DE3856424T3 - Katalysatoren, Verfahren zur Herstellung derselben und Verfahren zu deren Anwendung - Google Patents

Katalysatoren, Verfahren zur Herstellung derselben und Verfahren zu deren Anwendung Download PDF

Info

Publication number
DE3856424T3
DE3856424T3 DE3856424T DE3856424T DE3856424T3 DE 3856424 T3 DE3856424 T3 DE 3856424T3 DE 3856424 T DE3856424 T DE 3856424T DE 3856424 T DE3856424 T DE 3856424T DE 3856424 T3 DE3856424 T3 DE 3856424T3
Authority
DE
Germany
Prior art keywords
sub
cyclopentadienyl
radicals
catalyst
zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE3856424T
Other languages
English (en)
Other versions
DE3856424T2 (de
DE3856424D1 (de
Inventor
Howard William Houston Turner
Gregory George Houston Hlatky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Chemical Patents Inc
Original Assignee
ExxonMobil Chemical Patents Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26678640&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DE3856424(T3) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ExxonMobil Chemical Patents Inc filed Critical ExxonMobil Chemical Patents Inc
Publication of DE3856424D1 publication Critical patent/DE3856424D1/de
Publication of DE3856424T2 publication Critical patent/DE3856424T2/de
Application granted granted Critical
Publication of DE3856424T3 publication Critical patent/DE3856424T3/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • C08F210/18Copolymers of ethene with alpha-alkenes, e.g. EP rubbers with non-conjugated dienes, e.g. EPT rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Steroid Compounds (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Polymerization Catalysts (AREA)
  • Polymerisation Methods In General (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

