JP4777682B2 - Scan exposure equipment - Google Patents

Scan exposure equipment Download PDF

Info

Publication number
JP4777682B2
JP4777682B2 JP2005112480A JP2005112480A JP4777682B2 JP 4777682 B2 JP4777682 B2 JP 4777682B2 JP 2005112480 A JP2005112480 A JP 2005112480A JP 2005112480 A JP2005112480 A JP 2005112480A JP 4777682 B2 JP4777682 B2 JP 4777682B2
Authority
JP
Japan
Prior art keywords
substrate
exposure
mask
imaging
transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005112480A
Other languages
Japanese (ja)
Other versions
JP2006292955A (en
Inventor
康一 梶山
琢郎 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
V Technology Co Ltd
Original Assignee
V Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by V Technology Co Ltd filed Critical V Technology Co Ltd
Priority to JP2005112480A priority Critical patent/JP4777682B2/en
Publication of JP2006292955A publication Critical patent/JP2006292955A/en
Application granted granted Critical
Publication of JP4777682B2 publication Critical patent/JP4777682B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

本発明は、液晶パネル用カラーフィルタ等を製造する際に用いられるスキャン露光装置に関するものである。 The present invention relates to a scanning exposure apparatus that is used in fabricating a liquid crystal panel for color filters and the like.

従来、液晶パネル用カラーフィルタの製造において、ブラックマトリックスを形成した基板上に赤(R)、緑(G)、青(B)の着色層を形成するにあたり、基板を載置した基板ステージを露光部に搬送して位置決めし、該露光部において光源部からの露光光を基板の面積より小さいフォトマスクを通して基板上の所定領域に照射して第1回目の露光を行い、次に、前記基板ステージを所定距離だけステップ移動させて基板を露光部に再度位置決めした後に、第1回目に露光できなかった領域に第2回目の露光を行い、これを繰り返して大型の基板上の全面にフォトマスクのパターンを転写するようにした露光方法または露光装置が知られている(例えば、特許文献1、特許文献2参照)。
また、ロールに巻かれたシート状基材(基板)を露光部に繰り出して位置決めし、該露光部において光源部からの露光光を単位基板に相当する大きさのフォトマスクを通してシート状基材上の所定領域に照射してフォトマスクのパターンを転写し、次いで、前記シート状基材を単位基板の相当分だけ前記露光部に繰り出して位置決めし、同様な露光操作を繰り返すことにより、順次、シート状基材の長手方向にフォトマスクのパターンを転写していくようにした露光方法または露光装置が知られている(例えば、特許文献3、特許文献4参照)。
特開平9−127702号公報 特開2000−347020号公報 特開2004−341280号公報 特開2001−264999号公報
Conventionally, in the manufacture of color filters for liquid crystal panels, a substrate stage on which a substrate is placed is exposed when a red (R), green (G), or blue (B) colored layer is formed on a substrate on which a black matrix is formed. The first exposure is performed by irradiating a predetermined region on the substrate with exposure light from the light source unit through a photomask smaller than the area of the substrate in the exposure unit, and then performing the first exposure. Is moved by a predetermined distance to position the substrate again in the exposure section, and then the second exposure is performed on the area that could not be exposed for the first time, and this is repeated to form a photomask on the entire surface of the large substrate. An exposure method or an exposure apparatus that transfers a pattern is known (see, for example, Patent Document 1 and Patent Document 2).
In addition, the sheet-like substrate (substrate) wound around the roll is fed to the exposure unit and positioned, and the exposure light from the light source unit is passed through the photomask having a size corresponding to the unit substrate on the exposure unit. The photomask pattern is transferred by irradiating a predetermined area of the sheet, and then the sheet-like base material is fed out and positioned by an amount corresponding to the unit substrate to the exposure unit, and the same exposure operation is repeated to sequentially form the sheets. An exposure method or an exposure apparatus in which a photomask pattern is transferred in the longitudinal direction of a substrate is known (see, for example, Patent Document 3 and Patent Document 4).
JP-A-9-127702 JP 2000-347020 A JP 2004-341280 A JP 2001-264999 A

しかし、前記露光方法または露光装置においては、前記基板(基材)の所定領域に対する露光が終了すると、一旦露光操作を終了してフォトマスクを基板(基材)に対して相対的にステップ移動させて、再度基板(基材)とフォトマスクとを位置合わせする操作を間欠的に繰り返す必要があるので、露光操作に時間が長くかかり、露光作業を効率的に行えない問題がある。また、フォトマスクの大きさを自重による撓みを防止する観点からより小さくすると、大型の基板に対して露光操作を繰り返す回数が多くなり、その分露光時間が長くなり、前記問題が一層顕著となる。
また、前記露光操作の繰り返し回数を減らすため、比較的大きなフォトマスクを使用した場合には、露光光に大きなエネルギーを必要とするので、光源部のパワーの限界から露光光の照射時間を長くしなけらばならず、結果的に露光時間を短縮することができない問題がある。
さらに、前記露光部において前記基板(基材)とフォトマスクの位置合わせを行うために、予め、前記基板(基材)とフォトマスクの双方にパターンとは別にアライメントマークを形成しておく必要があり、前記基板(基材)やフォトマスクの製造工程が煩雑となる問題がある。
However, in the exposure method or the exposure apparatus, when the exposure of the predetermined region of the substrate (base material) is completed, the exposure operation is once ended and the photomask is moved stepwise relative to the substrate (base material). In addition, since it is necessary to intermittently repeat the operation of aligning the substrate (base material) and the photomask again, there is a problem that the exposure operation takes a long time and the exposure operation cannot be performed efficiently. Further, if the size of the photomask is made smaller from the viewpoint of preventing deflection due to its own weight, the number of times of repeating the exposure operation for a large substrate increases, and the exposure time becomes longer, and the above problem becomes more prominent. .
In addition, in order to reduce the number of repetitions of the exposure operation, when a relatively large photomask is used, the exposure light requires a large amount of energy. As a result, there is a problem that the exposure time cannot be shortened.
Further, in order to align the substrate (base material) and the photomask in the exposure unit, it is necessary to form alignment marks separately from the pattern on both the substrate (base material) and the photomask in advance. There is a problem that the manufacturing process of the substrate (base material) and the photomask becomes complicated.

本発明は、上記事情に鑑みてなされたものであって、小さなマスクを使用して広い露光領
域を有する基板を、露光光を安定した状態で照射して効率的に露光することができるスキ
ャン露光装置を提供することを目的とする。
The present invention was made in view of the above circumstances, liked to a substrate having a broad exposure area using a small mask, the exposure light can be efficiently exposed by irradiation in a stable state
An object of the present invention is to provide a can exposure apparatus .

本発明は、前記課題を解決するために、以下の点を特徴としている。
すなわち、請求項1に係るスキャン露光装置は、基板を一定速度で一定方向に搬送する基板搬送手段と、該基板搬送手段によって搬送されている状態の基板に対して、露光部で連続光源からの露光光を光路上に設けたマスクの開口部を通して照射して前記開口部の像を基板上に転写する露光光学系とを設けたスキャン露光装置であって、前記基板に予め形成された基準パターンを基板の移動中に撮像する撮像手段と、該撮像手段で撮像された基準パターンが撮像位置から露光開始位置に移動された時に、前記マスクを基板の搬送に同期させて基板の進行方向へ前進移動を開始させると共に前記露光光の基板への照射を開始させ、前記基準パターンが露光停止位置に移動した時に、露光光の基板への照射を停止させると共にマスクの前進移動を停止させて前記露光開始位置に戻すように制御する制御装置とを備え、
前記撮像手段は基板の搬送方向に直交して設けられ且つ受光素子は前記基板の幅より大きい長さに亘って一直線上に配列されてなるラインCCDであり、
前記制御装置は、前記撮像手段で撮像された前記基板の基準パターンのパターンエッジの画像にもとづき基板上の搬送方向及びこれに直角な方向における基準位置を検出する画像処理部と、
前記撮像された基準パターンが前記露光開始位置に移動された時に、前記搬送方向に直角な方向における基準位置にもとづいて前記マスクの前記搬送方向に直角な方向における位置ずれを演算する演算部と、
前記マスクを支持するマスクステージを前進移動させると共に、該移動方向に直交する方向における位置ずれを位置調整するマスク駆動手段とを備え、
該マスク駆動手段を作動させて前記基板の搬送方向に直角な方向における前記基準位置に基づいてマスクの搬送方向に直角な方向における位置調節を行うことを特徴とする。
The present invention is characterized by the following points in order to solve the above problems.
That is, the scan exposure apparatus according to claim 1 is configured such that a substrate transport unit that transports a substrate in a constant direction at a constant speed and a substrate that is being transported by the substrate transport unit are A scanning exposure apparatus provided with an exposure optical system that irradiates exposure light through an opening of a mask provided on an optical path and transfers an image of the opening onto the substrate, and a reference pattern previously formed on the substrate Image pickup means for picking up images while the substrate is moving, and when the reference pattern picked up by the image pickup means is moved from the image pickup position to the exposure start position, the mask is moved forward in the substrate moving direction in synchronization with the substrate transfer. The movement is started and irradiation of the substrate with the exposure light is started. When the reference pattern is moved to the exposure stop position, the irradiation of the exposure light onto the substrate is stopped and the mask is moved forward. Locked thereby and a control unit for controlling to return to the exposure start position,
The image pickup means is a line CCD that is provided orthogonal to the transport direction of the substrate and the light receiving elements are arranged in a straight line over a length larger than the width of the substrate,
The control device is configured to detect a reference position in a transport direction on the substrate and a direction perpendicular thereto based on a pattern edge image of the reference pattern of the substrate imaged by the imaging unit;
An arithmetic unit that calculates a positional deviation of the mask in a direction perpendicular to the transport direction based on a reference position in a direction perpendicular to the transport direction when the imaged reference pattern is moved to the exposure start position;
A mask stage that moves the mask stage that supports the mask forward, and adjusts a positional deviation in a direction orthogonal to the moving direction; and
The mask driving means is operated to adjust the position in the direction perpendicular to the mask conveyance direction based on the reference position in the direction perpendicular to the substrate conveyance direction.

