JP4286496B2 - Vapor deposition apparatus and thin film manufacturing method - Google Patents

Vapor deposition apparatus and thin film manufacturing method Download PDF

Info

Publication number
JP4286496B2
JP4286496B2 JP2002196348A JP2002196348A JP4286496B2 JP 4286496 B2 JP4286496 B2 JP 4286496B2 JP 2002196348 A JP2002196348 A JP 2002196348A JP 2002196348 A JP2002196348 A JP 2002196348A JP 4286496 B2 JP4286496 B2 JP 4286496B2
Authority
JP
Japan
Prior art keywords
vapor deposition
substrate
source
sources
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002196348A
Other languages
Japanese (ja)
Other versions
JP2004035964A5 (en
JP2004035964A (en
Inventor
幹夫 浅田
敬自 内田
悌二 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2002196348A priority Critical patent/JP4286496B2/en
Priority to KR1020020070268A priority patent/KR100934073B1/en
Publication of JP2004035964A publication Critical patent/JP2004035964A/en
Publication of JP2004035964A5 publication Critical patent/JP2004035964A5/ja
Application granted granted Critical
Publication of JP4286496B2 publication Critical patent/JP4286496B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば基板にEL材料を蒸着して成膜しEL表示装置を作製する蒸着装置に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
例えば有機ELを作製する際、真空化した蒸着室(真空槽)内でEL材料をガラス基板に蒸着する場合には、従来は低位置に置かれた点蒸発源(蒸着源)から材料を蒸発させて基板上に堆積させ薄膜を形成させるが、膜厚分布を一定にするために、蒸発源と基板との距離は長くせざるをえない。従って、蒸着源はこのように基板の中心から離れた位置に置かれているためガラス基板以外に材料が飛ぶ量が多く、材料の使用効率が悪い。
【0003】
本発明は、真空槽の中にX,Y駆動機構あるいはX−θ駆動機構あるいはX−Z駆動機構など複数方向に蒸着源を移動する蒸着源移動機構を設け、蒸着源と基板との距離を近くしても、蒸発源を基板面に沿って、例えばX方向Y方向に移動させて蒸着することで膜厚分布を一定とすることができると共に、基板以外に材料が飛ぶ量を少なくし材料の使用効率を向上できる画期的な蒸着装置を提供することを目的としている。
【0004】
【課題を解決するための手段】
添付図面を参照して本発明の要旨を説明する。
【0005】
減圧雰囲気とする蒸着室1内に設けた固定部4に基板3を固定し、蒸着源7より発生する成膜材料が基板3上に堆積して薄膜が形成されるように構成した蒸着装置において、前記蒸着源7をX,Y,Z,θ方向などの異なる複数方向に若しくはこれら複数方向の合成方向に移動させる蒸着源移動機構8を設けて、この蒸着源移動機構8により蒸着時に前記蒸着源7を前記基板3に対して移動させるように構成したことを特徴とする蒸着装置に係るものである。
【0006】
また、上記発明において、前記蒸着源移動機構8は、固定側に対して移動側がガイド部と駆動部との組み合わせにより前記所定方向に駆動移動するように構成し、この移動側に前記蒸着源7を固定して、蒸着源7を前記所定方向に移動制御するように構成したことを特徴とする。
【0007】
また、上記発明において、前記蒸着源7を前記所定方向に移動する前記蒸着源移動機構8の駆動部を制御して、前記蒸着源7の移動速度を制御し得るように構成したことを特徴とする。
【0008】
また、上記発明において、前記蒸着源7は取付傾斜角度を調整自在に構成し、この蒸着源7の蒸発中心が前記基板3上の一点に合うように調整固定し得るように構成したことを特徴とする。
【0009】
また、上記発明において、前記蒸着源7に膜厚センサー若しくはモニター5を配設して、前記蒸着源移動機構8により前記蒸着源7と共に移動して常に膜厚レートを測定若しくはモニターして蒸着状況を把握できるように構成したことを特徴とする。
【0010】
また、上記発明において、前記蒸着源移動機構8の移動側に複数の前記蒸着源7を設けて、二元蒸着若しくは多元蒸着し得るように構成したことを特徴とする。
【0011】
また、上記発明において、少なくとも前記基板3の面方向に対する前記蒸着源移動機構8による前記蒸着源7の移動距離を、前記基板3の寸法より大きく設定したことを特徴とする。
【0012】
また、上記発明において、前記蒸着源移動機構8に前記基板3と前記蒸着源7との距離を調整する蒸着距離調整機構6を設けたことを特徴とする。
【0013】
【発明の実施の形態】
好適と考える本発明の実施の形態(発明をどのように実施するか)を、図面に基づいてその作用効果を示して簡単に説明する。
【0014】
例えば、真空化する蒸着室1内の固定部4(ホルダー)に基板3を固定し、蒸着源7から発生する成膜材料が基板3上に堆積して薄膜を形成する。
【0015】
この際、蒸着源7は、固定されているのではなく、蒸着時には蒸着源移動機構8により前記基板3に対して移動する。即ち、蒸着源7は蒸着源移動機構8により基板3に沿ってくまなく移動しながら成膜材料を蒸発させ、基板3上に薄膜を形成する。
【0016】
この蒸着源移動機構8は、蒸着源7を設ける移動側を固定側に対してX,Y,Z,θ方向などの異なる複数方向に移動自在に設け、順次これら複数方向へ移動させるか、これらの合成方向に移動させることで、基板3に沿ってくまなく移動するように移動制御(移動ルートを設定)することで、基板3との距離が短くても均一に薄膜を形成できることとなる。
【0017】
従って、例えば基板3の板面を水平面方向とし、これの二軸方向となるX,Y方向、あるいは回転方向となるθ方向、又は基板3を水平配置せずに垂直配置とした際、この面方向の二軸となるX,ZあるいはY,Z方向あるいは回転方向となるθ方向に移動自在に設け、前記板面に沿って移動側を移動制御して蒸着源7を移動しながら蒸着を行なうことで、たとえ基板3と蒸着源7との距離を短くしても、基板3に対して蒸着源7をくまなく移動させながら蒸着することができるため、膜厚が片寄らず均一な膜を形成することができ、また基板3外へ無駄に材料が飛ぶ量を少なくでき、よって膜厚を一定にでき、且つ材料の使用効率を向上させることができることとなる。
【0018】
また、蒸着源7の移動速度を制御することで精度の良い膜厚分布を実現でき、また蒸着源7の取付角度を調整して蒸着源7の蒸発中心を基板3上の一点に合うようにセットすることで、一層前記作用・効果を良好に発揮させることができる。
【0019】
また、蒸着源7に膜厚センサーやモニター5を配設すれば、蒸着源移動機構8により蒸着源7と共にこの膜厚センサーやモニター5を常に一緒に移動制御でき、常に各カ所での膜厚レートを測定あるいは蒸着状況を把握できるため、一層膜厚の均一化を図れ、移動制御の精度も向上できる。
【0020】
また、複数の蒸着源7を蒸着源移動機構8により一緒に移動するように構成することも容易で、この場合には例えばホスト蒸着源7とドーパント蒸着源7を並べて移動することで精度の高い二元蒸着やその他同様にして多元蒸着も可能となる。
【0021】
また、蒸着距離調整機構6により適切な距離に基板3と蒸着源7を調整設定できるようにすれば、状況に応じてできるだけ基板3と蒸着源7との距離を短くして、均一化と材料使用効率の向上を一層図れることとなる。
【0022】
【実施例】
本発明の具体的な実施例について図面に基づいて説明する。
【0023】
図1に示すように、真空ポンプにより真空化する蒸着室1内に配設した固定部4にガラス基板3を固定する構成としている。この固定部4の下部に設けたホルダー4Aは、蒸着用開口部16を有する枠状構成とし、この蒸着用開口部16をおおうようにガラス基板3を位置決め載置し、この端部に設けた固定機構4Bによりガラス基板3を上方から押圧してホルダー4A上に押圧固定する構成としている。
【0024】
また、この蒸着室1内底部に設けた蒸着源7より発生する成膜材料が固定部4の蒸着用開口部16から露出している基板3上に堆積して薄膜が形成されるように構成している。
【0025】
本実施例では、前記蒸着源7をX,Y,Z,θ方向などの異なる複数方向に同時に移動させることでこれら複数方向の合成方向に移動できる蒸着源移動機構8を設けて、この蒸着源移動機構8により蒸着時に前記蒸着源7を前記基板3に対してこの基板面に沿って移動させるように構成している。
【0026】
本実施例では、基板3を固定部4により蒸着室1内に水平配置し、この下側の蒸着室1の底部側に4つの蒸着源7を設け、この蒸着源7を一斉に水平方向となる前記基板面に沿って蒸着源移動機構8により自動的にこの板面方向で移動するように構成している。
【0027】
即ち、水平方向の互いに直交する二軸となるX方向とY方向、又はこの双方若しくはその一方向と水平回転方向であるθ方向との二方向若しくは三方向に蒸着源7が移動自在となるように蒸着源移動機構8を構成するが、本実施例では、図4に示すようにX方向とY方向に移動自在となるように構成し、順次これら複数方向へ移動するように制御することで、X方向,Y方向の移動(平面より見て、たて,よこ,たて,よこの移動)を繰り返して、基板3の板面に沿ってジグザグに移動して、基板3の板面をくまなく移動するように構成している。
【0028】
具体的には、この蒸着源移動機構8は、図1,図2に示すように、固定側(蒸着室1に対して固定する部材)に対して移動側がガイド部と駆動部との組み合わせにより前記所定方向に駆動移動するように構成し、この移動側に前記蒸着源7を固定して、蒸着源7を前記所定方向に移動制御するように構成している。
【0029】
例えば、回転駆動源8Aによってボールネジ8Bを回転させ、LMガイド8Cに沿って移動体8Dをボールネジ8Bに沿って移動させるように構成し、この移動体8Dに前記ボールネジ8Bと直交する方向にボールネジ8B’を配設してこのボールネジ8B’を回転駆動源8A’によって駆動することでLMガイド8C’に沿って移動体8D’を移動させるように構成し、この移動体8D’を移動側として蒸着源7を設けることで、上下に配して互いに直交する方向のボールネジ8B,8B’をX,Y方向とし、各ボールネジ8B,8B’の回転量を順次制御することで、予め設定したX,Y方向に蒸着源7を移動するように構成している。尚、水平回動支点を設けてθ方向にロボットアームなどにより移動するように構成しても良い。
【0030】
また、蒸着室1に対して固定する固定板を固定側とし、この固定板に対して移動する移動テーブルを移動側とし、固定板と移動テーブルとの間にガイド部と駆動部とを有するモジュールを複数設け(θ方向に移動させる場合には、水平回動支点部を設け)、各モジュールを駆動制御することで移動テーブルがX,Y(及びθ)方向に移動制御される薄偏平形の移動機構を蒸着室1底部に構成し、このX,Y方向に移動する移動テーブルに蒸着源7を設けるように構成しても良い。
【0031】
また、基板3を垂直方向に配する場合には、この蒸着源移動機構8も同様に垂直方向で平面的に(X,ZあるいはY,Zあるいはθ方向との組み合わせにより)移動するように構成しても良い。
【0032】
また、本実施例では更にZ方向に移動自在として立体自由に移動させて基板3との距離も調整されるように構成している。
【0033】
具体的には、本実施例では立体的に移動制御はしないが、蒸着源移動機構8を昇降駆動源6Aと昇降ガイド6BとによってZ方向に昇降自在に設けて、前記蒸着距離調整機構6を構成し、基板3の大きさや蒸着材料あるいは蒸着状況に応じてこの蒸着距離調整機構6により基板3と蒸着源7との距離を調整設定し、できるだけ基板3と蒸着源7との距離を短くして、均一化と材料使用効率の向上を一層図れるように構成している。
【0034】
また、例えば、前述のようにX,Y方向の移動を組み合わせるのではなく、図5,図6に示すようにθ方向の組み合わせによる複合旋回方式に蒸着源移動機構8を構成しても良い。
【0035】
従って、予め蒸着距離調整機構6により基板3と蒸着源7とをできるだけ短い距離に設定し、また予めこの蒸着源移動機構8の駆動を制御する制御部の移動ルート設定により、蒸着源7はこの移動ルート通りに移動あるいは繰り返し移動させることができ、また基板3の変更や蒸着材料の変更、基板3と蒸着源7との距離の調整などによってこの移動ルートを変更設定できるようにしている。
【0036】
尚、蒸着室1底部外と蒸着源移動機構8の移動部分内部とを連通して大気とし、移動制御されてもこの連通状態が保持される移動連通保持機構9を備え、この移動連通保持機構9を介して、エア,水,電気などをフレキシブル配管などで蒸着源7に供給する構成としている。
【0037】
例えば、図5,図6に示すように駆動源8Eによって基板3と平行に水平回動方向(θ1方向)に駆動制御される水平アーム8Fに、駆動源8Gによって更に水平回動方向(θ2方向)に駆動制御される水平アーム8Hを枢着し、この水平アーム8Hに駆動源8Iによって水平回動方向(θ3)に駆動制御される水平板8Jを設け、この水平板8Jに蒸着源7を設け、この各水平アーム8F,8H,水平板8Jのθ1,θ2,θ3方向の複合回動制御によって、駆動源7が基板3の板面に沿ってくまなく所定ルートを移動するように構成しても良い。
【0038】
また、本実施例では前記基板3の板面方向に対する前記蒸着源移動機構8による前記蒸着源7の移動距離(範囲)を、前記基板3の寸法よりやや大きく設定している。
【0039】
これにより、基板3の端部での薄膜の均一化も図れ、できるだけ基板3外へ無駄に材料が飛ぶ量を少なくできる。
【0040】
また、前記蒸着源7を前記所定方向に移動する前記蒸着源移動機構8の駆動部を制御して、前記蒸着源7の移動速度を制御し得るように構成している。この速度制御は、各駆動部の出力調整や出力伝達機構の切り替えによって減速・増速できるようにしている。
【0041】
また、前記蒸着源7は、図3に示すように取付構造を介して着脱自在に設け、容易に取り替え可能とし、またこの取付構造による取付傾斜角度を調整自在に構成し、この各蒸着源7の蒸発中心が前記基板3上の一点に合うように調整固定できるように構成している。
【0042】
従って、たとえ複数の蒸着源7を配設しても、この各蒸着源7の蒸着中心が蒸発中心の移動ルートの一点上に合うようにセットできるため、常にバラツキなく一定の膜厚の蒸着が効率良く良好に行なうこととなる。
【0043】
また、前記蒸着源7に膜厚センサーあるいは蒸着監視用のモニター5を配設して、前記蒸着源移動機構8により前記蒸着源7と共に移動して常に膜厚レートを測定したり、蒸着状況を把握できるように構成している。
【0044】
また、前記蒸着源移動機構8の移動側に複数の前記蒸着源7を設けて、複数の蒸着源7がこの蒸着源移動機構8により常に一緒に同一ルートを移動できるように構成することが容易に実現できるため、二元蒸着や多元蒸着も良好に行なえることとなる。
【0045】
この際、各蒸着源7を前述のようにいずれも同様に角度調整設定し、共に蒸発中心を基板3上の一点に合うように取付固定できるようにしているため、一層良好に精度の高い二元蒸着や多元蒸着が行なえる。
【0046】
また、蒸着源7にモニター5を配設し、蒸着源7と共に移動するように構成し、このモニター5も蒸発中心が合う基板3上の一点を向くように取り付けるようにすることで、蒸着状況を常に監視しながら蒸着を行なえ、一層秀れた蒸着装置となる。
【0047】
従って、蒸着源移動機構8の移動側に複数の蒸着源7やセンサー,モニター5などを適宜適切な向きにして交換取付できる取付部2を設けることで極めて実用性に秀れた蒸着装置となる。
【0048】
尚、本発明は、本実施例に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものである。
【0049】
【発明の効果】
本発明は上述のように構成したから、蒸着室の中に例えばX,Y駆動機構あるいはX−θ駆動機構あるいはX−Z駆動機構など複数方向に蒸着源を移動する蒸着源移動機構を設け、蒸着源と基板との距離をたとえ近くしても、蒸発源を基板面に沿って、例えばX方向Y方向に移動させて蒸着することで膜厚分布を一定とすることができると共に、基板以外に材料が飛ぶ量を少なくし材料使用効率を向上できる画期的な蒸着装置となる。
【0050】
また、上記発明においては、一層容易に実現でき、一層実用性に秀れた蒸着装置となる。
【0051】
また、上記発明においては、蒸着源の移動速度を制御することで精度の良い膜厚分布を実現できることとなる。
【0052】
また、上記発明においては、蒸着源の取付角度を調整して蒸着源の蒸発中心を基板上の一点に合うようにセットすることで、一層前記作用・効果を良好に発揮させることとなる。
【0053】
また、上記発明においては、蒸着源に膜厚センサーやモニターを配設すれば、蒸着源移動機構により蒸着源と共にこの膜厚センサーやモニターを常に一緒に移動制御でき、常に各カ所での膜厚レート測定あるいは蒸着状況を把握できるため、一層膜厚の均一化を図れ、移動制御の精度も向上できることとなる。
【0054】
また、上記発明においては、複数の蒸着源を蒸着源移動機構により一緒に移動するように構成することも容易で、この場合には例えばホスト蒸着源とドーパント蒸着源を並べて移動することで精度の高い二元蒸着やその他同様にして多元蒸着も可能となることとなる。
【0055】
また、上記発明においては、基板の端部での薄膜の均一化も図れ、できるだけ基板外へ無駄に材料が飛ぶ量を少なくできることとなる。
【0056】
また、上記発明においては、適切な距離に基板と蒸着源を調整設定でき、できるだけ基板と蒸着源との距離を短くして、均一化と材料使用効率の向上を一層図れることになる一層秀れた蒸着装置となる。
【図面の簡単な説明】
【図1】本実施例の概略構成説明正面図である。
【図2】本実施例の概略構成説明平面図である。
【図3】本実施例の蒸着源7の取付部を示す拡大説明正面図である。
【図4】本実施例の蒸着時の移動ルートの一例を示す説明図である。
【図5】本実施例の蒸着源移動機構8の別例を示す概略構成説明正断面図である。
【図6】本実施例の蒸着源移動機構8の別例を示す概略構成説明平面図である。
【符号の説明】
1 蒸着室
3 基板
4 固定部
5 モニター
6 蒸着距離機構
7 蒸着源
8 蒸着源移動機構
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vapor deposition apparatus for producing an EL display device by depositing, for example, an EL material on a substrate.
[0002]
[Prior art and problems to be solved by the invention]
For example, when producing an organic EL, if the EL material is deposited on a glass substrate in a vacuum deposition chamber (vacuum chamber), the material is conventionally evaporated from a point evaporation source (deposition source) placed at a low position. However, in order to form a thin film by depositing on the substrate, the distance between the evaporation source and the substrate must be increased in order to make the film thickness distribution constant. Therefore, since the vapor deposition source is placed at a position away from the center of the substrate in this way, the amount of material flying apart from the glass substrate is large, and the use efficiency of the material is poor.
[0003]
In the present invention, an evaporation source moving mechanism for moving the evaporation source in a plurality of directions such as an X, Y driving mechanism, an X-θ driving mechanism, or an XZ driving mechanism is provided in the vacuum chamber, and the distance between the evaporation source and the substrate is set. Even if it is close, the evaporation source can be moved along the surface of the substrate, for example, in the X direction and the Y direction, and the film thickness distribution can be made constant, and the amount of material flying other than the substrate can be reduced. An object of the present invention is to provide an epoch-making vapor deposition apparatus capable of improving the efficiency of use.
[0004]
[Means for Solving the Problems]
The gist of the present invention will be described with reference to the accompanying drawings.
[0005]
In a vapor deposition apparatus configured such that a substrate 3 is fixed to a fixed portion 4 provided in a vapor deposition chamber 1 having a reduced pressure atmosphere, and a film forming material generated from a vapor deposition source 7 is deposited on the substrate 3 to form a thin film. A vapor deposition source moving mechanism 8 is provided for moving the vapor deposition source 7 in different directions such as X, Y, Z, and θ directions or in a combined direction of these plural directions. The vapor deposition apparatus is characterized in that the source 7 is moved with respect to the substrate 3.
[0006]
In the above invention, the evaporation source moving mechanism 8 is configured such that the moving side is driven and moved in the predetermined direction by a combination of a guide portion and a driving portion with respect to the fixed side, and the evaporation source 7 is moved to the moving side. by fixing the, characterized in that the evaporation source 7 is configured to move the control to the predetermined direction.
[0007]
Further, in the above invention, the driving unit of the vapor deposition source moving mechanism 8 that moves the vapor deposition source 7 in the predetermined direction is controlled so that the moving speed of the vapor deposition source 7 can be controlled. you.
[0008]
In the above invention, the vapor deposition source 7 is configured such that the attachment inclination angle can be adjusted, and the vapor deposition source 7 can be adjusted and fixed so that the evaporation center of the vapor deposition source 7 matches one point on the substrate 3. It shall be the.
[0009]
In the above invention, the deposition source 7 is provided with a film thickness sensor or monitor 5 and moved together with the deposition source 7 by the deposition source moving mechanism 8 to constantly measure or monitor the film thickness rate. it characterized by being configured so as to be able to grasp.
[0010]
Further, in the above invention, by providing a plurality of the deposition source 7 to the moving side of the deposition source moving mechanism 8, characterized by being configured so as to co-deposited or multi-source evaporation.
[0011]