  • Gebiet der Erfindung
  • Diese Erfindung betrifft Stoffzusammensetzungen, die als Katalysatoren brauchbar sind, ein Verfahren zur Herstellung dieser Katalysatoren, ein Polymerisationsverfahren, das diese Katalysatoren verwendet. Insbesondere betrifft diese Erfindung Katalysatoren zum Polymerisieren von Olefinen, Diolefinen und/oder acetylenisch ungesättigten Monomeren. Homopolymer- und Copolymerprodukte können mit diesen Katalysatoren hergestellt werden.
  • Hintergrund der Erfindung
  • Es ist gelehrt oder vorgeschlagen worden, dass die aktive Katalysatorspezies für die Olefinpolymerisation ein Ionenpaar und insbesondere ein Ionenpaar mit einer als Gruppe IVB Metallkomponente, die als Kation oder Zersetzungsprodukt desselben vorliegt, und als Cokatalysator eine Lewissäure ist, um die aktive ionische Katalysatorspezies entweder zu bilden oder zu stabilisieren (siehe Breslow und Newburg, Long und Breslow: J. Am. Chem. Soc. 1959, Vd 81, Seiten 81 bis 86, und J. Am. Chem. Soc. 1960, Vd 82, Seiten 1953 bis 1957, Dyachkovskii, Vysokomol, Soyed, 1965-Vd 7, Seiten 114 bis 115, und Dyachkovskii, Shilova und Shilov, J. Polym. Sci. Teil C 1967, Seiten 2333 bis 2339, 7219 bis 7221).
  • Der aktive Katalysator wird anscheinend durch eine Lewissäure/Lewisbase-Reaktion zweier neutraler Komponenten (dem Metallocen und dem Aluminiumalkyl) gebildet, was zu einem Gleichgewicht zwischen einem neutralen, scheinbar inaktiven Addukt und einem Ionenpaar, wahrscheinlich dem aktiven Katalysator, führt. Als Resultat dieses Gleichgewichts gibt es einen Wettbewerb um das Anion, das vorhanden sein muss, um die aktive Kationkatalysatorspezies zu sta bilisieren. Dieses Gleichgewicht ist natürlich reversibel und Umkehr des Gleichgewichts desaktiviert den Katalysator.
  • Die Artikel von Long und Breslow, und Breslow und Newburg verwenden einen löslichen homogenen Katalysator aus Bis(cyclopentadienyl)titandichlorid und Diethylaluminiumchlorid, aber diese Systeme sind nicht hochaktiv. In neuerer Zeit (siehe EP-A-0 069 951 und EP-A-0 129 368) ist gefunden worden, dass aktive Katalysatoren vom Ziegler-Natta-Typ unter Verwendung von Bis(cyclopentadienyl)Verbindungen von Gruppe IVB Metallen einschließlich Zirconium und Hafnium sowie Alumoxanen gebildet werden können.
  • Es werden höhere Aktivitäten als mit den Katalysatoren von Long, Breslow und Newburg und engere Molekulargewichtsverteilungen als mit konventionellen Ziegler-Natta-Systemen erhalten.
  • Die Lewissäuren (z. B. Diethylaluminiumchlorid), die in den löslichen Katalysatorsystemen vorgesehen sind, können als Kettenübertragungsmittel wirken. Der Metallalkylcokatalysator kann pyrophor und gefährlich zu verwenden sein. Katalysatoren, die Alumoxan einsetzen, bleiben anfällig für Vergiftung und erfordern einen unerwünschten Alumoxanüberschuss.
  • Es gehört somit zu den Aufgaben der Erfindung, ein verbessertes Katalysatorsystem zu liefern, das die Verwendung von unerwünschtem Cokatalysator vermeidet. Bessere Steuerung von Molekulargewicht und Molekulargewichtsverteilung, leichtere Herstellung von Polymer mit höherem Molekulargewicht und größere Mengen an eingebautem Comonomer sind auch erwünscht.
  • Das Journal of the Chemical Society 1986, Seite 1610, beschreibt in einem Artikel von M. Bochmann und L. M. Wilson die Herstellung einer Verbindung [Cp2Ti(CH3)(CH3CN)][BPh4] unter Verwendung von Cp2Ti(CH3)Cl und NaBPh4 in CH3CN. Es wird auch [(Indenyl)2Ti(CH3)(RCN)][BPh4] erwähnt. Es wird konstatiert, dass keiner der Komplexe mit Ethylen, Butadien oder Acetylen unter milden Bedingungen in Anwesenheit oder Abwesenheit von Lewissäuren reagiert.
  • Das Journal of the Americal Chemical Society von 1986, Band 108, Seiten 1718 bis 1719 beschreibt in einem Artikel von R. F. Jordan, W. E. Dasher und S. F. Echols monometallische Systeme, die nicht-reaktive, nicht-koordinierende Anionen einbeziehen, die die Herstellung von ionischem Komplex einschließlich Cp2ZrR+ unter Verwendung von Ag[BPh4][CpZr(CH3)(CH3CN)][BPh4] einschließen. Ag° fällt aus. CH3CN kann durch Tetrahydrofuran (THF) ersetzt werden, um einen stabilen Komplex zu bilden. Es wurde vorgeschlagen, dass diese kationischen Komplexe mit Polyolefinen reaktiv sein können.
  • Im Journal of the American Chemical Society, Band 108, Seiten 7410 bis 7411 beschreiben R. F. Jordan, C. S. Bajgur, R. Willet und B. Scott die Verwendung von [CpZr(CH3)(THF)][BPh4] zur Ethylenpolymerisation in Abwesenheit von Al-Cokatalysator. Der Zweck liegt darin, die Existenz von Cp2M(IV)R+-Kationen zu beweisen, wobei labile Liganden, vermutlich THF, anstelle von CH3CN verwendet werden. CH2Cl2 als Lösungsmittel wird bei 25°C und 1 bis 4 atm Ethylen verwendet, um Polyethylen mit typischerweise einem Mw von 18400, Mz von 33000 und Mw/Mn von 2,58 bei relativ niedriger Aktivität von 0,2 g/mmol Katalysator/Min/atm zu erzeugen. Es wird gesagt, dass der THF-Ligand, wenn er auch labil ist, mit Ethylen konkurriert.
  • Es ist somit eine weitere Aufgabe der Erfindung, ein verbessertes Katalysatorsystem zu liefern, dass die Bildung von neutralen, katalytisch inaktiven Spezies vermeidet, indem Anionen verwendet werden, die beständiger gegen Abbau sind.
  • EP-Patentanmeldung 91113752.9, erteilt als EP-B-468 537, beansprucht einen ionischen Katalysator zum Polymerisieren von Olefinen, Diolefinen und/oder acetylenisch ungesättigten Monomeren, der ein Bis(cyclopentadienyl)-Gruppe IVB-Metallkation und ein verträgliches, raumerfüllendes, nicht-koordinierendes Anion eines einzigen Koordinationskomplexes mit einer Vielzahl von lipophilen Resten umfasst, die kovalent an ein zentrales, Formalladung tragendes Metall- oder Metalloidatom koordiniert sind und dies abschirmen, und ausreichend labil sind, um durch eine neutrale Lewisbase verdrängt zu werden, wobei das Anion eine Arylgruppe umfasst und an den aromatischen Kohlenstoffatomen substituiert ist, um die Übertragung eines Fragments des Anions auf das Metallkation zu vermeiden.
  • Zusammenfassung der Erfindung
  • Es ist nun gefunden worden, dass mit bestimmten der erfindungsgemäßen ionischen Katalysatoren und den damit zur Verfügung stehenden verbesserten Polymerisationsverfahren für Olefin, Diolefin und/oder acetylenisch ungesättigtes Monomer bestimmte der vorhergehenden und anderen Nachteile von ionischen Olefinpolymerisationskatalysatoren des Standes der Technik vermieden oder mindestens vermindert werden können. Die Erfindung liefert einen Katalysator zum Polymerisieren von Olefinen, Diolefinen und/oder acetylenisch ungesättigten Monomeren, der einen Kationanteil abgeleitet von einer Bis(cyclopentadienyl)-Zirconium- oder Hafniumverbindung mit Substitutionen an den Cyclopentadienyl-Kohlenstoffatomen und einen anionischen Anteil eines einzigen Koordinationskomplexes umfasst, der eine Vielzahl von lipophilen Resten aufweist, die kovalent an ein zentrales, Formalladung tragendes Metall- oder Metalloidatom koordiniert sind und dieses abschirmen, wobei das Anion verträglich mit dem Metallkation ist und mit diesem im Wesentlichen nicht koordiniert,
    der Katalysator aus ersten und zweiten Komponenten gebildet ist, die so gewählt sind, dass die Übertragung eines Fragments des Anions auf das Metallkation vermieden wird, wodurch eine katalytisch inaktive Spezies gebildet würde, wobei die Übertragung durch sterische Hinderung vermieden wird, die aus Substitutionen an den Cyclopentadienyl-Kohlenstoffatomen resultiert, mit den Maßgaben, dass
    der Katalysator nicht aus einem peralkylsubstituierten Cyclopentadienylsystem und einem Tetraphenylborat gebildet ist und der Katalysator kein nicht-koordinierendes Anion umfasst, das an aromatischen Kohlenstoffatomen substituiert ist, um so eine Über tragung eines Fragments des Anions auf das Metallkation zu vermeiden.
  • Es gehört zu den Aufgaben der Erfindung, bestimmte verbesserte Katalysatoren zu liefern, die Polymere mit relativ hohem Molekulargewicht, Copolymere, die relativ große Mengen einer Vielfalt von Comonomeren enthalten, ergeben, wobei die Comonomere in einer Weise verteilt sind, die sich statistischer Verteilung mindestens annähert. Es gehört zu den Aufgaben der Erfindung, mit diesen Katalysatoren polymere Produkte mit relativ engen Molekulargewichtsverteilungen zu liefern, die frei von bestimmten Metallverunreinigungen sind.
  • Der Katalysator wird durch Kombinieren von mindestens zwei Komponenten hergestellt. Die erste dieser Komponenten ist ein Bis(cyclopentadienyl)derivat einer Zirconium- oder Hafniumverbindung, die mindestens einen Liganden enthält, der mit der zweiten Komponente oder mindestens einem Teil derselben wie einem Kationanteil derselben kombiniert. Die zweite der Komponenten ist eine Ionenaustauschverbindung, die ein Kation, das irreversibel mit mindestens einem in der Zirconium- oder Hafniumverbindung (ersten Komponente) enthaltenen Liganden reagiert, und ein Anion umfasst, das raumerfüllend und ein einziger Koordinationskomplex ist, der eine Vielzahl von lipophilen Resten aufweist, die kovalent an ein zentrales, Formalladung tragendes Metall- oder Metalloidatom koordiniert sind und dieses abschirmen. Das ladungstragende Metall oder Metalloid kann jedes Metall oder Metalloid sein, das einen Koordinationskomplex bilden kann, der durch wässrige Lösungen nicht hydrolysiert wird. Nach Kombination der ersten und zweiten Komponente reagiert das Kation der zweiten Komponente mit einem der Liganden der ersten Komponente. Das Zirconium- oder Hafniumkation hat eine formale Koordinationszahl von 3 und eine Wertigkeit von +4. Das von der zweiten Verbindung abgeleitete Anion muss in der Lage sein, den Zirconium- oder Hafniumkationkomplex zu stabilisieren, ohne die Fähigkeit des Zirconium- oder Hafniumkations oder seines Zerset zungsprodukts zu beeinträchtigen, als Katalysator zu wirken, und muss ausreichend labil sein, um während der Polymerisation die Verdrängung durch Olefine, ein Diolefin oder acetylenisch ungesättigtes Monomer zu gestatten. Beispielsweise haben Bochmann und Wilson angegeben (J. Chem. Soc, Chem. Comm., 1986, Seiten 1610 bis 1611), dass Bis(cyclopentadienyl)titandimethyl mit Tetrafluorborsäure unter Bildung von Bis(cyclopentadienyl)titanmethyltetrafluorborat reagiert. Das Anion ist jedoch nicht ausreichend labil, um durch Ethylen verdrängt zu werden.
  • Die zweite Ionenaustauschverbindung ist ein Salz, das ein Kation, das ein Proton abgeben kann, das irreversibel mit mindestens einem Liganden (Substituenten) kombiniert, der durch die Zirconium- oder Hafniumverbindung freigesetzt wird, und ein Anion umfasst, das ein einziger Koordinationskomplex ist, der einen ladungstragenden Metall- oder Metalloidkern umfasst.
  • Alle Bezugnahmen auf das Periodensystem der Elemente beziehen sich hier auf das Periodensystem der Elemente, das von CRC Press Inc., 1984, veröffentlicht ist und unter deren Copyright steht. Jede Bezugnahme auf eine Gruppe oder Gruppen bezieht sich auch auf die Gruppe oder Gruppen wie in diesem Periodensystem der Elemente angegeben.
  • Wie hier verwendet bedeutet der Begriff "verträgliches nicht-koordinierendes Anion" ein Anion, das entweder nicht mit dem Kation koordiniert oder nur schwach an das Kation koordiniert ist und dadurch ausreichend labil bleibt, um durch eine neutrale Lewisbase verdrängt zu werden. Der Begriff "verträgliches nichtkoordinierendes Anion" bezieht sich speziell auf ein Anion, das, wenn es in dem erfindungsgemäßen Katalysatorsystem als stabilisierendes Anion wirkt, keinen anionischen Substituenten oder Fragment desselben in einer solchen Weise auf das Kation überträgt, dass ein neutrales, vierfach koordiniertes Metallocen und ein neutrales Metall- oder Metalloidnebenprodukt gebildet wird. Verträgliche Anionen sind Anionen, die nicht zur Neutralität abgebaut werden, wenn sich der anfangs gebildete Komplex zersetzt. Der Begriff "Metalloid", wie hier verwendet, schließt Nichtmetalle wie Bor und Phosphor ein, die Halbmetallcharakteristika zeigen.
  • Die Zirconium- und Hafniumverbindungen, die als erste Verbindungen zur Herstellung von erfindungsgemäßen Katalysatoren brauchbar sind, sind Bis(cyclopentadienyl)derivate von Zirconium und Hafnium. Allgemein können brauchbare Zirconium- und Hafniumverbindungen durch die folgenden allgemeinen Formeln 1. (A-Cp) MX1X2
    Figure 00070001
    3. (A-Cp) ML
    Figure 00070002
    wiedergegeben werden, wobei
    M ein Metall ausgewählt aus der Gruppe bestehend aus Zirconium und Hafnium ist;
    (A-Cp) entweder (Cp)(Cp*) oder Cp-A'-Cp* ist, und Cp und Cp* die gleichen oder unterschiedliche, substituierte oder unsubstituierte Cyclopentadienylreste sind, wobei A' eine kovalente Brückengruppe ist, die ein Gruppe IVA-Element enthalten kann;
    L ein Olefin-, Diolefin- oder Arinligand ist;
    X1 und X2 unabhängig ausgewählt sind aus der Gruppe bestehend aus Hydridresten, Kohlenwasserstoffresten mit 1 bis 20 Kohlenstoffatomen, substituierten Kohlenwasserstoffresten mit 1 bis 20 Kohlenstoffatomen, bei denen ein oder mehrere der Wasserstoffatome durch ein Halogenatom ersetzt sind, Organometalloidresten, die vorzugsweise ein Gruppe-IV-A-Element umfassen, wobei jeder der in dem organischen Anteil des Organometalloids enthaltenden Kohlenwasserstoffsubstituenten unabhängig 1 bis 20 Kohlenstoffatome enthält;
    X'1 und X'2 miteinander verbunden und an das Metallatom gebunden sind, um einen Metallacyclus zu bilden, in dem das Metallatom, X'1 und
    X'2 einen kohlenwasserstoffcyclischen Ring bilden, der 3 bis etwa 20 Kohlenstoffatome enthält, und
    R ein Substituent, vorzugsweise ein Kohlenwasserstoffsubstituent, an einem der Cyclopentadienylreste ist, der auch an das Metallatom gebunden ist.
  • Jedes Kohlenstoffatom in dem Cyclopentadienylrest kann unabhängig unsubstituiert oder mit dem gleichen oder einem unterschiedlichen Rest ausgewählt aus der Gruppe bestehend aus Kohlenwasserstoffresten, substituierten Kohlenwasserstoffresten, bei denen ein oder mehrere Wasserstoffatome durch ein Halogenatom ersetzt sind, kohlenwasserstoffsubstituierten Metalloidresten, bei denen das Metalloid ausgewählt ist aus der Gruppe IV-A des Periodensystems der Elemente, und Halogenresten substituiert sein. Geeignete Kohlenwasserstoff- und substituierte Kohlenwasserstoffreste, die mindestens ein Wasserstoffatom in dem Cyclopentadienylrest ersetzen können, enthalten 1 bis 20 Kohlenstoffatome und schließen geradkettige und verzweigte Alkylreste, cyclische Kohlenwasserstoffreste, alkylsubstituierte cyclische Kohlenwasserstoffreste, aromatische Reste und alkylsubstituierte aromatische Reste ein. In ähnlicher Weise und wenn X1 und/oder X2 ein Kohlenwasserstoff- oder substituierter Kohlenwasserstoffrest ist, kann jeder unabhängig 1 bis 20 Kohlenstoffatome enthalten und ein geradkettiger oder verzweigter Alkylrest, ein cyclischer Kohlenwasserstoffrest, ein alkylsubstituierter cyclischer Kohlenwasserstoffrest, ein aromatischer Rest oder alkylsubstituierter aromatischer Rest sein. Geeignete Organometalloidreste schließen mono-, di- und trisubstituierte Organometalloidreste von Gruppe-IV-A-Elementen ein, wobei jede der Kohlenwasserstoffgruppen 1 bis 20 Kohlenstoffatome enthält. Insbesondere schließen geeignete Organometalloidreste Trimethylsilyl, Triethylsilyl, Ethyldimethylsilyl, Methyldiethylsilyl, Triphenylgermyl, Trimethylgermyl ein.
  • Illustrierende, aber nicht einschränkende Beispiele für Bis(cyclopentadienyl)zirconiumverbindungen, die zur Herstellung der erfindungsgemäßen verbesserten Katalysatoren verwendet werden können, sind di(kohlenwasserstoff)substituierte Bis(cyclopentadienyl)zirconiumverbindungen wie (monokohlenwasserstoffsubstituierte Cyclopentadienyl)zirconiumverbindungen wie (Methylcyclopentadienyl)(cyclopentadienyl)- und Bis(methylcyclopentadienyl)zirconiumdimethyl, (Ethylcyclopentadienyl)-(cyclopentadienyl)- und Bis(ethylcyclopentadienyl)zirconiumdimethyl, (Propylcyclopentadienyl(cyclopentadienyl)- und Bis(propylcyclopentadienyl)zirconiumdimethyl, [(n-Butylcyclopentadienyl)(cyclopentadienyl)- und Bis(n-butylcyclopentadienyl)-zirconiumdimethyl, [(tert.-Butylcyclopentadienyl)(cyclopentadienyl)-und Bis(tert.-butylcyclopentadienyl)zirconiumdimethyl, (Cyclohexylmethylcyclopentadienyl)(cyclopentadienyl)- und Bis(cyclohexylmethylcyclopentadienyl)zirconiumdimethyl, (Benzylcyclopentadienyl)(cyclopentadienyl)- und Bis(benzylcyclopentadienyl)zirconiumdimethyl, (Diphenylmethylcyclopentadienyl)(cyclopentadienyl)- und Bis(diphenylmethylcyclopentadienyl)zirconiumdimethyl, (Methylcyclopentadienyl) (cyclopentadienyl)- und Bis(methylcyclopentadienyl)zirconiumdihydrid, (Ethylcyclopentadienyl)(cyclopentadienyl)- und Bis(ethylcyclopentadienyl)zirconiumdihydrid, (Propylcyclopentadienyl) (cyclopentadienyl)- und Bis(propylcyclopentadienyl)zirconiumdihydrid, [(n-Butylcyclopentadienyl)(cyclopentadienyl)]- und Bis[(n-butyl)cyclopentadienyl]zirconiumdihydrid, [(tert.-Butyl)-cyclopentadienyl](cyclopentadienyl)- und Bis[(tert.-butyl)cyclopentadienyl]zirconiumdihydrid, (Cyclohexylmethylcyclopentadie-nyl)-(cyclopentadienyl)- und Bis(cyclohexylmethylcyclopentadienyl)zirconiumdihydrid, (Benzylcyclopentadienyl)(cyclopentadienyl)- und Bis(betzylcyclopentadienyl)zirconiumdihydrid, (Diphenylmethylcyclopentadienyl)(cyclopentadienyl)- und Bis(diphenylmethylcyclopentadienyl)zirconiumdihydrid; (polykohlenwasserstoffsubstituierte Cyclopentadienyl)zirconiumverbindungen wie (Dimethylcyclopentadienyl)(cyclopenta dienyl)- und Bis(dimethylcyclopentadienyl)zirconiumdimethyl, (Trimethylcyclopentadienyl)(cyclopentadienyl)- und Bis(trimethylcyclopentadienyl)zirconiumdimethyl, (Tetramethylcyclopentadienyl)(cyclopentadienyl)- und Bis(tetramethylcyclopentadienyl)zirconiumdimethyl, (Permethylcyclopentadienyl)(cyclopentadienyl)- und Bis(permethylcyclopentadienyl)zirconiumdimethyl, (Ethyltetramethylcyclopentadienyl)(cyclopentadienyl)- und Bis(ethyltetramethylcyclopentadienyl)zirconiumdimethyl, (Indenyl)(cyclopentadienyl)- und Bis(indenyl)zirconiumdimethyl, (Dimethylcyclopentadienyl)(cyclopentadienyl)- und Bis(dimethylcyclopentadienyl)zirconiumdihydrid, (Trimethylcyclopentadienyl)(cyclopentadienyl)- und Bis(trimethylcyclopentadienyl)zirconiumdihydrid, (Tetramethylcyclopentadienyl)(cyclopentadienyl)- und Bis(tetramethylcyclopentadienyl)zirconiumdihydrid (Permethylcyclopentadienyl)(cyclopentadienyl)- und Bis(permethylcyclopentadienyl)zirconiumdihydrid, (Ethyltetramethylcyclopentadienyl)(cyclopentadienyl)- und Bis(ethyltetramethylcyclopentadienyl)zirconiumdihydrid, (Indenyl)(cyclopentadienyl)- und Bis(indenyl)zirconiumdihydrid. Es können auch (metallkohlenwasserstoffsubstituierte Cyclopentadienyl)zirconiumverbindungen verwendet werden, wie (Trimethylsilylcyclopentadienyl)(cyclopentadienyl)- und Bis(trimethylsilylcyclopentadienyl)zirconiumdimethyl, (Trimethylgermylcyclopentadienyl)(cyclopentadienyl)- und Bis(trimethylgermylcyclopentadienyl)zirconiumdimethyl, (Trimethylstannylcyclopentadienyl)(cyclopentadienyl)- und Bis(trimethylstannylcyclopentadienyl)zirconiumdimethyl, (Trimethylplumbylcyclopentadienyl)(cyclopentadienyl)- und Bis(trimethylplumbylcyclopentadienyl)zirconiumdimethyl, (Trimethylsilylcyclopentadienyl)(cyclopentadienyl)- und Bis(trimethylsilylcyclopentadienyl)-zirconiumdihydrid, (Trimethylgermylcyclopentadienyl)(cyclopentadienyl)- und Bis(trimethylgermylcyclopentadienyl)zirconiumdihydrid, (Trimethylstannylcyclopentadienyl)(cyclopentadienyl)- und Bis(trimethylstannylcyclopentadienyl)zirconiumdihydrid, (Trimethylplumbylcyclopentadienyl)(cyclopentadienyl)- und Bis(trimethylplumbylcyclopentadienyl)zirconiumdihydrid; (halogensubstituierte Cyclopentadienyl)zirconiumverbindungen wie (Trifluormethylcyclopentadienyl)(cyclopentadienyl)- und Bis(trifluormethylcyclopentadienyl)zirconiumdimethyl, (Trifluormethylcyclopentadienyl)(cyclopentadienyl)- und Bis(trifluormethylcyclopentadienyl)zirconiumdihydrid; silylsubstituierte (Cyclopentadienyl)zirconiumverbindungen; Bis(cyclopentadienyl)zirconacyclen wie Bis(pentamethylcyclopentadienyl)zirconacyclobutanund Bis(pentamethylcyclopentadienyl)zirconacyclopentan; mit Olefin-, Diolefin- und Arinligand substituierte Bis(cyclopentadienyl)zirconiumverbindungen wie Bis(cyclopentadienyl)(2,3-dimethyl-1,3-butadien)zirconium und Bis(pentamethylcyclopentadienyl)(dehydrobenzol)zirconium; (kohlenwasserstoff)(hydrid)substituierte Bis(cyclopentadienyl)zirconiumverbindungen wie Bis(pentamethylcyclopentadienyl)zirconium(phenyl)(hydrid) und Bis(pentamethylcyclopentadienyl)zirconium(methyl)(hydrid) und Bis(cyclopentadienyl)zirconiumverbindungen, bei denen ein Substituent des Cyclopentadienylrestes an das Metall gebunden ist, wie (Pentamethylcyclopentadienyl)(tetramethylcyclopentadienylmethylenzirconiumhydrid und (Pentamethylcyclopentadienyl)(tetramethylcyclopentadienylmethylen)zirconiumphenyl. Eine ähnliche Liste illustrierender Bis(cyclopentadienyl)-hafniumverbindungen könnte angefertigt werde, da diese Listen jedoch mit den bereits in Hinsicht auf Bis(cyclopentadienyl)zirconiumverbindungen angegebenen Listen nahezu identisch wären, werden sie nicht als notwendig für eine vollständige Offenbarung angesehen. Fachleute wissen jedoch, dass Bis(cyclopentadienyl)hafniumverbindungen, die einigen der oben aufgeführten Bis(cyclopentadienyl)zirconiumverbindungen entsprechen, nicht bekannt sind. Die Liste würde daher um diese Verbindungen ge kürzt. Andere Bis(cyclopentadienyl)hafniumverbindungen sowie andere Bis(cyclopentadienyl)zirconiumverbindungen, die für die erfindungsgemäßen Katalysatorzusammensetzungen nutzbringend sind, sind Fachleuten natürlich offensichtlich.
