JP5179716B2 - Electron beam vacuum deposition method and apparatus - Google Patents

Electron beam vacuum deposition method and apparatus Download PDF

Info

Publication number
JP5179716B2
JP5179716B2 JP2005332560A JP2005332560A JP5179716B2 JP 5179716 B2 JP5179716 B2 JP 5179716B2 JP 2005332560 A JP2005332560 A JP 2005332560A JP 2005332560 A JP2005332560 A JP 2005332560A JP 5179716 B2 JP5179716 B2 JP 5179716B2
Authority
JP
Japan
Prior art keywords
container
film
electron beam
heating
film formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005332560A
Other languages
Japanese (ja)
Other versions
JP2007138235A (en
Inventor
栄一 松本
貴章 谷地田
雄二 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Tokki Corp
Original Assignee
Canon Tokki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Tokki Corp filed Critical Canon Tokki Corp
Priority to JP2005332560A priority Critical patent/JP5179716B2/en
Publication of JP2007138235A publication Critical patent/JP2007138235A/en
Application granted granted Critical
Publication of JP5179716B2 publication Critical patent/JP5179716B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Description

本発明は電子ビーム真空蒸着方法およびその装置に関する。   The present invention relates to an electron beam vacuum deposition method and apparatus.

真空蒸着法は、真空下で成膜物質(蒸発物質)を蒸気圧温度以上に加熱して蒸発させ、対向配置した基板に蒸発物質を付着させる方法である。
成膜物質の加熱方法としては、成膜物質を収容した容器に通電する抵抗加熱方式、容器の外周に配置したヒータで容器を加熱するヒータ加熱方式、容器外部の誘導コイルの電磁誘導作用によって容器又は成膜物質自体を加熱する誘導加熱方式、容器内の成膜物質に外部から電子ビームを照射して直接成膜物質を加熱蒸発させる電子ビーム蒸着方式、などが一般的に知られている。
特に、量産品の製造においては、金属材料、酸化物等の高融点セラミック材料等、ほとんどの材料を蒸着することができること、蒸着材料の供給が容易でかつ蒸着レートの制御性にも優れていることから、電子ビーム蒸着法が主に用いられる。
The vacuum deposition method is a method in which a film-forming substance (evaporation substance) is heated to a vapor pressure temperature or higher under vacuum to evaporate, and the evaporation substance is attached to a substrate disposed oppositely.
As a heating method for the film forming substance, a resistance heating method for energizing a container containing the film forming substance, a heater heating method for heating the container with a heater disposed on the outer periphery of the container, and an electromagnetic induction action of an induction coil outside the container are used. Alternatively, an induction heating method for heating the film forming material itself, an electron beam evaporation method for directly evaporating the film forming material by irradiating the film forming material in the container with an electron beam from the outside, and the like are generally known.
In particular, in the production of mass-produced products, most materials such as high melting point ceramic materials such as metal materials and oxides can be deposited, the supply of deposition materials is easy, and the control of the deposition rate is excellent. Therefore, the electron beam evaporation method is mainly used.

一方、近年の有機エレクトロニクスの発達により、有機発光素子、有機トランジスタ、有機太陽電池などの有機デバイスが製造されている。例えば、有機発光素子として、有機エレクトロルミネセンス(EL)素子が知られている。この素子は、基板上に発光機能を持つ有機材料の薄膜を形成し、この薄膜を上部電極及び下部電極で挟み込み、電極間に電圧を印加することで有機材料が発光するようになっている。
この素子の駆動方式としては、上部電極と下部電極とを縦横にマトリックス状に配線し、各配線を電極に接続したパッシブマトリックス方式と、各画素毎に儲けた駆動回路(薄膜トランジスタ:TFT)で電圧を制御するアクティブマトリックス方式とがある。パッシブ方式は構造が簡単なため、簡易な表示器などを安価に製造するのに適している。一方、アクティブ方式はスイッチング動作が速く、テレビジョンなどに適しており、今後の主流になると考えられる。
On the other hand, organic devices such as organic light-emitting elements, organic transistors, and organic solar cells have been manufactured with the recent development of organic electronics. For example, an organic electroluminescence (EL) element is known as an organic light emitting element. In this element, a thin film of an organic material having a light emitting function is formed on a substrate, the thin film is sandwiched between an upper electrode and a lower electrode, and a voltage is applied between the electrodes so that the organic material emits light.
As a driving method of this element, the upper electrode and the lower electrode are wired in a matrix form vertically and horizontally, and each wiring is connected to the electrode, and a driving circuit (thin film transistor: TFT) is provided for each pixel. There is an active matrix method for controlling. Since the passive system has a simple structure, it is suitable for manufacturing a simple display at a low cost. On the other hand, the active method has a fast switching operation and is suitable for a television or the like, and is expected to become the mainstream in the future.

EL素子は、通常、基板上にTFT等の駆動回路を形成した後、各電極及び有機薄膜を真空蒸着法で形成して製造される。有機薄膜中の有機材料の結合エネルギが低いため、電極となる金属層をスパッタ法で形成すると、スパッタリングによるプラズマ粒子(高エネルギー粒子)が有機材料を劣化させるので、金属層も蒸着法で形成する。
ところで、有機薄膜の蒸着法として、実験装置等で少量蒸着する場合は抵抗加熱方式が用いられるが、量産装置ではヒータ加熱方式又は誘導加熱方式が通常用いられる。また、金属膜の蒸着法としては、上記したように量産品の製造に適した電子ビーム蒸着法が通常用いられる。
An EL element is usually manufactured by forming a drive circuit such as a TFT on a substrate and then forming each electrode and an organic thin film by a vacuum deposition method. Since the binding energy of the organic material in the organic thin film is low, when the metal layer to be an electrode is formed by sputtering, plasma particles (high energy particles) by sputtering deteriorate the organic material, so the metal layer is also formed by vapor deposition. .
By the way, as a method for depositing an organic thin film, a resistance heating method is used when a small amount is deposited by an experimental apparatus or the like, but a heater heating method or an induction heating method is usually used in a mass production device. In addition, as described above, an electron beam vapor deposition method suitable for manufacturing a mass-produced product is usually used as the metal film vapor deposition method.