請求項2に係るスキャン露光装置は、基板を一定速度で一定方向に搬送する基板搬送手段と、該基板搬送手段によって搬送されている状態の基板に対して、露光部で連続光源からの露光光を光路上に設けたマスクの開口部を通して照射して前記開口部の像を基板上に転写する露光光学系とを設けたスキャン露光装置であって、
前記基板に予め形成された基準パターンを基板の移動中に撮像する撮像手段と、該撮像手段で撮像された基準パターンが撮像位置から露光開始位置に移動された時に、前記マスクを基板の搬送に同期させて基板の進行方向へ前進移動を開始させると共に前記露光光の基板への照射を開始させ、前記基準パターンが露光停止位置に移動した時に、露光光の基板への照射を停止させると共にマスクの前進移動を停止させて前記露光開始位置に戻すように制御する制御装置とを備え、
前記撮像手段は基板の搬送方向に直交して設けられ且つ受光素子は前記基板の幅より大きい長さに亘って一直線上に配列されてなるラインCCDであり、
前記制御装置は、前記撮像手段で撮像された前記基板の基準パターンのパターンエッジの画像にもとづき基板上の搬送方向及びこれに直角な方向における基準位置を検出する画像処理部と、
前記撮像された基準パターンが前記露光開始位置に移動された時に、前記各基準位置の検出によって求めた基板の搬送方向に対する傾き角を演算する演算部と、
前記マスクを支持するマスクステージを前進移動させると共に前記マスクの前記露光光学系の光路に垂直な平面内における旋回角の位置調節を行うマスク駆動手段とを備え、
該マスク駆動手段を作動させて前記各基準位置の検出によって求めた基板の搬送方向に対する傾き角にもとづいて前記マスクの前記露光光学系の光路に垂直な平面内における旋回角の位置調節を行うことを特徴とする。
According to a second aspect of the present invention, there is provided a scanning exposure apparatus comprising: a substrate transport unit that transports a substrate in a constant direction at a constant speed; A scanning exposure apparatus provided with an exposure optical system that irradiates through an opening of a mask provided on the optical path and transfers an image of the opening onto a substrate,
Imaging means for imaging a reference pattern previously formed on the substrate during movement of the substrate, and when the reference pattern imaged by the imaging means is moved from the imaging position to the exposure start position, the mask is used for transporting the substrate. Synchronously, the substrate starts to move forward in the direction of movement of the substrate and starts to irradiate the substrate with the exposure light. When the reference pattern moves to the exposure stop position, the irradiation of the substrate with the exposure light is stopped and the mask is moved. And a control device for controlling to stop the forward movement and return to the exposure start position,
The image pickup means is a line CCD that is provided orthogonal to the transport direction of the substrate and the light receiving elements are arranged in a straight line over a length larger than the width of the substrate,
The control device is configured to detect a reference position in a transport direction on the substrate and a direction perpendicular thereto based on a pattern edge image of the reference pattern of the substrate imaged by the imaging unit;
A calculation unit that calculates an inclination angle with respect to a conveyance direction of the substrate obtained by detecting each reference position when the imaged reference pattern is moved to the exposure start position;
A mask driving means for moving the mask stage that supports the mask forward and adjusting the position of the turning angle of the mask in a plane perpendicular to the optical path of the exposure optical system;
The position of the turning angle of the mask in a plane perpendicular to the optical path of the exposure optical system is adjusted based on the tilt angle with respect to the transport direction of the substrate obtained by operating the mask driving means and detecting each reference position. It is characterized by.

請求項3に係るスキャン露光装置は、請求項2に記載のスキャン露光装置において、前記制御装置が、前記基板上の搬送方向に直角な方向における基準位置にもとづいて前記マスクの搬送方向に直角な方向における位置調節を行うことを特徴としている。 A scan exposure apparatus according to a third aspect is the scan exposure apparatus according to the second aspect , wherein the control device is perpendicular to the transport direction of the mask based on a reference position in a direction perpendicular to the transport direction on the substrate. It is characterized by adjusting the position in the direction.

本発明によれば、以下の優れた効果を奏する。
請求項1に係るスキャン露光装置によれば、基板搬送手段によって基板を搬送しながらマスクの開口部の形状を連続的に転写して露光を行うことができるので、小さなマスクを使用する場合であっても、基板の間欠的なステップ移動による露光をする必要がなく、広い露光領域を有する基板に対する露光を効率的に行うことできる。
また、基板に形成された基準パターンが露光開始位置に達すると、該露光開始位置から露光停止位置までマスクが基板と同期して移動され、この間に連続光源からの露光光がマスクの開口部を通して基板に照射されるので、基板に対して適切な露光時間を確保して安定した露光を行うことができる。
The present invention has the following excellent effects.
According to the scan exposure apparatus of the first aspect, since the exposure can be performed by continuously transferring the shape of the opening of the mask while the substrate is transported by the substrate transport means, this is a case where a small mask is used. However, it is not necessary to perform exposure by intermittent step movement of the substrate, and the substrate having a wide exposure area can be efficiently exposed.
When the reference pattern formed on the substrate reaches the exposure start position, the mask is moved from the exposure start position to the exposure stop position in synchronization with the substrate. During this time, the exposure light from the continuous light source passes through the opening of the mask. Since the substrate is irradiated, an appropriate exposure time can be secured and stable exposure can be performed on the substrate.

しかも、基板の搬送方向に直角な方向における位置ずれに合わせて、マスクの基板搬送方向に直角な方向における位置調節を確実に行うことができるので、露光中、基板が搬送方向に対して直角な方向に位置ずれを起こしても、その位置ずれに関わりなく、所定の露光予定領域の露光を正確に行うことができる。In addition, the position of the mask in the direction perpendicular to the substrate conveyance direction can be reliably adjusted in accordance with the positional deviation in the direction perpendicular to the substrate conveyance direction, so that the substrate is perpendicular to the conveyance direction during exposure. Even if the position shifts in the direction, the predetermined exposure scheduled area can be accurately exposed regardless of the position shift.
また、予め基板に形成された基準パターンを利用して基板の基準位置を検出して、該基準位置にもとづいて前記マスクの位置調節をすることができるので、前記マスクの位置調節のために、従来のように基板やマスクにアライメントマークを形成する必要がなく、それらの製造が容易である。  Further, since the reference position of the substrate is detected using a reference pattern formed in advance on the substrate, and the position of the mask can be adjusted based on the reference position, There is no need to form alignment marks on a substrate or mask as in the prior art, and their manufacture is easy.

請求項2に係るスキャン露光装置によれば、基板搬送手段によって基板を搬送しながら
マスクの開口部の形状を連続的に転写して露光を行うことができるので、小さなマスクを使用する場合であっても、基板の間欠的なステップ移動による露光をする必要がなく、広い露光領域を有する基板に対する露光を効率的に行うことできる。
また、基板に形成された基準パターンが露光開始位置に達すると、該露光開始位置から露光停止位置までマスクが基板と同期して移動され、この間に連続光源からの露光光がマスクの開口部を通して基板に照射されるので、基板に対して適切な露光時間を確保して安定した露光を行うことができる。
しかも、基板の搬送方向に対する傾き角に合わせて、マスクの旋回角の位置調節を確実に行うことができるので、露光中、基板が搬送方向に対して傾いた状態で移動することがあっても、その傾きに関わりなく、所定の露光予定領域の露光を正確に行うことができる。また、請求項1に係るスキャン露光装置と同様に前記マスクの位置調節のために、基板やマスクにアライメントマークを形成する必要がなく、それらの製造が容易である。
According to the scan exposure apparatus of the second aspect, since the exposure can be performed by continuously transferring the shape of the opening of the mask while the substrate is transported by the substrate transport means, this is a case where a small mask is used. However, it is not necessary to perform exposure by intermittent step movement of the substrate, and the substrate having a wide exposure area can be efficiently exposed.
When the reference pattern formed on the substrate reaches the exposure start position, the mask is moved from the exposure start position to the exposure stop position in synchronization with the substrate. During this time, the exposure light from the continuous light source passes through the opening of the mask. Since the substrate is irradiated, an appropriate exposure time can be secured and stable exposure can be performed on the substrate.
In addition, since the position of the turning angle of the mask can be reliably adjusted in accordance with the tilt angle with respect to the transport direction of the substrate, the substrate may move while being tilted with respect to the transport direction during exposure. Regardless of the inclination, it is possible to accurately perform exposure in a predetermined exposure scheduled area. Further, as in the case of the scanning exposure apparatus according to the first aspect, it is not necessary to form alignment marks on the substrate or the mask in order to adjust the position of the mask, and their manufacture is easy.

請求項3に係るスキャン露光装置によれば、基板の搬送方向に直角な方向における位置
ずれと基板の搬送方向に対する傾き角に合わせて、マスクの基板搬送方向に直角な方向に
おける位置と旋回角の位置調節をそれぞれ確実に行うことができるので、露光中、基板の
搬送状態における位置変化に関わりなく、所定の露光予定領域の露光を一層正確に行うこ
とができる。
According to the scanning exposure apparatus of the third aspect , the position and the turning angle of the mask in the direction perpendicular to the substrate transport direction are matched with the positional deviation in the direction perpendicular to the substrate transport direction and the tilt angle with respect to the substrate transport direction. Therefore, it is possible to more accurately perform exposure of a predetermined scheduled exposure area during the exposure regardless of the position change in the transport state of the substrate during the exposure.

以下、本発明の一実施の形態に係るスキャン露光装置について、図1、図2を参照して説明する。
図1において、1は本発明の一実施の形態に係るスキャン露光装置を示す。このスキャン露光装置1は、露光ステーション(露光部)2に設置された露光光学系3と、該露光光学系3の下方において露光対象である基板4を搬送する基板搬送手段5と、前記基板4上の特定部位を撮像するの撮像手段6と、前記露光ステーション2において前記基板4を下方から照明する画像認識用光源7と、前記各装置部と接続されてそれらを制御する制御装置8とを備え、前記露光光学系3からの露光光を露光光学系3に設けた後述のマスク11の開口部11aを通して前記基板4に照射して、前記開口部11aの形状にもとづくパターンを前記基板4上に転写するようになっている。
A scan exposure apparatus according to an embodiment of the present invention will be described below with reference to FIGS.
In FIG. 1, reference numeral 1 denotes a scan exposure apparatus according to an embodiment of the present invention. The scanning exposure apparatus 1 includes an exposure optical system 3 installed in an exposure station (exposure unit) 2, substrate transport means 5 for transporting a substrate 4 to be exposed below the exposure optical system 3, and the substrate 4. An image pickup means 6 for picking up an image of a specific part above, an image recognition light source 7 for illuminating the substrate 4 from below in the exposure station 2, and a control device 8 connected to the respective device units and controlling them. The substrate 4 is irradiated with exposure light from the exposure optical system 3 through an opening 11a of a mask 11 (described later) provided in the exposure optical system 3, and a pattern based on the shape of the opening 11a is formed on the substrate 4. It is supposed to be transferred to.

前記露光光学系3は、超高圧水銀灯等からなるランプ(連続光源)9と、該ランプ9の下方に設置されランプ9からの露光光を下方に向けて平行に投光する照明用レンズ10と、該照明用レンズ10の下方に設置されたマスク11と、前記ランプ9と照明用レンズ10との間に設置されたシャッター12とを備え、その光軸(光路)Sは鉛直方向に設定され、前記マスク11が光軸Sに垂直な水平面内に位置されている。前記ランプ9は一旦点灯すると消灯が指令されるまで連続的に露光光を照射し続けるものである。
また、前記マスク11は、図1において紙面に垂直なY軸方向(図2で左右方向)yに長辺を有し、Y軸方向yに直角なX軸方向(図1で左右方向、図2で上下方向)xに短辺を有する矩形状の平板からなり、Y軸方向yに沿って細長い矩形状の開口部11aが板面を貫通して設けられている。
なお、前記開口部11aのX軸方向xにおける幅Dは、例えば、基板4のピクセル18(後述)のX軸方向xにおける幅dよりやや大きく設定されており、マスク11の大きさは、前記開口部11aの大きさを設けるに必要かつ十分な面積があればよく、X軸方向xにおける幅が基板4のX軸方向xにおける長に比べて十分に小さなものとされ、Y軸方向yの長さが基板4のY軸方向yの幅より大きく設定されている(図2参照)。
The exposure optical system 3 includes a lamp (continuous light source) 9 composed of an ultra-high pressure mercury lamp or the like, and an illumination lens 10 that is installed below the lamp 9 and projects the exposure light from the lamp 9 downward in parallel. A mask 11 disposed below the illumination lens 10 and a shutter 12 disposed between the lamp 9 and the illumination lens 10, the optical axis (optical path) S of which is set in the vertical direction. The mask 11 is positioned in a horizontal plane perpendicular to the optical axis S. Once the lamp 9 is turned on, it continuously irradiates exposure light until a command to turn it off is given.
Further, the mask 11 has a long side in the Y-axis direction (left-right direction in FIG. 2) y perpendicular to the paper surface in FIG. 1, and the X-axis direction (left-right direction in FIG. 1, FIG. 1) perpendicular to the Y-axis direction y. 2 is formed of a rectangular flat plate having a short side in x), and an elongated rectangular opening 11a is provided through the plate surface along the Y-axis direction y.
The width D of the opening 11a in the X-axis direction x is set, for example, slightly larger than the width d of the pixel 18 (described later) of the substrate 4 in the X-axis direction x. The area necessary and sufficient for providing the size of the opening 11a may be sufficient, and the width in the X-axis direction x is sufficiently smaller than the length in the X-axis direction x of the substrate 4. The length is set larger than the width of the substrate 4 in the Y-axis direction y (see FIG. 2).

また、前記マスク11は、前記露光光学系3の光軸Sに垂直に設置されたマスクステージ13の上面に支持されており、前記マスクステージ13は、サーボモータ、リニアモータや所要の伝動機構等を有するマスク駆動手段14によって前記光軸Sに垂直な水平面内における前記マスク11のX軸方向xとY軸方向yへの移動、位置調節およびマスク11の中央を中心とする軸回りの旋回角の位置調節とを行うことができるようになっている。前記マスク駆動手段14には、前記マスクステージ13のX,Y軸方向x,yへの移動位置と旋回角度を検出するエンコーダ、リニアセンサー等の位置センサーと角度センサー(いずれも図示せず)が設けられ、該位置センサーと角度センサーの検出値にもとづいて前記マスク駆動手段14の動作が前記制御装置8によってフィードバック制御されるようになっている。   The mask 11 is supported on the upper surface of a mask stage 13 installed perpendicular to the optical axis S of the exposure optical system 3. The mask stage 13 is a servo motor, a linear motor, a required transmission mechanism, or the like. Is moved in the X-axis direction x and Y-axis direction y in the horizontal plane perpendicular to the optical axis S, the position is adjusted, and the turning angle about the center of the mask 11 is centered Can be adjusted. The mask driving unit 14 includes a position sensor and an angle sensor (not shown) such as an encoder and a linear sensor that detect a moving position and a turning angle of the mask stage 13 in the X and Y axis directions x and y. The operation of the mask driving means 14 is feedback-controlled by the control device 8 based on detection values of the position sensor and the angle sensor.

また、前記シャッター12は、例えば、Y軸方向yに沿って配置した一対のスリット板12a,12aを対向させ、それらの対向縁間に形成されるスリット12bを通して前記ランプ9からの露光光を前記レンズ10側に照射するもので、シャッター開閉手段12cによって一対のスリット板12a,12aをX軸方向xに動かして前記スリット12bを開閉するようになている。
前記基板搬送手段5は、前記露光ステーション2において前記露光光学系3の光軸Sに垂直な水平面に沿って配置され、前記基板4を水平面に平行に載置する基板ステージ15と、該基板ステージ15をX、Y軸方向x,yに沿って移動させるサーボモータ、リニアモータや所要の伝動機構等を有する基板駆動手段16とを備えている。前記基板駆動手段16には、前記基板4(基板ステージ15)のX、Y軸方向x,yへの移動位置を検出するエンコーダ、リニアセンサー等の位置センサー(図示せず)が設けられ、該位置センサーの検出値にもとづいて基板駆動手段16の動作が前記制御装置8によってフィードバック制御されるようになっている。
In addition, the shutter 12, for example, makes a pair of slit plates 12a and 12a arranged along the Y-axis direction y face each other, and exposes the exposure light from the lamp 9 through the slits 12b formed between the facing edges. The lens 10 is irradiated, and a pair of slit plates 12a and 12a are moved in the X-axis direction x by a shutter opening / closing means 12c to open and close the slit 12b.
The substrate transport means 5 is disposed along a horizontal plane perpendicular to the optical axis S of the exposure optical system 3 in the exposure station 2, and a substrate stage 15 for placing the substrate 4 parallel to the horizontal plane, and the substrate stage And a substrate driving means 16 having a servo motor, a linear motor, a required transmission mechanism, and the like that move 15 along the X and Y axis directions x and y. The substrate driving means 16 is provided with a position sensor (not shown) such as an encoder or a linear sensor for detecting the movement position of the substrate 4 (substrate stage 15) in the X and Y axis directions x and y. The operation of the substrate driving means 16 is feedback controlled by the control device 8 based on the detection value of the position sensor.

なお、前記基板ステージ15は、その下方から前記画像認識用照明7の照明光を遮らないように枠型構造をしており、前記基板4をその周辺部で支持するようになっている。
前記基板4は、例えば、カラーフィルタ基板であって、図2(a)に示すように、ブラックマトリックスBMの中に基板4の搬送方向(X軸方向x)に直角なY軸方向yに直線状に複数整列した各着色層(赤R、緑G、青B)用の矩形状の開口であるピクセル(基準パターン)18を、X軸方向xに順に複数列配置して形成したものであり、前記露光ステーション2において表面が前記露光光学系3の光軸Sに垂直な水平面に沿って移動するようになっている。
前記撮像手段6は、前記画像認識用照明7に対向して前記露光光学系3の内部において前記照明用レンズ10と前記マスク11との間に配置したハーフミラー19と、該ハーフミラー19によって反射された画像を撮像するリニアCCD20とを備えている。
The substrate stage 15 has a frame structure so as not to block the illumination light of the image recognition illumination 7 from below, and supports the substrate 4 at its peripheral portion.
The substrate 4 is, for example, a color filter substrate. As shown in FIG. 2A, the substrate 4 is straight in the Y-axis direction y perpendicular to the transport direction (X-axis direction x) of the substrate 4 in the black matrix BM. A plurality of pixels (reference patterns) 18 that are rectangular openings for each colored layer (red R, green G, blue B) arranged in a row are arranged in order in the X-axis direction x. The surface of the exposure station 2 moves along a horizontal plane perpendicular to the optical axis S of the exposure optical system 3.
The imaging means 6 is opposed to the image recognition illumination 7, and a half mirror 19 disposed between the illumination lens 10 and the mask 11 inside the exposure optical system 3, and is reflected by the half mirror 19. And a linear CCD 20 for capturing the captured image.

前記リニアCCD20は、例えば、受光素子20aをY軸方向yに一直線状に前記基板4の幅(Y軸方向yの寸法)より大きい長さにわたって配列してなるものである。前記ハーフミラー19の光軸S1の位置(撮像位置)Fは、前記露光光学系3の光軸Sの位置(露光中心位置)Eから基板4の進行方向イに対して後側(図1で右側、図2下側)へ予め所定距離Lだけ離されて設定されており、前記リニアCCD20で前記基板4のピクセル18の前方エッジ(パターンエッジ)18e1(基板4の進行方向イにおける前方の縁部)を前記画像認識用照明7の照明光を介して撮像してから、所定時間経過後に、ピクセル18が前記マスク11の開口部11aのX軸方向xにおける中央位置(露光中心位置)Eに到達するようになっている。さらに、前記リニアCCD20は、前記基板4のピクセル18のY軸方向yにおける側方エッジ(パターンエッジ)18e2を撮像するようになっている。   The linear CCD 20 includes, for example, light receiving elements 20a arranged in a straight line in the Y-axis direction y over a length larger than the width of the substrate 4 (dimension in the Y-axis direction y). The position (imaging position) F of the optical axis S1 of the half mirror 19 is rearward from the position (exposure center position) E of the optical axis S of the exposure optical system 3 with respect to the traveling direction A of the substrate 4 (in FIG. 1). A predetermined distance L is set in advance to the right side (the lower side in FIG. 2), and the front edge (pattern edge) 18e1 of the pixel 18 on the substrate 4 (the front edge in the traveling direction A of the substrate 4) is set by the linear CCD 20. Portion 18) through the illumination light of the image recognition illumination 7, and after a predetermined time has elapsed, the pixel 18 is positioned at the center position (exposure center position) E in the X-axis direction x of the opening 11a of the mask 11. To reach. Further, the linear CCD 20 images a side edge (pattern edge) 18e2 in the Y-axis direction y of the pixel 18 of the substrate 4.

前記制御装置8は、装置全体の動作を制御するものであり、前記リニアCCD20で前記基板4のピクセル18の前方エッジ18e1と側方エッジ18e2を撮像して得た画像データにもとづいて基板4のX軸方向xとY軸方向yにおける基準位置を検出する画像処理部21と、基板4のブラックマトリックスBMの設計データや前記基準位置に関するデータ等のデータ、装置全体の動作プログラム等を記憶する記憶部22と、前記撮像位置Fと露光中心位置Eとの間の距離Lと基板4の搬送速度とからピクセル18の前方エッジ18e1の位置が撮像位置Fから露光中心位置E、その距離hだけ手前の露光開始位置K、露光中心位置Eの後方の露光停止位置Jまでそれぞれ移動する時間を演算したり、前記画像処理部21で検出された前記側方エッジ18e2にもとづく基板4のY軸方向yにおける基準位置(Y軸基準位置)と前記マスク11(開口部11a)のY軸方向yにおける標準位置との位置ずれ(基板4のY軸位置ずれ)や、X,Y軸を含む平面内における基板4の搬送方向(X軸方向x)に対するずれ角(傾斜角)θ等を演算する演算部23と、前記ランプ9を点灯、消灯させるランプ電源部24と、前記前方エッジ18e1にもとづく基板4のX軸方向xにおける基準位置(X軸基準位置)に従って、各ピクセル18が前記露光開始位置Kに達し時に前記シャッター12のスリット12bが開き、各ピクセル18が前記露光停止位置Jに達したときにシャッター12のスリット12bが閉じるように、前記シャッター開閉手段12cによるシャッター12の開閉を制御するシャッターコントローラ25と、前記基板駆動手段16を作動させて前記基板ステージ15をX軸方向xに移動させる基板ステージコントローラ26と、前記マスク駆動手段14を作動させて、前記マスクステージ13のY軸方向yにおける位置を調節したり、マスクステージ13の水平面内における旋回角を調節するマスクステージコントローラ27と、前記画像処理部21、記憶部22、演算部23、ランプ電源部24、シャッターコントローラ25、基板ステージコントローラ26およびマスクステージコントローラ27に接続され、それらの動作を統合して制御する主制御部28とを備えている。   The control device 8 controls the operation of the entire device. The control device 8 controls the operation of the substrate 4 based on image data obtained by imaging the front edge 18e1 and the side edge 18e2 of the pixel 18 of the substrate 4 with the linear CCD 20. An image processing unit 21 for detecting a reference position in the X-axis direction x and the Y-axis direction y, a memory for storing design data of the black matrix BM of the substrate 4, data such as data relating to the reference position, an operation program for the entire apparatus, etc. The position of the front edge 18e1 of the pixel 18 from the imaging position F to the exposure center position E, and the distance h in front of the unit 22, the distance L between the imaging position F and the exposure center position E and the transport speed of the substrate 4. The time for moving to the exposure stop position J behind the exposure start position K and the exposure center position E is calculated, or the image processing unit 21 detects the time. The positional deviation between the reference position (Y-axis reference position) of the substrate 4 in the Y-axis direction y based on the side edge 18e2 and the standard position of the mask 11 (opening 11a) in the Y-axis direction y (Y-axis positional deviation of the substrate 4). ), A calculation unit 23 for calculating a deviation angle (tilt angle) θ with respect to the transport direction (X-axis direction x) of the substrate 4 in a plane including the X and Y axes, and a lamp power source for turning on and off the lamp 9 The slit 12b of the shutter 12 is opened when each pixel 18 reaches the exposure start position K according to the reference position (X-axis reference position) in the X-axis direction x of the substrate 4 based on the portion 24 and the front edge 18e1. The opening / closing of the shutter 12 by the shutter opening / closing means 12c is controlled so that the slit 12b of the shutter 12 is closed when the pixel 18 reaches the exposure stop position J. A shutter controller 25 for controlling, a substrate stage controller 26 for operating the substrate driving means 16 to move the substrate stage 15 in the X-axis direction x, and a mask driving means 14 for operating the Y of the mask stage 13 A mask stage controller 27 that adjusts the position in the axial direction y and adjusts the turning angle of the mask stage 13 in the horizontal plane, the image processing unit 21, the storage unit 22, the calculation unit 23, the lamp power supply unit 24, and the shutter controller 25. , And a main control unit 28 connected to the substrate stage controller 26 and the mask stage controller 27 and controlling their operations in an integrated manner.

次に、上記のように構成されたスキャン露光装置1の作用と共に、本発明の一実施の形態に係るスキャン露光方法について図3、図4を参照しながら説明する。
先ず、前記制御装置8を動作状態としてスキャン露光装置1を作動させると、前記主制御部28の指令で前記画像認識用照明7が点灯されると共に、前記ランプ電源部24の作動でランプ9が点灯されて露光準備状態となる(ステップS1)。このときは、図3(a)に示すように、前記シャッター12はスリット12bが閉じられており、前記マスクステージ13はマスク11の開口部11aを露光開始位置Kに位置させた状態(開口部11aのX軸方向xにおける中央が露光開始位置Kにあり、開口部11aのY軸方向yの位置が標準位置に位置された状態)で停止されている。次いで、主制御部28の指令で前記基板ステージコントローラ26が作動して前記基板搬送手段5の基板駆動手段16が駆動され、前記基板4が基板ステージ15によって露光ステーション2を水平を保った状態として進行方向イへ搬送される(ステップS2)。その間、前記リニアCCD20が、基板4の下側から前記画像認識用照明7によって照射され、前記基板4に形成されたピクセル18を通過した照明光を、前記ハーフミラー19を経て受光することにより、前記ピクセル18の画像データを取得する(ステップS3)。
Next, a scan exposure method according to an embodiment of the present invention will be described with reference to FIGS. 3 and 4 together with the operation of the scan exposure apparatus 1 configured as described above.
First, when the scanning exposure apparatus 1 is operated with the control device 8 in the operating state, the image recognition illumination 7 is turned on by a command from the main control unit 28, and the lamp 9 is activated by the operation of the lamp power supply unit 24. It is lit and ready for exposure (step S1). At this time, as shown in FIG. 3A, the slit 12b of the shutter 12 is closed, and the mask stage 13 is in a state where the opening 11a of the mask 11 is positioned at the exposure start position K (opening). 11a is stopped at the exposure start position K in the X-axis direction x, and the position of the opening 11a in the Y-axis direction y is positioned at the standard position). Next, the substrate stage controller 26 is actuated by a command from the main controller 28 to drive the substrate driving means 16 of the substrate transport means 5 so that the substrate 4 keeps the exposure station 2 horizontal by the substrate stage 15. It is conveyed in the traveling direction (a) (step S2). Meanwhile, the linear CCD 20 receives illumination light that has been irradiated by the image recognition illumination 7 from the lower side of the substrate 4 and passed through the pixels 18 formed on the substrate 4 through the half mirror 19. Image data of the pixel 18 is acquired (step S3).

前記リニアCCD20によって得られた画像データは、前記画像処理部21に送られて処理され、Y軸方向yに沿って整列する各ピクセル18の前方エッジ18e1の位置(X軸基準位置)と、X軸方向xに沿って整列する一列の各ピクセル18の側方エッジ18e2の位置(Y軸基準位置)を検出する(ステップS4)。前記基板4の進行方向イにおける最前列(着色層R)のピクセル18aのX軸基準位置とY軸基準位置とが検出されると、前記演算部23が、前記露光ステーション2における露光開始位置Kと前記撮像位置Fとの間の距離(L−h)および露光停止位置Jと撮像位置Fとの間の距離(L+h)と予め設定された基板4の搬送速度とから、前記最前列のピクセル18aの前記露光開始位置Kと露光停止位置Jへの各到達時間をそれぞれ演算すると共に、前記マスク11の開口部11aのY軸方向yにおける標準位置と前記基板4上のY軸基準位置との位置ずれ(基板4のY軸位置ずれ))を演算し、さらに、図2(b)に示すように、Y軸方向yに離れて整列している一対のピクセル18,18のX軸基準位置の変位量tと一対のピクセル18,18間の距離uとから、基板4のX,Y軸を含む平面内におけるX、Y軸からのずれ角(基板4の搬送方向に対する傾斜角)θを演算する(ステップS5)。   The image data obtained by the linear CCD 20 is sent to the image processing unit 21 for processing, and the position of the front edge 18e1 of each pixel 18 aligned along the Y-axis direction y (X-axis reference position), X The position (Y-axis reference position) of the side edge 18e2 of each pixel 18 aligned in the axial direction x is detected (step S4). When the X-axis reference position and the Y-axis reference position of the pixels 18a in the front row (colored layer R) in the traveling direction (a) of the substrate 4 are detected, the calculation unit 23 performs the exposure start position K in the exposure station 2. And the imaging position F, the distance between the exposure stop position J and the imaging position F (L + h), and the preset transport speed of the substrate 4, the pixels in the foremost row. Each arrival time to the exposure start position K and the exposure stop position J of 18a is calculated, and the standard position in the Y-axis direction y of the opening 11a of the mask 11 and the Y-axis reference position on the substrate 4 are calculated. Position deviation (Y-axis position deviation of the substrate 4)), and further, as shown in FIG. 2B, the X-axis reference position of the pair of pixels 18 and 18 aligned apart in the Y-axis direction y. Displacement t and a pair of pixels 1 , And a distance u between 18 calculates X of the substrate 4, X in the plane including the Y-axis, the deviation angle from the Y axis theta (angle of inclination with respect to the transport direction of the substrate 4) (step S5).

そして、前記主制御部28は、最前列(赤Rの着色層)のピクセル18aのX軸基準位置が検出された時に内蔵のタイマで前記各到達時間を計時しており、露光開始位置Kへの到達時間の計時が終了すると、前記演算部23で演算された基板4のY軸位置ずれと傾斜角θとに応じて、前記マスクステージコントローラ27に指令して前記マスク駆動手段14を作動させるので、前記マスク駆動手段14によって前記マスクステージ13のY軸方向yにおける位置と水平面内(露光光学系3の光軸Sに平行な軸回り)における旋回角が調節されて、マスク11の開口部11aの位置が前記基板4の露光予定領域に正しく合わせられる(ステップS6)。これと同時に、図3(b)に示すように、前記シャッターコントローラ25が主制御部28の指令を受けてシャッター開閉手段12cを作動させるので、前記シャッター12のスリット12bが開放され(ステップS7)、また、前記マスクコントローラ27が主制御部28の指令を受けて動作し、前記基板ステージコントローラ26による基板駆動手段16の作動に同期させてマスク駆動手段14を作動させるので、前記マスクステージ13(マスク11)が前記基板ステージ15(基板4)と同期して同一の速度で基板4の進行方向イへ移動する。   The main control unit 28 measures each arrival time with a built-in timer when the X-axis reference position of the pixel 18a in the front row (red R colored layer) is detected, and moves to the exposure start position K. Is finished, the mask drive unit 14 is operated by instructing the mask stage controller 27 according to the Y-axis position shift of the substrate 4 and the tilt angle θ calculated by the calculator 23. Therefore, the position of the mask stage 13 in the Y-axis direction y and the swivel angle in the horizontal plane (around the axis parallel to the optical axis S of the exposure optical system 3) are adjusted by the mask driving means 14, and the opening of the mask 11 is adjusted. The position of 11a is correctly aligned with the planned exposure area of the substrate 4 (step S6). At the same time, as shown in FIG. 3B, the shutter controller 25 operates the shutter opening / closing means 12c in response to a command from the main controller 28, so that the slit 12b of the shutter 12 is opened (step S7). The mask controller 27 operates in response to a command from the main controller 28 and operates the mask driving means 14 in synchronization with the operation of the substrate driving means 16 by the substrate stage controller 26. Therefore, the mask stage 13 ( The mask 11) moves in the advancing direction (a) of the substrate 4 at the same speed in synchronization with the substrate stage 15 (substrate 4).

これにより、前記ランプ9からの露光光が前記照明用レンズ10によって平行光とされ、前記マスク11の開口部11aを通して基板4に照射され、開口部11aの形状が基板4上の所定の露光予定領域29に転写される露光が行われる(ステップS8)。
続いて、前記基板4(マスク11)の進行方向イへの移動が継続され、前記主制御部28によって前記最前列のピクセル18aの露光停止位置Jへの到達時間の計時が終了すると、図3(c)に示すように、前記シャッターコントローラ25が主制御部28の指令を受けてシャッター開閉手段12cを作動させるので、前記シャッター12のスリット12bが閉鎖されて露光が停止される(ステップS9)と共に、前記マスクステージコントローラ27によるマスク駆動手段14の作動で前記マスク11の進行方向イへの移動が停止された後に、マスク11は直ちに後退方向ロへ移動されて元の露光開始位置(待機位置)Kに戻って最前列のピクセル18aに対する露光が終了する。そして、図3(d)に示すように、基板4の進行方向イへの移動が継続されて、順次、着色層(赤)Rの各列のピクセル18が撮像位置FでリニアCCD20で撮像されると、前記露光操作が繰り返されて、順次各列の露光予定領域29への露光が行われる。
As a result, the exposure light from the lamp 9 is converted into parallel light by the illumination lens 10 and irradiated onto the substrate 4 through the opening 11a of the mask 11, and the shape of the opening 11a is a predetermined exposure schedule on the substrate 4. Exposure to be transferred to the region 29 is performed (step S8).
Subsequently, the movement of the substrate 4 (mask 11) in the traveling direction (a) is continued, and when the main control unit 28 finishes measuring the arrival time of the pixel 18a in the front row to the exposure stop position J, FIG. As shown in (c), the shutter controller 25 operates the shutter opening / closing means 12c in response to a command from the main controller 28, so that the slit 12b of the shutter 12 is closed and exposure is stopped (step S9). At the same time, after the movement of the mask 11 in the advancing direction (b) is stopped by the operation of the mask driving means 14 by the mask stage controller 27, the mask 11 is immediately moved in the backward direction (b) to the original exposure start position (standby position). ) Returning to K, the exposure for the pixel 18a in the front row ends. Then, as shown in FIG. 3D, the movement of the substrate 4 in the traveling direction (a) is continued, and the pixels 18 in each column of the colored layer (red) R are sequentially imaged by the linear CCD 20 at the imaging position F. Then, the exposure operation is repeated, and the exposure to the exposure scheduled area 29 in each column is sequentially performed.

前記露光中は、前記基板4が進行方向イに一定速度で継続して搬送され、常に、前記リニアCCD20が各ピクセル18aの前方エッジ18e1と側方エッジ18e2を撮像することによって、基板4のX軸基準位置とY軸基準位置が検出されて、基板4のY軸位置ずれと搬送方向に対する傾斜角θに応じて前記マスク11のY軸方向yにおける位置と旋回角が位置調節されているので、前記マスク11の開口部11aによって基板4の所定の露光予定領域29に正確に露光することができる。
前記露光が進行して、基板4の進行方向イにおける着色層Rの最後列のピクセル18bのX軸基準位置が検出されると、該最後列のピクセル18bの露光停止位置Jへの到達時間後に、前記マスク11が露光開始位置に戻って停止すると共に基板4の移動が停止され、また、主制御部28からの指令でランプ電源部24の作動でランプ9が消灯され、前記シャッター12がシャッター開閉手段12cの作動で閉鎖され、基板4における着色層Rに対する一連の露光(プロキシ露光)が終了する。
During the exposure, the substrate 4 is continuously transported at a constant speed in the advancing direction (a), and the linear CCD 20 always images the front edge 18e1 and the side edge 18e2 of each pixel 18a. The axial reference position and the Y-axis reference position are detected, and the position and the turning angle of the mask 11 in the Y-axis direction y are adjusted according to the Y-axis positional deviation of the substrate 4 and the inclination angle θ with respect to the transport direction. The predetermined exposure scheduled area 29 of the substrate 4 can be accurately exposed through the opening 11a of the mask 11.
When the X-axis reference position of the pixel 18b in the last row of the colored layer R in the advancing direction (a) of the substrate 4 is detected as the exposure proceeds, after the arrival time of the pixel 18b in the last row to the exposure stop position J The mask 11 returns to the exposure start position and stops, and the movement of the substrate 4 is stopped. In addition, the lamp 9 is turned off by the operation of the lamp power supply unit 24 according to a command from the main control unit 28, and the shutter 12 is moved to the shutter. It is closed by the operation of the opening / closing means 12c, and a series of exposure (proxy exposure) for the colored layer R on the substrate 4 is completed.

前記所定の露光予定領域29は、前記マスク11の開口部11aの短辺方向の幅に見合った幅Dを有し、Y軸方向yに一直線状に整列したカラーフィルタの赤Rの着色層の幅dを有するピクセル18を囲んだ基板4におけるY軸方向yに細長い帯状の領域となる。
なお、前記基板4のブラックマトリックスBMにおける他の着色層(緑G、青B)における領域に対する露光操作は、個別に設置した他の同様な露光ステーションに基板4を搬送して行う(図3(e)参照)。また、前記露光操作に先立って前記基板4にはブラックマトリックBMの上に着色顔料が塗布されているので、前記露光によって露光された領域の着色顔料が硬化される。そこで露光後の基板4を洗浄液で洗浄すると、露光されなかった領域の着色顔料が除去されて前記露光領域29に前記硬化された着色顔料によって各着色層R,G,Bのピクセル18が形成されることとなる。
The predetermined exposure area 29 has a width D corresponding to the width of the opening 11a of the mask 11 in the short side direction, and is a red R colored layer of a color filter aligned in a straight line in the Y-axis direction y. It becomes a strip-like region elongated in the Y-axis direction y on the substrate 4 surrounding the pixel 18 having the width d.
In addition, the exposure operation with respect to the area | region in the other colored layer (green G, blue B) in the black matrix BM of the said board | substrate 4 is performed by conveying the board | substrate 4 to the other similar exposure station installed separately (FIG. 3 ( e)). Prior to the exposure operation, the substrate 4 is coated with a color pigment on the black matrix BM, so that the color pigment in the area exposed by the exposure is cured. Therefore, when the exposed substrate 4 is washed with a cleaning solution, the colored pigment in the unexposed area is removed, and the pixels 18 of the colored layers R, G, and B are formed in the exposed area 29 by the cured colored pigment. The Rukoto.

前記のように、実施の形態に係るスキャン露光方法は、基板搬送手段5によって一定速度で一定方向に搬送されている状態の基板4に対して、露光ステーション2でrんぞく光源であるランプ9から露光光を露光光学系3の光軸S上に設けたマスク11の開口部11aを通して照射し、前記基板4上に前記開口部11aの像を転写するスキャン露光方法において、前記基板4に予め形成されたピクセル18を撮像手段6で撮像し、この撮像されたピクセル18が撮像位置Fから露光開始位置Kに移動した時に、前記マスク11を基板4の搬送に同期させて基板4の進行方向イへ前進移動を開始させると共に前記露光光の基板4への照射を前記シャッター12開いてを開始させ、前記ピクセル18が露光停止位置Jに移動した時に、露光光の基板4への照射を前記シャッター12を閉じて停止させると共にマスク11の前進移動を停止させて露光開始位置Kに戻し、この動作を繰り返すことにより、前記基板4の搬送方向(X軸方向x)に直角なY軸方向yに沿った露光予定領域29を順次露光する構成とされている。   As described above, the scan exposure method according to the embodiment is a lamp that is a light source at the exposure station 2 with respect to the substrate 4 being conveyed in the constant direction at a constant speed by the substrate conveying means 5. In the scan exposure method in which the exposure light from 9 is irradiated through the opening 11 a of the mask 11 provided on the optical axis S of the exposure optical system 3 and the image of the opening 11 a is transferred onto the substrate 4, The pre-formed pixel 18 is imaged by the imaging means 6, and when the imaged pixel 18 is moved from the imaging position F to the exposure start position K, the mask 11 is synchronized with the conveyance of the substrate 4 and the substrate 4 is advanced. When the forward movement in the direction B is started and the exposure of the exposure light to the substrate 4 is started by opening the shutter 12, and the pixel 18 moves to the exposure stop position J, the exposure light base is changed. 4 is stopped by closing the shutter 12 and stopping the forward movement of the mask 11 to return to the exposure start position K. By repeating this operation, the substrate 4 is conveyed in the transport direction (X-axis direction x). It is configured to sequentially expose the planned exposure area 29 along the right-angle Y-axis direction y.

また、前記実施の形態に係るスキャン露光装置1は、基板4を一定速度で一定方向に搬送する基板搬送手段5と、該基板搬送手段5によって搬送されている状態の基板4に対して、露光ステーション2で連続光源であるランプ9から露光光を光路上に設けたマスク11の開口部11aを通して照射して前記開口部11aの像を基板4上に転写する露光光学系3とを設けたスキャン露光装置であって、前記基板4に予め形成されたピクセル18を基板4の移動中に撮像する撮像手段6と、該撮像手段6で撮像されたピクセル18が撮像位置Fから露光開始位置Kに移動された時に、前記マスク11を基板4の搬送に同期させて基板4の進行方向イへ前進移動を開始させると共に前記シャッター12を開いて露光光の基板4への照射を開始させ、前記ピクセル18が露光停止位置Jに移動した時に、シャッター12を閉じて露光光の基板4への照射を停止させると共にマスク11の前進移動を停止させて前記露光開始位置Kに戻すように制御する制御装置8とを備えた構成とされている。   Further, the scan exposure apparatus 1 according to the above-described embodiment exposes the substrate transport means 5 that transports the substrate 4 in a constant direction at a constant speed, and the substrate 4 that is being transported by the substrate transport means 5. A scan provided with an exposure optical system 3 that irradiates exposure light from a lamp 9 which is a continuous light source through a station 11 through an opening 11a of a mask 11 provided on an optical path and transfers an image of the opening 11a onto a substrate 4. An exposure apparatus that captures an image of a pixel 18 formed in advance on the substrate 4 while the substrate 4 is moving, and the pixel 18 imaged by the image capturing unit 6 changes from an imaging position F to an exposure start position K. When moved, the mask 11 is synchronized with the transport of the substrate 4 to start a forward movement in the traveling direction of the substrate 4 and the shutter 12 is opened to start irradiation of the exposure light to the substrate 4; When the pixel 18 moves to the exposure stop position J, the shutter 12 is closed to stop the irradiation of the exposure light to the substrate 4 and to stop the forward movement of the mask 11 and return to the exposure start position K. The control device 8 is provided.

したがって、前記実施の形態に係るスキャン露光方法およびスキャン露光装置1によれば、基板搬送手段5によって基板4を搬送しながらマスク11の開口部11aの形状を連続的に転写して露光を行うことができるので、小さなマスク11を使用する場合であっても、基板4の間欠的なステップ移動による露光をする必要がなく、広い露光領域を有する基板4に対する露光を効率的に行うことできる。
また、基板4に形成されたピクセル(基準パターン)18が露光開始位置Kに達すると、該露光開始位置Kから露光停止位置Jまでマスク11が基板4と同期して基板4の進行方向イに移動され、この間に連続光源であるランプ9からの露光光がマスク11を通して基板4に照射されるので、基板4に対して適切な露光時間を確保して安定した露光を行うことができる。
Therefore, according to the scan exposure method and the scan exposure apparatus 1 according to the above-described embodiment, exposure is performed by continuously transferring the shape of the opening 11a of the mask 11 while transporting the substrate 4 by the substrate transport means 5. Therefore, even when the small mask 11 is used, it is not necessary to perform exposure by intermittent step movement of the substrate 4, and the substrate 4 having a wide exposure area can be efficiently exposed.
When the pixel (reference pattern) 18 formed on the substrate 4 reaches the exposure start position K, the mask 11 is synchronized with the substrate 4 from the exposure start position K to the exposure stop position J in the advancing direction (a) of the substrate 4. Since the exposure light from the lamp 9 which is a continuous light source is irradiated to the substrate 4 through the mask 11 during this time, an appropriate exposure time can be secured for the substrate 4 and stable exposure can be performed.

また、前記スキャン露光装置1においては、前記制御装置8が、前記撮像手段6で撮像されたピクセル(基準パターン)18の前方エッジ18e1と側方エッジ18e2の画像にもとづき基板4上の搬送方向(X軸方向x)とこれに直角なY軸方向yにおける基準位置を検出し、前記撮像されたピクセル18が前記露光開始位置Kに移動された時に、前記Y軸方向yにおける基準位置にもとづいて前記マスク11のY軸方向yにおける位置調節を行うと共に、前記各基準位置の検出によって求めた基板4の搬送方向に対する傾き角θにもとづいて前記マスク11の露光光学系3の光軸Sに垂直な平面内における旋回角の位置調節を行う構成とされている。
したがって、基板4のY軸方向yにおける位置ずれと基板4の搬送方向に対する傾き角θに合わせて、マスク11のY軸方向yにおける位置と旋回角の位置調節とをそれぞれ確実に行うことができるので、露光中、基板4の搬送状態における位置変化に関わりなく、所定の露光予定領域29の露光を極めて正確に行うことができる。
しかも、予め基板4に形成されたピクセル(基準パターン)18を利用して基板4の基準位置を検出して、該基準位置にもとづいて前記マスク11の位置を調節することができるので、前記基板4の所定の露光予定領域29への露光を正確に行うことができると共に、前記マスク11の位置調節のために、従来のように基板4やマスク11にアライメントマークを形成する必要がなく、それらの製造が容易である。
In the scan exposure apparatus 1, the control device 8 controls the transport direction (on the substrate 4) based on the images of the front edge 18 e 1 and the side edge 18 e 2 of the pixel (reference pattern) 18 imaged by the imaging means 6. A reference position in the X-axis direction x) and a Y-axis direction y perpendicular thereto is detected, and when the imaged pixel 18 is moved to the exposure start position K, it is based on the reference position in the Y-axis direction y. The position of the mask 11 in the Y-axis direction y is adjusted, and the mask 11 is perpendicular to the optical axis S of the exposure optical system 3 of the mask 11 based on the tilt angle θ with respect to the transport direction of the substrate 4 obtained by detecting each reference position. It is set as the structure which adjusts the position of the turning angle in a simple plane.
Therefore, the position of the mask 11 in the Y-axis direction y and the position of the turning angle can be reliably adjusted in accordance with the positional deviation of the substrate 4 in the Y-axis direction y and the tilt angle θ with respect to the transport direction of the substrate 4. Therefore, during the exposure, the predetermined exposure scheduled area 29 can be exposed very accurately regardless of the position change in the transport state of the substrate 4.
In addition, since the reference position of the substrate 4 can be detected using the pixels (reference pattern) 18 formed in advance on the substrate 4, and the position of the mask 11 can be adjusted based on the reference position, the substrate 4 can be accurately exposed to a predetermined exposure scheduled area 29, and it is not necessary to form an alignment mark on the substrate 4 or the mask 11 as in the prior art in order to adjust the position of the mask 11. Is easy to manufacture.

なお、前記実施の形態に係るスキャン露光方法およびスキャン露光装置1においては、前記マスク11に開口部11aをY軸方向yに沿って一列だけ設け、各着色層R,G,Bを一列毎に露光するようにしたが、これに限らず、前記基板4の幅全長にわたる開口部11aをX軸方向xに各着色層毎のピッチ間隔と同じ間隔をあけて複数列設けてもよい。この場合、各開口部11aの相互間の中間位置が前記露光開始位置Kと露光停止位置Jの間で往復移動し、基板4の各着色層間のピッチの中間位置が露光開始位置Kと露光停止位置Jに到達したときに、それぞれ露光の開始と停止を行うようにする。このようにすると、露光停止位置Jで露光光の照射を停止して前記マスクステージ13が露光開始位置Kに戻り、次の露光光の照射を行うまでの時間的な余裕が生じ、前記シャッター12の開閉制御とマスクステージ13を前記基板ステージ15の移動に同期して前進移動させる制御とを円滑、容易に行うことができると共に、各着色層R,G,Bのピクセル18の複数列に対して同時に露光光を照射することができるので、基板4に対する露光を一層効率的に行うことができる。   In the scan exposure method and the scan exposure apparatus 1 according to the above-described embodiment, the mask 11 is provided with only one row of openings 11a along the Y-axis direction y, and each colored layer R, G, B is provided for each row. However, the present invention is not limited to this, and the openings 11a extending over the entire width of the substrate 4 may be provided in a plurality of rows in the X-axis direction x with the same interval as the pitch interval of each colored layer. In this case, the intermediate position between the openings 11a reciprocates between the exposure start position K and the exposure stop position J, and the intermediate position of the pitch between the colored layers of the substrate 4 is the exposure start position K and the exposure stop. When the position J is reached, the exposure is started and stopped, respectively. In this manner, exposure of exposure light is stopped at the exposure stop position J, the mask stage 13 returns to the exposure start position K, and a time margin is generated until the next exposure light irradiation is performed. And the control for moving the mask stage 13 forward in synchronism with the movement of the substrate stage 15 can be performed smoothly and easily, and for a plurality of rows of pixels 18 of each colored layer R, G, B. Since the exposure light can be irradiated at the same time, the substrate 4 can be exposed more efficiently.

また、前記実施の形態に係るスキャン露光方法およびスキャン露光装置1においては、前記マスク11に開口部11aをY軸方向yに沿って基板4の幅全長にわたって設け、各着色層R,G,Bを基板4の一回の進行方向イへの移動で露光を完了するようにしたが、これに限らず、前記開口部11aのY軸方向yの長さを基板4の幅の一部(例えば、半分)のピクセル18を包含する分とし、基板4の一回目の進行方向イへの移動で半数のピクセル18を含む露光予定領域29を露光し、この露光が終了した後に、基板ステージ15を搬送開始位置に後退させ、しかる後に、基板ステージ15をY軸方向yへ所定量シフトさせて、残りの露光予定領域の露光を再開するようにしてもよい。
また、前記シャッターコントローラ25の作動でシャッター12の開閉を行って、ランプ9から照明用レンズ10側への露光光の投光を露光開始位置で開始して露光停止位置で停止させるようにしたが、前記シャッター12を設ける代わりに、前記主制御部28からの指令で前記ランプ電源部24の動作を制御することにより、前記基板4の露光開始位置でランプ9を点灯させ、露光停止位置でランプ9を消灯させるようにして露光光の照明用レンズ10側への投光のの開始、停止を行うようにしてもよい。
In the scan exposure method and the scan exposure apparatus 1 according to the above-described embodiment, the mask 11 is provided with the opening 11a along the Y-axis direction y over the entire length of the substrate 4, and each of the colored layers R, G, B However, the present invention is not limited to this, but the length of the opening 11a in the Y-axis direction y is a part of the width of the substrate 4 (for example, , Half) including the pixels 18, the exposure region 29 including half the pixels 18 is exposed by the movement of the substrate 4 in the first advancing direction (a), and after this exposure is finished, the substrate stage 15 is moved The substrate stage 15 may be moved backward to the transfer start position, and then the substrate stage 15 may be shifted by a predetermined amount in the Y-axis direction y, so that the exposure of the remaining scheduled exposure area may be resumed.
In addition, the shutter 12 is opened and closed by the operation of the shutter controller 25, and the projection of exposure light from the lamp 9 toward the illumination lens 10 is started at the exposure start position and stopped at the exposure stop position. Instead of providing the shutter 12, the operation of the lamp power supply unit 24 is controlled by a command from the main control unit 28, so that the lamp 9 is turned on at the exposure start position of the substrate 4 and the lamp at the exposure stop position. 9 may be turned off to start and stop the projection of exposure light to the illumination lens 10 side.

また、前記照明用レンズ10の代わりに投影用レンズを前記ハーフミラー19の下側に基板ステージ15に近接して配置し、前記マスクステージ13をハーフミラー19の上側に配置して、投影露光方式により前記基板4を露光(投影露光)するようにしてもよい。この場合には、投影用レンズをマスク駆動手段13およびマスクステージコントローラ27と同様な手段を用いて動かし、マスク11を動かさずに、マスク11の開口部11aの基板4に対する転写位置を調節して、基板4の位置変化に対応させることができる。
また、前記実施の形態に係るスキャン露光方法およびスキャン露光装置1においては、基板搬送手段5を基板4を載置する基板ステージ15とこれを搬送方向に移動させる基板駆動手段16と備えて構成したが、これに限らず、基板4としてフィルム状(シート状)の基材を使用する場合には、格納ロールに巻き付けられた前記基材を巻取ロールに巻き取ることによって、前記基材を露光ステーション2において露光光学系3の光軸Sに垂直な平面に沿って移動させる構成としてもよい。このようにすると、単位基板に相当する露光領域を多数連続したシート状の基材(基板)を、各単位基板に相当する露光領域毎にステップ移動させて露光操作を間欠的に繰り返して行う必要がないので、多数の単位基板を極めて効率的に露光することができて、生産性を高めることができる。
さらに、前記実施の形態に係るスキャン露光方法およびスキャン露光装置1においては、カラーフィルタを製造するにあたり、ブラックマトリックスを形成した基板に着色層(R,G,B)を形成する場合に適用した例を示したが、本発明はこれに限らず、液晶パネルの透明薄膜電極を製造する場合や、その他半導体素子の製造、フォトマスクやレチクルの製造等の場合にも適用することができる。
Further, instead of the illumination lens 10, a projection lens is disposed below the half mirror 19 in the vicinity of the substrate stage 15, and the mask stage 13 is disposed above the half mirror 19, thereby projecting exposure. Thus, the substrate 4 may be exposed (projection exposure). In this case, the projection lens is moved using the same means as the mask driving means 13 and the mask stage controller 27, and the transfer position of the opening 11a of the mask 11 with respect to the substrate 4 is adjusted without moving the mask 11. Thus, it is possible to cope with a change in the position of the substrate 4.
In the scan exposure method and the scan exposure apparatus 1 according to the above-described embodiment, the substrate transport unit 5 includes the substrate stage 15 on which the substrate 4 is placed and the substrate drive unit 16 that moves the substrate stage 15 in the transport direction. However, the present invention is not limited to this. When a film-like (sheet-like) base material is used as the substrate 4, the base material is exposed by winding the base material wound around a storage roll onto a take-up roll. The station 2 may be configured to move along a plane perpendicular to the optical axis S of the exposure optical system 3. In this way, it is necessary to repeat the exposure operation intermittently by step-moving a sheet-like base material (substrate) having a large number of exposure regions corresponding to the unit substrates for each exposure region corresponding to each unit substrate. Therefore, a large number of unit substrates can be exposed very efficiently, and productivity can be improved.
Furthermore, in the scan exposure method and the scan exposure apparatus 1 according to the above embodiment, an example applied to the case where a colored layer (R, G, B) is formed on a substrate on which a black matrix is formed in manufacturing a color filter. However, the present invention is not limited to this, and can also be applied to the production of a transparent thin film electrode of a liquid crystal panel, the production of a semiconductor element, the production of a photomask or a reticle, and the like.

本発明の一実施の形態に係るスキャン露光装置を示す系統図である。It is a systematic diagram which shows the scanning exposure apparatus which concerns on one embodiment of this invention. 同じくスキャン露光装置における基板と基板に対するマスクの位置調整の説明図である。It is explanatory drawing of the position adjustment of the mask with respect to the board | substrate and board | substrate similarly in a scanning exposure apparatus. 同じくスキャン露光装置の作用を示す説明図である。It is explanatory drawing which similarly shows the effect | action of a scanning exposure apparatus. 同じくスキャン露光装置の作用を示すフローである。It is a flow which similarly shows the effect | action of a scanning exposure apparatus.

符号の説明Explanation of symbols

1 スキャン露光装置
2 露光ステーション(露光部)
3 露光光学系
4 基板
5 基板搬送手段
6 撮像手段
8 制御装置
9 ランプ(連続光源)
10 照明用レンズ
11 マスク
11a 開口部
12 シャッター
13 マスクステージ
15 基板ステージ
18 ピクセル(基準パターン)
18e1 前方エッジ(パターンエッジ)
18e2 側方エッジ(パターンエッジ)
20 リニアCCD
E 露中心光位置
F 撮像位置
J 露光停止位置
K 露光開始位置
S 光軸(光路)
1 Scan exposure device 2 Exposure station (exposure section)
DESCRIPTION OF SYMBOLS 3 Exposure optical system 4 Board | substrate 5 Board | substrate conveyance means 6 Imaging means 8 Control apparatus 9 Lamp (continuous light source)
DESCRIPTION OF SYMBOLS 10 Lens for illumination 11 Mask 11a Opening part 12 Shutter 13 Mask stage 15 Substrate stage 18 Pixel (reference pattern)
18e1 Front edge (pattern edge)
18e2 Side edge (pattern edge)
20 linear CCD
E Dew center light position F Imaging position J Exposure stop position K Exposure start position S Optical axis (optical path)

Claims (3)

基板を一定速度で一定方向に搬送する基板搬送手段と、該基板搬送手段によって搬送されている状態の基板に対して、露光部で連続光源からの露光光を光路上に設けたマスクの開口部を通して照射して前記開口部の像を基板上に転写する露光光学系とを設けたスキャン露光装置であって、
前記基板に予め形成された基準パターンを基板の移動中に撮像する撮像手段と、
該撮像手段で撮像された基準パターンが撮像位置から露光開始位置に移動された時に、前記マスクを基板の搬送に同期させて基板の進行方向へ前進移動を開始させると共に前記露光光の基板への照射を開始させ、前記基準パターンが露光停止位置に移動した時に、露光光の基板への照射を停止させると共にマスクの前進移動を停止させて前記露光開始位置に戻すように制御する制御装置とを備え、
前記撮像手段は基板の搬送方向に直交して設けられ且つ受光素子は前記基板の幅より大きい長さに亘って一直線上に配列されてなるラインCCDであり、
前記制御装置は、
前記撮像手段で撮像された前記基板の基準パターンのパターンエッジの画像にもとづき基板上の搬送方向及びこれに直角な方向における基準位置を検出する画像処理部と、
前記撮像された基準パターンが前記露光開始位置に移動された時に、前記搬送方向に直角な方向における基準位置にもとづいて前記マスクの前記搬送方向に直角な方向における位置ずれを演算する演算部と、
前記マスクを支持するマスクステージを前進移動させると共に、該移動方向に直交する方向における位置ずれを位置調整するマスク駆動手段とを備え、
該マスク駆動手段を作動させて前記基板の搬送方向に直角な方向における前記基準位置に基づいてマスクの搬送方向に直角な方向における位置調節を行うことを特徴とするスキャン露光装置。
A substrate transport means for transporting the substrate in a constant direction at a constant speed, and a mask opening in which exposure light from a continuous light source is provided on the optical path in the exposure section for the substrate being transported by the substrate transport means A scanning exposure apparatus provided with an exposure optical system that irradiates through and transfers an image of the opening onto the substrate,
Imaging means for imaging a reference pattern previously formed on the substrate during movement of the substrate;
When the reference pattern imaged by the imaging means is moved from the imaging position to the exposure start position, the mask is synchronized with the conveyance of the substrate to start a forward movement in the advancing direction of the substrate and the exposure light to the substrate A control device that starts irradiation and controls to stop exposure light exposure to the substrate and stop the forward movement of the mask and return to the exposure start position when the reference pattern moves to the exposure stop position. Prepared,
The image pickup means is a line CCD that is provided orthogonal to the transport direction of the substrate and the light receiving elements are arranged in a straight line over a length larger than the width of the substrate,
The controller is
An image processing unit that detects a reference position in a transport direction on the substrate and a direction perpendicular thereto based on an image of a pattern edge of the reference pattern of the substrate imaged by the imaging unit;
An arithmetic unit that calculates a positional deviation of the mask in a direction perpendicular to the transport direction based on a reference position in a direction perpendicular to the transport direction when the imaged reference pattern is moved to the exposure start position;
A mask stage that moves the mask stage that supports the mask forward, and adjusts a positional deviation in a direction orthogonal to the moving direction; and
A scan exposure apparatus, wherein the mask driving means is operated to perform position adjustment in a direction perpendicular to the mask conveyance direction based on the reference position in a direction perpendicular to the substrate conveyance direction.
基板を一定速度で一定方向に搬送する基板搬送手段と、該基板搬送手段によって搬送されている状態の基板に対して、露光部で連続光源からの露光光を光路上に設けたマスクの開口部を通して照射して前記開口部の像を基板上に転写する露光光学系とを設けたスキャン露光装置であって、
前記基板に予め形成された基準パターンを基板の移動中に撮像する撮像手段と、該撮像手段で撮像された基準パターンが撮像位置から露光開始位置に移動された時に、前記マスクを基板の搬送に同期させて基板の進行方向へ前進移動を開始させると共に前記露光光の基板への照射を開始させ、前記基準パターンが露光停止位置に移動した時に、露光光の基板への照射を停止させると共にマスクの前進移動を停止させて前記露光開始位置に戻すように制御する制御装置とを備え、
前記撮像手段は基板の搬送方向に直交して設けられ且つ受光素子は前記基板の幅より大きい長さに亘って一直線上に配列されてなるラインCCDであり、
前記制御装置は、
前記撮像手段で撮像された前記基板の基準パターンのパターンエッジの画像にもとづき基板上の搬送方向及びこれに直角な方向における基準位置を検出する画像処理部と、
前記撮像された基準パターンが前記露光開始位置に移動された時に、前記各基準位置の検出によって求めた基板の搬送方向に対する傾き角を演算する演算部と、
前記マスクを支持するマスクステージを前進移動させると共に前記マスクの前記露光光学系の光路に垂直な平面内における旋回角の位置調節を行うマスク駆動手段とを備え、
該マスク駆動手段を作動させて前記各基準位置の検出によって求めた基板の搬送方向に対する傾き角にもとづいて前記露光光学系の光路に垂直な平面内における前記マスクの旋回角の位置調節を行うことを特徴とするスキャン露光装置。
A substrate transport means for transporting the substrate in a constant direction at a constant speed, and a mask opening in which exposure light from a continuous light source is provided on the optical path in the exposure section for the substrate being transported by the substrate transport means A scanning exposure apparatus provided with an exposure optical system that irradiates through and transfers an image of the opening onto the substrate,
Imaging means for imaging a reference pattern previously formed on the substrate during movement of the substrate, and when the reference pattern imaged by the imaging means is moved from the imaging position to the exposure start position, the mask is used for transporting the substrate. Synchronously, the substrate starts to move forward in the direction of movement of the substrate and starts to irradiate the substrate with the exposure light. When the reference pattern moves to the exposure stop position, the irradiation of the substrate with the exposure light is stopped and the mask is moved. And a control device for controlling to stop the forward movement and return to the exposure start position,
The image pickup means is a line CCD that is provided orthogonal to the transport direction of the substrate and the light receiving elements are arranged in a straight line over a length larger than the width of the substrate,
The controller is
An image processing unit that detects a reference position in a transport direction on the substrate and a direction perpendicular thereto based on an image of a pattern edge of the reference pattern of the substrate imaged by the imaging unit;
A calculation unit that calculates an inclination angle with respect to a conveyance direction of the substrate obtained by detecting each reference position when the imaged reference pattern is moved to the exposure start position;
A mask driving means for moving the mask stage that supports the mask forward and adjusting the position of the turning angle of the mask in a plane perpendicular to the optical path of the exposure optical system;
Activating the mask driving means to adjust the position of the turning angle of the mask in a plane perpendicular to the optical path of the exposure optical system based on the tilt angle with respect to the transport direction of the substrate obtained by detecting each reference position. A scanning exposure apparatus characterized by the above.
前記制御装置は、前記基板上の搬送方向に直角な方向における基準位置にもとづいて前記マスクの前記搬送方向に直角な方向における位置調節を行うことを特徴とする請求項2に記載のスキャン露光装置。 3. The scan exposure apparatus according to claim 2 , wherein the control device adjusts the position of the mask in a direction perpendicular to the conveyance direction based on a reference position in a direction perpendicular to the conveyance direction on the substrate. .
JP2005112480A 2005-04-08 2005-04-08 Scan exposure equipment Active JP4777682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005112480A JP4777682B2 (en) 2005-04-08 2005-04-08 Scan exposure equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005112480A JP4777682B2 (en) 2005-04-08 2005-04-08 Scan exposure equipment