  • Verbindungen, die als zweite Komponente bei der Herstellung des erfindungsgemäßen Katalysators brauchbar sind, umfassen ein Kation, das eine Brönstedtsäure ist, die in der Lage ist, ein Proton abzugeben, und ein verträgliches, nicht-koordinierendes Anion. Geeignete Metalle für den Anionenanteil schließen Aluminium, Gold und Platin ein, sind aber nicht auf diese begrenzt. Geeignete Metalloide schließen Bor, Phosphor oder Silicium ein, sind aber nicht auf diese beschränkt. Verbindungen, die Anionen enthalten, welche Koordinationskomplexe enthalten, die ein einziges Metall- oder Metalloidatom enthalten, sind natürlich wohlbekannt und viele, insbesondere jene Verbindungen, die ein einziges Boratom im Anionenanteil enthalten, sind im Handel erhältlich. Daher sind Salze bevorzugt, die Anionen enthalten, welche einen Koordinationskomplex umfassen, der ein einziges Boratom enthält.
  • Allgemein können die zweiten Verbindungen, die zur Herstellung von erfindungsgemäßen Katalysatoren verwendet werden, durch die folgende allgemeine Formel [(L'–H)+]d[(M')m+Q1Q2 ... Qn]d– wiedergegeben werden, in der
    L' eine neutrale Lewisbase ist,
    H ein Wasserstoffatom ist,
    [L'–H]+ eine Brönstedtsäure ist,
    M' ein Metall oder Metalloid ausgewählt aus den Gruppen ist, die sich von den Gruppen VB bis VA des Periodensystems der Elemente erstrecken, d. h. den Gruppen V-B, VI-B, VII-B, VIII, I-B, II-B, III-A, IV-A und V-A;
    Q1 bis Qn unabhängig ausgewählt sind aus der Gruppe bestehend aus Hydridresten, Dialkylamidoresten, Alkoxid- und Aryloxidresten, Koh lenwasserstoff- und substituierten Kohlenwasserstoffresten und Organometalloidresten und ein beliebiger, aber nicht mehr als einer, von Q1 bis Qn ein Halogenidrest sein kann, wobei die verbleibenden Q1 bis Qn ausgewählt sind aus den vorhergehenden Resten;
    m eine ganze Zahl von 1 bis 7 ist;
    n eine ganze Zahl von 2 bis 8 ist
    und n – m = d ist.
  • Zweite Verbindungen, die Bor umfassen und bei der Herstellung der erfindungsgemäßen Katalysatoren besonders brauchbar sind, können durch die folgende allgemeine Formel [L–H'] + [BAr1Ar2X3X4] wiedergegeben werden, in der L' eine neutrale Lewisbase ist; H ein Wasserstoffatom ist; [L'–H]+ eine Brönstedtsäure ist; B Bor in der Wertigkeitsstufe 3 ist;
    Ar1 und Ar2 die gleichen oder unterschiedliche aromatische oder substituierte aromatische Kohlenwasserstoffreste mit vorzugsweise 6 bis 20 Kohlenstoffatomen sind, die über eine stabile Brückengruppe miteinander verbunden sein können, und X3 und X4 Reste sind, die unabhängig ausgewählt sind aus der Gruppe bestehend aus Hydridresten, Halogenidresten, vorausgesetzt, dass nur einer von X3 oder X4 zur gleichen Zeit Halogenid sein darf, Kohlenwasserstoffrest mit 1 bis etwa 20 Kohlenstoffatomen, substituierten Kohlenwasserstoffresten mit 1 bis 20 Kohlenstoffatomen, wobei ein oder mehrere Wasserstoffatome durch ein Halogenatom ersetzt sind, kohlenwasserstoffsubstituierten Metallresten (Organometalloidresten), wobei jeder Kohlenwasserstoffsubstituent 1 bis 20 Kohlenstoffatome enthält und das Metall ausgewählt ist aus der Gruppe IV-A des Periodensystems der Elemente. Geeigneterweise ist immer nur X3 oder X4, zur gleichen Zeit Halogenid.
  • Im allgemeinen können Ar1 und Ar2 unabhängig jeder aromatische oder substituiert aromatische Kohlenwasserstoffrest sein, der 6 bis 20 Kohlenstoffatome enthält. Geeignete aromatische Reste, aber nicht auf diese beschränkt, sind Phenyl-, Naphthyl- und Anthracenylreste. Geeignete Substituenten für brauchbare substituierte aromatische Kohlenwasserstoffreste schließen Kohlenwasserstoffreste, Organometalloidreste, Alkoxyreste, Alkylamidoreste, Fluor- und Fluorkohlenwasserstoffreste und dergleichen wie solche, die als X3 und X4 brauchbar sind, ein, sind aber nicht notwendigerweise auf diese beschränkt. Der Substituent kann relativ zu dem an das Boratom gebundene Kohlenstoffatom ortho, meta oder para sein. Wenn eines oder beide von X3 und X4 ein Kohlenwasserstoffrest sind, können sie jeweils der gleiche oder ein anderer aromatischer oder substituierter aromatischer Rest sein wie Ar1 und Ar2, oder sie können ein geradkettiger oder verzweigter Alkyl-, Alkenyl- oder Alkinylrest mit 1 bis etwa 20 Kohlenstoffatomen, ein cyclischer Kohlenwasserstoffrest mit 5 bis 8 Kohlenstoffatomen oder ein alkylsubstituierter cyclischer Kohlenwasserstoffrest mit 6 bis 20 Kohlenstoffatomen sein. X3 und X4 können unabhängig Alkoxy- oder Dialkylamidoreste, bei denen der Alkylanteil des Alkoxy- und Dialkylamidorests 1 bis 20 Kohlenstoffatome enthält, Kohlenwasserstoffreste oder Organometalloidreste mit 1 bis 20 Kohlenstoffatomen sein. Wie gezeigt können Ar1 und Ar2 miteinander verbunden sein. In ähnlicher Weise kann einer oder beide von Ar1 und Ar2 mit entweder X3 oder X4 verbunden sein. Schließlich können X3 und X4 auch durch eine geeignete Brückengruppe miteinander verbunden sein.
  • Illustrierende, aber nicht einschränkende Beispiele für Borverbindungen, die als zweite Komponente zur Herstellung der verbesserten erfindungsgemäßen Katalysatoren verwendet werden können, sind trialkylsubstituierte Ammoniumsalze wie Triethylammoniumtetra(phenyl)bor, Tripropylammoniumtetra(phenyl)bor, Tri(n-butyl)ammoniumtetra(phenyl)bor, Trimethylammoniumtetra(p-tolyl)bor, Trimethylammoniumtetra(o-tolyl)bor, Tributylammoniumtetra(pentafluorphenyl)bor, Tripropylammoniumtetra(o,p-dimethylphenyl)bor, Tributylammoniumtetra(m,m-dimethylphenyl)bor, Tribu tylammoniumtetra(p-trifluormethylphenyl)bor, Tributylammoniumtetra(pentafluorphenyl)bor und Tri(n-butyl)ammoniumtetra(o-tolyl)bor; N,N-Dialkylaniliniumsalze wie N,N-Dimethylaniliniumtetra(phenyl)bor, N,N-Diethylaniliniumtetra(phenyl)bor und N,N-2,4,6-Pentamethylaniliniumtetra(phenyl)bor, Dialkylammoniumsalze wie Di(isopropyl)ammoniumtetra(pentafluorphenyl)bor und Dicyclohexylammoniumtetra(phenyl)bor und Triarylphosphoniumsalze wie Tri-phenylphosphoniumtetra(phenyl)bor, Tri(methylphenyl)phosphoniumtetra(phenyl)bor und Tri(dimethylphenyl)phosphoniumtetra(phenyl)-bor.
  • Ähnliche Listen von geeigneten Verbindungen, die andere Metalle und Metalloide enthalten und als zweite Komponenten brauchbar sind, können gegeben werden, aber solche Listen werden für eine vollständige Offenbarung nicht als notwendig erachtet. In Anbetracht dessen ist zu beachten, das die vorhergehende Liste nicht als erschöpfend angesehen werden soll und andere Borverbindungen, die brauchbar sind, sowie brauchbare Verbindungen, die andere Metalle und Metalloide enthalten, Fachleuten aus den vorhergehenden allgemeinen Gleichungen leicht offensichtlich sind.
  • Im allgemeinen und obwohl die meisten oben angegebenen ersten Komponenten mit den meisten oben angegebenen zweiten Komponenten kombiniert werden können, um einen aktiven Olefinpolymerisationskatalysator zu produzieren, ist es wichtig für die kontinuierlichen Polymerisationsvorgänge, dass entweder das anfangs aus der ersten Komponente gebildete Metallkation oder ein Zersetzungsprodukt desselben ein relativ stabiler Katalysator ist. Es ist auch wichtig, dass das Anion der zweiten Verbindung gegenüber Hydrolyse stabil ist, wenn ein Ammoniumsalz verwendet wird. Es ist auch wichtig, dass die Acidität der zweiten Komponente relativ zu der ersten Komponente ausreichend ist, um die benötigte Protonenübertragung zu erleichtern. Die Basizität des Metallkomplexes muss andererseits auch ausreichend sein, um die notwendigen Protonenübertragung zu erleichtern. Bestimmte Metallocenverbindungen – wobei Bis(pentamethylcyclopentadienyl)hafniumdimethyl als illustrierendes, aber nicht einschränkendes Beispiel verwendet wird sind beständig gegenüber der Reaktion mit allen bis auf den stärksten Brönstedtsäuren und sind somit nicht geeignet als erste Komponenten zur Bildung der erfindungsgemäßen Katalysatoren. Allgemein können Bis(cyclopentadienyl)metallverbindungen mit substituierten Cyclopentadienylkohlenstoffatomen, die durch wäßrige Lösungen hydrolysiert werden können, als geeignet als erste Komponenten zur Bildung der hier beschriebenen Katalysatoren angesehen werden.
  • In Hinsicht auf die Kombination aus erster (metallhaltiger) Komponente zu zweiter Komponente zur Bildung eines erfindungsgemäßen Katalysators ist zu beachten, dass die zur Herstellung des aktiven Katalysators kombinierten Verbindungen so gewählt werden müssen, dass die Übertragung eines Fragments des Anions, insbesondere einer Arylgruppe, auf das Metallkation vermieden wird, weil dadurch eine katalytisch inaktive Spezies gebildet würde. Dies wird durch aus Substitutionen an den Cyclopentadienylkohlenstoffatomen und an aromatischen Kohlenstoffatomen des Anions resultierende sterische Hinderung erreicht. Es folgt daraus, dass Metallverbindungen (erste Komponenten), die perkohlenwasserstoffsubstituierte Cyclopentadienylreste enthalten, effektiv mit einem breiteren Bereich von zweiten Verbindungen verwendet werden können als Metallverbindungen (erste Komponenten), die nicht substituierte Cyclopentadienylreste umfassen.
  • Im allgemeinen kann der Katalysator durch Kombinieren der beiden Komponenten in einem geeigneten Lösungsmittel bei einer Temperatur im Bereich von –100°C bis 300°C hergestellt werden. Der Katalysator kann verwendet werden, um α-Olefine und/oder acetylenisch ungesättigte Monomere mit 2 bis 18- Kohlenstoffatomen und/oder Diolefine mit 4 bis 18 Kohlenstoffatomen entweder allein oder in Kombination zu polymerisieren. Der Katalysator kann auch verwendet werden, um α-Olefine, Diolefine und/oder acetylenisch ungesättigte Monomere in Kombination mit anderen ungesättigten Monome ren zu polymerisieren. Im allgemeinen kann die Polymerisation bei im Stand der Technik wohlbekannten Bedingungen bewirkt werden. Es wird natürlich anerkannt, dass sich das Katalysatorsystem in situ bilden wird, wenn seine Komponenten direkt zu dem Polymerisationsverfahren gegeben werden und ein geeignetes Lösungsmittel oder Verdünnungsmittel einschließlich kondensiertem Monomer in dem Polymerisationsverfahren verwendet wird. Es ist allerdings bevorzugt, den Katalysator in einer separaten Stufe in einem geeigneten Lösungsmittel vor der Zugabe desselben zu der Polymerisationsstufe zu bilden. Obwohl die Katalysatoren keine pyrophoren Spezies enthalten, sind die Katalysatorkomponenten sowohl gegenüber Sauerstoff als auch gegenüber Feuchtigkeit empfindlich und sollen in einer inerten Atmosphäre gehandhabt und transportiert werden, wie Stickstoff, Argon oder Helium.
  • Wie oben gezeigt, werden die erfindungsgemäßen verbesserten Katalysatoren vorzugsweise in einem geeigneten Lösungsmittel oder Verdünnungsmittel hergestellt. Geeignete Lösungsmittel oder Verdünnungsmittel schließen beliebige der im Stand der Technik als brauchbar in der Polymerisation von Olefinen, Diolefinen und acetylenisch ungesättigten Monomeren bekannten Lösungsmittel ein. Geeignete Lösungsmittel schließen somit geradkettige und verzweigte Kohlenwasserstoffe wie Isobutan, Butan, Pentan, Hexan, Heptan und Octan, cyclische und alicyclische Kohlenwasserstoffe wie Cyclohexan, Cycloheptan, Methylcyclohexan und Methyl-cycloheptan, und aromatische und alkylsubstituierte aromatische Verbindungen wie Benzol, Toluol und Xylol ein, sind jedoch nicht notwendigerweise darauf begrenzt. Geeignete Lösungsmittel schließen auch flüssige Olefine ein, die als Monomere oder Comonomere wirken können, einschließlich Ethylen, Propylen, Butadien, Cyclopenten, 1-Hexen, 3-Methyl-1-penten, 4-Methyl-1-penten, 1,4-Hexadien, 1-Octen und 1-Decen. Geeignete Lösungsmittel schließen außerdem basische Lösungsmittel ein, die nicht allgemein brauchbar als Polymerisationslösungsmittel sind, wenn konventionelle Polymerisationskatalysatoren vom Ziegler-Natta-Typ verwendet werden, wie Chlorbenzol.
  • Ohne dass sich die Erfinder auf eine spezielle Theorie festlegen wollen, wird angenommen, dass, wenn die beiden zur Herstellung der Katalysatoren verwendeten Verbindungen in einem geeigneten Lösungsmittel oder Verdünnungsmittel kombiniert werden, das gesamte Kation oder ein Teil des Kations der zweiten Verbindung (das acide Proton) mit einem der Substituenten an der metallhaltigen Verbindung (der ersten Komponente) kombiniert. In dem Fall, wenn die erste Komponente eine Formel hat, die der der allgemeinen Formel 1 oben entspricht, wird eine neutrale Verbindung freigesetzt, wobei die neutrale Verbindung entweder in Lösung verbleibt oder als Gas freigesetzt wird. In dieser Hinsicht ist zu beachten, dass, wenn entweder X1 oder X2 in der metallhaltigen Verbindung (ersten Komponente) Hydrid ist, Wasserstoffgas freigesetzt werden kann. In ähnlicher Weise kann, wenn entweder X1 oder X2 ein Methylrest ist, Methan als Gas freigesetzt werden. In den Fällen, in denen die erste Komponente eine Formel hat, die denen der allgemeinen Formeln 2, 3 oder 4 entspricht, wird einer der Substituenten an der metallhaltigen (ersten) Komponente protoniert, aber im allgemeinen wird kein Substituent von dem Metall freigesetzt. Es ist bevorzugt, dass das Molverhältnis von erster Komponente zu zweiter Komponente 1:1 oder größer ist. Die konjugierte Base des Kations der zweiten Verbindung, wenn eine verbleibt, ist eine neutrale Verbindung, die in Lösung verbleibt oder mit dem gebildeten Metallkation komplexiert, obwohl im allgemeinen eine zweite Verbindung so gewählt wird, dass jegliche Bindung der neutralen konjugierten Base an das Metallkation schwach oder nicht vorhanden sein wird. Wenn also der sterische Raumbedarf dieser konjugierten Base zunimmt, wird sie einfach in Lösung verbleiben, ohne den aktiven Katalysator zu stören. In ähnlicher Weise wird, wenn das Kation der zweiten Verbindung ein Trialkylammoniumion ist, dieses Ion ein Wasserstoffatom unter Bildung von gasförmigem Wasserstoff oder Methan freisetzen, und die konjugierte Base des Kations ist ein tertiäres Amin. In ähnlicher Weise ist, wenn das Kation ein kohlenwasserstoffsubstituiertes Phosphoniumion ist, das mindestens ein reaktives Proton enthält, wie erfindungsgemäß wesentlich ist, die konjugierte Base des Kations ein Phosphin.
  • Ohne sich auf eine spezielle Theorie festlegen zu wollen, wird auch angenommen, dass, wenn einer der Substituenten der metallhaltigen (ersten) Komponente (ein Ligand) freigesetzt wird, das ursprünglich in der zur Katalysatorherstellung verwendeten zweiten Verbindung enthaltende, nicht-koordinierende Anion mit dem aus der ersten Komponente gebildeten Metallkation oder Zersetzungsprodukt desselben, das formal eine Koordinationszahl von 3 und eine Wertigkeit von +4 hat, kombiniert und dieses stabilisiert. Das Metallkation und das nicht-koordinierende Anion bleiben so kombiniert, bis der Katalysator mit einem oder mehreren Olefinen, Diolefinen und/oder acetylenisch ungesättigten Monomeren entweder allein oder in Kombination mit einem oder mehreren anderen Monomeren oder einer anderen neutralen Lewisbase kontaktiert wird. Wie oben gezeigt, muss das in der zweiten Verbindung enthaltene Anion ausreichend labil sein, um eine rasche Verdrängung durch ein Olefin, Diolefin oder ein acetylenisch ungesättigtes Monomer zu gestatten, um die Polymerisation zu erleichtern.
  • Die chemischen Reaktionen, die bei der Bildung der erfindungsgemäßen Katalysatoren stattfinden, können, wenn eine bevorzugte borhaltige Verbindung als zweite Komponente verwendet wird, in bezug auf die allgemeinen Formeln wie hier beschrieben wiedergegeben werden: 1. [(A-Cp)MX1X2] + [L'–H]+[BAr1Ar2X3X4] → [(A–Cp)MX1]+[BAr1Ar2X3X4] + HX2 + L' oder [(A–Cp)MX2]+[BAr1Ar2X3X4] – + HX1 + L' 2. (A–Cp)MX'1X'2 + [L'–H]+[Bar1Ar2X3X4]
    Figure 00200001
    3. [(A-Cp)ML + [L'–H]+[BAr1Ar2X3X4] → [(A-Cp)M(LH)]+[BAr1Ar2X3X4] + L'
    Figure 00200002
  • In den vorhergehenden Reaktionsgleichungen entsprechen die Zahlen den Zahlen, die in Kombination mit den allgemeinen Gleichungen für brauchbare Metallocenverbindungen von Zirconium oder Hafnium (erste Komponenten) beschrieben sind. Allgemein variieren die Stabilität und Bildungsgeschwindigkeit der Produkte der vorhergehenden Reaktionsgleichungen, insbesondere des Metallkations, in Abhängigkeit von der Auswahl des Lösungsmittels, der Acidität des gewählten [L'–H]+, dem speziellen L', dem Anion, der Temperatur, bei der die Umsetzung beendet ist und dem speziellen Dicyclopentadienylderivat des gewählten Metalls. Im allgemeinen ist das anfangs gebildete Ionenpaar ein aktiver Polymerisationskatalysator.
  • In dieser Erfindung zersetzt sich das anfangs gebildete Metallkation in ein oder mehrere andere katalytisch aktive Spezies.
  • Die aktiven Katalysatorspezies, die nicht charakterisiert worden sind, einschließlich aktiver Zersetzungsprodukte, sind vom gleichen Typ wie solche, die isoliert und vollständig charakterisiert worden sind, oder behalten mindestens die wesentliche Ionenpaarstruktur bei, die zur Wirkung als Katalysator erforderlich ist. Insbesondere wird insofern angenommen, dass die aktive Katalysatorspezies, die nicht isoliert worden sind, einschließlich aktiver Zersetzungsprodukte, vom gleichen Typ wie die isolierten und charakterisierten aktiven Katalysatorspezies sind, als dass diese Spezies ein Bis(cyclopentadienyl)metallzentrum enthalten, wobei das Zentrum kationisch und ungesättigt bleibt und eine Metall-Kohlenstoff-Bindung aufweist, die mit Olefinen, Diolefinen und acetylenisch ungesättigten Verbindungen reaktiv ist. Die Zersetzungsprodukte können mit Wasserstoffgas reagieren, um einen gemeinsamen Gleichgewichtszustand einzutreten, der den kationischen Hydridkomplex beinhaltet, [Cp'CpMH]+X.
  • Das beste Beispiel für dieses Verhalten liefert ein Peralkylcyclopentadienylsystem, bei dem ein Tetraphenylborat als zweite Komponente verwendet wird. Beispielsweise ergibt die Reaktion von Cp*2ZrMe2 (wobei Cp* = C5Me5) und [Bu3NH]+[B(Ph')4)] (wobei Ph' = Phenyl oder para-Alkylphenyl mit Wasserstoff oder einer Alkylgruppe in para-Stellung) in Toluol [Cp*2ZrMe]+[B(Ph')4 , das instabil ist und sich unter Methanverlust zu einem einzigen, katalytisch aktiven Produkt zersetzt. Das tiefrote Produkt ist vollständig durch NMR-Spektroskopie und Einkristall-Röntgenbeugung charakterisiert worden. Die allgemeine Struktur dieses zwitterionischen Katalysators dieses Typs ist nachfolgend gezeigt:
    Figure 00210001
    in der
    Cp* ein peralkylsubstituierter Cyclopentadienylrest ist, wobei jede der Alkylsubstitutionen der gleiche oder ein unterschiedlicher C1- bis C20-Alkylrest sein kann, vorzugsweise der gleiche oder ein unterschiedlicher C1- bis C6-Alkylrest, am meisten bevorzugt der gleiche oder ein unterschiedlicher C1- bis C4-Alkylrest,
    B Bor ist,
    Zr Zirconium ist,
    Ph' ein Phenyl- oder alkylsubstituierter Phenylrest ist und jeder der drei Ph's gleich oder unterschiedlich sein kann und die Alkylsubstitutionen C1 bis C14, vorzugsweise C1 bis C6, am meisten bevorzugt C1 bis C4 sind, und
    R Wasserstoff oder eine Alkylgruppe mit 1 bis 14 Kohlenstoffatomen, vorzugsweise 1 bis 6 Kohlenstoffatomen, am meisten bevorzugt 1 bis 4 Kohlenstoffatomen ist.
  • Die Zugabe von Wasserstoffgas im Überschuss zu einer Tolullösung, die den oben angegebenen permethylsubstituierten zwitterionischen Cyclopentadienyl-Katalysator enthält, führt zu einer raschen Reaktion, wie durch eine Farbveränderung von rot nach gelb und in konzentrierten Lösungen durch Bildung eines gelben Niederschlags deutlich wird. Die Entfernung von Wasserstoff aus dem System regeneriert den ursprünglichen zwitterionischen Katalysator in hoher Ausbeute. Ohne sich auf eine Theorie festlegen zu wollen, wird angenommen, dass die Reaktion von Wasserstoff mit dem zwitterionischen Katalysator zur Bildung von [Cp*2ZrH]+[B(Ph')4] führt. Die reversible Art dieser Reaktion zusammen mit anderen spektroskopischen Beweisen legt nahe, dass sich das Hydridkation in chemischem Gleichgewicht mit der zwitterionischen Spezies befindet.
  • In Übereinstimmung mit dem vorhergehenden sind stabile Polymerisationskatalysatoren hergestellt worden, wenn Bis(permethylcyclopentadienyl)zirconiumdimethyl mit Tri(n-butyl)ammoniumtetra(phenyl)bor, Tri(n-butyl)ammoniumtetra(p-tolyl)bor und Tri-(n-butyl)ammoniumtetra(p-ethylphenyl)bor umgesetzt worden ist. Es ist auch ein stabiler Polymerisationskatalysator hergestellt worden, wenn Bis(ethyltetramethylcyclopentadienyl)zirconiumdimethyl mit Tri(n-butyl)ammoniumtetra(p-tolyl)bor umgesetzt wurde. In jedem dieser Fälle wurde der stabile Polymerisationskatalysator Polymerisationskatalysator durch Zugabe der Reaktanten zu einem geeigneten aromatischen Lösungsmittel bei einer Temperatur im Bereich von 0°C bis 100°C hergestellt. Basierend auf diesen und anderen Informationen, die dem Erfinder zur Verfügung standen, scheint es klar zu sein, dass stabile zwitterionische Polymerisationskatalysatoren auch unter Verwendung von Bis(perkohlenwasserstoffcyclopentadienyl)zirconiumdialkylen und -dihydriden in Kombination mit Ammoniumsalzen von unsubstituiertem oder p-substituiertem Tetra(aryl)boranion hergestellt werden können.
