto surface of MASK
US10886468B2 (en) * 2017-04-14 2021-01-05 Sakai Display Products Corporation Manufacturing method and manufacturing apparatus for organic EL display device
JP7287838B2 (en) * 2019-06-07 2023-06-06 株式会社アルバック Film forming system and film forming method
JP2023063978A (en) * 2021-10-25 2023-05-10 吉林Oled日本研究所株式会社 Vapor deposition apparatus
CN114798599A (en) * 2022-04-15 2022-07-29 深圳市华星光电半导体显示技术有限公司 Mask plate cleaning equipment and mask plate cleaning method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610117A (en) * 1992-06-26 1994-01-18 Sony Corp Formation of thin film, thin film forming device, laser beam irradiation device and bombardment device
JPH07145472A (en) * 1993-11-22 1995-06-06 Murata Mfg Co Ltd Mask for forming thin film and its washing method
JP3578417B2 (en) * 1994-10-21 2004-10-20 出光興産株式会社 Organic EL device
JPH1053857A (en) * 1996-08-08 1998-02-24 Mitsubishi Kagaku Kk Masking jig and method for reproducing the same

Also Published As

Publication number Publication date
JP2000282219A (en) 2000-10-10

Similar Documents

Publication Publication Date Title
JP3734239B2 (en) Organic film vacuum deposition mask regeneration method and apparatus
EP0049032B1 (en) Coating insulating materials by glow discharge
US6316343B1 (en) Method of forming transparent conductive film and transparent conductive film formed by the method
JP5113879B2 (en) Method for producing interference color filter pattern
JP2003313654A5 (en) Film forming apparatus and film forming method
US7678241B2 (en) Film forming apparatus, substrate for forming oxide thin film and production method thereof
KR20150016983A (en) Method for sputtering for processes with a pre-stabilized plasma
JP3321403B2 (en) Film forming apparatus and film forming method
US6176978B1 (en) Pasting layer formation method for high density plasma deposition chambers
JP2012518722A (en) Physical vapor deposition with an impedance matching network.
US3699034A (en) Method for sputter depositing dielectric materials
JP2000328229A (en) Vacuum deposition device
US3838031A (en) Means and method for depositing recrystallized ferroelectric material
CN111850469A (en) DLC resistive electrode in-situ preparation method for large-area microstructure gas detector
JP4445497B2 (en) Thin film deposition apparatus and thin film deposition method using the same
JP5193487B2 (en) Vapor deposition apparatus and vapor deposition method
KR20010089674A (en) Physical vapor deposition of semiconducting and insulating materials
JP3958878B2 (en) Vacuum deposition system
JP3529308B2 (en) Sputtering apparatus and sputtering method
US20020144889A1 (en) Burn-in process for high density plasma PVD chamber
JP2004232006A (en) Vapor deposition system and method
JPH0247252A (en) Production of composite material film
JPH06145974A (en) Vacuum film forming device and vacuum film formation
JP2669602B2 (en) Sputtering equipment for semiconductor device manufacturing
JPH07238368A (en) Device for forming thin film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees