EP2366946A1 - Beleuchtungseinrichtung einer Anzeigevorrichtung mit darin integrierter Struktur zur Erzeugung optischer Verluste - Google Patents
Beleuchtungseinrichtung einer Anzeigevorrichtung mit darin integrierter Struktur zur Erzeugung optischer Verluste Download PDFInfo
- Publication number
- EP2366946A1 EP2366946A1 EP20110160304 EP11160304A EP2366946A1 EP 2366946 A1 EP2366946 A1 EP 2366946A1 EP 20110160304 EP20110160304 EP 20110160304 EP 11160304 A EP11160304 A EP 11160304A EP 2366946 A1 EP2366946 A1 EP 2366946A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- optical
- propagation region
- light
- layer
- display
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0065—Manufacturing aspects; Material aspects
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/005—Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
- G02B6/0051—Diffusing sheet or layer
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S2/00—Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/001—Optical devices or arrangements for the control of light using movable or deformable optical elements based on interference in an adjustable optical cavity
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/005—Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/005—Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
- G02B6/0053—Prismatic sheet or layer; Brightness enhancement element, sheet or layer
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/0056—Means for improving the coupling-out of light from the light guide for producing polarisation effects, e.g. by a surface with polarizing properties or by an additional polarizing elements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
Definitions
- Microelectromechanical systems include micro mechanical elements, actuators, and electronics. Micromechanical elements may be created using deposition, etching, and/or other micromachining processes that etch away parts of substrates and/or deposited material layers or that add layers to form electrical and electromechanical devices.
- MEMS device One type of MEMS device is called an interferometric modulator.
- interferometric modulator or interferometric light modulator refers to a device that selectively absorbs and/or reflects light using the principles of optical interference.
- an interferometric modulator may comprise a pair of conductive plates, one or both of which may be transparent and/or reflective in whole or part and capable of relative motion upon application of an appropriate electrical signal.
- one plate may comprise a stationary layer deposited on a substrate and the other plate may comprise a metallic membrane separated from the stationary layer by an air gap.
- the position of one plate in relation to another can change the optical interference of light incident on the interferometric modulator.
- Such devices have a wide range of applications, and it would be beneficial in the art to utilize and/or modify the characteristics of these types of devices so that their features can be exploited in improving existing products and creating new products that have not yet been developed.
- a display device comprises an optical propagation region, at least one optical loss structure, an optical isolation layer, and a plurality of display elements.
- the optical propagation region comprises a light guide in which light is guided via total internal reflection.
- the optical propagation region further comprises turning features configured to redirect the light out of the optical propagation region.
- the at least one optical loss structure would disrupt the total internal reflection of at least some of the light guided within the optical propagation region if disposed directly adjacent thereto.
- the optical isolation layer comprises a non-gaseous material between the optical propagation region and the optical loss structure.
- the optical isolation layer is configured to increase an amount of light that is totally internal reflected in the optical propagation region.
- the plurality of display elements are positioned to receive the light redirected out of the optical propagation region.
- the optical loss structure is positioned between the plurality of display elements and the optical propagation region.
- a display device comprises means for guiding light via total internal reflection, means for disrupting the total internal reflection of at least some of the light guided within the light guiding means if the total internal reflection disrupting means is disposed directly adjacent to the light guiding means, means for optically isolating the light guiding means from the total internal reflection disrupting means, and means for displaying an image.
- the light guiding means comprises means for redirecting light out of the light guiding means and to the image displaying means.
- the optical isolating means comprises a non-gaseous material.
- the optical isolating means is disposed between the light guiding means and the total internal reflection disrupting means.
- the optically isolating means is configured to increase an amount of light that is totally internal reflected in the light guiding means.
- the image displaying means is positioned to receive light redirected out of the light guiding means.
- the total internal reflection disrupting means is positioned between the image displaying means and the light guiding means.
- a method of manufacturing a display device comprises providing a plurality of display elements, disposing an optical propagation region in proximity to said plurality of display elements, disposing an optical loss structure between the plurality of display elements and the optical propagation region, and disposing an optical isolation layer between the optical propagation region and the optical loss structure.
- the optical propagation region comprises a light guide in which light is guided via total internal reflection.
- the optical propagation region comprises turning features configured to redirect the light out of the optical propagation region.
- the optical loss structure would disrupt the total internal reflection of at least some of the light guided within the optical propagation region if disposed directly adjacent thereto.
- the optical isolation layer increases the amount of light that is totally internal reflected in the optical propagation region.
- an illumination apparatus comprises an optical propagation region comprising a light guide in which light is guided via total internal reflection and a layer coupled to the optical propagation region.
- the optical propagation region further comprises turning features configured to redirect the light out of the optical propagation region.
- the layer includes a matrix and a microstructure. At least a portion of the layer has an index of refraction less than an index of refraction of the optical propagation region. The layer is configured to increase an amount of light that is totally internal reflected in the optical propagation region.
- an illumination apparatus comprises an optical propagation region comprising a light guide in which light is guided via total internal reflection, at least one optical loss structure, and an optical isolation layer comprising a non-gaseous material between the optical propagation region and the optical loss structure.
- the optical propagation region further comprises turning features configured to redirect the light out of the optical propagation region.
- the at least one optical loss structure is selected from the group consisting of a diffuser, a polarizer, and a color filter.
- the optical isolation layer is configured to increase an amount of light that is totally internally reflected in the optical propagation region.
- a method of manufacturing a display device comprises providing an optical propagation region, providing an optical loss structure, and disposing an optical isolation layer between the optical propagation region and the optical loss structure.
- the optical propagation region comprises a light guide in which light is guided via total internal reflection.
- the optical propagation region comprises turning features configured to redirect the light out of the optical propagation region.
- the optical loss structure is selected from the group consisting of a diffuser, a polarizer, and a color filter.
- the optical isolation layer increases the amount of light that is totally internally reflected in the optical propagation region.
- FIG. 1 is an isometric view depicting a portion of one embodiment of an interferometric modulator display in which a movable reflective layer of a first interferometric modulator is in a relaxed position and a movable reflective layer of a second interferometric modulator is in an actuated position.
- FIG. 2 is a system block diagram illustrating one embodiment of an electronic device incorporating a 3x3 interferometric modulator display.
- FIG. 3 is a diagram of movable mirror position versus applied voltage for one exemplary embodiment of an interferometric modulator of FIG. 1 .
- FIG. 4 is an illustration of a set of row and column voltages that may be used to drive an interferometric modulator display.
- FIG. 5A illustrates one exemplary frame of display data in the 3x3 interferometric modulator display of FIG. 2 .
- FIG. 5B illustrates one exemplary timing diagram for row and column signals that may be used to write the frame of FIG. 5A .
- FIGS. 6A and 6B are system block diagrams illustrating an embodiment of a visual display device comprising a plurality of interferometric modulators.
- FIG. 7A is a cross section of the device of FIG. 1 .
- FIG. 7B is a cross section of an alternative embodiment of an interferometric modulator.
- FIG. 7C is a cross section of another alternative embodiment of an interferometric modulator.
- FIG. 7D is a cross section of yet another alternative embodiment of an interferometric modulator.
- FIG. 7E is a cross section of an additional alternative embodiment of an interferometric modulator.
- FIG. 8A is a cross section of a portion of a display device comprising a light guide adjacent to a diffuser.
- FIG. 8B is a cross section of a portion of a display device comprising a light guide spaced from a diffuser by an air gap.
- FIG. 9A is a cross section of a portion of an example embodiment of a display device comprising an optical propagation region of a light guide decoupled from a diffuser by an optical isolation layer.
- FIG. 9B is a cross section of a portion of another example embodiment of a display device comprising an optical propagation region, which is formed by a light guide and a substrate, decoupled from a diffuser by an optical isolation layer.
- FIG. 10A is a cross section of the embodiment of FIG. 9A comprising an optical propagation region decoupled from an optical loss layer (e.g. diffuser) by an optical isolation layer.
- an optical loss layer e.g. diffuser
- FIG. 10B illustrates an example ray of light propagating through an optical propagation region of the light guide at an angle of incidence, ⁇ ⁇ .
- FIG. 10C illustrates the average reflectivity at different angles of incidence for different example optical isolation layers.
- FIG. 11 is a cross section of a portion of another example embodiment of a display device wherein the optical loss layer and the an optical isolation layer are integrated together in a volume diffuser, optical isolation being provided by matrix material of the volume diffuser and optical loss being provided by scattering features in the matrix material.
- FIG. 12 is a cross section of a portion of yet another example embodiment of a display device wherein the optical loss layer comprises a surface diffuser having surface variation and the optical isolation layer comprises a layer that planarizes the surface variation.
- FIG. 13A is a cross section of a portion of still another example embodiment of a display device comprising a light guide having an optical propagation region decoupled from an optical loss layer by an optical isolation layer, wherein the optical isolation layer comprises a multi-layer stack.
- FIG. 13B is an expanded cross section of the multi-layer stack of FIG. 13A .
- FIG. 13C illustrates the photoptic reflectivity at different angles of incidence for an example embodiment of an optical propagation region.
- the embodiments may be implemented in or associated with a variety of electronic devices such as, but not limited to, mobile telephones, wireless devices, personal data assistants (PDAs), handheld or portable computers, GPS receivers/navigators, cameras, MP3 players, camcorders, game consoles, wrist watches, clocks, calculators, television monitors, flat panel displays, computer monitors, auto displays (e.g., odometer display, etc.), cockpit controls and/or displays, display of camera views (e.g., display of a rear view camera in a vehicle), electronic photographs, electronic billboards or signs, projectors, architectural structures, packaging, and aesthetic structures (e.g., display of images on a piece of jewelry).
- MEMS devices of similar structure to those described herein can also be used in non-display applications such as in electronic switching devices.
- optical isolation layer useful in the illumination assembly of a display device.
- the optical isolation layer is disposed between an optical propagation region of a light guide used for illumination and an optical loss structure or layer.
- optical loss structure or “optical loss layer” is to be given its broadest possible meaning, including, but not limited to, a feature that absorbs light or a feature that redirects the propagation of light into directions undesired for the purpose of propagating light in the optical propagation region.
- the optical loss structure would disrupt the total internal reflection of at least some of the light guided within the optical propagation region if disposed directly adjacent thereto.
- the optical loss structure or layer may comprise, without limitation, a diffuser, an absorber, a polarizer, a color filter, and the like.
- the optical propagation region has upper and lower interfaces that support propagation of light along the optical propagation region. Without the optical isolation layer, the lower interface might be formed by the optical propagation region and the optical loss layer. In such a configuration, the optical loss layer may disrupt reflection of light incident on the lower interface at grazing incidence.
- the optical isolation layer is used to separate the optical propagation region and the optical loss structure or layer, thereby promoting reflection at grazing incidence. In certain embodiments, for example, the optical isolation layer causes light directed at the lower interface of the optical propagation region at grazing incidence (e.g., angles greater than about 40°) to be reflected therefrom.
- optical propagation region may be used to describe a light guide film or plate, a light guide film stack, a substrate having a light guide film or a light guide film stack formed thereon, etc.
- film is to be given its broadest ordinary meaning, including, but not limited to, a material or plurality of materials having a thickness.
- the optical isolation layer comprises a material with a lower index of refraction than the optical propagation region, although the optical isolation layer may comprises material having an index of refraction than the optical propagation region.
- the optical isolation layer comprises a multi-layer interference stack.
- the optical loss structure and the optical isolation layer are integrated in a single layer.
- the layer comprises a material including a plurality of particles or microstructures therein. The microstructures can be designed to achieve selected optical functions (e.g., diffuser, color filter, polarizer, etc.).
- FIG. 1 One interferometric modulator display embodiment comprising an interferometric MEMS display element is illustrated in Figure 1 .
- the pixels are in either a bright or dark state.
- the display element In the bright ("on” or “open") state, the display element reflects a large portion of incident visible light to a user.
- the dark (“off” or “closed”) state When in the dark (“off” or “closed”) state, the display element reflects little incident visible light to the user.
- the light reflectance properties of the "on” and “off” states may be reversed.
- MEMS pixels can be configured to reflect predominantly at selected colors, allowing for a color display in addition to black and white.
- Figure 1 is an isometric view depicting two adjacent pixels in a series of pixels of a visual display, wherein each pixel comprises a MEMS interferometric modulator.
- an interferometric modulator display comprises a row/column array of these interferometric modulators.
- Each interferometric modulator includes a pair of reflective layers positioned at a variable and controllable distance from each other to form a resonant optical gap with at least one variable dimension.
- one of the reflective layers may be moved between two positions. In the first position, referred to herein as the relaxed position, the movable reflective layer is positioned at a relatively large distance from a fixed partially reflective layer.
- the movable reflective layer In the second position, referred to herein as the actuated position, the movable reflective layer is positioned more closely adjacent to the partially reflective layer. Incident light that reflects from the two layers interferes constructively or destructively depending on the position of the movable reflective layer, producing either an overall reflective or non-reflective state for each pixel.
- the depicted portion of the pixel array in Figure 1 includes two adjacent interferometric modulators 12a and 12b.
- a movable reflective layer 14a is illustrated in a relaxed position at a predetermined distance from an optical stack 16a, which includes a partially reflective layer.
- the movable reflective layer 14b is illustrated in an actuated position adjacent to the optical stack 16b.
- optical stack 16 typically comprise several fused layers, which can include an electrode layer, such as indium tin oxide (ITO), a partially reflective layer, such as chromium, and a transparent dielectric.
- ITO indium tin oxide
- the optical stack 16 is thus electrically conductive, partially transparent, and partially reflective, and may be fabricated, for example, by depositing one or more of the above layers onto a transparent substrate 20.
- the partially reflective layer can be formed from a variety of materials that are partially reflective such as various metals, semiconductors, and dielectrics.
- the partially reflective layer can be formed of one or more layers of materials, and each of the layers can be formed of a single material or a combination of materials.
- the layers of the optical stack 16 are patterned into parallel strips, and may form row electrodes in a display device as described further below.
- the movable reflective layers 14a, 14b may be formed as a series of parallel strips of a deposited metal layer or layers (orthogonal to the row electrodes of 16a, 16b) deposited on top of posts 18 and an intervening sacrificial material deposited between the posts 18. When the sacrificial material is etched away, the movable reflective layers 14a, 14b are separated from the optical stacks 16a, 16b by a defined gap 19.
- a highly conductive and reflective material such as aluminum may be used for the reflective layers 14, and these strips may form column electrodes in a display device.
- the gap 19 remains between the movable reflective layer 14a and optical stack 16a, with the movable reflective layer 14a in a mechanically relaxed state, as illustrated by the pixel 12a in Figure 1 .
- the capacitor formed at the intersection of the row and column electrodes at the corresponding pixel becomes charged, and electrostatic forces pull the electrodes together.
- the movable reflective layer 14 is deformed and is forced against the optical stack 16.
- a dielectric layer (not illustrated in this Figure) within the optical stack 16 may prevent shorting and control the separation distance between layers 14 and 16, as illustrated by pixel 12b on the right in Figure 1 .
- the behavior is the same regardless of the polarity of the applied potential difference. In this way, row/column actuation that can control the reflective vs. non-reflective pixel states is analogous in many ways to that used in conventional LCD and other display technologies.
- Figures 2 through 5B illustrate one exemplary process and system for using an array of interferometric modulators in a display application.
- FIG. 2 is a system block diagram illustrating one embodiment of an electronic device that may incorporate aspects of the invention.
- the electronic device includes a processor 21 which may be any general purpose single- or multi-chip microprocessor such as an ARM, Pentium ® , Pentium II ® , Pentium III ® , Pentium IV ® , Pentium ® Pro, an 8051, a MIPS ® , a Power PC ® , an ALPHA ® , or any special purpose microprocessor such as a digital signal processor, microcontroller, or a programmable gate array.
- the processor 21 may be configured to execute one or more software modules.
- the processor may be configured to execute one or more software applications, including a web browser, a telephone application, an email program, or any other software application.
- the processor 21 is also configured to communicate with an array driver 22.
- the array driver 22 includes a row driver circuit 24 and a column driver circuit 26 that provide signals to a display array or panel 30.
- the cross section of the array illustrated in Figure 1 is shown by the lines 1-1 in Figure 2 .
- the row/column actuation protocol may take advantage of a hysteresis property of these devices illustrated in Figure 3 . It may require, for example, a 10 volt potential difference to cause a movable layer to deform from the relaxed state to the actuated state. However, when the voltage is reduced from that value, the movable layer maintains its state as the voltage drops back below 10 volts.
- the movable layer does not relax completely until the voltage drops below 2 volts.
- a window of applied voltage about 3 to 7 V in the example illustrated in Figure 3 , within which the device is stable in either the relaxed or actuated state. This is referred to herein as the "hysteresis window” or "stability window.”
- the row/column actuation protocol can be designed such that during row strobing, pixels in the strobed row that are to be actuated are exposed to a voltage difference of about 10 volts, and pixels that are to be relaxed are exposed to a voltage difference of close to zero volts.
- each pixel sees a potential difference within the "stability window" of 3-7 volts in this example.
- This feature makes the pixel design illustrated in Figure 1 stable under the same applied voltage conditions in either an actuated or relaxed pre-existing state. Since each pixel of the interferometric modulator, whether in the actuated or relaxed state, is essentially a capacitor formed by the fixed and moving reflective layers, this stable state can be held at a voltage within the hysteresis window with almost no power dissipation. Essentially no current flows into the pixel if the applied potential is fixed.
- a display frame may be created by asserting the set of column electrodes in accordance with the desired set of actuated pixels in the first row.
- a row pulse is then applied to the row 1 electrode, actuating the pixels corresponding to the asserted column lines.
- the asserted set of column electrodes is then changed to correspond to the desired set of actuated pixels in the second row.
- a pulse is then applied to the row 2 electrode, actuating the appropriate pixels in row 2 in accordance with the asserted column electrodes.
- the row 1 pixels are unaffected by the row 2 pulse, and remain in the state they were set to during the row 1 pulse. This may be repeated for the entire series of rows in a sequential fashion to produce the frame.
- the frames are refreshed and/or updated with new display data by continually repeating this process at some desired number of frames per second.
- protocols for driving row and column electrodes of pixel arrays to produce display frames are also well known and may be used in conjunction with the present invention.
- Figures 4 , 5A, and 5B illustrate one possible actuation protocol for creating a display frame on the 3x3 array of Figure 2 .
- Figure 4 illustrates a possible set of column and row voltage levels that may be used for pixels exhibiting the hysteresis curves of Figure 3 .
- actuating a pixel involves setting the appropriate column to -V bias , and the appropriate row to + ⁇ V, which may correspond to - 5 volts and +5 volts, respectively Relaxing the pixel is accomplished by setting the appropriate column to +V bias , and the appropriate row to the same + ⁇ V, producing a zero volt potential difference across the pixel.
- the pixels are stable in whatever state they were originally in, regardless of whether the column is at +V bias , or -V bias .
- voltages of opposite polarity than those described above can be used, e.g., actuating a pixel can involve setting the appropriate column to +V bias , and the appropriate row to - ⁇ V.
- releasing the pixel is accomplished by setting the appropriate column to -V bias, and the appropriate row to the same - ⁇ V, producing a zero volt potential difference across the pixel.
- Figure 5B is a timing diagram showing a series of row and column signals applied to the 3x3 array of Figure 2 which will result in the display arrangement illustrated in Figure 5A , where actuated pixels are non-reflective.
- the pixels Prior to writing the frame illustrated in Figure 5A , the pixels can be in any state, and in this example, all the rows are at 0 volts, and all the columns are at +5 volts. With these applied voltages, all pixels are stable in their existing actuated or relaxed states.
- pixels (1,1), (1,2), (2,2), (3,2) and (3,3) are actuated.
- columns 1 and 2 are set to -5 volts, and column 3 is set to +5 volts. This does not change the state of any pixels, because all the pixels remain in the 3-7 volt stability window.
- Row 1 is then strobed with a pulse that goes from 0, up to 5 volts, and back to zero. This actuates the (1,1) and (1,2) pixels and relaxes the (1,3) pixel. No other pixels in the array are affected.
- column 2 is set to -5 volts, and columns 1 and 3 are set to +5 volts.
- Row 3 is similarly set by setting columns 2 and 3 to -5 volts, and column 1 to +5 volts.
- the row 3 strobe sets the row 3 pixels as shown in Figure 5A . After writing the frame, the row potentials are zero, and the column potentials can remain at either +5 or -5 volts, and the display is then stable in the arrangement of Figure 5A . It will be appreciated that the same procedure can be employed for arrays of dozens or hundreds of rows and columns.
- FIGS 6A and 6B are system block diagrams illustrating an embodiment of a display device 40.
- the display device 40 can be, for example, a cellular or mobile telephone.
- the same components of display device 40 or slight variations thereof are also illustrative of various types of display devices such as televisions and portable media players.
- the display device 40 includes a housing 41, a display 30, an antenna 43, a speaker 45, an input device 48, and a microphone 46.
- the housing 41 is generally formed from any of a variety of manufacturing processes as are well known to those of skill in the art, including injection molding and vacuum forming.
- the housing 41 may be made from any of a variety of materials, including, but not limited to, plastic, metal, glass, rubber, and ceramic, or a combination thereof.
- the housing 41 includes removable portions (not shown) that may be interchanged with other removable portions of different color, or containing different logos, pictures, or symbols.
- the display 30 of exemplary display device 40 may be any of a variety of displays, including a bi-stable display, as described herein.
- the display 30 includes a flat-panel display, such as plasma, EL, OLED, STN LCD, or TFT LCD as described above, or a non-flat-panel display, such as a CRT or other tube device, as is well known to those of skill in the art.
- the display 30 includes an interferometric modulator display, as described herein.
- the components of one embodiment of exemplary display device 40 are schematically illustrated in Figure 6B .
- the illustrated exemplary display device 40 includes a housing 41 and can include additional components at least partially enclosed therein.
- the exemplary display device 40 includes a network interface 27 that includes an antenna 43, which is coupled to a transceiver 47.
- the transceiver 47 is connected to a processor 21, which is connected to conditioning hardware 52.
- the conditioning hardware 52 may be configured to condition a signal (e.g., filter a signal).
- the conditioning hardware 52 is connected to a speaker 45 and a microphone 46.
- the processor 21 is also connected to an input device 48 and a driver controller 29.
- the driver controller 29 is coupled to a frame buffer 28 and to an array driver 22, which in turn is coupled to a display array 30.
- a power supply 50 provides power to all components as required by the particular exemplary display device 40 design.
- the network interface 27 includes the antenna 43 and the transceiver 47 so that the exemplary display device 40 can communicate with one or more devices over a network. In one embodiment, the network interface 27 may also have some processing capabilities to relieve requirements of the processor 21.
- the antenna 43 is any antenna known to those of skill in the art for transmitting and receiving signals. In one embodiment, the antenna transmits and receives RF signals according to the IEEE 802.11 standard, including IEEE 802.11 (a), (b), or (g). In another embodiment, the antenna transmits and receives RF signals according to the BLUETOOTH standard. In the case of a cellular telephone, the antenna is designed to receive CDMA, GSM, AMPS, or other known signals that are used to communicate within a wireless cell phone network.
- the transceiver 47 pre-processes the signals received from the antenna 43 so that they may be received by and further manipulated by the processor 21.
- the transceiver 47 also processes signals received from the processor 21 so that they may be transmitted from the exemplary display device 40 via the antenna 43.
- the transceiver 47 can be replaced by a receiver.
- network interface 27 can be replaced by an image source, which can store or generate image data to be sent to the processor 21.
- the image source can be a digital video disc (DVD) or a hard-disc drive that contains image data, or a software module that generates image data.
- Processor 21 generally controls the overall operation of the exemplary display device 40.
- the processor 21 receives data, such as compressed image data from the network interface 27 or an image source, and processes the data into raw image data or into a format that is readily processed into raw image data.
- the processor 21 then sends the processed data to the driver controller 29 or to frame buffer 28 for storage.
- Raw data typically refers to the information that identifies the image characteristics at each location within an image. For example, such image characteristics can include color, saturation, and gray-scale level.
- the processor 21 includes a microcontroller, CPU, or logic unit to control operation of the exemplary display device 40.
- Conditioning hardware 52 generally includes amplifiers and filters for transmitting signals to the speaker 45, and for receiving signals from the microphone 46. Conditioning hardware 52 may be discrete components within the exemplary display device 40, or may be incorporated within the processor 21 or other components.
- the driver controller 29 takes the raw image data generated by the processor 21 either directly from the processor 21 or from the frame buffer 28 and reformats the raw image data appropriately for high speed transmission to the array driver 22. Specifically, the driver controller 29 reformats the raw image data into a data flow having a raster-like format, such that it has a time order suitable for scanning across the display array 30. Then the driver controller 29 sends the formatted information to the array driver 22.
- a driver controller 29, such as a LCD controller is often associated with the system processor 21 as a stand-alone Integrated Circuit (IC), such controllers may be implemented in many ways. They may be embedded in the processor 21 as hardware, embedded in the processor 21 as software, or fully integrated in hardware with the array driver 22.
- IC Integrated Circuit
- the array driver 22 receives the formatted information from the driver controller 29 and reformats the video data into a parallel set of waveforms that are applied many times per second to the hundreds and sometimes thousands of leads coming from the display's x-y matrix of pixels.
- driver controller 29 is a conventional display controller or a bi-stable display controller (e.g., an interferometric modulator controller).
- array driver 22 is a conventional driver or a bi-stable display driver (e.g., an interferometric modulator display).
- a driver controller 29 is integrated with the array driver 22.
- display array 30 is a typical display array or a bi-stable display array (e.g., a display including an array of interferometric modulators).
- the input device 48 allows a user to control the operation of the exemplary display device 40.
- input device 48 includes a keypad, such as a QWERTY keyboard or a telephone keypad, a button, a switch, a touch-sensitive screen, or a pressure- or heat-sensitive membrane.
- the microphone 46 is an input device for the exemplary display device 40. When the microphone 46 is used to input data to the device, voice commands may be provided by a user for controlling operations of the exemplary display device 40.
- Power supply 50 can include a variety of energy storage devices as are well known in the art.
- power supply 50 is a rechargeable battery, such as a nickel-cadmium battery or a lithium ion battery.
- power supply 50 is a renewable energy source, a capacitor, or a solar cell including a plastic solar cell, and solar-cell paint.
- power supply 50 is configured to receive power from a wall outlet.
- control programmability resides, as described above, in a driver controller which can be located in several places in the electronic display system. In some embodiments, control programmability resides in the array driver 22. Those of skill in the art will recognize that the above-described optimizations may be implemented in any number of hardware and/or software components and in various configurations.
- Figures 7A-7E illustrate five different embodiments of the movable reflective layer 14 and its supporting structures.
- Figure 7A is a cross section of the embodiment of Figure 1 , where a strip of metal material 14 is deposited on orthogonally extending supports 18.
- the moveable reflective layer 14 is attached to supports at the corners only, on tethers 32.
- the moveable reflective layer 14 is suspended from a deformable layer 34, which may comprise a flexible metal.
- the deformable layer 34 connects, directly or indirectly, to the substrate 20 around the perimeter of the deformable layer 34. These connections are herein referred to as support posts.
- the embodiment illustrated in Figure 7D has support post plugs 42 upon which the deformable layer 34 rests.
- the movable reflective layer 14 remains suspended over the gap, as in Figures 7A-7C , but the deformable layer 34 does not form the support posts by filling holes between the deformable layer 34 and the optical stack 16. Rather, the support posts are formed of a planarization material, which is used to form support post plugs 42.
- the embodiment illustrated in Figure 7E is based on the embodiment shown in Figure 7D , but may also be adapted to work with any of the embodiments illustrated in Figures 7A-7C , as well as additional embodiments not shown. In the embodiment shown in Figure 7E , an extra layer of metal or other conductive material has been used to form a bus structure 44. This allows signal routing along the back of the interferometric modulators, eliminating a number of electrodes that may otherwise have had to be formed on the substrate 20.
- the interferometric modulators function as direct-view devices, in which images are viewed from the front side of the transparent substrate 20, the side opposite to that upon which the modulator is arranged.
- the reflective layer 14 optically shields the portions of the interferometric modulator on the side of the reflective layer opposite the substrate 20, including the deformable layer 34. This allows the shielded areas to be configured and operated upon without negatively affecting the image quality.
- Such shielding allows the bus structure 44 in Figure 7E , which provides the ability to separate the optical properties of the modulator from the electromechanical properties of the modulator, such as addressing and the movements that result from that addressing.
- This separable modulator architecture allows the structural design and materials used for the electromechanical aspects and the optical aspects of the modulator to be selected and to function independently of each other.
- the embodiments shown in Figures 7C-7E have additional benefits deriving from the decoupling of the optical properties of the reflective layer 14 from its mechanical properties, which are carried out by the deformable layer 34. This allows the structural design and materials used for the reflective layer 14 to be optimized with respect to the optical properties, and the structural design and materials used for the deformable layer 34 to be optimized with respect to desired mechanical properties.
- An internal source of illumination may be provided for illumination of reflective display devices in dark ambient environments.
- integration of an illumination source in display devices comprising a plurality of display elements includes laminating a film or film stack providing some or all of the optical functions to a substrate. Light can be injected into this film or film stack and can propagate therein across the face of the display device.
- a light guide film or film stack may be laminated to a substrate using a light-diffusive pressure-sensitive adhesive (PSA).
- PSA light-diffusive pressure-sensitive adhesive
- the optical propagation region comprises a light guide film or film stack and does not include the substrate. In other embodiments, the optical propagation region comprises a light guide film or film stack and a substrate. Regardless of the particular configuration, the optical propagation region includes upper and lower interfaces that reflect light incident thereon at grazing incidence to support the propagation of light along the length of the light guide.
- the light guide includes a "turning film” (e.g., "prismatic film”) that forms the upper interface distal to the display elements that is configured to reflect (or "turn") rays propagating in the light guide towards the display elements.
- an optical isolation layer is introduced between the optical propagation region and the display elements in order to increase the reflectivity of the light at grazing incidence.
- the upper and lower interfaces separate the light guide from two materials which have refractive indices smaller than the smallest refractive index of the elements comprising the optical propagation region.
- grazing incidence is defined for rays propagating inside the optical propagation region at an angle that is larger than the largest of the two angles describing total internal reflection ("TIR") at each of the two interfaces, so that at grazing incidence the propagating rays experience total internal reflection at both the upper and lower interfaces of the optical propagation region.
- TIR total internal reflection
- the optical isolation layer is configured to reflect more than about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, or higher of light incident on the optical isolation layer from within the optical propagation region at angles of incidence greater than about 40°, about 50°, about 55°, about 60°, about 65°, about 70°, about 75°, about 80°, about 85°, or higher relative to the normal to the lower interface of the optical propagation region.
- a "high" is configured to reflect more than about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, or higher of light incident on the optical isolation layer from within the optical propagation region at angles of incidence greater than about 40°, about 50°, about 55°, about 60°, about 65°, about
- angle of incidence is, in some embodiments, at or above the largest TIR angle corresponding to the two interfaces (e.g., about 68° if the two TIR angles are about 39° and 68°) whereupon reflection of the incident light approaches 100%.
- Light at "lower" angles is partly reflected and partly refracted when it interacts with one of the interfaces of the optical propagation region where the angle of incidence is smaller than the total internal reflection angle of said interface.
- Other combinations of reflectivity of the optical isolation layer and angles of incidence are also possible.
- the optical isolation layer in addition to providing relatively high reflectivity for light rays at grazing incidence, is adapted to provide high transmittance of light rays at low angles of incidence (e.g., at the upper and/or lower interfaces).
- light for example redirected by a turning film or originating from the ambient, can pass freely through the optical isolation layer and into the display elements with reduced reflection from the surfaces of the optical isolation layer.
- light from the display elements e.g., reflected by interferometric modulators
- Interferometric modulators are generally specular in nature, so certain embodiments of display devices comprising interferometric modulators preferably comprise a light diffusive element (or "diffuser").
- a diffuser or other optical loss structure is adjacent to an optical light guide, light propagating through the light guide at grazing incidence, e.g., at angles greater than 40° (the "light guided modes"), which should be reflected within the light guide by total internal reflection, may instead be scattered one or multiple times and redirected into non-light guided modes, or absorbed due to the intrinsic material absorption of certain elements inside the optical system with which light may interact.
- Figure 8A schematically illustrates a cross-sectional portion of a display device 80 comprising an array of display elements 81 (e.g., interferometric modulators), a substrate 82 (e.g., comprising glass, plastic, etc.), an optical loss layer or structure 83 (e.g., comprising a diffuser, an absorber, a polarizer, a color filter, etc.), and a light guide 84. Because the light guide 84 is immediately adjacent to the optical loss layer 83, the reflectivity of light rays at grazing incidence on a lower interface of the optical propagation region between the light guide 84 and the optical loss layer 83 can be disadvantageously reduced.
- display elements 81 e.g., interferometric modulators
- a substrate 82 e.g., comprising glass, plastic, etc.
- an optical loss layer or structure 83 e.g., comprising a diffuser, an absorber, a polarizer, a color filter, etc.
- an example of the undesired effects that may be caused by adjacent optical loss layers 83 is that the light propagating in the light guide 84 may interact with an optical loss layer 83 having scattering properties, which may reduce the total amount of useful light carried by the light guide. Additionally, rays may be scattered at angles that are absorbed more strongly by certain components of the display device 80 (e.g., the display elements 81), which can reduce the illumination, brightness uniformity, color, and/or contrast of the display device 80.
- portions of the light scattered into the interferometric cavities may be absorbed regardless of the state of the interferometric modulators, which can result in a loss of light that reduces the brightness, uniformity, color, and/or contrast of the display device 80.
- the presence of an optical loss layer 83 directly adjacent to the light guide 84 can thereby cause unwanted scattering, which can disrupt the light propagation, or cause unwanted absorption, which can reduce uniformity and/or brightness.
- FIG. 8B illustrates a portion of a display device 86 in which the optical loss layer 83 is separated from the light guide 84 by an air gap 85.
- the index of refraction of air is 1.0, which is less than the index of refraction of the light guide 84.
- an air gap 85 can increase the thickness of the display device 86 (e.g., by several hundred microns ( ⁇ m)) and can reduce the contrast of the display device 86. Forming the air gap 85 may involve increased complexity. Additionally, one or more anti-reflective coatings on one or more sides of the air gap 85 may be required (e.g., to achieve a certain contrast level), thereby significantly increasing the costs of manufacturing.
- an optical isolation layer (or "optical isolation region") comprising a film or a material is introduced between the optical propagation region and the optical loss layer (e.g., the diffuser) in order to increase the reflectivity of the light rays at grazing incidence.
- the index of refraction of the material of the optical isolation layer is different (e.g., lower) than the index of refraction of the optical propagation region
- an interface between the optical propagation region and the optical loss layer total internally reflects light incident thereon at grazing angles (e.g., angles greater than the critical angle).
- the optical propagation region comprises a planar or substantially flat light guide and the optical isolation layer is immediately adjacent to the light guide.
- the optical isolation layer is adapted to reflect more than about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75 %, about 80%, about 85%, about 90%, about 95%, or higher of light incident on the optical isolation layer from within the optical propagation region at angles greater than about 40°, about 50°, about 55°, about 60°, about 65°, about 70°, about 75°, about 80°, about 85°, or higher relative to normal to the lower interface of the optical propagation region.
- the optical isolation layer is adapted to reflect more than about 40% of light incident on the lower interface at angles greater than about 70° relative to normal to the optical propagation region.
- the optical isolation layer is preferably between about 100 nanometers (nm) and 100 ⁇ m, more preferably between about 100 nm and 10 ⁇ m, or even more preferably between about 100 nm and 3 ⁇ m. Other thicknesses are also possible.
- the optical isolation layer in addition to providing relatively high reflectivity for light rays at grazing incidence, is adapted to provide high transmittance of light rays at low angles of incidence at the lower interface.
- the interface between the optical propagation region and the optical loss layer is essentially transparent for light incident thereon at lower angles (e.g., angles close to normal to the interface, such as turned towards the interface by a turning film or from the ambient) and has reduce Fresnel reflection.
- light for example redirected by a turning film at the upper interface or from the ambient propagating through the upper interface
- light for example redirected by a turning film at the upper interface or from the ambient propagating through the upper interface
- light for example redirected by a turning film on an upper interface or from the ambient propagating through the upper interface
- light from the display elements e.g., reflected by interferometric modulators
- decoupling an optical loss layer e.g., a diffusing layer or absorbing layer
- an optical loss layer e.g., a diffusing layer or absorbing layer
- an air gap e.g., using instead an optical isolation layer
- decoupling an optical loss layer from an optical propagation region without utilizing an air gap can advantageously increase the amount of light that propagates through the optical propagation region without substantially increasing thickness or significantly increasing the costs of manufacturing.
- such embodiments allow the efficient integration of a diffuser with a light guide, thereby enabling development of a light guide that performs independently of the state of the underlying display elements and/or optics.
- Other examples of optical parameters that can be changed without affecting the performance of the light guide include, for example, optical buffering the interferometric modulator, differences in the reflectivity of the interferometric modulator of different architectures, varying display content and brightness level, etc.
- the light guide can be treated as a "drop-in" module because the optical functionality of the light guide is decoupled from the state of the array of display elements onto which it is laminated or added.
- an illumination apparatus comprising an optical propagation region decoupled from an optical loss region (e.g., including polarizers, diffusers, color filters, absorbers, and the like) may be applied to a wide variety of display technologies (e.g., reflective liquid crystal, transmissive liquid crystal, transflective liquid crystal, electrophoretic, etc.).
- an optical propagation region decoupled from an optical loss region e.g., including polarizers, diffusers, color filters, absorbers, and the like
- display technologies e.g., reflective liquid crystal, transmissive liquid crystal, transflective liquid crystal, electrophoretic, etc.
- a diffuser When not optically decoupled from the optical propagation region, a diffuser can be responsible for a loss of optical energy in the optical propagation region (e.g., greater than about 25%, greater than about 50%, greater than about 75%, etc. depending on the length of the display device, the thickness of the diffuser, the thickness of the optical propagation region, and light diffusion strength (i.e., Haze level).
- a loss of optical energy in the optical propagation region e.g., greater than about 25%, greater than about 50%, greater than about 75%, etc. depending on the length of the display device, the thickness of the diffuser, the thickness of the optical propagation region, and light diffusion strength (i.e., Haze level).
- optically decoupling an optical propagation region from an optical loss layer is even higher because the combined optical losses of the light guided modes to both the optical loss layer (e.g., diffuser, absorbing layer) as well as the display elements (e.g., interferometric modulators) can be very severe, and decoupling the optical propagation region (e.g., light guide film or film stack, light guide plus substrate, etc.) from the optical isolation layer implicitly decouples the optical propagation region from the display elements, as well.
- the optical propagation region e.g., light guide film or film stack, light guide plus substrate, etc.
- Figure 9A illustrates a portion of a display device 90 comprising an array of display elements 91 (e.g., interferometric modulators), a substrate 92 (e.g., comprising glass, plastic, etc.), and an illumination apparatus comprising an optical loss layer 93 (e.g., comprising a diffuser, an absorber, a polarizer, a color filter, etc.), and an optical propagation region 97 comprising a light guide 94.
- the substrate 92 provides a means for supporting the display elements 91 and/or certain other layers during fabrication of the display elements 91.
- the illumination apparatus of the display device 90 further comprises an optical isolation layer 95 between the optical propagation region 97 and the optical loss layer 93.
- the optical isolation layer 95 comprises a material.
- the material is a solid. In some embodiments, the material is a liquid (e.g., a viscous liquid). In some embodiments, the material is gel-like.
- the optical isolation layer 95 is configured such that light propagating through the optical propagation region 97 at grazing incidence does not interact with the optical loss layer 93, but also such that light propagating through the optical propagation region 97 at low angles (e.g., due to being turned towards the array of display elements 91 by a turning film of the light guide 94 or from the ambient) may interact with the optical loss layer 93, the substrate 92, and the array of display elements 91.
- Integrating the optical isolation layer 95 within the display device 90 allows it to be formed before, during, and/or after manufacture of the display elements 91 on the substrate 92.
- the optical loss layer 93 may be deposited onto the substrate 92 as a first step of the manufacturing.
- the substrate 92 can act as a means for supporting the display elements 91 and/or certain other layers during fabrication in such embodiments. Coating processes including spin coating, blade coating, spray coating, fluid dispensing, film coating, etc. may be employed.
- Deposition may be by suitable deposition techniques, including, but not limited to, chemical vapor deposition (CVD) and/or physical vapor deposition (PVD).
- the optical loss layer 93 may also be laminated to the substrate 92 in certain embodiments.
- the optical isolation layer 95 is applied onto the light guide 94, and then the stack including the optical isolation layer 95 and the light guide 94 is applied onto the substrate 92.
- Pressure sensitive adhesive may be used.
- the optical loss layer 93 comprises a diffuser
- the diffuser comprises an adhesive matrix with scatter particles incorporated therein.
- the optical isolation layer 95 may be formed on the optical loss layer 93.
- the optical isolation layer 95 may be deposited or applied onto the optical loss layer 93 on the substrate 92.
- the substrate 92 can act as a means for supporting the display elements 91 and/or certain other layers during fabrication in such embodiments.
- each layer may be sequentially deposited.
- the optical isolation layer 95 may also be integrated with the optical loss layer 93, for example in the structure 98 of Figure 9A and the structure 118 described below with respect to Figure 11 .
- the integrated structure 98 comprising the optical isolation layer 95 and the optical loss layer 93 may be deposited onto the opposite side of the substrate 92 as the display elements 91.
- the substrate 92 can act as a means for supporting the display elements 91 and/or certain other layers during fabrication in such embodiments.
- the integrated structure 98 is applied onto the light guide 94, and then the stack including the integrated structure 98 and the light guide 94 is applied onto the substrate 92 or onto a display device comprising the substrate 92 and display elements 91.
- the integrated structure 98 has dual optical functionality: optical isolation and optical loss.
- the integrated structure 98 comprises a multi-functional pressure sensitive adhesive which attaches the light guide 94 to the side of the substrate 92 that is opposite from the display elements side 91.
- the optical isolation layer 95 After formation of the optical isolation layer 95, ordinary deposition and patterning steps used to form display elements (e.g., interferometric modulators, as described above) may be performed to fabricate the display elements 91 on the other side of the substrate 92, which can be used for structural support of the display elements 91 and/or certain other layers during fabrication.
- the light guide 94 may be attached (e.g., laminated, embossed, applied, etc.) to the opposite side of the substrate 92 on the optical isolation layer 95.
- the light guide 94 including a turning film may be laminated onto the substrate 92.
- the light guide 94 may be attached by first laminating a base film (or layer or multi-layer stack) to the substrate 92 and subsequently laminating a prismatic film to the base film.
- the light guide 94 may be attached by first laminating a prismatic film onto a base film (or layer or multi-layer stack) and subsequently laminating the base film with the prismatic film thereon onto the substrate 92.
- a different order of steps may be used.
- the display elements 91 e.g., interferometric modulators
- the display elements 91 can be formed prior to either or both the optical loss layer 93 and the optical isolation layer 95. Other variations are also possible.
- Figure 9B illustrates a portion of a display device 96 comprising an array of display elements 91 (e.g., interferometric modulators), and an illumination apparatus comprising a substrate 92 (e.g., comprising glass, plastic, etc.), an optical loss layer 93, and a light guide 94.
- the optical propagation region 97 comprises the light guide film or film stack 94 and the substrate 92.
- the substrate 92 provides a means for supporting the display elements 91 and/or certain other layers during fabrication of the display elements 91.
- the optical loss layer 93 is adjacent to the array of display elements 91, so the optical isolation layer 95 is between the substrate 92 and the optical loss layer 93.
- the embodiment illustrated in Figure 9B also comprises an optical propagation region 97 decoupled from an optical loss layer 93 and consequently also decoupled from the display elements 91.
- an illumination apparatus comprising a substrate 92 (e.g., comprising glass, plastic, etc.), an optical loss layer 93, and a light guide 94.
- a substrate 92 e.g., comprising glass, plastic, etc.
- an optical loss layer 93 e.g., comprising glass, plastic, etc.
- a light guide 94 e.g., a light guide
- the substrate 92 is configured such that light propagating through the optical light guide 94 at grazing incidence does not interact with the optical loss layer 93, but also such that light propagating through the light guide 94 at low angles may be transmitted through with the optical loss layer 93, the substrate 92, and be incident on the array of display elements 91.
- the substrate 92 comprises a material having an index of refraction that is lower than the index of refraction of the light guide 94.
- the substrate 92 may comprise quartz (having an index of refraction of about 1.45), aluminosilicate display glass (having an index of refraction of about 1.52), etc.
- the separate optical isolation layer 95 discussed above may be eliminated and the substrate may be used as the optical isolation layer, advantageously reducing costs.
- embodiments including a separate optical isolation layer 95 may provide more flexibility in selection of materials.
- the optical isolation layer 95 is formed on the light guide 94 so that the entire stack above the substrate 92 can be applied in one step to produce the display device 96.
- the optical isolation layer 95 is deposited onto the substrate 92 before the light guide 94 is applied onto the substrate 92. It will be appreciated that the substrate 92 can act as a means for supporting the display elements 91 and/or certain other layers during fabrication in such embodiments.
- each layer may be sequentially deposited.
- the optical loss layer 93 may be disposed on the optical isolation layer 95 using deposition or lamination techniques, for example, as described above.
- ordinary deposition and patterning steps used to form display elements e.g., interferometric modulators, as described above
- the light guide 94 may be attached (e.g., laminated, embossed, applied, etc.) on the opposite side of the substrate 92 either before, after, or during manufacturing the display elements 91.
- the light guide 94 including a turning film may be laminated onto the substrate 92.
- the light guide 94 may be attached by first laminating a base film (or layer or multi-layer stack) to the substrate 92 and subsequently laminating a prismatic film to the base film.
- the light guide 94 may be attached by first laminating a prismatic film onto a base film (or layer or multi-layer stack) and subsequently laminating the base film with the prismatic film thereon onto the substrate 92.
- the light guide 94 and the substrate 92 form the optical propagation region 97.
- the optical loss layer and/or the optical isolation layer are formed after forming the display elements (e.g., interferometric modulators).
- the optical isolation layer 95 may be integrated with the optical loss layer 93, for example in the structure 98 of Figures 9A and 9B and the structure 118 described below with respect to Figure 11 .
- the optical isolation layer integrated with the optical loss layer 98 may be deposited onto the same side of the substrate 92 as the display elements 91. It will be appreciated that the substrate 92 can act as a means for supporting the display elements 91 and/or certain other layers during fabrication in such embodiments.
- Figure 10A illustrates a portion of an example embodiment of an illumination apparatus 100 comprising an optical isolation layer 104 between an optical propagation region 106 and an optical loss layer 102.
- the optical loss layer 102 may comprise a diffuser, color filter, absorber, polarizer, or other type of layer.
- the optical isolation layer 104 comprises a material.
- the material is a solid.
- the material is a liquid (e.g., a viscous liquid).
- the material is gel-like.
- the optical isolation layer 104 comprises a substrate.
- the optical propagation region 106 may comprise, for example, a light guide (e.g., as illustrated in Figure 9A ), a light guide and a substrate (e.g., as illustrated in Figure 9B ), a light guide with a turning film laminated thereon, adhesive layers, and the like.
- the light guide film may comprise a material such as polycarbonate, glass (e.g., aluminosilicate, borosilicate, etc.), and the like.
- Polycarbonate has an index of refraction of about 1.59 at wavelengths in the visible spectrum
- glass typically has an index of refraction of about 1.52 at visible wavelengths.
- the optical isolation layer 104 has an index of refraction that is lower than the index of refraction of the optical propagation region 106.
- the difference in indices of refraction between the optical propagation region 106 and the optical isolation layer 104 causes light rays at grazing incidence to be totally internally reflected from the lower interface 105 between the optical propagation region 106 and the optical isolation layer 104.
- the optical isolation layer 104 may have an index of refraction lower than about 1.59, and when the optical propagation region 106 comprises glass, the optical isolation layer 104 may have an index of refraction lower than about 1.52.
- the optical isolation layer 104 may, for example, comprise silicones (e.g., optically clear silicone-based adhesives) having indices of refraction between 1.4 and 1.45, nanoporous glassy materials (e.g., nanoporous silica, spin-on glasses, etc.) having indices of refraction between 1.4 and 1.45, fluoropolymers (e.g., amorphous transparent fluoropolymers such as DuPont NC-211) having good adhesion to glass and plastics and indices of refraction between about 1.3 and 1.4, and others (e.g., aerogels having indices of refraction less than about 1.2 and acrylate-based materials having indices of refraction of about 1.47).
- silicones e.g., optically clear silicone-based adhesives
- nanoporous glassy materials e.g., nanoporous silica, spin-on glasses, etc.
- fluoropolymers e.g., amorph
- Acrylate-based materials are preferred for low costs and ease of integration, but materials with an index of refraction that is substantially less than the index of refraction of the optical propagation region 106 (e.g., having an index of refraction difference of about 0.1 or more) are preferred for optical characteristics, as described below with respect to Figure 10C . Other materials can also be used.
- Light propagating through the material of the optical isolation layer 104 at low angles of incidence preferably loses less than about 4% of its intensity or flux, more preferably loses less than about 2% of its intensity or flux, even more preferably loses less than about 1% of its intensity or flux, still more preferably loses less than about 0.6% of its intensity or flux, yet still more preferably loses less than about 0.2% of its intensity or flux, or yet even still more preferably loses less than about 0.1 % of its intensity or flux.
- This loss may be due, for example, to Fresnel reflection as a result of the mismatch in index of refraction.
- a polycarbonate optical propagation region 106 (having an index of refraction of about 1.59) coupled to an acrylate-based optical isolation layer 104 (having an index of refraction of about 1.47) has a polarization-averaged reflectivity of about 0.2%
- a polycarbonate optical propagation region 106 coupled to a fluoropolymer optical isolation layer 104 (having an index of refraction of about 1.37) has a polarization-averaged reflectivity of about 0.6%
- the material that comprises the optical isolation layer 106 may be modified.
- polymethyl methacrylate (PMMA) has an index of refraction of about 1.47, which, coupled to an aerogel optical isolation layer 104 has a polarization-averaged reflectivity of about 1%.
- PMMA optical propagation region 106 coupled to a fluoropolymer optical isolation layer 104 has a polarization-averaged reflectivity of about 0.1%.
- an illumination apparatus comprising an air gap 85 between the optical propagation region 84 and the optical loss layer 83 (e.g., as illustrated in Figure 8B )
- light propagating through the air gap 85 at low angles of incidence e.g., due to being turned by a light turning film of the optical propagation region 84 or from the ambient
- Figure 10B illustrates an angle of propagation, ⁇ i , (e.g., angle of incidence) propagating through an optical propagation region 106.
- the angle of incidence, ⁇ i is the angle from the normal to an interface 105 between the optical propagation region 106 and the optical isolation layer 104.
- Light at angles of grazing incidence are typically larger than about 40° from said normal to the interface.
- the material of the optical isolation layer 104 is selected at least in part by modeling with Fresnel equations, which describe the reflectivity between materials having different indices of refraction at different angles and light polarizations.
- Figure 10C depicts the average reflectivity for S and P polarizations of various substances in accordance with certain embodiments of the illumination apparatus 100 of Figure 10A , calculated for the interface with the smaller refractive index difference of the light guide (i.e., the interface 105 in embodiments in which the light guide 106 is adjacent to air at the interface comprising the turning features).
- Solid curve 107 depicts the average reflectivity of an optical propagation region 106 comprising polycarbonate having an index of refraction of about 1.59 and an optical isolation layer 104 comprising a fluoropolymer having an index of refraction of about 1.37. The difference in the indices of refraction is about 0.22 (1.59 - 1.37). The reflectivity for angles of incidence greater than about 58° is 100% and the reflectivity for angles of incidence below about 50° is nearly zero.
- Dotted curve 108 depicts the average reflectivity of an optical propagation region 106 comprising polycarbonate having an index of refraction of about 1.59 and an optical isolation layer 104 comprising silicone having an index of refraction of about 1.41.
- the difference in the indices of refraction is about 0.18 (1.59 - 1.41).
- the reflectivity for angles of incidence greater than about 62° is 100% and the reflectivity for angles of incidence below about 55° is nearly zero.
- Dashed curve 109 depicts the average reflectivity of an optical propagation region 106 comprising polycarbonate having an index of refraction of about 1.59 and an optical isolation layer 104 comprising an acrylate-based material having an index of refraction of about 1.47.
- the difference in the indices of refraction is about 0.12 (1.59 - 1.47).
- the reflectivity for angles of incidence greater than about 67° is 100% and the reflectivity for angles of incidence below about 60° is nearly zero.
- the other interface of the light guide assumed here to have a larger refractive index difference, exhibits a similar reflectivity behavior as function of incidence angle where total internal reflection starts at substantially smaller angles of incidence (e.g., 39° for polycarbonate-air) than the TIR angles shown in Figure 10C (e.g., about 60° or larger).
- Certain embodiments of the present invention increase (e.g., maximize) the range of angles which experience TIR at the upper and lower interfaces of the light guide 106 while minimizing the sum of the reflections at angles close to normal to the upper and lower interfaces.
- each of the curves 107, 108, 109 depicts the average reflectivity as asymptotically approaching about 0% at about 40°, it will be appreciated that the reflectivity may be affected by Fresnel reflection, as described above.
- the average reflectivity of the solid curve 107 at an angle of incidence of about 0° i.e., normal incidence to the interface 105
- the average reflectivity of the dotted curve 108 at an angle of incidence of about 0° is about 0.4%
- the average reflectivity of the dashed curve 109 at an angle of incidence of about 0° is about 0.2%.
- the average reflectivity at an angle of incidence of about 0° of a curve depicting the average reflectivity of an optical propagation region 84 comprising polycarbonate having an index of refraction of about 1.59 and an air gap 85 having an index of refraction of about 1.0 at an angle of incidence of about 0° is about 5.2%.
- the loss of intensity or flux in such an illumination apparatus at such angles is disadvantageously large in comparison to illumination apparatus comprising an optical isolation layer comprising, for example, material having a higher index than air and that more closely matches the index of the optical propagation region, in addition to the problems associated with increased thickness and manufacturing costs discussed above.
- Figure 11 is a cross section of a portion of another example embodiment of an illumination apparatus 110 comprising an optical propagation region 116 decoupled from an optical loss layer by an optical isolation layer comprising an engineered volume diffuser 118.
- the optical propagation region 116 may comprise, for example, a light guide (e.g., as illustrated in Figure 9A ), a light guide and a substrate (e.g., as illustrated in Figure 9B ), a light guide with a turning film laminated thereon, adhesive layers, and the like.
- the volume diffuser 118 is engineered so that light at grazing incidence in the light guide 116 (e.g., the ray 1 in Figure 11 ) is totally internal reflected and does not substantially.interact with the diffuser 118, while light at lower incidence angles in the light guide 116 (e.g., ray 2 in Figure 11 ) interacts with the diffuser 118 and is subsequently scattered.
- the engineered volume diffuser 118 can provide multiple optical functions: acting as an optical isolation layer for the light guide 116, reducing reflection for lower incidence light at the lower interface 115 of the light guide 116, and diffusing light turned by the light turning microstructure of the light guide 116 or originating from the ambient above the display 110.
- the engineered volume diffuser 118 comprises a base material (or "matrix") 114 and a filler (or "microstructure”) 112 disposed therein.
- the filler comprise particles or particulates or voids. These particulates or voids may have a size and/or geometry that scatters light. In some embodiments these particulates are absorbing. In various embodiments, for example, the particulates may absorb all of the visible spectrum and diffuse light. (In other embodiments, the particulates may absorb a portion of the visible spectrum and filter out color. In certain embodiments, the particulates are elongated and may be oriented similarly so as to polarize light.)
- the filler or microstructure 112 occupies about 10%, about 5%, or less by volume of the engineered volume diffuser 118.
- the base or matrix material 114 has an index of refraction lower than the index of refraction of the optical propagation region 116. Accordingly, the lower interface 115 between the optical propagation region 116 and the engineered volume diffuser 118 total internally reflects light incident thereon at grazing angles (e.g., angles greater than the critical angle relative to the interface 115 between the optical propagation region 116 and the matrix material 114 of the diffuser 118), while the interface 115 is essentially transparent for light incident thereon at higher angles (e.g., angles close to normal to the interface 115).
- the microstructure 112 has an index of refraction that is higher and/or lower than the index of refraction of the base material 114.
- the feature 112a has an index of refraction lower than the index of refraction of the optical propagation region 116. Accordingly, the lower interface 115 between the optical propagation region 116 and the at least one microstructure 112a total internally reflects light incident thereon at grazing angles (e.g., angles greater than the critical angle), while the interface 115 is essentially transparent for light incident thereon at higher angles (e.g., angles close to normal to the interface 115).
- At least one microstructure 112a is not spaced from the interface 115, and the microstructure 112a does not have an index of refraction lower than the index of refraction of the optical propagation region 116. Accordingly, the light incident on the microstructure 112a at the lower interface at grazing angles (e.g., angles greater than the critical angle) may be affected. However, in embodiments in which a density of the features 112 is low such that there an area of microstructure 112a at the interface 115 is low with respect to the total area of the interface 115, such losses may be rendered insignificant (e.g., negligible).
- the volume diffuser 118 comprises an effective interface layer 117 (e.g., comprising material of the matrix 114) between the feature 112b and the interface 115.
- an effective interface layer 117 e.g., comprising material of the matrix 114
- the effective interface layer 117 becomes thicker, there is a reduced opportunity for interaction with the microstructures 112b. Accordingly, light incident on the interface 115 at grazing angles (e.g., angles greater than the critical angle) does not substantially interact with the microstructure 112b when the thickness of the layer 117 is sufficiently thick so that evanescent fields decay to negligible levels for the particular grazing angle.
- a thickness of the layer 117 is less than about 0.5 ⁇ m.
- a thickness of the layer 117 is less than about 1 ⁇ m. Other thicknesses are also possible and the thickness selected may in some embodiments depend on the indices of refraction of the optical propagation region 116 and the index of refraction of the matrix 114.
- the illumination apparatus 110 comprises an optical propagation region 116 including supplemental plastic films that are coated with a light diffusing coating and/or is fabricated on an interferometric modulator substrate glass.
- the optical propagation region 116 comprises a light guide (e.g., the optical propagation region 97 illustrated in Figure 9A ) and the optical isolation layer and optical loss layer are integrated in an engineered volume diffuser (e.g., the structure 98 illustrated in Figure 9A or the structure 118 illustrated in Figure 11 )
- the diffuser may comprise a light-diffusive pressure sensitive adhesive (PSA).
- PSA light-diffusive pressure sensitive adhesive
- the diffuser may comprise a particle-filled glass-like material (an "in-glass diffuser") on the same side of the substrate as the display elements.
- Glass-like materials include glasses obtained by heat treatment of organosilicon spin-on glasses, glasses obtained by heat treatment of sol-gel type materials, powdered glass dispersed in a binder, and others.
- the optical propagation region 116 comprises a light guide (e.g., the optical propagation region 97 illustrated in Figure 9A ) and the optical isolation layer and optical loss layer are integrated in an engineered volume diffuser (e.g., the structure 98 illustrated in Figure 9A or the structure 118 illustrated in Figure 11 )
- the diffuser may also comprise an in-glass diffuser on the opposite side of the substrate as the display elements.
- the illumination apparatus 110 comprises an optical propagation region 116 including interferometric modulator substrate glass and/or supplemental plastic films coated with a light diffusing formulation of an adhesive, such as a low-index PSA.
- Such embodiments may have reflectivity plots similar to those described above with respect to Figure 10C for the base material 114 versus the optical propagation region 116.
- the microstructures 112 may be any size or shape, and may be selected for certain properties of desired optical loss.
- the microstructures 112 may comprise light scattering features for embodiments in which the optical loss layer comprises an optical diffuser.
- the microstructures 112 may be configured to absorb light at certain wavelengths for embodiments in which the optical loss layer comprises a color filter.
- the microstructures 112 may be configured to absorb light at all visible wavelengths and a particular polarization for embodiments in which the optical loss layer comprises a diffuser or polarizer.
- the microstructures 112 are elongated (i.e., having a length greater than a width) and may be oriented along a preferred global direction for embodiments in which the optical loss layer comprises a polarizer.
- Figure 11 also illustrates an illumination apparatus 110 comprising an optical propagation region 116 and a layer 118.
- the optical propagation region 116 may comprise a light guide (e.g., as illustrated in Figure 9A ), a light guide and a substrate (e.g., as illustrated in Figure 9B ), a light guide with a turning film laminated thereon, adhesive layers, and the like.
- the turning features are configured to redirect light out of the optical propagation region 116 towards the interface 115.
- the layer 118 includes a matrix material 114 and microstructures 112 disposed in a matrix 114 with an index of refraction less than the smallest index of refraction of the layers comprising the optical propagation region 116.
- the layer 118 is configured to increase an amount of light that is totally internal reflected in the optical propagation region 116.
- the layer 118 may comprise a diffuser, for example where the microstructures are configured to scatter light.
- the layer 118 may comprise a color filter, for example where the microstructures are configured to absorb light at a selected wavelength.
- the layer 118 may comprise a polarizer, for example where the microstructures are elongated and/or are configured to absorb light at all visible wavelengths.
- the microstructures may have an index of refraction less than the index of refraction of the optical propagation region.
- the matrix may have an index of refraction less than the index of refraction of the optical propagation region.
- the optical isolation layer 118 of an illumination apparatus 110 comprises a volume hologram that changes the direction of light in either a controlled or uncontrolled manner.
- a hologram may comprise, for example, a holographic diffuser.
- This volume hologram may comprise matrix material having an index of refraction less than the index of refraction of the optical propagation region 116. Accordingly, light incident on the interface between the optical propagation region 116 and the hologram at oblique or grazing angles of incidence (greater than the critical angle) can be reflected by total internal reflection.
- light rays propagating through the light propagation region 116 at grazing incidence are contained via reflection within the optical propagation region 116, which has a higher refractive index than the engineered volume diffuser 118, while light originating in the ambient or turned by an illumination film at low angles of incidence are, for example, negligibly or minimally reflected.
- Figure 12 illustrates a portion of yet another example embodiment of an illumination apparatus 120 comprising an optical isolation layer 124 between an optical propagation region 126 and an optical loss layer 122 comprising a surface-structured optical element.
- the optical propagation region 126 may comprise, for example, a light guide (e.g., as illustrated in Figure 9A ), a light guide and a substrate (e.g., as illustrated in Figure 9B ), a light guide with a turning film laminated thereon, adhesive layers, and the like.
- the optical isolation layer 124 comprises a material having an index of refraction that is lower than the smallest index of refraction of the elements comprising the optical propagation region 126, thereby optically decoupling the optical propagation region 126 from the optical loss layer 122, e.g., via total internal reflection. Accordingly, the lower interface 125 between the optical propagation region 126 and the optical loss layer 122 total internally reflects light incident thereon at grazing angles (e.g., angles greater than the critical angle), while the interface 125 is essentially transparent for light incident thereon at lower angles (e.g., angles close to normal to the interface 125) so that light can interact with the optical element 122.
- the reflectivity plots of Figure 10C may also be applied to certain embodiments of the illumination apparatus illustrated in Figure 12 , as well.
- the optical loss layer 122 comprises a diffuser 122 including an engineered surface structure 123 having substantially spatially periodic, random, or spatially non-periodic features configured to diffuse light.
- a surface structure may comprise, for example, a holographic diffuser.
- the surface structure 123 of the diffuser 122 can be adjusted so that when the diffuser 122 is adjacent to the optical isolation layer 124 having a low index of refraction, the diffusion properties of the diffuser 122 are similar to when the diffusion properties of a diffuser 122 adjacent to air.
- the optical isolation layer 124 planarizes an interface 125 between the engineered surface structure 123 of the optical loss layer 122 and the rest of the illumination apparatus 120.
- Such a planar interface 125 may allow for better and/or easier attachment (e.g., lamination) of the optical loss layer 122 to the optical propagation region 126.
- attachment of the optical loss layer 122 to the optical propagation region 126 may otherwise include air gaps.
- the optical loss layer 122 may also comprise randomized holographic microstructured films (e.g., directional diffusers available from Physical Optics Corporation of Torrance, California, etc.), holographic gratings, and the like.
- the optical isolation layer 124 may be coupled to the optical loss layer 122 by, for example, wet coating the surface of the structured optical loss layer 122 in a roll-to-roll process so as to effectively planarize the surface relief 123.
- Figure 13A illustrates yet another example embodiment of an illumination apparatus 130 comprising an optical propagation region 136 decoupled from an optical loss layer 132 by an optical isolation layer 134 comprising low index material.
- the optical propagation region 136 may comprise, for example, a light guide (e.g., as illustrated in Figure 9A ), a light guide and a substrate (e.g., as illustrated in Figure 9B ), a light guide with a turning film laminated thereon, adhesive layers, and the like.
- the optical isolation layer 134 comprises a plurality of material layers in a multi-layer interference stack 134 that is configured to have a high reflectivity for light propagating through the optical propagation region 136 at grazing incidence and to have a low reflectivity for light at low angles of incidence (e.g., light turned by an illumination film or originating in the ambient).
- the plurality of material layers includes interference layers that utilize the properties of thin-film interference to obtain the desired reflection characteristics.
- the layers may include sub-wavelength (e.g., ⁇ /4) thin films of various materials (e.g., dielectric materials).
- the optical isolation layer 134 includes films having varying indices of refraction.
- films are provided that alternate between indices of refraction higher than the index of refraction of the optical propagation region 136 and lower than the index of refraction of the optical propagation region 136.
- the optical isolation layer 134 may include two films, one having an index of refraction higher than the index of refraction of the optical propagation region 136 and one having an index of refraction lower than the index of refraction of the optical propagation region 136.
- the multi-layer interference stack 134 can be used to decouple an optical propagation region 136 (e.g., a light guide film or film stack, a light guide film or film stack plus a substrate, etc.) from any variety of optical loss layer 132 (e.g., a diffuser, polarizer, colored filter, absorber, and the like). Accordingly, a lower interface 137 between the optical propagation region 136 and the optical loss layer 132 total internally reflects light incident thereon at grazing angles (e.g., angles greater than the critical angle), while the interface 137 is essentially transparent for light incident thereon at higher angles (e.g., angles close to normal to the interface 137).
- optical loss layer 132 e.g., a diffuser, polarizer, colored filter, absorber, and the like.
- the optical isolation layer 134 can be physically provided (e.g., coated or deposited) on the optical propagation region 136, may be provided on a base film (or layer or multi-layer stack) that becomes part of the optical propagation region 136, or could be coated or deposited on the optical loss layer 132. Other methods of manufacturing are also possible.
- Figure 13B illustrates an example embodiment of a multi-layer interference stack 134 comprising a layer 131 of titanium dioxide (TiO 2 ) having an index of refraction of about 2.32, a layer 133 of magnesium fluoride (MgF 2 ) having an index of refraction of about 1.38, and a second layer 135 of titanium dioxide having an index of refraction of about 2.32.
- TiO 2 titanium dioxide
- MgF 2 magnesium fluoride
- At least one of the layers 131, 133, 135 comprises a material that has an index of refraction that is lower than the index of refraction of the optical propagation region 136, for example, magnesium fluoride in embodiments in which the optical propagation region 136 comprises glass having an index of refraction of about 1.52.
- Figure 13C graphically illustrates the photopic reflectivity of an example multi-layer interference stack 134 at different angles of incidence.
- Solid line 138 depicts the photopic reflectivity of an optical propagation region 136 comprising polycarbonate having an index of refraction of about 1.59 and a multi-layer interference stack 134 comprising 6.7 nm of titanium dioxide, 221.8 nm of magnesium fluoride, and 117.5 nm of titanium dioxide 131.
- the reflectivity for angles of incidence greater than about 70° is about 100% and the reflectivity of the angles of incidence below about 40° is nearly zero (e.g., due to Fresnel reflection, as described above).
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Nonlinear Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Mathematical Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Planar Illumination Modules (AREA)
- Micromachines (AREA)
- Transforming Electric Information Into Light Information (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Polarising Elements (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US85002406P | 2006-10-06 | 2006-10-06 | |
EP07838811A EP1943555B1 (de) | 2006-10-06 | 2007-09-24 | Optische verluststruktur in einer beleuchtungsvorrichtung |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07838811.3 Division | 2007-09-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2366946A1 true EP2366946A1 (de) | 2011-09-21 |
Family
ID=39205209
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07838811A Not-in-force EP1943555B1 (de) | 2006-10-06 | 2007-09-24 | Optische verluststruktur in einer beleuchtungsvorrichtung |
EP20110160297 Ceased EP2366944A1 (de) | 2006-10-06 | 2007-09-24 | Beleuchtungseinrichtung einer Anzeigevorrichtung mit darin integrierter Struktur zur Erzeugung optischer Verluste |
EP20110160299 Ceased EP2366945A1 (de) | 2006-10-06 | 2007-09-24 | Beleuchtungseinrichtung einer Anzeigevorrichtung mit darin integrierter Struktur zur Erzeugung optischer Verluste |
EP20110160289 Withdrawn EP2366942A1 (de) | 2006-10-06 | 2007-09-24 | Beleuchtungseinrichtung einer Anzeigevorrichtung mit darin integrierter Struktur zur Erzeugung optischer Verluste |
EP20110160294 Not-in-force EP2366943B1 (de) | 2006-10-06 | 2007-09-24 | Beleuchtungseinrichtung einer Anzeigevorrichtung mit darin integrierter Struktur zur Erzeugung optischer Verluste |
EP20080152870 Withdrawn EP2141408A3 (de) | 2006-10-06 | 2007-09-24 | Optische Verluststruktur in einer Beleuchtungsvorrichtung |
EP20110160304 Withdrawn EP2366946A1 (de) | 2006-10-06 | 2007-09-24 | Beleuchtungseinrichtung einer Anzeigevorrichtung mit darin integrierter Struktur zur Erzeugung optischer Verluste |
Family Applications Before (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07838811A Not-in-force EP1943555B1 (de) | 2006-10-06 | 2007-09-24 | Optische verluststruktur in einer beleuchtungsvorrichtung |
EP20110160297 Ceased EP2366944A1 (de) | 2006-10-06 | 2007-09-24 | Beleuchtungseinrichtung einer Anzeigevorrichtung mit darin integrierter Struktur zur Erzeugung optischer Verluste |
EP20110160299 Ceased EP2366945A1 (de) | 2006-10-06 | 2007-09-24 | Beleuchtungseinrichtung einer Anzeigevorrichtung mit darin integrierter Struktur zur Erzeugung optischer Verluste |
EP20110160289 Withdrawn EP2366942A1 (de) | 2006-10-06 | 2007-09-24 | Beleuchtungseinrichtung einer Anzeigevorrichtung mit darin integrierter Struktur zur Erzeugung optischer Verluste |
EP20110160294 Not-in-force EP2366943B1 (de) | 2006-10-06 | 2007-09-24 | Beleuchtungseinrichtung einer Anzeigevorrichtung mit darin integrierter Struktur zur Erzeugung optischer Verluste |
EP20080152870 Withdrawn EP2141408A3 (de) | 2006-10-06 | 2007-09-24 | Optische Verluststruktur in einer Beleuchtungsvorrichtung |
Country Status (8)
Country | Link |
---|---|
US (2) | US9019183B2 (de) |
EP (7) | EP1943555B1 (de) |
JP (3) | JP2010510530A (de) |
KR (4) | KR20150014978A (de) |
CN (2) | CN101600901A (de) |
AT (1) | ATE556272T1 (de) |
TW (2) | TW201604638A (de) |
WO (1) | WO2008045200A2 (de) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8872085B2 (en) | 2006-10-06 | 2014-10-28 | Qualcomm Mems Technologies, Inc. | Display device having front illuminator with turning features |
US9019590B2 (en) | 2004-02-03 | 2015-04-28 | Qualcomm Mems Technologies, Inc. | Spatial light modulator with integrated optical compensation structure |
US9019183B2 (en) | 2006-10-06 | 2015-04-28 | Qualcomm Mems Technologies, Inc. | Optical loss structure integrated in an illumination apparatus |
US9025235B2 (en) | 2002-12-25 | 2015-05-05 | Qualcomm Mems Technologies, Inc. | Optical interference type of color display having optical diffusion layer between substrate and electrode |
US11394461B2 (en) | 2020-08-04 | 2022-07-19 | SA Photonics, Inc. | Free space optical communication terminal with actuator system and optical relay system |
Families Citing this family (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8928967B2 (en) | 1998-04-08 | 2015-01-06 | Qualcomm Mems Technologies, Inc. | Method and device for modulating light |
WO1999052006A2 (en) | 1998-04-08 | 1999-10-14 | Etalon, Inc. | Interferometric modulation of radiation |
US7508571B2 (en) * | 2004-09-27 | 2009-03-24 | Idc, Llc | Optical films for controlling angular characteristics of displays |
US7710636B2 (en) * | 2004-09-27 | 2010-05-04 | Qualcomm Mems Technologies, Inc. | Systems and methods using interferometric optical modulators and diffusers |
US7630123B2 (en) * | 2004-09-27 | 2009-12-08 | Qualcomm Mems Technologies, Inc. | Method and device for compensating for color shift as a function of angle of view |
US20060066586A1 (en) * | 2004-09-27 | 2006-03-30 | Gally Brian J | Touchscreens for displays |
US8721123B2 (en) * | 2008-01-18 | 2014-05-13 | Syncrolite, Llc | Pattern generator for a light fixture |
US7916980B2 (en) | 2006-01-13 | 2011-03-29 | Qualcomm Mems Technologies, Inc. | Interconnect structure for MEMS device |
US7603001B2 (en) * | 2006-02-17 | 2009-10-13 | Qualcomm Mems Technologies, Inc. | Method and apparatus for providing back-lighting in an interferometric modulator display device |
US7845841B2 (en) | 2006-08-28 | 2010-12-07 | Qualcomm Mems Technologies, Inc. | Angle sweeping holographic illuminator |
US8107155B2 (en) * | 2006-10-06 | 2012-01-31 | Qualcomm Mems Technologies, Inc. | System and method for reducing visual artifacts in displays |
US7855827B2 (en) | 2006-10-06 | 2010-12-21 | Qualcomm Mems Technologies, Inc. | Internal optical isolation structure for integrated front or back lighting |
WO2008045462A2 (en) * | 2006-10-10 | 2008-04-17 | Qualcomm Mems Technologies, Inc. | Display device with diffractive optics |
US7864395B2 (en) * | 2006-10-27 | 2011-01-04 | Qualcomm Mems Technologies, Inc. | Light guide including optical scattering elements and a method of manufacture |
US8068710B2 (en) | 2007-12-07 | 2011-11-29 | Qualcomm Mems Technologies, Inc. | Decoupled holographic film and diffuser |
US7949213B2 (en) * | 2007-12-07 | 2011-05-24 | Qualcomm Mems Technologies, Inc. | Light illumination of displays with front light guide and coupling elements |
WO2009102731A2 (en) | 2008-02-12 | 2009-08-20 | Qualcomm Mems Technologies, Inc. | Devices and methods for enhancing brightness of displays using angle conversion layers |
WO2009102733A2 (en) | 2008-02-12 | 2009-08-20 | Qualcomm Mems Technologies, Inc. | Integrated front light diffuser for reflective displays |
US8049951B2 (en) | 2008-04-15 | 2011-11-01 | Qualcomm Mems Technologies, Inc. | Light with bi-directional propagation |
CN103149623A (zh) * | 2008-05-28 | 2013-06-12 | 高通Mems科技公司 | 具有光转向微结构的光导面板、其制造方法和显示装置 |
CN102138086B (zh) | 2008-07-10 | 2014-11-26 | 3M创新有限公司 | 具有粘弹性光导的回射制品和装置 |
TW201007647A (en) | 2008-07-10 | 2010-02-16 | 3M Innovative Properties Co | Retroreflective articles and devices having viscoelastic lightguide |
EP2313800A4 (de) | 2008-07-10 | 2014-03-19 | 3M Innovative Properties Co | Viskoelastischer lichtleiter |
JP2011530718A (ja) * | 2008-08-08 | 2011-12-22 | スリーエム イノベイティブ プロパティズ カンパニー | 光を管理するための粘弾性層を有する光ガイド |
WO2010138765A1 (en) * | 2009-05-29 | 2010-12-02 | Qualcomm Mems Technologies, Inc. | Illumination devices and methods of fabrication thereof |
TR201901424T4 (tr) | 2009-07-07 | 2019-02-21 | Dolby Laboratories Licensing Corp | Yandan aydınlatmalı yerel karartma ekranları, ekran bileşenleri ve ilgili yöntemler. |
KR101822672B1 (ko) | 2010-01-13 | 2018-01-26 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | 점탄성 도광체를 구비한 조명 장치 |
US9239417B2 (en) | 2010-02-10 | 2016-01-19 | 3M Innovative Properties Company | Illumination device having viscoelastic layer |
US8848294B2 (en) | 2010-05-20 | 2014-09-30 | Qualcomm Mems Technologies, Inc. | Method and structure capable of changing color saturation |
WO2012030696A1 (en) * | 2010-08-31 | 2012-03-08 | Corning Incorporated | Process for particle doping of scattering superstrates |
US8773477B2 (en) | 2010-09-15 | 2014-07-08 | Dolby Laboratories Licensing Corporation | Method and apparatus for edge lit displays |
US20120120467A1 (en) * | 2010-11-17 | 2012-05-17 | Qualcomm Mems Technologies, Inc. | Hybrid light guide with faceted and holographic light turning features |
US8902484B2 (en) | 2010-12-15 | 2014-12-02 | Qualcomm Mems Technologies, Inc. | Holographic brightness enhancement film |
JP2015535951A (ja) | 2012-09-19 | 2015-12-17 | ヴェンティス テクノロジーズ エルエルシー | 光を散乱させる装置 |
CN204806291U (zh) * | 2012-10-11 | 2015-11-25 | 斯沃奇集团研究和开发有限公司 | 包括借助光导照亮的信息显示装置的信息显示组件 |
US9229141B2 (en) * | 2012-12-13 | 2016-01-05 | 3M Innovative Properties Company | Optical assembly |
EP3017244A1 (de) | 2013-07-02 | 2016-05-11 | 3M Innovative Properties Company | Flacher lichtleiter |
US20150205033A1 (en) * | 2014-01-23 | 2015-07-23 | Qualcomm Mems Technologies, Inc. | Integrating color filters into frontlight for reflective display |
US9500468B2 (en) | 2014-08-25 | 2016-11-22 | Board Of Trustees Of Michigan State University | Scanning interferometry technique for through-thickness evaluation in multi-layered transparent structures |
KR102240020B1 (ko) * | 2014-08-29 | 2021-04-14 | 삼성전자주식회사 | 컬러 필터를 포함하는 전자 장치 |
KR102251512B1 (ko) * | 2016-07-11 | 2021-05-17 | 한국전자통신연구원 | 광변조 소자 |
KR102617343B1 (ko) | 2017-01-04 | 2023-12-27 | 삼성디스플레이 주식회사 | 표시 장치 |
CN107608012A (zh) * | 2017-09-20 | 2018-01-19 | 京东方科技集团股份有限公司 | 像素单元、显示面板、以及显示装置 |
JP7349335B2 (ja) * | 2019-11-27 | 2023-09-22 | 丸善石油化学株式会社 | 錯体化合物の製造方法 |
GB2592077A (en) * | 2020-02-17 | 2021-08-18 | Tridonic Gmbh & Co Kg | Luminaire with indicator and antenna |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006026743A1 (en) * | 2004-08-31 | 2006-03-09 | Fusion Optix, Inc. | Enhanced light diffusing sheet |
US20060077123A1 (en) * | 2004-09-27 | 2006-04-13 | Gally Brian J | Optical films for controlling angular characteristics of displays |
Family Cites Families (1070)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5816677A (en) | 1905-03-01 | 1998-10-06 | Canon Kabushiki Kaisha | Backlight device for display apparatus |
JP2539491Y2 (ja) | 1991-10-09 | 1997-06-25 | 惠和商工株式会社 | 光拡散シート材 |
US2534846A (en) | 1946-06-20 | 1950-12-19 | Emi Ltd | Color filter |
US2518647A (en) | 1948-01-07 | 1950-08-15 | Celanese Corp | Interferometer means for thickness measurements |
US2677714A (en) | 1951-09-21 | 1954-05-04 | Alois Vogt Dr | Optical-electrical conversion device comprising a light-permeable metal electrode |
US3247392A (en) | 1961-05-17 | 1966-04-19 | Optical Coating Laboratory Inc | Optical coating and assembly used as a band pass interference filter reflecting in the ultraviolet and infrared |
DE1288651B (de) | 1963-06-28 | 1969-02-06 | Siemens Ag | Anordnung elektrischer Dipole fuer Wellenlaengen unterhalb 1 mm und Verfahren zur Herstellung einer derartigen Anordnung |
US3448334A (en) | 1966-09-30 | 1969-06-03 | North American Rockwell | Multicolored e.l. displays using external colored light sources |
US3924929A (en) | 1966-11-14 | 1975-12-09 | Minnesota Mining & Mfg | Retro-reflective sheet material |
FR1603131A (de) | 1968-07-05 | 1971-03-22 | ||
US3653741A (en) | 1970-02-16 | 1972-04-04 | Alvin M Marks | Electro-optical dipolar material |
US3813265A (en) | 1970-02-16 | 1974-05-28 | A Marks | Electro-optical dipolar material |
US3725868A (en) | 1970-10-19 | 1973-04-03 | Burroughs Corp | Small reconfigurable processor for a variety of data processing applications |
US3679313A (en) | 1970-10-23 | 1972-07-25 | Bell Telephone Labor Inc | Dispersive element for optical pulse compression |
JPS5610977Y2 (de) | 1973-02-19 | 1981-03-12 | ||
DE2336930A1 (de) | 1973-07-20 | 1975-02-06 | Battelle Institut E V | Infrarot-modulator (ii.) |
US3886310A (en) | 1973-08-22 | 1975-05-27 | Westinghouse Electric Corp | Electrostatically deflectable light valve with improved diffraction properties |
JPS5610976Y2 (de) | 1975-02-20 | 1981-03-12 | ||
US4099854A (en) | 1976-10-12 | 1978-07-11 | The Unites States Of America As Represented By The Secretary Of The Navy | Optical notch filter utilizing electric dipole resonance absorption |
JPS573266Y2 (de) | 1977-10-29 | 1982-01-21 | ||
US4389096A (en) | 1977-12-27 | 1983-06-21 | Matsushita Electric Industrial Co., Ltd. | Image display apparatus of liquid crystal valve projection type |
US4287449A (en) | 1978-02-03 | 1981-09-01 | Sharp Kabushiki Kaisha | Light-absorption film for rear electrodes of electroluminescent display panel |
US4445050A (en) | 1981-12-15 | 1984-04-24 | Marks Alvin M | Device for conversion of light power to electric power |
US4663083A (en) | 1978-05-26 | 1987-05-05 | Marks Alvin M | Electro-optical dipole suspension with reflective-absorptive-transmissive characteristics |
US4200472A (en) | 1978-06-05 | 1980-04-29 | The Regents Of The University Of California | Solar power system and high efficiency photovoltaic cells used therein |
US4228437A (en) | 1979-06-26 | 1980-10-14 | The United States Of America As Represented By The Secretary Of The Navy | Wideband polarization-transforming electromagnetic mirror |
JPS5688111A (en) | 1979-12-19 | 1981-07-17 | Citizen Watch Co Ltd | Liquid crystal display device with solar battery |
NL8001281A (nl) | 1980-03-04 | 1981-10-01 | Philips Nv | Weergeefinrichting. |
DE3109653A1 (de) | 1980-03-31 | 1982-01-28 | Jenoptik Jena Gmbh, Ddr 6900 Jena | "resonanzabsorber" |
US4421381A (en) | 1980-04-04 | 1983-12-20 | Yokogawa Hokushin Electric Corp. | Mechanical vibrating element |
US4377324A (en) | 1980-08-04 | 1983-03-22 | Honeywell Inc. | Graded index Fabry-Perot optical filter device |
US4375312A (en) | 1980-08-07 | 1983-03-01 | Hughes Aircraft Company | Graded index waveguide structure and process for forming same |
US4441791A (en) | 1980-09-02 | 1984-04-10 | Texas Instruments Incorporated | Deformable mirror light modulator |
US4378567A (en) | 1981-01-29 | 1983-03-29 | Eastman Kodak Company | Electronic imaging apparatus having means for reducing inter-pixel transmission nonuniformity |
FR2506026A1 (fr) | 1981-05-18 | 1982-11-19 | Radant Etudes | Procede et dispositif pour l'analyse d'un faisceau de rayonnement d'ondes electromagnetiques hyperfrequence |
US4400577A (en) | 1981-07-16 | 1983-08-23 | Spear Reginald G | Thin solar cells |
NL8103377A (nl) | 1981-07-16 | 1983-02-16 | Philips Nv | Weergeefinrichting. |
US4863224A (en) | 1981-10-06 | 1989-09-05 | Afian Viktor V | Solar concentrator and manufacturing method therefor |
NL8200354A (nl) | 1982-02-01 | 1983-09-01 | Philips Nv | Passieve weergeefinrichting. |
JPS58115781U (ja) | 1982-02-01 | 1983-08-08 | カルソニックカンセイ株式会社 | 液晶表示装置 |
JPS5944763U (ja) | 1982-09-13 | 1984-03-24 | 黒崎炉工業株式会社 | ウオ−キングビ−ム式炉 |
US4633031A (en) | 1982-09-24 | 1986-12-30 | Todorof William J | Multi-layer thin film, flexible silicon alloy photovoltaic cell |
JPS60153015A (ja) | 1984-01-20 | 1985-08-12 | Nippon Kogaku Kk <Nikon> | ズ−ムレンズ鏡筒 |
DE3402746A1 (de) | 1984-01-27 | 1985-08-08 | Robert Bosch Gmbh, 7000 Stuttgart | Fluessigkristallanzeige |
US4832459A (en) | 1984-02-06 | 1989-05-23 | Rogers Corporation | Backlighting for electro-optical passive displays and transflective layer useful therewith |
JPS60165621A (ja) | 1984-02-08 | 1985-08-28 | Nec Corp | 透過型表示素子 |
JPS60147718U (ja) | 1984-03-09 | 1985-10-01 | マツダ株式会社 | エンジンの冷却装置 |
JPS60242408A (ja) | 1984-05-17 | 1985-12-02 | Seiko Epson Corp | ライトガイド用光源光学系 |
US5345322A (en) | 1985-03-01 | 1994-09-06 | Manchester R&D Limited Partnership | Complementary color liquid crystal display |
US4878741A (en) | 1986-09-10 | 1989-11-07 | Manchester R & D Partnership | Liquid crystal color display and method |
JPS6247841A (ja) | 1985-08-26 | 1987-03-02 | Matsushita Electric Ind Co Ltd | 光学式情報記憶担体 |
JPS62119502A (ja) | 1985-11-18 | 1987-05-30 | インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション | スペクトル・フイルタ |
US4859060A (en) | 1985-11-26 | 1989-08-22 | 501 Sharp Kabushiki Kaisha | Variable interferometric device and a process for the production of the same |
US5835255A (en) | 1986-04-23 | 1998-11-10 | Etalon, Inc. | Visible spectrum modulator arrays |
GB8610129D0 (en) | 1986-04-25 | 1986-05-29 | Secr Defence | Electro-optical device |
US4850682A (en) | 1986-07-14 | 1989-07-25 | Advanced Environmental Research Group | Diffraction grating structures |
US4748366A (en) | 1986-09-02 | 1988-05-31 | Taylor George W | Novel uses of piezoelectric materials for creating optical effects |
US4786128A (en) | 1986-12-02 | 1988-11-22 | Quantum Diagnostics, Ltd. | Device for modulating and reflecting electromagnetic radiation employing electro-optic layer having a variable index of refraction |
GB2198867A (en) | 1986-12-17 | 1988-06-22 | Philips Electronic Associated | A liquid crystal display illumination system |
EP0278038A1 (de) | 1987-02-13 | 1988-08-17 | Battelle-Institut e.V. | Aktiver Bildschirm in Flachbauweise |
US20050259302A9 (en) | 1987-09-11 | 2005-11-24 | Metz Michael H | Holographic light panels and flat panel display systems and method and apparatus for making same |
JPH01108501U (de) | 1988-01-16 | 1989-07-21 | ||
US4947291A (en) | 1988-06-17 | 1990-08-07 | Mcdermott Kevin | Lighting device |
US4980775A (en) | 1988-07-21 | 1990-12-25 | Magnascreen Corporation | Modular flat-screen television displays and modules and circuit drives therefor |
US5206747A (en) | 1988-09-28 | 1993-04-27 | Taliq Corporation | Polymer dispersed liquid crystal display with birefringence of the liquid crystal at least 0.23 |
US5042921A (en) | 1988-10-25 | 1991-08-27 | Casio Computer Co., Ltd. | Liquid crystal display apparatus |
JPH02151079A (ja) | 1988-12-01 | 1990-06-11 | Sharp Corp | 太陽電池の製法 |
US4982184A (en) | 1989-01-03 | 1991-01-01 | General Electric Company | Electrocrystallochromic display and element |
US5446479A (en) | 1989-02-27 | 1995-08-29 | Texas Instruments Incorporated | Multi-dimensional array video processor system |
US5192946A (en) | 1989-02-27 | 1993-03-09 | Texas Instruments Incorporated | Digitized color video display system |
NL8900637A (nl) | 1989-03-16 | 1990-10-16 | Philips Nv | Weergeefinrichting voor kleurweergave. |
US4961617A (en) | 1989-07-19 | 1990-10-09 | Ferrydon Shahidi | Fibre optic waveguide illuminating elements |
US5022745A (en) | 1989-09-07 | 1991-06-11 | Massachusetts Institute Of Technology | Electrostatically deformable single crystal dielectrically coated mirror |
JP2893599B2 (ja) | 1989-10-05 | 1999-05-24 | セイコーエプソン株式会社 | 偏光光源及び投写型表示装置 |
US5381253A (en) | 1991-11-14 | 1995-01-10 | Board Of Regents Of University Of Colorado | Chiral smectic liquid crystal optical modulators having variable retardation |
US5124834A (en) | 1989-11-16 | 1992-06-23 | General Electric Company | Transferrable, self-supporting pellicle for elastomer light valve displays and method for making the same |
US5037173A (en) | 1989-11-22 | 1991-08-06 | Texas Instruments Incorporated | Optical interconnection network |
JPH03170911A (ja) | 1989-11-30 | 1991-07-24 | Pioneer Electron Corp | 液晶表示装置 |
US5235437A (en) | 1989-12-18 | 1993-08-10 | Sharp Kabushiki Kaisha | Analog/digital image processor apparatus with liquid crystal light modulator |
EP0434041B1 (de) | 1989-12-20 | 1996-09-11 | Canon Kabushiki Kaisha | Polarisierendes Beleuchtungsgerät |
US5038224A (en) | 1989-12-22 | 1991-08-06 | Bell Communications Research, Inc. | Video imaging device in a teleconferencing system |
US5361190A (en) | 1990-02-20 | 1994-11-01 | K. W. Muth Co. Inc. | Mirror assembly |
US5500635A (en) | 1990-02-20 | 1996-03-19 | Mott; Jonathan C. | Products incorporating piezoelectric material |
US5164858A (en) | 1990-03-07 | 1992-11-17 | Deposition Sciences, Inc. | Multi-spectral filter |
JPH04230705A (ja) | 1990-05-18 | 1992-08-19 | Canon Inc | 偏光変換装置、該偏光変換装置を備えた偏光照明装置および該偏光照明装置を有する投写型表示装置 |
GB9012099D0 (en) | 1990-05-31 | 1990-07-18 | Kodak Ltd | Optical article for multicolour imaging |
US5153771A (en) | 1990-07-18 | 1992-10-06 | Northrop Corporation | Coherent light modulation and detector |
FR2665270B1 (fr) | 1990-07-27 | 1994-05-13 | Etat Francais Cnet | Dispositif modulateur spatial de lumiere et systeme d'holographie conoscopique a grande dynamique comportant un tel dispositif modulateur. |
US5110370A (en) | 1990-09-20 | 1992-05-05 | United Solar Systems Corporation | Photovoltaic device with decreased gridline shading and method for its manufacture |
US5050946A (en) | 1990-09-27 | 1991-09-24 | Compaq Computer Corporation | Faceted light pipe |
US5044736A (en) | 1990-11-06 | 1991-09-03 | Motorola, Inc. | Configurable optical filter or display |
JPH04190323A (ja) | 1990-11-26 | 1992-07-08 | Hitachi Ltd | 太陽電池セル付液晶ディスプレイ |
US5387953A (en) | 1990-12-27 | 1995-02-07 | Canon Kabushiki Kaisha | Polarization illumination device and projector having the same |
JPH04238321A (ja) | 1991-01-23 | 1992-08-26 | Mitsubishi Electric Corp | 液晶表示器 |
KR960002202B1 (ko) | 1991-02-04 | 1996-02-13 | 가부시끼가이샤 한도다이 에네르기 겐뀨쇼 | 액정 전기 광학 장치 제작 방법 |
US5233459A (en) | 1991-03-06 | 1993-08-03 | Massachusetts Institute Of Technology | Electric display device |
US5142414A (en) | 1991-04-22 | 1992-08-25 | Koehler Dale R | Electrically actuatable temporal tristimulus-color device |
US5226099A (en) | 1991-04-26 | 1993-07-06 | Texas Instruments Incorporated | Digital micromirror shutter device |
US5555160A (en) | 1991-06-27 | 1996-09-10 | Nissen Chemitec Co., Ltd. | Light-guiding panel for surface lighting and a surface lighting body |
US5221982A (en) | 1991-07-05 | 1993-06-22 | Faris Sadeg M | Polarizing wavelength separator |
US5287215A (en) | 1991-07-17 | 1994-02-15 | Optron Systems, Inc. | Membrane light modulation systems |
US5168406A (en) | 1991-07-31 | 1992-12-01 | Texas Instruments Incorporated | Color deformable mirror device and method for manufacture |
FR2680882B1 (fr) | 1991-08-06 | 1993-10-29 | Thomson Csf | Projecteur d'images a efficacite lumineuse orptimisee. |
US5151585A (en) | 1991-08-12 | 1992-09-29 | Hughes Danbury Optical Systems, Inc. | Coherent radiation detector |
IL99420A (en) | 1991-09-05 | 2000-12-06 | Elbit Systems Ltd | Helmet mounted display |
GB9121159D0 (en) | 1991-10-04 | 1991-11-13 | Marconi Gec Ltd | Colour display system |
EP0539099A3 (en) | 1991-10-25 | 1993-05-19 | Optical Coating Laboratory, Inc. | Repositionable optical cover for monitors |
US5515184A (en) | 1991-11-12 | 1996-05-07 | The University Of Alabama In Huntsville | Waveguide hologram illuminators |
US5326426A (en) | 1991-11-14 | 1994-07-05 | Tam Andrew C | Undercut membrane mask for high energy photon patterning |
US5233385A (en) | 1991-12-18 | 1993-08-03 | Texas Instruments Incorporated | White light enhanced color field sequential projection |
US5356488A (en) | 1991-12-27 | 1994-10-18 | Rudolf Hezel | Solar cell and method for its manufacture |
US5349503A (en) | 1991-12-31 | 1994-09-20 | At&T Bell Laboratories | Illuminated transparent display with microtextured back reflector |
US6381022B1 (en) | 1992-01-22 | 2002-04-30 | Northeastern University | Light modulating device |
US5231532A (en) | 1992-02-05 | 1993-07-27 | Texas Instruments Incorporated | Switchable resonant filter for optical radiation |
JPH05241103A (ja) | 1992-02-21 | 1993-09-21 | Nec Corp | 投射型液晶表示装置 |
JPH05264904A (ja) | 1992-03-18 | 1993-10-15 | Canon Inc | 照明光学系および該照明光学系を用いた投写型画像表示装置 |
US5528720A (en) | 1992-03-23 | 1996-06-18 | Minnesota Mining And Manufacturing Co. | Tapered multilayer luminaire devices |
US6002829A (en) | 1992-03-23 | 1999-12-14 | Minnesota Mining And Manufacturing Company | Luminaire device |
JPH05281479A (ja) | 1992-03-31 | 1993-10-29 | Nippon Steel Corp | 表示装置 |
US5312513A (en) | 1992-04-03 | 1994-05-17 | Texas Instruments Incorporated | Methods of forming multiple phase light modulators |
US6088941A (en) | 1992-04-06 | 2000-07-18 | A.D.P. Adaptive Visual Perception Ltd. | Transparency viewing apparatus |
US5261970A (en) | 1992-04-08 | 1993-11-16 | Sverdrup Technology, Inc. | Optoelectronic and photovoltaic devices with low-reflectance surfaces |
WO1993021663A1 (en) | 1992-04-08 | 1993-10-28 | Georgia Tech Research Corporation | Process for lift-off of thin film materials from a growth substrate |
US5311360A (en) | 1992-04-28 | 1994-05-10 | The Board Of Trustees Of The Leland Stanford, Junior University | Method and apparatus for modulating a light beam |
US5398170A (en) | 1992-05-18 | 1995-03-14 | Lee; Song S. | Optical-fiber display with intensive brightness |
US5638084A (en) | 1992-05-22 | 1997-06-10 | Dielectric Systems International, Inc. | Lighting-independent color video display |
JPH06214169A (ja) | 1992-06-08 | 1994-08-05 | Texas Instr Inc <Ti> | 制御可能な光学的周期的表面フィルタ |
GB2269697A (en) | 1992-08-11 | 1994-02-16 | Sharp Kk | Display device |
US5818095A (en) | 1992-08-11 | 1998-10-06 | Texas Instruments Incorporated | High-yield spatial light modulator with light blocking layer |
US5293272A (en) | 1992-08-24 | 1994-03-08 | Physical Optics Corporation | High finesse holographic fabry-perot etalon and method of fabricating |
JPH0695112A (ja) | 1992-09-16 | 1994-04-08 | Hitachi Ltd | プリズムプレートおよびそれを用いた情報表示装置 |
GB9219671D0 (en) | 1992-09-17 | 1992-10-28 | Canterbury Park Limited | Ink |
US5339179A (en) | 1992-10-01 | 1994-08-16 | International Business Machines Corp. | Edge-lit transflective non-emissive display with angled interface means on both sides of light conducting panel |
US5648860A (en) | 1992-10-09 | 1997-07-15 | Ag Technology Co., Ltd. | Projection type color liquid crystal optical apparatus |
US5604607A (en) | 1992-10-19 | 1997-02-18 | Eastman Kodak Company | Light concentrator system |
KR0168879B1 (ko) | 1992-12-25 | 1999-04-15 | 기따지마 요시또시 | 렌티큘러 렌즈, 면광원 및 액정 표시 장치 |
US5671314A (en) | 1993-01-15 | 1997-09-23 | Sisters Of Prividence In Oregon | Illuminator devices for ultraviolet light delivery and methods of making same |
DE69407628T2 (de) | 1993-02-01 | 1998-08-27 | Matsushita Electric Ind Co Ltd | Wellenleiter-Bildübertragungsvorrichtung und Vorrichtung zur Identifikation von Fingerabdrücken |
JP2823470B2 (ja) | 1993-03-09 | 1998-11-11 | シャープ株式会社 | 光走査装置及びそれを用いた表示装置並びに画像情報入出力装置 |
US6674562B1 (en) | 1994-05-05 | 2004-01-06 | Iridigm Display Corporation | Interferometric modulation of radiation |
US5418631A (en) | 1993-05-14 | 1995-05-23 | Kaiser Optical Systems, Inc. | Edge-lit holographic diffusers for flat-panel displays |
GB2278222A (en) | 1993-05-20 | 1994-11-23 | Sharp Kk | Spatial light modulator |
US5481385A (en) | 1993-07-01 | 1996-01-02 | Alliedsignal Inc. | Direct view display device with array of tapered waveguide on viewer side |
US5365283A (en) | 1993-07-19 | 1994-11-15 | Texas Instruments Incorporated | Color phase control for projection display using spatial light modulator |
US5673139A (en) | 1993-07-19 | 1997-09-30 | Medcom, Inc. | Microelectromechanical television scanning device and method for making the same |
WO1995003935A1 (en) | 1993-07-27 | 1995-02-09 | Physical Optics Corporation | Light source destructuring and shaping device |
FR2710161B1 (fr) | 1993-09-13 | 1995-11-24 | Suisse Electronique Microtech | Réseau miniature d'obturateurs de lumière. |
JP3382683B2 (ja) | 1993-10-22 | 2003-03-04 | オリンパス光学工業株式会社 | 共心光学系 |
US5782995A (en) | 1993-11-05 | 1998-07-21 | Citizen Watch Co., Ltd. | Solar battery device and method of fabricating the same |
US5398125A (en) | 1993-11-10 | 1995-03-14 | Minnesota Mining And Manufacturing Company | Liquid crystal projection panel having microlens arrays, on each side of the liquid crystal, with a focus beyond the liquid crystal |
AU1054595A (en) | 1993-11-15 | 1995-06-06 | Allied-Signal Inc. | Optical element for use in an array of optical elements in a display arrangement |
US5517347A (en) | 1993-12-01 | 1996-05-14 | Texas Instruments Incorporated | Direct view deformable mirror device |
NL9302091A (nl) | 1993-12-02 | 1995-07-03 | R & S Renewable Energy Systems | Fotovoltaisch zonnepaneel en werkwijze voor het vervaardigen daarvan. |
BE1007993A3 (nl) | 1993-12-17 | 1995-12-05 | Philips Electronics Nv | Belichtingsstelsel voor een kleurenbeeldprojectie-inrichting en circulaire polarisator geschikt voor toepassing in een dergelijk belichtingsstelsel en kleurenbeeldprojectie-inrichting bevattende een dergelijk belichtingsstelsel met circulaire polarisator. |
US5659410A (en) | 1993-12-28 | 1997-08-19 | Enplas Corporation | Surface light source device and liquid crystal display |
US5448314A (en) | 1994-01-07 | 1995-09-05 | Texas Instruments | Method and apparatus for sequential color imaging |
US5500761A (en) | 1994-01-27 | 1996-03-19 | At&T Corp. | Micromechanical modulator |
JP2765471B2 (ja) | 1994-02-15 | 1998-06-18 | 日本電気株式会社 | 投写型液晶表示装置 |
TW334523B (en) | 1994-03-02 | 1998-06-21 | Toso Kk | Back light |
DE4407067C2 (de) | 1994-03-03 | 2003-06-18 | Unaxis Balzers Ag | Dielektrisches Interferenz-Filtersystem, LCD-Anzeige und CCD-Anordnung sowie Verfahren zur Herstellung eines dielektrischen Interferenz-Filtersystems |
US5982540A (en) | 1994-03-16 | 1999-11-09 | Enplas Corporation | Surface light source device with polarization function |
US6028649A (en) | 1994-04-21 | 2000-02-22 | Reveo, Inc. | Image display systems having direct and projection viewing modes |
US20010003487A1 (en) | 1996-11-05 | 2001-06-14 | Mark W. Miles | Visible spectrum modulator arrays |
US7460291B2 (en) | 1994-05-05 | 2008-12-02 | Idc, Llc | Separable modulator |
US7138984B1 (en) | 2001-06-05 | 2006-11-21 | Idc, Llc | Directly laminated touch sensitive screen |
US7123216B1 (en) | 1994-05-05 | 2006-10-17 | Idc, Llc | Photonic MEMS and structures |
US6040937A (en) | 1994-05-05 | 2000-03-21 | Etalon, Inc. | Interferometric modulation |
US6680792B2 (en) | 1994-05-05 | 2004-01-20 | Iridigm Display Corporation | Interferometric modulation of radiation |
US5805117A (en) | 1994-05-12 | 1998-09-08 | Samsung Electronics Co., Ltd. | Large area tiled modular display system |
DE69535145T2 (de) | 1994-06-01 | 2007-06-14 | Koninklijke Philips Electronics N.V. | Beleuchtungsgerät mit hohem wirkungsgrad und dieses gerät enthaltende projektionseinrichtung |
US5497172A (en) | 1994-06-13 | 1996-03-05 | Texas Instruments Incorporated | Pulse width modulation for spatial light modulator with split reset addressing |
US5671994A (en) | 1994-06-08 | 1997-09-30 | Clio Technologies, Inc. | Flat and transparent front-lighting system using microprisms |
WO1996002862A1 (fr) | 1994-07-15 | 1996-02-01 | Matsushita Electric Industrial Co., Ltd. | Dispositif de visualisation tete haute, dispositif d'affichage a cristaux liquides et leur procede de fabrication |
US5636052A (en) | 1994-07-29 | 1997-06-03 | Lucent Technologies Inc. | Direct view display based on a micromechanical modulation |
US5647036A (en) | 1994-09-09 | 1997-07-08 | Deacon Research | Projection display with electrically-controlled waveguide routing |
US5703710A (en) | 1994-09-09 | 1997-12-30 | Deacon Research | Method for manipulating optical energy using poled structure |
US5544268A (en) | 1994-09-09 | 1996-08-06 | Deacon Research | Display panel with electrically-controlled waveguide-routing |
JPH10508975A (ja) | 1994-09-15 | 1998-09-02 | ピックステック インコーポレイテッド | 多電極構造を有する電子蛍光ディスプレイ装置およびその製造方法 |
JP3219943B2 (ja) | 1994-09-16 | 2001-10-15 | 株式会社東芝 | 平面直視型表示装置 |
JPH0894992A (ja) | 1994-09-22 | 1996-04-12 | Casio Comput Co Ltd | 液晶表示素子 |
US5619059A (en) | 1994-09-28 | 1997-04-08 | National Research Council Of Canada | Color deformable mirror device having optical thin film interference color coatings |
US6560018B1 (en) | 1994-10-27 | 2003-05-06 | Massachusetts Institute Of Technology | Illumination system for transmissive light valve displays |
JPH08136910A (ja) | 1994-11-07 | 1996-05-31 | Hitachi Ltd | カラー液晶表示装置およびその製造方法 |
JP3412293B2 (ja) | 1994-11-17 | 2003-06-03 | 株式会社デンソー | 半導体ヨーレートセンサおよびその製造方法 |
US5815229A (en) | 1994-11-21 | 1998-09-29 | Proxima Corporation | Microlens imbedded liquid crystal projection panel including thermal insulation layer |
US5474865A (en) | 1994-11-21 | 1995-12-12 | Sematech, Inc. | Globally planarized binary optical mask using buried absorbers |
KR0164463B1 (ko) | 1994-11-25 | 1999-03-20 | 이헌조 | 액정프로젝트의 광학장치 |
JP2916887B2 (ja) | 1994-11-29 | 1999-07-05 | キヤノン株式会社 | 電子放出素子、電子源、画像形成装置の製造方法 |
TW373116B (en) | 1994-12-15 | 1999-11-01 | Sharp Kk | Lighting apparatus |
US5550373A (en) | 1994-12-30 | 1996-08-27 | Honeywell Inc. | Fabry-Perot micro filter-detector |
JP3251452B2 (ja) | 1995-01-31 | 2002-01-28 | シャープ株式会社 | 液晶表示装置におけるバックライト装置 |
JP3429384B2 (ja) | 1995-02-03 | 2003-07-22 | 株式会社エンプラス | サイドライト型面光源装置 |
US5650865A (en) | 1995-03-21 | 1997-07-22 | Hughes Electronics | Holographic backlight for flat panel displays |
JPH08271874A (ja) | 1995-03-31 | 1996-10-18 | Sony Corp | 液晶表示装置およびその製造方法 |
US5751388A (en) | 1995-04-07 | 1998-05-12 | Honeywell Inc. | High efficiency polarized display |
US5886688A (en) | 1995-06-02 | 1999-03-23 | National Semiconductor Corporation | Integrated solar panel and liquid crystal display for portable computer or the like |
US5835256A (en) | 1995-06-19 | 1998-11-10 | Reflectivity, Inc. | Reflective spatial light modulator with encapsulated micro-mechanical elements |
US6046840A (en) | 1995-06-19 | 2000-04-04 | Reflectivity, Inc. | Double substrate reflective spatial light modulator with self-limiting micro-mechanical elements |
EP0834231B1 (de) | 1995-06-20 | 2003-04-16 | Thomson Consumer Electronics, Inc. | Rückwärtig beleuchteter elektronischer sucher |
US6712481B2 (en) | 1995-06-27 | 2004-03-30 | Solid State Opto Limited | Light emitting panel assemblies |
JP3540444B2 (ja) | 1995-07-06 | 2004-07-07 | 三菱レイヨン株式会社 | バックライトおよびそれを用いた液晶表示装置 |
WO1997004350A1 (fr) | 1995-07-17 | 1997-02-06 | Seiko Epson Corporation | Dispositif a cristaux liquides couleur a reflexion et appareil electronique utilisant ledit dispositif |
US5877874A (en) | 1995-08-24 | 1999-03-02 | Terrasun L.L.C. | Device for concentrating optical radiation |
JP2728041B2 (ja) | 1995-08-30 | 1998-03-18 | 日本電気株式会社 | 液晶パネル |
US5932309A (en) | 1995-09-28 | 1999-08-03 | Alliedsignal Inc. | Colored articles and compositions and methods for their fabrication |
US5739945A (en) | 1995-09-29 | 1998-04-14 | Tayebati; Parviz | Electrically tunable optical filter utilizing a deformable multi-layer mirror |
US6324192B1 (en) | 1995-09-29 | 2001-11-27 | Coretek, Inc. | Electrically tunable fabry-perot structure utilizing a deformable multi-layer mirror and method of making the same |
JP3580826B2 (ja) | 1995-11-01 | 2004-10-27 | 松下電器産業株式会社 | 出射効率制御素子、投射型ディスプレイ装置、赤外線センサおよび非接触温度計 |
JPH10512377A (ja) | 1995-11-02 | 1998-11-24 | フィリップス エレクトロニクス ネムローゼ フェンノートシャップ | 画像表示装置 |
US7907319B2 (en) | 1995-11-06 | 2011-03-15 | Qualcomm Mems Technologies, Inc. | Method and device for modulating light with optical compensation |
WO1997017628A1 (en) | 1995-11-06 | 1997-05-15 | Etalon, Inc. | Interferometric modulation |
JPH09160032A (ja) | 1995-12-12 | 1997-06-20 | Omron Corp | 照明装置、並びに当該照明装置を用いた液晶表示装置、携帯端末機器、車載用機器及び光学的認識装置 |
US5933183A (en) | 1995-12-12 | 1999-08-03 | Fuji Photo Film Co., Ltd. | Color spatial light modulator and color printer using the same |
JPH09182112A (ja) | 1995-12-22 | 1997-07-11 | Sharp Corp | 小型光学系を用いたプロジェクタ装置 |
JP3799092B2 (ja) | 1995-12-29 | 2006-07-19 | アジレント・テクノロジーズ・インク | 光変調装置及びディスプレイ装置 |
WO1997028403A1 (fr) | 1996-02-01 | 1997-08-07 | Mitsubishi Rayon Co., Ltd. | Source lumineuse superficielle et affichage a cristaux liquides, et equipements de signalisation et de regulation du trafic l'utilisant |
US5771321A (en) | 1996-01-04 | 1998-06-23 | Massachusetts Institute Of Technology | Micromechanical optical switch and flat panel display |
EP0786911B1 (de) | 1996-01-26 | 2003-09-10 | Sharp Kabushiki Kaisha | Autostereoskopische Anzeigevorrichtung |
GB2309609A (en) | 1996-01-26 | 1997-07-30 | Sharp Kk | Observer tracking autostereoscopic directional display |
US6166834A (en) | 1996-03-15 | 2000-12-26 | Matsushita Electric Industrial Co., Ltd. | Display apparatus and method for forming hologram suitable for the display apparatus |
JPH09260696A (ja) | 1996-03-19 | 1997-10-03 | Daido Hoxan Inc | 太陽電池 |
US6624944B1 (en) | 1996-03-29 | 2003-09-23 | Texas Instruments Incorporated | Fluorinated coating for an optical element |
JP3869488B2 (ja) | 1996-04-17 | 2007-01-17 | 大日本印刷株式会社 | ホログラムカラーフィルターを用いた画像表示装置 |
JPH09288993A (ja) | 1996-04-19 | 1997-11-04 | Sharp Corp | 照明装置及びこの照明装置を利用した表示装置 |
JPH09307140A (ja) | 1996-05-14 | 1997-11-28 | Matsushita Electron Corp | 半導体発光装置 |
JP3506841B2 (ja) | 1996-05-17 | 2004-03-15 | 松下電器産業株式会社 | 反射型液晶表示装置の照明装置と反射型液晶表示装置 |
AU3077697A (en) | 1996-05-24 | 1997-12-09 | Digital D.J. Incorporated | Liquid crystal display device with integrated solar power source and antenna |
JP2865618B2 (ja) | 1996-05-31 | 1999-03-08 | 嶋田プレシジョン株式会社 | 導光板および導光板アセンブリ |
DE19622748A1 (de) | 1996-06-05 | 1997-12-11 | Forschungszentrum Juelich Gmbh | Interferenzfilter auf der Basis von porösem Silicium |
US5751492A (en) | 1996-06-14 | 1998-05-12 | Eastman Kodak Company | Diffractive/Refractive lenslet array incorporating a second aspheric surface |
US5782993A (en) | 1996-06-28 | 1998-07-21 | Ponewash; Jackie | Photovoltaic cells having micro-embossed optical enhancing structures |
US5771124A (en) | 1996-07-02 | 1998-06-23 | Siliscape | Compact display system with two stage magnification and immersed beam splitter |
KR100213968B1 (ko) | 1996-07-15 | 1999-08-02 | 구자홍 | 액정표시장치 |
FR2751398B1 (fr) | 1996-07-16 | 1998-08-28 | Thomson Csf | Dispositif d'eclairage et application a l'eclairage d'un ecran transmissif |
US5710656A (en) | 1996-07-30 | 1998-01-20 | Lucent Technologies Inc. | Micromechanical optical modulator having a reduced-mass composite membrane |
GB2315902A (en) | 1996-08-01 | 1998-02-11 | Sharp Kk | LIquid crystal device |
US5894359A (en) | 1996-08-21 | 1999-04-13 | Victor Company Of Japan, Ltd. | Color filter and color display apparatus |
JP2000501858A (ja) | 1996-09-23 | 2000-02-15 | フィリップス エレクトロニクス ネムローゼ フェンノートシャップ | フラットパネル画像表示装置用照明装置 |
EP1341009B1 (de) | 1996-09-24 | 2006-04-19 | Seiko Epson Corporation | Beleuchtungsvorrichtung und diese verwendende Anzeigevorrichtung |
JP3402138B2 (ja) | 1996-09-27 | 2003-04-28 | 株式会社日立製作所 | 液晶表示装置 |
US5975703A (en) | 1996-09-30 | 1999-11-02 | Digital Optics International | Image projection system |
US5854872A (en) | 1996-10-08 | 1998-12-29 | Clio Technologies, Inc. | Divergent angle rotator system and method for collimating light beams |
JPH09189910A (ja) | 1996-10-28 | 1997-07-22 | Seiko Epson Corp | カラー表示装置 |
WO1998019201A1 (en) | 1996-10-29 | 1998-05-07 | Xeotron Corporation | Optical device utilizing optical waveguides and mechanical light-switches |
US6486862B1 (en) | 1996-10-31 | 2002-11-26 | Kopin Corporation | Card reader display system |
US6094285A (en) | 1996-12-04 | 2000-07-25 | Trw Inc. | All optical RF signal channelizer |
US5868480A (en) | 1996-12-17 | 1999-02-09 | Compaq Computer Corporation | Image projection apparatus for producing an image supplied by parallel transmitted colored light |
JPH10186249A (ja) | 1996-12-24 | 1998-07-14 | Casio Comput Co Ltd | 表示装置 |
DE19880175T1 (de) | 1997-01-16 | 1999-04-15 | Motorola Inc | Umgebungsbeleuchtetes elektro-optisches Anzeigegerät |
GB2321532A (en) | 1997-01-22 | 1998-07-29 | Sharp Kk | Multi-colour reflector device and display |
US5981112A (en) | 1997-01-24 | 1999-11-09 | Eastman Kodak Company | Method of making color filter arrays |
JPH10202948A (ja) | 1997-01-29 | 1998-08-04 | Canon Inc | 画像形成装置および画像形成装置の画像形成方法 |
US6266473B1 (en) | 1997-02-07 | 2001-07-24 | Alliedsignal Inc. | Reflective display |
JPH10293212A (ja) | 1997-02-18 | 1998-11-04 | Dainippon Printing Co Ltd | バックライト及び液晶表示装置 |
US5783614A (en) | 1997-02-21 | 1998-07-21 | Copytele, Inc. | Polymeric-coated dielectric particles and formulation and method for preparing same |
US5913594A (en) | 1997-02-25 | 1999-06-22 | Iimura; Keiji | Flat panel light source device and passive display device utilizing the light source device |
JPH10260405A (ja) | 1997-03-18 | 1998-09-29 | Seiko Epson Corp | 照明装置、液晶表示装置及び電子機器 |
JP3666181B2 (ja) | 1997-03-21 | 2005-06-29 | ソニー株式会社 | 反射型兼透過型表示装置 |
EP0867747A3 (de) | 1997-03-25 | 1999-03-03 | Sony Corporation | Reflektive Anzeigevorrichtung |
JP3573938B2 (ja) * | 1997-03-28 | 2004-10-06 | シャープ株式会社 | 前方照明装置およびこれを備えた反射型液晶表示装置 |
JP3706109B2 (ja) | 1997-03-28 | 2005-10-12 | シャープ株式会社 | 前方照明装置およびこれを備えた反射型液晶表示装置 |
JP3364592B2 (ja) | 1998-09-16 | 2003-01-08 | シャープ株式会社 | 反射型液晶表示装置 |
US6879354B1 (en) * | 1997-03-28 | 2005-04-12 | Sharp Kabushiki Kaisha | Front-illuminating device and a reflection-type liquid crystal display using such a device |
JP3231655B2 (ja) | 1997-03-28 | 2001-11-26 | シャープ株式会社 | 前方照明装置およびこれを備えた反射型液晶表示装置 |
CN1294447C (zh) | 1997-04-23 | 2007-01-10 | 夏普公司 | 反射型液晶显示装置 |
EP0879991A3 (de) | 1997-05-13 | 1999-04-21 | Matsushita Electric Industrial Co., Ltd. | Beleuchtungssystème |
CN1134698C (zh) | 1997-05-14 | 2004-01-14 | 精工爱普生株式会社 | 显示装置及使用该显示装置的电子装置 |
GB9710062D0 (en) | 1997-05-16 | 1997-07-09 | British Tech Group | Optical devices and methods of fabrication thereof |
US6100952A (en) | 1997-06-04 | 2000-08-08 | Korry Electronics Co. | NVG-compatible AMLCD backlight having a ridged prismatic TIR with an embedded diffuser doped with an IR absorbing dye |
JPH112764A (ja) | 1997-06-10 | 1999-01-06 | Sharp Corp | 光開閉装置及び表示装置並びに光開閉装置の製造方法 |
JP3787983B2 (ja) | 1997-06-18 | 2006-06-21 | セイコーエプソン株式会社 | 光スイッチング素子、画像表示装置及び投射装置 |
US5883684A (en) | 1997-06-19 | 1999-03-16 | Three-Five Systems, Inc. | Diffusively reflecting shield optically, coupled to backlit lightguide, containing LED's completely surrounded by the shield |
JP3155232B2 (ja) | 1997-07-30 | 2001-04-09 | セイコーインスツルメンツ株式会社 | 光散乱型液晶表示装置 |
US6259082B1 (en) | 1997-07-31 | 2001-07-10 | Rohm Co., Ltd. | Image reading apparatus |
JPH1164882A (ja) | 1997-08-12 | 1999-03-05 | Matsushita Electric Ind Co Ltd | 反射型液晶パネルおよびその製造方法 |
US6008449A (en) | 1997-08-19 | 1999-12-28 | Cole; Eric D. | Reflective concentrating solar cell assembly |
JPH1164836A (ja) | 1997-08-21 | 1999-03-05 | Matsushita Electron Corp | 画像表示装置 |
US6031653A (en) | 1997-08-28 | 2000-02-29 | California Institute Of Technology | Low-cost thin-metal-film interference filters |
FR2769382B1 (fr) | 1997-10-03 | 2000-12-01 | Thomson Multimedia Sa | Systeme d'eclairage arriere pour modulateur electro-optique transmissif utilisant l'effet de polarisation de la lumiere |
US6863428B2 (en) | 1997-10-24 | 2005-03-08 | 3M Innovative Properties Company | Light guide illumination device appearing uniform in brightness along its length |
US6088102A (en) | 1997-10-31 | 2000-07-11 | Silicon Light Machines | Display apparatus including grating light-valve array and interferometric optical system |
US6273577B1 (en) | 1997-10-31 | 2001-08-14 | Sanyo Electric Co., Ltd. | Light guide plate, surface light source using the light guide plate, and liquid crystal display using the surface light source |
US6285424B1 (en) | 1997-11-07 | 2001-09-04 | Sumitomo Chemical Company, Limited | Black mask, color filter and liquid crystal display |
DE69730030T2 (de) | 1997-11-17 | 2005-07-21 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Konfokales Spektroskopiesystem und -verfahren |
JP3808992B2 (ja) | 1997-11-21 | 2006-08-16 | 三菱電機株式会社 | 液晶パネルモジュール |
JPH11160687A (ja) | 1997-11-21 | 1999-06-18 | Sony Corp | 表示装置及び光拡散層の製造方法 |
US6028690A (en) | 1997-11-26 | 2000-02-22 | Texas Instruments Incorporated | Reduced micromirror mirror gaps for improved contrast ratio |
JPH11167808A (ja) | 1997-12-04 | 1999-06-22 | Hitachi Ltd | 照明装置およびバックライトを有する液晶表示装置 |
JPH11174234A (ja) | 1997-12-05 | 1999-07-02 | Victor Co Of Japan Ltd | ホログラムカラーフィルタ、ホログラムカラーフィルタの製 造方法及びこれを用いた空間光変調装置 |
US6492065B2 (en) | 1997-12-05 | 2002-12-10 | Victor Company Of Japan, Limited | Hologram color filter, production method of the same hologram color filter and space light modulating apparatus using the same hologram color filter |
JPH11184387A (ja) | 1997-12-24 | 1999-07-09 | Seiko Instruments Inc | フロントライト型照明装置およびフロントライト型照明装置付き反射型カラー表示装置 |
US6151089A (en) | 1998-01-20 | 2000-11-21 | Sony Corporation | Reflection type display with light waveguide with inclined and planar surface sections |
US5914804A (en) | 1998-01-28 | 1999-06-22 | Lucent Technologies Inc | Double-cavity micromechanical optical modulator with plural multilayer mirrors |
JPH11211999A (ja) | 1998-01-28 | 1999-08-06 | Teijin Ltd | 光変調素子および表示装置 |
US6897855B1 (en) | 1998-02-17 | 2005-05-24 | Sarnoff Corporation | Tiled electronic display structure |
JP3496806B2 (ja) | 1998-02-17 | 2004-02-16 | 株式会社エンプラス | サイドライト型面光源装置及び液晶表示装置 |
JPH11232919A (ja) | 1998-02-17 | 1999-08-27 | Fuji Xerox Co Ltd | フロントライト照明装置および反射型表示装置 |
US6800378B2 (en) | 1998-02-19 | 2004-10-05 | 3M Innovative Properties Company | Antireflection films for use with displays |
JP3831510B2 (ja) | 1998-02-27 | 2006-10-11 | 三洋電機株式会社 | 反射型液晶表示装置 |
US6195196B1 (en) | 1998-03-13 | 2001-02-27 | Fuji Photo Film Co., Ltd. | Array-type exposing device and flat type display incorporating light modulator and driving method thereof |
JPH11258558A (ja) | 1998-03-13 | 1999-09-24 | Fuji Photo Film Co Ltd | 平面表示装置 |
JPH11254752A (ja) | 1998-03-13 | 1999-09-21 | Fuji Photo Film Co Ltd | 露光素子 |
JP3824290B2 (ja) | 1998-05-07 | 2006-09-20 | 富士写真フイルム株式会社 | アレイ型光変調素子、アレイ型露光素子、及び平面型ディスプレイ、並びにアレイ型光変調素子の駆動方法 |
KR19990074812A (ko) | 1998-03-14 | 1999-10-05 | 윤종용 | 호환형 광픽업장치 |
EP0986109A4 (de) | 1998-03-25 | 2005-01-12 | Tdk Corp | Solarbatterie-Modul |
JP3279265B2 (ja) | 1998-03-26 | 2002-04-30 | 株式会社エム・アール・システム研究所 | 画像表示装置 |
US6167761B1 (en) | 1998-03-31 | 2001-01-02 | Hitachi, Ltd. And Hitachi Car Engineering Co., Ltd. | Capacitance type pressure sensor with capacitive elements actuated by a diaphragm |
JP2986773B2 (ja) | 1998-04-01 | 1999-12-06 | 嶋田プレシジョン株式会社 | 点光源用の導光板 |
WO1999052006A2 (en) | 1998-04-08 | 1999-10-14 | Etalon, Inc. | Interferometric modulation of radiation |
JP4106735B2 (ja) | 1998-04-13 | 2008-06-25 | 凸版印刷株式会社 | 太陽電池付反射型ディスプレイ |
JP4066503B2 (ja) | 1998-04-15 | 2008-03-26 | 凸版印刷株式会社 | 太陽電池付反射型ディスプレイ |
US6967779B2 (en) | 1998-04-15 | 2005-11-22 | Bright View Technologies, Inc. | Micro-lens array with precisely aligned aperture mask and methods of producing same |
JP4520545B2 (ja) | 1998-04-17 | 2010-08-04 | セイコーインスツル株式会社 | 反射型液晶表示装置及びその製造方法 |
JP3644476B2 (ja) | 1998-04-30 | 2005-04-27 | 松下電器産業株式会社 | 携帯用電子機器 |
JP3520494B2 (ja) | 1998-05-11 | 2004-04-19 | 日東電工株式会社 | 反射型液晶表示装置 |
JPH11326898A (ja) | 1998-05-11 | 1999-11-26 | Toshiba Corp | 反射型液晶表示装置 |
US6282010B1 (en) | 1998-05-14 | 2001-08-28 | Texas Instruments Incorporated | Anti-reflective coatings for spatial light modulators |
TW386175B (en) | 1998-05-19 | 2000-04-01 | Dainippon Printing Co Ltd | Light reflective panel for reflective liquid crystal panel |
CN1272922A (zh) | 1998-06-02 | 2000-11-08 | 日本写真印刷株式会社 | 配置前照光的触摸屏装置 |
ATE344936T1 (de) | 1998-06-05 | 2006-11-15 | Seiko Epson Corp | Lichtquelle und anzeigevorrichtung |
DE69907744T2 (de) | 1998-06-22 | 2003-11-20 | E Ink Corp | Verfahren zur adressierung mikrogekapselter anzeigemedia |
EP1014161B1 (de) | 1998-06-25 | 2001-12-19 | Citizen Watch Co. Ltd. | Reflektierende flüssigkristallanzeige |
US6377535B1 (en) | 1998-07-06 | 2002-04-23 | Read-Rite Corporation | High numerical aperture optical focusing device having a conical incident facet and a parabolic reflector for use in data storage systems |
US6900868B2 (en) | 1998-07-07 | 2005-05-31 | Fujitsu Display Technologies Corporation | Liquid crystal display device |
TW523627B (en) | 1998-07-14 | 2003-03-11 | Hitachi Ltd | Liquid crystal display device |
JP2000056226A (ja) | 1998-08-04 | 2000-02-25 | Olympus Optical Co Ltd | 表示・撮像装置 |
GB2340281A (en) | 1998-08-04 | 2000-02-16 | Sharp Kk | A reflective liquid crystal display device |
EP1020754B1 (de) | 1998-08-10 | 2006-10-18 | Sumitomo Osaka Cement Co., Ltd. | Lichtmodulator vom wellenleitertyp |
US6034813A (en) | 1998-08-24 | 2000-03-07 | Southwall Technologies, Inc. | Wavelength selective applied films with glare control |
JP2000075287A (ja) | 1998-09-01 | 2000-03-14 | Toshiba Corp | 反射型液晶表示装置 |
JP2000075293A (ja) | 1998-09-02 | 2000-03-14 | Matsushita Electric Ind Co Ltd | 照明装置、照明付きタッチパネル及び反射型液晶表示装置 |
JP2000081848A (ja) | 1998-09-03 | 2000-03-21 | Semiconductor Energy Lab Co Ltd | 液晶表示装置を搭載した電子機器 |
US6113239A (en) | 1998-09-04 | 2000-09-05 | Sharp Laboratories Of America, Inc. | Projection display system for reflective light valves |
JP4475813B2 (ja) | 1998-09-14 | 2010-06-09 | エスビージー・ラボラトリーズ・インコーポレイテッド | ホログラフィー照明装置 |
JP3119846B2 (ja) * | 1998-09-17 | 2000-12-25 | 恵和株式会社 | 光拡散シート及びこれを用いたバックライトユニット |
JP3259692B2 (ja) | 1998-09-18 | 2002-02-25 | 株式会社日立製作所 | 集光型太陽光発電モジュール及びその製造方法並びに集光型太陽光発電システム |
JP2000181367A (ja) | 1998-10-05 | 2000-06-30 | Semiconductor Energy Lab Co Ltd | 反射型半導体表示装置 |
EP0992837B1 (de) | 1998-10-05 | 2010-06-16 | Semiconductor Energy Laboratory Co, Ltd. | Reflektierende Halbleitervorrichtung |
US6323834B1 (en) | 1998-10-08 | 2001-11-27 | International Business Machines Corporation | Micromechanical displays and fabrication method |
US6199989B1 (en) | 1998-10-29 | 2001-03-13 | Sumitomo Chemical Company, Limited | Optical plate having reflecting function and transmitting function |
US6288824B1 (en) | 1998-11-03 | 2001-09-11 | Alex Kastalsky | Display device based on grating electromechanical shutter |
JP2000147262A (ja) | 1998-11-11 | 2000-05-26 | Nobuyuki Higuchi | 集光装置及びこれを利用した太陽光発電システム |
TW422346U (en) | 1998-11-17 | 2001-02-11 | Ind Tech Res Inst | A reflector device with arc diffusion uint |
JP3563618B2 (ja) | 1998-11-20 | 2004-09-08 | コニカミノルタホールディングス株式会社 | 照明装置 |
US6208466B1 (en) * | 1998-11-25 | 2001-03-27 | 3M Innovative Properties Company | Multilayer reflector with selective transmission |
CN1134607C (zh) | 1998-11-27 | 2004-01-14 | 夏普株式会社 | 照明装置以及使用该照明装置的液晶显示装置 |
JP3871176B2 (ja) | 1998-12-14 | 2007-01-24 | シャープ株式会社 | バックライト装置および液晶表示装置 |
KR100329769B1 (ko) | 1998-12-22 | 2002-07-18 | 박종섭 | 티타늄폴리사이드게이트전극형성방법 |
JP2000193933A (ja) | 1998-12-25 | 2000-07-14 | Matsushita Electric Works Ltd | 表示装置 |
US6188519B1 (en) | 1999-01-05 | 2001-02-13 | Kenneth Carlisle Johnson | Bigrating light valve |
JP2000214804A (ja) | 1999-01-20 | 2000-08-04 | Fuji Photo Film Co Ltd | 光変調素子及び露光装置並びに平面表示装置 |
KR100433607B1 (ko) | 1999-02-01 | 2004-05-31 | 세이코 엡슨 가부시키가이샤 | 표시 장치, 그것을 사용한 전자기기 및 표시 장치용 도광체 |
US6322236B1 (en) | 1999-02-09 | 2001-11-27 | 3M Innovative Properties Company | Optical film with defect-reducing surface and method for making same |
US20050024849A1 (en) | 1999-02-23 | 2005-02-03 | Parker Jeffery R. | Methods of cutting or forming cavities in a substrate for use in making optical films, components or wave guides |
US6827456B2 (en) | 1999-02-23 | 2004-12-07 | Solid State Opto Limited | Transreflectors, transreflector systems and displays and methods of making transreflectors |
EP1093105A4 (de) | 1999-03-02 | 2002-06-12 | Matsushita Electric Ind Co Ltd | Leuchtvorrichtung und anzeigevorrichtung mit derselben |
JP4377984B2 (ja) | 1999-03-10 | 2009-12-02 | キヤノン株式会社 | カラーフィルタとその製造方法、該カラーフィルタを用いた液晶素子 |
US6292504B1 (en) | 1999-03-16 | 2001-09-18 | Raytheon Company | Dual cavity laser resonator |
JP3471001B2 (ja) | 1999-04-16 | 2003-11-25 | 富士写真光機株式会社 | 照明光学系およびこれを用いた投射型表示装置 |
JP3434465B2 (ja) | 1999-04-22 | 2003-08-11 | 三菱電機株式会社 | 液晶表示装置用バックライト |
JP4237331B2 (ja) | 1999-04-26 | 2009-03-11 | 大日本印刷株式会社 | 反射型液晶ディスプレイ |
JP3594868B2 (ja) | 1999-04-26 | 2004-12-02 | 日東電工株式会社 | 積層偏光板及び液晶表示装置 |
JP3657143B2 (ja) | 1999-04-27 | 2005-06-08 | シャープ株式会社 | 太陽電池及びその製造方法 |
JP3527961B2 (ja) | 1999-04-30 | 2004-05-17 | 株式会社日立製作所 | フロントライト型反射液晶表示装置 |
TW477897B (en) | 1999-05-07 | 2002-03-01 | Sharp Kk | Liquid crystal display device, method and device to measure cell thickness of liquid crystal display device, and phase difference plate using the method thereof |
US6323987B1 (en) | 1999-05-14 | 2001-11-27 | Agere Systems Optoelectronics Guardian Corp. | Controlled multi-wavelength etalon |
JP4328919B2 (ja) | 1999-05-21 | 2009-09-09 | 株式会社トプコン | ターゲット装置 |
FI107085B (fi) | 1999-05-28 | 2001-05-31 | Ics Intelligent Control System | Valopaneeli |
JP3515426B2 (ja) | 1999-05-28 | 2004-04-05 | 大日本印刷株式会社 | 防眩フィルムおよびその製造方法 |
US6201633B1 (en) | 1999-06-07 | 2001-03-13 | Xerox Corporation | Micro-electromechanical based bistable color display sheets |
GB2350963A (en) | 1999-06-09 | 2000-12-13 | Secr Defence | Holographic Displays |
DE19927359A1 (de) | 1999-06-16 | 2000-12-21 | Creavis Tech & Innovation Gmbh | Elektrophoretische Displays aus lichtstreuenden Trägermaterialien |
US6597419B1 (en) | 1999-07-02 | 2003-07-22 | Minolta Co., Ltd. | Liquid crystal display including filter means with 10-70% transmittance in the selective reflection wavelength range |
JP2001021883A (ja) | 1999-07-06 | 2001-01-26 | Nec Corp | 反射型液晶表示器及び電子機器 |
JP2001035222A (ja) | 1999-07-23 | 2001-02-09 | Minebea Co Ltd | 面状照明装置 |
JP2001035230A (ja) | 1999-07-26 | 2001-02-09 | Minebea Co Ltd | 面状照明装置 |
JP2001035225A (ja) | 1999-07-26 | 2001-02-09 | Minebea Co Ltd | 面状照明装置 |
JP2001052518A (ja) | 1999-08-16 | 2001-02-23 | Minebea Co Ltd | 面状照明装置 |
DE19939318A1 (de) | 1999-08-19 | 2001-02-22 | Bosch Gmbh Robert | Verfahren zur Herstellung eines mikromechanischen Bauelements |
KR20010107934A (ko) | 1999-08-30 | 2001-12-07 | 마쯔시다 유키오 | 면(面)발광장치 및 발광유도장치 |
EP1081633A2 (de) | 1999-08-31 | 2001-03-07 | Daicel Chemical Industries, Ltd. | Berührungsempfindlicher Bildschirm und diesen verwendende Anzeigevorrichtung |
DE19942513A1 (de) | 1999-09-07 | 2001-03-08 | Gerhard Karl | Leuchtkörper für durchleuchtungsfähige Bilder |
US6646772B1 (en) | 1999-09-14 | 2003-11-11 | Digilens, Inc. | Holographic illumination system |
US6448709B1 (en) | 1999-09-15 | 2002-09-10 | Industrial Technology Research Institute | Field emission display panel having diode structure and method for fabricating |
GB2354899A (en) | 1999-10-02 | 2001-04-04 | Sharp Kk | Optical device for projection display |
WO2003007049A1 (en) | 1999-10-05 | 2003-01-23 | Iridigm Display Corporation | Photonic mems and structures |
JP3457591B2 (ja) | 1999-10-08 | 2003-10-20 | インターナショナル・ビジネス・マシーンズ・コーポレーション | 液晶表示装置 |
US7046905B1 (en) | 1999-10-08 | 2006-05-16 | 3M Innovative Properties Company | Blacklight with structured surfaces |
JP4928038B2 (ja) | 1999-10-19 | 2012-05-09 | ロリク アーゲー | 位相幾何学的に構成されたポリマーコーティング |
US6421104B1 (en) | 1999-10-22 | 2002-07-16 | Motorola, Inc. | Front illuminator for a liquid crystal display and method of making same |
US6518944B1 (en) | 1999-10-25 | 2003-02-11 | Kent Displays, Inc. | Combined cholesteric liquid crystal display and solar cell assembly device |
US6549338B1 (en) | 1999-11-12 | 2003-04-15 | Texas Instruments Incorporated | Bandpass filter to reduce thermal impact of dichroic light shift |
JP3659139B2 (ja) | 1999-11-29 | 2005-06-15 | セイコーエプソン株式会社 | Ram内蔵ドライバ並びにそれを用いた表示ユニットおよび電子機器 |
US6398389B1 (en) | 1999-12-03 | 2002-06-04 | Texas Instruments Incorporated | Solid state light source augmentation for SLM display systems |
US6717348B2 (en) | 1999-12-09 | 2004-04-06 | Fuji Photo Film Co., Ltd. | Display apparatus |
LT4842B (lt) | 1999-12-10 | 2001-09-25 | Uab "Geola" | Hologramų spausdinimo būdas ir įrenginys |
JP3987257B2 (ja) | 1999-12-10 | 2007-10-03 | ローム株式会社 | 液晶表示装置 |
KR100679095B1 (ko) | 1999-12-10 | 2007-02-05 | 엘지.필립스 엘시디 주식회사 | 미세 광변조기를 이용한 투과형 표시소자 |
JP3524831B2 (ja) | 1999-12-15 | 2004-05-10 | シャープ株式会社 | 反射型および透過型液晶表示装置 |
US6221687B1 (en) | 1999-12-23 | 2001-04-24 | Tower Semiconductor Ltd. | Color image sensor with embedded microlens array |
JP2001188230A (ja) | 1999-12-28 | 2001-07-10 | Fuji Photo Film Co Ltd | 液晶表示装置 |
DE60033264T2 (de) | 1999-12-28 | 2007-11-08 | Fujitsu Kasei Ltd., Yokohama | Beleuchtungsapparat für Anzeige |
US6466358B2 (en) | 1999-12-30 | 2002-10-15 | Texas Instruments Incorporated | Analog pulse width modulation cell for digital micromechanical device |
US6519073B1 (en) | 2000-01-10 | 2003-02-11 | Lucent Technologies Inc. | Micromechanical modulator and methods for fabricating the same |
JP2001194534A (ja) | 2000-01-13 | 2001-07-19 | Nitto Denko Corp | 導光板及びその製造方法 |
KR100769779B1 (ko) | 2000-01-13 | 2007-10-24 | 닛토덴코 가부시키가이샤 | 광학 필름 및 액정 디스플레이 장치 |
JP2003519898A (ja) | 2000-01-14 | 2003-06-24 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 表示装置 |
JP4614400B2 (ja) | 2000-01-17 | 2011-01-19 | 日東電工株式会社 | 有機el発光装置、偏光面光源装置及び液晶表示装置 |
WO2001059402A2 (en) | 2000-01-25 | 2001-08-16 | Zygo Corporation | Optical systems for measuring form and geometric dimensions of precision engineered parts |
JP4609962B2 (ja) | 2000-02-02 | 2011-01-12 | 日東電工株式会社 | 光学フィルム |
JP4442836B2 (ja) | 2000-02-02 | 2010-03-31 | 日東電工株式会社 | 光学フィルム |
JP2001215501A (ja) | 2000-02-02 | 2001-08-10 | Fuji Photo Film Co Ltd | 照明装置および液晶表示装置 |
DE10004972A1 (de) | 2000-02-04 | 2001-08-16 | Bosch Gmbh Robert | Anzeigevorrichtung |
US6888678B2 (en) | 2000-02-16 | 2005-05-03 | Matsushita Electric Industrial Co., Ltd. | Irregular-shape body, reflection sheet and reflection-type liquid crystal display element, and production method and production device therefor |
JP4015342B2 (ja) | 2000-03-03 | 2007-11-28 | ローム株式会社 | 照明装置およびこれを備えた液晶表示装置 |
JP2001267592A (ja) | 2000-03-14 | 2001-09-28 | Nikon Corp | 半導体装置の製造方法、背面入射型受光装置の製造方法、半導体装置、及び背面入射型受光装置 |
JP2001283622A (ja) | 2000-03-29 | 2001-10-12 | Matsushita Electric Ind Co Ltd | 照明装置及び反射型液晶表示装置 |
JP4856805B2 (ja) | 2000-03-31 | 2012-01-18 | スリーエム イノベイティブ プロパティズ カンパニー | 光学積層体 |
JP3301752B2 (ja) | 2000-03-31 | 2002-07-15 | 三菱電機株式会社 | フロントライト、反射型液晶表示装置および携帯情報端末 |
JP2001297615A (ja) | 2000-04-12 | 2001-10-26 | Keiwa Inc | 光学シート及びこれを用いたバックライトユニット |
US6400738B1 (en) | 2000-04-14 | 2002-06-04 | Agilent Technologies, Inc. | Tunable Fabry-Perot filters and lasers |
CN1203360C (zh) | 2000-04-21 | 2005-05-25 | 精工爱普生株式会社 | 电光学装置、投影显示装置及电光学装置的制造方法 |
US7133019B2 (en) | 2000-04-21 | 2006-11-07 | Matsushita Electric Industrial Co., Ltd. | Illuminator, image display comprising the same, liquid crystal television, liquid crystal monitor, and liquid crystal information terminal |
AU2001255617B2 (en) | 2000-04-25 | 2004-07-08 | Honeywell International Inc. | Hollow cavity light guide for the distribution of collimated light to a liquid crystal display |
US20010055076A1 (en) | 2000-04-28 | 2001-12-27 | Keizou Ochi | Reflective liquid crystal display apparatus |
JP2002014344A (ja) | 2000-04-28 | 2002-01-18 | Minolta Co Ltd | 液晶表示装置 |
JP2003532269A (ja) | 2000-05-04 | 2003-10-28 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 画像表示装置及び該画像表示装置において光伝導体を製造する方法 |
TWI240788B (en) | 2000-05-04 | 2005-10-01 | Koninkl Philips Electronics Nv | Illumination system, light mixing chamber and display device |
JP4197572B2 (ja) | 2000-05-12 | 2008-12-17 | 日東電工株式会社 | 反射型液晶表示装置 |
JP4560890B2 (ja) | 2000-05-16 | 2010-10-13 | 東レ株式会社 | 積層光拡散性フィルムの製造方法 |
US6480634B1 (en) | 2000-05-18 | 2002-11-12 | Silicon Light Machines | Image projector including optical fiber which couples laser illumination to light modulator |
AU2001274008A1 (en) | 2000-05-19 | 2001-12-03 | Koninklijke Philips Electronics N.V. | Polarized light-emitting waveguide plate |
US6864882B2 (en) | 2000-05-24 | 2005-03-08 | Next Holdings Limited | Protected touch panel display system |
JP2001343514A (ja) | 2000-05-30 | 2001-12-14 | Victor Co Of Japan Ltd | ホログラムカラーフィルタ |
JP2001345458A (ja) | 2000-05-30 | 2001-12-14 | Kyocera Corp | 太陽電池 |
JP4439084B2 (ja) | 2000-06-14 | 2010-03-24 | 日東電工株式会社 | 液晶表示装置 |
US6598987B1 (en) | 2000-06-15 | 2003-07-29 | Nokia Mobile Phones Limited | Method and apparatus for distributing light to the user interface of an electronic device |
JP2001356701A (ja) | 2000-06-15 | 2001-12-26 | Fuji Photo Film Co Ltd | 光学素子、光源ユニットおよび表示装置 |
US7041344B2 (en) | 2000-06-15 | 2006-05-09 | Teijin Limited | Biaxially oriented polyester film for light-diffusing plate and light-diffusing plate |
WO2003002908A1 (en) | 2000-06-26 | 2003-01-09 | Reveo, Inc. | Backlight for a liquid crystal display having high light-recycling efficiency |
KR20020001594A (ko) | 2000-06-26 | 2002-01-09 | 가마이 고로 | 도광판, 면광원 장치 및 반사형 액정 표시 장치 |
JP2002071965A (ja) * | 2000-08-29 | 2002-03-12 | Nitto Denko Corp | 導光板、面光源装置及び反射型液晶表示装置 |
US7583335B2 (en) | 2000-06-27 | 2009-09-01 | Citizen Holdings Co., Ltd. | Liquid crystal display device |
FR2811139B1 (fr) | 2000-06-29 | 2003-10-17 | Centre Nat Rech Scient | Dispositif optoelectronique a filtrage de longueur d'onde integre |
JP3774616B2 (ja) | 2000-06-29 | 2006-05-17 | 株式会社日立製作所 | 照明装置及び導光板の製造方法 |
JP2002023155A (ja) | 2000-07-05 | 2002-01-23 | Nitto Denko Corp | 反射型液晶表示装置 |
JP3700078B2 (ja) | 2000-07-11 | 2005-09-28 | ミネベア株式会社 | 面状照明装置 |
JP2002025326A (ja) | 2000-07-13 | 2002-01-25 | Seiko Epson Corp | 光源装置、照明装置、液晶装置及び電子機器 |
US6677709B1 (en) | 2000-07-18 | 2004-01-13 | General Electric Company | Micro electromechanical system controlled organic led and pixel arrays and method of using and of manufacturing same |
US20040032659A1 (en) | 2000-07-18 | 2004-02-19 | Drinkwater John K | Difractive device |
JP3773818B2 (ja) | 2000-07-19 | 2006-05-10 | 三洋電機株式会社 | 棒状導光体及びそれを用いた線状照明装置並びにこの線状照明装置を用いた面状照明装置 |
US6565225B2 (en) | 2000-07-19 | 2003-05-20 | Sanyo Electric Co., Ltd. | Bar-shaped light guide, beam lighting device using the bar-shaped light guide, and surface lighting device using the beam lighting device |
JP4460732B2 (ja) | 2000-07-21 | 2010-05-12 | 富士フイルム株式会社 | 平面表示装置および露光装置 |
JP2002124113A (ja) | 2000-07-21 | 2002-04-26 | Hayashi Telempu Co Ltd | 面照明装置 |
JP2002042525A (ja) | 2000-07-26 | 2002-02-08 | Toyoda Gosei Co Ltd | 面状光源 |
JP2002108227A (ja) | 2000-07-26 | 2002-04-10 | Bridgestone Corp | フロントライト及び液晶表示装置 |
KR20020010322A (ko) | 2000-07-29 | 2002-02-04 | 구본준, 론 위라하디락사 | 멤스(mems)를 이용한 투과형 디스플레이 장치 |
US7525531B2 (en) | 2000-07-31 | 2009-04-28 | Toshiba Matsushita Display Technology Co., Ltd. | Method for manufacturing lighting device, image display, liquid crystal monitor, liquid crystal television, liquid crystal information terminal, and light guide plate |
JP4467840B2 (ja) | 2000-07-31 | 2010-05-26 | 東芝モバイルディスプレイ株式会社 | 照明装置、及び導光板の製造方法 |
US6795605B1 (en) | 2000-08-01 | 2004-09-21 | Cheetah Omni, Llc | Micromechanical optical switch |
JP2002062505A (ja) | 2000-08-14 | 2002-02-28 | Canon Inc | 投影型表示装置及びそれに用いる干渉性変調素子 |
US6570681B1 (en) | 2000-08-25 | 2003-05-27 | Actuality Systems, Inc. | System and method for dynamic optical switching using a diffractive optical element |
JP2002072284A (ja) | 2000-08-28 | 2002-03-12 | Canon Inc | 光量調節装置、レンズ装置および撮像装置 |
US6643069B2 (en) | 2000-08-31 | 2003-11-04 | Texas Instruments Incorporated | SLM-base color projection display having multiple SLM's and multiple projection lenses |
JP4945861B2 (ja) | 2000-09-05 | 2012-06-06 | 株式会社ニコン | 熱型変位素子及びこれを用いた放射検出装置 |
JP2002075037A (ja) | 2000-09-05 | 2002-03-15 | Minebea Co Ltd | 面状照明装置 |
JP4053220B2 (ja) | 2000-09-06 | 2008-02-27 | スガツネ工業株式会社 | 回動抵抗調整可能なトルクヒンジ |
US6792293B1 (en) | 2000-09-13 | 2004-09-14 | Motorola, Inc. | Apparatus and method for orienting an image on a display of a wireless communication device |
JP3394025B2 (ja) | 2000-09-13 | 2003-04-07 | 嶋田プレシジョン株式会社 | フロントライト導光板 |
US6466354B1 (en) | 2000-09-19 | 2002-10-15 | Silicon Light Machines | Method and apparatus for interferometric modulation of light |
US6538813B1 (en) | 2000-09-19 | 2003-03-25 | Honeywell International Inc. | Display screen with metallized tapered waveguides |
JP3561685B2 (ja) | 2000-09-20 | 2004-09-02 | 三洋電機株式会社 | 線状光源装置及びそれを用いた照明装置 |
CN1811549A (zh) | 2000-09-25 | 2006-08-02 | 三菱丽阳株式会社 | 一种光源装置 |
GB2371119A (en) | 2000-09-25 | 2002-07-17 | Marconi Caswell Ltd | Micro electro-mechanical systems |
WO2002025167A1 (fr) | 2000-09-25 | 2002-03-28 | Mitsubishi Rayon Co., Ltd. | Dispositif d'eclairage |
US6778513B2 (en) | 2000-09-29 | 2004-08-17 | Arraycomm, Inc. | Method and apparatus for separting multiple users in a shared-channel communication system |
JP4570228B2 (ja) | 2000-10-11 | 2010-10-27 | 日東電工株式会社 | ガラス基板及び液晶表示装置 |
US6493475B1 (en) | 2000-10-19 | 2002-12-10 | Tellium, Inc. | Monolithic integration of signal-monitoring scheme in an optical switch |
JP4371290B2 (ja) | 2000-10-19 | 2009-11-25 | 大日本印刷株式会社 | ホログラム導光板 |
US7072086B2 (en) | 2001-10-19 | 2006-07-04 | Batchko Robert G | Digital focus lens system |
JP2002139630A (ja) | 2000-10-31 | 2002-05-17 | Alps Electric Co Ltd | 導光板およびその製造方法、面発光装置並びに液晶表示装置 |
US6611079B2 (en) | 2000-10-31 | 2003-08-26 | Kabushiki Kaisha Toshiba | Electrostatic actuator and camera module using the same |
JP4374482B2 (ja) | 2000-11-02 | 2009-12-02 | ミネベア株式会社 | 面状照明装置 |
US6556338B2 (en) | 2000-11-03 | 2003-04-29 | Intpax, Inc. | MEMS based variable optical attenuator (MBVOA) |
JP2002148615A (ja) | 2000-11-08 | 2002-05-22 | Nitto Denko Corp | 光学フィルム及び反射型液晶表示装置 |