  • Im allgemeinen kann der stabile Katalysator, der nach dem erfindungsgemäßen Verfahren gebildet wird, von dem Lösungsmittel abgetrennt und zur nachfolgenden Verwendung aufbewahrt werden. Der weniger stabile Katalysator wird jedoch bis zur endgültigen Verwendung in der Polymerisation von Olefinen, Diolefinen und/oder acetylenisch ungesättigten Monomeren in Lösung gehalten. Alternativ können beliebige der nach dem erfindungsgemäßen Verfahren hergestellten Katalysatoren zur nachfolgenden Verwendung in Lösung gehalten werden oder direkt nach der Herstellung als Polymerisationskatalysator verwendet werden. Zudem und wie oben gezeigt kann der Katalysator in situ während einer Polymerisationsreaktion hergestellt werden, indem die separaten Komponenten in das Polymerisationsgefäß geleitet werden, wo die Komponenten in Kontakt kommen und reagieren, um den erfindungsgemäßen verbesserten Katalysator zu erzeugen.
  • Wenn das Verhältnis von erster Verbindung zu zweiter Verbindung bei Konzentrationen unter 10–5 M 1:1 beträgt, ist der Katalysator oft nicht aktiv für die Olefinpolymerisation. Obwohl sich die Erfinder nicht auf eine spezielle Theorie festlegen wollen, wird angenommen, dass versehentlich anwesender Sauerstoff oder Feuchtigkeit in dem Verdünnungsmittel oder den Monomeren den Katalysator desaktivieren können. Wenn das Verhältnis der ersten Verbindung zu der zweiten Verbindung 2:1 bis 10:1 oder mehr ist, können die Konzentrationen der zweiten Komponente so niedrig wie etwa 10–6 M sein.
  • Wenn hafniumhaltige erste Verbindungen mit zweiten Verbindungen umgesetzt werden, die ein Metall oder Metalloid wie Bor und weniger acide Ammoniumkationen enthalten, beispielsweise Tri(n-butyl)ammoniumtetrakis(pentafluorphenyl) bor, und der Katalysator daraus in dem erfindungsgemäßen Polymerisationsverfahren verwendet wird, können Induktionsperioden von 1 bis 15 Minuten oder mehr beobachtet werden, bevor die Aufnahme von Monomer beginnt. Dieses Phänomen ist am ausgeprägtesten, wenn die Konzentration der Hafniumverbindung unter 10–4 M liegt und die der zweiten Komponente unter 10–5 liegt. Höhere Konzentrationen der Katalysatorlösung zeigen oft keine Induktionsperiode. Sie kann auch beobachtet werden, wenn zirconiumhaltige erste Verbindungen verwendet werden, wenn die Konzentration der zweiten Komponente 10–6 M oder weniger beträgt. Ohne dass sich die Erfinder auf eine spezielle Theorie festlegen wollen, wird angenommen, dass die gebildete Katalysatorspezies sich in dem Polymerisationsverfahren unter Bildung einer katalytisch inaktiven metallhaltigen Verbindung zersetzt und entweder die gleiche oder eine andere zweite Komponente regeneriert. Diese neue zweite Komponente aktiviert jede überschüssige erste Komponente, die anwesend ist, um die erfindungsgemäße aktive Katalysatorspezies zu regenerieren. Ohne sich auf eine spezielle Theorie festlegen zu wollen, wird angenommen, dass die Erhöhung der Konzentration des Katalysators oder die Verwendung von zweiten Komponenten, die acidere Ammoniumkationen enthalten, entweder die Länge dieser Induktionsperiode verringern oder sie vollständig eliminieren.
  • In dem Polymerisationsverfahren scheint das Molekulargewicht eine Funktion von sowohl der Katalysatorkonzentration als auch der Polymerisationstemperatur und dem Polymerisationsdruck zu sein. Die mit dem erfindungsgemäßen Katalysator hergestellten Polymere haben, wenn sie in Abwesenheit von bedeutsamen Stoffübergangseffekten hergestellt sind, allgemein relativ enge Molekulargewichtsverteilungen.
  • Einige dieser Katalysatoren, insbesondere jene auf Basis von Hafnocenen, wobei der Katalysator als Beispiel verwendet wird, der durch die Umsetzung von Bis(cyclopentadienyl)hafniumdimethyl und dem trisubstituierten Ammoniumsalz von Tetra(pentafluorphenyl)bor hergestellt, ist, können, wenn sie wie hier beschrieben für die Polymerisation und Copolymerisation von α-Olefinen, Diolefinen und/oder acetylenisch ungesättigten Monomeren verwendet werden, in Abwesenheit von Kettenübertragungsmittel zur Erzeugung von Polymeren und Copolymeren mit extrem hohem Molekulargewicht und relativ engen Molekulargewichtsverteilungen führen. In dieser Hinsicht ist zu beachten, dass Homopolymere und Copolymere mit Molekulargewichten bis zu 2 × 106 und Molekulargewichtsverteilungen im Bereich von 1,5 bis 15 mit den erfindungsgemäßen Katalysatoren hergestellt werden können. Die Substituenten an den Cyclopentadienylresten können allerdings einen ausgeprägten Einfluss auf die Molekulargewichte des Polymers ausüben.
  • Katalysatoren, die eine erste Komponente enthalten, die entweder ein reines Enantiomer oder die racemische Mischung von zwei Enantiomeren eines starren, chiralen Metallocens ist, können prochirale Olefine (Propylen und höhere α-Olefine) zu isotaktischen Polymeren polymerisieren. Bis(cyclopentadienyl)metallverbindungen, in denen jeder der beiden Cyclopentadienylreste substituiert ist und eine kovalente Brückengruppe zwischen den beiden Cyclopentadienylresten enthält, sind besonders brauchbar für isotaktische Polymerisationen dieses Typs.
  • Ein besonders überraschendes Merkmal von einigen der Katalysatoren, insbesondere solchen auf Hafnocenbasis in Kombination mit einer zweiten, Bor umfassenden Komponente, ist, dass, wenn die erfindungsgemäßen Katalysatoren zum Copolymerisieren von α-Olefinen entweder allein oder in Kombination mit Diolefinen verwendet werden, die Menge an in das Copolymer eingebautem Olefin oder Diolefin mit höherem Molekulargewicht im Vergleich zu Copolymeren, die mit konventionelleren Katalysatoren vom Ziegler-Natta-Typ und Bis(cyclopentadienyl)zirconiumkatalysatoren hergestellt worden sind, deutlich höher ist. Die relativen Geschwindigkeiten der Reaktion von Ethylen und höheren α-Olefinen mit den genannten erfindungsgemäßen Katalysatoren auf Hafniumbasis liegen viel dichter beieinander als mit konventionellen Ziegler-Natta-Katalysatoren der Gruppe-IV-B-Metalle. Die Monomerverteilung in mit den erfindungsgemäßen Katalysatoren hergestellten Copolymeren, insbesondere bei den niedrigeren α-Olefinen und niedrigeren Diolefinen, liegt im Bereich von nahezu perfekt alternierend bis statistisch.
  • Im allgemeinen können die Katalysatoren so ausgewählt werden, dass Polymerprodukte produziert werden, die frei von bestimmten Spurenmetallen sind, die sich allgemein in Polymeren finden, die mit Katalysatoren vom Ziegler-Natta-Typ hergestellt werden, wie Aluminium, Magnesium und Chlorid. Die mit den erfindungsgemäßen Katalysatoren hergestellten Polymerprodukte sollen dann einen breiteren Anwendungsbereich haben als Polymere, die mit konventionelleren Katalysatoren vom Ziegler-Natta-Typ hergestellt sind, die ein Metallalkyl wie ein Aluminiumalkyl umfassen. Die mit zwitterionischen Katalysatoren in Abwesenheit von Wasserstoff oder anderen Kettenabbruchreagentien hergestellten Polymere enthalten vorwiegend innenständige anstelle von endständiger Ungesättigtheit. In dieser Hinsicht sei darauf hingewiesen, dass, wenn das endständige Kohlenstoffatom in der Polymerkette als 1 bezeichnet wird, die in den in dem erfindungsgemäßen Verfahren hergestellten Polymeren enthaltene Ungesättigtheit eher 2,3 als das traditioneller 1,2 ist.
  • Bevorzugte Ausführungsform der Erfindung
  • Gemäß einer bevorzugten Ausführungsform der Erfindung wird eine Bis(cyclopentadienyl)metallverbindung, wobei das Metall ausgewählt ist aus der Gruppe bestehend aus Zirconium und Hafnium, wobei die Verbindung zwei unabhängig substituierte oder unsubstituierte Cyclopentadienylreste und ein oder zwei niedere Alkylsubstituenten und/oder ein oder zwei Hydridsubstituenten enthält, mit einem trisubstituierten Ammoniumsalz von entweder substituiertem oder un substituiertem tetra(aromatischen) Bor kombiniert. Jede der Trisubstitutionen in dem Ammoniumkation ist der gleiche oder ein unterschiedlicher niederer Alkyl- oder Arylrest. Mit niederem Alkyl ist ein Alkylrest gemeint, der ein bis vier Kohlenstoffatome enthält. Wenn die verwendete Bis(cyclopentadienyl)metallverbindung eine Bis(perkohlenwasserstoff-substituierte Cyclopentadienyl)metallverbindung ist, kann ein unsubstituiertes oder teilsubstituiertes tetra(aromatisches) Borsalz verwendet werden. Tri(n-butyl)ammoniumtetra(phenyl)bor, Tri(n-butyl) ammoniumtetra (p-tolyl)bor und Tri(n-butyl)ammoniumtetra(p-ethylphenyl)bor sind besonders bevorzugt. Die beiden Komponenten werden bei einer Temperatur im Bereich von 0°C bis 100°C kombiniert. Die Komponenten werden vorzugsweise in einem aromatischen Kohlenwasserstofflösungsmittel kombiniert, am meisten bevorzugt Toluol. Nominelle Verweilzeiten im Bereich von 10 Sekunden bis 60 Minuten sind ausreichend, um sowohl den bevorzugten als auch den am meisten bevorzugten erfindungsgemäßen Katalysator zu erzeugen.
  • Gemäß einer bevorzugten Ausführungsform wird der Katalysator unmittelbar nach der Bildung dann verwendet, um ein niedrigeres α-Olefin, insbesondere Ethylen oder Propylen, am meisten bevorzugt Ethylen, bei einer Temperatur im Bereich von 0°C bis 100°C und einem Druck im Bereich von 1,03 bis 34,45 bar (15 bis 500 psig) zu polymerisieren. In einer am meisten bevorzugten Ausführungsform wird der Katalysator verwendet, um Ethylen zu homopolymerisieren oder Ethylen mit einem niedrigeren α-Olefin mit 3 bis 6 Kohlenstoffatomen zu copolymerisieren und so ein plastisches oder elastomeres Copolymer zu ergeben. Gemäß den bevorzugten und am meisten bevorzugten Ausführungsformen werden die Monomere während einer nominellen Verweilzeit im Bereich von etwa 1 bis etwa 60 Minuten auf Polymerisationsbedingungen gehalten und der Katalysator wird in einer Konzentration im Bereich von etwa 10–5 bis etwa 10–1 Mol pro Liter Lösungsmittel verwendet.
  • Da nun die vorliegende Erfindung und eine bevorzugte und am meisten bevorzugte Ausführungsform derselben umfassend beschrieben wurden, wird angenommen, dass dieselbe in Bezugnahme auf die folgenden Beispiele noch leichter verständlich wird. Es wird allerdings darauf hingewiesen, dass diese Beispiele nur zu Illustrationszwecken gegeben werden und nicht als die Erfindung einschränkend angesehen werden sollen. Alle Beispiele wurden entweder gemäß Standard-Schlenck-Techniken unter einer Argonbedeckung oder unter einer Heliumbedeckung in einer Vacuum Atmospheres HE43-2-Trockenbox durchgeführt. Die in den Versuchen verwendeten Lösungsmittel wurden gemäß Standardtechniken unter Stickstoff gründlich getrocknet. Die in den Beispielen verwendeten Bor- und Metallocenreagentien wurden entweder gekauft oder gemäß veröffentlichten Techniken hergestellt. Die zwitterionischen Komplexe (Beispiele 1, 4, 10 und 22) wurden durch C13-NMR-Spektroskopie im festen Zustand und 1H-NMR-Spektroskopie in Lösung charakterisiert. Das in Beispiel 10 isolierte zwitterionische Tetra(p-ethylphenyl)borderivat wurde ferner durch Einkristallröntgen-kristallographie charakterisiert.
  • Beispiel 1
  • In diesem Beispiel wurde ein aktiver isolierbarer Olefinpolymerisationskatalysator hergestellt, indem zuerst 0,65 g Tri(n-butyl)ammoniumtetra(phenyl)bor mit 0,50 g Bis-(pentamethylcyclopentadienyl)zirconiumdimethyl kombiniert wurden. Die Kombination wurde erreicht, indem zuerst das Tri(n-butyl)ammoniumtetra(phenyl)bor in 50 ml Toluol suspendiert wurde und dann das Bis(pentamethylcyclopentadienyl)zirconiumdimethyl zugegeben wurde. Die Kombination wurde bei Raumtemperatur bewirkt und der Kontakt zwischen den beiden Verbindungen wurde 1 h fortgesetzt. Nach 1 h schied sich ein unlöslicher oranger Niederschlag von der Lösung ab, wobei eine klare Mutterlauge zurückblieb. Der orange Niederschlag wurde durch Filtration isoliert, drei Mal mit 20 ml Pentan gewaschen und im Vakuum getrocknet. 0,75 g des orangen Niederschlags wurden gewonnen. Ein Teil dieses Produkts wurde analy siert und es wurde gefunden, dass er eine. einzige organometallische Verbindung mit der folgenden allgemeinen Formel enthielt:
    Figure 00290001
    wobei Me ein Methylrest ist.
  • Beispiel 2
  • In diesem Beispiel wurde Ethylen polymerisiert, indem 0,05 g des in Beispiel 1 gewonnenen orangen Niederschlags zu 20 ml Toluol bei Raumtemperatur in einem 100 ml. Kolben mit seitlichem Anschluss gegeben wurden und dann Ethylen im Überschuss bei atmosphärischem Druck zugegeben wurde, während kräftig gerührt wurde. Es wurde eine sofortige Exotherme nachgewiesen und die Bildung von Polyethylen beobachtet, als die Zugabe von Ethylen fortgesetzt wurde.
  • Beispiel 3
  • In diesem Beispiel wurde Ethylen polymerisiert, indem zuerst 0,05 g des in Beispiel 1 hergestellten orangen Niederschlags in 20 ml Chlorbenzol in einem 100 ml Kolben mit seitlichem Anschluss suspendiert wurden und dann Ethylen im Überschuss bei atmosphärischem Druck zugegeben wurde, während kräftig gerührt wurde. Es wurde eine sofortige Exotherme nachgewiesen und die Bildung von Polyethylen beobachtet, als die Zugabe von Ethylen fortgesetzt wurde.
  • Beispiel 4
  • In diesem Beispiel wurde ein aktiver, isolierbarer Olefinpolymerisationskatalysator hergestellt, indem zuerst 0,75 g Tri(n-butyl)ammoniumtetra(p-tolyl)bor in 50 ml Toluol suspendiert wurden und dann 0,52 g Bis(pentamethylcyclopentadienyl)zirconiumdimethyl zugefügt wurden. Die Mischung wurde 1 h bei Raumtemperatur gerührt. Nach 1 h schied sich ein unlöslicher oranger Niederschlag von der Lösung ab. Der orange Niederschlag wurde durch Filtration isoliert, drei Mal mit 20 ml Pentan gewaschen und im Vakuum getrocknet. 0,55 g des orangen Niederschlags wurden gewonnen. Der orange Niederschlag wurde analysiert und es wurde gefunden, dass er eine organometallische Verbindung mit der folgenden Struktur enthielt:
    Figure 00300001
    wobei Me ein Methylrest ist.
  • Beispiel 5
  • In diesem Beispiel wurde Ethylen bei atmosphärischem Druck polymerisiert, indem Ethylen in eine 20 ml Probe der rohen Reaktionsmischung von Beispiel 4 in einem 100 ml Kolben mit seitlichem Anschluss gegeben wurden. Das Ethylen wurde rasch polymerisiert.
  • Beispiel 6
  • In diesem Beispiel wurde Ethylen bei 40 psig polymerisiert, indem 0,02 g des in Beispiel 4 hergestellten orangen Niederschlags in 100 ml Toluol in einem Fischer-Porter-Glasdruckgefäß aufgelöst wurden, die Lösung auf 80°C erwärmt wurde und dann Ethylen 20 Minuten mit 40 psig in die Lösung geleitet wurde. 2,2 g Polyethylen wurden erhalten und das durchschnittliche Molekulargewicht des Polymers betrug 57 000. Das Polymer hatte eine Polydispersität von 2,5.
  • Beispiel 7
  • In diesem Beispiel wurden Ethylen und Acetylen copolymerisiert, indem 0,05 g des orangen Niederschlags aus Beispiel 4 in Toluol aufgelöst wurden und dann 2 ml gereinigtes Acetylen bei atmosphärischem Druck in ein NMR-Röhrchen gegeben wurden. Es wurde ein sofortiger Farbumschlag von orange nach gelb beobachtet. Nach 5 Minuten wurden 5 ml Ethylen bei atmosphärischem Druck zu dieser Mischung gegeben und eine sofortige Exotherme sowie Polymerbildung beobachtet.
  • Beispiel 8
  • In diesem Beispiel wurde ein aktiver isolierbarer Olefinpolymerisationskatalysator produziert, indem zuerst 1,20 g Tri(n-butyl)ammoniumtetra(p-ethylphenyl)bor in 50 ml Toluol suspendiert wurden und anschließend 0,76 g Bis(pentamethylcyclopentadienyl)zirconiumdimethyl zugegeben wurden. Die Mischung wurde 1 h bei Raumtemperatur gerührt. Nach 1 h wurde die Reaktionsmischung zur Trockne eingedampft. Der rohe orange Feststoff, der produziert wurde, wurde aus heißem Toluol umkristallisiert, um 1,0 g orangerote Kristalle zu ergeben. Ein Teil dieses Produkts wurde analysiert und bestätigte die organometallische Verbindung mit der folgenden Struktur:
    Figure 00310001
    wobei Me ein Methylrest ist.
  • Beispiel 9
  • In diesem Beispiel wurde Ethylen polymerisiert, indem 0,10 g der orangeroten Kristalle aus Beispiel 8 in Toluol gelöst wurden und danach die Lösung unter Stickstoffdruck in einen Stahlautoklaven gegeben wurde. Dann wurde Ethylen mit 6,89 bar (100 psig) in den Autoklaven eingebracht und der Autoklav unter Durchmischen auf 80°C erhitzt. Nach 10 Minuten wurde der Reaktor auf atmosphärischen Druck entlüftet und geöffnet. Die Ausbeute an linearem Polyethylen betrug 27 g mit einem durchschnittlichen Molekulargewicht (Gewichtsmittel) von etwa 52 000.
  • Beispiel 10
  • In diesem Beispiel wurde ein Olefinpolymerisationskatalysator hergestellt, indem 0,06 g Bis(1,3-bistrimethylsilylcyclopentadienyl)zirconiumdimethyl, 0,05 g N,N-Dimethylaniliniumtetra(phenyl)bor und 1 ml Deuterobenzol in einem NMR-Röhrchen kombiniert wurden und die Komponenten reagieren gelassen wurden. Das NMR-Spektrum zeigte vollständigen Verlust der Ausgangsmaterialien nach 20 Minuten bei Raumtemperatur. Die Reaktionsmischung wurde dann in zwei Portionen geteilt, mit 20 ml Toluol verdünnt und in 50 ml Kolben mit seitlichen Anschlüssen gegeben. Zu einem Anteil wurde Ethylen gegeben und zu dem anderen Propylen. In beiden Fällen wurde rasche Polymerisation beobachtet.
  • Beispiel 11
  • In diesem Beispiel wurde ein aktiver Olefinpolymerisationskatalysator hergestellt, indem zuerst 0,87 g Tri(n-butyl)ammoniumtetra(p-tolyl)bor in 50 ml Toluol suspendiert wurden und danach 0,50 g (Pentamethylcyclopentadienyl)(cyclopentadienyl)zirconiumdimethyl zugegeben wurden. Die Reaktion wurde 18 Stunden bei Raumtemperatur gerührt, um eine blaugrüne homogene Lösung zu ergeben. Die Reaktionsmischung wurde im Vakuum getrocknet, mit 30 ml Pentan gewaschen und danach erneut in 100 ml Toluol gelöst. Die resultierende blaugrüne Lösung wurde in ein Glasdruckgefäß filtriert und unter 1,5 Atmosphären Ethylen gerührt. Bei Einwirkung von Ethylen wurden eine sofortige Exother me und Polymerbildung beobachtet. Die Ausbeute an Polyethylen betrug nach 15 Minuten 4,5 g.
  • Beispiel 12
  • In diesem Beispiel wurde ein Olefinpolymerisationskatalysator hergestellt, indem zuerst 0,1 g Tri(n-butyl)ammoniumtetra(p-ethylphenyl)bor in 5 ml d6-Benzol suspendiert wurden und danach 0,05 g (Pentamethylcyclopentadienyl)(cyclopentadienyl)zirconiumdimethyl zugegeben wurden. Die Reaktion war nach 30 Minuten abgeschlossen. Die grüne Lösung wurde dann im Vakuum getrocknet, um einen grünen glasartigen Feststoff zu ergeben. Das rohe grüne Produkt wurde mit 20 ml Toluol extrahiert. In separaten Experimenten wurde der Toluolextrakt Ethylen, Propylen und einer Mischung aus Ethylen und Propylen ausgesetzt. In jedem Fall wurde erhebliche Polymerisationsaktivität erhalten.
  • Beispiel 13
  • In diesem Beispiel wurde ein aktiver, isolierbarer Olefinpolymerisationskatalysator hergestellt, indem zuerst 1,30 g Tri-(n-butyl)ammoniumtetra(p-tolyl)bor in 50 ml Toluol suspendiert wurden und dann 1,00 g Bis(ethyltetramethylcyclopentadienyl)zirconiumdimethyl zugefügt wurden. Die Mischung wurde 1 h bei Raumtemperatur gerührt. Nach 1 h schied sich ein unlöslicher oranger Niederschlag von der Lösung ab. Der orange Niederschlag wurde durch Filtration isoliert, drei Mal mit 20 ml Pentan gewaschen und im Vakuum getrocknet. 0,55 g des orangen Niederschlags wurden gewonnen. Der orange Niederschlag wurde analysiert und es wurde gefunden, dass er eine organometallische Verbindung mit der folgenden Struktur enthielt:
    Figure 00340001
    wobei Et ein Ethylrest und Me ein Methylrest ist.
  • Beispiel 14
  • In diesem Beispiel wurden 0,05 g des in Beispiel 13 hergestellten orangen Niederschlags in 2 ml Deuterotoluol gelöst und in ein 5 mm NMR-Röhrchen gegeben und mit einem Gummi-Septumverschluss verschlossen. Ethylen (2 ml bei 1 atm) wurden über eine Spritze zugegeben und sofort polymerisiert.
  • Beispiel 15
  • In diesem Beispiel wurde ein gerührtes 100 ml Stahlautoklavenreaktionsgefäß verwendet, das ausgerüstet war, um Ziegler-Natta-Polymerisationsreaktionen bei Drücken bis zu 2500 bar und Temperaturen bis zu 300° durchzuführen. De Temperatur des gereinigten Reaktors, der Ethylen mit niedrigem Druck enthielt, wurde auf die gewünschte Reaktionstemperatur von 160° ins Gleichgewicht gebracht. Die Katalysatorlösung wurde hergestellt, indem 259 mg zwitterionischer Katalysator (hergestellt aus Bis(ethyltetramethylcyclopentadienyl)zirconiumdimethyl und Tri(n-butyl)ammoniumtetra(p-ethylphenyl)bor in 10,0 ml destilliertem Toluol unter Stickstoff aufgelöst wurden. Ein 0,4 ml Anteil dieser Katalysatorlösung wurde durch Niederdruckstickstoff in ein Injektionsrohr mit konstantem Volumen überführt, das auf 25°C gehalten wurde. Ethylen wurde mit einem Gesamtdruck von 1500 bar unter Druck in den Autoklaven gegeben. Der Reaktorinhalt wurde 1 Minuten mit 1000 UpM gerührt, danach wurde die Katalysatorlösung rasch mit Überdruck in den rührenden Reaktor injiziert. Die Temperatur- und Druckänderungen wurden kontinuierlich 120 Sekunden aufgezeichnet, danach wurde der Inhalt rasch entlüftet, was das Polymer ergab. Der Reaktor wurde mit Xylol gewaschen, um jedes innen verbleibende Polymer aufzufangen, und das gesamte Polymer wurde im Vakuum getrocknet. Die Ausbeute an isoliertem Polyethylen betrug 0,56 g. Dieses Polymer hatte ein durchschnittliches Molekulargewicht (Gewichtsmittel) von 21 900, eine Molekulargewichtsverteilung von 10,6 und eine Dichte von 0,965 g/ml.

Claims (5)

  1. Katalysator zum Polymerisieren von Olefinen, Diolefinen und/oder acetylenisch ungesättigten Monomeren, der ein Kation, das von einer Bis(cyclopentadienyl)-Zirconium- oder -Hafniumverbindung mit Substitutionen an den Cyclopentadienyl-Kohlenstoffatomen abgeleitet ist, und ein An ion eines einzelnen Koordinationskomplexes umfasst, der eine Vielzahl von lipophilen Resten aufweist, die kovalent an ein zentrales, Formalladung tragendes Metall- oder Metalloidatom koordiniert sind und dieses abschirmen, wobei das Anion mit dem Metallkation verträglich ist und gegenüber diesem nicht-koordinierend ist, wobei der Katalysator aus ersten und zweiten Komponenten gebildet ist, die so gewählt sind, dass die Übertragung eines Fragments des Anions auf das Metallkation vermieden wird, wodurch eine katalytisch inaktive Spezies gebildet würde, wobei die Übertragung durch sterische Hinderung vermieden wird, die aus Substitutionen an den Cyclopentadienyl-Kohlenstoffatomen resultiert, mit den Maßgaben, dass der Katalysator nicht aus einem peralkylsubstituierten Cyclopentadienylsystem und einem Tetraphenylborat gebildet ist und der Katalysator kein nicht-koordinierendes Anion umfasst, das an aromatischen Kohlenstoffatomen substituiert ist, um so eine Übertragung eines Fragments des Anions auf das Metallkation zu vermeiden.
  2. Zwitterion mit der folgenden allgemeinen Strukturformel
    Figure 00370001
    in der Cp* ein peralkylsubstituierter Cyclopentadienylrest ist, wobei jede der Alkylsubstitutionen der gleiche oder ein unterschiedlicher C1- bis C20-Alkylrest sein kann, B Bor ist, Zr Zirconium ist, Ph' ein Phenyl- oder alkylsubstituierter Phenylrest ist und jeder der 3 Ph's gleich oder unterschiedlich sein kann und die Alkylsubstitutionen C1 bis C14 sein können, und R Wasserstoff oder eine Alkylgruppe mit 1 bis 14 Kohlenstoffatomen ist.
  3. Zwitterion nach Anspruch 2 mit einer der folgenden Formeln
    Figure 00370002
    in der Cp* ein (Pentamethylcyclopentadienyl)rest ist,
    Figure 00380001
    in der Cp* ein (Pentamethylcyclopentadienyl)rest ist;
    Figure 00380002
    in der Cp* ein (Pentamethylcyclopentadienyl)rest ist, oder
    Figure 00380003
    in der Cp* ein (Ethyltetramethylcyclopentadienyl)rest ist.
  4. Verfahren zur Herstellung des Katalysators nach Anspruch 1 oder Anspruch 2, bei dem in geeignetem Lösungsmittel oder Verdünnungsmittel bei einer Temperatur von –100 bis 300°C eine Bis(cyclopentadienyl)-Gruppe IV B Verbindung mit Substitutionen an den Cyclopentadienyl-Kohlenstoffatomen mit einer Ionenaustauschverbindung umgesetzt wird, um so mindestens einen Liganden der Metallverbindung mit der Ionenaustauschverbindung oder mindestens einem Teil derselben zu kombinieren, wodurch der Katalysator erzeugt wird.
  5. Verfahren zum Polymerisieren von Olefinen, Diolefinen und/oder acetylenisch ungesättigten Monomeren, bei dem Olefine, Diolefine und/oder acetylenisch ungesättigte Monomere mit dem Katalysator gemäß Anspruch 1 oder Anspruch 2 kontaktiert und auf Polymerisationsbedingungen gehalten werden, um Homopolymer- oder Copolymerprodukte zu ergeben.
DE3856424T 1987-01-30 1988-01-27 Katalysatoren, Verfahren zur Herstellung derselben und Verfahren zu deren Anwendung Expired - Lifetime DE3856424T3 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US880087A 1987-01-30 1987-01-30
US8800 1987-01-30
US13348087A 1987-12-22 1987-12-22
US133480 1987-12-22

Publications (3)

Publication Number Publication Date
DE3856424D1 DE3856424D1 (de) 2000-09-21
DE3856424T2 DE3856424T2 (de) 2001-03-15
DE3856424T3 true DE3856424T3 (de) 2005-06-23

Family

ID=26678640

Family Applications (6)

Application Number Title Priority Date Filing Date
DE3855666A Expired - Lifetime DE3855666T4 (de) 1987-01-30 1988-01-27 Katalysatoren, Verfahren zur Herstellung derselben und Verfahren zu deren Anwendung
DE3856424T Expired - Lifetime DE3856424T3 (de) 1987-01-30 1988-01-27 Katalysatoren, Verfahren zur Herstellung derselben und Verfahren zu deren Anwendung
DE3855666T Expired - Lifetime DE3855666T3 (de) 1987-01-30 1988-01-27 Katalysatoren, Verfahren zur Herstellung derselben und Verfahren zu deren Anwendung
DE3856574T Expired - Lifetime DE3856574T3 (de) 1987-01-30 1988-01-27 Mit einem Katalysator der ein Ionenpaar enthält hergestelltes Polymerprodukt
DE3856577T Expired - Lifetime DE3856577T2 (de) 1987-01-30 1988-01-27 Verfahren zur Herstellung eines Polymerisationproduktes mit einem aus einen Ionenpaar bestehenden Katalysator
DE3855668T Revoked DE3855668T2 (de) 1987-01-30 1988-01-27 Katalysatoren, Verfahren zur Herstellung derselben und Verfahren zur deren Anwendung

Family Applications Before (1)

Application Number Title Priority Date Filing Date
DE3855666A Expired - Lifetime DE3855666T4 (de) 1987-01-30 1988-01-27 Katalysatoren, Verfahren zur Herstellung derselben und Verfahren zu deren Anwendung

Family Applications After (4)

Application Number Title Priority Date Filing Date
DE3855666T Expired - Lifetime DE3855666T3 (de) 1987-01-30 1988-01-27 Katalysatoren, Verfahren zur Herstellung derselben und Verfahren zu deren Anwendung
DE3856574T Expired - Lifetime DE3856574T3 (de) 1987-01-30 1988-01-27 Mit einem Katalysator der ein Ionenpaar enthält hergestelltes Polymerprodukt
DE3856577T Expired - Lifetime DE3856577T2 (de) 1987-01-30 1988-01-27 Verfahren zur Herstellung eines Polymerisationproduktes mit einem aus einen Ionenpaar bestehenden Katalysator
DE3855668T Revoked DE3855668T2 (de) 1987-01-30 1988-01-27 Katalysatoren, Verfahren zur Herstellung derselben und Verfahren zur deren Anwendung

Country Status (20)

Country Link
EP (6) EP0949278B2 (de)
JP (5) JP2965572B2 (de)
KR (1) KR960015192B1 (de)
AT (5) ATE281478T1 (de)
AU (1) AU617990B2 (de)
BR (1) BR8805026A (de)
CA (3) CA1339142C (de)
CZ (1) CZ57988A3 (de)
DE (6) DE3855666T4 (de)
DK (1) DK548888A (de)
ES (5) ES2229620T3 (de)
FI (1) FI101477B1 (de)
HU (1) HU211065B (de)
IL (1) IL85097A (de)
NO (1) NO179589C (de)
PL (1) PL159196B1 (de)
PT (1) PT86672A (de)
RU (2) RU2139291C1 (de)
WO (1) WO1988005793A1 (de)
YU (2) YU45838B (de)