Publications (2)

Publication Number Publication Date
JP2006292955A JP2006292955A (en) 2006-10-26
JP4777682B2 true JP4777682B2 (en) 2011-09-21

Family

ID=37413614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005112480A Active JP4777682B2 (en) 2005-04-08 2005-04-08 Scan exposure equipment

Country Status (1)

Country Link
JP (1) JP4777682B2 (en)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4942617B2 (en) * 2007-11-14 2012-05-30 Nskテクノロジー株式会社 Scan exposure equipment
JP5254073B2 (en) * 2008-08-21 2013-08-07 Nskテクノロジー株式会社 Scan exposure apparatus and substrate transfer method for scan exposure apparatus
JP5164069B2 (en) * 2008-08-28 2013-03-13 Nskテクノロジー株式会社 Scan exposure apparatus and scan exposure method
KR101325431B1 (en) 2009-02-05 2013-11-04 도판 인사츠 가부시키가이샤 Exposure method, color filter manufacturing method, and exposure device
KR101254442B1 (en) 2009-02-26 2013-04-12 도판 인사츠 가부시키가이샤 Color filter and manufacturing method for a color filter
JP5499398B2 (en) * 2009-05-11 2014-05-21 Nskテクノロジー株式会社 Exposure apparatus and exposure method
JP5620146B2 (en) 2009-05-22 2014-11-05 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Thin film deposition equipment
TWI475124B (en) 2009-05-22 2015-03-01 Samsung Display Co Ltd Thin film deposition apparatus
US8882920B2 (en) 2009-06-05 2014-11-11 Samsung Display Co., Ltd. Thin film deposition apparatus
US8882921B2 (en) 2009-06-08 2014-11-11 Samsung Display Co., Ltd. Thin film deposition apparatus
KR101127575B1 (en) 2009-08-10 2012-03-23 삼성모바일디스플레이주식회사 Apparatus for thin film deposition having a deposition blade
JP5328726B2 (en) 2009-08-25 2013-10-30 三星ディスプレイ株式會社 Thin film deposition apparatus and organic light emitting display device manufacturing method using the same
JP5677785B2 (en) 2009-08-27 2015-02-25 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Thin film deposition apparatus and organic light emitting display device manufacturing method using the same
US8696815B2 (en) 2009-09-01 2014-04-15 Samsung Display Co., Ltd. Thin film deposition apparatus
US8876975B2 (en) 2009-10-19 2014-11-04 Samsung Display Co., Ltd. Thin film deposition apparatus
JP5569772B2 (en) 2009-12-16 2014-08-13 凸版印刷株式会社 Manufacturing method of color filter
KR101084184B1 (en) 2010-01-11 2011-11-17 삼성모바일디스플레이주식회사 Apparatus for thin layer deposition
KR101174875B1 (en) 2010-01-14 2012-08-17 삼성디스플레이 주식회사 Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
JP5549233B2 (en) 2010-01-18 2014-07-16 凸版印刷株式会社 Color filter substrate exposure method
JP5542456B2 (en) 2010-01-18 2014-07-09 凸版印刷株式会社 Color filter substrate exposure method
KR101193186B1 (en) 2010-02-01 2012-10-19 삼성디스플레이 주식회사 Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR101156441B1 (en) 2010-03-11 2012-06-18 삼성모바일디스플레이주식회사 Apparatus for thin layer deposition
KR101202348B1 (en) 2010-04-06 2012-11-16 삼성디스플레이 주식회사 Apparatus for thin layer deposition and method for manufacturing of organic light emitting display apparatus using the same
US8894458B2 (en) 2010-04-28 2014-11-25 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
KR101223723B1 (en) 2010-07-07 2013-01-18 삼성디스플레이 주식회사 Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR101673017B1 (en) 2010-07-30 2016-11-07 삼성디스플레이 주식회사 Apparatus for thin layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR101738531B1 (en) 2010-10-22 2017-05-23 삼성디스플레이 주식회사 Method for manufacturing of organic light emitting display apparatus, and organic light emitting display apparatus manufactured by the method
KR101723506B1 (en) 2010-10-22 2017-04-19 삼성디스플레이 주식회사 Apparatus for organic layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR20120045865A (en) 2010-11-01 2012-05-09 삼성모바일디스플레이주식회사 Apparatus for organic layer deposition
JP5630864B2 (en) * 2010-12-06 2014-11-26 凸版印刷株式会社 Exposure equipment
KR20120065789A (en) 2010-12-13 2012-06-21 삼성모바일디스플레이주식회사 Apparatus for organic layer deposition
JP5737495B2 (en) * 2010-12-28 2015-06-17 凸版印刷株式会社 Color filter manufacturing method and color filter
KR101760897B1 (en) 2011-01-12 2017-07-25 삼성디스플레이 주식회사 Deposition source and apparatus for organic layer deposition having the same
KR101852517B1 (en) 2011-05-25 2018-04-27 삼성디스플레이 주식회사 Apparatus for organic layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR101840654B1 (en) 2011-05-25 2018-03-22 삼성디스플레이 주식회사 Apparatus for organic layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR101857249B1 (en) 2011-05-27 2018-05-14 삼성디스플레이 주식회사 Patterning slit sheet assembly, apparatus for organic layer deposition, method for manufacturing organic light emitting display apparatus and organic light emitting display apparatus
KR101826068B1 (en) 2011-07-04 2018-02-07 삼성디스플레이 주식회사 Apparatus for thin layer deposition
JP6085909B2 (en) * 2012-06-29 2017-03-01 大日本印刷株式会社 Mask alignment apparatus, mask alignment method, film manufacturing apparatus, film manufacturing method
KR102052069B1 (en) 2012-11-09 2019-12-05 삼성디스플레이 주식회사 Apparatus for organic layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR102075525B1 (en) 2013-03-20 2020-02-11 삼성디스플레이 주식회사 Deposition apparatus for organic layer, method for manufacturing organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR102107104B1 (en) 2013-06-17 2020-05-07 삼성디스플레이 주식회사 Apparatus for organic layer deposition, and method for manufacturing of organic light emitting display apparatus using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3408048B2 (en) * 1996-01-05 2003-05-19 キヤノン株式会社 Scanning exposure equipment
JP4061955B2 (en) * 2002-04-19 2008-03-19 コニカミノルタホールディングス株式会社 Image recording device
JP2004012903A (en) * 2002-06-07 2004-01-15 Fuji Photo Film Co Ltd Aligner
JP2004085664A (en) * 2002-08-23 2004-03-18 Pentax Corp Drawing system
JP2005024814A (en) * 2003-07-01 2005-01-27 Nikon Corp Projection optical system, exposure device and exposure method

Also Published As

Publication number Publication date
JP2006292955A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
JP4777682B2 (en) Scan exposure equipment
KR101136444B1 (en) Exposure method and exposure apparatus
JP4304165B2 (en) Exposure method and exposure apparatus
JP2007310209A (en) Exposure device
JP5813555B2 (en) Exposure drawing apparatus and exposure drawing method
TWI781240B (en) Double-side exposure device and double-side exposure method
CN108885404B (en) Exposure apparatus and exposure method
KR20130102457A (en) Exposure method and exposure device
JP4309874B2 (en) Exposure equipment
JP2023014353A (en) Double-sided exposure device
JP2010092021A (en) Exposure apparatus and exposure method
JP4738887B2 (en) Exposure equipment
JP5076233B2 (en) Method for adjusting initial position and orientation of exposure mask
JP2012173337A (en) Mask, proximity scan exposure device, and proximity scan exposure method
JP7364754B2 (en) Exposure method
JP5499398B2 (en) Exposure apparatus and exposure method
JP7234426B2 (en) Mask pairs and double-sided exposure equipment
JP6762640B1 (en) Exposure device
TWI839958B (en) Exposure apparatus and exposure method
JP4775076B2 (en) Exposure method and apparatus
JP6723112B2 (en) Exposure apparatus and exposure method
TW202321825A (en) Exposure apparatus capable of performing a heat treatment immediately after a long substrate is exposed
JP5282515B2 (en) Color filter manufacturing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110307

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110630

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4777682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250