しかしながら、成膜工程に電子ビーム蒸着法を用いると、蒸着源からX線が発生してTFTのゲート電圧を変動させるという問題が指摘されている(例えば、特許文献1参照)。
このようなことから、蒸着材料に電子ビームを照射して蒸気を放出させた後、電子ビームの放射を停止し、成膜対象を蒸気が到達する位置に移動させて成膜する技術が開示されている(例えば、特許文献2参照)。この技術によれば、余熱によって成膜を行ため、電子ビームが成膜対象に照射されず、上記したダメージを受けることがない。
However, when the electron beam evaporation method is used in the film forming process, a problem has been pointed out that X-rays are generated from the evaporation source and the gate voltage of the TFT is changed (for example, see Patent Document 1).
For this reason, a technique for forming a film by irradiating the deposition material with an electron beam to release the vapor and then stopping the emission of the electron beam and moving the film formation target to a position where the vapor reaches is disclosed. (For example, refer to Patent Document 2). According to this technique, since the film is formed by the residual heat, the electron beam is not irradiated to the film formation target, and the above-described damage is not caused.

特開2004−63085号公報(解決手段)JP 2004-63085 A (Solution means) 特開2004−131831号公報(解決手段)JP 2004-131831 A (Solution means)

しかしながら、特許文献2記載の技術の場合、成膜対象である基板が大型になると移動対象が大きくなるため、移動距離も長くなる。その結果、タクトタイムが長くなって成膜効率が低下するとともに、基板の移動方向での成膜分布の均一性も低下するという問題がある。
本発明は上記の課題を解決するためになされたものであり、成膜対象に影響を与えずに蒸着を行うことができ、かつ成膜効率及び成膜分布の均一性に優れた電子ビーム真空蒸着方法およびその装置の提供を目的とする。
However, in the case of the technique described in Patent Document 2, the moving distance becomes longer because the moving object becomes larger when the substrate to be deposited becomes larger. As a result, there is a problem that the tact time is increased and the film formation efficiency is lowered, and the uniformity of the film formation distribution in the moving direction of the substrate is also lowered.
The present invention has been made to solve the above-described problems, and can perform evaporation without affecting the object of film formation, and is an electron beam vacuum excellent in film formation efficiency and film formation distribution uniformity. An object of the present invention is to provide a vapor deposition method and an apparatus therefor.

上記の目的を達成するために、本発明の電子ビーム真空蒸着方法は、開口を有する容器に収容された蒸発物質を成膜対象に成膜する真空蒸着法であって、前記容器及び前記成膜対象は真空排気されたチャンバー内に配置され、前記容器の開口が前記成膜対象と対向せずに該開口と前記成膜対象との間に遮蔽用仕切板が介在した第1の位置で電子ビームを前記蒸発物質に照射して該蒸発物質を加熱する加熱工程と、前記成膜対象と対向する第2の位置に前記容器を移動させ、余熱により該開口から前記蒸発物質を放出させて前記成膜対象に成膜する成膜工程と、前記容器を前記第2の位置から前記第1の位置に戻す位置戻し工程とをこの順序で繰り返すことを特徴とする。
このようにすると、成膜対象(基板等)に蒸着を行う際は加熱をせずに余熱のみを用いるため、加熱に用いる電子ビーム照射によってX線等が成膜対象に到達することがない。又、成膜対象でなく容器を移動させるため、成膜対象が大型になっても成膜効率及び成膜分布の均一性が低下することが少ない。
In order to achieve the above object, an electron beam vacuum vapor deposition method of the present invention is a vacuum vapor deposition method for depositing an evaporation substance contained in a container having an opening on a film deposition target, the container and the film deposition. The object is placed in a vacuum evacuated chamber, and the opening of the container does not face the film formation target, and the electron is at a first position where a shielding partition plate is interposed between the opening and the film formation target. A heating step of irradiating the evaporating material with a beam to heat the evaporating material, and moving the container to a second position opposite to the film formation target, causing the evaporating material to be released from the opening by residual heat, and A film forming process for forming a film on a film forming target and a position returning process for returning the container from the second position to the first position are repeated in this order.
In this case, when vapor deposition is performed on a film formation target (a substrate or the like), only the remaining heat is used without heating, so that X-rays or the like do not reach the film formation target due to electron beam irradiation used for heating. Further, since the container is moved instead of the film formation target, even when the film formation target becomes large, the film formation efficiency and the uniformity of the film formation distribution are less likely to decrease.

本発明の電子ビーム真空蒸着方法において、前記容器を2個以上備え、一の容器を前記第2の位置に移動させて前記成膜工程を行う間に他の容器を前記第1の位置に移動させて前記加熱工程を行い、かつ前記一の容器による成膜が終了すると前記他の容器を前記第2の位置に移動させて前記成膜工程を行うことにより、前記成膜工程を連続的に行うことが好ましい。
又、前記容器から放出される蒸発物質を遮蔽することができる。
前記加熱工程において、前記電子ビームとして、その進行方向が直進のもの及び偏向したもののいずれも使用することができる。
In the electron beam vacuum deposition method of the present invention, two or more containers are provided, and one container is moved to the second position and another container is moved to the first position while the film forming process is performed. When the film formation by the one container is completed, the film formation process is continuously performed by moving the other container to the second position and performing the film formation process. Preferably it is done.
Further, the evaporated substance released from the container can be shielded.
In the heating step, the electron beam can be either a straight traveling direction or a deflected traveling direction.

本発明の電子ビーム真空蒸着装置は、蒸発物質を収容し開口を有する容器と、前記蒸発物質を加熱する電子ビームを発生する加熱機構と、前記容器を移動させる移動機構と、遮蔽用仕切板と、を備え成膜対象、前記容器、前記加熱機構、前記移動機構及び前記遮蔽用仕切板は真空排気されたチャンバー内に配置され、前記加熱機構は、前記容器の開口が前記成膜対象と対向せずに該開口と前記成膜対象との間に前記遮蔽用仕切板が介在した第1の位置で前記電子ビームを前記蒸発物質に照射して該蒸発物質を加熱し、前記移動機構は、前記第1の位置で加熱が終了した前記容器を前記成膜対象と対向する第2の位置に移動させ、余熱により該開口から前記蒸発物質を放出させて成膜する成膜工程と、成膜後の前記容器を前記第1の位置に戻す位置戻し工程とをこの順序で繰り返すことを特徴とする。


An electron beam vacuum deposition apparatus according to the present invention includes a container containing an evaporating substance and having an opening, a heating mechanism for generating an electron beam for heating the evaporating substance, a moving mechanism for moving the container, a shielding partition plate, , comprising a film forming object, the container, the heating mechanism, the moving mechanism and the shielding partition plate is disposed in a vacuum evacuated chamber, said heating mechanism, opening of the container and the film-forming target The evaporating substance is heated by irradiating the evaporating substance with the electron beam at a first position where the shielding partition plate is interposed between the opening and the deposition target without facing, the moving mechanism includes A film forming step of moving the container, which has been heated at the first position, to a second position facing the film formation target and discharging the evaporated substance from the opening by residual heat to form a film; Return the container after the membrane to the first position. Position back a step and repeating in this sequence.


本発明の電子ビーム真空蒸着装置において、前記容器を2個以上備え、前記移動機構は、一の容器を前記第2の位置に移動させて前記成膜工程を行う間に他の容器を前記第1の位置に移動させて前記加熱工程を行い、かつ前記一の容器による成膜が終了すると前記他の容器を前記第2の位置に移動させて前記成膜工程を行うことにより、前記成膜工程を連続的に行うことが好ましい。   In the electron beam vacuum deposition apparatus of the present invention, two or more containers are provided, and the moving mechanism moves one container to the second position and performs another film formation process while performing the film forming step. The film forming step is performed by moving the first container to the position 1 and performing the heating process, and when the film formation by the one container is completed, moving the other container to the second position and performing the film forming process. It is preferable to carry out the process continuously.

本発明によれば、電子ビームから発生するX線等の成膜対象への照射を防いで成膜対象に影響を与えずに蒸着を行うことができるとともに、成膜効率及び成膜分布の均一性を向上させることができる。   According to the present invention, it is possible to perform deposition without affecting the film formation target by preventing irradiation of the film formation target such as X-rays generated from an electron beam, and uniform film formation efficiency and film formation distribution. Can be improved.

以下、本発明の実施形態について説明する。
<第1の実施形態>
図1は、本発明の第1の実施形態に係る電子ビーム真空蒸着装置の一例を示す斜視図である。この実施形態に係る装置は有機EL素子を製造するものであり、素子の配線となる金属材料を蒸発させるエネルギー源として、電子ビーム(以下、EBと略す)を用いた場合の例である。又、成膜対象である基板には予めTFT素子が設けられている。
図1において、図示しないチャンバー内(例えば、5×10-4Pa程度に真空排気する)に電子ビーム真空蒸着装置50が配置されている。電子ビーム真空蒸着装置50は、蒸発物質(金属材料)を収容する2個の容器2A及び2Bと、電子ビーム32を発生する電子ビーム源(加熱機構)6と、容器2A及び2Bの位置を移動させる移動機構8Aと、遮蔽用仕切板10と、図示しない基板ホルダーとを備える。基板ホルダーには基板20が取付けられている。又、移動機構8の制御は図示しない制御部が行うようになっている。
Hereinafter, embodiments of the present invention will be described.
<First Embodiment>
FIG. 1 is a perspective view showing an example of an electron beam vacuum deposition apparatus according to the first embodiment of the present invention. The apparatus according to this embodiment is an example in which an organic EL element is manufactured, and an electron beam (hereinafter abbreviated as EB) is used as an energy source for evaporating a metal material used as a wiring of the element. In addition, a TFT element is provided in advance on a substrate which is a film formation target.
In FIG. 1, an electron beam vacuum deposition apparatus 50 is disposed in a chamber (not shown) (for example, evacuated to about 5 × 10 −4 Pa). The electron beam vacuum vapor deposition apparatus 50 moves the positions of two containers 2A and 2B that contain an evaporated substance (metal material), an electron beam source (heating mechanism) 6 that generates an electron beam 32, and the containers 2A and 2B. A moving mechanism 8A to be moved, a shielding partition plate 10, and a substrate holder (not shown) are provided. A substrate 20 is attached to the substrate holder. The moving mechanism 8 is controlled by a control unit (not shown).

なお、この実施形態の基板ホルダーにおいて、回転中心22を軸として基板20が回転するようになっている。基板20のサイズが大きい場合、均一に成膜するために基板を自転させることが通常行われる(回転成膜)。   In the substrate holder of this embodiment, the substrate 20 is rotated about the rotation center 22 as an axis. When the size of the substrate 20 is large, the substrate is usually rotated to form a uniform film (rotary film formation).

容器2A及び2Bはそれぞれ有底円筒状をなし、上面にそれぞれ開口4A、4Bを有する。電子ビーム源6は、内蔵するフィラメントから熱電子を発生させるとともに、内蔵された電磁石の制御により電子ビームを引き出し、容器2A、2Bの開口4A,4Bから蒸発物質に電子ビームを照射する。
移動機構8Aは軌道上を往復運動可能な台座をなし、移動機構8Aの右上面に容器2Aが配置され、移動機構8Aの左上面に容器2Bが配置されている。図1において移動機構8Aは左右方向に往復し、又、移動機構8Aの制御は図示しない制御部が行うようになっている。
そして、図1において移動機構8Aが最も左側に移動した状態で、容器2Aの上方に遮蔽用仕切板10が位置し、電子ビーム源6が容器2Aに隣接している(容器がこの位置にある時を「加熱位置」と称する)。又、この状態で容器2Bの上方(開口4B)に基板20の下面が表出している(容器がこの位置にある時を「蒸発位置」と称する)。
Each of the containers 2A and 2B has a bottomed cylindrical shape, and has openings 4A and 4B on the upper surface, respectively. The electron beam source 6 generates thermoelectrons from a built-in filament, draws out an electron beam by controlling a built-in electromagnet, and irradiates the evaporated material with the electron beam from the openings 4A and 4B of the containers 2A and 2B.
The moving mechanism 8A has a pedestal that can reciprocate on the track. The container 2A is disposed on the upper right surface of the moving mechanism 8A, and the container 2B is disposed on the upper left surface of the moving mechanism 8A. In FIG. 1, the moving mechanism 8A reciprocates in the left-right direction, and the control of the moving mechanism 8A is performed by a control unit (not shown).
1, with the moving mechanism 8A moved to the leftmost side, the shielding partition plate 10 is positioned above the container 2A, and the electron beam source 6 is adjacent to the container 2A (the container is at this position). Time is referred to as the “heating position”). Further, in this state, the lower surface of the substrate 20 is exposed above the container 2B (opening 4B) (when the container is in this position, it is referred to as “evaporation position”).

図2は、図1のF方向から見た正面図を示す。図2において、容器2Bは遮蔽用仕切板10より左側に位置し、容器2Bからの蒸発粒子30が回転中心22より左側の基板20面に到達するようになっている(加熱位置)。又、容器2Aの中心は遮蔽用仕切板10の中心と同一となっている(蒸発位置)。
一方、移動機構8Aが最も右側(加熱位置)に移動すると、容器2Aは遮蔽用仕切板10より右側に位置し、容器2Aからの蒸発粒子30が回転中心22より右側の基板20面に到達するようになっている。又、容器2Bの中心が遮蔽用仕切板10の中心と同一となる(蒸発位置)。
FIG. 2 shows a front view seen from the direction F of FIG. In FIG. 2, the container 2B is positioned on the left side of the shielding partition plate 10, and the evaporated particles 30 from the container 2B reach the surface of the substrate 20 on the left side of the rotation center 22 (heating position). The center of the container 2A is the same as the center of the shielding partition plate 10 (evaporation position).
On the other hand, when the moving mechanism 8A moves to the rightmost side (heating position), the container 2A is positioned on the right side of the shielding partition plate 10, and the evaporated particles 30 from the container 2A reach the surface of the substrate 20 on the right side from the rotation center 22. It is like that. Further, the center of the container 2B is the same as the center of the shielding partition plate 10 (evaporation position).

図3は、図1のG方向から見た上面図を示す。図3において、遮蔽用仕切板10の中心は、回転中心22から偏位した位置で、かつ基板20内にあって基板の縁部近傍に位置している。又、容器2A及び2Bがそれぞれ蒸発位置にある時、各容器は回転中心22から等距離の同心円C上に位置する。   FIG. 3 shows a top view seen from the direction G of FIG. In FIG. 3, the center of the shielding partition plate 10 is deviated from the rotation center 22 and is located in the substrate 20 and in the vicinity of the edge of the substrate. Further, when the containers 2A and 2B are in the evaporation positions, the containers are positioned on the concentric circle C that is equidistant from the rotation center 22.

次に、電子ビーム真空蒸着装置50を用いた蒸着方法について説明する。まず、移動機構8Aが図1に示すように位置する場合を考える。この状態で、容器2Aの側方の電子ビーム源6が作動し、上方に向かって電子ビーム32が飛び出す。電子ビームは、図示しない磁場回路で180°又は270°に偏向させられ、容器2Aの開口4Aから蒸発物質に照射する。加熱は、蒸発物質が気化する温度以上に加熱され、蒸発粒子が発生するまで行う。
なお、電子ビーム源6の作動のタイミングは、例えば容器2Aが所定位置に来たことをセンサーで検出して電子ビーム源を動作させ、一定時間後(又は蒸着レートを測定してその測定値に応じて)電子ビーム源をオフさせればよい。
ここで、電子ビーム32を照射した際、蒸発物質から二次電子、反射電子、又はX線が放出され、これらは有機EL素子の形成の過程で基板上のTFT等の素子に悪影響を及ぼすことがある。そこで、容器2Aの照射領域より上側に遮蔽用仕切板10を配置することで、容器2A上面から放出される二次電子等が基板20へ到達することを防止する。又、遮蔽用仕切板10は、容器2Aが図1のように位置した状態で、蒸発物質が基板20へ到達することも防止する。
Next, a vapor deposition method using the electron beam vacuum vapor deposition apparatus 50 will be described. First, consider a case where the moving mechanism 8A is positioned as shown in FIG. In this state, the electron beam source 6 on the side of the container 2A is operated, and the electron beam 32 is ejected upward. The electron beam is deflected by 180 ° or 270 ° by a magnetic field circuit (not shown), and irradiates the evaporated substance from the opening 4A of the container 2A. The heating is performed until the vaporized particles are generated by heating above the temperature at which the evaporated substance is vaporized.
The operation timing of the electron beam source 6 is determined by, for example, detecting that the container 2A has come to a predetermined position with a sensor and operating the electron beam source, and measuring the deposition rate after a predetermined time (or measuring the deposition rate). In response, the electron beam source may be turned off.
Here, when the electron beam 32 is irradiated, secondary electrons, reflected electrons, or X-rays are emitted from the evaporated substance, and these adversely affect elements such as TFTs on the substrate in the process of forming the organic EL element. There is. Therefore, by arranging the shielding partition plate 10 above the irradiation area of the container 2A, secondary electrons and the like emitted from the upper surface of the container 2A are prevented from reaching the substrate 20. Further, the shielding partition plate 10 prevents the evaporated substance from reaching the substrate 20 in a state where the container 2A is positioned as shown in FIG.

加熱により容器2Aから蒸発粒子が発生すると、移動機構8Aが右へスライドし、容器2Aを遮蔽用仕切板10より右側に移動させる。すると、容器2A内の蒸発物質の余熱により発生した蒸発粒子30は上方に飛び出し、容器2Aに対向する基板20に蒸着する。移動機構8が動作するタイミングは、例えば上記した電子ビーム源をオフさせるタイミングに合わせればよい。
このように、基板に蒸着を行う際は加熱をせずに余熱のみを用いるため、加熱に用いる電子ビーム照射によってX線等が基板に到達することがない。
ここで、遮蔽用仕切板10と容器2A(図1の右側に容器2Aが位置する場合)との間に図示しない水晶振動式蒸着レートモニタを設置してもよい。そして、加熱時間を長くし、加熱直後の蒸着レートを高く設定しておけば、余熱温度が高くなり、容器2Aを図1の右側に移動して蒸着する際の蒸発物質の冷却が遅くなるので、蒸着に用いる時間を長くすることができる。
本発明者らは実際に真空蒸着装置を用い、加熱時間2秒、蒸着時間2秒として成膜を行った。2秒加熱した直後の蒸着レートが約20Å/sec(2nm/sec)であり、容器2Aを図1の右側へ移動して余熱のみによって蒸着を行ったところ、移動後2秒でほぼ蒸着レートが0Å/secになることが確認された。
When evaporation particles are generated from the container 2A by heating, the moving mechanism 8A slides to the right and moves the container 2A to the right side from the shielding partition plate 10. Then, the evaporated particles 30 generated by the residual heat of the evaporated substance in the container 2A jump out upward and are deposited on the substrate 20 facing the container 2A. The timing at which the moving mechanism 8 operates may be matched with the timing at which the electron beam source is turned off, for example.
In this way, when vapor deposition is performed on the substrate, only the residual heat is used without heating, so that X-rays or the like do not reach the substrate due to the electron beam irradiation used for heating.
Here, a quartz vibration deposition rate monitor (not shown) may be installed between the shielding partition plate 10 and the container 2A (when the container 2A is positioned on the right side of FIG. 1). And if heating time is lengthened and the vapor deposition rate immediately after heating is set high, the residual heat temperature becomes high, and the cooling of the evaporating substance during vapor deposition by moving the container 2A to the right side of FIG. 1 becomes slow. The time used for vapor deposition can be lengthened.
The present inventors actually formed a film using a vacuum deposition apparatus with a heating time of 2 seconds and a deposition time of 2 seconds. The deposition rate immediately after heating for 2 seconds is about 20 liters / sec (2 nm / sec), and when the container 2A is moved to the right side of FIG. It was confirmed to be 0 liter / sec.

容器2Aによる蒸着を行っている間、容器2Bが遮蔽用仕切板10の下側に位置し、容器2B内の蒸発物質が同様に加熱される。そして、容器2Aによる蒸着が終了すると移動機構8Aが左にスライドし、容器2Bが左側に移動して図1の状態になる。この位置で、容器2B内の蒸発物質が余熱により同様に飛び出して、基板20の蒸着を行う。この時、容器2Aは遮蔽用仕切板10の下側の位置に戻り、再び加熱に供される。以後、この工程を繰返して蒸着を続けることで、所定の蒸着膜厚を得ることができる。なお、容器2Aによる蒸着が終了して移動機構が動作するタイミング(蒸着時間に相当)は、例えば上記加熱工程で移動機構8が動作するタイミング(加熱時間に相当)に合わせればよい。例えば、上記した実際の例では、加熱時間と蒸着時間は同一(2秒)である。
以上のように、例えば、加熱終了後の容器2Aを用い、蒸着レートが0になるまで余熱により成膜を行い、次に容器2Bを用いて蒸着することで、各容器2A,2Bを交互に用いて連続して蒸着することができる。
While vapor deposition is performed using the container 2A, the container 2B is positioned below the shielding partition plate 10, and the evaporated substance in the container 2B is similarly heated. Then, when the vapor deposition by the container 2A is completed, the moving mechanism 8A slides to the left, and the container 2B moves to the left to be in the state of FIG. At this position, the evaporation substance in the container 2B jumps out due to residual heat, and the substrate 20 is deposited. At this time, the container 2A returns to the lower position of the shielding partition plate 10 and is again heated. Thereafter, by repeating this process and continuing the deposition, a predetermined deposition film thickness can be obtained. Note that the timing (corresponding to the vapor deposition time) at which the moving mechanism is operated after the vapor deposition by the container 2A is finished may be matched with the timing (corresponding to the heating time) at which the moving mechanism 8 is operated in the heating step, for example. For example, in the above-described actual example, the heating time and the vapor deposition time are the same (2 seconds).
As described above, for example, by using the container 2A after completion of heating, film formation is performed with residual heat until the vapor deposition rate becomes 0, and then vapor deposition is performed using the container 2B, whereby the containers 2A and 2B are alternately arranged. Can be continuously deposited.

なお、この実施形態では、容器2Aは回転中心22より右側の基板部分を蒸着し、容器2Bは回転中心22より左側の基板部分を蒸着する。しかしながら、基板20を回転させることにより、基板の蒸着面全体を均一に成膜することができる。例えば、図1の位置から蒸着を開始し、容器2Bによって蒸着された部分が回転して容器2Aの位置に到達した時点で基板を系外に移動すれば、基板の全面を均一に蒸着することになる。   In this embodiment, the container 2A deposits the substrate portion on the right side of the rotation center 22, and the container 2B deposits the substrate portion on the left side of the rotation center 22. However, by rotating the substrate 20, the entire deposition surface of the substrate can be uniformly formed. For example, if the deposition is started from the position of FIG. 1 and the portion deposited by the container 2B rotates and reaches the position of the container 2A, the substrate is moved out of the system to uniformly deposit the entire surface of the substrate. become.

<第2の実施形態>
図4は、本発明の第2の実施形態に係る電子ビーム真空蒸着装置の一例を示す斜視図である。この実施形態に係る装置50Bは、容器が1個であること以外は第1の実施形態とまったく同様であるので、第1の実施形態と同一構成部分については同一符号を用いて説明を省略する。
図4において、単一の容器2Aが移動機構8Bの上に載置されている。移動機構8Bは軌道上を往復運動可能な台座をなし、移動機構8Bの制御は図示しない制御部が行うようになっている。
<Second Embodiment>
FIG. 4 is a perspective view showing an example of an electron beam vacuum evaporation apparatus according to the second embodiment of the present invention. Since the apparatus 50B according to this embodiment is exactly the same as the first embodiment except that there is one container, the same components as those of the first embodiment are denoted by the same reference numerals and the description thereof is omitted. .
In FIG. 4, a single container 2A is placed on the moving mechanism 8B. The moving mechanism 8B is a pedestal that can reciprocate on the track, and the moving mechanism 8B is controlled by a control unit (not shown).

次に、電子ビーム真空蒸着装置50Aを用いた蒸着方法について説明する。まず、図4に示すように移動機構8Bが右側に移動した場合を考える。この位置で、容器2Aは遮蔽用仕切板10の下側に位置し、容器内の蒸発物質が電子ビーム源6の電子ビーム32によって加熱される。加熱は蒸発粒子が発生するまで行う。電子ビーム32を照射して生じるX線等は遮蔽用仕切板10によって遮蔽される。   Next, a vapor deposition method using the electron beam vacuum vapor deposition apparatus 50A will be described. First, consider a case where the moving mechanism 8B has moved to the right as shown in FIG. At this position, the container 2 </ b> A is positioned below the shielding partition plate 10, and the evaporated substance in the container is heated by the electron beam 32 of the electron beam source 6. Heating is performed until evaporated particles are generated. X-rays and the like generated by irradiating the electron beam 32 are shielded by the shielding partition plate 10.

加熱により容器2Aから蒸発粒子が発生すると、移動機構8Bが左側にスライドし、容器2Aを図1の左側に移動させる。すると、蒸発物質の余熱により発生した蒸発粒子30は上方に飛び出し、対向する基板20に蒸着する。基板に蒸着する際は加熱を行わないため、加熱時に電子ビーム照射によってX線等が基板に到達することがない。
なお、遮蔽用仕切板10と容器2A(容器が図4の右側の位置にある場合)との間に図示しない水晶振動式蒸着レートモニタを設置してもよいのは第1の実施形態の場合と同様である。
When evaporating particles are generated from the container 2A by heating, the moving mechanism 8B slides to the left and moves the container 2A to the left in FIG. Then, the evaporated particles 30 generated by the residual heat of the evaporated substance jump out upward and are deposited on the opposing substrate 20. Since heating is not performed when vapor deposition is performed on the substrate, X-rays or the like do not reach the substrate due to electron beam irradiation during heating.
In the case of the first embodiment, a quartz vibration deposition rate monitor (not shown) may be installed between the shielding partition plate 10 and the container 2A (when the container is on the right side in FIG. 4). It is the same.

容器2Aによる蒸着が終了すると移動機構8Bが右側にスライドし、容器2Aが遮蔽用仕切板10の下側に戻って再び加熱が行われ、加熱が終了すると再び蒸着が行われる。このように、第2の実施形態の場合、単一の容器2Aを用いて蒸発物質の加熱、及び蒸着を行うため、加熱を行っている間は蒸着が休止する点で第1の実施形態より成膜効率が低いが、装置が簡易となる。   When vapor deposition by the container 2A is completed, the moving mechanism 8B slides to the right side, the container 2A returns to the lower side of the shielding partition plate 10, and heating is performed again. When heating is completed, vapor deposition is performed again. As described above, in the case of the second embodiment, the evaporation material is heated and vapor-deposited using the single container 2A. Therefore, the vaporization is paused while heating is performed. The film forming efficiency is low, but the apparatus is simple.

<第3の実施形態>
図5は、本発明の第3の実施形態に係る電子ビーム真空蒸着装置の一例を示す斜視図である。この実施形態に係る装置50Cは、移動機構の構成が異なること以外は第1の実施形態と同様であるので、第1の実施形態と同一構成部分については同一符号を用いて説明を省略する。
第3の実施形態において、移動機構8Cは円盤状の回転テーブルであり、円盤の上面に容器2A、2Bが回転対称に配置されている。そして、図5に示すように、容器2Bが左側に位置し、容器2Aが右側に位置した状態で、容器2Aの上方に遮蔽用仕切板10が位置し電子ビーム源6が容器2Aに隣接し又、容器2Bの上方(開口4B)に基板20が対向配置している。
<Third Embodiment>
FIG. 5 is a perspective view showing an example of an electron beam vacuum deposition apparatus according to the third embodiment of the present invention. The apparatus 50C according to this embodiment is the same as that of the first embodiment except that the configuration of the moving mechanism is different. Therefore, the same components as those of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
In the third embodiment, the moving mechanism 8C is a disk-shaped rotary table, and the containers 2A and 2B are rotationally symmetrically arranged on the upper surface of the disk. Then, as shown in FIG. 5, with the container 2B positioned on the left side and the container 2A positioned on the right side, the shielding partition plate 10 is positioned above the container 2A, and the electron beam source 6 is adjacent to the container 2A. Further, the substrate 20 is disposed opposite to the upper side (opening 4B) of the container 2B.

次に、電子ビーム真空蒸着装置50Cを用いた蒸着方法について説明する。まず、図5に示す状態で、容器2Aの側方の電子ビーム源6が作動し、容器2Aの開口4Aから蒸発物質に照射する。加熱は、蒸発物質が溶融温度又は気化温度以上に加熱され、蒸発粒子が発生するまで行う。容器2A上面から放出される二次電子等は遮蔽用仕切板10によって遮蔽されるのは既に述べた通りである。   Next, a vapor deposition method using the electron beam vacuum vapor deposition apparatus 50C will be described. First, in the state shown in FIG. 5, the electron beam source 6 on the side of the container 2A is operated to irradiate the evaporated substance from the opening 4A of the container 2A. The heating is performed until the evaporated substance is heated to the melting temperature or the vaporization temperature or higher and evaporated particles are generated. As described above, secondary electrons and the like emitted from the upper surface of the container 2A are shielded by the shielding partition plate 10.

加熱により容器2Aから蒸発粒子が発生すると、移動機構8Cが180°回転し、容器2Aを図5の左側(図5の容器2Bの位置)に移動させる。そして、容器2A内の蒸発物質の余熱により発生した蒸発粒子30は上方に飛び出し、容器2A上に位置する基板20に蒸着する。遮蔽用仕切板10と容器2A(図5の右側の位置に容器2Aがある場合)との間に図示しない水晶振動式蒸着レートモニタを設置してもよいのは上記各実施形態と同様である。   When evaporating particles are generated from the container 2A by heating, the moving mechanism 8C rotates 180 ° to move the container 2A to the left side in FIG. 5 (the position of the container 2B in FIG. 5). Then, the evaporated particles 30 generated by the residual heat of the evaporated substance in the container 2A jump out upward and are deposited on the substrate 20 located on the container 2A. As in the above embodiments, a quartz vibration deposition rate monitor (not shown) may be installed between the shielding partition plate 10 and the container 2A (when the container 2A is located on the right side of FIG. 5). .

ここで、容器2Aによる蒸着を行っている間、容器2Bが遮蔽用仕切板10の下側に位置し、容器2B内の蒸発物質が同様に加熱される。そして、容器2Aによる蒸着が終了すると移動機構8が180°回転し、容器2Bが図5の左側に移動して同様に蒸着を行う。この時、容器2Aは遮蔽用仕切板10の下側位置に戻り、再び加熱に供される。以後、この工程を繰返して蒸着を続けることで、所定の蒸着膜厚を得ることができる。この実施形態の場合も複数の容器を用いることで、各容器2A,2Bを交互に用いて連続的に蒸着することができる。   Here, during vapor deposition by the container 2A, the container 2B is positioned below the shielding partition plate 10, and the evaporated substance in the container 2B is similarly heated. When the vapor deposition by the container 2A is completed, the moving mechanism 8 rotates 180 °, and the container 2B moves to the left side of FIG. At this time, the container 2A returns to the lower position of the shielding partition plate 10 and is again heated. Thereafter, by repeating this process and continuing the deposition, a predetermined deposition film thickness can be obtained. Also in this embodiment, by using a plurality of containers, the respective containers 2A and 2B can be alternately used for vapor deposition.

上記各実施形態によれば、蒸発物質を加熱する際の電子ビームの照射により発生する2次電子、X線等の高エネルギー粒子により、基板上のTFT等の素子に悪影響を及ぼすことが防止される。
又、上記各実施形態によれば、基板でなく蒸発源を移動させるため、比較的大きさの小さい蒸発源が移動対象となる。そのため、容器を加熱位置や蒸着位置に移動させる際の位置精度が高くなり、又、移動速度を比較的速くすることができ、タクトタイムの短縮による成膜効率の向上、成膜分布の均一性(再現性)の向上を達成することができる。従って、歩留まりよく生産性の高い電子ビーム真空蒸着を行うことができる。特に、基板が大型の場合にこの効果が顕著になる。
According to each of the above-described embodiments, it is possible to prevent elements such as TFTs on the substrate from being adversely affected by high energy particles such as secondary electrons and X-rays generated by irradiation of an electron beam when heating the evaporation substance. The
In addition, according to each of the above embodiments, the evaporation source is moved instead of the substrate, and therefore, an evaporation source having a relatively small size is a moving object. Therefore, the positional accuracy when moving the container to the heating position or vapor deposition position is increased, the moving speed can be made relatively fast, the film forming efficiency is improved by shortening the tact time, and the film forming distribution is uniform. (Reproducibility) can be improved. Therefore, it is possible to perform electron beam vacuum deposition with high yield and high productivity. In particular, this effect becomes significant when the substrate is large.

なお、上記の実施形態によれば、基板が小型(200mm角以下)の場合は、基板を回転させなくとも均一な成膜が可能である。又、基板の大型化に伴い、現在の実用的な基板は200mm角以上のものが用いられているが、成膜の厚み分布を均一にするため、回転成膜が主である。従って、大型の基板に蒸着する場合は、回転成膜に適した第1の実施形態に係る装置を用いることが好ましい。又、第1の実施形態に係る装置においては、移動機構が移動する範囲がほぼ蒸発源の大きさであるので、装置のコンパクト化の点でも望ましく、他の実施形態より蒸発源の移動距離が短く、移動時間の短縮を図ることができる。
さらに、各実施形態において、蒸発物質の供給機構を付設することで、長時間の連続成膜が可能となる。又、基板近傍に水晶モニタを設置し、所望の膜厚になったら成膜を終了させることもできる。
According to the above embodiment, when the substrate is small (200 mm square or less), uniform film formation is possible without rotating the substrate. In addition, with the increase in the size of the substrate, a current practical substrate of 200 mm square or more is used. In order to make the thickness distribution of the film formation uniform, the rotation film formation is mainly used. Therefore, when vapor-depositing on a large substrate, it is preferable to use the apparatus according to the first embodiment suitable for rotating film formation. Further, in the apparatus according to the first embodiment, the range in which the moving mechanism moves is almost the size of the evaporation source, which is desirable from the viewpoint of compactness of the apparatus, and the movement distance of the evaporation source is longer than that of the other embodiments. Short movement time can be achieved.
Furthermore, in each embodiment, a continuous film formation for a long time is possible by providing an evaporation substance supply mechanism. In addition, a crystal monitor can be installed in the vicinity of the substrate, and the film formation can be terminated when a desired film thickness is obtained.

なお、上記した第1及び第3の実施形態に係る説明では、2個の容器を用いたが、容器の個数はこれに限定されない。又、移動機構の構成も上記台車や回転テーブルに限定されない。
さらに、加熱機構内の電子ビームを発生するフィラメントの汚染を抑えるため、上記した電子ビームの偏向を270°とすると好ましい。
In the above description of the first and third embodiments, two containers are used, but the number of containers is not limited to this. Further, the configuration of the moving mechanism is not limited to the cart or the rotary table.
Further, in order to suppress contamination of the filament that generates the electron beam in the heating mechanism, it is preferable that the deflection of the electron beam is 270 °.

本発明の第1の実施形態に係る電子ビーム真空蒸着装置の一例を示す斜視図である。It is a perspective view which shows an example of the electron beam vacuum evaporation system which concerns on the 1st Embodiment of this invention. 図1の正面図である。It is a front view of FIG. 図1の上面図である。FIG. 2 is a top view of FIG. 1. 本発明の第2の実施形態に係る電子ビーム真空蒸着装置の一例を示す斜視図である。It is a perspective view which shows an example of the electron beam vacuum evaporation system which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る電子ビーム真空蒸着装置の一例を示す斜視図である。It is a perspective view which shows an example of the electron beam vacuum evaporation system which concerns on the 3rd Embodiment of this invention.

符号の説明Explanation of symbols

2A、2B 容器
4A、4B 容器の開口
6 加熱機構
8 移動機構
10 遮蔽用仕切板
20 基板
30 蒸発物質
32 電子ビーム
50 電子ビーム真空蒸着装置
2A, 2B container 4A, 4B container opening 6 heating mechanism 8 moving mechanism 10 shielding partition plate 20 substrate 30 evaporative substance 32 electron beam 50 electron beam vacuum deposition apparatus

Claims (5)

開口を有する容器に収容された蒸発物質を成膜対象に成膜する真空蒸着法であって、前記容器及び前記成膜対象は真空排気されたチャンバー内に配置され、
前記容器の開口が前記成膜対象と対向せずに該開口と前記成膜対象との間に遮蔽用仕切板が介在した第1の位置で電子ビームを前記蒸発物質に照射して該蒸発物質を加熱する加熱工程と、
前記成膜対象と対向する第2の位置に前記容器を移動させ、余熱により該開口から前記蒸発物質を放出させて前記成膜対象に成膜する成膜工程と、
前記容器を前記第2の位置から前記第1の位置に戻す位置戻し工程と
をこの順序で繰り返すことを特徴とする電子ビーム真空蒸着方法。
A vacuum vapor deposition method for forming a vapor deposition substance contained in a container having an opening on a film formation target, wherein the container and the film formation target are disposed in a evacuated chamber,
The evaporating substance is irradiated with an electron beam at a first position where a shielding partition plate is interposed between the opening and the film forming object without an opening of the container facing the film forming object. Heating process for heating,
A film forming step of moving the container to a second position facing the film formation target, releasing the evaporated substance from the opening by residual heat, and forming a film on the film formation target;
A method of returning the container from the second position to the first position is repeated in this order.
前記容器を2個以上備え、
一の容器を前記第2の位置に移動させて前記成膜工程を行う間に他の容器を前記第1の位置に移動させて前記加熱工程を行い、かつ前記一の容器による成膜が終了すると前記他の容器を前記第2の位置に移動させて前記成膜工程を行うことにより、前記成膜工程を連続的に行うことを特徴とする請求項1に記載の電子ビーム真空蒸着方法。
Comprising two or more of the containers,
While one film is moved to the second position and the film forming process is performed, another container is moved to the first position and the heating process is performed, and the film formation by the one container is completed. The electron beam vacuum deposition method according to claim 1, wherein the film forming step is continuously performed by moving the other container to the second position and performing the film forming step.
前記加熱工程において、前記容器から放出される蒸発物質を遮蔽することを特徴とする請求項1又は2に記載の電子ビーム真空蒸着方法。 3. The electron beam vacuum deposition method according to claim 1, wherein in the heating step, an evaporating substance released from the container is shielded. 蒸発物質を収容し開口を有する容器と、
前記蒸発物質を加熱する電子ビームを発生する加熱機構と、
前記容器を移動させる移動機構と、
遮蔽用仕切板と、を備え、
膜対象、前記容器、前記加熱機構、前記移動機構及び前記遮蔽用仕切板は真空排気されたチャンバー内に配置され、
前記加熱機構は、前記容器の開口が前記成膜対象と対向せずに該開口と前記成膜対象との間に前記遮蔽用仕切板が介在した第1の位置で前記電子ビームを前記蒸発物質に照射して該蒸発物質を加熱し、
前記移動機構は、前記第1の位置で加熱が終了した前記容器を前記成膜対象と対向する第2の位置に移動させ、余熱により該開口から前記蒸発物質を放出させて成膜する成膜工程と、成膜後の前記容器を前記第1の位置に戻す位置戻し工程とをこの順序で繰り返すことを特徴とする電子ビーム真空蒸着装置。
A container containing an evaporating substance and having an opening;
A heating mechanism for generating an electron beam for heating the evaporating material;
A moving mechanism for moving the container;
A shielding partition plate,
Film-forming target, the container, the heating mechanism, the moving mechanism and the shielding partition plate is disposed in a vacuum evacuated chamber,
The heating mechanism is, the evaporating material the electron beam at a first position in which the shielding partition plate is interposed between the opening aperture of the container without facing the film-forming target and the film-forming target To evaporate and heat the evaporant,
The moving mechanism moves the container that has been heated at the first position to a second position that faces the film formation target, and releases the evaporating substance from the opening by residual heat to form a film. An electron beam vacuum deposition apparatus characterized by repeating the steps and a position returning step of returning the container after film formation to the first position in this order.
前記容器を2個以上備え、
前記移動機構は、一の容器を前記第2の位置に移動させて前記成膜工程を行う間に他の容器を前記第1の位置に移動させて前記加熱工程を行い、かつ前記一の容器による成膜が終了すると前記他の容器を前記第2の位置に移動させて前記成膜工程を行うことにより、前記成膜工程を連続的に行うことを特徴とする請求項4に記載の電子ビーム真空蒸着装置。
Comprising two or more of the containers,
The moving mechanism moves the other container to the first position to perform the heating step while moving the one container to the second position and performs the film forming step, and the one container 5. The electron according to claim 4, wherein the film forming step is continuously performed by moving the other container to the second position and performing the film forming step when the film formation by the step is completed. Beam vacuum evaporation system.
JP2005332560A 2005-11-17 2005-11-17 Electron beam vacuum deposition method and apparatus Active JP5179716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005332560A JP5179716B2 (en) 2005-11-17 2005-11-17 Electron beam vacuum deposition method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005332560A JP5179716B2 (en) 2005-11-17 2005-11-17 Electron beam vacuum deposition method and apparatus

Publications (2)

Publication Number Publication Date
JP2007138235A JP2007138235A (en) 2007-06-07
JP5179716B2 true JP5179716B2 (en) 2013-04-10

Family

ID=38201472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005332560A Active JP5179716B2 (en) 2005-11-17 2005-11-17 Electron beam vacuum deposition method and apparatus

Country Status (1)

Country Link
JP (1) JP5179716B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5171583B2 (en) * 2008-12-08 2013-03-27 日立造船株式会社 Electron beam evaporation system
WO2012124593A1 (en) * 2011-03-15 2012-09-20 シャープ株式会社 Vapor deposition particle projection device and vapor deposition device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142760A (en) * 1985-12-17 1987-06-26 Matsushita Electric Ind Co Ltd Vacuum deposition device
JPH03207860A (en) * 1990-01-08 1991-09-11 Shin Meiwa Ind Co Ltd Vacuum deposition device for continuous film formation
JPH09256142A (en) * 1996-03-15 1997-09-30 Sony Corp Film forming device
JP2004131831A (en) * 2002-10-15 2004-04-30 Ulvac Japan Ltd Method for forming film
JP2004131832A (en) * 2002-10-15 2004-04-30 Ulvac Japan Ltd Apparatus and method for depositing film
JP2004149846A (en) * 2002-10-30 2004-05-27 Sony Corp Vapor deposition apparatus, and apparatus for manufacturing organic electroluminescent element
JP2004152644A (en) * 2002-10-31 2004-05-27 Ulvac Japan Ltd Organic electroluminescent device
GB0307745D0 (en) * 2003-04-03 2003-05-07 Microemissive Displays Ltd Method and apparatus for depositing material on a substrate

Also Published As

Publication number Publication date
JP2007138235A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
KR100796148B1 (en) Vertical movement type effusion cell for depositing material and deposition system having it
TWI396758B (en) Vacuum evaporation method and device for organic material
KR20070105595A (en) Evaporation apparatus
JP2002348659A (en) Continuous vapor deposition apparatus, vapor deposition apparatus and vapor deposition method
JP2007186787A (en) Vapor deposition pot, thin-film forming apparatus provided therewith and method for producing display device
JP2004225058A (en) Film deposition apparatus, display panel manufacturing apparatus, and method for the same
WO2005111259A1 (en) Organic material evaporation source and organic vapor deposition device
KR101885245B1 (en) Depositing apparatus and method for manufacturing organic light emitting diode display using the same
KR100745346B1 (en) Apparatus of thin film evaporation and method for thin film evaporation using the same
JP5244635B2 (en) Organic vapor deposition equipment
JP3742567B2 (en) Vacuum deposition apparatus and vacuum deposition method
JP5179716B2 (en) Electron beam vacuum deposition method and apparatus
JP2004269948A (en) Film deposition apparatus, film deposition method, and method for manufacturing display device
KR20150015359A (en) Electron beam evaporation apparatus
JP2003317948A (en) Evaporation source and thin film formation device using the same
JP2007305439A (en) Manufacturing method of organic electroluminescent display device
JP2002371353A (en) Electron beam bombardment type evaporation source
KR100637180B1 (en) Method of deposition and deposition apparatus for that method
KR20220120254A (en) Apparatus of deposition having radiation angle controlling shutter
JP2004095275A (en) Manufacturing device of organic electroluminescent element
KR100709265B1 (en) Apparatus and method for sputtering organic matter
JP2003321765A (en) Vapor deposition method for organic matter, and vapor deposition system and evaporation source used for this method
JP2007100132A (en) Vapor deposition method, and method for manufacturing display device
JP2003055757A (en) Film deposition method and film deposition apparatus
KR100592238B1 (en) Thin film deposition method and device therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130110

R150 Certificate of patent or registration of utility model

Ref document number: 5179716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250