US6580496B2 (en) | 2000-11-09 | 2003-06-17 | Canesta, Inc. | Systems for CMOS-compatible three-dimensional image sensing using quantum efficiency modulation |
US6643067B2 (en) | 2000-11-22 | 2003-11-04 | Seiko Epson Corporation | Electro-optical device and electronic apparatus |
US7307775B2 (en) | 2000-12-07 | 2007-12-11 | Texas Instruments Incorporated | Methods for depositing, releasing and packaging micro-electromechanical devices on wafer substrates |
JP2002174780A (ja) | 2000-12-08 | 2002-06-21 | Stanley Electric Co Ltd | 反射型カラー表示器 |
JP4266551B2 (ja) | 2000-12-14 | 2009-05-20 | 三菱レイヨン株式会社 | 面光源システムおよびそれに用いる光偏向素子 |
JP2002184223A (ja) | 2000-12-14 | 2002-06-28 | Alps Electric Co Ltd | 面発光装置及びその製造方法並びに液晶表示装置 |
US7164224B2 (en) | 2000-12-14 | 2007-01-16 | Sharp Kabushiki Kaisha | Backlight having discharge tube, reflector and heat conduction member contacting discharge tube |
IL140318A0 (en) | 2000-12-14 | 2002-02-10 | Planop Planar Optics Ltd | Compact dynamic crossbar switch by means of planar optics |
JP3551310B2 (ja) | 2000-12-20 | 2004-08-04 | ミネベア株式会社 | 表示装置用タッチパネル |
JP4361206B2 (ja) | 2000-12-21 | 2009-11-11 | 日東電工株式会社 | 光学フィルム及び液晶表示装置 |
KR100358181B1 (ko) | 2000-12-22 | 2002-10-25 | 한국전자통신연구원 | 열광학 가변 광감쇄기 |
JP2002196151A (ja) | 2000-12-25 | 2002-07-10 | Citizen Electronics Co Ltd | 導光板 |
JP2002196117A (ja) | 2000-12-25 | 2002-07-10 | Nitto Denko Corp | 光拡散層、光拡散性シート及び光学素子 |
US20040141108A1 (en) | 2000-12-28 | 2004-07-22 | Hideyuki Tanaka | Light guiding plate and liquid crystal display device with the light guiding plate |
US6636653B2 (en) | 2001-02-02 | 2003-10-21 | Teravicta Technologies, Inc. | Integrated optical micro-electromechanical systems and methods of fabricating and operating the same |
JP4074977B2 (ja) | 2001-02-02 | 2008-04-16 | ミネベア株式会社 | 面状照明装置 |
JP2002229023A (ja) | 2001-02-05 | 2002-08-14 | Rohm Co Ltd | カラー液晶表示装置 |
US6925313B2 (en) | 2001-02-07 | 2005-08-02 | Hyundai Curitel Inc. | Folder-type mobile communication terminal having double-sided LCD |
JP4476505B2 (ja) | 2001-02-09 | 2010-06-09 | シャープ株式会社 | 液晶表示装置 |
KR100377359B1 (ko) | 2001-02-14 | 2003-03-26 | 삼성전자주식회사 | 영상표시장치의 조명광학계 |
JP2002245835A (ja) | 2001-02-15 | 2002-08-30 | Minolta Co Ltd | 照明装置、表示装置、及び電子機器 |
EP1373963A4 (de) | 2001-03-02 | 2006-04-26 | Massachusetts Inst Technology | Verfahren und vorrichtung zur diffraktiven optischen verarbeitung unter verwendung einer betätigbaren struktur |
GB0105781D0 (en) | 2001-03-08 | 2001-04-25 | Dyson Ltd | Wand assembly for a vacuum cleaner |
US6700695B2 (en) | 2001-03-14 | 2004-03-02 | 3M Innovative Properties Company | Microstructured segmented electrode film for electronic displays |
EP1241514A3 (de) | 2001-03-16 | 2003-09-10 | Nitto Denko Corporation | Flüssigkristallanzeigevorrichtung |
JP3888075B2 (ja) | 2001-03-23 | 2007-02-28 | セイコーエプソン株式会社 | 光スイッチング素子、光スイッチングデバイス、および画像表示装置 |
JP3713596B2 (ja) | 2001-03-26 | 2005-11-09 | ミネベア株式会社 | 面状照明装置 |
JP2002297044A (ja) | 2001-03-29 | 2002-10-09 | Toshiba Corp | 狭視野角モバイルディスプレイ、それに用いるフィルターの製造方法、および携帯端末装置 |
US6630786B2 (en) | 2001-03-30 | 2003-10-07 | Candescent Technologies Corporation | Light-emitting device having light-reflective layer formed with, or/and adjacent to, material that enhances device performance |
US6592234B2 (en) | 2001-04-06 | 2003-07-15 | 3M Innovative Properties Company | Frontlit display |
JP3686348B2 (ja) | 2001-04-10 | 2005-08-24 | 株式会社巴川製紙所 | 光学フィルムおよびその製造方法 |
US6678026B2 (en) | 2001-04-10 | 2004-01-13 | Seiko Epson Corporation | Liquid crystal device and electronic apparatus |
US6552842B2 (en) | 2001-04-13 | 2003-04-22 | Ut-Battelle, Llc | Reflective coherent spatial light modulator |
JP2002313121A (ja) | 2001-04-16 | 2002-10-25 | Nitto Denko Corp | タッチパネル付照明装置及び反射型液晶表示装置 |
US6660997B2 (en) | 2001-04-26 | 2003-12-09 | Creo Srl | Absolute position Moiré type encoder for use in a control system |
JP2002328313A (ja) | 2001-05-01 | 2002-11-15 | Sony Corp | 光スイッチング素子およびその製造方法、並びに画像表示装置 |
GB2375184A (en) | 2001-05-02 | 2002-11-06 | Marconi Caswell Ltd | Wavelength selectable optical filter |
JP2002333618A (ja) | 2001-05-07 | 2002-11-22 | Nitto Denko Corp | 反射型液晶表示装置 |
US7001058B2 (en) | 2001-05-16 | 2006-02-21 | Ben-Zion Inditsky | Ultra-thin backlight |
US6583876B2 (en) | 2001-05-24 | 2003-06-24 | Therma-Wave, Inc. | Apparatus for optical measurements of nitrogen concentration in thin films |
JP2002350840A (ja) | 2001-05-28 | 2002-12-04 | Hitachi Ltd | 反射型液晶表示装置 |
EP1397610B1 (de) | 2001-06-01 | 2007-12-12 | Philips Lumileds Lighting Company LLC | Kompaktes verlichtungssystem und zugehörige anzeige |
JP2002357717A (ja) | 2001-06-01 | 2002-12-13 | Dainippon Printing Co Ltd | 波長選択素子およびそれを備えた光表示装置 |
WO2002099541A1 (en) * | 2001-06-05 | 2002-12-12 | California Institute Of Technology | Method and method for holographic recording of fast phenomena |
JP2002365438A (ja) | 2001-06-05 | 2002-12-18 | Mark:Kk | 線状導光体およびそれを用いたディスプレイ装置ならびに電子装置、線状導光体の製造方法 |
US7068948B2 (en) | 2001-06-13 | 2006-06-27 | Gazillion Bits, Inc. | Generation of optical signals with return-to-zero format |
US6961045B2 (en) | 2001-06-16 | 2005-11-01 | Che-Chih Tsao | Pattern projection techniques for volumetric 3D displays and 2D displays |
GB0114862D0 (en) | 2001-06-19 | 2001-08-08 | Secr Defence | Image replication system |
JP4493884B2 (ja) | 2001-06-25 | 2010-06-30 | 五洋紙工株式会社 | 積層導光板 |
JP2003007114A (ja) | 2001-06-26 | 2003-01-10 | Sharp Corp | フロントライトおよびそれを用いた反射型表示装置 |
US20030001985A1 (en) | 2001-06-28 | 2003-01-02 | Steve Doe | Electronic display |
JP4526223B2 (ja) | 2001-06-29 | 2010-08-18 | シャープ株式会社 | 配線部材ならびに太陽電池モジュールおよびその製造方法 |
WO2003004931A2 (en) | 2001-06-30 | 2003-01-16 | Samsung Electro-Mechanics Co., Ltd. | Backlight using planar hologram for flat display device |
US6903788B2 (en) | 2001-07-05 | 2005-06-07 | Nitto Denko Corporation | Optical film and a liquid crystal display using the same |
JP3760810B2 (ja) | 2001-07-06 | 2006-03-29 | ソニー株式会社 | 光変調素子、glvデバイス、及びレーザディスプレイ |
JP2003021821A (ja) | 2001-07-09 | 2003-01-24 | Toshiba Corp | 液晶ユニットおよびその駆動方法 |
JP2003031017A (ja) | 2001-07-13 | 2003-01-31 | Minebea Co Ltd | 面状照明装置 |
KR100799156B1 (ko) | 2001-07-13 | 2008-01-29 | 삼성전자주식회사 | 도광판, 이의 제조 방법, 이를 이용한 액정표시장치 |
US6478432B1 (en) | 2001-07-13 | 2002-11-12 | Chad D. Dyner | Dynamically generated interactive real imaging device |
JP3959678B2 (ja) | 2001-07-13 | 2007-08-15 | ミネベア株式会社 | 表示装置用タッチパネル |
US6594059B2 (en) | 2001-07-16 | 2003-07-15 | Axsun Technologies, Inc. | Tilt mirror fabry-perot filter system, fabrication process therefor, and method of operation thereof |
JP3909812B2 (ja) | 2001-07-19 | 2007-04-25 | 富士フイルム株式会社 | 表示素子及び露光素子 |
US7263268B2 (en) | 2001-07-23 | 2007-08-28 | Ben-Zion Inditsky | Ultra thin radiation management and distribution systems with hybrid optical waveguide |
TWI225916B (en) | 2001-07-27 | 2005-01-01 | Nissen Kagaku Kk | Planar lighting device |
JP4213897B2 (ja) | 2001-08-07 | 2009-01-21 | 株式会社日立製作所 | マイクロレンズアレイの転写原型の製造方法 |
JP2003057652A (ja) | 2001-08-20 | 2003-02-26 | Japan Science & Technology Corp | 画像表示装置,照明装置 |
JP2003057653A (ja) | 2001-08-21 | 2003-02-26 | Citizen Watch Co Ltd | 液晶表示装置 |
JP2003066236A (ja) | 2001-08-27 | 2003-03-05 | Nitto Denko Corp | 導光板、偏光面光源装置及び反射型液晶表示装置 |
JP2003066451A (ja) | 2001-08-30 | 2003-03-05 | Matsushita Electric Ind Co Ltd | 液晶表示装置 |
JP4671562B2 (ja) | 2001-08-31 | 2011-04-20 | 富士通株式会社 | 照明装置及び液晶表示装置 |
KR100432490B1 (ko) | 2001-09-17 | 2004-05-22 | (주)니트 젠 | 광학식 지문취득 장치 |
TW574586B (en) | 2001-09-19 | 2004-02-01 | Optrex Kk | Liquid crystal display element |
WO2003028059A1 (en) | 2001-09-21 | 2003-04-03 | Hrl Laboratories, Llc | Mems switches and methods of making same |
JP3928395B2 (ja) | 2001-09-21 | 2007-06-13 | オムロン株式会社 | 面光源装置 |
CN1559000A (zh) | 2001-09-26 | 2004-12-29 | 皇家飞利浦电子股份有限公司 | 波导、边缘发光照明装置和包含这种装置的显示器 |
JP4050119B2 (ja) | 2001-10-02 | 2008-02-20 | シャープ株式会社 | 液晶表示装置 |
KR20030029769A (ko) | 2001-10-10 | 2003-04-16 | 엘지.필립스 엘시디 주식회사 | 광 누설방지용 금속층이 형성된 액정표시소자 |
NZ514500A (en) | 2001-10-11 | 2004-06-25 | Deep Video Imaging Ltd | A multiplane visual display unit with a transparent emissive layer disposed between two display planes |
WO2003034696A1 (en) | 2001-10-16 | 2003-04-24 | Koninklijke Philips Electronics N.V. | Electronic apparatus having a removable front-face element |
JP4001736B2 (ja) | 2001-10-23 | 2007-10-31 | アルプス電気株式会社 | 面発光装置及び液晶表示装置 |
JP2003202568A (ja) | 2001-10-24 | 2003-07-18 | Sharp Corp | 導光体およびその製造方法、面状光源装置、表示装置 |
JP2003131215A (ja) | 2001-10-29 | 2003-05-08 | Optrex Corp | 反射型表示装置 |
US6870581B2 (en) | 2001-10-30 | 2005-03-22 | Sharp Laboratories Of America, Inc. | Single panel color video projection display using reflective banded color falling-raster illumination |
US6636285B2 (en) | 2001-11-01 | 2003-10-21 | Motorola, Inc. | Reflective liquid crystal display with improved contrast |
JP2003140118A (ja) | 2001-11-02 | 2003-05-14 | Nec Access Technica Ltd | 液晶表示装置 |
JP2006502421A (ja) | 2001-11-06 | 2006-01-19 | キーオティ | 画像投影装置 |
CN101446773A (zh) | 2001-11-07 | 2009-06-03 | 应用材料有限公司 | 无掩膜光子电子点格栅阵列光刻机 |
KR100827962B1 (ko) | 2001-11-08 | 2008-05-08 | 엘지디스플레이 주식회사 | 액정 표시 장치 및 그의 제조 방법 |
JP3828402B2 (ja) | 2001-11-08 | 2006-10-04 | 株式会社日立製作所 | 背面照明装置およびこれを用いた液晶表示装置並びに液晶表示装置の照明方法 |
KR100774256B1 (ko) | 2001-11-08 | 2007-11-08 | 엘지.필립스 엘시디 주식회사 | 액정 표시 장치 |
JP2003147351A (ja) | 2001-11-09 | 2003-05-21 | Taiwan Lite On Electronics Inc | 白色光光源の製作方法 |
US7128459B2 (en) | 2001-11-12 | 2006-10-31 | Nidec Copal Corporation | Light-guide plate and method for manufacturing the same |
JP2003149642A (ja) | 2001-11-13 | 2003-05-21 | Matsushita Electric Works Ltd | 液晶用フロントライト |
JP2003151331A (ja) | 2001-11-15 | 2003-05-23 | Minebea Co Ltd | 面状照明装置 |
JP2003149643A (ja) | 2001-11-16 | 2003-05-21 | Goyo Paper Working Co Ltd | 液晶表示用フロントライト |
KR100440405B1 (ko) | 2001-11-19 | 2004-07-14 | 삼성전자주식회사 | 더블 버퍼링을 이용한 화상 데이터 출력 제어장치 |
US20030095401A1 (en) | 2001-11-20 | 2003-05-22 | Palm, Inc. | Non-visible light display illumination system and method |
US6802614B2 (en) | 2001-11-28 | 2004-10-12 | Robert C. Haldiman | System, method and apparatus for ambient video projection |
JP3801032B2 (ja) | 2001-11-29 | 2006-07-26 | 日本電気株式会社 | 光源とこの光源を用いた液晶表示装置 |
JP2003167132A (ja) | 2001-11-30 | 2003-06-13 | Toyota Industries Corp | フロントライト用楔型導光板 |
JP2003167500A (ja) | 2001-11-30 | 2003-06-13 | Art Nau:Kk | ホログラム作成方法 |
US7253853B2 (en) | 2001-12-04 | 2007-08-07 | Rohm Co., Ltd. | Liquid crystal display and lighting unit having parabolic surface |
JP2003173713A (ja) | 2001-12-04 | 2003-06-20 | Rohm Co Ltd | 照明装置および液晶表示装置 |
JP2003177336A (ja) | 2001-12-11 | 2003-06-27 | Fuji Photo Film Co Ltd | 光変調素子及び光変調素子アレイ並びにそれを用いた露光装置 |
US7872394B1 (en) | 2001-12-13 | 2011-01-18 | Joseph E Ford | MEMS device with two axes comb drive actuators |
JP2003186008A (ja) | 2001-12-14 | 2003-07-03 | Dainippon Printing Co Ltd | フロントライト用シートおよびそれを用いたディスプレイ装置 |
JP3683212B2 (ja) | 2001-12-14 | 2005-08-17 | Necアクセステクニカ株式会社 | 携帯電話機 |
US7072096B2 (en) | 2001-12-14 | 2006-07-04 | Digital Optics International, Corporation | Uniform illumination system |
WO2003054797A2 (en) | 2001-12-19 | 2003-07-03 | Actuality Systems, Inc. | A radiation conditioning system |
US7515336B2 (en) | 2001-12-21 | 2009-04-07 | Bose Corporation | Selective reflecting |
JP3893421B2 (ja) | 2001-12-27 | 2007-03-14 | 富士フイルム株式会社 | 光変調素子及び光変調素子アレイ並びにそれを用いた露光装置 |
US6998196B2 (en) | 2001-12-28 | 2006-02-14 | Wavefront Technology | Diffractive optical element and method of manufacture |
US6577429B1 (en) | 2002-01-15 | 2003-06-10 | Eastman Kodak Company | Laser projection display system |
US20030136759A1 (en) | 2002-01-18 | 2003-07-24 | Cabot Microelectronics Corp. | Microlens array fabrication using CMP |
DE60229166D1 (de) | 2002-01-25 | 2008-11-13 | Tpo Hong Kong Holding Ltd | Anzeigevorrichtung |
JP4039551B2 (ja) * | 2002-01-29 | 2008-01-30 | シチズン電子株式会社 | 蛍光体色度補正板 |
KR100944680B1 (ko) | 2002-02-04 | 2010-02-26 | 니치유 가부시키가이샤 | 펜 입력 장치용 표면재 및 펜 입력 장치 |
JP4162900B2 (ja) | 2002-02-05 | 2008-10-08 | アルプス電気株式会社 | 照明装置及び液晶表示装置 |
US7203002B2 (en) | 2002-02-12 | 2007-04-10 | Nitto Denko Corporation | Polarizer, polarizing plate, liquid crystal display, and image display, and a method for producing the polarizer |
US6794119B2 (en) | 2002-02-12 | 2004-09-21 | Iridigm Display Corporation | Method for fabricating a structure for a microelectromechanical systems (MEMS) device |
US7125121B2 (en) | 2002-02-25 | 2006-10-24 | Ricoh Company, Ltd. | Image display apparatus |
JP2003248181A (ja) | 2002-02-25 | 2003-09-05 | Ricoh Co Ltd | 反射型空間光変調装置 |
JP2003322824A (ja) | 2002-02-26 | 2003-11-14 | Namco Ltd | 立体視映像表示装置および電子機器 |
US6574033B1 (en) | 2002-02-27 | 2003-06-03 | Iridigm Display Corporation | Microelectromechanical systems device and method for fabricating same |
JP2003255338A (ja) | 2002-02-28 | 2003-09-10 | Mitsubishi Electric Corp | 液晶表示装置 |
US7283112B2 (en) | 2002-03-01 | 2007-10-16 | Microsoft Corporation | Reflective microelectrical mechanical structure (MEMS) optical modulator and optical display system |
WO2003075207A2 (en) | 2002-03-01 | 2003-09-12 | Planar Systems, Inc. | Reflection resistant touch screens |
JP2003255344A (ja) | 2002-03-05 | 2003-09-10 | Citizen Electronics Co Ltd | カラー液晶表示装置のフロントライト |
JP4317458B2 (ja) | 2002-03-05 | 2009-08-19 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 拡散均一照明と指向性スポット照明とを組み合わせた照明装置 |
JP3773865B2 (ja) | 2002-03-06 | 2006-05-10 | 三洋電機株式会社 | 導光板および表示装置 |
AU2003202766A1 (en) | 2002-03-08 | 2003-09-22 | Koninklijke Philips Electronics N.V. | Display device comprising a light guide |
CN1643439A (zh) | 2002-03-14 | 2005-07-20 | 日本电气株式会社 | 光调制显示器件、其制作方法以及装有此光调制显示器件的显示装置 |
US7145143B2 (en) | 2002-03-18 | 2006-12-05 | Honeywell International Inc. | Tunable sensor |
CN100347569C (zh) | 2002-03-18 | 2007-11-07 | 株式会社尼康 | 衍射光学元件及其制造方法和光学装置 |
US6768555B2 (en) | 2002-03-21 | 2004-07-27 | Industrial Technology Research Institute | Fabry-Perot filter apparatus with enhanced optical discrimination |
US6965468B2 (en) | 2003-07-03 | 2005-11-15 | Reflectivity, Inc | Micromirror array having reduced gap between adjacent micromirrors of the micromirror array |
US7428367B2 (en) | 2002-10-17 | 2008-09-23 | Brilliant Film Llc | Light control devices and methods of making same |
JP2003295183A (ja) | 2002-03-29 | 2003-10-15 | Citizen Watch Co Ltd | 液晶表示装置の平面照明装置 |
TW554211B (en) | 2002-04-10 | 2003-09-21 | Au Optronics Corp | Light guiding plate of controlling light emission angle and its liquid crystal display apparatus |
KR20030081662A (ko) | 2002-04-12 | 2003-10-22 | 삼성에스디아이 주식회사 | 이중층 반사방지막이 형성된 태양전지 |
JP2003315560A (ja) * | 2002-04-23 | 2003-11-06 | Yuka Denshi Co Ltd | 導光体及びこれを用いた面光源装置と液晶ディスプレイ装置 |
JP2003315694A (ja) | 2002-04-25 | 2003-11-06 | Fuji Photo Film Co Ltd | 画像表示素子及びこれを用いた画像表示装置 |
US6717650B2 (en) | 2002-05-01 | 2004-04-06 | Anvik Corporation | Maskless lithography with sub-pixel resolution |
GB2388236A (en) | 2002-05-01 | 2003-11-05 | Cambridge Display Tech Ltd | Display and driver circuits |
US6801281B2 (en) | 2002-05-06 | 2004-10-05 | University Of Central Florida | Single cell gap transflective liquid crystal display with slanted reflector above transmissive pixels |
JP2003322852A (ja) | 2002-05-07 | 2003-11-14 | Nitto Denko Corp | 反射型液晶表示装置及び光学フィルム |
DE10221301B4 (de) | 2002-05-14 | 2004-07-29 | Junghans Uhren Gmbh | Vorrichtung mit Solarzellenanordnung und Flüssigkristallanzeige |
US6689949B2 (en) | 2002-05-17 | 2004-02-10 | United Innovations, Inc. | Concentrating photovoltaic cavity converters for extreme solar-to-electric conversion efficiencies |
KR100433229B1 (ko) | 2002-05-17 | 2004-05-28 | 엘지.필립스 엘시디 주식회사 | 액정표시장치 및 그 제조방법 |
US6862141B2 (en) | 2002-05-20 | 2005-03-01 | General Electric Company | Optical substrate and method of making |
JP4123415B2 (ja) | 2002-05-20 | 2008-07-23 | ソニー株式会社 | 固体撮像装置 |
US7180672B2 (en) | 2002-05-20 | 2007-02-20 | General Electric Company | Optical substrate and method of making |
JP2003344881A (ja) | 2002-05-22 | 2003-12-03 | Alps Electric Co Ltd | 電気泳動表示装置 |
US7010212B2 (en) | 2002-05-28 | 2006-03-07 | 3M Innovative Properties Company | Multifunctional optical assembly |
JP4170677B2 (ja) | 2002-06-07 | 2008-10-22 | 大日本印刷株式会社 | 光源装置及びディスプレイ |
JP4048844B2 (ja) | 2002-06-17 | 2008-02-20 | カシオ計算機株式会社 | 面光源及びそれを用いた表示装置 |
GB2389960A (en) | 2002-06-20 | 2003-12-24 | Suisse Electronique Microtech | Four-tap demodulation pixel |
US6829258B1 (en) | 2002-06-26 | 2004-12-07 | Silicon Light Machines, Inc. | Rapidly tunable external cavity laser |
DE10228946B4 (de) | 2002-06-28 | 2004-08-26 | Universität Bremen | Optischer Modulator, Display, Verwendung eines optischen Modulators und Verfahren zur Herstellung eines optischen Modulators |
JP3977169B2 (ja) | 2002-07-01 | 2007-09-19 | 松下電器産業株式会社 | 携帯端末機器 |
US6741377B2 (en) | 2002-07-02 | 2004-05-25 | Iridigm Display Corporation | Device having a light-absorbing mask and a method for fabricating same |
US7019734B2 (en) | 2002-07-17 | 2006-03-28 | 3M Innovative Properties Company | Resistive touch sensor having microstructured conductive layer |
US6738194B1 (en) | 2002-07-22 | 2004-05-18 | The United States Of America As Represented By The Secretary Of The Navy | Resonance tunable optical filter |
KR100828531B1 (ko) | 2002-07-26 | 2008-05-13 | 삼성전자주식회사 | 액정 표시 장치 |
US7019876B2 (en) | 2002-07-29 | 2006-03-28 | Hewlett-Packard Development Company, L.P. | Micro-mirror with rotor structure |
TWI343376B (en) | 2002-07-31 | 2011-06-11 | Du Pont | Method for preparing 3-halo-4, 5-dihydro-1h-pyrazoles |
JP2004062099A (ja) | 2002-07-31 | 2004-02-26 | Dainippon Printing Co Ltd | 視認性向上シートおよびこれを用いたディスプレイおよび透過型投影スクリーン |
WO2004015489A1 (en) | 2002-08-07 | 2004-02-19 | Koninklijke Philips Electronics N.V. | Display device with light guiding substrate |
TWI266106B (en) | 2002-08-09 | 2006-11-11 | Sanyo Electric Co | Display device with a plurality of display panels |
JP4126210B2 (ja) | 2002-08-09 | 2008-07-30 | 株式会社日立製作所 | 液晶表示装置 |
US7151532B2 (en) | 2002-08-09 | 2006-12-19 | 3M Innovative Properties Company | Multifunctional multilayer optical film |
JP2004078613A (ja) | 2002-08-19 | 2004-03-11 | Fujitsu Ltd | タッチパネル装置 |
KR100850589B1 (ko) | 2002-08-19 | 2008-08-05 | 비오이 하이디스 테크놀로지 주식회사 | 프린지 필드 스위칭 모드 액정 디스플레이 장치 |
JP4141766B2 (ja) | 2002-08-23 | 2008-08-27 | 富士通株式会社 | 照明装置及び液晶表示装置 |
JP4076214B2 (ja) | 2002-08-29 | 2008-04-16 | シチズン電子株式会社 | 両面発光照明ユニット |
WO2004025174A1 (ja) | 2002-08-30 | 2004-03-25 | Hitachi Chemical Co., Ltd. | 導光板及びバックライト装置 |
JP2004095390A (ja) | 2002-08-30 | 2004-03-25 | Fujitsu Display Technologies Corp | 照明装置及び表示装置 |
US7106509B2 (en) | 2002-09-06 | 2006-09-12 | Colorlink, Inc. | Filter for enhancing vision and/or protecting the eyes and method of making a filter |
JP4057871B2 (ja) | 2002-09-19 | 2008-03-05 | 東芝松下ディスプレイテクノロジー株式会社 | 液晶表示装置 |
JP4440523B2 (ja) | 2002-09-19 | 2010-03-24 | 大日本印刷株式会社 | インクジェット法による有機el表示装置及びカラーフィルターの製造方法、製造装置 |
US6934080B2 (en) | 2002-09-20 | 2005-08-23 | Honeywell International, Inc. | High efficiency viewing screen |
JP2004133430A (ja) | 2002-09-20 | 2004-04-30 | Sony Corp | 表示素子、表示装置、及びマイクロレンズアレイ |
JP2004126196A (ja) | 2002-10-02 | 2004-04-22 | Toshiba Corp | 液晶表示装置 |
US7406245B2 (en) | 2004-07-27 | 2008-07-29 | Lumitex, Inc. | Flat optical fiber light emitters |
KR100883096B1 (ko) | 2002-10-05 | 2009-02-11 | 삼성전자주식회사 | 광학 부재, 이의 제조 방법 및 이를 이용한 액정표시장치 |
TW573170B (en) | 2002-10-11 | 2004-01-21 | Toppoly Optoelectronics Corp | Dual-sided display liquid crystal panel |
TW557363B (en) | 2002-10-15 | 2003-10-11 | Optimax Tech Corp | Anti-glare film |
JP4130115B2 (ja) | 2002-10-16 | 2008-08-06 | アルプス電気株式会社 | 照明装置、及び液晶表示装置 |
US6747785B2 (en) | 2002-10-24 | 2004-06-08 | Hewlett-Packard Development Company, L.P. | MEMS-actuated color light modulator and methods |
JP4077297B2 (ja) | 2002-10-25 | 2008-04-16 | アルプス電気株式会社 | 表示装置及び携帯型情報端末機器 |
US7370185B2 (en) | 2003-04-30 | 2008-05-06 | Hewlett-Packard Development Company, L.P. | Self-packaged optical interference display device having anti-stiction bumps, integral micro-lens, and reflection-absorbing layers |
TW200413776A (en) | 2002-11-05 | 2004-08-01 | Matsushita Electric Ind Co Ltd | Display element and display using the same |
DE60337026D1 (de) | 2002-11-07 | 2011-06-16 | Sony Deutschland Gmbh | Beleuchtungsanordnung für eine projektionsvorrichtung |
TW547670U (en) | 2002-11-08 | 2003-08-11 | Hon Hai Prec Ind Co Ltd | Backlight system and its light guide plate |
US7063449B2 (en) | 2002-11-21 | 2006-06-20 | Element Labs, Inc. | Light emitting diode (LED) picture element |
TWI252938B (en) | 2002-11-22 | 2006-04-11 | Hon Hai Prec Ind Co Ltd | Light guide plate and backlight system using the same |
US6844959B2 (en) | 2002-11-26 | 2005-01-18 | Reflectivity, Inc | Spatial light modulators with light absorbing areas |
JP4140499B2 (ja) | 2002-11-29 | 2008-08-27 | カシオ計算機株式会社 | 通信端末、及び、プログラム |
US6811274B2 (en) | 2002-12-04 | 2004-11-02 | General Electric Company | Polarization sensitive optical substrate |
EP1575452A2 (de) | 2002-12-09 | 2005-09-21 | Oree, Advanced Illumination Solutions Inc. | Flexible optische vorrichtung |
JP2004199006A (ja) | 2002-12-20 | 2004-07-15 | Koninkl Philips Electronics Nv | 集光基板及びこれを用いた表示装置並びにその製造方法 |
TWI289708B (en) | 2002-12-25 | 2007-11-11 | Qualcomm Mems Technologies Inc | Optical interference type color display |
JP3983166B2 (ja) | 2002-12-26 | 2007-09-26 | 日東電工株式会社 | 光学素子及びこれを用いた偏光面光源並びにこれを用いた表示装置 |
JP2004212673A (ja) | 2002-12-27 | 2004-07-29 | Fuji Photo Film Co Ltd | 平面表示素子及びその駆動方法 |
TW594155B (en) | 2002-12-27 | 2004-06-21 | Prime View Int Corp Ltd | Optical interference type color display and optical interference modulator |
KR100624408B1 (ko) | 2003-01-07 | 2006-09-18 | 삼성전자주식회사 | 백라이트 유닛 |
KR100506088B1 (ko) | 2003-01-14 | 2005-08-03 | 삼성전자주식회사 | 액정표시장치 |
EP1583946B1 (de) | 2003-01-15 | 2006-11-08 | Micronic Laser Systems Ab | Verfahren zur erkennung eines defekten pixels |
JP2004219843A (ja) | 2003-01-16 | 2004-08-05 | Seiko Epson Corp | 光変調器、表示装置及びその製造方法 |
US6930816B2 (en) | 2003-01-17 | 2005-08-16 | Fuji Photo Film Co., Ltd. | Spatial light modulator, spatial light modulator array, image forming device and flat panel display |
US7042444B2 (en) | 2003-01-17 | 2006-05-09 | Eastman Kodak Company | OLED display and touch screen |
US6871982B2 (en) | 2003-01-24 | 2005-03-29 | Digital Optics International Corporation | High-density illumination system |
ATE397775T1 (de) | 2003-01-28 | 2008-06-15 | Genoa Color Technologies Ltd | Subpixel-anordnung für displays mit mehr als drei primärfarben |
TW557395B (en) | 2003-01-29 | 2003-10-11 | Yen Sun Technology Corp | Optical interference type reflection panel and the manufacturing method thereof |
TW200413810A (en) | 2003-01-29 | 2004-08-01 | Prime View Int Co Ltd | Light interference display panel and its manufacturing method |
TW577549U (en) | 2003-01-30 | 2004-02-21 | Toppoly Optoelectronics Corp | Back light module for flat display device |
KR100519238B1 (ko) | 2003-02-04 | 2005-10-07 | 화우테크놀러지 주식회사 | 광유도부가 구비된 도광판 |
KR100720426B1 (ko) | 2003-02-18 | 2007-05-22 | 엘지.필립스 엘시디 주식회사 | 백라이트 유닛 |
JP2004253199A (ja) | 2003-02-19 | 2004-09-09 | Toyota Industries Corp | 面状発光装置、その製造方法、及び液晶表示装置 |
JP2004258358A (ja) * | 2003-02-26 | 2004-09-16 | Nitto Denko Corp | 反射型液晶表示装置 |
TWI352228B (en) | 2003-02-28 | 2011-11-11 | Sharp Kk | Surface dadiation conversion element, liquid cryst |
TW200417806A (en) | 2003-03-05 | 2004-09-16 | Prime View Int Corp Ltd | A structure of a light-incidence electrode of an optical interference display plate |
CN2624220Y (zh) | 2003-03-08 | 2004-07-07 | 鸿富锦精密工业(深圳)有限公司 | 导光板、发光模块、导光模块和液晶显示器 |
US6844953B2 (en) | 2003-03-12 | 2005-01-18 | Hewlett-Packard Development Company, L.P. | Micro-mirror device including dielectrophoretic liquid |
US7064875B2 (en) | 2003-03-24 | 2006-06-20 | Fuji Xerox Co., Ltd. | Optical recording apparatus and optical recording/reproducing apparatus |
US20040188150A1 (en) | 2003-03-25 | 2004-09-30 | 3M Innovative Properties Company | High transparency touch screen |
JP4294992B2 (ja) | 2003-03-31 | 2009-07-15 | シャープ株式会社 | 反射型液晶表示装置 |
DE10314525A1 (de) | 2003-03-31 | 2004-11-04 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung einer Beleuchtungsvorrichtung und Beleuchtungsvorrichtung |
US20050120553A1 (en) | 2003-12-08 | 2005-06-09 | Brown Dirk D. | Method for forming MEMS grid array connector |
US7382360B2 (en) | 2003-04-15 | 2008-06-03 | Synaptics Incorporated | Methods and systems for changing the appearance of a position sensor with a light effect |
KR100506092B1 (ko) | 2003-04-16 | 2005-08-04 | 삼성전자주식회사 | 측면 발광형 백라이트 장치의 도광판 및 이를 채용한 측면발광형 백라이트 장치 |
KR20040090667A (ko) | 2003-04-18 | 2004-10-26 | 삼성전기주식회사 | 디스플레이용 라이트 유닛 |
TW567355B (en) | 2003-04-21 | 2003-12-21 | Prime View Int Co Ltd | An interference display cell and fabrication method thereof |
JP3918765B2 (ja) | 2003-04-21 | 2007-05-23 | セイコーエプソン株式会社 | 液晶表示装置および電子機器 |
TWI226504B (en) | 2003-04-21 | 2005-01-11 | Prime View Int Co Ltd | A structure of an interference display cell |
US7072093B2 (en) | 2003-04-30 | 2006-07-04 | Hewlett-Packard Development Company, L.P. | Optical interference pixel display with charge control |
JP3829819B2 (ja) | 2003-05-08 | 2006-10-04 | ソニー株式会社 | ホログラフィックステレオグラム作成装置 |
JP2004361914A (ja) | 2003-05-15 | 2004-12-24 | Omron Corp | フロントライト、反射型表示装置及びフロントライトにおける光制御方法 |
WO2004102523A1 (en) | 2003-05-19 | 2004-11-25 | Itzhak Baruch | Optical coordinate input device comprising few elements |
US7206133B2 (en) | 2003-05-22 | 2007-04-17 | Optical Research Associates | Light distribution apparatus and methods for illuminating optical systems |
WO2004106983A2 (en) | 2003-05-22 | 2004-12-09 | Optical Research Associates | Illumination in optical systems |
US7672051B2 (en) | 2003-05-22 | 2010-03-02 | Hitachi Chemical Co., Ltd. | Optical film and surface light source using it |
US6811267B1 (en) | 2003-06-09 | 2004-11-02 | Hewlett-Packard Development Company, L.P. | Display system with nonvisible data projection |
JP4222117B2 (ja) | 2003-06-17 | 2009-02-12 | セイコーエプソン株式会社 | カラーフィルタアレイ及びその製造方法、表示装置、投射型表示装置 |
US7268840B2 (en) | 2003-06-18 | 2007-09-11 | Citizen Holdings Co., Ltd. | Display device employing light control member and display device manufacturing method |
US20050024890A1 (en) | 2003-06-19 | 2005-02-03 | Alps Electric Co., Ltd. | Light guide plate, surface light-emitting unit, and liquid crystal display device and method for manufacturing the same |
US6822780B1 (en) | 2003-06-23 | 2004-11-23 | Northrop Grumman Corporation | Vertically stacked spatial light modulator with multi-bit phase resolution |
JP2007027150A (ja) | 2003-06-23 | 2007-02-01 | Hitachi Chem Co Ltd | 集光型光発電システム |
US6917469B2 (en) | 2003-06-27 | 2005-07-12 | Japan Acryace Co., Ltd. | Light diffusing laminated plate |
DE10329917B4 (de) | 2003-07-02 | 2005-12-22 | Schott Ag | Beschichtetes Abdeckglas für Photovoltaik-Module |
JP4741488B2 (ja) | 2003-07-03 | 2011-08-03 | ホロタッチ, インコーポレイテッド | ホログラフィックヒューマンマシンインタフェース |
US6980347B2 (en) | 2003-07-03 | 2005-12-27 | Reflectivity, Inc | Micromirror having reduced space between hinge and mirror plate of the micromirror |
US7112885B2 (en) | 2003-07-07 | 2006-09-26 | Board Of Regents, The University Of Texas System | System, method and apparatus for improved electrical-to-optical transmitters disposed within printed circuit boards |
JP2005031219A (ja) | 2003-07-09 | 2005-02-03 | Toppoly Optoelectronics Corp | 両面液晶ディスプレイ |
US20070201234A1 (en) | 2003-07-21 | 2007-08-30 | Clemens Ottermann | Luminous element |
US7190380B2 (en) | 2003-09-26 | 2007-03-13 | Hewlett-Packard Development Company, L.P. | Generating and displaying spatially offset sub-frames |
DE10336352B4 (de) | 2003-08-08 | 2007-02-08 | Schott Ag | Verfahren zur Herstellung von Streulichtstrukturen an flächigen Lichtleitern |
WO2005017407A1 (ja) | 2003-08-13 | 2005-02-24 | Fujitsu Limited | 照明装置及び液晶表示装置 |
TW200506479A (en) | 2003-08-15 | 2005-02-16 | Prime View Int Co Ltd | Color changeable pixel for an interference display |
TWI305599B (en) | 2003-08-15 | 2009-01-21 | Qualcomm Mems Technologies Inc | Interference display panel and method thereof |
TWI251712B (en) | 2003-08-15 | 2006-03-21 | Prime View Int Corp Ltd | Interference display plate |
TW593127B (en) | 2003-08-18 | 2004-06-21 | Prime View Int Co Ltd | Interference display plate and manufacturing method thereof |
US6880959B2 (en) | 2003-08-25 | 2005-04-19 | Timothy K. Houston | Vehicle illumination guide |
US20050057442A1 (en) | 2003-08-28 | 2005-03-17 | Olan Way | Adjacent display of sequential sub-images |
US7025461B2 (en) | 2003-08-28 | 2006-04-11 | Brookhaven Science Associates | Interactive display system having a digital micromirror imaging device |
JP3979982B2 (ja) | 2003-08-29 | 2007-09-19 | シャープ株式会社 | 干渉性変調器および表示装置 |
DE112004001571T5 (de) | 2003-09-01 | 2006-08-24 | Dai Nippon Printing Co., Ltd. | Antireflexionsfilm für eine Plasmaanzeige |
JP2005084331A (ja) | 2003-09-08 | 2005-03-31 | Fuji Photo Film Co Ltd | 表示装置、画像表示装置および表示方法 |
JP2004086221A (ja) | 2003-09-12 | 2004-03-18 | Sharp Corp | フロントライト及び表示装置 |
EP1668482A2 (de) | 2003-09-22 | 2006-06-14 | Koninklijke Philips Electronics N.V. | Berührungs-eingabeschirm mit einer lichtquelle |
US6982820B2 (en) | 2003-09-26 | 2006-01-03 | Prime View International Co., Ltd. | Color changeable pixel |
GB0322681D0 (en) | 2003-09-27 | 2003-10-29 | Koninkl Philips Electronics Nv | Multi-view display |
GB0322682D0 (en) | 2003-09-27 | 2003-10-29 | Koninkl Philips Electronics Nv | Backlight for 3D display device |
JP4577210B2 (ja) | 2003-10-06 | 2010-11-10 | オムロン株式会社 | 面光源装置及び表示装置 |
JP2005135899A (ja) | 2003-10-06 | 2005-05-26 | Omron Corp | 面光源装置及び表示装置 |
US20050073507A1 (en) | 2003-10-06 | 2005-04-07 | Richter Paul J. | Touch input sensing device |
US7303645B2 (en) | 2003-10-24 | 2007-12-04 | Miradia Inc. | Method and system for hermetically sealing packages for optics |
US7218812B2 (en) | 2003-10-27 | 2007-05-15 | Rpo Pty Limited | Planar waveguide with patterned cladding and method for producing the same |
GB0326005D0 (en) * | 2003-11-07 | 2003-12-10 | Koninkl Philips Electronics Nv | Waveguide for autostereoscopic display |
ATE403184T1 (de) | 2003-12-01 | 2008-08-15 | Asulab Sa | Transparantes substrat mit unsichtbaren elektroden und vorrichtungen mit diesem substrat |
TW200524236A (en) | 2003-12-01 | 2005-07-16 | Nl Nanosemiconductor Gmbh | Optoelectronic device incorporating an interference filter |
US7142346B2 (en) | 2003-12-09 | 2006-11-28 | Idc, Llc | System and method for addressing a MEMS display |
US7161728B2 (en) | 2003-12-09 | 2007-01-09 | Idc, Llc | Area array modulation and lead reduction in interferometric modulators |
US7456805B2 (en) | 2003-12-18 | 2008-11-25 | 3M Innovative Properties Company | Display including a solid state light device and method using same |
US6972827B2 (en) | 2003-12-19 | 2005-12-06 | Eastman Kodak Company | Transflective film and display |
ATE552521T1 (de) | 2003-12-19 | 2012-04-15 | Barco Nv | Breitbandige reflektive anzeigevorrichtung |
JP4079143B2 (ja) | 2003-12-22 | 2008-04-23 | セイコーエプソン株式会社 | 照明装置、電気光学装置及び電子機器 |
CA2490603C (en) | 2003-12-24 | 2012-12-11 | National Research Council Of Canada | Optical off-chip interconnects in multichannel planar waveguide devices |
TWI388876B (zh) | 2003-12-26 | 2013-03-11 | Fujifilm Corp | 抗反射膜、偏光板,其製造方法,液晶顯示元件,液晶顯示裝置,及影像顯示裝置 |
US20050271325A1 (en) | 2004-01-22 | 2005-12-08 | Anderson Michael H | Liquid crystal waveguide having refractive shapes for dynamically controlling light |
US6964484B2 (en) | 2004-02-02 | 2005-11-15 | Hewlett-Packard Development Company, L.P. | Overfill reduction for an optical modulator |
US7342705B2 (en) | 2004-02-03 | 2008-03-11 | Idc, Llc | Spatial light modulator with integrated optical compensation structure |
US20060110090A1 (en) | 2004-02-12 | 2006-05-25 | Panorama Flat Ltd. | Apparatus, method, and computer program product for substrated/componentized waveguided goggle system |
WO2005088367A1 (en) | 2004-02-13 | 2005-09-22 | Nokia Corporation | Method of manufacturing a light guide |
CN100434988C (zh) | 2004-02-16 | 2008-11-19 | 西铁城电子股份有限公司 | 导光板 |
JP4386749B2 (ja) | 2004-02-16 | 2009-12-16 | シチズン電子株式会社 | 面状光源 |
JP2005235759A (ja) | 2004-02-17 | 2005-09-02 | Seiko Instruments Inc | 照明装置、及びこれを用いた表示装置 |
TWI256941B (en) | 2004-02-18 | 2006-06-21 | Qualcomm Mems Technologies Inc | A micro electro mechanical system display cell and method for fabricating thereof |
US20050195370A1 (en) | 2004-03-02 | 2005-09-08 | Gore Makarand P. | Transmissive/reflective light engine |
TW200530669A (en) | 2004-03-05 | 2005-09-16 | Prime View Int Co Ltd | Interference display plate and manufacturing method thereof |
US7706050B2 (en) | 2004-03-05 | 2010-04-27 | Qualcomm Mems Technologies, Inc. | Integrated modulator illumination |
US7439965B2 (en) | 2004-03-05 | 2008-10-21 | Anderson Daryl E | Method for driving display device |
US7855824B2 (en) | 2004-03-06 | 2010-12-21 | Qualcomm Mems Technologies, Inc. | Method and system for color optimization in a display |
JP4452528B2 (ja) | 2004-03-09 | 2010-04-21 | 日本Cmo株式会社 | 面状光発生装置、画像表示装置 |
US20050207016A1 (en) | 2004-03-15 | 2005-09-22 | Fuji Photo Film Co., Ltd. | Antireflection film, polarizing plate and liquid crystal display |
JP4195936B2 (ja) | 2004-03-17 | 2008-12-17 | 独立行政法人産業技術総合研究所 | 拡散性の反射面を持つ反射型調光素子 |
US20080285308A1 (en) | 2004-03-23 | 2008-11-20 | Donald Burris Clary | Light Guide and Apparatus For Using Light Guide |
TWI293706B (en) | 2004-03-24 | 2008-02-21 | Au Optronics Corp | Backlight module |
US7374327B2 (en) | 2004-03-31 | 2008-05-20 | Schexnaider Craig J | Light panel illuminated by light emitting diodes |
US20050224694A1 (en) | 2004-04-08 | 2005-10-13 | Taiwan Semiconductor Manufacturing Co. Ltd. | High efficiency microlens array |
JP2005308871A (ja) | 2004-04-19 | 2005-11-04 | Aterio Design Kk | 干渉カラーフィルター |
JP4539160B2 (ja) | 2004-04-28 | 2010-09-08 | 日立化成工業株式会社 | 光学素子、光学素子の製造方法及び面光源装置 |
EP1751593B1 (de) | 2004-04-30 | 2019-03-06 | Modilis Holdings LLC | Ultradünnes beleuchtungselement |
US7602369B2 (en) | 2004-05-04 | 2009-10-13 | Sharp Laboratories Of America, Inc. | Liquid crystal display with colored backlight |
WO2005111669A1 (ja) | 2004-05-17 | 2005-11-24 | Nikon Corporation | 光学素子、コンバイナ光学系、及び画像表示装置 |
US6970031B1 (en) | 2004-05-28 | 2005-11-29 | Hewlett-Packard Development Company, L.P. | Method and apparatus for reducing charge injection in control of MEMS electrostatic actuator array |
JP4020397B2 (ja) | 2004-06-14 | 2007-12-12 | 惠次 飯村 | 点光源を用いた面光源 |
US7412119B2 (en) | 2004-06-30 | 2008-08-12 | Poa Sana Liquidating Trust | Apparatus and method for making flexible waveguide substrates for use with light based touch screens |
KR101148791B1 (ko) | 2004-06-30 | 2012-05-24 | 엘지디스플레이 주식회사 | 타일형 표시장치 |
US7213958B2 (en) | 2004-06-30 | 2007-05-08 | 3M Innovative Properties Company | Phosphor based illumination system having light guide and an interference reflector |
US20060002108A1 (en) * | 2004-06-30 | 2006-01-05 | Ouderkirk Andrew J | Phosphor based illumination system having a short pass reflector and method of making same |
KR100606549B1 (ko) | 2004-07-01 | 2006-08-01 | 엘지전자 주식회사 | 면 발광 장치용 도광판 및 그의 제조 방법 |
US7256922B2 (en) | 2004-07-02 | 2007-08-14 | Idc, Llc | Interferometric modulators with thin film transistors |
US7528989B2 (en) | 2004-07-08 | 2009-05-05 | Fuji Xerox Co., Ltd | Image processing apparatus and image processing method |
GB0415773D0 (en) | 2004-07-15 | 2004-08-18 | Koninkl Philips Electronics Nv | A flexible display device |
US7092163B2 (en) | 2004-07-22 | 2006-08-15 | General Electric Company | Light collimating and diffusing film and system for making the film |
JP2006039056A (ja) | 2004-07-23 | 2006-02-09 | Hitachi Chem Co Ltd | 液晶表示装置 |
KR101354520B1 (ko) | 2004-07-29 | 2014-01-21 | 퀄컴 엠이엠에스 테크놀로지스, 인크. | 간섭 변조기의 미소기전 동작을 위한 시스템 및 방법 |
US7436389B2 (en) | 2004-07-29 | 2008-10-14 | Eugene J Mar | Method and system for controlling the output of a diffractive light device |
EP1788423A4 (de) | 2004-08-18 | 2008-02-27 | Sony Corp | Rückbeleuchtungsvorrichtung und vorrichtung für farbige flüssigkristallanzeige |
JP2006093104A (ja) | 2004-08-25 | 2006-04-06 | Seiko Instruments Inc | 照明装置およびそれを用いた表示装置 |
US7499208B2 (en) | 2004-08-27 | 2009-03-03 | Udc, Llc | Current mode display driver circuit realization feature |
US7889163B2 (en) | 2004-08-27 | 2011-02-15 | Qualcomm Mems Technologies, Inc. | Drive method for MEMS devices |
CN101010714B (zh) | 2004-08-27 | 2010-08-18 | 高通Mems科技公司 | 激活微机电系统显示元件的系统和方法 |
JP4285373B2 (ja) | 2004-09-01 | 2009-06-24 | セイコーエプソン株式会社 | マイクロレンズの製造方法、マイクロレンズ及びマイクロレンズアレイ、並びに電気光学装置及び電子機器 |
US7278775B2 (en) * | 2004-09-09 | 2007-10-09 | Fusion Optix Inc. | Enhanced LCD backlight |
US20080043490A1 (en) | 2005-09-09 | 2008-02-21 | Fusion Optix Inc. | Enhanced Light Guide |
US7212345B2 (en) | 2004-09-13 | 2007-05-01 | Eastman Kodak Company | Randomized patterns of individual optical elements |
JP2006086075A (ja) | 2004-09-17 | 2006-03-30 | Alps Electric Co Ltd | 面発光装置、背面照明装置および液晶表示装置 |
JP4238806B2 (ja) | 2004-09-21 | 2009-03-18 | セイコーエプソン株式会社 | 導光板、照明装置、電気光学装置および電子機器 |
US7359066B2 (en) | 2004-09-27 | 2008-04-15 | Idc, Llc | Electro-optical measurement of hysteresis in interferometric modulators |
US7630123B2 (en) | 2004-09-27 | 2009-12-08 | Qualcomm Mems Technologies, Inc. | Method and device for compensating for color shift as a function of angle of view |
US7369294B2 (en) | 2004-09-27 | 2008-05-06 | Idc, Llc | Ornamental display device |
US7551246B2 (en) | 2004-09-27 | 2009-06-23 | Idc, Llc. | System and method for display device with integrated desiccant |
US7561323B2 (en) | 2004-09-27 | 2009-07-14 | Idc, Llc | Optical films for directing light towards active areas of displays |
US20060077126A1 (en) | 2004-09-27 | 2006-04-13 | Manish Kothari | Apparatus and method for arranging devices into an interconnected array |
US7535466B2 (en) | 2004-09-27 | 2009-05-19 | Idc, Llc | System with server based control of client device display features |
US7916103B2 (en) | 2004-09-27 | 2011-03-29 | Qualcomm Mems Technologies, Inc. | System and method for display device with end-of-life phenomena |
US7417735B2 (en) | 2004-09-27 | 2008-08-26 | Idc, Llc | Systems and methods for measuring color and contrast in specular reflective devices |
US7657242B2 (en) | 2004-09-27 | 2010-02-02 | Qualcomm Mems Technologies, Inc. | Selectable capacitance circuit |
US20060076632A1 (en) | 2004-09-27 | 2006-04-13 | Lauren Palmateer | System and method for display device with activated desiccant |
US7289256B2 (en) | 2004-09-27 | 2007-10-30 | Idc, Llc | Electrical characterization of interferometric modulators |
US7304784B2 (en) | 2004-09-27 | 2007-12-04 | Idc, Llc | Reflective display device having viewable display on both sides |
US7161730B2 (en) | 2004-09-27 | 2007-01-09 | Idc, Llc | System and method for providing thermal compensation for an interferometric modulator display |
US7813026B2 (en) | 2004-09-27 | 2010-10-12 | Qualcomm Mems Technologies, Inc. | System and method of reducing color shift in a display |
US7369296B2 (en) | 2004-09-27 | 2008-05-06 | Idc, Llc | Device and method for modifying actuation voltage thresholds of a deformable membrane in an interferometric modulator |
US7920135B2 (en) | 2004-09-27 | 2011-04-05 | Qualcomm Mems Technologies, Inc. | Method and system for driving a bi-stable display |
US8008736B2 (en) | 2004-09-27 | 2011-08-30 | Qualcomm Mems Technologies, Inc. | Analog interferometric modulator device |
US20060132383A1 (en) | 2004-09-27 | 2006-06-22 | Idc, Llc | System and method for illuminating interferometric modulator display |
US20060077148A1 (en) | 2004-09-27 | 2006-04-13 | Gally Brian J | Method and device for manipulating color in a display |
US7626581B2 (en) | 2004-09-27 | 2009-12-01 | Idc, Llc | Device and method for display memory using manipulation of mechanical response |
US7898521B2 (en) | 2004-09-27 | 2011-03-01 | Qualcomm Mems Technologies, Inc. | Device and method for wavelength filtering |
US8362987B2 (en) | 2004-09-27 | 2013-01-29 | Qualcomm Mems Technologies, Inc. | Method and device for manipulating color in a display |
US7417783B2 (en) | 2004-09-27 | 2008-08-26 | Idc, Llc | Mirror and mirror layer for optical modulator and method |
US20060076631A1 (en) | 2004-09-27 | 2006-04-13 | Lauren Palmateer | Method and system for providing MEMS device package with secondary seal |
US7928928B2 (en) | 2004-09-27 | 2011-04-19 | Qualcomm Mems Technologies, Inc. | Apparatus and method for reducing perceived color shift |
US7719500B2 (en) | 2004-09-27 | 2010-05-18 | Qualcomm Mems Technologies, Inc. | Reflective display pixels arranged in non-rectangular arrays |
US7130104B2 (en) | 2004-09-27 | 2006-10-31 | Idc, Llc | Methods and devices for inhibiting tilting of a mirror in an interferometric modulator |
US20060176241A1 (en) | 2004-09-27 | 2006-08-10 | Sampsell Jeffrey B | System and method of transmitting video data |
US8878825B2 (en) | 2004-09-27 | 2014-11-04 | Qualcomm Mems Technologies, Inc. | System and method for providing a variable refresh rate of an interferometric modulator display |
US20060066586A1 (en) | 2004-09-27 | 2006-03-30 | Gally Brian J | Touchscreens for displays |
US7710636B2 (en) | 2004-09-27 | 2010-05-04 | Qualcomm Mems Technologies, Inc. | Systems and methods using interferometric optical modulators and diffusers |
US7327510B2 (en) | 2004-09-27 | 2008-02-05 | Idc, Llc | Process for modifying offset voltage characteristics of an interferometric modulator |
US7710632B2 (en) | 2004-09-27 | 2010-05-04 | Qualcomm Mems Technologies, Inc. | Display device having an array of spatial light modulators with integrated color filters |
US7807488B2 (en) | 2004-09-27 | 2010-10-05 | Qualcomm Mems Technologies, Inc. | Display element having filter material diffused in a substrate of the display element |
US7684104B2 (en) | 2004-09-27 | 2010-03-23 | Idc, Llc | MEMS using filler material and method |
US7349141B2 (en) | 2004-09-27 | 2008-03-25 | Idc, Llc | Method and post structures for interferometric modulation |
US20060066557A1 (en) | 2004-09-27 | 2006-03-30 | Floyd Philip D | Method and device for reflective display with time sequential color illumination |
US7317568B2 (en) | 2004-09-27 | 2008-01-08 | Idc, Llc | System and method of implementation of interferometric modulators for display mirrors |
US7843410B2 (en) | 2004-09-27 | 2010-11-30 | Qualcomm Mems Technologies, Inc. | Method and device for electrically programmable display |
US20060066596A1 (en) | 2004-09-27 | 2006-03-30 | Sampsell Jeffrey B | System and method of transmitting video data |
US7136213B2 (en) | 2004-09-27 | 2006-11-14 | Idc, Llc | Interferometric modulators having charge persistence |
US8102407B2 (en) * | 2004-09-27 | 2012-01-24 | Qualcomm Mems Technologies, Inc. | Method and device for manipulating color in a display |
US7586484B2 (en) | 2004-09-27 | 2009-09-08 | Idc, Llc | Controller and driver features for bi-stable display |
US7911428B2 (en) | 2004-09-27 | 2011-03-22 | Qualcomm Mems Technologies, Inc. | Method and device for manipulating color in a display |
US7355780B2 (en) | 2004-09-27 | 2008-04-08 | Idc, Llc | System and method of illuminating interferometric modulators using backlighting |
US7527995B2 (en) | 2004-09-27 | 2009-05-05 | Qualcomm Mems Technologies, Inc. | Method of making prestructure for MEMS systems |
EP1800173A1 (de) | 2004-09-27 | 2007-06-27 | Idc, Llc | Verfahren und einrichtung zur interferometrischen mehrzustands-lichtmodulation |
US7679627B2 (en) | 2004-09-27 | 2010-03-16 | Qualcomm Mems Technologies, Inc. | Controller and driver features for bi-stable display |
US7345805B2 (en) | 2004-09-27 | 2008-03-18 | Idc, Llc | Interferometric modulator array with integrated MEMS electrical switches |
US20060176487A1 (en) | 2004-09-27 | 2006-08-10 | William Cummings | Process control monitors for interferometric modulators |
US7492502B2 (en) | 2004-09-27 | 2009-02-17 | Idc, Llc | Method of fabricating a free-standing microstructure |
US7405861B2 (en) | 2004-09-27 | 2008-07-29 | Idc, Llc | Method and device for protecting interferometric modulators from electrostatic discharge |
US7545550B2 (en) | 2004-09-27 | 2009-06-09 | Idc, Llc | Systems and methods of actuating MEMS display elements |
US8031133B2 (en) | 2004-09-27 | 2011-10-04 | Qualcomm Mems Technologies, Inc. | Method and device for manipulating color in a display |
US7420725B2 (en) | 2004-09-27 | 2008-09-02 | Idc, Llc | Device having a conductive light absorbing mask and method for fabricating same |
US7653371B2 (en) | 2004-09-27 | 2010-01-26 | Qualcomm Mems Technologies, Inc. | Selectable capacitance circuit |
US7446927B2 (en) | 2004-09-27 | 2008-11-04 | Idc, Llc | MEMS switch with set and latch electrodes |
US7184202B2 (en) | 2004-09-27 | 2007-02-27 | Idc, Llc | Method and system for packaging a MEMS device |
US7564612B2 (en) | 2004-09-27 | 2009-07-21 | Idc, Llc | Photonic MEMS and structures |
US7750886B2 (en) | 2004-09-27 | 2010-07-06 | Qualcomm Mems Technologies, Inc. | Methods and devices for lighting displays |
US20060103643A1 (en) | 2004-09-27 | 2006-05-18 | Mithran Mathew | Measuring and modeling power consumption in displays |
US7310179B2 (en) | 2004-09-27 | 2007-12-18 | Idc, Llc | Method and device for selective adjustment of hysteresis window |
US7710629B2 (en) | 2004-09-27 | 2010-05-04 | Qualcomm Mems Technologies, Inc. | System and method for display device with reinforcing substance |
US7029944B1 (en) | 2004-09-30 | 2006-04-18 | Sharp Laboratories Of America, Inc. | Methods of forming a microlens array over a substrate employing a CMP stop |
TWI254821B (en) | 2004-10-01 | 2006-05-11 | Delta Electronics Inc | Backlight module |
KR20060030350A (ko) | 2004-10-05 | 2006-04-10 | 삼성전자주식회사 | 백색광 발생 유닛, 이를 갖는 백라이트 어셈블리 및 이를갖는 액정표시장치 |
JP4445827B2 (ja) | 2004-10-07 | 2010-04-07 | 大日本印刷株式会社 | 集光シート、面光源装置、集光シートの製造方法 |
JP4728688B2 (ja) | 2004-10-13 | 2011-07-20 | Nec液晶テクノロジー株式会社 | 光源装置、表示装置、端末装置及び光ユニット |
TWI259313B (en) | 2004-10-19 | 2006-08-01 | Ind Tech Res Inst | Light-guide plate and method for manufacturing thereof |
US7170697B2 (en) | 2004-10-20 | 2007-01-30 | Hewlett-Packard Development Company, L.P. | Programmable waveform for lamp ballast |
JP4688131B2 (ja) | 2004-10-21 | 2011-05-25 | 株式会社リコー | 光偏向装置、光偏向アレー、光学システムおよび画像投影表示装置 |
JP2006120571A (ja) | 2004-10-25 | 2006-05-11 | Fujikura Ltd | 照明装置 |
US20060215958A1 (en) | 2004-11-17 | 2006-09-28 | Yeo Terence E | Enhanced electroluminescent sign |
KR100735148B1 (ko) | 2004-11-22 | 2007-07-03 | (주)케이디티 | 백라이트 장치용 광 여기 확산시트, 이를 이용한액정표시용 백라이트 장치 |
US8130210B2 (en) | 2004-11-30 | 2012-03-06 | Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. | Touch input system using light guides |
JP4634129B2 (ja) | 2004-12-10 | 2011-02-16 | 三菱重工業株式会社 | 光散乱膜,及びそれを用いる光デバイス |
KR100682907B1 (ko) | 2004-12-14 | 2007-02-15 | 삼성전자주식회사 | 홀로그램 도광판을 이용한 디스플레이 소자용 조명장치 |
US20060130889A1 (en) | 2004-12-22 | 2006-06-22 | Motorola, Inc. | Solar panel with optical films |
KR101162680B1 (ko) | 2004-12-23 | 2012-07-05 | 돌비 레버러토리즈 라이쎈싱 코오포레이션 | 폭넓은 색상 범위 디스플레이, 및 관찰 영역에 이미지를 표시하기 위한 장치 및 방법 |
JP4420813B2 (ja) | 2004-12-28 | 2010-02-24 | 株式会社エンプラス | 面光源装置及び表示装置 |
US7339635B2 (en) | 2005-01-14 | 2008-03-04 | 3M Innovative Properties Company | Pre-stacked optical films with adhesive layer |
JP4547276B2 (ja) | 2005-01-24 | 2010-09-22 | シチズン電子株式会社 | 面状光源 |
EP1869541B1 (de) | 2005-01-30 | 2014-07-02 | Swiftpoint Limited | Computermaus-peripheriegerät |
US7352940B2 (en) | 2005-02-07 | 2008-04-01 | Rpo Pty Limited | Waveguide design incorporating reflective optics |
TWI263098B (en) | 2005-02-16 | 2006-10-01 | Au Optronics Corp | Backlight module |
US20060187676A1 (en) | 2005-02-18 | 2006-08-24 | Sharp Kabushiki Kaisha | Light guide plate, light guide device, lighting device, light guide system, and drive circuit |
US7616368B2 (en) | 2005-02-23 | 2009-11-10 | Pixtronix, Inc. | Light concentrating reflective display methods and apparatus |
US20060209012A1 (en) | 2005-02-23 | 2006-09-21 | Pixtronix, Incorporated | Devices having MEMS displays |
US7356231B2 (en) | 2005-02-28 | 2008-04-08 | 3M Innovative Properties Company | Composite polymer fibers |
US7224512B2 (en) | 2005-03-15 | 2007-05-29 | Motorola, Inc. | Microelectromechanical system optical apparatus and method |
TWI255924B (en) | 2005-03-16 | 2006-06-01 | Au Optronics Corp | Backlight module and brightness enhancement film thereof |
US7352501B2 (en) | 2005-03-31 | 2008-04-01 | Xerox Corporation | Electrophoretic caps prepared from encapsulated electrophoretic particles |
KR100681521B1 (ko) | 2005-04-06 | 2007-02-09 | (주)케이디티 | 백라이트 유니트 |
US20060246233A1 (en) | 2005-04-28 | 2006-11-02 | Fuji Photo Film Co., Ltd. | Light diffusion film, anti-reflection film, polarizing plate and image display device |
US7948457B2 (en) | 2005-05-05 | 2011-05-24 | Qualcomm Mems Technologies, Inc. | Systems and methods of actuating MEMS display elements |
US7920136B2 (en) | 2005-05-05 | 2011-04-05 | Qualcomm Mems Technologies, Inc. | System and method of driving a MEMS display device |
JP4743846B2 (ja) | 2005-05-10 | 2011-08-10 | シチズン電子株式会社 | 光通信装置及びそれを用いた情報機器 |
GB2426351A (en) | 2005-05-19 | 2006-11-22 | Sharp Kk | A dual view display |
US20060291769A1 (en) | 2005-05-27 | 2006-12-28 | Eastman Kodak Company | Light emitting source incorporating vertical cavity lasers and other MEMS devices within an electro-optical addressing architecture |
TW200641422A (en) | 2005-05-30 | 2006-12-01 | Polarlite Corp | Transparent type light guiding module |
KR101176531B1 (ko) | 2005-05-31 | 2012-08-24 | 삼성전자주식회사 | 백라이트 시스템 및 이를 채용한 액정표시장치 |
KR100647327B1 (ko) | 2005-06-18 | 2006-11-23 | 삼성전기주식회사 | 평면표시소자용 조명장치, 및 이를 구비한 평면표시장치 |
US20060285356A1 (en) | 2005-06-21 | 2006-12-21 | K-Bridge Electronics Co., Ltd. | Side-edge backlight module dimming pack |
CN101203896B (zh) | 2005-06-23 | 2012-07-18 | 统宝香港控股有限公司 | 具有光电转换功能的显示装置 |
WO2007002317A1 (en) | 2005-06-23 | 2007-01-04 | Fusion Optix, Inc. | Enhanced diffusing plates, films and backlights |
US7161136B1 (en) | 2005-07-06 | 2007-01-09 | Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. | Light modulating input device for capturing user control inputs |
EP2495212A3 (de) | 2005-07-22 | 2012-10-31 | QUALCOMM MEMS Technologies, Inc. | MEMS-Vorrichtungen mit Stützstrukturen und Herstellungsverfahren dafür |
US7233722B2 (en) | 2005-08-15 | 2007-06-19 | General Display, Ltd. | System and method for fiber optics based direct view giant screen flat panel display |
TW200712653A (en) | 2005-09-28 | 2007-04-01 | Jemitek Electronics Corp | Liquid crystal having function of micro-reflection |
US7391558B2 (en) * | 2005-10-19 | 2008-06-24 | Raytheon Company | Laser amplifier power extraction enhancement system and method |
KR100784551B1 (ko) | 2005-10-19 | 2007-12-11 | 엘지전자 주식회사 | 백라이트 장치에 사용되는 프리즘시트 |
KR100721009B1 (ko) | 2005-10-27 | 2007-05-22 | 엘지전자 주식회사 | 복수의 확산시트를 포함하는 백라이트 장치 및 이를 포함하는 액정 표시 소자 |
JP2007122059A (ja) | 2005-10-28 | 2007-05-17 | Samsung Electro Mech Co Ltd | 回折型光変調器を利用するディスプレイシステムにおける印加電圧調整装置 |
US7630114B2 (en) | 2005-10-28 | 2009-12-08 | Idc, Llc | Diffusion barrier layer for MEMS devices |
US7760197B2 (en) | 2005-10-31 | 2010-07-20 | Hewlett-Packard Development Company, L.P. | Fabry-perot interferometric MEMS electromagnetic wave modulator with zero-electric field |
TWI312895B (en) | 2005-11-11 | 2009-08-01 | Chunghwa Picture Tubes Ltd | Backlight module structure for led chip holder |
US7969532B2 (en) | 2005-11-15 | 2011-06-28 | Panasonic Corporation | Surface illuminator and liquid crystal display using same |
JP2006065360A (ja) | 2005-11-16 | 2006-03-09 | Omron Corp | 導光器及び表示装置 |
JP2007165284A (ja) | 2005-11-18 | 2007-06-28 | Seiko Instruments Inc | エレクトロルミネッセンス素子及びこれを用いた表示装置 |
KR100747001B1 (ko) | 2005-11-29 | 2007-08-07 | 한국생산기술연구원 | 점광원을 이용한 도광판 및 그 제조방법 |
US20070125415A1 (en) | 2005-12-05 | 2007-06-07 | Massachusetts Institute Of Technology | Light capture with patterned solar cell bus wires |
US7924368B2 (en) | 2005-12-08 | 2011-04-12 | 3M Innovative Properties Company | Diffuse multilayer optical assembly |
KR20080077363A (ko) | 2005-12-14 | 2008-08-22 | 코닌클리케 필립스 일렉트로닉스 엔.브이. | 향상된 휘도 및 콘트라스트를 갖는 반사형 디스플레이 |
WO2007073203A1 (en) | 2005-12-19 | 2007-06-28 | Renewable Energy Corporation Asa | Solar cell module |
KR100761090B1 (ko) * | 2005-12-30 | 2007-09-21 | 주식회사 두산 | 복합 도광판 및 그 제조방법 |
US7545569B2 (en) | 2006-01-13 | 2009-06-09 | Avery Dennison Corporation | Optical apparatus with flipped compound prism structures |
US7366393B2 (en) | 2006-01-13 | 2008-04-29 | Optical Research Associates | Light enhancing structures with three or more arrays of elongate features |
US7671289B2 (en) | 2006-01-20 | 2010-03-02 | Nissha Printing Co., Ltd. | Capacitance type light-emitting switch and light-emitting switch element used for such capacitance type light-emitting switch |
TWI345105B (en) | 2006-01-26 | 2011-07-11 | Chimei Innolux Corp | Backlight module and application thereof |
TW200730951A (en) | 2006-02-10 | 2007-08-16 | Wintek Corp | Guide light module |
JP4639337B2 (ja) | 2006-02-17 | 2011-02-23 | 国立大学法人長岡技術科学大学 | 太陽電池および太陽集熱器 |
US7603001B2 (en) | 2006-02-17 | 2009-10-13 | Qualcomm Mems Technologies, Inc. | Method and apparatus for providing back-lighting in an interferometric modulator display device |
US20070201056A1 (en) | 2006-02-24 | 2007-08-30 | Eastman Kodak Company | Light-scattering color-conversion material layer |
US7684126B2 (en) | 2006-02-24 | 2010-03-23 | 3M Innovative Properties Company | Fresnel field lens |
KR100678067B1 (ko) | 2006-02-28 | 2007-02-02 | 삼성전자주식회사 | 터치 센서 장치 |
US7450295B2 (en) | 2006-03-02 | 2008-11-11 | Qualcomm Mems Technologies, Inc. | Methods for producing MEMS with protective coatings using multi-component sacrificial layers |
US7766531B2 (en) | 2006-03-29 | 2010-08-03 | 3M Innovative Properties Company | Edge-lit optical display with fluted optical plate |
JP2007271865A (ja) | 2006-03-31 | 2007-10-18 | Hitachi Displays Ltd | 液晶表示装置 |
US7643203B2 (en) | 2006-04-10 | 2010-01-05 | Qualcomm Mems Technologies, Inc. | Interferometric optical display system with broadband characteristics |
US20070241340A1 (en) | 2006-04-17 | 2007-10-18 | Pan Shaoher X | Micro-mirror based display device having an improved light source |
US7417784B2 (en) | 2006-04-19 | 2008-08-26 | Qualcomm Mems Technologies, Inc. | Microelectromechanical device and method utilizing a porous surface |
US8004743B2 (en) | 2006-04-21 | 2011-08-23 | Qualcomm Mems Technologies, Inc. | Method and apparatus for providing brightness control in an interferometric modulator (IMOD) display |
US7369292B2 (en) | 2006-05-03 | 2008-05-06 | Qualcomm Mems Technologies, Inc. | Electrode and interconnect materials for MEMS devices |
KR100794349B1 (ko) * | 2006-05-11 | 2008-01-15 | 엘지전자 주식회사 | 광학 파이프를 이용한 조명 시스템 |
JP2007311046A (ja) | 2006-05-16 | 2007-11-29 | Seiko Epson Corp | 発光装置、発光装置の製造方法、及び電子機器 |
US20070279935A1 (en) | 2006-05-31 | 2007-12-06 | 3M Innovative Properties Company | Flexible light guide |
US20080232135A1 (en) | 2006-05-31 | 2008-09-25 | 3M Innovative Properties Company | Light guide |
US7876489B2 (en) | 2006-06-05 | 2011-01-25 | Pixtronix, Inc. | Display apparatus with optical cavities |
KR100794350B1 (ko) * | 2006-06-07 | 2008-01-15 | 엘지전자 주식회사 | 광 가이드를 이용한 조명 시스템 |
US7561773B2 (en) | 2006-06-19 | 2009-07-14 | Fuji Xerox Co., Ltd. | Optical waveguide, method of manufacturing the same and optical communication module |
US8488242B2 (en) | 2006-06-20 | 2013-07-16 | Opsec Security Group, Inc. | Optically variable device with diffraction-based micro-optics, method of creating the same, and article employing the same |
US7766498B2 (en) | 2006-06-21 | 2010-08-03 | Qualcomm Mems Technologies, Inc. | Linear solid state illuminator |
JP4695626B2 (ja) | 2006-06-30 | 2011-06-08 | 株式会社東芝 | 照明装置及び液晶表示装置 |
WO2008003814A1 (en) | 2006-07-03 | 2008-01-10 | Nokia Corporation | Changing graphics in an apparatus including user interface illumination |
US8029628B2 (en) | 2006-07-25 | 2011-10-04 | Tanaka Kikinzoku Kogyo K.K. | Noble metal alloy for spark plug and method for producing and processing the same |
CN101122704B (zh) | 2006-08-11 | 2010-11-10 | 鸿富锦精密工业(深圳)有限公司 | 光学板及采用该光学板的背光模组 |
US7845841B2 (en) | 2006-08-28 | 2010-12-07 | Qualcomm Mems Technologies, Inc. | Angle sweeping holographic illuminator |
WO2008041580A1 (en) | 2006-09-27 | 2008-04-10 | Toppan Printing Co., Ltd. | Optical element, article having label attached thereon, optical kit and discriminating method |
ATE556272T1 (de) | 2006-10-06 | 2012-05-15 | Qualcomm Mems Technologies Inc | Optische verluststruktur in einer beleuchtungsvorrichtung |
US7855827B2 (en) | 2006-10-06 | 2010-12-21 | Qualcomm Mems Technologies, Inc. | Internal optical isolation structure for integrated front or back lighting |
US8872085B2 (en) | 2006-10-06 | 2014-10-28 | Qualcomm Mems Technologies, Inc. | Display device having front illuminator with turning features |
EP1977275A2 (de) | 2006-10-06 | 2008-10-08 | Qualcomm Mems Technologies, Inc. | Erhöhung der kollimation von licht von einem leuchtstab zu einem leuchtpaneel mittels verjüngung |
EP1980882A3 (de) | 2006-10-06 | 2012-12-12 | QUALCOMM MEMS Technologies, Inc. | Dünner Leuchtstab und Herstellungsverfahren |
US8107155B2 (en) | 2006-10-06 | 2012-01-31 | Qualcomm Mems Technologies, Inc. | System and method for reducing visual artifacts in displays |
EP2069838A2 (de) | 2006-10-06 | 2009-06-17 | Qualcomm Mems Technologies, Inc. | Beleuchtungsvorrichtung mit eingebautem lichtkoppler |
WO2008045312A1 (en) | 2006-10-06 | 2008-04-17 | Qualcomm Mems Technologies, Inc. | Apparatus and method for reducing back reflection from an illumination device |
WO2008045462A2 (en) | 2006-10-10 | 2008-04-17 | Qualcomm Mems Technologies, Inc. | Display device with diffractive optics |
TWI346813B (en) | 2006-10-14 | 2011-08-11 | Au Optronics Corp | Diffuser plate and backlight module using the same |
EP2080045A1 (de) | 2006-10-20 | 2009-07-22 | Pixtronix Inc. | Lichtleiter und rücklichtsysteme mit lichtumlenkern bei variierenden dichten |
US7864395B2 (en) | 2006-10-27 | 2011-01-04 | Qualcomm Mems Technologies, Inc. | Light guide including optical scattering elements and a method of manufacture |
KR100951723B1 (ko) | 2006-12-28 | 2010-04-07 | 제일모직주식회사 | 백라이트 유닛의 광학시트 |
TW200830000A (en) | 2007-01-15 | 2008-07-16 | Dynascan Technology Corp | LED backlight module |
JP4667471B2 (ja) | 2007-01-18 | 2011-04-13 | 日東電工株式会社 | 透明導電性フィルム、その製造方法及びそれを備えたタッチパネル |
US7403180B1 (en) | 2007-01-29 | 2008-07-22 | Qualcomm Mems Technologies, Inc. | Hybrid color synthesis for multistate reflective modulator displays |
US7777954B2 (en) | 2007-01-30 | 2010-08-17 | Qualcomm Mems Technologies, Inc. | Systems and methods of providing a light guiding layer |
US8477315B2 (en) | 2007-02-09 | 2013-07-02 | Seiko Epson Corporation | Volume hologram, light source device, illumination device, monitor, and image display device |
US7916378B2 (en) | 2007-03-08 | 2011-03-29 | Qualcomm Mems Technologies, Inc. | Method and apparatus for providing a light absorbing mask in an interferometric modulator display |
US8054421B2 (en) | 2007-04-06 | 2011-11-08 | Adrea, LLC | Reflective display panel and method for manufacturing such a display panel |
US7494830B2 (en) | 2007-04-06 | 2009-02-24 | Taiwan Semiconductor Manufacturing Company | Method and device for wafer backside alignment overlay accuracy |
WO2008125130A1 (en) | 2007-04-12 | 2008-10-23 | Nokia Corporation | Keypad |
US7733439B2 (en) | 2007-04-30 | 2010-06-08 | Qualcomm Mems Technologies, Inc. | Dual film light guide for illuminating displays |
US7507012B2 (en) | 2007-05-16 | 2009-03-24 | Rohm And Haas Denmark Finance A/S | LCD displays with light redirection |
DE102007025092A1 (de) | 2007-05-30 | 2008-12-04 | Osram Opto Semiconductors Gmbh | Lumineszenzdiodenchip |
EP2163920A4 (de) | 2007-06-15 | 2011-09-21 | Bridgestone Corp | Optisches filter für anzeige und anzeige und plasmaanzeigeschirm damit |
US7477809B1 (en) | 2007-07-31 | 2009-01-13 | Hewlett-Packard Development Company, L.P. | Photonic guiding device |
KR20100066452A (ko) | 2007-07-31 | 2010-06-17 | 퀄컴 엠이엠스 테크놀로지스, 인크. | 간섭계 변조기의 색 변이를 증강시키는 장치 |
US8072402B2 (en) | 2007-08-29 | 2011-12-06 | Qualcomm Mems Technologies, Inc. | Interferometric optical modulator with broadband reflection characteristics |
WO2009036215A2 (en) | 2007-09-14 | 2009-03-19 | Qualcomm Mems Technologies, Inc. | Etching processes used in mems production |
EP2191320A2 (de) | 2007-09-17 | 2010-06-02 | Qualcomm Mems Technologies, Inc. | Semitransparente / transreflektive beleuchtete interferometrische modulatoren |
JP4384214B2 (ja) | 2007-09-27 | 2009-12-16 | 株式会社 日立ディスプレイズ | 面発光素子,画像表示素子及びそれを用いた画像表示装置 |
PL2048779T3 (pl) | 2007-10-08 | 2012-05-31 | Whirlpool Co | Pojemnościowy przełącznik dotykowy i urządzenie gospodarstwa domowego wyposażone w taki przełącznik |
CN101408628A (zh) | 2007-10-10 | 2009-04-15 | 群康科技(深圳)有限公司 | 扩散片及其制造工艺、背光模组及液晶显示装置 |
US8058549B2 (en) | 2007-10-19 | 2011-11-15 | Qualcomm Mems Technologies, Inc. | Photovoltaic devices with integrated color interferometric film stacks |
CN101828146B (zh) | 2007-10-19 | 2013-05-01 | 高通Mems科技公司 | 具有集成光伏装置的显示器 |
WO2009055393A1 (en) | 2007-10-23 | 2009-04-30 | Qualcomm Mems Technologies, Inc. | Adjustably transmissive mems-based devices |
US20090293955A1 (en) | 2007-11-07 | 2009-12-03 | Qualcomm Incorporated | Photovoltaics with interferometric masks |
EP2210282A1 (de) | 2007-11-16 | 2010-07-28 | Qualcomm Mems Technologies, Inc | Planarer dünnschicht-solarkonzentrierer/kollektor und diffusor mit aktiver anzeige |
US20090126792A1 (en) | 2007-11-16 | 2009-05-21 | Qualcomm Incorporated | Thin film solar concentrator/collector |
US8941631B2 (en) | 2007-11-16 | 2015-01-27 | Qualcomm Mems Technologies, Inc. | Simultaneous light collection and illumination on an active display |
US7949213B2 (en) | 2007-12-07 | 2011-05-24 | Qualcomm Mems Technologies, Inc. | Light illumination of displays with front light guide and coupling elements |
US8068710B2 (en) | 2007-12-07 | 2011-11-29 | Qualcomm Mems Technologies, Inc. | Decoupled holographic film and diffuser |
KR20100093590A (ko) | 2007-12-17 | 2010-08-25 | 퀄컴 엠이엠스 테크놀로지스, 인크. | 후방 측 간섭계 마스크를 구비한 광전변환장치 |
US20090168459A1 (en) | 2007-12-27 | 2009-07-02 | Qualcomm Incorporated | Light guide including conjugate film |
TWI368788B (en) | 2008-02-01 | 2012-07-21 | Au Optronics Corp | Backlight module and display apparatus having the same |
WO2009102733A2 (en) | 2008-02-12 | 2009-08-20 | Qualcomm Mems Technologies, Inc. | Integrated front light diffuser for reflective displays |
WO2009102731A2 (en) | 2008-02-12 | 2009-08-20 | Qualcomm Mems Technologies, Inc. | Devices and methods for enhancing brightness of displays using angle conversion layers |
KR20100127775A (ko) | 2008-02-12 | 2010-12-06 | 퀄컴 엠이엠스 테크놀로지스, 인크. | 이중층 박막 홀로그래픽 태양광 집중장치/집광장치 |
US8654061B2 (en) | 2008-02-12 | 2014-02-18 | Qualcomm Mems Technologies, Inc. | Integrated front light solution |
US7948672B2 (en) | 2008-03-07 | 2011-05-24 | Qualcomm Mems Technologies, Inc. | System and methods for tiling display panels |
US8408775B1 (en) | 2008-03-12 | 2013-04-02 | Fusion Optix, Inc. | Light recycling directional control element and light emitting device using the same |
US8851734B2 (en) | 2008-03-27 | 2014-10-07 | Skc Haas Display Films Co., Ltd. | Light guiding film having light extraction features |
JP2011517118A (ja) | 2008-04-11 | 2011-05-26 | クォルコム・メムズ・テクノロジーズ・インコーポレーテッド | Pvの美観および効率を改善する方法 |
US8049951B2 (en) | 2008-04-15 | 2011-11-01 | Qualcomm Mems Technologies, Inc. | Light with bi-directional propagation |
CN103149623A (zh) | 2008-05-28 | 2013-06-12 | 高通Mems科技公司 | 具有光转向微结构的光导面板、其制造方法和显示装置 |
US8390008B2 (en) | 2008-05-29 | 2013-03-05 | Global Oled Technology Llc | LED device structure to improve light output |
KR20110016471A (ko) * | 2008-06-04 | 2011-02-17 | 퀄컴 엠이엠스 테크놀로지스, 인크. | 프리즘 정면 광용의 에지 음영 저감방법 |
JP5216431B2 (ja) | 2008-06-17 | 2013-06-19 | スタンレー電気株式会社 | カメラ用ストロボリフレクタ |
US8023167B2 (en) | 2008-06-25 | 2011-09-20 | Qualcomm Mems Technologies, Inc. | Backlight displays |
US7768690B2 (en) | 2008-06-25 | 2010-08-03 | Qualcomm Mems Technologies, Inc. | Backlight displays |
US20090323144A1 (en) | 2008-06-30 | 2009-12-31 | Qualcomm Mems Technologies, Inc. | Illumination device with holographic light guide |
EP2315058A4 (de) | 2008-08-07 | 2014-07-02 | Toyo Boseki | Anisotropes licht diffundierende folie, anisotropes licht diffundierendes laminat, anisotropes licht reflektierendes laminat und verwendungen davon |
TW201007288A (en) | 2008-08-11 | 2010-02-16 | Advanced Optoelectronic Tech | Edge lighting back light unit |
US20100096011A1 (en) | 2008-10-16 | 2010-04-22 | Qualcomm Mems Technologies, Inc. | High efficiency interferometric color filters for photovoltaic modules |
US20100096006A1 (en) | 2008-10-16 | 2010-04-22 | Qualcomm Mems Technologies, Inc. | Monolithic imod color enhanced photovoltaic cell |
JP5232672B2 (ja) | 2009-01-23 | 2013-07-10 | 日東電工株式会社 | 発光素子付光導波路および光学式タッチパネル |
US20100195310A1 (en) | 2009-02-04 | 2010-08-05 | Qualcomm Mems Technologies, Inc. | Shaped frontlight reflector for use with display |
US8172417B2 (en) | 2009-03-06 | 2012-05-08 | Qualcomm Mems Technologies, Inc. | Shaped frontlight reflector for use with display |
US20100238529A1 (en) | 2009-03-23 | 2010-09-23 | Qualcomm Mems Technologies, Inc. | Dithered holographic frontlight |
WO2010111306A1 (en) | 2009-03-25 | 2010-09-30 | Qualcomm Mems Technologies, Inc. | Em shielding for display devices |
WO2010124028A2 (en) | 2009-04-21 | 2010-10-28 | Vasylyev Sergiy V | Light collection and illumination systems employing planar waveguide |
JP2012528361A (ja) | 2009-05-29 | 2012-11-12 | クォルコム・メムズ・テクノロジーズ・インコーポレーテッド | 反射ディスプレイ用の照明デバイス |
WO2010138765A1 (en) * | 2009-05-29 | 2010-12-02 | Qualcomm Mems Technologies, Inc. | Illumination devices and methods of fabrication thereof |
US8624853B2 (en) | 2009-06-01 | 2014-01-07 | Perceptive Pixel Inc. | Structure-augmented touch sensing with frustated total internal reflection |
WO2010141388A1 (en) | 2009-06-01 | 2010-12-09 | Qualcomm Mems Technologies, Inc. | Front light based optical touch screen |
CN102483485A (zh) | 2009-08-03 | 2012-05-30 | 高通Mems科技公司 | 用于光导照明的微结构 |
JP5703310B2 (ja) | 2009-12-29 | 2015-04-15 | クォルコム・メムズ・テクノロジーズ・インコーポレーテッド | 金属化光方向転換フィーチャを備えた照明デバイス |
JP4691205B1 (ja) | 2010-09-03 | 2011-06-01 | 日東電工株式会社 | 薄型高機能偏光膜を含む光学フィルム積層体の製造方法 |
WO2012043396A1 (ja) | 2010-09-27 | 2012-04-05 | 古河電気工業株式会社 | バックライトパネル、バックライトパネル用反射板 |
US20120081406A1 (en) | 2010-09-30 | 2012-04-05 | Qualcomm Mems Technologies, Inc. | Integrated backlit frontlight for reflective display elements |
US8902484B2 (en) | 2010-12-15 | 2014-12-02 | Qualcomm Mems Technologies, Inc. | Holographic brightness enhancement film |
US20130106712A1 (en) | 2011-11-01 | 2013-05-02 | Qualcomm Mems Technologies, Inc. | Method of reducing glare from inner layers of a display and touch sensor stack |
US20130127922A1 (en) | 2011-11-18 | 2013-05-23 | Qualcomm Mems Technologies, Inc | Structures for directing incident light onto the active areas of display elements |
US20130328838A1 (en) | 2012-06-12 | 2013-12-12 | Qualcomm Mems Technologies, Inc. | Diffusers for different color display elements |
US20130328943A1 (en) | 2012-06-12 | 2013-12-12 | Qualcomm Mems Technologies, Inc. | Diffuser including particles and binder |
-
2007
- 2007-09-24 AT AT07838811T patent/ATE556272T1/de active
- 2007-09-24 US US12/444,142 patent/US9019183B2/en not_active Expired - Fee Related
- 2007-09-24 JP JP2009531391A patent/JP2010510530A/ja active Pending
- 2007-09-24 KR KR20147035550A patent/KR20150014978A/ko active IP Right Grant
- 2007-09-24 EP EP07838811A patent/EP1943555B1/de not_active Not-in-force
- 2007-09-24 EP EP20110160297 patent/EP2366944A1/de not_active Ceased
- 2007-09-24 KR KR1020157014574A patent/KR101628340B1/ko not_active IP Right Cessation
- 2007-09-24 EP EP20110160299 patent/EP2366945A1/de not_active Ceased
- 2007-09-24 CN CNA2007800372483A patent/CN101600901A/zh active Pending
- 2007-09-24 KR KR1020147007610A patent/KR101535805B1/ko not_active IP Right Cessation
- 2007-09-24 EP EP20110160289 patent/EP2366942A1/de not_active Withdrawn
- 2007-09-24 KR KR20097008951A patent/KR101460351B1/ko not_active IP Right Cessation
- 2007-09-24 WO PCT/US2007/020680 patent/WO2008045200A2/en active Application Filing
- 2007-09-24 EP EP20110160294 patent/EP2366943B1/de not_active Not-in-force
- 2007-09-24 EP EP20080152870 patent/EP2141408A3/de not_active Withdrawn
- 2007-09-24 EP EP20110160304 patent/EP2366946A1/de not_active Withdrawn
- 2007-09-24 CN CN201310489163.6A patent/CN103558686B/zh not_active Expired - Fee Related
- 2007-10-01 TW TW104122095A patent/TW201604638A/zh unknown
- 2007-10-01 TW TW96136802A patent/TW200827898A/zh unknown
-
2013
- 2013-09-09 JP JP2013186001A patent/JP5756503B2/ja not_active Expired - Fee Related
-
2015
- 2015-04-24 US US14/695,533 patent/US20150301268A1/en not_active Abandoned
- 2015-05-28 JP JP2015108534A patent/JP2015156046A/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006026743A1 (en) * | 2004-08-31 | 2006-03-09 | Fusion Optix, Inc. | Enhanced light diffusing sheet |
US20060077123A1 (en) * | 2004-09-27 | 2006-04-13 | Gally Brian J | Optical films for controlling angular characteristics of displays |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9025235B2 (en) | 2002-12-25 | 2015-05-05 | Qualcomm Mems Technologies, Inc. | Optical interference type of color display having optical diffusion layer between substrate and electrode |
US9019590B2 (en) | 2004-02-03 | 2015-04-28 | Qualcomm Mems Technologies, Inc. | Spatial light modulator with integrated optical compensation structure |
US8872085B2 (en) | 2006-10-06 | 2014-10-28 | Qualcomm Mems Technologies, Inc. | Display device having front illuminator with turning features |
US9019183B2 (en) | 2006-10-06 | 2015-04-28 | Qualcomm Mems Technologies, Inc. | Optical loss structure integrated in an illumination apparatus |
US11394461B2 (en) | 2020-08-04 | 2022-07-19 | SA Photonics, Inc. | Free space optical communication terminal with actuator system and optical relay system |
US11515941B2 (en) * | 2020-08-04 | 2022-11-29 | SA Photonics, Inc. | Free space optical communication terminal with dispersive optical component |
Also Published As
Publication number | Publication date |
---|---|
KR101628340B1 (ko) | 2016-06-08 |
JP2010510530A (ja) | 2010-04-02 |
EP2366945A1 (de) | 2011-09-21 |
JP2013254224A (ja) | 2013-12-19 |
US20100026727A1 (en) | 2010-02-04 |
EP2366942A1 (de) | 2011-09-21 |
EP2141408A3 (de) | 2010-03-31 |
CN103558686B (zh) | 2017-03-01 |
JP5756503B2 (ja) | 2015-07-29 |
TW201604638A (zh) | 2016-02-01 |
CN103558686A (zh) | 2014-02-05 |
WO2008045200A2 (en) | 2008-04-17 |
EP1943555A2 (de) | 2008-07-16 |
EP1943555B1 (de) | 2012-05-02 |
EP2366944A1 (de) | 2011-09-21 |
EP2366943A1 (de) | 2011-09-21 |
KR101535805B1 (ko) | 2015-07-09 |
KR20140054336A (ko) | 2014-05-08 |
ATE556272T1 (de) | 2012-05-15 |
KR101460351B1 (ko) | 2014-11-10 |
EP2141408A2 (de) | 2010-01-06 |
KR20150068496A (ko) | 2015-06-19 |
US9019183B2 (en) | 2015-04-28 |
KR20150014978A (ko) | 2015-02-09 |
JP2015156046A (ja) | 2015-08-27 |
TW200827898A (en) | 2008-07-01 |
WO2008045200A3 (en) | 2008-08-21 |
KR20090075851A (ko) | 2009-07-09 |
US20150301268A1 (en) | 2015-10-22 |
EP2366943B1 (de) | 2013-04-17 |
CN101600901A (zh) | 2009-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1943555B1 (de) | Optische verluststruktur in einer beleuchtungsvorrichtung | |
EP2068180B1 (de) | Entkoppelte holografische Folie und Diffusor | |
US8872085B2 (en) | Display device having front illuminator with turning features | |
US8040589B2 (en) | Devices and methods for enhancing brightness of displays using angle conversion layers | |
US7777954B2 (en) | Systems and methods of providing a light guiding layer | |
WO2009154957A2 (en) | Front light devices and methods of fabrication thereof | |
WO2009073555A1 (en) | Light illumination of displays with front light guide and coupling elements | |
EP2069837A1 (de) | Interne optische isolationsstruktur zur integrierten vorder- oder rückbeleuchtung | |
EP1958010A2 (de) | Anzeigevorrichtung mit diffraktiver optik | |
EP2210282A1 (de) | Planarer dünnschicht-solarkonzentrierer/kollektor und diffusor mit aktiver anzeige |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 1943555 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20120322 |