Further, in the above invention, characterized in that the movement distance of the deposition source 7 by the deposition source moving mechanism 8 for at least the surface direction of the substrate 3 was set larger than the size of the substrate 3.
[0012]
Further, in the above invention, characterized in that a deposition distance adjusting mechanism 6 for adjusting the distance between the substrate 3 in the deposition source moving mechanism 8 and the evaporation source 7.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention (how to carry out the invention) considered to be suitable will be briefly described with reference to the drawings, showing its effects.
[0014]
For example, the substrate 3 is fixed to a fixing portion 4 (holder) in the vapor deposition chamber 1 to be evacuated, and a film forming material generated from the vapor deposition source 7 is deposited on the substrate 3 to form a thin film.
[0015]
At this time, the vapor deposition source 7 is not fixed, but moves relative to the substrate 3 by the vapor deposition source moving mechanism 8 during vapor deposition. That is, the deposition source 7 evaporates the film forming material while moving all along the substrate 3 by the deposition source moving mechanism 8, thereby forming a thin film on the substrate 3.
[0016]
The evaporation source moving mechanism 8 is provided such that the moving side on which the evaporation source 7 is provided is movably provided in a plurality of different directions such as X, Y, Z, and θ directions with respect to the fixed side. Therefore, even if the distance from the substrate 3 is short, a thin film can be uniformly formed by performing movement control (setting a movement route) so as to move all along the substrate 3.
[0017]
Therefore, for example, when the plate surface of the substrate 3 is a horizontal plane direction, the X, Y direction that is the biaxial direction thereof, the θ direction that is the rotation direction, or the substrate 3 is arranged vertically without being horizontally arranged. It is provided so as to be movable in the X, Z or Y, Z directions that are the two axes of the direction, or the θ direction that is the rotational direction, and the evaporation is performed while moving the evaporation source 7 by controlling the movement side along the plate surface. Thus, even if the distance between the substrate 3 and the vapor deposition source 7 is shortened, the vapor deposition can be performed while moving the vapor deposition source 7 with respect to the substrate 3, so that a uniform film can be formed without shifting the film thickness. In addition, the amount of the material flying unnecessarily outside the substrate 3 can be reduced, so that the film thickness can be made constant and the use efficiency of the material can be improved.
[0018]
Further, by controlling the moving speed of the vapor deposition source 7, it is possible to realize an accurate film thickness distribution, and to adjust the attachment angle of the vapor deposition source 7 so that the evaporation center of the vapor deposition source 7 coincides with one point on the substrate 3. By setting, the above-mentioned actions and effects can be exhibited more satisfactorily.
[0019]
Further, if a film thickness sensor or monitor 5 is provided in the vapor deposition source 7, the film thickness sensor or monitor 5 can always be moved and controlled together with the vapor deposition source 7 by the vapor deposition source moving mechanism 8, and the film thickness at each location is always maintained. Since the rate can be measured or the deposition status can be grasped, the film thickness can be made even more uniform and the accuracy of movement control can be improved.
[0020]
It is also easy to configure the plurality of vapor deposition sources 7 so that they are moved together by the vapor deposition source moving mechanism 8. In this case, for example, the host vapor deposition source 7 and the dopant vapor deposition source 7 are moved side by side with high accuracy. Multi-source deposition is also possible in the same way as binary deposition.
[0021]
Further, if the substrate 3 and the evaporation source 7 can be adjusted and set to an appropriate distance by the evaporation distance adjusting mechanism 6, the distance between the substrate 3 and the evaporation source 7 can be shortened as much as possible according to the situation, and the uniformization and material can be achieved. The use efficiency can be further improved.
[0022]
【Example】
Specific embodiments of the present invention will be described with reference to the drawings.
[0023]
As shown in FIG. 1, it is set as the structure which fixes the glass substrate 3 to the fixing | fixed part 4 arrange | positioned in the vapor deposition chamber 1 evacuated with a vacuum pump. The holder 4A provided at the lower portion of the fixed portion 4 has a frame-like configuration having a vapor deposition opening 16, and the glass substrate 3 is positioned and placed so as to cover the vapor deposition opening 16, and provided at this end. The glass substrate 3 is pressed from above by the fixing mechanism 4B to be fixed on the holder 4A.
[0024]
Further, the film forming material generated from the vapor deposition source 7 provided at the bottom of the vapor deposition chamber 1 is deposited on the substrate 3 exposed from the vapor deposition opening 16 of the fixed portion 4 to form a thin film. is doing.
[0025]
In the present embodiment, a vapor deposition source moving mechanism 8 that can move in the combined direction of the plurality of directions by simultaneously moving the vapor deposition source 7 in a plurality of different directions such as the X, Y, Z, and θ directions is provided. The vapor deposition source 7 is moved along the substrate surface with respect to the substrate 3 during vapor deposition by the moving mechanism 8.
[0026]
In the present embodiment, the substrate 3 is horizontally arranged in the vapor deposition chamber 1 by the fixed portion 4, and four vapor deposition sources 7 are provided on the bottom side of the lower vapor deposition chamber 1. The vapor deposition source moving mechanism 8 automatically moves in the plate surface direction along the substrate surface.
[0027]
That is, the vapor deposition source 7 is movable in two or three directions, ie, the X direction and the Y direction, which are two axes perpendicular to each other in the horizontal direction, or both or one direction thereof and the θ direction which is the horizontal rotation direction. In this embodiment, the evaporation source moving mechanism 8 is configured to be movable in the X direction and the Y direction as shown in FIG. 4, and is controlled so as to sequentially move in these plural directions. , Movement in the X direction and Y direction (vertical, horizontal, vertical, horizontal movement as viewed from the plane) is repeated along the plate surface of the substrate 3 to move the plate surface of the substrate 3 It is configured to move all over.
[0028]
Specifically, as shown in FIGS. 1 and 2, the deposition source moving mechanism 8 is configured such that the moving side is a combination of a guide unit and a driving unit with respect to the fixed side (member fixed to the deposition chamber 1). The vapor deposition source 7 is fixed on the moving side, and the vapor deposition source 7 is controlled to move in the predetermined direction.
[0029]
For example, the ball screw 8B is rotated by the rotational drive source 8A, and the moving body 8D is moved along the ball screw 8B along the LM guide 8C, and the ball screw 8B is moved to the moving body 8D in a direction orthogonal to the ball screw 8B. The moving body 8D ′ is moved along the LM guide 8C ′ by driving the ball screw 8B ′ by the rotational drive source 8A ′ and depositing the moving body 8D ′ as the moving side. By providing the source 7, the ball screws 8B and 8B 'arranged in the vertical direction and orthogonal to each other are set in the X and Y directions, and the rotation amounts of the ball screws 8B and 8B' are sequentially controlled. The vapor deposition source 7 is configured to move in the Y direction. Note that a horizontal rotation fulcrum may be provided and moved in the θ direction by a robot arm or the like.
[0030]
A module having a fixed plate fixed to the vapor deposition chamber 1 as a fixed side, a moving table moving with respect to the fixed plate as a moving side, and a guide unit and a driving unit between the fixed plate and the moving table. A thin flat type whose movement table is controlled to move in the X and Y (and θ) directions by controlling the drive of each module. The moving mechanism may be configured at the bottom of the vapor deposition chamber 1 and the vapor deposition source 7 may be provided on the moving table that moves in the X and Y directions.
[0031]
Further, when the substrate 3 is arranged in the vertical direction, the vapor deposition source moving mechanism 8 is similarly configured to move in a vertical direction (in combination with the X, Z, Y, Z, or θ directions). You may do it.
[0032]
Further, in this embodiment, the distance to the substrate 3 is adjusted by moving freely in three dimensions so as to be movable in the Z direction.
[0033]
Specifically, in this embodiment, the movement control is not performed three-dimensionally, but the evaporation source moving mechanism 8 is provided so as to be movable up and down in the Z direction by the elevating drive source 6A and the elevating guide 6B. The distance between the substrate 3 and the vapor deposition source 7 is adjusted and set by the vapor deposition distance adjusting mechanism 6 according to the size of the substrate 3, the vapor deposition material or the vapor deposition state, and the distance between the substrate 3 and the vapor deposition source 7 is shortened as much as possible. Thus, it is configured to further improve the uniformity and the material use efficiency.
[0034]
Further, for example, instead of combining the movements in the X and Y directions as described above, the vapor deposition source moving mechanism 8 may be configured in a combined swirl method by combining the θ directions as shown in FIGS.
[0035]
Therefore, the deposition source 7 is set to a distance as short as possible by the deposition distance adjusting mechanism 6 in advance, and the deposition source 7 is set in this way by setting the movement route of the control unit that controls the driving of the deposition source moving mechanism 8 in advance. The moving route can be moved or repeatedly moved according to the moving route, and the moving route can be changed and set by changing the substrate 3, changing the vapor deposition material, adjusting the distance between the substrate 3 and the vapor deposition source 7, or the like.
[0036]
The outside of the bottom of the vapor deposition chamber 1 and the inside of the moving part of the vapor deposition source moving mechanism 8 are communicated with the atmosphere, and a moving communication holding mechanism 9 is provided that maintains this communication state even when the movement is controlled. 9, air, water, electricity, etc. are supplied to the vapor deposition source 7 by flexible piping or the like.
[0037]
For example, as shown in FIGS. 5 and 6, a horizontal arm 8F that is driven and controlled in the horizontal rotation direction (θ1 direction) in parallel with the substrate 3 by the drive source 8E is further applied to the horizontal rotation direction (θ2 direction) by the drive source 8G. A horizontal arm 8H that is driven and controlled is pivotally attached to the horizontal arm 8H, and a horizontal plate 8J that is driven and controlled in the horizontal rotation direction (θ3) by a drive source 8I is provided on the horizontal arm 8H. The drive source 7 is configured to move along a plate surface of the substrate 3 all along a predetermined route by the combined rotation control of the horizontal arms 8F and 8H and the horizontal plate 8J in the θ1, θ2, and θ3 directions. May be.
[0038]
In this embodiment, the moving distance (range) of the vapor deposition source 7 by the vapor deposition source moving mechanism 8 with respect to the plate surface direction of the substrate 3 is set to be slightly larger than the dimension of the substrate 3.
[0039]
As a result, the thin film at the end of the substrate 3 can be made uniform, and the amount of the material flying out of the substrate 3 can be reduced as much as possible.
[0040]
In addition, the moving speed of the vapor deposition source 7 can be controlled by controlling the driving unit of the vapor deposition source moving mechanism 8 that moves the vapor deposition source 7 in the predetermined direction. This speed control can be decelerated / accelerated by adjusting the output of each drive unit or switching the output transmission mechanism.
[0041]
Further, the vapor deposition source 7 is detachably provided via an attachment structure as shown in FIG. 3 and can be easily replaced, and the attachment inclination angle by the attachment structure can be freely adjusted. The evaporation center can be adjusted and fixed so as to match one point on the substrate 3.
[0042]
Therefore, even if a plurality of vapor deposition sources 7 are provided, the vapor deposition center of each vapor deposition source 7 can be set so as to coincide with one point of the movement route of the vaporization center. This is done efficiently and well.
[0043]
In addition, a film thickness sensor or a monitor 5 for monitoring the deposition is provided in the deposition source 7 and moved together with the deposition source 7 by the deposition source moving mechanism 8 to constantly measure the film thickness rate, It is structured so that it can be grasped.
[0044]
Further, it is easy to provide a plurality of the vapor deposition sources 7 on the moving side of the vapor deposition source moving mechanism 8 so that the plural vapor deposition sources 7 can always move along the same route together by the vapor deposition source moving mechanism 8. Therefore, binary vapor deposition and multiple vapor deposition can be performed well.
[0045]
At this time, the respective evaporation sources 7 are similarly adjusted in angle as described above, and both can be mounted and fixed so that the evaporation center matches one point on the substrate 3. Original vapor deposition and multiple vapor deposition can be performed.
[0046]
In addition, a monitor 5 is disposed in the vapor deposition source 7 and is configured to move together with the vapor deposition source 7, and this monitor 5 is also attached so as to face one point on the substrate 3 where the evaporation center is aligned. Evaporation can be performed while constantly monitoring the above, making the vapor deposition apparatus even better.
[0047]
Accordingly, by providing the mounting portion 2 on the moving side of the deposition source moving mechanism 8 so that a plurality of deposition sources 7, sensors, monitors 5 and the like can be exchanged and mounted appropriately in an appropriate direction, the deposition apparatus is extremely practical. .
[0048]
Note that the present invention is not limited to this embodiment, and the specific configuration of each component can be designed as appropriate.
[0049]
【The invention's effect】
Since the present invention is configured as described above, an evaporation source moving mechanism for moving the evaporation source in a plurality of directions such as an X, Y driving mechanism, an X-θ driving mechanism, or an XZ driving mechanism is provided in the evaporation chamber. Even if the distance between the evaporation source and the substrate is reduced, the film thickness distribution can be made constant by moving the evaporation source along the substrate surface, for example, in the X direction and the Y direction. Therefore, it becomes an epoch-making deposition apparatus that can reduce the amount of material flying and improve the material use efficiency.
[0050]
Moreover, in the said invention, it becomes a vapor deposition apparatus which can be implement | achieved more easily and was further excellent in practicality.
[0051]
Moreover, in the said invention, accurate film thickness distribution can be implement | achieved by controlling the moving speed of a vapor deposition source.
[0052]
Moreover, in the said invention, the said effect | action and effect will be exhibited more favorably by adjusting the attachment angle of a vapor deposition source and setting so that the evaporation center of a vapor deposition source may match one point on a board | substrate.
[0053]
In the above invention, if a film thickness sensor or monitor is provided in the vapor deposition source, the film thickness sensor or monitor can always be moved together with the vapor deposition source by the vapor deposition source moving mechanism. Since the rate measurement or the deposition status can be grasped, the film thickness can be made even more uniform and the accuracy of movement control can be improved.
[0054]
In the above invention, it is also easy to configure a plurality of vapor deposition sources so that they are moved together by a vapor deposition source moving mechanism. In this case, for example, the host vapor deposition source and the dopant vapor deposition source are moved side by side to achieve high accuracy. High binary vapor deposition and other multiple vapor depositions are possible as well.
[0055]
Further, in the above invention, the thin film can be made uniform at the edge of the substrate, and the amount of material flying out of the substrate as much as possible can be reduced.
[0056]
In the above invention, the substrate and the vapor deposition source can be adjusted and set to an appropriate distance, and the distance between the substrate and the vapor deposition source can be shortened as much as possible to further improve the uniformity and the material usage efficiency. Vapor deposition equipment.
[Brief description of the drawings]
FIG. 1 is a front view illustrating a schematic configuration of the present embodiment.
FIG. 2 is a plan view illustrating a schematic configuration of the present embodiment.
FIG. 3 is an enlarged explanatory front view showing a mounting portion of a vapor deposition source 7 according to the present embodiment.
FIG. 4 is an explanatory diagram showing an example of a movement route during vapor deposition according to the present embodiment.
FIG. 5 is a front sectional view of a schematic configuration showing another example of the evaporation source moving mechanism 8 of the present embodiment.
FIG. 6 is a schematic configuration explanatory plan view showing another example of the evaporation source moving mechanism 8 of the present embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Deposition chamber 3 Substrate 4 Fixed part 5 Monitor 6 Deposition distance mechanism 7 Deposition source 8 Deposition source movement mechanism

