JP2005213616A - Vapor deposition method, vapor deposition apparatus and method for manufacturing plasma display panel - Google Patents

Vapor deposition method, vapor deposition apparatus and method for manufacturing plasma display panel Download PDF

Info

Publication number
JP2005213616A
JP2005213616A JP2004023757A JP2004023757A JP2005213616A JP 2005213616 A JP2005213616 A JP 2005213616A JP 2004023757 A JP2004023757 A JP 2004023757A JP 2004023757 A JP2004023757 A JP 2004023757A JP 2005213616 A JP2005213616 A JP 2005213616A
Authority
JP
Japan
Prior art keywords
vapor deposition
hearth
magnet
substrate
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004023757A
Other languages
Japanese (ja)
Inventor
Atsuya Ito
敦也 伊藤
Hiroyuki Ichise
博幸 一▲せ▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Advanced PDP Development Center Corp
Original Assignee
Advanced PDP Development Center Corp
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced PDP Development Center Corp, Pioneer Electronic Corp filed Critical Advanced PDP Development Center Corp
Priority to JP2004023757A priority Critical patent/JP2005213616A/en
Publication of JP2005213616A publication Critical patent/JP2005213616A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To uniformly form a vapor deposition coating on a moving substrate. <P>SOLUTION: This vapor deposition method comprises: introducing a beam B1 emitted from a plasma gun 14 onto a hearth 12 with the use of a permanent magnet 13 arranged below a hearth 12; reciprocating the permanent magnet 13 with a driving mechanism 15 in a direction approximately at right angles to a transportation path T and a horizontal direction with respect to the hearth 12; and vapor-deposits a vapor-depositing material E evaporated from the inside of the hearth 12, on the substrate P1 which is transported over the hearth 12 along the transportation path T. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、プラズマガンから射出されるビームによって蒸着材料を蒸発させて基体に蒸着させる方法と、この方法を実施するための装置、ならびに、この蒸着方法を用いたプラズマディスプレイパネルの製造方法に関する。   The present invention relates to a method of evaporating an evaporation material by a beam emitted from a plasma gun and evaporating it on a substrate, an apparatus for carrying out the method, and a method of manufacturing a plasma display panel using the evaporation method.

基体に所要の材料によって薄膜を形成する方法としては、プラズマガンを用いた蒸着方法が知られている。   An evaporation method using a plasma gun is known as a method for forming a thin film on a substrate with a required material.

このプラズマガンによる蒸着方法とは、プラズマガンから射出されるビームを永久磁石が形成する磁場によってハース(炉床)内に導き、このビームによってハースに入れられた蒸着材料を蒸発させて基体の表面に蒸着させることにより、薄膜を形成する方法である。   In this plasma gun deposition method, a beam emitted from the plasma gun is guided into a hearth (hearth) by a magnetic field formed by a permanent magnet, and the deposition material placed in the hearth is evaporated by this beam to evaporate the surface of the substrate. This is a method of forming a thin film by vapor deposition.

このような蒸着方法を実施する装置としては、従来、図1に示されるような装置が提案されている。   As an apparatus for performing such a vapor deposition method, an apparatus as shown in FIG. 1 has been proposed.

この図1の蒸着装置は、真空にされた蒸着室1内の底部中央に、皿状のハース2が据え付けられている。   In the vapor deposition apparatus of FIG. 1, a dish-shaped hearth 2 is installed at the center of the bottom of the vacuum deposition chamber 1.

そして、複数個の永久磁石3が、ハース2の下方部に移動自在に配置されて調節機構4に連結されることにより、ハース2の径方向に沿ってそれぞれ移動自在になっている。   A plurality of permanent magnets 3 are movably disposed below the hearth 2 and connected to the adjusting mechanism 4 so that the permanent magnets 3 are movable along the radial direction of the hearth 2.

蒸着室1の側壁部には、プラズマガン5が取り付けられていて、このプラズマガン5から蒸着室1内にビームBが射出されるようになっている。   A plasma gun 5 is attached to the side wall of the vapor deposition chamber 1, and a beam B is emitted from the plasma gun 5 into the vapor deposition chamber 1.

なお、図1中、6はプラズマガン5から射出される圧力状態を調整する空芯コイルであり、1Aは蒸着室1内を真空にするための排気孔であり、1Bは真空の蒸着室1内に反応ガスを導入するためのガス導入孔である。   In FIG. 1, 6 is an air-core coil for adjusting the pressure state emitted from the plasma gun 5, 1A is an exhaust hole for evacuating the inside of the deposition chamber 1, and 1B is a vacuum deposition chamber 1 A gas introduction hole for introducing a reaction gas into the inside.

この従来の蒸着装置は、ハース2内に蒸着材料が入れられ、蒸着室1内の天井部側のハース2に対向する所定位置に、薄膜を形成する対象の基体Pがセッティングされている状態で、プラズマガン5が駆動されて、蒸着室1内にビームBが水平方向に射出される。   In this conventional vapor deposition apparatus, a vapor deposition material is put in the hearth 2, and a base P for forming a thin film is set at a predetermined position facing the hearth 2 on the ceiling side in the vapor deposition chamber 1. The plasma gun 5 is driven, and the beam B is emitted into the vapor deposition chamber 1 in the horizontal direction.

そして、このプラズマガン5から射出されたビームBは、ハース2の下方に配置された永久磁石3が形成する磁場によって、ハース2の方向に進路を変更してハース2内に照射される。   The beam B emitted from the plasma gun 5 is irradiated into the hearth 2 while changing the course in the direction of the hearth 2 by the magnetic field formed by the permanent magnet 3 disposed below the hearth 2.

ハース2内の蒸着材料Eは、このビームBの照射によって蒸発し、ハース2に対向する位置にセッティングされている基体Pの表面に蒸着して、薄膜を形成する。   The vapor deposition material E in the hearth 2 evaporates by the irradiation of the beam B and is vapor deposited on the surface of the base P set at a position facing the hearth 2 to form a thin film.

このとき、ハース2に照射されるビームBは、通常、ハース2の中央部でその磁束密度が高く周縁部で低くなるために、上記従来の蒸着装置では、予め各永久磁石3を調節機構4によってハース2の外周部分に対向するように位置させて、ハース2に照射されるビームBが均一になるように調節出来るようになっている(例えば、特許文献1参照)。   At this time, the beam B irradiated to the hearth 2 usually has a high magnetic flux density at the central portion of the hearth 2 and decreases at the peripheral portion. Therefore, in the above conventional vapor deposition apparatus, each permanent magnet 3 is adjusted in advance by the adjusting mechanism 4. Therefore, the beam B irradiated to the hearth 2 can be adjusted so as to be uniform (see, for example, Patent Document 1).

しかしながら、例えば、プラズマディスプレイパネル(PDP)の基板のような比較的大型の基体にこの蒸着方法を用いて薄膜を形成する場合には、ハース上方において基板を水平方向に移動させながら蒸着を行う、所謂、移動成膜という手法が採られるのが一般的である。   However, for example, when a thin film is formed using this deposition method on a relatively large substrate such as a plasma display panel (PDP) substrate, the deposition is performed while moving the substrate in the horizontal direction above the hearth. In general, a so-called moving film formation method is employed.

この場合、蒸着材料は蒸発点を中心に四方に広がって蒸発するので、蒸発点の真上の位置を中心に円形の蒸発分布を形成し、この蒸着材料の円形の蒸発分布領域内を基板が移動してゆくために、基板上に形成される薄膜の膜厚は、円形の蒸発分布領域の中心部を通過する基板の中央部分が厚く、蒸発分布領域の周縁部分を通過する基板の両側縁部分が薄くなって、膜厚にむらが発生してしまうという問題が発生する。   In this case, since the vapor deposition material spreads in four directions around the evaporation point and evaporates, a circular evaporation distribution is formed around the position directly above the evaporation point, and the substrate is within the circular evaporation distribution region of this vapor deposition material. In order to move, the thickness of the thin film formed on the substrate is such that the central portion of the substrate passing through the central portion of the circular evaporation distribution region is thick, and both side edges of the substrate passing through the peripheral portion of the evaporation distribution region. There arises a problem that the thickness of the portion is reduced and the film thickness is uneven.

このような問題は、図1の従来の蒸着装置によっても解決することは出来ない。   Such a problem cannot be solved even by the conventional vapor deposition apparatus of FIG.

すなわち、図1の従来の蒸着装置によって移動成膜を行う場合、この蒸着装置は、永久磁石3によって形成される磁場が固定されていて、基板の移動方向と直角な幅方向において磁束密度に粗な部分と密な部分が発生するために、どうしても基板上の蒸着分布にピーク値とボトム値が発生する。   That is, when moving film formation is performed by the conventional vapor deposition apparatus of FIG. 1, the magnetic field formed by the permanent magnet 3 is fixed, and this vapor deposition apparatus has a rough magnetic flux density in the width direction perpendicular to the movement direction of the substrate. Therefore, a peak value and a bottom value are inevitably generated in the deposition distribution on the substrate.

さらに、この従来の蒸着装置では、移動成膜を行う場合、蒸着分布のピーク値とボトム値が種々の蒸着条件によっても微妙に変化するために、それぞれの蒸着条件毎に永久磁石3の位置を調節し直す必要があるという問題点が発生する。   Further, in this conventional vapor deposition apparatus, when performing the moving film formation, the peak value and the bottom value of the vapor deposition distribution slightly change depending on various vapor deposition conditions. Therefore, the position of the permanent magnet 3 is changed for each vapor deposition condition. The problem arises that it needs to be adjusted again.

特開平4−350157号公報JP-A-4-350157

この発明は、上記のような移動成膜によって基体に成膜を行う場合の従来の問題点を解決することをその解決課題の一つとしているものである。   One object of the present invention is to solve the conventional problems in the case where a film is formed on a substrate by moving film formation as described above.

第1の発明(請求項1に記載の発明)による蒸着方法は、上記目的を達成するために、プラズマガンから射出されるプラズマ・ビームを炉床の下方に配置された磁石によって炉床内に導いて、この炉床内から蒸発される蒸着材料を炉床の上方を搬送される基体に蒸着させる蒸着方法において、前記磁石を炉床に対して基体の搬送方向と非平行な方向に往復動させながら基体の搬送を行うことを特徴としている。   In order to achieve the above object, the vapor deposition method according to the first invention (the invention described in claim 1) causes the plasma beam emitted from the plasma gun to enter the hearth by a magnet disposed below the hearth. In a vapor deposition method in which vapor deposition material evaporated from the inside of the hearth is vapor deposited on a substrate transported above the hearth, the magnet is reciprocated in a direction non-parallel to the substrate transport direction with respect to the hearth. It is characterized in that the substrate is transported in the same manner.

さらに、第2の発明(請求項5に記載の発明)による蒸着装置は、前記目的を達成するために、蒸着材料が入れられる炉床とプラズマ・ビームを射出するプラズマガンと炉床の下方に配置された磁石と炉床の上方において基体を搬送する搬送部材とを備え、プラズマガンから射出されたプラズマ・ビームを磁石によって炉床内に導いて、この炉床内から蒸発される蒸着材料を搬送部材によって搬送される基体に蒸着させる蒸着装置において、前記炉床に対して磁石を基体の搬送部材による搬送方向と非平行な方向に往復動させる駆動部材が、磁石に取り付けられていることを特徴としている。   Furthermore, in order to achieve the above object, a vapor deposition apparatus according to the second invention (the invention according to claim 5) is provided with a hearth into which the vapor deposition material is put, a plasma gun for injecting a plasma beam, and a bottom of the hearth. And a conveying member that conveys the substrate above the hearth. The plasma beam emitted from the plasma gun is guided into the hearth by the magnet, and vapor deposition material evaporated from the hearth is obtained. In the vapor deposition apparatus for vapor deposition on the substrate conveyed by the conveying member, a driving member for reciprocating the magnet in the direction parallel to the conveying direction of the substrate conveying member with respect to the hearth is attached to the magnet. It is a feature.

さらに、第3の発明(請求項9に記載の発明)によるプラズマディスプレイパネルの製造方法は、前記目的を達成するために、プラズマガンから射出されるプラズマ・ビームを炉床の下方に配置された磁石によって炉床内に導いて、この炉床内から蒸発される蒸着材料を炉床の上方を搬送されるプラズマディスプレイパネルの基板に蒸着させる蒸着工程を含むプラズマディスプレイパネルの製造方法において、前記蒸着工程中に、磁石を炉床に対して基板の搬送方向と非平行な方向に往復動させながら基板の搬送を行うことを特徴としている。   Furthermore, in the method of manufacturing a plasma display panel according to the third invention (invention according to claim 9), in order to achieve the above object, a plasma beam emitted from a plasma gun is arranged below the hearth. In the method of manufacturing a plasma display panel, the method includes a vapor deposition step of guiding the vapor deposition material evaporated from the inside of the hearth by a magnet onto a substrate of the plasma display panel conveyed above the hearth. During the process, the substrate is transferred while reciprocating the magnet in a direction non-parallel to the transfer direction of the substrate with respect to the hearth.