Families Citing this family (651)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331228A (ja) * 1971-11-18 1993-12-14 Idemitsu Kosan Co Ltd ポリオレフィンの製造方法
US5153157A (en) * 1987-01-30 1992-10-06 Exxon Chemical Patents Inc. Catalyst system of enhanced productivity
US5621126A (en) * 1987-01-30 1997-04-15 Exxon Chemical Patents Inc. Monocyclopentadienyl metal compounds for ethylene-α-olefin-copolymer production catalysts
US5241025A (en) * 1987-01-30 1993-08-31 Exxon Chemical Patents Inc. Catalyst system of enhanced productivity
IL85097A (en) * 1987-01-30 1992-02-16 Exxon Chemical Patents Inc Catalysts based on derivatives of a bis(cyclopentadienyl)group ivb metal compound,their preparation and their use in polymerization processes
PL276385A1 (en) * 1987-01-30 1989-07-24 Exxon Chemical Patents Inc Method for polymerization of olefines,diolefins and acetylene unsaturated compounds
US5408017A (en) * 1987-01-30 1995-04-18 Exxon Chemical Patents Inc. High temperature polymerization process using ionic catalysts to produce polyolefins
US5384299A (en) * 1987-01-30 1995-01-24 Exxon Chemical Patents Inc. Ionic metallocene catalyst compositions
US7163907B1 (en) * 1987-01-30 2007-01-16 Exxonmobil Chemical Patents Inc. Aluminum-free monocyclopentadienyl metallocene catalysts for olefin polymerization
US5198401A (en) * 1987-01-30 1993-03-30 Exxon Chemical Patents Inc. Ionic metallocene catalyst compositions
US5391629A (en) * 1987-01-30 1995-02-21 Exxon Chemical Patents Inc. Block copolymers from ionic catalysts
SU1723116A1 (ru) * 1988-04-15 1992-03-30 Оренбургский Государственный Медицинский Институт Штамм бактерий BacILLUS SUвтILIS, используемый дл получени препарата дл профилактики и лечени воспалительных процессов и аллергических заболеваний
US4892851A (en) 1988-07-15 1990-01-09 Fina Technology, Inc. Process and catalyst for producing syndiotactic polyolefins
US5243002A (en) * 1988-07-15 1993-09-07 Fina Technology, Inc. Process and catalyst for producing syndiotactic polymers
US5223468A (en) * 1988-07-15 1993-06-29 Fina Technology, Inc. Process and catalyst for producing syndiotactic polymers
US5158920A (en) * 1988-07-15 1992-10-27 Fina Technology, Inc. Process for producing stereospecific polymers
US5162278A (en) * 1988-07-15 1992-11-10 Fina Technology, Inc. Non-bridged syndiospecific metallocene catalysts and polymerization process
US5225500A (en) * 1988-07-15 1993-07-06 Fina Technology, Inc. Process and catalyst for producing syndiotactic polyolefins
US5155080A (en) * 1988-07-15 1992-10-13 Fina Technology, Inc. Process and catalyst for producing syndiotactic polyolefins
US5223467A (en) * 1988-07-15 1993-06-29 Fina Technology, Inc. Process and catalyst for producing syndiotactic polymers
JP3048591B2 (ja) * 1989-04-11 2000-06-05 三井化学株式会社 シンジオタクチックポリオレフィンの製造方法
US6255425B1 (en) 1989-04-28 2001-07-03 Mitsui Chemicals, Inc. Syndiotactic polypropylene copolymer and extruded polypropylene articles
JP2795474B2 (ja) * 1989-07-27 1998-09-10 三井化学株式会社 オレフィン重合用触媒成分およびオレフィン重合用触媒ならびにオレフィンの重合方法
US5004820A (en) * 1989-08-07 1991-04-02 Massachusetts Institute Of Technology Preparation of chiral metallocene dihalides
US6686488B2 (en) 1989-08-31 2004-02-03 The Dow Chemical Company Constrained geometry addition polymerization catalysts
NZ235032A (en) 1989-08-31 1993-04-28 Dow Chemical Co Constrained geometry complexes of titanium, zirconium or hafnium comprising a substituted cyclopentadiene ligand; use as olefin polymerisation catalyst component
US6075077A (en) * 1989-08-31 2000-06-13 The Dow Chemical Company Asphalt, bitumen, and adhesive compositions
US5763547A (en) * 1992-10-02 1998-06-09 The Dow Chemical Company Supported catalyst complexes for olefin in polymerization
US6825369B1 (en) 1989-09-14 2004-11-30 The Dow Chemical Company Metal complex compounds
US5064802A (en) * 1989-09-14 1991-11-12 The Dow Chemical Company Metal complex compounds
CA2024830A1 (en) * 1989-09-29 1991-03-30 Richard E. Campbell, Jr. Process for preparation of syndiotactic vinyl aromatic polymers
CA2027146C (en) * 1989-10-10 2001-07-17 Abbas Razavi Process and catalyst for producing syndiotactic polymers
ATE137770T1 (de) * 1989-10-10 1996-05-15 Fina Technology Metallocenkatalysator mit lewissäure und alkylaluminium
US5763549A (en) * 1989-10-10 1998-06-09 Fina Technology, Inc. Cationic metallocene catalysts based on organoaluminum anions
US5036034A (en) * 1989-10-10 1991-07-30 Fina Technology, Inc. Catalyst for producing hemiisotactic polypropylene
DE69026679T3 (de) * 1989-10-30 2005-10-06 Fina Technology, Inc., Houston Addition von Alkylaluminium zum Verbessern eines Metallocenkatalysators
US5387568A (en) * 1989-10-30 1995-02-07 Fina Technology, Inc. Preparation of metallocene catalysts for polymerization of olefins
DE69018376T3 (de) * 1989-10-30 2002-05-16 Fina Technology, Inc. Herstellung von Metallocenkatalysatoren für Olefinpolymerisation.
US5145818A (en) * 1989-12-29 1992-09-08 Mitsui Petrochemical Industries, Ltd. Olefin polymerization catalyst and process for the polymerization of olefins
KR927003652A (ko) * 1990-01-02 1992-12-18 엑손 케미칼 패턴츠 인코포레이티드 올레핀 중합을 위한 지지된 이온성 메탈로센 촉매
KR927003669A (ko) * 1990-02-09 1992-12-18 엑손 케미칼 패턴츠 인코포레이티드 이온 촉매로부터의 블록 공중합체
US6294625B1 (en) 1990-03-20 2001-09-25 Exxonmobil Chemical Patents Inc. Catalyst system of enhanced productivity and its use in polymerization process
JP3020250B2 (ja) * 1990-04-09 2000-03-15 三井化学株式会社 シンジオタクチックポリプロピレンの製造方法
US5516739A (en) * 1990-04-20 1996-05-14 The University Of North Carolina At Chapel Hill Late transition metal catalysts for the co- and terpolymerization of olefin and alkyne monomers with carbon monoxide
DE69124255T3 (de) * 1990-06-22 2005-10-06 Exxon Chemical Patents Inc. Aluminiumfreie monocyclopentadienyl-metallocenkatalysatoren für olefinpolymerisation
JP2545006B2 (ja) * 1990-07-03 1996-10-16 ザ ダウ ケミカル カンパニー 付加重合触媒
EP0500944B1 (de) * 1990-07-24 1998-10-07 Mitsui Chemicals, Inc. Katalysator für alpha-olefinpolymerisation und herstellung von poly(alpha)olefinen damit
EP0548274B1 (de) * 1990-09-14 1996-02-28 Exxon Chemical Patents Inc. Ionischer katalysator zur herstellung von polyalphaolefinen mit kontrollierter takticität
EP0818472B2 (de) * 1990-10-05 2009-07-29 Idemitsu Kosan Co., Ltd. Copolymere von Cycloolefinen, daraus hergestellte Zusammensetzungen und Formteile
WO1992009640A1 (en) * 1990-11-30 1992-06-11 Idemitsu Kosan Co., Ltd. Process for producing olefinic polymer
JP2840462B2 (ja) * 1990-12-28 1998-12-24 出光興産株式会社 スチレン系重合体の製造方法及びその触媒
JP2888648B2 (ja) * 1990-12-28 1999-05-10 出光興産株式会社 スチレン系重合体の製造方法及びその触媒
US5262498A (en) * 1991-01-12 1993-11-16 Hoechst Aktiengesellschaft Metallocene (co)polymers, process for their preparation and their use as catalysts
US5169818A (en) * 1991-01-12 1992-12-08 Hoechst Aktiengesellschaft Metallocene (co)polymers, process for their preparation and their use as catalysts
US5189192A (en) * 1991-01-16 1993-02-23 The Dow Chemical Company Process for preparing addition polymerization catalysts via metal center oxidation
US5206197A (en) * 1991-03-04 1993-04-27 The Dow Chemical Company Catalyst composition for preparation of syndiotactic vinyl aromatic polymers
JP3117231B2 (ja) * 1991-03-11 2000-12-11 三井化学株式会社 幅広い分子量分布を有するシンジオタクチックポリ−α−オレフィンの製造方法
JP2939354B2 (ja) * 1991-03-26 1999-08-25 出光興産株式会社 スチレン系重合体の製造方法及びその触媒
DE69220272T2 (de) * 1991-03-27 1997-09-25 Idemitsu Kosan Co Verfahren zur Herstellung eines Styrolpolymerisats
JP2927566B2 (ja) * 1991-03-28 1999-07-28 出光興産株式会社 スチレン系共重合体の製造方法
EP0505997B1 (de) * 1991-03-29 1997-05-28 Idemitsu Kosan Company Limited Verfahren zur Herstellung eines Homo- oder Copolymerisates des Styrols
EP0702030B1 (de) 1991-05-27 2001-03-21 TARGOR GmbH Verfahren zur Herstellung von Polyolefinen mit breiter Molmassenverteilung
DE69222700T2 (de) * 1991-07-11 1998-03-26 Idemitsu Kosan Co Verfahren zur Herstellung von Polymeren auf Olefinbasis und Olefin-Polymerisationskatalysatoren
US5886117A (en) * 1991-08-05 1999-03-23 The Dow Chemical Company Process using borane derived catalysts for preparation of syndiotactic vinyl aromatic polymers
TW300901B (de) 1991-08-26 1997-03-21 Hoechst Ag
JP3822633B2 (ja) * 1991-11-07 2006-09-20 エクソンモービル・ケミカル・パテンツ・インク ポリオレフィンの製造方法
CA2124187C (en) * 1991-11-25 2001-08-07 Howard William Turner Polyonic transition metal catalyst composition
TW309523B (de) * 1991-11-30 1997-07-01 Hoechst Ag
TW254950B (de) * 1992-03-02 1995-08-21 Shell Internat Res Schappej Bv
US5374696A (en) * 1992-03-26 1994-12-20 The Dow Chemical Company Addition polymerization process using stabilized reduced metal catalysts
US5455307A (en) * 1992-04-03 1995-10-03 Exxon Chemical Patents Inc. Polymeric stabilizers for polyolefins
US6143854A (en) 1993-08-06 2000-11-07 Exxon Chemical Patents, Inc. Polymerization catalysts, their production and use
US5296433A (en) * 1992-04-14 1994-03-22 Minnesota Mining And Manufacturing Company Tris(pentafluorophenyl)borane complexes and catalysts derived therefrom
DE69313354T3 (de) * 1992-06-04 2001-01-18 Mitsui Chemicals, Inc. Verfahren zur Herstellung von einem Ethylencopolymeren
DE69317566T2 (de) * 1992-06-18 1998-09-24 Montell Technology Co. B.V., Hoofddorp Verfahren zur herstellung eines ethylenischen copolymerisats
JP3398381B2 (ja) * 1992-07-01 2003-04-21 エクソンモービル・ケミカル・パテンツ・インク 遷移金属オレフィン重合触媒
KR100292158B1 (ko) * 1992-08-04 2001-06-01 가지와라 야스시 올레핀중합용 촉매 및 올레핀의 중합방법
US5317036A (en) * 1992-10-16 1994-05-31 Union Carbide Chemicals & Plastics Technology Corporation Gas phase polymerization reactions utilizing soluble unsupported catalysts
US5608009A (en) * 1992-10-28 1997-03-04 Idemitsu Kosan Co., Ltd. Olefin copolymer and process for preparing same
NL9201970A (nl) * 1992-11-11 1994-06-01 Dsm Nv Indenylverbindingen en katalysatorcomponenten voor de polymerisatie van olefinen.
US5322728A (en) * 1992-11-24 1994-06-21 Exxon Chemical Patents, Inc. Fibers of polyolefin polymers
US5859159A (en) * 1992-12-17 1999-01-12 Exxon Chemical Patents Inc. Dilute process for the polymerization of non-ethylene α-olefin homopolymers and copolymers using metallocene catalyst systems
GB9226905D0 (en) 1992-12-24 1993-02-17 Wellcome Found Pharmaceutical preparation
DE4304310A1 (de) * 1993-02-12 1994-08-18 Hoechst Ag Teilkristalline Cycloolefin-Copolymer-Folie
TW274100B (de) 1993-02-12 1996-04-11 Hoechst Ag
ES2179066T3 (es) * 1993-02-22 2003-01-16 Idemitsu Kosan Co Copolimero de etileno, composicion de resina termoplastica que lo contiene y procedimiento de produccion de este copolimero.
US6313240B1 (en) * 1993-02-22 2001-11-06 Tosoh Corporation Process for producing ethylene/α-olefin copolymer
US5670580A (en) * 1993-02-24 1997-09-23 Idemitsu Kosan Co., Ltd. Propylene block copolymer, process for preparing same, and modified copolymer using propylene block copolymer
CA2161419C (en) * 1993-04-26 1999-05-04 Marc Louis Dechellis Process for polymerizing monomers in fluidized beds
CA2125247C (en) * 1993-06-07 2001-02-20 Daisuke Fukuoka Transition metal compound, olefin polymerization catalyst component comprising said compound, olefin polymerization catalyst containing said catalyst component, process for olefinpolymerization using said catalyst , propylene homopolymer, propylene copolymer and propylene elastomer
EP1209165B1 (de) * 1993-06-07 2006-04-19 Mitsui Chemicals, Inc. Propylenelastomere
WO1995000526A1 (en) * 1993-06-24 1995-01-05 The Dow Chemical Company Titanium(ii) or zirconium(ii) complexes and addition polymerization catalysts therefrom
US5514728A (en) * 1993-07-23 1996-05-07 Minnesota Mining And Manufacturing Company Catalysts and initiators for polymerization
IT1271407B (it) 1993-09-13 1997-05-28 Spherilene Srl Procedimento per la preparazione di copolimeri elastomerici dell'etilene e prodotti ottenuti
US5475067A (en) * 1993-09-16 1995-12-12 Exxon Chemical Patents Inc. Process for polyolefin production using short residence time reactors
US5631202A (en) * 1993-09-24 1997-05-20 Montell Technology Company B.V. Stereospecific metallocene catalysts with stereolocking α-CP substituents
US5491207A (en) * 1993-12-14 1996-02-13 Exxon Chemical Patents Inc. Process of producing high molecular weight ethylene-α-olefin elastomers with an indenyl metallocene catalyst system
FI945959A (fi) * 1993-12-21 1995-06-22 Hoechst Ag Metalloseenejä ja niiden käyttö katalyytteinä
US6391817B1 (en) 1993-12-28 2002-05-21 Exxonmobil Chemical Patents Inc. Method for producing a prepolymerized catalyst
US5691422A (en) * 1994-03-07 1997-11-25 Exxon Chemical Patents Inc. Saturated polyolefins having terminal aldehyde or hydroxy substituents and derivatives thereof
US5674950A (en) * 1994-03-07 1997-10-07 Exxon Chemical Patents Inc. Polymers having terminal hydroxyl aldehyde, or alkylamino substitutents and derivatives thereof
US5502017A (en) * 1994-03-10 1996-03-26 Northwestern University Metallocene catalyst containing bulky organic group
DE69514338T2 (de) * 1994-03-17 2000-08-24 Exxon Chemical Patents, Inc. Sprühgetrockneter emulsionspolymer als katalysatorträger
US5594080A (en) * 1994-03-24 1997-01-14 Leland Stanford, Jr. University Thermoplastic elastomeric olefin polymers, method of production and catalysts therefor
US5648438A (en) * 1994-04-01 1997-07-15 Exxon Chemical Patents, Inc. Process for producing polymers with multimodal molecular weight distributions
JP4026846B2 (ja) * 1994-04-11 2007-12-26 三井化学株式会社 プロピレン系重合体組成物の製造方法およびプロピレン系重合体組成物
CA2157400C (en) * 1994-04-11 2003-07-29 Takashi Ueda Process for preparing propylene polymer composition, and propylene polymer composition
US6008307A (en) * 1994-04-28 1999-12-28 Exxon Chemical Patents Inc Process for producing olefin polymers using cationic catalysts
US6291389B1 (en) 1994-04-28 2001-09-18 Exxonmobil Chemical Patents Inc. Cationic polymerization catalysts
DE4416894A1 (de) * 1994-05-13 1995-11-16 Witco Gmbh Verfahren zur Synthese von Mono- und Dimethylmetallocenen und deren Lösungen speziell für den Einsatz zur Polymerisation von Olefinen
ATE188967T1 (de) 1994-06-13 2000-02-15 Targor Gmbh Übergangsmetallverbindungen
DE4420456A1 (de) * 1994-06-13 1995-12-14 Hoechst Ag Übergangsmetallverbindung
US5936041A (en) * 1994-06-17 1999-08-10 Exxon Chemical Patents Inc Dispersant additives and process
US5561216A (en) * 1994-07-01 1996-10-01 University Of North Carolina At Chapel Hill Late transition metal catalysts for the CO- and terpolymerization of olefin and alkyne monomers with carbon monoxide
DE4424227A1 (de) 1994-07-09 1996-01-11 Hoechst Ag Organometallverbindung
EP0770098B2 (de) * 1994-07-11 2010-03-03 ExxonMobil Chemical Patents Inc. Dispergiermittel auf basis von bernsteinsäureimidadditiven aus schwerpolyaminen zur verwendung in schmierölen
US6465384B1 (en) * 1994-08-02 2002-10-15 The Dow Chemical Company Biscyclopentadienyl diene complexes
TW369547B (en) 1994-09-21 1999-09-11 Mitsui Chemicals Inc Olefin polymerization catalyst and process for olefin polymerization
DE4434640C1 (de) 1994-09-28 1996-02-01 Hoechst Ag Verfahren zur Herstellung verbrückter Metallocene
DE4436113A1 (de) 1994-10-10 1996-04-11 Hoechst Ag Metallocenverbindung
US5565128A (en) * 1994-10-12 1996-10-15 Exxon Chemical Patents Inc Lubricating oil mannich base dispersants derived from heavy polyamine
EP0745615B1 (de) * 1994-12-20 2004-07-28 Mitsui Chemicals, Inc. Verfahren zur herstellung von ethylenpolymer und ethylenpolymer
ES2116188B1 (es) 1994-12-30 1999-04-01 Repsol Quimica Sa Proceso de obtencion de poliolefinas con distribuciones de pesos moleculares anchas, bimodales o multimodales.
CN1076282C (zh) 1995-03-02 2001-12-19 三井化学株式会社 聚丙烯复合膜
ATE172992T1 (de) * 1995-06-12 1998-11-15 Targor Gmbh Übergangsmetallverbindung
US5674613A (en) 1995-06-14 1997-10-07 Exxon Chemical Patents Inc. Electrical devices including ethylene, a-olefin, vinyl norbornene elastomeric polymers
US5766713A (en) * 1995-06-14 1998-06-16 Exxon Chemical Patents Inc. Elastomeric vehicle hoses
CA2224781A1 (en) * 1995-06-28 1997-01-16 Shell Canada Limited Catalyst compositions comprising organometallic compounds
TW401445B (en) * 1995-07-13 2000-08-11 Mitsui Petrochemical Ind Polyamide resin composition
ES2120868B1 (es) * 1995-08-03 2000-09-16 Repsol Quimica Sa Sistema de catalizadores hetereogeneos tipo metalogeno, para procesos de obtencion de poliolefinas.
US5652202A (en) * 1995-08-15 1997-07-29 Exxon Chemical Patents Inc. Lubricating oil compositions
KR100426080B1 (ko) 1995-09-13 2004-07-23 미쓰이 가가쿠 가부시키가이샤 수지조성물및그의용도
US5558802A (en) * 1995-09-14 1996-09-24 Exxon Chemical Patents Inc Multigrade crankcase lubricants with low temperature pumpability and low volatility
GB9519381D0 (en) 1995-09-22 1995-11-22 Exxon Chemical Patents Inc Rubber toughened blends
JP3176932B2 (ja) * 1995-10-18 2001-06-18 チッソ株式会社 オレフィン(共)重合体組成物とその製造方法及びオレフィン(共)重合用触媒とその製造方法
DE19539650A1 (de) * 1995-10-25 1997-04-30 Studiengesellschaft Kohle Mbh Zirconocene und Hafnocene mit borylierten Cyclopentadienyl-Liganden und das Verfahren zu ihrer Herstellung
IT1276070B1 (it) 1995-10-31 1997-10-24 Siac It Additivi Carburanti Processo per la preparazione di polimeri a base di etilene a basso peso molecolare
DE19546501A1 (de) 1995-12-13 1997-06-19 Hoechst Ag Metallocenverbindung
DE19546500A1 (de) 1995-12-13 1997-06-19 Hoechst Ag Verfahren zur Herstellung eines Cycloolefincopolymeren
HUP9603449A3 (en) 1995-12-15 2000-03-28 Union Carbide Chem Plastic Process for production of long-chain branched polyolefins, polyethylene composition and product
IT1277696B1 (it) 1995-12-22 1997-11-11 Enichem Spa Catalizzatori per la polimerizzazione di alfa-olefine
US6291695B1 (en) 1996-02-20 2001-09-18 Northwestern University Organo-Lewis acids of enhanced utility, uses thereof, and products based thereon
US6274752B1 (en) 1996-02-20 2001-08-14 Northwestern University Organo-Lewis acid as cocatalyst for cationic homogeneous Ziegler-Natta olefin polymerizations
US5856256A (en) * 1996-02-20 1999-01-05 Northwestern University Organo-Lewis acid as cocatalyst for cationic homogeneous Ziegler-Natta olefin polymerizations
US5786291A (en) * 1996-02-23 1998-07-28 Exxon Chemical Patents, Inc. Engineered catalyst systems and methods for their production and use
ATE234870T1 (de) * 1996-03-27 2003-04-15 Dow Global Technologies Inc Lösungspolymerisationsverfahren mit dispergierten katalysator-aktivierer
ES2129323B1 (es) * 1996-04-18 2000-09-16 Repsol Quimica Sa Procedimiento para la obtencion de un sistema catalitico para la polimerizacion de alpha-olefinas en suspension en fase gas a bajas y altas temperaturas o en masa a altas presiones y altas o bajas temperaturas
EP1083188A1 (de) 1999-09-10 2001-03-14 Fina Research S.A. Katalysator und Verfahren zur Herstellung von syndiotaktischen / ataktischen Block-Polyolefinen
GB9617507D0 (en) 1996-08-21 1996-10-02 Exxon Chemical Patents Inc Chemically modified elastomeres and blends thereof
DE69705186T2 (de) 1996-10-30 2002-03-14 Repsol Quimica S.A., Madrid Katalysatorsysteme für die (Co)Polymerisation von Alpha-Olefinen
ATE189822T1 (de) * 1996-10-30 2000-03-15 Repsol Quimica Sa Organometallische katalysatoren für die polymerisation und die copolymerisation von alpha-olefinen
PT839836E (pt) 1996-10-31 2001-06-29 Repsol Quimica Sa Sistemas cataliticos para a polimerizacao e copolimerizacao de alfa-olefinas
CA2271861C (en) 1996-11-15 2007-09-04 Montell Technology Company B.V. Heterocyclic metallocenes and polymerization catalysts
US5952427A (en) * 1996-12-10 1999-09-14 Exxon Chemical Patents Inc. Electrical devices including ethylene, α-olefin, vinyl norbornene elastomers and ethylene α-olefin polymers
US5763533A (en) * 1996-12-10 1998-06-09 Exxon Chemical Patents Inc. Electrical devices including ethylene, α-olefin, vinyl norbornene elastomers and ethylene α-olefin polymers
US6110858A (en) * 1996-12-18 2000-08-29 Tosoh Corporation Olefin polymerization catalysts and process for producing olefin polymers
US6660816B2 (en) 1996-12-20 2003-12-09 Sumitomo Chemical Company, Limited Process for preparing olefin polymers
EP1582525B1 (de) 1996-12-20 2014-12-17 Sumitomo Chemical Company, Limited Borverbindung in Form feiner Teilchen, Katalysatorkomponente für die Olefinpolymerisation, die diese enthalten und Verfahren zu dessen Herstellung
US6180736B1 (en) 1996-12-20 2001-01-30 Exxon Chemical Patents Inc High activity metallocene polymerization process
DE69820179T2 (de) 1997-01-31 2004-09-23 Mitsui Chemicals, Inc. Schmieröl oder schmierölzusammensetzung und heizölzusammensetzung
EP0856546A1 (de) 1997-01-31 1998-08-05 Dsm N.V. Verzweigte Polyolefine
EP0856524A1 (de) 1997-02-01 1998-08-05 Repsol Quimica S.A. Heterogene Katalysatorzusammensetzungen zur Polymerisation von Olefinen, Verfahren zu deren Herstellung und deren Verwendung
JP2001511214A (ja) 1997-02-07 2001-08-07 エクソン・ケミカル・パテンツ・インク ビニル含有マクロマーの調製
JP4218988B2 (ja) 1997-02-07 2009-02-04 エクソンモービル・ケミカル・パテンツ・インク 分枝鎖オレフィンコポリマーに由来する熱可塑性エラストマー組成物
TW425414B (en) * 1997-02-18 2001-03-11 Chisso Corp Preactivated catalyst for olefin (co)polymerization, catalyst for olefin (co)polymerization and olefin (co)polymer composition and their manufacturing method
DE19707236A1 (de) 1997-02-24 1998-08-27 Targor Gmbh Katalysatorzusammensetzung
US6255426B1 (en) 1997-04-01 2001-07-03 Exxon Chemical Patents, Inc. Easy processing linear low density polyethylene
WO1998044042A1 (fr) 1997-04-02 1998-10-08 Chisso Corporation Composition (co)polymere d'olefine modifiee, procede pour preparer cette composition et produit moule de cette composition (co)polymere
US6303696B1 (en) 1997-04-11 2001-10-16 Chisso Corporation Propylene (co)polymer composition using metallocene catalyst
JP3817015B2 (ja) * 1997-04-14 2006-08-30 三井化学株式会社 環状オレフィン系共重合体およびその用途
TWI246520B (en) 1997-04-25 2006-01-01 Mitsui Chemicals Inc Processes for olefin polymerization
US6160072A (en) * 1997-05-02 2000-12-12 Ewen; John A. Process for polymerizing tactioselective polyolefins in condensed phase using titanocenes
GB9713741D0 (en) 1997-06-27 1997-09-03 Bp Chem Int Ltd Polymerisation catalysts
DE19732804A1 (de) 1997-07-30 1999-02-04 Bayer Ag Katalysatoren auf Basis von Fulven-Metallkomplexen
JP3120370B2 (ja) 1997-07-30 2000-12-25 オーテックス株式会社 光潜在性重合開始剤
DE69802939T2 (de) * 1997-08-01 2002-11-21 The Dow Chemical Co., Midland Zwiterionischer katalysator aktivator
TW504515B (en) 1997-08-07 2002-10-01 Chisso Corp Olefin (co)polymer composition
US6921794B2 (en) 1997-08-12 2005-07-26 Exxonmobil Chemical Patents Inc. Blends made from propylene ethylene polymers
US6635715B1 (en) 1997-08-12 2003-10-21 Sudhin Datta Thermoplastic polymer blends of isotactic polypropylene and alpha-olefin/propylene copolymers
US7026404B2 (en) 1997-08-12 2006-04-11 Exxonmobil Chemical Patents Inc. Articles made from blends made from propylene ethylene polymers
US6100224A (en) * 1997-10-01 2000-08-08 Exxon Chemical Patents Inc Copolymers of ethylene α-olefin macromers and dicarboxylic monomers and derivatives thereof, useful as additives in lubricating oils and in fuels
DE19744102A1 (de) 1997-10-06 1999-04-15 Targor Gmbh Katalysatorsystem
US6403735B1 (en) 1997-11-07 2002-06-11 Bayer Aktiengesellschaft Method for producing fulvene metal complexes
EP1036097A1 (de) 1997-12-01 2000-09-20 Asahi Kasei Kabushiki Kaisha Olefinpolymerisationskatalysator und verfahren zur olefinpolymerisation unter verwendung des katalysators
US6197910B1 (en) 1997-12-10 2001-03-06 Exxon Chemical Patents, Inc. Propylene polymers incorporating macromers
US6184327B1 (en) 1997-12-10 2001-02-06 Exxon Chemical Patents, Inc. Elastomeric propylene polymers
US6117962A (en) * 1997-12-10 2000-09-12 Exxon Chemical Patents Inc. Vinyl-containing stereospecific polypropylene macromers
DE69823969T2 (de) 1997-12-22 2005-05-12 Mitsui Chemicals, Inc. Katalysatorbestandteil, Katalysator und Verfahren zur Polymerisation von äthylenisch ungesättigten Monomeren
DE19757540A1 (de) 1997-12-23 1999-06-24 Hoechst Ag Geträgertes Katalysatorsystem zur Polymerisation von Olefinen
DE19804970A1 (de) 1998-02-07 1999-08-12 Aventis Res & Tech Gmbh & Co Katalysatorsystem
DE19808254A1 (de) 1998-02-27 1999-09-02 Aventis Res & Tech Gmbh & Co Chemische Verbindung
DE19808253A1 (de) 1998-02-27 1999-09-02 Aventis Res & Tech Gmbh & Co Katalysatorsystem, Verfahren zu seiner Herstellung und seine Verwendung zur Polymerisation von Olefinen
AU742900B2 (en) 1998-03-04 2002-01-17 Exxonmobil Chemical Patents Inc High temperature olefin polymerization process
DE19809159A1 (de) 1998-03-04 1999-09-09 Bayer Ag Metallorganische Verbindungen
DE19812881A1 (de) 1998-03-24 1999-10-07 Bayer Ag Neue dendrimere Verbindungen, ein Verfahren zu deren Herstellung sowie deren Verwendung als Katalysatoren
TW562810B (en) 1998-04-16 2003-11-21 Mitsui Chemicals Inc Catalyst for olefinic polymerization and method for polymerizing olefine
US7148173B2 (en) 1998-04-27 2006-12-12 Repsol Quimica, S.A. Catalytic systems for the polymerization and copolymerization of alpha-olefins
US6342568B1 (en) 1998-05-06 2002-01-29 Mitsui Chemicals, Inc. Metallocene compound, and process for preparing polyolefin by using it
DE69918100T2 (de) 1998-05-13 2005-07-07 Exxonmobil Chemical Patents Inc., Baytown Propylenhomopolymere und herstellungsverfahren
US6306960B1 (en) 1998-05-13 2001-10-23 Exxonmobil Chemical Patents Inc. Articles formed from foamable polypropylene polymer
US6784269B2 (en) 1998-05-13 2004-08-31 Exxonmobil Chemical Patents Inc. Polypropylene compositions methods of making the same
US6245868B1 (en) 1998-05-29 2001-06-12 Univation Technologies Catalyst delivery method, a catalyst feeder and their use in a polymerization process
EP1090045B1 (de) 1998-06-12 2004-04-28 Univation Technologies LLC Verfahren zur polymerisation von olefinen unter verwendung von aktivierten lewis säure-base komplexen
DE19828271A1 (de) 1998-06-25 1999-12-30 Elenac Gmbh Verfahren zur Herstellung eines geträgerten Katalysatorsystems
EP1865006B1 (de) 1998-06-25 2009-06-24 Idemitsu Kosan Co., Ltd. Propylenpolymer und Zusammensetzung damit, Formobjekt und Laminat damit sowie Verfahren zur Herstellung von Propylenpolymer und einer Zusammensetzung damit
AU4962399A (en) 1998-07-01 2000-01-24 Exxon Chemical Patents Inc. Elastic blends comprising crystalline polymer and crystallizable polymers of propylene
DE69935332T2 (de) 1998-07-16 2007-10-31 Univation Technologies, LLC, Houston Lewis-säure cokatalysatoren auf aluminium-basis für die olefinpolymerisation
AU4597799A (en) * 1998-07-17 2000-02-07 Bayer Inc. Process for polymerizing cationically polymerizable olefin
EP1115761B1 (de) 1998-08-26 2013-09-18 ExxonMobil Chemical Patents Inc. Verzweigte polypropylenzusammensetzungen
US6177527B1 (en) * 1998-09-08 2001-01-23 Union Carbide Chemical & Plastics Technology Corporation Process for the preparation of polyethylene or polypropylene
US6555494B2 (en) 1998-10-23 2003-04-29 Albemarle Corporation Transition metal compounds having conjugate aluminoxate anions, their preparation and their use as catalyst components
US6462212B1 (en) 1998-10-23 2002-10-08 Albemarle Corporation Transition metal compounds having conjugate aluminoxate anions and their use as catalyst components
US6812182B2 (en) 1998-10-23 2004-11-02 Albemarle Corporation Compositions formed from hydroxyaluminoxane and their use as catalyst components
US6160145A (en) * 1998-10-23 2000-12-12 Albemarle Corporation Transition metal compounds having conjugate aluminoxate anions and their use as catalyst components
US6492292B2 (en) 1998-10-23 2002-12-10 Albemarle Corporation Gelatinous compositions formed from hydroxyaluminoxane, solid compositions formed therefrom, and the use of such compositions as catalyst components
DE69922534T2 (de) 1998-10-29 2005-11-03 Exxonmobil Chemical Patents Inc., Baytown Ethylen/alpha-olefin elastomerische zusammensetzungen mit verbesserter extrusionsverarbeitbarkeit
US6147173A (en) * 1998-11-13 2000-11-14 Univation Technologies, Llc Nitrogen-containing group 13 anionic complexes for olefin polymerization
DE19858016A1 (de) 1998-12-16 2000-06-21 Basf Ag Neue Metallocenkomplexe
WO2000037514A1 (en) * 1998-12-21 2000-06-29 Exxon Chemical Patents Inc. Branched semi-crystalline ethylene-propylene compositions
TW576843B (en) 1998-12-25 2004-02-21 Mitsui Chemicals Inc Olefin polymerization catalyst and process for olefin polymerization using the olefin polymerization catalyst
US6469188B1 (en) 1999-01-20 2002-10-22 California Institute Of Technology Catalyst system for the polymerization of alkenes to polyolefins
WO2000058369A1 (de) 1999-03-29 2000-10-05 Basf Aktiengesellschaft Verfahren zur polymerisation von olefinen
US6632885B2 (en) 1999-04-13 2003-10-14 Mitsui Chemicals, Inc. Soft syndiotactic polypropylene composition and molded product
US6174930B1 (en) 1999-04-16 2001-01-16 Exxon Chemical Patents, Inc. Foamable polypropylene polymer
DE19917985A1 (de) 1999-04-21 2000-10-26 Targor Gmbh Katalysatorsystem
US6303718B1 (en) 1999-09-17 2001-10-16 Bayer Aktiengesellschaft Composition based on fluorine-containing metal complexes
US6479598B1 (en) 1999-07-20 2002-11-12 Exxonmobil Chemical Patents Inc. Petroleum resins and their production with BF3 catalyst
JP3808243B2 (ja) 1999-07-27 2006-08-09 三井化学株式会社 軟質樹脂組成物
DE19935592A1 (de) 1999-08-02 2001-02-08 Elenac Gmbh Imidochromverbindungen in Katalysatorsystemen für die Olefinpolymerisation
US6911516B1 (en) 1999-08-13 2005-06-28 Basell Polyolefine Gmbh Copolymers of ethylene with c3-c12 α-olefins
ATE350418T1 (de) 1999-09-01 2007-01-15 Exxonmobil Chem Patents Inc Atmungsfähiger film und verfahren daraus
US6403743B1 (en) 1999-09-14 2002-06-11 Exxonmobil Chemical Patents Inc. Petroleum resins and their production with supported catalyst
US6476164B1 (en) 1999-10-22 2002-11-05 Exxonmobil Chemical Patents Inc. Carbenium cationic complexes suitable for polymerization catalysts
US6475946B1 (en) 1999-10-22 2002-11-05 Exxonmobil Chemical Patents Inc. Olefin polymerization catalysis with aryl substituted carbenium cationic complexes
EP1226206B1 (de) 1999-11-04 2003-10-22 ExxonMobil Chemical Patents Inc. Propylencopolymerschäume und deren verwendung
US6489480B2 (en) 1999-12-09 2002-12-03 Exxonmobil Chemical Patents Inc. Group-15 cationic compounds for olefin polymerization catalysts
US6822057B2 (en) 1999-12-09 2004-11-23 Exxon Mobil Chemical Patents Inc. Olefin polymerization catalysts derived from Group-15 cationic compounds and processes using them
US6281306B1 (en) 1999-12-16 2001-08-28 Univation Technologies, Llc Method of polymerization
AU780051B2 (en) 1999-12-21 2005-02-24 Exxonmobil Chemical Patents Inc Adhesive alpha-olefin inter-polymers
US7067603B1 (en) 1999-12-22 2006-06-27 Exxonmobil Chemical Patents Inc. Adhesive alpha-olefin inter-polymers
DE19962910A1 (de) 1999-12-23 2001-07-05 Targor Gmbh Chemische Verbindung, Verfahren zu deren Herstellung und deren Verwendung in Katalysatorsystemen zur Herstellung von Polyolefinen
DE19962814A1 (de) 1999-12-23 2001-06-28 Targor Gmbh Neues Katalysatorsystem und dessen Verwendung
SG83222A1 (en) 1999-12-27 2001-09-18 Sumitomo Chemical Co Catalyst component for addition polymerization, catalyst for addition polymerization, and process for producing addition polymer
EP2267045B1 (de) 2000-01-26 2015-07-15 Mitsui Chemicals, Inc. Olefinpolymer mit sehr niedriger Polydispersität und Verfahren zu seiner Herstellung
DE10003581A1 (de) 2000-01-28 2001-08-02 Bayer Ag Metallorganische Verbindungen mit anellierten Indenyl Liganden
US20040072975A1 (en) 2000-03-17 2004-04-15 Jorg Schottek Salt-like chemical compound, its preparation and its use in catalyst systems for preparing polyolefins
JP4823461B2 (ja) 2000-03-31 2011-11-24 三井化学株式会社 ポリオレフィン組成物の製造方法
US6809209B2 (en) 2000-04-07 2004-10-26 Exxonmobil Chemical Patents Inc. Nitrogen-containing group-13 anionic compounds for olefin polymerization
DE10017430A1 (de) 2000-04-07 2001-10-11 Basf Ag Polymerisationskatalysator
DE10017660A1 (de) 2000-04-08 2001-10-11 Basf Ag Verfahren zur Herstellung eines Katalysatorsystems für die Polymerisation von Olefinen
DE10022497A1 (de) 2000-05-09 2001-11-15 Bayer Ag Copolymerisation konjugierter Diene mit nichtkonjugierten Olefinen mittels Katalysatoren der Seltenen Erden
US6635733B2 (en) 2000-05-23 2003-10-21 Chisso Corporation Elastomeric polypropylene
US6846943B2 (en) 2000-05-23 2005-01-25 Chisso Corporation Metallocene compound, olefin polymerization catalyst containing the compound, and method for producing an olefin polymer by use of the catalyst
DE10025412A1 (de) 2000-05-24 2001-11-29 Basell Polypropylen Gmbh Als Cokatalysator geeignete chemische Produkte, Verfahren zu ihrer Herstellung und ihre Verwendung in Katalysatorsystemen zur Herstellung von Polyolefinen
US7078164B1 (en) 2000-06-19 2006-07-18 Symyx Technologies, Inc. High throughput screen for identifying polymerization catalysts from potential catalysts
US6346636B1 (en) 2000-06-23 2002-02-12 Exxonmobil Chemical Patents, Inc. Siloxy substituted cocatalyst activators for olefin polymerization
US6541410B1 (en) 2000-06-23 2003-04-01 Exxonmobil Chemical Patents Inc. Siloxy substituted cocatalyst activators for olefin polymerization
TW541318B (en) 2000-07-04 2003-07-11 Mitsui Chemicals Inc Process for producing polar olefin copolymer and polar olefin copolymer obtained thereby
JP2002020417A (ja) 2000-07-04 2002-01-23 Mitsui Chemicals Inc オレフィンの重合方法
DE50105207D1 (de) 2000-07-06 2005-03-03 Basf Ag Metallverbindungen und ihre verwendung zur polymerisation von olefinen
EP1241194B1 (de) 2000-07-26 2013-09-04 Mitsui Chemicals, Inc. Polymer und verfahren zu dessen herstellung
WO2002010227A1 (en) 2000-08-02 2002-02-07 Univation Technologies, Llc Method for producing highly productive supported ionic catalyst for gas phase polymerization
WO2002016450A1 (fr) 2000-08-22 2002-02-28 Idemitsu Petrochemical Co., Ltd. Polymere de 1-butene et produit moule a base de ce polymere
CN1219800C (zh) 2000-09-07 2005-09-21 三井化学株式会社 含极性基团的烯烃共聚物、含有它的热塑性树脂组合物及其应用
US7074736B2 (en) 2000-10-31 2006-07-11 Rohm And Haas Company Hydrozirconated matrix and process for polyolefin production
US6900321B2 (en) 2000-11-07 2005-05-31 Symyx Technologies, Inc. Substituted pyridyl amine complexes, and catalysts
DE10059633A1 (de) 2000-12-01 2002-06-20 Hte Ag Verfahren und Vorrichtung zur Überführung von luftempfindlichen Substanzen
JP2007186718A (ja) * 2000-12-19 2007-07-26 Sunallomer Ltd オレフィン重合用触媒、オレフィン重合用触媒成分およびその保存方法ならびにオレフィン重合体の製造方法
BR0116320A (pt) * 2000-12-19 2004-01-13 Sunallomer Ltd Catalisador de polimerização de olefina, componentes de catalisador de polimerização de olefina e processo para sua armazenagem, processo de produção de polìmeros de olefina
EP1390417B1 (de) 2001-04-12 2010-10-20 ExxonMobil Chemical Patents Inc. Verfahren zur Polymerisation von Propylen und Ethylen in Lösung
DE10126265A1 (de) 2001-05-29 2002-12-05 Basell Polyolefine Gmbh Verfahren zur Abreicherung von anorganischen Nebenprodukten und organometallischen Nebenprodukten bei der Herstellung von Metallocenen sowie der wirtschaftlichen Rückgewinnung der eingesetzten Edukte
DE10127926A1 (de) 2001-06-08 2002-12-12 Bayer Ag 1,3-disubstituierte Indenkomplexe
EP1406761B1 (de) 2001-06-20 2016-11-02 ExxonMobil Chemical Patents Inc. Durch einen katalysator mit einem nicht koordinierten anion hergestellte polyolefine und diese enthaltende artikel
WO2003002583A2 (en) 2001-06-29 2003-01-09 Exxonmobil Chemical Patents Inc. Metallocenes and catalyst compositions derived therefrom
EP1419044B1 (de) 2001-07-25 2012-12-12 Pirelli Tyre S.p.A. Verfahren zur kontinuierlichen herstellung einer elastomeren zusammensetzung
US7019157B2 (en) 2001-08-06 2006-03-28 Chisso Corporation Metallocene compounds, production process for olefin polymers using catalysts containing them and olefin polymers produced by the production process
KR100440480B1 (ko) 2001-08-31 2004-07-14 주식회사 엘지화학 폴리올레핀 제조용 촉매 및 이를 이용한 폴리올레핀의제조방법
EP1300423A1 (de) 2001-09-27 2003-04-09 Atofina Research S.A. Katalysatorsystem aus einer Mischung von Katalysatorbestandteilen zur Herstellung einer Polyolefinmischung
EP1298148A1 (de) 2001-09-27 2003-04-02 Atofina Research S.A. Katalysatorbestandteil, der ein Metallocen mit zwei Tetrahydroindenyl-Liganden enthält, zur Herstellung eines Polyolefins
CN100434444C (zh) 2001-10-19 2008-11-19 旭化成株式会社 烯烃聚合催化剂及使用该催化剂的烯烃聚合方法
EP1448568A4 (de) 2001-11-02 2008-02-13 Exxonmobil Chem Patents Inc Dicops-haltige acetylensubstituenten
EP1308450A3 (de) 2001-11-06 2003-10-01 Symyx Technologies, Inc. Titan-substituierte Pyridyl-Amin-Komplexe, Katalysatoren, und Verfahren zur Polymerisierung von Ethylen und Styren
US6943215B2 (en) 2001-11-06 2005-09-13 Dow Global Technologies Inc. Impact resistant polymer blends of crystalline polypropylene and partially crystalline, low molecular weight impact modifiers
EP1444276A1 (de) 2001-11-06 2004-08-11 Dow Global Technologies, Inc. Isotaktische propylencopolymere, ihre herstellung und ihre verwendung
US6916892B2 (en) 2001-12-03 2005-07-12 Fina Technology, Inc. Method for transitioning between Ziegler-Natta and metallocene catalysts in a bulk loop reactor for the production of polypropylene
US7077977B2 (en) 2001-12-05 2006-07-18 Exxonmobil Chemical Patents Inc. Bulky borate activations
US7964128B2 (en) 2001-12-19 2011-06-21 Pirelli Pneumatici S.P.A. Process and apparatus for continuously producing an elastomeric composition
PL374239A1 (en) 2001-12-21 2005-10-03 Dow Global Technologies Inc. Additive for rendering inert acidic or halogen-containing compounds contained in olefin polymers
CA2368724C (en) * 2002-01-21 2011-06-14 Bayer Inc. Process for preparing isobutylene-based polymers
DE10211386A1 (de) 2002-03-14 2003-09-25 Basf Ag Verfahren zur Oligomerisierung von Olefinen unter Verwendung eines Cycloalkylalkyl-substituierten Triazacyclohexans
US6794514B2 (en) 2002-04-12 2004-09-21 Symyx Technologies, Inc. Ethylene-styrene copolymers and phenol-triazole type complexes, catalysts, and processes for polymerizing
US7060848B2 (en) 2002-04-24 2006-06-13 Symyx Technologies, Inc. Bridged bi-aromatic catalysts, complexes, and methods of using the same
JP4371305B2 (ja) 2002-04-24 2009-11-25 シミックス・ソルーションズ・インコーポレーテッド 架橋ビス芳香族リガンド、錯体、触媒、または、重合方法およびそれにより得られるポリマー
US7091292B2 (en) 2002-04-24 2006-08-15 Symyx Technologies, Inc. Bridged bi-aromatic catalysts, complexes, and methods of using the same
EP1521668B1 (de) 2002-07-11 2010-04-14 Pirelli Tyre S.p.A. Verfahren und vorrichtung zur kontinuierlichen herstellung einer elastomermischung
ATE377033T1 (de) 2002-07-31 2007-11-15 Exxonmobil Chem Patents Inc Silanvernetztes polyethylen
US6995279B2 (en) 2002-08-02 2006-02-07 Chisso Corporation Metallocene compounds, processes for the production of olefin polymers using catalysts containing the compounds, and olefin polymers produced by the processes
EP1531163A4 (de) * 2002-08-19 2006-06-28 Japan Polypropylene Corp Verfahren zur herstellung von polyolefin
EP1539866B1 (de) 2002-09-05 2011-01-05 ExxonMobil Chemical Patents Inc. Stretchfoliewickelverfahren
WO2004029062A1 (ja) 2002-09-27 2004-04-08 Mitsui Chemicals, Inc. オレフィン重合用の架橋メタロセン化合物およびそれを用いたオレフィンの重合方法
EP1403293A1 (de) 2002-09-27 2004-03-31 ATOFINA Research Société Anonyme Metallocenkatalysatorbestandteil, der ein Silyl Gruppe-enthaltender Cyclopentadienylring enthält
EP1403288A1 (de) 2002-09-27 2004-03-31 ATOFINA Research Hafnocenverbindungen enthaltendes Dual-site Katalysatorsystem zur Herstellung von bimodalen Polyolefinen
US7943700B2 (en) 2002-10-01 2011-05-17 Exxonmobil Chemical Patents Inc. Enhanced ESCR of HDPE resins
EP1554320B2 (de) 2002-10-02 2011-07-13 Dow Global Technologies LLC Flüssige und gelartige niedermolekulare ethylenpolymere
CN101724110B (zh) 2002-10-15 2013-03-27 埃克森美孚化学专利公司 用于烯烃聚合的多催化剂体系和由其生产的聚合物
US7223822B2 (en) 2002-10-15 2007-05-29 Exxonmobil Chemical Patents Inc. Multiple catalyst and reactor system for olefin polymerization and polymers produced therefrom
US7700707B2 (en) 2002-10-15 2010-04-20 Exxonmobil Chemical Patents Inc. Polyolefin adhesive compositions and articles made therefrom
BR0314562B1 (pt) 2002-10-17 2013-11-19 Composição polimérica.
DE60335281D1 (de) 2002-10-23 2011-01-20 Mitsui Chemicals Inc Geträgerter olefin-polymerisationskatalysator
DE10251513A1 (de) 2002-11-04 2004-05-19 Basf Ag Übergangsmetallkatalysatoren für (Co)Polymerisation von olefinischen Monomeren
US20040102311A1 (en) 2002-11-21 2004-05-27 Abbas Razavi Bridged metallocene catalyst component, method of making, polyolefin catalyst having C1, C2, or Cs symmetry, methods of making, methods of polymerizing, olefins and products made thereof
US7195806B2 (en) 2003-01-17 2007-03-27 Fina Technology, Inc. High gloss polyethylene articles
FR2852015B1 (fr) 2003-03-07 2007-06-22 Composantes catalytiques a geometrie contrainte comprenant un ligant fluorenyle et basees sur des metaux du groupe iiib
CN101423526B (zh) 2003-03-28 2012-06-06 三井化学株式会社 丙烯共聚物,聚丙烯组合物及其用途,过渡金属化合物和烯烃聚合催化剂
US6953764B2 (en) 2003-05-02 2005-10-11 Dow Global Technologies Inc. High activity olefin polymerization catalyst and process
EP1905807B1 (de) 2003-08-19 2010-01-20 Dow Global Technologies Inc. Interpolymere zur Verwendung für Schmelzklebstoffe und Verfahren zu ihrer Herstellung
US8158711B2 (en) 2003-08-25 2012-04-17 Dow Global Technologies Llc Aqueous dispersion, its production method, and its use
US7803865B2 (en) 2003-08-25 2010-09-28 Dow Global Technologies Inc. Aqueous dispersion, its production method, and its use
US8722787B2 (en) 2003-08-25 2014-05-13 Dow Global Technologies Llc Coating composition and articles made therefrom
US9169406B2 (en) 2003-08-25 2015-10-27 Dow Global Technologies Llc Coating compositions
US8349929B2 (en) 2003-08-25 2013-01-08 Dow Global Technologies Llc Coating composition and articles made therefrom
US7947776B2 (en) 2003-08-25 2011-05-24 Dow Global Technologies Llc Aqueous dispersion, its production method, and its use
US8779053B2 (en) 2003-08-25 2014-07-15 Dow Global Technologies Llc Coating compositions
TW200517426A (en) 2003-08-25 2005-06-01 Dow Global Technologies Inc Aqueous dispersion, its production method, and its use
US8946329B2 (en) 2003-08-25 2015-02-03 Dow Global Technologies Llc Coating compositions
US7763676B2 (en) 2003-08-25 2010-07-27 Dow Global Technologies Inc. Aqueous polymer dispersions and products from those dispersions
US8357749B2 (en) 2003-08-25 2013-01-22 Dow Global Technologies Llc Coating composition and articles made therefrom
FR2860238B1 (fr) 2003-09-29 2006-07-21 Atofina Res Polyethylene bimodal
FR2860170B1 (fr) 2003-09-29 2006-04-21 Atofina Res Liquides ioniques pour catalyseurs de polymerisation d'olefines
SG111209A1 (en) 2003-10-22 2005-05-30 Sumitomo Chemical Co Process for producing modified particle, carrier or catalyst component for addition polymerization, pre-polymerized catalyst component therefor, catalyst therefor, and addition polymer
KR20060118564A (ko) 2003-12-23 2006-11-23 바젤 폴리올레핀 게엠베하 올레핀 중합용 촉매계
US7211536B2 (en) 2004-10-22 2007-05-01 Fina Technology, Inc. Supported metallocene catalysts and their use in producing stereospecific polymers
EP1571163A1 (de) 2004-03-02 2005-09-07 Total Petrochemicals Research Feluy Ionische Flüssigkeiten als Lösungsmittel für Metallocenkatalyse
US7122691B2 (en) 2004-03-30 2006-10-17 Sumitomo Chemical Company, Limited Process for producing compound, catalyst component for addition polymerization, process for producing catalyst for addition polymerization, and process for producing addition polymer
DE102004020524A1 (de) 2004-04-26 2005-11-10 Basell Polyolefine Gmbh Polyethylen und Katalysatorzusammensetzung zu dessen Herstellung
US7592402B2 (en) 2004-04-30 2009-09-22 Sumitomo Chemical Company, Limited Process for producing modified particle; carrier; catalyst component for addition polymerization; process for producing catalyst for addition polymerization; and process for producing addition polymer
GB0411742D0 (en) 2004-05-26 2004-06-30 Exxonmobil Chem Patents Inc Transition metal compounds for olefin polymerization and oligomerization
US7256296B2 (en) 2004-09-22 2007-08-14 Symyx Technologies, Inc. Heterocycle-amine ligands, compositions, complexes, and catalysts
EP1794196A2 (de) 2004-09-22 2007-06-13 Symyx Technologies, Inc. Liganden, zusammensetzungen, komplexe und katalysatoren von heterozyklischen aminen sowie verfahren zu ihrer herstellung und verwendung
ATE517944T1 (de) 2004-10-13 2011-08-15 Exxonmobil Chem Patents Inc Elastomere reaktorblendzusammensetzungen
WO2006049857A1 (en) 2004-10-28 2006-05-11 Dow Global Technologies Inc. Method of controlling a polymerization reactor
US7399874B2 (en) 2004-10-29 2008-07-15 Exxonmobil Chemical Patents Inc. Catalyst compound containing divalent tridentate ligand
EP1661921B1 (de) 2004-11-26 2019-07-17 Mitsui Chemicals, Inc. Synthetische Schmieröle und Schmierölzusammensetzung deren
US7588706B2 (en) 2004-12-16 2009-09-15 Exxonmobil Chemical Patents Inc. Multi-layer films with improved properties
US7705157B2 (en) 2004-12-16 2010-04-27 Symyx Solutions, Inc. Phenol-heterocyclic ligands, metal complexes, and their uses as catalysts
ATE502093T1 (de) 2004-12-21 2011-04-15 Dow Global Technologies Inc Klebstoffzusammensetzung auf polypropylenbasis
EP1900758B9 (de) 2005-05-18 2016-07-13 Mitsui Chemicals, Inc. Verfahren zur herstellung von olefinpolymer
EP1731536A1 (de) 2005-06-09 2006-12-13 Innovene Manufacturing France SAS Unterstützte Polymerisationskatalysatoren
US7935760B2 (en) 2005-06-22 2011-05-03 Exxonmobil Chemical Patents Inc. Process of making a heterogeneous polymer blend
US9745461B2 (en) 2005-06-22 2017-08-29 Exxonmobil Chemical Patents Inc. Vulcanized polymer blends
US7951872B2 (en) 2005-06-22 2011-05-31 Exxonmobil Chemical Patents Inc. Heterogeneous polymer blend with continuous elastomeric phase and process of making the same
US9644092B2 (en) 2005-06-22 2017-05-09 Exxonmobil Chemical Patents Inc. Heterogeneous in-situ polymer blend
US7928164B2 (en) 2005-06-22 2011-04-19 Exxonmobil Chemical Patents Inc. Homogeneous polymer blend and process of making the same
JP5079223B2 (ja) 2005-06-29 2012-11-21 出光興産株式会社 水分散性ポリオレフィン系樹脂組成物
EP1741486A1 (de) 2005-07-07 2007-01-10 Total Petrochemicals Research Feluy Katalysatorsysteme auf Basis von macrocyclischen Liganden
AU2006270083B2 (en) * 2005-07-19 2011-01-20 Exxonmobil Chemical Patents Inc. Lubricants from mixed alpha-olefin feeds
WO2007011462A1 (en) 2005-07-19 2007-01-25 Exxonmobil Chemical Patents Inc. Lubricants from mixed alpha-olefin feeds
AU2006270436B2 (en) 2005-07-19 2011-12-15 Exxonmobil Chemical Patents Inc. Polyalpha-olefin compositions and processes to produce the same
US7989670B2 (en) 2005-07-19 2011-08-02 Exxonmobil Chemical Patents Inc. Process to produce high viscosity fluids
EP1746111A1 (de) 2005-07-19 2007-01-24 Total Petrochemicals Research Feluy Polymerisationskatalysatorsystem basiert auf Dioxim-Liganden
EP1746112A1 (de) 2005-07-19 2007-01-24 Total Petrochemicals Research Feluy Polymerisationskatalysator auf Basis von Monooximliganden
KR101141359B1 (ko) 2005-09-09 2012-05-03 에스케이이노베이션 주식회사 에틸렌 단독중합체 또는 α-올레핀과의 공중합체 제조용균일 촉매계
DK1948728T3 (en) 2005-10-25 2019-05-06 Gen Cable Technologies Corp IMPROVED LEAD-INSULATION COMPOSITIONS CONTAINING METALLOCENE POLYMERS
CN101316699A (zh) 2005-10-26 2008-12-03 陶氏环球技术公司 多层、预拉伸的弹性制品
US7605208B2 (en) 2005-10-31 2009-10-20 Mitsui Chemicals, Inc. Process for producing thermoplastic resin composition
EP1806369A1 (de) 2005-12-22 2007-07-11 DSMIP Assets B.V. Zwitterionischer Katalysator mit einem Amidinliganden
WO2007070041A1 (en) 2005-12-14 2007-06-21 Exxonmobil Chemical Patents Inc. Halogen substituted metallocene compounds for olefin polymerization
US8071701B2 (en) 2005-12-16 2011-12-06 Dow Global Technologies Llc Polydentate heteroatom ligand containing metal complexes, catalysts and methods of making and using the same
EP1801130A1 (de) 2005-12-22 2007-06-27 DSMIP Assets B.V. Zwitterionischer Katalysator mit einem monoanionischen zweizähnigen Iminliganden
EP1803745A1 (de) 2005-12-22 2007-07-04 DSMIP Assets B.V. Zwitterionischer Katalysator mit einem Ketiminliganden
EP1801113A1 (de) 2005-12-22 2007-06-27 DSM IP Assets B.V. Zwitterionischer Phosphinimin-Katalysator
EP1801131A1 (de) 2005-12-22 2007-06-27 DSMIP Assets B.V. Zwitterionischer Cyclopentadiengruppe enthaltender Katalysator
EP1803744A1 (de) 2005-12-22 2007-07-04 DSMIP Assets B.V. Zwitterionischer Katalysator mit einem Guanidinliganden
EP1803747A1 (de) 2005-12-30 2007-07-04 Borealis Technology Oy Oberflächemodifizierte Polymerisationskatalysatoren zur Herstellung von Polyolefinfilmen mit niedrigem Gelgehalt
DE102006001959A1 (de) 2006-01-13 2007-07-19 Basell Polyolefine Gmbh Verfahren zur Herstellung von unsymmetrischen Bis(imino)verbindungen
EP1832579A1 (de) 2006-03-10 2007-09-12 Total Petrochemicals Research Feluy Polymerisation von Olefinen mit einem Komplex enthaltend einen Imino-Hydroxychinolin Liganden
WO2007105483A1 (ja) 2006-03-10 2007-09-20 Mitsui Chemicals, Inc. インフレーション成形による成形体の製造方法
WO2007111249A1 (ja) 2006-03-27 2007-10-04 Mitsui Chemicals, Inc. Tダイ成形による成形体の製造方法
JP2007261201A (ja) 2006-03-29 2007-10-11 Mitsui Chemicals Inc ブロー成形による成形体の製造方法
WO2007114009A1 (ja) 2006-03-30 2007-10-11 Mitsui Chemicals, Inc. 射出成形による成形体の製造方法
EP1847555A1 (de) 2006-04-18 2007-10-24 Borealis Technology Oy Mehrfach verzweigtes Polypropylen
KR101060838B1 (ko) 2006-04-24 2011-08-30 에스케이이노베이션 주식회사 에틸렌 단독중합체 또는 α-올레핀과의 공중합체 제조용비스-아릴아릴옥시 촉매계
EP1849791A1 (de) 2006-04-24 2007-10-31 Total Petrochemicals Research Feluy Polymerisation von Ethylen und Alpha-olefinen mit Pyridino-Iminophenolkomplexen
WO2007130277A1 (en) 2006-05-05 2007-11-15 Exxonmobil Chemical Patents Inc. Linear low density polymer blends and articles made therefrom
ES2634440T3 (es) 2006-05-17 2017-09-27 Dow Global Technologies Llc Procedimiento de polimerización de polietileno en disolución a alta temperatura
EP2029635A2 (de) * 2006-05-30 2009-03-04 Albermarle Corporation Aktivatoren für single-site-katalysatoren, herstellungsverfahren dafür und verwendung in katalysatoren und bei der polymerisation von olefinen
US8921290B2 (en) 2006-06-06 2014-12-30 Exxonmobil Research And Engineering Company Gear oil compositions
US8299007B2 (en) 2006-06-06 2012-10-30 Exxonmobil Research And Engineering Company Base stock lubricant blends