Claims (19)

減圧雰囲気とする蒸着室内に設けた固定部に基板を固定し、複数の蒸着源より発生する成膜材料が基板上に堆積して薄膜が形成されるように構成した蒸着装置において、
蒸着源移動機構を設けて、前記蒸着源移動機構により蒸着時に前記複数の蒸着源を前記基板に対して自由に移動させるように構成し
前記複数の蒸着源は取付傾斜角度が調整自在であり、前記複数の蒸着源の蒸発中心が前記基板上の一点に合うように調整固定し得ることを特徴とする蒸着装置。
In a vapor deposition apparatus configured to fix a substrate to a fixed portion provided in a vapor deposition chamber to be a reduced pressure atmosphere, and to form a thin film by depositing film forming materials generated from a plurality of vapor deposition sources on the substrate,
A vapor deposition source moving mechanism is provided, and the vapor deposition source moving mechanism is configured to freely move the plurality of vapor deposition sources with respect to the substrate during vapor deposition ,
The vapor deposition apparatus, wherein the plurality of vapor deposition sources can be adjusted in mounting inclination angle, and can be adjusted and fixed so that the evaporation centers of the plurality of vapor deposition sources coincide with one point on the substrate .
減圧雰囲気とする蒸着室内に設けた固定部に基板を固定し、複数の蒸着源より発生する成膜材料が基板上に堆積して薄膜が形成されるように構成した蒸着装置において、
前記複数の蒸着源をX,Y,Z,θ方向の異なる複数方向に若しくはこれら複数方向の合成方向に移動させる蒸着源移動機構を設けて、前記蒸着源移動機構により蒸着時に前記複数の蒸着源を前記基板に対して移動させるように構成し
前記複数の蒸着源は取付傾斜角度が調整自在であり、前記複数の蒸着源の蒸発中心が前記基板上の一点に合うように調整固定し得ることを特徴とする蒸着装置。
In a vapor deposition apparatus configured to fix a substrate to a fixed portion provided in a vapor deposition chamber to be a reduced pressure atmosphere, and to form a thin film by depositing film forming materials generated from a plurality of vapor deposition sources on the substrate,
Said plurality of deposition sources X, Y, Z, in a plurality of directions having different θ direction or the deposition source moving mechanism for moving the synthesis direction of the plurality directions provided, the plurality of deposition source during vapor deposition by the vapor deposition source moving mechanism Is configured to move relative to the substrate ,
The vapor deposition apparatus, wherein the plurality of vapor deposition sources can be adjusted in mounting inclination angle, and can be adjusted and fixed so that the evaporation centers of the plurality of vapor deposition sources coincide with one point on the substrate .
減圧雰囲気とする蒸着室内に設けた固定部に基板を固定し、複数の蒸着源より発生する成膜材料が基板上に堆積して薄膜が形成されるように構成した蒸着装置において、
前記複数の蒸着源をX,Y方向に移動させる蒸着源移動機構を設けて、前記蒸着源移動機構により蒸着時に前記複数の蒸着源を前記基板に対して移動させるように構成し
前記複数の蒸着源は取付傾斜角度が調整自在であり、前記複数の蒸着源の蒸発中心が前記基板上の一点に合うように調整固定し得ることを特徴とする蒸着装置。
In a vapor deposition apparatus configured to fix a substrate to a fixed portion provided in a vapor deposition chamber to be a reduced pressure atmosphere, and to form a thin film by depositing film forming materials generated from a plurality of vapor deposition sources on the substrate,
Providing a deposition source moving mechanism for moving the plurality of deposition sources in the X and Y directions, and configured to move the plurality of deposition sources relative to the substrate during deposition by the deposition source moving mechanism ;
The vapor deposition apparatus, wherein the plurality of vapor deposition sources can be adjusted in mounting inclination angle, and can be adjusted and fixed so that the evaporation centers of the plurality of vapor deposition sources coincide with one point on the substrate .
請求項3において、前記蒸着源移動機構にθ方向の移動手段を設けたことを特徴とする蒸着装置。  The vapor deposition apparatus according to claim 3, wherein the vapor deposition source moving mechanism is provided with moving means in the θ direction. 請求項3または請求項4において、前記蒸着源移動機構にZ方向の移動手段を設けたことを特徴とする蒸着装置。  5. The vapor deposition apparatus according to claim 3, wherein the vapor deposition source moving mechanism is provided with moving means in the Z direction. 減圧雰囲気とする蒸着室内に設けた固定部に基板を固定し、複数の蒸着源より発生する成膜材料が基板上に堆積して薄膜が形成されるように構成した蒸着装置において、
前記蒸着源移動機構は、前記蒸着室に対し固定する固定側と、ガイド部と駆動部との組み合わせにより所定方向に駆動移動する移動側とから構成され、
前記移動側に前記複数の蒸着源を固定して、前記複数の蒸着源を前記所定方向に移動制御するように構成し
前記複数の蒸着源は取付傾斜角度が調整自在であり、前記複数の蒸着源の蒸発中心が前記基板上の一点に合うように調整固定し得ることを特徴とする蒸着装置。
In a vapor deposition apparatus configured to fix a substrate to a fixed portion provided in a vapor deposition chamber to be a reduced pressure atmosphere, and to form a thin film by depositing film forming materials generated from a plurality of vapor deposition sources on the substrate,
The vapor deposition source moving mechanism is composed of a fixed side that is fixed to the vapor deposition chamber, and a moving side that is driven and moved in a predetermined direction by a combination of a guide unit and a driving unit,
And fixing the plurality of deposition source to the movable side, it constitutes the plurality of deposition source so as to move the control to the predetermined direction,
The vapor deposition apparatus, wherein the plurality of vapor deposition sources can be adjusted in mounting inclination angle, and can be adjusted and fixed so that the evaporation centers of the plurality of vapor deposition sources coincide with one point on the substrate .
請求項6において、前記移動側にロボットアームを設けたことを特徴とする蒸着装置。  The vapor deposition apparatus according to claim 6, wherein a robot arm is provided on the moving side. 減圧雰囲気とする蒸着室内に設けた固定部に基板を固定し、複数の蒸着源より発生する成膜材料が基板上に堆積して薄膜が形成されるように構成した蒸着装置において、
前記蒸着源移動機構は、前記蒸着室に対し固定する固定側と移動側とを有し、
前記移動側は、第1の駆動源によって駆動制御された第1の水平アームと、第2の駆動源によって駆動制御された第2の水平アームと、第3の駆動源によって駆動制御された水平板とを有し、
前記第1の水平アームと前記第2の水平アームと前記水平板は前記基板と平行かつそれぞれ水平回動方向に制御され、
前記水平板に前記複数の蒸着源を固定して、前記複数の蒸着源を移動制御するように構成し
前記複数の蒸着源は取付傾斜角度が調整自在であり、前記複数の蒸着源の蒸発中心が前記基板上の一点に合うように調整固定し得ることを特徴とする蒸着装置。