この発明は、永久磁石が、蒸着材料が入れられるハース(炉床)の下面に対向する位置において移動自在に配置され、この永久磁石に、炉床に対して永久磁石をハースの上方における基板の搬送方向とほぼ直角な水平方向に往復動させる駆動機構が取り付けられている蒸着装置の実施形態、および、この蒸着装置の駆動機構によって永久磁石を振幅運動させている状態で、プラズマガンから射出されるプラズマ・ビームを永久磁石によって炉床内に導くことによりハース内の蒸着材料を蒸発させて、ハースの上方を搬送される基板に蒸着させる蒸着方法、ならびに、この蒸着方法を用いて、プラズマディスプレイパネルの基板を製造するプラズマディスプレイパネルの製造方法を、それぞれ最良の実施形態としているものである。   According to the present invention, a permanent magnet is movably disposed at a position facing a lower surface of a hearth (hearth) into which a deposition material is put, and the permanent magnet is placed on the permanent magnet with respect to the hearth on a substrate above the hearth. An embodiment of a vapor deposition apparatus to which a drive mechanism that reciprocates in a horizontal direction substantially perpendicular to the transport direction is attached, and a permanent magnet is ejected from the plasma gun in an amplitude motion by the drive mechanism of the vapor deposition apparatus. A vapor deposition method for evaporating vapor deposition material in the hearth by directing a plasma beam into the hearth by a permanent magnet and vapor deposition on a substrate conveyed above the hearth, and a plasma display using the vapor deposition method Each method of manufacturing a plasma display panel for manufacturing a panel substrate is the best embodiment.

この最良の実施形態による蒸着装置によって実施される蒸着方法およびプラズマディスプレイパネルの製造方法によれば、永久磁石によって形成される磁場によって導引されてハース内に照射されるプラズマガンからのプラズマ・ビームの中心位置は、永久磁石の振幅運動に伴って、ハース内を永久磁石の移動方向に沿って移動するとともに、ハースの中央部分ではその移動速度が速く、ハースの周縁部にゆくほど遅くなる。   According to the vapor deposition method and the plasma display panel manufacturing method performed by the vapor deposition apparatus according to the best embodiment, the plasma beam from the plasma gun that is guided by the magnetic field formed by the permanent magnet and is irradiated into the hearth. The center position of the hearth moves along the moving direction of the permanent magnet in the hearth along with the amplitude motion of the permanent magnet, and the moving speed is high in the central part of the hearth, and becomes slower toward the peripheral part of the hearth.

これによって、従来の永久磁石が固定されていた蒸着装置では少なかったハースの周縁部分での蒸着材料の蒸発量が、ハースの中央部分での蒸発量に対して相対的に増加されて、永久磁石の移動方向に沿ったハースの径方向での蒸着材料の蒸発量の分布が均一化され、これによって、ハースの上方を搬送される基板に対して蒸着材料がむらなく蒸着されるようになる。   As a result, the evaporation amount of the vapor deposition material at the peripheral portion of the hearth is relatively increased with respect to the evaporation amount at the central portion of the hearth, which is less in the vapor deposition apparatus in which the conventional permanent magnet is fixed. The distribution of the evaporation amount of the vapor deposition material in the radial direction of the hearth along the moving direction is made uniform, so that the vapor deposition material is uniformly deposited on the substrate conveyed above the hearth.

図2は、この発明による蒸着方法を実施するための蒸着装置の実施形態における一実施例を示す概略構成図である。   FIG. 2 is a schematic configuration diagram showing an example in the embodiment of the vapor deposition apparatus for carrying out the vapor deposition method according to the present invention.

なお、この実施例においては、蒸着対象の基体として、プラズマディスプレイパネル(PDP)の基板を例に挙げて説明を行うが、この発明は、PDPの基板以外の基体に対して移動成膜を行う場合にも適用が可能である。   In this embodiment, a plasma display panel (PDP) substrate will be described as an example of a substrate to be vapor-deposited. However, in the present invention, a moving film is formed on a substrate other than the PDP substrate. It can also be applied to cases.

図2において、蒸着装置10は、蒸着室11の天井部に、PDPの基板P1をその蒸着面が露出された状態で搬送路Tに沿って水平方向に搬送する図示しない搬送装置が取り付けられており、さらに、蒸着室11の両側の互いに対向する側壁部分に、蒸着室11内の真空状態を維持した状態で、基板P1の蒸着室11内への搬入と基板P1の蒸着室11内からの搬出を行うための搬入口11Aと搬出口11Bがそれぞれ設けられている。   In FIG. 2, the vapor deposition apparatus 10 is attached to the ceiling portion of the vapor deposition chamber 11 with a conveyance device (not shown) that conveys the substrate P1 of the PDP in the horizontal direction along the conveyance path T with the vapor deposition surface exposed. Further, the substrate P1 is carried into the vapor deposition chamber 11 and the substrate P1 from the vapor deposition chamber 11 in a state in which the vacuum state in the vapor deposition chamber 11 is maintained on opposite side wall portions on both sides of the vapor deposition chamber 11. A carry-in port 11A and a carry-out port 11B for carrying out are respectively provided.

蒸着室11には、さらに、その側壁部に、蒸着室11内を真空にするための排気孔11Cが設けられ、底部に、蒸着室11内に反応ガスを導入するためのガス導入孔11Dが設けられている。   The vapor deposition chamber 11 is further provided with an exhaust hole 11C for evacuating the inside of the vapor deposition chamber 11 in the side wall portion, and a gas introduction hole 11D for introducing a reaction gas into the vapor deposition chamber 11 at the bottom portion. Is provided.

蒸着室11内の底部部分の搬送路Tに対向する位置に、蒸着材料Eが充填されるハース12が設置されている。   A hearth 12 filled with a vapor deposition material E is installed at a position facing the conveyance path T at the bottom of the vapor deposition chamber 11.

さらに、このハース12の下方部に、永久磁石13が、後述する駆動機構(図2には図示せず)によって、搬送路Tの搬送方向と直角な水平方向においてハース12の底面に対向する範囲内を往復動自在に取り付けられている。   Further, in the lower part of the hearth 12, a range in which the permanent magnet 13 is opposed to the bottom surface of the hearth 12 in a horizontal direction perpendicular to the conveying direction of the conveying path T by a driving mechanism (not shown in FIG. 2) described later. It is attached so that it can reciprocate inside.

蒸着室11の一方側の壁部のハース12の取付位置よりも高い位置(図示の例では、搬入口11Aの下方の位置)に、プラズマガン14が取り付けられており、このプラズマガン14からビームB1が、空芯コイル14Aによって所要の圧力に調整された後、ハース12の上方に向けて水平向きに射出されるようになっている。   A plasma gun 14 is attached to a position higher than the attachment position of the hearth 12 on the one side wall of the vapor deposition chamber 11 (in the illustrated example, a position below the carry-in port 11A). After B1 is adjusted to a required pressure by the air-core coil 14A, it is ejected horizontally above the hearth 12.

図3は、上記蒸着装置10の永久磁石13の駆動機構の構成を示す斜視図である。   FIG. 3 is a perspective view showing the configuration of the drive mechanism of the permanent magnet 13 of the vapor deposition apparatus 10.

この図3において、基板P1の搬送方向と直角方向に、複数個(図示の例では二個)のハース12が、水平に並べて配置されている。   In FIG. 3, a plurality (two in the illustrated example) of hearths 12 are arranged horizontally in a direction perpendicular to the transport direction of the substrate P1.

駆動機構15は、複数個のハース12の下面に対向する蒸着室11の底面上の位置に、基板P1の搬送方向と直角な水平方向に延びるようにレール15Aが取り付けられ、このレール15A上に、台車15Bがレールに沿って走行自在に載置されている。   The drive mechanism 15 has a rail 15A attached to a position on the bottom surface of the vapor deposition chamber 11 facing the lower surfaces of the plurality of hearths 12 so as to extend in a horizontal direction perpendicular to the transport direction of the substrate P1, and on the rail 15A. The carriage 15B is placed so as to be able to travel along the rail.

この台車15B上には、ハース12の数と同じ数の永久磁石13が、台車15Bの長手方向(基板P1の搬送方向に対して直角方向)に沿って、隣接するハース12の中心間の距離と同じ間隔で配置されて、それぞれ対応するハース12に対向するように固定されている。   On the carriage 15B, the same number of permanent magnets 13 as the number of the hearths 12 are located between the centers of adjacent hearts 12 along the longitudinal direction of the carriage 15B (perpendicular to the conveyance direction of the substrate P1). Are arranged at the same interval and fixed so as to face the corresponding hearths 12 respectively.

台車15Bの一端側(図3において手前側)に対向する位置に、水平に延びる回転軸15Caによって垂直面内において一方向に回転される回転板15Cが配置され、この回転板15Cと台車15Bとの間にリンク15Dが、その一端が回転板15Cの外周部に垂直方向に揺動自在に連結され、他端が台車15Bの一端部に垂直方向に揺動自在に連結されることによって取り付けられている。   A rotating plate 15C that is rotated in one direction within a vertical plane by a horizontally extending rotating shaft 15Ca is disposed at a position facing one end side (front side in FIG. 3) of the cart 15B, and the rotating plate 15C, the cart 15B, The link 15D is attached by connecting one end of the link 15D to the outer peripheral portion of the rotating plate 15C so as to be swingable in the vertical direction and the other end being connected to one end portion of the carriage 15B so as to be swingable in the vertical direction. ing.

すなわち、この駆動機構15は、レール15Aと台車15B,回転板15C,リンク15Dによって往復スライダクランク機構を構成しており、回転板15Cの一方向への回転に伴って、台車15Bがレール15A上を往復動されるようになっている。   That is, the drive mechanism 15 forms a reciprocating slider crank mechanism by the rail 15A, the carriage 15B, the rotating plate 15C, and the link 15D, and the carriage 15B moves on the rail 15A as the rotating plate 15C rotates in one direction. Are reciprocated.

そして、この駆動機構15の台車15Bの振幅の大きさは、この台車15B上に固定されている各永久磁石13が、上方から見て、それぞれ対応するハース12の直径の範囲内からはみ出ない大きさに設定されている。   And the magnitude | size of the amplitude of the trolley | bogie 15B of this drive mechanism 15 is the magnitude | size which each permanent magnet 13 currently fixed on this trolley | bogie 15B does not protrude from the range of the diameter of each corresponding hearth 12 seeing from the upper direction. Is set.

なお、上記においては、蒸着装置10にハース12が複数個設けられている場合の例が示されているが、ハース12が一個設けられている場合も駆動機構15の構成は同様である。   In the above, an example in which a plurality of hearths 12 are provided in the vapor deposition apparatus 10 is shown, but the configuration of the drive mechanism 15 is the same when one hearth 12 is provided.

次に、上記蒸着装置10によって実施されるPDP基板への蒸着方法およびPDP基板の製造方法について説明を行う。   Next, a method for vapor deposition on the PDP substrate and a method for manufacturing the PDP substrate which are performed by the vapor deposition apparatus 10 will be described.

上記蒸着装置10は、各ハース12内に所要の蒸着材料Eが充填された後、駆動機構15が起動されるとともに、プラズマガン14からビームB1が蒸着室11内に水平方向に射出される。   In the vapor deposition apparatus 10, after a required vapor deposition material E is filled in each hearth 12, the drive mechanism 15 is started and a beam B 1 is emitted from the plasma gun 14 into the vapor deposition chamber 11 in the horizontal direction.

このビームB1は、永久磁石13によって形成される磁場によって下向きにその進路を変更して、それぞれハース12内に照射される。   The beam B1 is irradiated in the hearth 12 by changing its path downward by the magnetic field formed by the permanent magnet 13.

このとき、駆動機構15の回転板15Cの回転によって台車15Bがレール15A上を往復運動するが、この台車15Bの往復運動は、下記に説明するように、回転板15Cの回転に伴う振幅運動となって、その往復動の両端の死点間の中間位置での速度が最も速く、この中間位置から両側の死点に近づくほど速度が遅くなる。   At this time, the carriage 15B reciprocates on the rail 15A by the rotation of the rotating plate 15C of the drive mechanism 15, and this reciprocating movement of the carriage 15B includes the amplitude movement accompanying the rotation of the rotating plate 15C, as will be described below. Thus, the speed at the intermediate position between the dead points at both ends of the reciprocating motion is the fastest, and the speed decreases as the dead center on both sides approaches from the intermediate position.

すなわち、図4に示されるように、回転板15Cとリンク15Dの連結部Cが、リンク15Dの両側の死点d1とd2の中間位置に位置されているときに、リンク15Dの水平方向の速度成分x1が最大となり、台車15Bの速度v1は最速となる。   That is, as shown in FIG. 4, when the connecting portion C between the rotary plate 15C and the link 15D is positioned at an intermediate position between the dead points d1 and d2 on both sides of the link 15D, the horizontal speed of the link 15D is increased. The component x1 is the maximum, and the speed v1 of the carriage 15B is the fastest.

そして、図5に示されるように、回転板15Cとリンク15Dの連結部Cが、回転板15Cの回転に伴ってリンク15Dの死点d1(またはd2)に近づくと、リンク15Dの水平方向の速度成分x2は小さくなっていて、台車15Bの速度v2は減少してゆき、死点d1(またはd2)の通過後、増加してゆく。   As shown in FIG. 5, when the connecting portion C between the rotating plate 15C and the link 15D approaches the dead point d1 (or d2) of the link 15D as the rotating plate 15C rotates, the horizontal direction of the link 15D is increased. The speed component x2 is reduced, and the speed v2 of the carriage 15B decreases and increases after passing through the dead point d1 (or d2).

従って、永久磁石13によって形成される磁場によって導引されてハース12内に照射されるビームB1の中心位置は、永久磁石13の振幅運動に伴って、ハース12内を永久磁石13の移動方向(搬送路Tに対して直角方向)に沿って移動するとともに、ハース12の中央部分ではその移動速度が速く、ハース12の周縁部にゆくほど遅くなる。   Therefore, the center position of the beam B1 guided by the magnetic field formed by the permanent magnet 13 and irradiated in the hearth 12 is the moving direction of the permanent magnet 13 in the hearth 12 along with the amplitude motion of the permanent magnet 13 ( (The direction perpendicular to the conveyance path T) and the moving speed is high in the central portion of the hearth 12, and becomes slower toward the peripheral edge of the hearth 12.

これによって、相対的に磁束分布の均一化が図られ、従来の永久磁石が固定されていた蒸着装置では少なかったハース12の周縁部分での蒸着材料Eの蒸発量が、ハース12の中央部分での蒸発量に対して相対的に増加され、これによって、永久磁石13の移動方向に沿ったハース12の径方向での蒸着材料Eの蒸発量の分布が、均一化される。   As a result, the magnetic flux distribution is made relatively uniform, and the evaporation amount of the vapor deposition material E at the peripheral portion of the hearth 12 which is small in the vapor deposition apparatus in which the conventional permanent magnet is fixed is the central portion of the hearth 12. Thus, the distribution of the evaporation amount of the vapor deposition material E in the radial direction of the hearth 12 along the moving direction of the permanent magnet 13 is made uniform.

図6は、この蒸着装置10によるハース12からの蒸着材料Eの蒸発分布を示すグラフを示している。   FIG. 6 shows a graph showing the evaporation distribution of the vapor deposition material E from the hearth 12 by the vapor deposition apparatus 10.

この図6において、波線で示されるグラフaは従来の蒸着時には永久磁石が固定されていた蒸着装置におけるハースからの蒸着剤の蒸発分布を示しており、実線で示されるグラフbは、蒸着装置10における各ハース12毎の蒸着材料Eの蒸発分布を示している。   In FIG. 6, a graph a indicated by a wavy line shows an evaporation distribution of the evaporation agent from the hearth in a vapor deposition apparatus in which a permanent magnet is fixed at the time of conventional vapor deposition, and a graph b indicated by a solid line indicates the vapor deposition apparatus 10. The evaporation distribution of the vapor deposition material E for each hearth 12 in FIG.

このグラフaとbを比較すると、グラフaには蒸発分布のピークとボトムが現れているのに対し、グラフbは基板P1の搬送方向と直角方向においてほぼ均一な蒸発分布になっていることが分かる。   Comparing the graphs a and b, the peak and bottom of the evaporation distribution appear in the graph a, whereas the graph b has a substantially uniform evaporation distribution in the direction perpendicular to the transport direction of the substrate P1. I understand.

このハース12からの蒸着材料Eの蒸発分布は、永久磁石13の移動速度の制御、すなわち、回転板15Cの回転速度の制御をより精密に行う行うようにすることによって、例えば、この回転板15Cの回転速度制御を、永久磁石13が固定されている場合のハース12からの蒸着材料Eの蒸発分布に応じて行うようにすることによって、さらに均一化を図ることが出来るようになる。   The evaporation distribution of the vapor deposition material E from the hearth 12 can be achieved by controlling the moving speed of the permanent magnet 13, that is, controlling the rotating speed of the rotating plate 15C more precisely, for example, the rotating plate 15C. This rotation speed control is performed in accordance with the evaporation distribution of the vapor deposition material E from the hearth 12 when the permanent magnet 13 is fixed.

また、この永久磁石13の速度制御は、回転板15Cの半径や、回転板15Cとリンク15Dの連結位置を選択することによっても、行うことが出来る。   The speed control of the permanent magnet 13 can also be performed by selecting the radius of the rotating plate 15C and the connecting position of the rotating plate 15C and the link 15D.

以上のようにして、ハース12からの蒸着材料Eの均一な蒸発分布が保持されている状態で、基板P1が、蒸着室11の搬入口11Aから搬入され(図2参照)、ハース12の上方を搬送路Tに沿って搬送されて、搬出口11Bから搬出される。   As described above, the substrate P1 is carried from the carry-in port 11A of the vapor deposition chamber 11 in a state where the uniform evaporation distribution of the vapor deposition material E from the hearth 12 is maintained (see FIG. 2). Are transported along the transport path T and are transported from the transport outlet 11B.

このとき、蒸着室11内において、ハース12から蒸着材料Eが均一な蒸発分布で蒸発されていることによって、移動している基板P1にも、均一な蒸着剤の蒸着が行われる。   At this time, in the vapor deposition chamber 11, the vapor deposition material E is evaporated from the hearth 12 with a uniform evaporation distribution, so that a uniform vapor deposition agent is also deposited on the moving substrate P <b> 1.

なお、上記の例においては、永久磁石13を振幅運動させるのに、回転板15Cの回転による、所謂、往復スライダクランク機構が用いられているが、永久磁石13を往復動させる駆動機構としては、上記の他に、例えばラックとピニオン等のギヤ機構等を用いることも可能であり、この場合には、ギヤを回転させる駆動モータの駆動制御によって、永久磁石13の振幅運動が実現される。   In the above example, a so-called reciprocating slider crank mechanism based on the rotation of the rotating plate 15C is used to make the permanent magnet 13 perform an amplitude motion. However, as a driving mechanism for reciprocating the permanent magnet 13, In addition to the above, it is also possible to use a gear mechanism such as a rack and a pinion, and in this case, the amplitude motion of the permanent magnet 13 is realized by drive control of a drive motor that rotates the gear.

また、永久磁石13の往復動の方向は、上記のように搬送路Tに対して直角な水平方向に限らず、搬送路Tの搬送方向に対して非平行な方向であれば、ハース12の形状や基板P1の形状等に応じて任意の方向に設定される。   Further, the reciprocating direction of the permanent magnet 13 is not limited to the horizontal direction perpendicular to the transport path T as described above, and if the direction is not parallel to the transport direction of the transport path T, the hearth 12 It is set in an arbitrary direction according to the shape and the shape of the substrate P1.

従来例の蒸着装置を示す概略構成図である。It is a schematic block diagram which shows the vapor deposition apparatus of a prior art example. この発明による蒸着装置の実施形態における一実施例を示す概略構成図である。It is a schematic block diagram which shows one Example in embodiment of the vapor deposition apparatus by this invention. 同実施例の駆動機構を示す斜視図である。It is a perspective view which shows the drive mechanism of the Example. 同実施例において永久磁石13の移動速度を説明するための説明図である。It is explanatory drawing for demonstrating the moving speed of the permanent magnet 13 in the Example. 同実施例において永久磁石13の移動速度を説明するための説明図である。It is explanatory drawing for demonstrating the moving speed of the permanent magnet 13 in the Example. 同実施例におけるハースからの蒸発分布を示す図である。It is a figure which shows the evaporation distribution from Haas in the Example.

符号の説明Explanation of symbols

10 …蒸着装置
11 …蒸着室
12 …ハース(炉床)
13 …永久磁石(磁石)
14 …プラズマガン
15 …駆動機構(駆動部材,往復スライダクランク機構)
15A …レール
15B …台車
15C …回転板
15D …リンク
B1 …ビーム(プラズマ・ビーム)
E …蒸着材料
P1 …基板
T …搬送路
d1,d2 …死点(折り返し点)
DESCRIPTION OF SYMBOLS 10 ... Evaporation apparatus 11 ... Deposition chamber 12 ... Hearth (hearth)
13 ... Permanent magnet (magnet)
14 ... Plasma gun 15 ... Drive mechanism (drive member, reciprocating slider crank mechanism)
15A ... rail 15B ... cart 15C ... rotary plate 15D ... link B1 ... beam (plasma beam)
E ... Vapor deposition material P1 ... Substrate T ... Conveying path d1, d2 ... Dead point (turning point)

Claims (12)

プラズマガンから射出されるプラズマ・ビームを炉床の下方に配置された磁石によって炉床内に導いて、この炉床内から蒸発される蒸着材料を炉床の上方を搬送される基体に蒸着させる蒸着方法において、
前記磁石を炉床に対して基体の搬送方向と非平行な方向に往復動させながら基体の搬送を行うことを特徴とする蒸着方法。
A plasma beam emitted from the plasma gun is guided into the hearth by a magnet disposed below the hearth, and vapor deposition material evaporated from the hearth is deposited on a substrate transported above the hearth. In the vapor deposition method,
A vapor deposition method characterized in that the substrate is conveyed while reciprocating the magnet in a direction non-parallel to the substrate conveyance direction with respect to the hearth.
前記磁石を、基体の搬送方向に対してほぼ直角な水平方向に往復動させる請求項1に記載の蒸着方法。   The vapor deposition method according to claim 1, wherein the magnet is reciprocated in a horizontal direction substantially perpendicular to a substrate transport direction. 前記磁石を、往復運動の両側の折り返し点の間の中間位置から折り返し点に近づくほど移動速度が遅くなるように往復動させる請求項1に記載の蒸着方法。   The vapor deposition method according to claim 1, wherein the magnet is reciprocated so that the moving speed becomes slower as approaching the turning point from an intermediate position between the turning points on both sides of the reciprocating motion. 前記磁石を、往復スライダクランク機構によって往復動させる請求項3に記載の蒸着方法。   The vapor deposition method according to claim 3, wherein the magnet is reciprocated by a reciprocating slider crank mechanism. 蒸着材料が入れられる炉床とプラズマ・ビームを射出するプラズマガンと炉床の下方に配置された磁石と炉床の上方において基体を搬送する搬送部材とを備え、プラズマガンから射出されるプラズマ・ビームを磁石によって炉床内に導いて、この炉床内から蒸発される蒸着材料を搬送部材によって搬送される基体に蒸着させる蒸着装置において、
前記炉床に対して磁石を基体の搬送部材による搬送方向と非平行な方向に往復動させる駆動部材が、磁石に取り付けられていることを特徴とする蒸着装置。
A plasma gun to be ejected from the plasma gun, comprising a hearth into which the deposition material is put, a plasma gun for injecting a plasma beam, a magnet disposed below the hearth, and a transport member for transporting the substrate above the hearth. In a vapor deposition apparatus for guiding a beam into a hearth by a magnet and depositing a vapor deposition material evaporated from the hearth on a substrate transported by a transport member,
A vapor deposition apparatus, wherein a drive member for reciprocating a magnet in a direction non-parallel to a conveyance direction by a substrate conveyance member with respect to the hearth is attached to the magnet.
前記駆動部材が、磁石を、搬送部材による基体の搬送方向に対してほぼ直角な水平方向に往復動させる請求項5に記載の蒸着装置。   The vapor deposition apparatus according to claim 5, wherein the driving member causes the magnet to reciprocate in a horizontal direction substantially perpendicular to a conveyance direction of the substrate by the conveyance member. 前記駆動部材が、磁石を、往復運動の両側の折り返し点の中間位置から折り返し点に近づくほど移動速度が遅くなるように往復動させる請求項5に記載の蒸着装置。   The vapor deposition apparatus according to claim 5, wherein the driving member causes the magnet to reciprocate so that the moving speed becomes slower as it approaches the turning point from an intermediate position between turning points on both sides of the reciprocating motion. 前記駆動部材が、磁石に取り付けられた往復スライダクランク機構である請求項7に記載の蒸着装置。   The vapor deposition apparatus according to claim 7, wherein the driving member is a reciprocating slider crank mechanism attached to a magnet. プラズマガンから射出されるプラズマ・ビームを炉床の下方に配置された磁石によって炉床内に導いて、この炉床内から蒸発される蒸着材料を炉床の上方を搬送されるプラズマディスプレイパネルの基板に蒸着させる蒸着工程を含むプラズマディスプレイパネルの製造方法において、
前記蒸着工程中に、磁石を炉床に対して基板の搬送方向と非平行な方向に往復動させながら基板の搬送を行うことを特徴とするプラズマディスプレイパネルの製造方法。
The plasma beam emitted from the plasma gun is guided into the hearth by a magnet disposed below the hearth, and the vapor deposition material evaporated from the hearth is transported above the hearth of the plasma display panel. In the manufacturing method of the plasma display panel including the vapor deposition step of vapor deposition on the substrate,
A method of manufacturing a plasma display panel, wherein the substrate is transported while the magnet is reciprocated in a direction non-parallel to the substrate transport direction with respect to the hearth during the vapor deposition step.
前記磁石を、基板の搬送方向に対してほぼ直角な水平方向に往復動させる請求項9に記載のプラズマディスプレイパネルの製造方法。   The method for manufacturing a plasma display panel according to claim 9, wherein the magnet is reciprocated in a horizontal direction substantially perpendicular to a substrate transport direction. 前記磁石を、往復運動の両側の折り返し点の間の中間位置から折り返し点に近づくほど移動速度が遅くなるように往復動させる請求項9に記載のプラズマディスプレイパネルの製造方法。   10. The method of manufacturing a plasma display panel according to claim 9, wherein the magnet is reciprocated so that the moving speed becomes slower as approaching the turning point from an intermediate position between the turning points on both sides of the reciprocating motion. 前記磁石を、往復スライダクランク機構によって往復動させる請求項11に記載のプラズマディスプレイパネルの製造方法。   The method of manufacturing a plasma display panel according to claim 11, wherein the magnet is reciprocated by a reciprocating slider crank mechanism.
JP2004023757A 2004-01-30 2004-01-30 Vapor deposition method, vapor deposition apparatus and method for manufacturing plasma display panel Withdrawn JP2005213616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004023757A JP2005213616A (en) 2004-01-30 2004-01-30 Vapor deposition method, vapor deposition apparatus and method for manufacturing plasma display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004023757A JP2005213616A (en) 2004-01-30 2004-01-30 Vapor deposition method, vapor deposition apparatus and method for manufacturing plasma display panel

Publications (1)

Publication Number Publication Date
JP2005213616A true JP2005213616A (en) 2005-08-11

Family

ID=34906672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004023757A Withdrawn JP2005213616A (en) 2004-01-30 2004-01-30 Vapor deposition method, vapor deposition apparatus and method for manufacturing plasma display panel

Country Status (1)

Country Link
JP (1) JP2005213616A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012138611A (en) * 2006-04-14 2012-07-19 Silica Tech Llc Plasma deposition apparatus and method for manufacturing solar cells
US8852687B2 (en) 2010-12-13 2014-10-07 Samsung Display Co., Ltd. Organic layer deposition apparatus
US8859325B2 (en) 2010-01-14 2014-10-14 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US8859043B2 (en) 2011-05-25 2014-10-14 Samsung Display Co., Ltd. Organic layer deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US8865252B2 (en) 2010-04-06 2014-10-21 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US8871542B2 (en) 2010-10-22 2014-10-28 Samsung Display Co., Ltd. Method of manufacturing organic light emitting display apparatus, and organic light emitting display apparatus manufactured by using the method
US8876975B2 (en) 2009-10-19 2014-11-04 Samsung Display Co., Ltd. Thin film deposition apparatus
US8882556B2 (en) 2010-02-01 2014-11-11 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US8882922B2 (en) 2010-11-01 2014-11-11 Samsung Display Co., Ltd. Organic layer deposition apparatus
US8894458B2 (en) 2010-04-28 2014-11-25 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US8906731B2 (en) 2011-05-27 2014-12-09 Samsung Display Co., Ltd. Patterning slit sheet assembly, organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus, and the organic light-emitting display apparatus
JP2014231619A (en) * 2013-05-28 2014-12-11 住友重機械工業株式会社 Filming apparatus
US8945974B2 (en) 2012-09-20 2015-02-03 Samsung Display Co., Ltd. Method of manufacturing organic light-emitting display device using an organic layer deposition apparatus
US8951610B2 (en) 2011-07-04 2015-02-10 Samsung Display Co., Ltd. Organic layer deposition apparatus
US8968829B2 (en) 2009-08-25 2015-03-03 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US8973525B2 (en) 2010-03-11 2015-03-10 Samsung Display Co., Ltd. Thin film deposition apparatus
US9018647B2 (en) 2010-09-16 2015-04-28 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US9051636B2 (en) 2011-12-16 2015-06-09 Samsung Display Co., Ltd. Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus using the same, and organic light-emitting display apparatus
US9234270B2 (en) 2011-05-11 2016-01-12 Samsung Display Co., Ltd. Electrostatic chuck, thin film deposition apparatus including the electrostatic chuck, and method of manufacturing organic light emitting display apparatus by using the thin film deposition apparatus
US9249493B2 (en) 2011-05-25 2016-02-02 Samsung Display Co., Ltd. Organic layer deposition apparatus and method of manufacturing organic light-emitting display apparatus by using the same
US9257649B2 (en) 2012-07-10 2016-02-09 Samsung Display Co., Ltd. Method of manufacturing organic layer on a substrate while fixed to electrostatic chuck and charging carrier using contactless power supply module
US9279177B2 (en) 2010-07-07 2016-03-08 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US9347886B2 (en) 2013-06-24 2016-05-24 Samsung Display Co., Ltd. Apparatus for monitoring deposition rate, apparatus provided with the same for depositing organic layer, method of monitoring deposition rate, and method of manufacturing organic light emitting display apparatus using the same
US9388488B2 (en) 2010-10-22 2016-07-12 Samsung Display Co., Ltd. Organic film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US9450140B2 (en) 2009-08-27 2016-09-20 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display apparatus using the same
US9496317B2 (en) 2013-12-23 2016-11-15 Samsung Display Co., Ltd. Method of manufacturing organic light emitting display apparatus
US9496524B2 (en) 2012-07-10 2016-11-15 Samsung Display Co., Ltd. Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus using the same, and organic light-emitting display apparatus manufactured using the method
US9512515B2 (en) 2011-07-04 2016-12-06 Samsung Display Co., Ltd. Organic layer deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US9534288B2 (en) 2013-04-18 2017-01-03 Samsung Display Co., Ltd. Deposition apparatus, method of manufacturing organic light-emitting display apparatus by using same, and organic light-emitting display apparatus manufactured by using deposition apparatus
US9748483B2 (en) 2011-01-12 2017-08-29 Samsung Display Co., Ltd. Deposition source and organic layer deposition apparatus including the same
US10246769B2 (en) 2010-01-11 2019-04-02 Samsung Display Co., Ltd. Thin film deposition apparatus

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012138611A (en) * 2006-04-14 2012-07-19 Silica Tech Llc Plasma deposition apparatus and method for manufacturing solar cells
US8968829B2 (en) 2009-08-25 2015-03-03 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US9450140B2 (en) 2009-08-27 2016-09-20 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display apparatus using the same
US8876975B2 (en) 2009-10-19 2014-11-04 Samsung Display Co., Ltd. Thin film deposition apparatus
US9224591B2 (en) 2009-10-19 2015-12-29 Samsung Display Co., Ltd. Method of depositing a thin film
US10287671B2 (en) 2010-01-11 2019-05-14 Samsung Display Co., Ltd. Thin film deposition apparatus
US10246769B2 (en) 2010-01-11 2019-04-02 Samsung Display Co., Ltd. Thin film deposition apparatus
US8859325B2 (en) 2010-01-14 2014-10-14 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US8882556B2 (en) 2010-02-01 2014-11-11 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US9453282B2 (en) 2010-03-11 2016-09-27 Samsung Display Co., Ltd. Thin film deposition apparatus
US8973525B2 (en) 2010-03-11 2015-03-10 Samsung Display Co., Ltd. Thin film deposition apparatus
US8865252B2 (en) 2010-04-06 2014-10-21 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US8894458B2 (en) 2010-04-28 2014-11-25 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US9136310B2 (en) 2010-04-28 2015-09-15 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US9279177B2 (en) 2010-07-07 2016-03-08 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US9018647B2 (en) 2010-09-16 2015-04-28 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US9388488B2 (en) 2010-10-22 2016-07-12 Samsung Display Co., Ltd. Organic film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US8871542B2 (en) 2010-10-22 2014-10-28 Samsung Display Co., Ltd. Method of manufacturing organic light emitting display apparatus, and organic light emitting display apparatus manufactured by using the method
US8882922B2 (en) 2010-11-01 2014-11-11 Samsung Display Co., Ltd. Organic layer deposition apparatus
US8852687B2 (en) 2010-12-13 2014-10-07 Samsung Display Co., Ltd. Organic layer deposition apparatus
US9748483B2 (en) 2011-01-12 2017-08-29 Samsung Display Co., Ltd. Deposition source and organic layer deposition apparatus including the same
US9234270B2 (en) 2011-05-11 2016-01-12 Samsung Display Co., Ltd. Electrostatic chuck, thin film deposition apparatus including the electrostatic chuck, and method of manufacturing organic light emitting display apparatus by using the thin film deposition apparatus
US8859043B2 (en) 2011-05-25 2014-10-14 Samsung Display Co., Ltd. Organic layer deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US9249493B2 (en) 2011-05-25 2016-02-02 Samsung Display Co., Ltd. Organic layer deposition apparatus and method of manufacturing organic light-emitting display apparatus by using the same
US8906731B2 (en) 2011-05-27 2014-12-09 Samsung Display Co., Ltd. Patterning slit sheet assembly, organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus, and the organic light-emitting display apparatus
US8951610B2 (en) 2011-07-04 2015-02-10 Samsung Display Co., Ltd. Organic layer deposition apparatus
US9512515B2 (en) 2011-07-04 2016-12-06 Samsung Display Co., Ltd. Organic layer deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US9777364B2 (en) 2011-07-04 2017-10-03 Samsung Display Co., Ltd. Organic layer deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US9051636B2 (en) 2011-12-16 2015-06-09 Samsung Display Co., Ltd. Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus using the same, and organic light-emitting display apparatus
US9257649B2 (en) 2012-07-10 2016-02-09 Samsung Display Co., Ltd. Method of manufacturing organic layer on a substrate while fixed to electrostatic chuck and charging carrier using contactless power supply module
US9496524B2 (en) 2012-07-10 2016-11-15 Samsung Display Co., Ltd. Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus using the same, and organic light-emitting display apparatus manufactured using the method
US10431779B2 (en) 2012-07-10 2019-10-01 Samsung Display Co., Ltd. Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus using the same, and organic light-emitting display apparatus manufactured using the method
US8945974B2 (en) 2012-09-20 2015-02-03 Samsung Display Co., Ltd. Method of manufacturing organic light-emitting display device using an organic layer deposition apparatus
US9534288B2 (en) 2013-04-18 2017-01-03 Samsung Display Co., Ltd. Deposition apparatus, method of manufacturing organic light-emitting display apparatus by using same, and organic light-emitting display apparatus manufactured by using deposition apparatus
JP2014231619A (en) * 2013-05-28 2014-12-11 住友重機械工業株式会社 Filming apparatus
US9347886B2 (en) 2013-06-24 2016-05-24 Samsung Display Co., Ltd. Apparatus for monitoring deposition rate, apparatus provided with the same for depositing organic layer, method of monitoring deposition rate, and method of manufacturing organic light emitting display apparatus using the same
US9496317B2 (en) 2013-12-23 2016-11-15 Samsung Display Co., Ltd. Method of manufacturing organic light emitting display apparatus

Similar Documents

Publication Publication Date Title
JP2005213616A (en) Vapor deposition method, vapor deposition apparatus and method for manufacturing plasma display panel
US20100155225A1 (en) Method of forming thin film and apparatus for forming thin film
JPH0665729A (en) Method and apparatus for vapor deposition by sputtering of liquid substance
WO2007010798A1 (en) Sputtering apparatus and method for manufacturing transparent conducting film
WO2009093598A1 (en) Sputtering film forming method and sputtering film forming apparatus
JPH08176807A (en) Method and apparatus for vapor-depositing highly ionized medium in electromagnetically controlled environment
JP2014532813A (en) Line scanning sputtering system and line scanning sputtering method
JP2009041115A (en) Sputtering source, sputtering apparatus and sputtering method
EP2607516B1 (en) Method for forming a gas blocking layer
JP4657183B2 (en) Sputtering apparatus and sputtering method
JP2008524435A (en) Magnetron sputtering equipment
TW201945567A (en) Methods and apparatus for physical vapor deposition via linear scanning with ambient control
JP4912980B2 (en) Deposition method
JP2015147953A (en) Film deposition method
KR101686318B1 (en) Method and apparatus for forming an EMI-shielding layer using a sputtering process
JP2617439B2 (en) Sputtering equipment
JP5002532B2 (en) Sputtering method and sputtering apparatus
KR102150455B1 (en) Apparatus for sputtering and apparatus for deposition including the same
JP2017057487A (en) Ion beam sputtering device
JPH06235061A (en) Continuous vacuum deposition device
JP7219140B2 (en) Deposition method
JP2007224376A (en) Vacuum vapor deposition apparatus and method
JP5179716B2 (en) Electron beam vacuum deposition method and apparatus
KR20200093604A (en) Sputtering method, sputtering device
JP3741160B2 (en) Continuous vacuum deposition apparatus and continuous vacuum deposition method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20061225

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081106