In a vapor deposition apparatus configured to fix a substrate to a fixed portion provided in a vapor deposition chamber to be a reduced pressure atmosphere, and to form a thin film by depositing film forming materials generated from a plurality of vapor deposition sources on the substrate,
The deposition source moving mechanism has a fixed side and a moving side that are fixed to the deposition chamber,
The moving side includes a first horizontal arm driven and controlled by a first drive source, a second horizontal arm driven and controlled by a second drive source, and a horizontal drive driven and controlled by a third drive source. A board,
The first horizontal arm, the second horizontal arm, and the horizontal plate are controlled in parallel to the substrate and in a horizontal rotation direction, respectively.
And fixing the plurality of deposition source to said horizontal plate, and configured to control the movement of the plurality of deposition source,
The vapor deposition apparatus, wherein the plurality of vapor deposition sources can be adjusted in mounting inclination angle, and can be adjusted and fixed so that the evaporation centers of the plurality of vapor deposition sources coincide with one point on the substrate .
請求項6乃至請求項8のいずれか1項において、前記蒸着源移動機構に前記基板と前記蒸着源との距離を調整する蒸着距離調整機構を設けたことを特徴とする蒸着装置。  9. The vapor deposition apparatus according to claim 6, wherein a vapor deposition distance adjusting mechanism that adjusts a distance between the substrate and the vapor deposition source is provided in the vapor deposition source moving mechanism. 請求項9において、前記蒸着距離調整機構は昇降駆動源と昇降ガイドとを有することを特徴とする蒸着装置。  The vapor deposition apparatus according to claim 9, wherein the vapor deposition distance adjusting mechanism includes a lift drive source and a lift guide. 請求項1乃至請求項10のいずれか1項において、前記蒸着源移動機構は、前記蒸着源の移動速度を制御し得る機能を有することを特徴とする蒸着装置。  11. The vapor deposition apparatus according to claim 1, wherein the vapor deposition source moving mechanism has a function of controlling a moving speed of the vapor deposition source. 請求項1乃至請求項11のいずれか1項において、前記蒸着源に膜厚センサー若しくはモニターを配設して、前記蒸着源移動機構により前記蒸着源と共に移動して常に膜厚レートを測定若しくはモニターして蒸着状況を把握できるように構成したことを特徴とする蒸着装置。12. A film thickness sensor or a monitor is disposed in the vapor deposition source according to any one of claims 1 to 11 , and the film thickness rate is constantly measured or monitored by moving with the vapor deposition source by the vapor deposition source moving mechanism. The vapor deposition apparatus is characterized in that the vapor deposition status can be grasped. 請求項1乃至請求項12のいずれか1項において、少なくとも前記基板の面方向に対する前記蒸着源移動機構による前記蒸着源の移動範囲を、前記基板の寸法より大きく設定したことを特徴とする蒸着装置。The vapor deposition apparatus according to any one of claims 1 to 12 , wherein a movement range of the vapor deposition source by the vapor deposition source movement mechanism at least with respect to a surface direction of the substrate is set larger than a dimension of the substrate. . 減圧雰囲気に基板を固定し、複数の蒸着源より発生する成膜材料を前記基板上に堆積して薄膜を形成する薄膜作製方法であって、A thin film manufacturing method for forming a thin film by fixing a substrate in a reduced-pressure atmosphere and depositing a film forming material generated from a plurality of vapor deposition sources on the substrate,
前記複数の蒸着源の蒸発中心が前記基板上の一点に合うように前記複数の蒸着源を固定し、前記複数の蒸着源を一緒に、前記基板に対して自由に移動させて蒸着することを特徴とする薄膜作製方法。Fixing the plurality of deposition sources so that the evaporation centers of the plurality of deposition sources are aligned with a point on the substrate, and performing the deposition by moving the plurality of deposition sources together with respect to the substrate. A thin film manufacturing method characterized.
請求項14において、前記複数の蒸着源を前記基板に対してX、Y方向に移動させて蒸着することを特徴とする薄膜作製方法。15. The thin film manufacturing method according to claim 14, wherein the plurality of vapor deposition sources are vapor-deposited by moving in the X and Y directions with respect to the substrate. 請求項14又は請求項15において、前記複数の蒸着源を前記基板の板面に沿ってジグザグに移動させて、前記基板の板面をくまなく移動させることを特徴とする薄膜作製方法。16. The thin film manufacturing method according to claim 14, wherein the plurality of vapor deposition sources are moved in a zigzag manner along the plate surface of the substrate, and the plate surface of the substrate is moved all over. 請求項14乃至請求項16のいずれか1項において、前記複数の蒸着源を前記基板に対してX、Y、Z方向に移動させて蒸着することを特徴とする薄膜作製方法。17. The thin film manufacturing method according to claim 14, wherein the deposition is performed by moving the plurality of deposition sources in the X, Y, and Z directions with respect to the substrate. 請求項14乃至請求項17のいずれか1項において、前記複数の蒸着源とともに膜厚センサを一緒に移動させることを特徴とする薄膜作製方法。18. The thin film manufacturing method according to claim 14, wherein a film thickness sensor is moved together with the plurality of vapor deposition sources. 請求項14乃至請求項18のいずれか1項において、前記複数の蒸着源はホスト蒸着源とドーパント蒸着源であることを特徴とする薄膜作製方法。19. The thin film manufacturing method according to claim 14, wherein the plurality of evaporation sources are a host evaporation source and a dopant evaporation source.
JP2002196348A 2002-07-04 2002-07-04 Vapor deposition apparatus and thin film manufacturing method Expired - Lifetime JP4286496B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002196348A JP4286496B2 (en) 2002-07-04 2002-07-04 Vapor deposition apparatus and thin film manufacturing method
KR1020020070268A KR100934073B1 (en) 2002-07-04 2002-11-13 Deposition equipment and thin film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002196348A JP4286496B2 (en) 2002-07-04 2002-07-04 Vapor deposition apparatus and thin film manufacturing method

Publications (3)

Publication Number Publication Date
JP2004035964A JP2004035964A (en) 2004-02-05
JP2004035964A5 JP2004035964A5 (en) 2005-10-20
JP4286496B2 true JP4286496B2 (en) 2009-07-01

Family

ID=31704467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002196348A Expired - Lifetime JP4286496B2 (en) 2002-07-04 2002-07-04 Vapor deposition apparatus and thin film manufacturing method

Country Status (2)

Country Link
JP (1) JP4286496B2 (en)
KR (1) KR100934073B1 (en)

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG113448A1 (en) 2002-02-25 2005-08-29 Semiconductor Energy Lab Fabrication system and a fabrication method of a light emitting device
US7309269B2 (en) 2002-04-15 2007-12-18 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating light-emitting device and apparatus for manufacturing light-emitting device
TWI336905B (en) 2002-05-17 2011-02-01 Semiconductor Energy Lab Evaporation method, evaporation device and method of fabricating light emitting device
US20040035360A1 (en) 2002-05-17 2004-02-26 Semiconductor Energy Laboratory Co., Ltd. Manufacturing apparatus
US20040040504A1 (en) 2002-08-01 2004-03-04 Semiconductor Energy Laboratory Co., Ltd. Manufacturing apparatus
TWI277363B (en) 2002-08-30 2007-03-21 Semiconductor Energy Lab Fabrication system, light-emitting device and fabricating method of organic compound-containing layer
US7211461B2 (en) 2003-02-14 2007-05-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing apparatus
JP4493926B2 (en) * 2003-04-25 2010-06-30 株式会社半導体エネルギー研究所 Manufacturing equipment
JP4522777B2 (en) * 2003-07-25 2010-08-11 株式会社半導体エネルギー研究所 Method for manufacturing light emitting device
US7211454B2 (en) 2003-07-25 2007-05-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of a light emitting device including moving the source of the vapor deposition parallel to the substrate
US8123862B2 (en) 2003-08-15 2012-02-28 Semiconductor Energy Laboratory Co., Ltd. Deposition apparatus and manufacturing apparatus
KR20060018746A (en) * 2004-08-25 2006-03-02 삼성에스디아이 주식회사 Apparatus for depositing organic material
JP4516499B2 (en) * 2004-08-25 2010-08-04 三星モバイルディスプレイ株式會社 Organic vapor deposition equipment
KR100646502B1 (en) * 2004-12-13 2006-11-15 삼성에스디아이 주식회사 Organic matter plating device
JP4384109B2 (en) * 2005-01-05 2009-12-16 三星モバイルディスプレイ株式會社 Drive shaft of vapor deposition source for vapor deposition system and vapor deposition system having the same
KR101208995B1 (en) * 2005-04-20 2012-12-06 주성엔지니어링(주) Evaporation equipment including deposits vessel
KR100729096B1 (en) 2006-03-29 2007-06-14 삼성에스디아이 주식회사 Deposition method for vaporizing organic and the deposition apparatus for the same
JP2007291506A (en) 2006-03-31 2007-11-08 Canon Inc Film deposition method
JP2008274322A (en) * 2007-04-26 2008-11-13 Sony Corp Vapor deposition apparatus
KR100977971B1 (en) * 2007-06-27 2010-08-24 두산메카텍 주식회사 Evaporation equipment
US7897971B2 (en) * 2007-07-26 2011-03-01 Semiconductor Energy Laboratory Co., Ltd. Display device
KR20090130559A (en) * 2008-06-16 2009-12-24 삼성모바일디스플레이주식회사 Transfer apparatus and organic deposition device with the same
JP2010020210A (en) * 2008-07-14 2010-01-28 Seiko Epson Corp Manufacturing method and manufacture device of screen, and screen
KR20100013808A (en) * 2008-08-01 2010-02-10 삼성모바일디스플레이주식회사 Apparatus for depositing organic material
JP5231917B2 (en) * 2008-09-25 2013-07-10 株式会社日立ハイテクノロジーズ Deposition equipment
KR101076227B1 (en) * 2008-12-23 2011-10-26 주식회사 테스 Vacuum evaporation apparatus
JP5795028B2 (en) * 2009-05-22 2015-10-14 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Thin film deposition equipment
TWI475124B (en) 2009-05-22 2015-03-01 Samsung Display Co Ltd Thin film deposition apparatus
TWI472639B (en) 2009-05-22 2015-02-11 Samsung Display Co Ltd Thin film deposition apparatus
US8882920B2 (en) 2009-06-05 2014-11-11 Samsung Display Co., Ltd. Thin film deposition apparatus
US8882921B2 (en) 2009-06-08 2014-11-11 Samsung Display Co., Ltd. Thin film deposition apparatus
JP5328726B2 (en) 2009-08-25 2013-10-30 三星ディスプレイ株式會社 Thin film deposition apparatus and organic light emitting display device manufacturing method using the same
JP5677785B2 (en) 2009-08-27 2015-02-25 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Thin film deposition apparatus and organic light emitting display device manufacturing method using the same
US8696815B2 (en) 2009-09-01 2014-04-15 Samsung Display Co., Ltd. Thin film deposition apparatus
US8876975B2 (en) 2009-10-19 2014-11-04 Samsung Display Co., Ltd. Thin film deposition apparatus
KR200449417Y1 (en) * 2009-12-31 2010-07-13 주식회사 나파스 traffic safety signboard for portable
KR101084184B1 (en) 2010-01-11 2011-11-17 삼성모바일디스플레이주식회사 Apparatus for thin layer deposition
KR101174875B1 (en) 2010-01-14 2012-08-17 삼성디스플레이 주식회사 Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR101193186B1 (en) 2010-02-01 2012-10-19 삼성디스플레이 주식회사 Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR101156441B1 (en) 2010-03-11 2012-06-18 삼성모바일디스플레이주식회사 Apparatus for thin layer deposition
KR101202348B1 (en) 2010-04-06 2012-11-16 삼성디스플레이 주식회사 Apparatus for thin layer deposition and method for manufacturing of organic light emitting display apparatus using the same
US8894458B2 (en) 2010-04-28 2014-11-25 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
JP5476227B2 (en) * 2010-06-29 2014-04-23 株式会社日立ハイテクノロジーズ Film forming apparatus and film forming method
KR101223723B1 (en) 2010-07-07 2013-01-18 삼성디스플레이 주식회사 Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR101673017B1 (en) 2010-07-30 2016-11-07 삼성디스플레이 주식회사 Apparatus for thin layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR101723506B1 (en) 2010-10-22 2017-04-19 삼성디스플레이 주식회사 Apparatus for organic layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR101738531B1 (en) 2010-10-22 2017-05-23 삼성디스플레이 주식회사 Method for manufacturing of organic light emitting display apparatus, and organic light emitting display apparatus manufactured by the method
KR20120045865A (en) 2010-11-01 2012-05-09 삼성모바일디스플레이주식회사 Apparatus for organic layer deposition
KR20120065789A (en) 2010-12-13 2012-06-21 삼성모바일디스플레이주식회사 Apparatus for organic layer deposition
KR101760897B1 (en) 2011-01-12 2017-07-25 삼성디스플레이 주식회사 Deposition source and apparatus for organic layer deposition having the same
KR101840654B1 (en) 2011-05-25 2018-03-22 삼성디스플레이 주식회사 Apparatus for organic layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR101852517B1 (en) 2011-05-25 2018-04-27 삼성디스플레이 주식회사 Apparatus for organic layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR101857249B1 (en) 2011-05-27 2018-05-14 삼성디스플레이 주식회사 Patterning slit sheet assembly, apparatus for organic layer deposition, method for manufacturing organic light emitting display apparatus and organic light emitting display apparatus
KR101826068B1 (en) 2011-07-04 2018-02-07 삼성디스플레이 주식회사 Apparatus for thin layer deposition
US9055654B2 (en) * 2011-12-22 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Film formation apparatus and film formation method
KR101975020B1 (en) * 2012-04-24 2019-05-07 삼성디스플레이 주식회사 Organic light emitting diode display and manufacturing method thereof
KR101462595B1 (en) * 2012-11-22 2014-11-18 주식회사 에스에프에이 Vaccum deposition apparatus
KR102075525B1 (en) 2013-03-20 2020-02-11 삼성디스플레이 주식회사 Deposition apparatus for organic layer, method for manufacturing organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR102107104B1 (en) 2013-06-17 2020-05-07 삼성디스플레이 주식회사 Apparatus for organic layer deposition, and method for manufacturing of organic light emitting display apparatus using the same
KR101530031B1 (en) * 2013-11-26 2015-06-19 주식회사 에스에프에이 Thin layers deposition apparatus and method of thin layers deposition
EP3080327A1 (en) * 2013-12-10 2016-10-19 Applied Materials, Inc. Evaporation source for organic material, apparatus having an evaporation source for organic material, system having an evaporation deposition apparatus with an evaporation source for organic materials, and method for operating an evaporation source for organic material
JP2017036512A (en) * 2016-11-07 2017-02-16 株式会社半導体エネルギー研究所 Deposition device
KR20220007159A (en) * 2019-05-13 2022-01-18 가부시키가이샤 알박 Vapor deposition unit and vacuum deposition apparatus including the deposition unit
CN113574202B (en) * 2019-05-13 2022-12-02 株式会社爱发科 Evaporation unit and vacuum evaporation device with same
KR102355870B1 (en) * 2020-07-30 2022-02-07 주식회사 선익시스템 Deposition device for controlling the location of deposition source
CN117089811B (en) * 2023-10-17 2024-01-30 焕澄(上海)新材料科技发展有限公司 Device for preparing optical coating film

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415831U (en) * 1990-05-30 1992-02-07
KR19980073490A (en) * 1997-03-14 1998-11-05 김광호 Plasma Chamber for Semiconductor Manufacturing
KR100518147B1 (en) * 1998-06-01 2005-11-25 가부시키가이샤 아루박 Evaporation apparatus, organic material evaporation source, and method of manufacturing thin organic film
JP2000138095A (en) * 1998-08-26 2000-05-16 Toray Ind Inc Manufacture of light emitting device
KR100348970B1 (en) * 1998-12-31 2002-12-26 주식회사 머큐리 Fiber Optic Substrate Deposition Device
KR100329207B1 (en) * 1999-05-27 2002-03-22 방우영 A Large Area Deposition Method and A Deposition System Thereby
JP2001081558A (en) * 1999-09-13 2001-03-27 Asahi Optical Co Ltd Film deposition device and film deposition method
KR100375403B1 (en) * 2000-08-24 2003-03-08 (주)대진반도체 Vacuum coating apparatus incorporating coaters having general independent function

Also Published As

Publication number Publication date
KR100934073B1 (en) 2009-12-24
KR20040004755A (en) 2004-01-14
JP2004035964A (en) 2004-02-05

Similar Documents

Publication Publication Date Title
JP4286496B2 (en) Vapor deposition apparatus and thin film manufacturing method
WO2015165167A1 (en) Device and method for evaporating substrate
JP2004035964A5 (en)
JP2019518862A (en) Vacuum system and method for depositing multiple materials on a substrate
JP2020518121A (en) Device for aligning carriers in a vacuum chamber, vacuum system, and method for aligning carriers in a vacuum chamber
KR101108152B1 (en) Deposition source
KR20070012314A (en) Organic material evaporation source and organic vapor deposition device
KR20130010730A (en) Deposition source and deposition apparatus with the same
US20080011602A1 (en) Deposition apparatus and deposition method
US7803229B2 (en) Apparatus and method for compensating uniformity of film thickness
CN105154831A (en) Vacuum evaporating source device and vacuum evaporation device
JP2010531391A (en) Vapor deposition equipment
WO2015100730A1 (en) Write-through vacuum evaporation system and a method therefor
US20210328147A1 (en) Carrier for supporting a substrate or a mask
JP4417019B2 (en) Mask apparatus and vacuum film forming apparatus
KR20200033457A (en) Linear source and substrate processing system having the same
JP2019534938A (en) Material deposition apparatus, vacuum deposition system, and method for performing vacuum deposition
JP2014070240A (en) Vapor deposition apparatus, and vapor deposition control method
KR102215483B1 (en) Apparatus for handling carrier in vacuum chamber, vacuum deposition system, and method of handling carrier in vacuum chamber
CN216303971U (en) Evaporation plating equipment and evaporation plating system
KR102543415B1 (en) Substrate mounting apparatus with seesaw motion applied
TWI816883B (en) Deposition apparatus
CN214327861U (en) Evaporation plating equipment
KR102167534B1 (en) Apparatus and vacuum system for carrier alignment in vacuum chamber, and method of alignment of carriers
KR102584726B1 (en) laser processing apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4286496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250