US8501675B2 (en) 2006-06-06 2013-08-06 Exxonmobil Research And Engineering Company High viscosity novel base stock lubricant viscosity blends
US8535514B2 (en) 2006-06-06 2013-09-17 Exxonmobil Research And Engineering Company High viscosity metallocene catalyst PAO novel base stock lubricant blends
US8834705B2 (en) 2006-06-06 2014-09-16 Exxonmobil Research And Engineering Company Gear oil compositions
JP5555490B2 (ja) 2006-07-19 2014-07-23 エクソンモービル・ケミカル・パテンツ・インク メタロセン触媒を用いたポリオレフィンの製造方法
WO2008016059A1 (fr) 2006-07-31 2008-02-07 Mitsui Chemicals, Inc. Film ou stratifié comprenant une résine d'éthylène ou une composition de résine d'éthylène
EP2075268B1 (de) 2006-10-20 2015-07-08 Mitsui Chemicals, Inc. Copolymer, schmieröl-viskositätsmodifikator und schmierölzusammensetzung
US7985804B2 (en) 2006-11-06 2011-07-26 Exxonmobil Chemical Patents Inc. Rubber toughened compositions, articles, films, and methods of making the same
KR101160383B1 (ko) 2006-12-19 2012-06-27 미쓰이 가가쿠 가부시키가이샤 올레핀 중합용 고체상 촉매, 올레핀 중합 방법 및 상기 중합 방법에 의해 얻어지는 올레핀 중합체 입자
US8143352B2 (en) 2006-12-20 2012-03-27 Exxonmobil Research And Engineering Company Process for fluid phase in-line blending of polymers
US8722833B2 (en) 2006-12-22 2014-05-13 Basell Polyolefine Gmbh Multimodal polyethylene composition, mixed catalyst and process for preparing the composition
ATE551392T1 (de) 2007-01-16 2012-04-15 Prime Polymer Co Ltd Ethylenharzzusammensetzung für blasgeformten körper und damit erhaltener blasgeformter körper
EP2121776B1 (de) 2007-03-07 2012-12-12 Dow Global Technologies LLC Verankerter und gestützter übergangsmetallkomplex
DE102007015707A1 (de) 2007-04-02 2008-10-09 Topas Advanced Polymers Gmbh Cycloolefin-Copolymere, Verfahren zu ihrer Herstellung, deren Verwendung und Katalysatoren
DE102007017903A1 (de) 2007-04-13 2008-10-16 Basell Polyolefine Gmbh Polyethylen und Katalysatorzusammensetzung und Verfahren zu dessen Herstellung
EP2169003B1 (de) 2007-06-14 2014-05-07 Mitsui Chemicals, Inc. Thermoplastische elastomerzusammensetzung
JP5226973B2 (ja) 2007-06-15 2013-07-03 三井化学株式会社 エチレン系共重合体、該共重合体を含む組成物ならびにその用途
US8258361B2 (en) 2007-07-04 2012-09-04 Mitsui Chemicals, Inc. Transition metal complex compounds, olefin oligomerization catalysts including the compounds, and processes for producing olefin oligomers using the catalysts
US8513478B2 (en) 2007-08-01 2013-08-20 Exxonmobil Chemical Patents Inc. Process to produce polyalphaolefins
EP2112176A1 (de) 2008-04-16 2009-10-28 ExxonMobil Chemical Patents Inc. Olefinpolymerisationskatalysatoren, deren Herstellung und Benutzung
TW200932762A (en) 2007-10-22 2009-08-01 Univation Tech Llc Polyethylene compositions having improved properties
US7906588B2 (en) 2007-10-26 2011-03-15 Exxonmobil Chemical Patents Inc. Soft heterogeneous isotactic polypropylene compositions
TW200936619A (en) 2007-11-15 2009-09-01 Univation Tech Llc Polymerization catalysts, methods of making, methods of using, and polyolefin products made therefrom
EP2212359B1 (de) 2007-11-19 2013-08-28 Dow Global Technologies LLC Langkettenverzweigte propylen-alpha-olefin-copolymere
CA2706822C (en) 2007-11-19 2013-05-28 Mitsui Chemicals, Inc. Bridged metallocene compound, olefin polymerization catalyst containing the same, and ethylene polymer obtained with the catalyst
CN103254514B (zh) 2007-12-20 2015-11-18 埃克森美孚研究工程公司 全同立构聚丙烯和乙烯-丙烯共聚物的共混物
EP2112173A1 (de) 2008-04-16 2009-10-28 ExxonMobil Chemical Patents Inc. Katalysatorverbindungen und ihre Verwendung
EP2083046A1 (de) 2008-01-25 2009-07-29 ExxonMobil Chemical Patents Inc. Thermoplastische Elastomerzusammensetzungen
CN101925617B (zh) 2008-01-31 2012-11-14 埃克森美孚化学专利公司 在生产茂金属催化的聚α烯烃中线性α烯烃的改进利用
MX2010009009A (es) 2008-02-18 2010-12-15 Basell Polyolefine Gmbh Composicion polimerica adhesiva.
EP2093229A1 (de) 2008-02-25 2009-08-26 Total Petrochemicals Research Feluy Postmetallocen-Komplexe basierend auf bis(naphtoxy) Pyridin- und bis(naphtoxy) Thiophenliganden zur Polymerisierung von Ethylen und Alpha-Olefinen
US8865959B2 (en) 2008-03-18 2014-10-21 Exxonmobil Chemical Patents Inc. Process for synthetic lubricant production
EP2103634A1 (de) 2008-03-20 2009-09-23 ExxonMobil Chemical Patents Inc. Herstellung propylen-basierter polymere
WO2009119536A1 (ja) 2008-03-27 2009-10-01 三井化学株式会社 樹脂組成物およびその用途
WO2009122967A1 (ja) 2008-03-31 2009-10-08 三井化学株式会社 樹脂組成物および溶融袋
WO2009123800A1 (en) 2008-03-31 2009-10-08 Exxonmobil Chemical Patents Inc. Production of shear-stable high viscosity pao
US9234093B2 (en) 2008-03-31 2016-01-12 Exxonmobil Chemical Patents Inc. Thermoplastic vulcanizates
EP2113507A1 (de) 2008-04-28 2009-11-04 Total Petrochemicals Research Feluy Steril gehinderte metallische Bidentat- und Tridentat-Naphthoxy-Iminkomplexe
US7939610B2 (en) 2008-05-22 2011-05-10 Exxonmobil Research And Engineering Company Polymerization processes for broadened molecular weight distribution
US8431642B2 (en) 2008-06-09 2013-04-30 Exxonmobil Chemical Patents Inc. Polyolefin adhesive compositions and articles made therefrom
US8242198B2 (en) 2008-06-09 2012-08-14 Exxonmobil Chemical Patents Inc. Polyolefin adhesive compositions
US8283400B2 (en) 2008-06-09 2012-10-09 Exxonmobil Chemical Patents Inc. Polyolefin adhesive compositions
WO2010009860A1 (en) 2008-07-23 2010-01-28 Basell Polyolefine Gmbh Method for transitioning between incompatible olefin polymerization catalyst systems
WO2010014344A2 (en) 2008-08-01 2010-02-04 Exxonmobil Chemical Patents Inc. Catalyst system and process for olefin polymerization
US8580902B2 (en) 2008-08-01 2013-11-12 Exxonmobil Chemical Patents Inc. Catalyst system, process for olefin polymerization, and polymer compositions produced therefrom
US7799879B2 (en) 2008-08-01 2010-09-21 Exxonmobil Chemical Patents Inc. Catalyst system and process for olefin polymerization
WO2010021304A1 (ja) 2008-08-19 2010-02-25 三井化学株式会社 混合触媒によるオレフィン重合体の製造方法
US8394746B2 (en) 2008-08-22 2013-03-12 Exxonmobil Research And Engineering Company Low sulfur and low metal additive formulations for high performance industrial oils
EP2328968B1 (de) 2008-08-29 2017-05-03 Basell Polyolefine GmbH Polyethylen für spritzgussteile
US8399586B2 (en) 2008-09-05 2013-03-19 Exxonmobil Research And Engineering Company Process for feeding ethylene to polymerization reactors
EP2328944B1 (de) 2008-09-16 2018-01-24 Dow Global Technologies LLC Polymerzusammensetzungen und -schaumstoffe, herstellungsverfahren dafür und daraus hergestellte gegenstände
EP2361281B1 (de) 2008-09-25 2012-11-21 Basell Polyolefine GmbH Schlagzähe lldpe-zusammensetzung und daraus hergestellte folien
JP5346088B2 (ja) 2008-09-25 2013-11-20 バーゼル・ポリオレフィン・ゲーエムベーハー 耐衝撃性lldpe組成物及びそれから製造されるフィルム
US10161063B2 (en) 2008-09-30 2018-12-25 Exxonmobil Chemical Patents Inc. Polyolefin-based elastic meltblown fabrics
US8748693B2 (en) 2009-02-27 2014-06-10 Exxonmobil Chemical Patents Inc. Multi-layer nonwoven in situ laminates and method of producing the same
US9498932B2 (en) 2008-09-30 2016-11-22 Exxonmobil Chemical Patents Inc. Multi-layered meltblown composite and methods for making same
US9168718B2 (en) 2009-04-21 2015-10-27 Exxonmobil Chemical Patents Inc. Method for producing temperature resistant nonwovens
US8664129B2 (en) 2008-11-14 2014-03-04 Exxonmobil Chemical Patents Inc. Extensible nonwoven facing layer for elastic multilayer fabrics
EP2172499A1 (de) 2008-10-03 2010-04-07 Total Petrochemicals Research Feluy Chemische Mischungen aus Polyolefinen und Polyhydroxycarbonsäuren
US8476205B2 (en) 2008-10-03 2013-07-02 Exxonmobil Research And Engineering Company Chromium HVI-PAO bi-modal lubricant compositions
EP2172490A1 (de) 2008-10-03 2010-04-07 Ineos Europe Limited Polimerisationsverfahren
EP2172498A1 (de) 2008-10-03 2010-04-07 Total Petrochemicals Research Feluy Modifizierung von mit Single-Site-Katalysatoren hergestellten Polyolefinen
EP2204375A1 (de) 2008-12-12 2010-07-07 Total Petrochemicals Research Feluy Herstellung von monoarylsubstituierten, methylenverbrückten substituierten Cyclopentadienyl-Fluorenyl-Liganden und davon abgeleitete Zirkoniumkomplexe
WO2010074815A1 (en) 2008-12-15 2010-07-01 Exxonmobil Chemical Patents Inc. Thermoplastic olefin compositions
RU2515900C2 (ru) 2008-12-18 2014-05-20 Юнивейшн Текнолоджиз, Ллк Способ обработки зародышевого слоя реакции полимеризации
SG171988A1 (en) 2008-12-23 2011-07-28 Basell Polyolefine Gmbh Method for transitioning between incompatible olefin polymerization catalyst systems
JP5557835B2 (ja) 2009-03-30 2014-07-23 三井化学株式会社 オレフィンと共役ジエンとの共重合体、およびその製造方法
US8445609B2 (en) 2009-04-21 2013-05-21 Mitsui Chemicals, Inc. Method for producing olefin polymer
US8378042B2 (en) 2009-04-28 2013-02-19 Exxonmobil Chemical Patents Inc. Finishing process for amorphous polymers
US9127151B2 (en) 2009-04-28 2015-09-08 Exxonmobil Chemical Patents Inc. Polymer compositions having improved properties as viscosity index improvers and use thereof in lubricating oils
US20120028866A1 (en) 2010-07-28 2012-02-02 Sudhin Datta Viscosity Modifiers Comprising Blends of Ethylene-Based Copolymers
WO2010138253A2 (en) 2009-05-29 2010-12-02 Exxonmobil Chemical Patents Inc. Polyolefin adhesive compositions and method of making thereof
US9017593B2 (en) 2009-06-16 2015-04-28 Exxonmobil Chemical Patents Inc. Composite materials comprising propylene-based polymer blend coatings
WO2011002000A1 (ja) 2009-07-01 2011-01-06 三井化学株式会社 有機金属化合物およびその製造方法
US9005739B2 (en) 2009-07-23 2015-04-14 Exxonmobil Chemical Patents Inc. Laminated articles and their production
US20110020619A1 (en) 2009-07-23 2011-01-27 Van Den Bossche Linda M Polypropylene-Based Elastomer Coating Compositions
WO2011025587A1 (en) 2009-08-27 2011-03-03 Exxonmobil Chemical Patents Inc. Polyolefin adhesive compositions and method of making thereof
US8716201B2 (en) 2009-10-02 2014-05-06 Exxonmobil Research And Engineering Company Alkylated naphtylene base stock lubricant formulations
JP2013506062A (ja) 2009-10-02 2013-02-21 エクソンモービル・ケミカル・パテンツ・インク 多層メルトブローン複合材料及びその製造方法
BR112012009098B1 (pt) 2009-10-19 2018-05-22 Sasol Technology PTY Oligomerização de compostos olefínicos com formação reduzida de polímero
US9879160B2 (en) 2009-10-29 2018-01-30 Exxonmobil Chemical Patents Inc. Pressure-sensitive hot melt adhesive compositions
US8668975B2 (en) 2009-11-24 2014-03-11 Exxonmobil Chemical Patents Inc. Fabric with discrete elastic and plastic regions and method for making same
EP2510019A2 (de) 2009-12-07 2012-10-17 Univation Technologies, LLC Verfahren zur reduktion der statischen aufladung eines katalysators und verfahren zur verwendung des katalysators zur herstellung von polyolefinen
US8859451B2 (en) 2009-12-18 2014-10-14 Basell Polyolefine Gmbh Process for the preparation of supported catalysts
EP2518089B1 (de) 2009-12-21 2014-11-26 Mitsui Chemicals, Inc. Verfahren zur herstellung von syndiotaktischem alpha-olefinpolymer
CA2782873C (en) 2009-12-24 2016-06-28 Exxonmobil Chemical Patents Inc. Process for producing novel synthetic basestocks
EP2357035A1 (de) 2010-01-13 2011-08-17 Ineos Europe Limited Polymerpulveraufbewahrungs- und/oder -transport- und/oder -entgasungsgefäßen
WO2011087731A1 (en) 2010-01-14 2011-07-21 Exxonmobil Chemical Patents Inc. Processes and apparatus for continuous solution polymerization
WO2011087729A2 (en) 2010-01-14 2011-07-21 Exxonmobil Chemical Patents Inc. Processes and apparatus for polymer finishing and packaging
CN105348417B (zh) 2010-01-14 2019-03-01 埃克森美孚化学专利公司 连续溶液聚合的方法和设备
WO2011090859A1 (en) 2010-01-22 2011-07-28 Exxonmobil Chemical Patents Inc. Ethylene copolymers, methods for their production, and use
CN102725319B (zh) 2010-01-27 2014-10-15 埃克森美孚化学专利公司 共聚物、其组合物及制造它们的方法
US8748362B2 (en) 2010-02-01 2014-06-10 Exxonmobile Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low and medium speed gas engines by reducing the traction coefficient
US8598103B2 (en) 2010-02-01 2013-12-03 Exxonmobil Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low, medium and high speed engines by reducing the traction coefficient
US8759267B2 (en) 2010-02-01 2014-06-24 Exxonmobil Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
US8728999B2 (en) 2010-02-01 2014-05-20 Exxonmobil Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
US8642523B2 (en) 2010-02-01 2014-02-04 Exxonmobil Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
US8058461B2 (en) 2010-03-01 2011-11-15 Exxonmobil Chemical Patents Inc. Mono-indenyl transition metal compounds and polymerization therewith
BR112012022568A2 (pt) 2010-03-12 2016-08-30 Exxonmobil Chem Patents Inc método para produzir não tecidos resistentes a temperatura
EP2383298A1 (de) 2010-04-30 2011-11-02 Ineos Europe Limited Polymerisierungsverfahren
US9605360B2 (en) 2010-04-30 2017-03-28 Basell Polyolefine Gmbh Polyethylene fiber or filament
EP2383301A1 (de) 2010-04-30 2011-11-02 Ineos Europe Limited Polymerisierungsverfahren
US20120135903A1 (en) 2010-05-11 2012-05-31 Mitsui Chemicals, Inc. Lubricating oil composition
JP5688236B2 (ja) 2010-05-25 2015-03-25 出光興産株式会社 触媒組成物及び当該触媒組成物を用いるオレフィン系重合体の製造方法
US9034999B2 (en) 2010-07-06 2015-05-19 Ticona Gmbh Process for producing high molecular weight polyethylene
KR20130089166A (ko) 2010-07-06 2013-08-09 티코나 게엠베하 고 분자량 폴리에틸렌의 제조 방법
EP2591020B1 (de) 2010-07-06 2015-09-09 Ticona GmbH Verfahren zur herstellung von polyethylen mit ultrahohem molekulargewicht
BR112012032879A2 (pt) 2010-07-06 2016-11-08 Ticona Gmbh artigos moldados de polietileno de alto peso molecular, sua produção e uso
KR20130089165A (ko) 2010-07-06 2013-08-09 티코나 게엠베하 초고분자량 폴리에틸렌, 및 이의 제조 방법 및 용도
EP2591154A2 (de) 2010-07-06 2013-05-15 Ticona GmbH Polyethylenfasern und -membranen von hohem molekulargewicht sowie ihre herstellung und verwendung
EP2591017B1 (de) 2010-07-06 2015-09-09 Ticona GmbH Verfahren zur herstellung von polyethylen mit ultrahohem molekulargewicht
CA2802324C (en) 2010-07-28 2015-04-21 Exxonmobil Chemical Patents Inc. Ethylene based copolymer compositions as viscosity modifiers and methods for making them
KR101442434B1 (ko) 2010-07-28 2014-09-17 엑손모빌 케미칼 패턴츠 인코포레이티드 에틸렌계 공중합체의 블렌드를 포함하는 점도 개질제
WO2012015572A1 (en) 2010-07-28 2012-02-02 Exxonmobil Chemical Patents Inc. Viscosity modifiers comprising blends of ethylene-based copolymers
US9815915B2 (en) 2010-09-03 2017-11-14 Exxonmobil Chemical Patents Inc. Production of liquid polyolefins
CN103154123B (zh) 2010-10-15 2016-01-27 埃克森美孚化学专利公司 聚丙烯-基粘合剂组合物
WO2012072417A1 (en) 2010-11-29 2012-06-07 Ineos Commercial Services Uk Limited Polymerisation control process
MY161763A (en) 2010-11-30 2017-05-15 Univation Tech Llc Catalyst composition having improved flow characteristics and methods of making and using the same
RU2587080C2 (ru) 2010-11-30 2016-06-10 Юнивейшн Текнолоджиз, Ллк Способы полимеризации олефинов с использованием экстрагированных карбоксилатов металлов
EP2465876A1 (de) 2010-12-15 2012-06-20 INEOS Manufacturing Belgium NV Aktivierung von Trägern
WO2012098045A1 (en) 2011-01-20 2012-07-26 Ineos Commercial Services Uk Limited Activating supports
US9029478B2 (en) 2011-02-07 2015-05-12 Equistar Chemicals, Lp High clarity polyethylene films
EP2675844B1 (de) 2011-02-15 2017-10-11 ExxonMobil Chemical Patents Inc. Thermoplastische polyolefinmischungen
TWI555574B (zh) 2011-03-09 2016-11-01 亞比馬利股份有限公司 含有碳陽離子劑之鋁氧烷催化活性劑及其於聚烯烴催化劑中之用途
WO2012134721A2 (en) 2011-03-25 2012-10-04 Exxonmobil Chemical Patents Inc. Vinyl terminated higher olefin polymers and methods to produce thereof
WO2012134725A2 (en) 2011-03-25 2012-10-04 Exxonmobil Chemical Patent Inc. Amphiphilic block polymers prepared by alkene metathesis
MX338080B (es) 2011-04-08 2016-04-01 Ineos Europe Ag Composicion de pelicula.
CN103534279B (zh) 2011-05-13 2016-08-17 尤尼威蒂恩技术有限责任公司 喷雾干燥的催化剂组合物及使用其的聚合方法
US9023906B2 (en) 2011-05-18 2015-05-05 Mitsui Chemicals, Inc. Propylene-based copolymer, propylene-based copolymer composition, molded product thereof and foamed product thereof, and production process therefor
US8658556B2 (en) 2011-06-08 2014-02-25 Exxonmobil Chemical Patents Inc. Catalyst systems comprising multiple non-coordinating anion activators and methods for polymerization therewith
CN103748118B (zh) 2011-06-24 2016-07-06 英尼奥斯欧洲股份公司 淤浆相聚合法
EA027323B1 (ru) 2011-08-05 2017-07-31 Тотал Ресерч & Технолоджи Фелай Катализаторы для получения сверхвысокомолекулярных полиэтиленов (свмпэ)
US8383740B1 (en) 2011-08-12 2013-02-26 Ineos Usa Llc Horizontal agitator
WO2013043846A1 (en) * 2011-09-20 2013-03-28 Dow Corning Corporation Metal containing hydrosilylation catalysts and compositions containing the catalysts
US8969482B2 (en) 2011-09-30 2015-03-03 Exxonmobil Chemical Patents Inc. Dynamic modulation of metallocene catalysts
US9321945B2 (en) 2011-09-30 2016-04-26 Equistar Chemicals, Lp Systems, methods and compositions for production of tie-layer adhesives
US9365788B2 (en) 2011-10-10 2016-06-14 Exxonmobil Chemical Patents Inc. Process to produce improved poly alpha olefin compositions
RU2608615C2 (ru) 2011-10-17 2017-01-23 Инеос Юроуп Аг Регулирование процесса дегазации полимеров
WO2013087531A1 (en) 2011-12-14 2013-06-20 Ineos Europe Ag Novel polymers
WO2013093540A1 (en) 2011-12-19 2013-06-27 Ticona Gmbh Process for producing high molecular weight polyethylene
WO2013091836A1 (en) 2011-12-19 2013-06-27 Saudi Basic Industries Corporation (Sabic) Process for the preparation of metallocene complexes
US9000200B2 (en) 2011-12-19 2015-04-07 Saudi Basic Industries Corporation Process for the preparation of metallocene complexes
WO2013099876A1 (ja) 2011-12-27 2013-07-04 三井化学株式会社 4-メチル-1-ペンテン(共)重合体組成物、該組成物からなるフィルムおよび中空成形体
CN104024326B (zh) 2011-12-28 2016-11-23 三井化学株式会社 乙烯类聚合物组合物和由其得到的成形体
US10316176B2 (en) 2012-02-03 2019-06-11 Exxonmobil Chemical Patents Inc. Polymer compositions and methods of making them
JP6088548B2 (ja) 2012-02-03 2017-03-01 エクソンモービル ケミカル パテンツ インコーポレイテッド 油改質剤として有用なポリマー組成物を製造する方法
US9139794B2 (en) 2012-02-03 2015-09-22 Exxonmobil Chemical Patents Inc. Process for the production of polymeric compositions useful as oil modifiers
CN104203993B (zh) 2012-03-21 2016-06-15 三井化学株式会社 烯烃聚合物的制造方法
SG11201406117PA (en) 2012-03-28 2014-11-27 Mitsui Chemicals Inc Encapsulating material for solar cell and solar cell module
WO2013158225A1 (en) 2012-04-18 2013-10-24 Exxonmobil Chemical Patents Inc. Polyolefin compositions and methods of production thereof
WO2013158254A1 (en) 2012-04-19 2013-10-24 Exxonmobil Chemical Patents Inc. Blocky ethylene propylene copolymers and methods for making them
BR112014023743B1 (pt) 2012-05-10 2020-10-20 Dow Global Technologies Llc. aparelhagem para liberação de um aditivo a um sítio de reação ou misturação e método para liberação de um aditivo a um sítio de reação ou misturação
WO2014006069A1 (en) 2012-07-06 2014-01-09 Total Research & Technology Feluy Process for the polymerization of olefins
ES2726819T3 (es) 2012-09-24 2019-10-09 Exxonmobil Chemical Patents Inc Producción de polietileno terminado en vinilo
US9458257B2 (en) 2012-09-25 2016-10-04 Mitsui Chemicals, Inc. Process for producing olefin polymer and olefin polymer
JP6033322B2 (ja) 2012-09-25 2016-11-30 三井化学株式会社 遷移金属化合物、オレフィン重合用触媒およびオレフィン重合体の製造方法
JP6263125B2 (ja) 2012-11-02 2018-01-17 出光興産株式会社 粘接着剤組成物及びこれを用いた粘着テープ
JP6307435B2 (ja) 2012-11-02 2018-04-04 出光興産株式会社 ポリオレフィン、これを含む粘接着剤組成物及びこれを用いた粘着テープ
WO2014074981A1 (en) 2012-11-12 2014-05-15 Univation Technologies, Llc Recycle gas cooler systems for gas-phase polymerization processes
EP2921508A4 (de) 2012-11-15 2016-07-27 Idemitsu Kosan Co Polymer auf propylenbasis und schmelzklebstoff daraus
EP2746320A1 (de) 2012-12-20 2014-06-25 Basell Polyolefine GmbH Polyethylenzusammensetzung mit hohen mechanischen Eigenschaften
EP2935297B1 (de) 2012-12-21 2019-03-20 ExxonMobil Chemical Patents Inc. Brückenmetallocenverbindungen sowie katalysatorsysteme und polymerisierungsverfahren damit
BR112015015417B1 (pt) 2012-12-28 2021-08-17 Dow Global Technologies Llc Composição de revestimento
WO2014105464A1 (en) 2012-12-28 2014-07-03 Dow Global Technologies Llc Coating compositions
BR112015016824B1 (pt) 2013-01-14 2020-10-06 Univation Technologies, Llc. Método para produzir um sistema catalítico e processo de polimerização
RU2643149C2 (ru) 2013-01-18 2018-01-31 ДАУ ГЛОБАЛ ТЕКНОЛОДЖИЗ ЭлЭлСи Способы полимеризации для высокомолекулярных полиолефинов
US9765165B2 (en) 2013-01-22 2017-09-19 Total Research & Technology Feluy Olefin polymerization process with continuous discharging
EA035131B1 (ru) 2013-01-22 2020-04-30 Тотал Ресерч & Технолоджи Фелай Процесс полимеризации олефинов с непрерывной передачей
EP2759554A1 (de) 2013-01-23 2014-07-30 Total Research & Technology Feluy Verfahren zur Herstellung von Olefin/3-methyl-1-buten-Copolymeren
US10548367B2 (en) 2013-01-29 2020-02-04 Exxonmobil Chemical Patents Inc. Footwear sole comprising a propylene-based elastomer, footwear comprising said sole, and methods of making them
KR102143409B1 (ko) 2013-01-30 2020-08-14 유니베이션 테크놀로지즈, 엘엘씨 개선된 유동을 갖는 촉매 조성물의 제조 방법
WO2014129511A1 (ja) 2013-02-20 2014-08-28 株式会社プライムポリマー 二軸延伸フィルムおよびエチレン系重合体組成物
US9598615B2 (en) 2013-02-22 2017-03-21 Idemitsu Kosan Co., Ltd. Propylene-type polymer and hot-melt adhesive agent
US9616421B2 (en) 2013-02-27 2017-04-11 Mitsui Chemicals, Inc. Catalyst for olefin multimerization and method for producing olefin multimer in presence of catalyst for olefin multimerization
SG11201507471PA (en) 2013-03-12 2015-10-29 Mitsui Chemicals Inc Production method of olefin polymer and olefin polymerization catalyst
WO2014169017A1 (en) 2013-04-11 2014-10-16 Exxonmobil Chemical Patents Inc. Process of producing polyolefins using metallocene polymerization catalysts and copolymers therefrom
WO2014176187A1 (en) 2013-04-23 2014-10-30 Exxonmobil Chemical Patents Inc. Pyridyldiamide metal catalysts and processes to produce polyolefins
JP6357471B2 (ja) 2013-05-27 2018-07-11 出光興産株式会社 ホットメルト接着剤用ベースポリマー及びホットメルト接着剤
US9834628B2 (en) 2013-07-17 2017-12-05 Exxonmobil Chemical Patents Inc. Cyclopropyl substituted metallocene catalysts
EP3022238B1 (de) 2013-07-17 2017-09-20 ExxonMobil Chemical Patents Inc. Metallocene und katalysatorzusammensetzungen daraus
WO2015009480A1 (en) 2013-07-17 2015-01-22 Exxonmobil Chemical Patents Inc. Process using substituted metallocene catalysts and products therefrom
CN105358589B (zh) 2013-07-17 2018-07-03 埃克森美孚化学专利公司 金属茂和由其衍生的催化剂组合物
CN105593249B (zh) 2013-10-14 2018-10-09 巴塞尔聚烯烃股份有限公司 耐热性提高的聚乙烯
JP6161716B2 (ja) 2013-10-18 2017-07-12 三井化学株式会社 エチレン・α−オレフィン共重合体を含有する接着剤
US9266910B2 (en) 2013-10-29 2016-02-23 Exxonmobil Chemical Patents Inc. Asymmetric polypropylene catalysts
US8916659B1 (en) 2013-10-31 2014-12-23 Exxonmobil Chemical Patents Inc. Process and apparatus for continuous solution polymerization
US10072107B2 (en) 2013-12-06 2018-09-11 Total Research & Technology Feluy Long chain branched polypropylene
WO2015122415A1 (ja) 2014-02-13 2015-08-20 三井化学株式会社 エチレン・α-オレフィン・非共役ポリエン共重合体およびその用途、並びにその製造方法
KR102111927B1 (ko) 2014-02-13 2020-05-18 미쓰이 가가쿠 가부시키가이샤 에틸렌/α-올레핀 공중합체의 제조 방법
JP6259842B2 (ja) 2014-02-14 2018-01-10 三井化学株式会社 エチレン・α−オレフィン・非共役ポリエン共重合体、その製造方法ならびに用途
CN105980454B (zh) 2014-02-28 2019-07-19 三井化学株式会社 交联物及其制造方法及用途、以及乙烯系共聚物
US9714306B2 (en) 2014-03-28 2017-07-25 Mitsui Chemicals, Inc. Olefin resin and method for producing same
CN106068291B (zh) 2014-03-28 2019-03-12 三井化学株式会社 烯烃系树脂、其制造方法及丙烯系树脂组合物
WO2015147215A1 (ja) 2014-03-28 2015-10-01 三井化学株式会社 エチレン/α-オレフィン共重合体および潤滑油
CN114957529A (zh) 2014-04-02 2022-08-30 尤尼威蒂恩技术有限责任公司 连续性组合物及其制备和使用方法
KR101970078B1 (ko) 2014-09-10 2019-04-17 미쓰이 가가쿠 가부시키가이샤 윤활유 조성물
EP3218426B1 (de) 2014-11-12 2022-03-30 ExxonMobil Chemical Patents Inc. Reinigung eines weichmachers und verwendung davon in polymerherstellungsverfahren und -anlage
WO2016093266A1 (ja) 2014-12-09 2016-06-16 三井化学株式会社 プロピレン系樹脂組成物
WO2016116606A1 (en) 2015-01-23 2016-07-28 Total Research & Technology Feluy Bimodal polypropylene and process for the preparation thereof
EP3268399B1 (de) 2015-03-10 2021-01-20 Univation Technologies, LLC Sprühgetrocknete katalysatorzusammensetzungen, verfahren zur herstellung und verwendung in olefinpolymerisierungsverfahren
KR101840993B1 (ko) 2015-03-20 2018-03-21 미쓰이 가가쿠 가부시키가이샤 열가소성 엘라스토머 조성물, 그의 용도, 그의 제조 방법, 에틸렌·α-올레핀·비공액 폴리엔 공중합체 및 그의 용도
WO2016152710A1 (ja) 2015-03-20 2016-09-29 三井化学株式会社 熱可塑性エラストマー組成物およびその製造方法
US10975223B2 (en) 2015-03-31 2021-04-13 Mitsui Chemicals, Inc. Resin composition and use thereof
SG11201708410UA (en) 2015-04-20 2017-11-29 Univation Tech Llc Bridged bi-aromatic ligands and olefin polymerization catalysts prepared therefrom
US10252967B2 (en) 2015-04-20 2019-04-09 Univation Technologies, Llc Bridged bi-aromatic ligands and transition metal compounds prepared therefrom
WO2016176135A1 (en) 2015-04-27 2016-11-03 Univation Technologies, Llc Supported catalyst compositions having improved flow properties and preparation thereof
WO2016195824A1 (en) 2015-05-29 2016-12-08 Exxonmobil Chemical Patents Inc. Polymerization process using bridged metallocene compounds supported on organoaluminum treated layered silicate supports
JP6946260B2 (ja) 2015-07-15 2021-10-06 トタル リサーチ アンド テクノロジー フエリユイ ポリエチレン製品の製造方法
KR20180061227A (ko) 2015-09-28 2018-06-07 덴카 주식회사 크로스 공중합체 및 그 제조 방법
WO2017082182A1 (ja) 2015-11-09 2017-05-18 三井化学株式会社 潤滑油用粘度調整剤、潤滑油用添加剤組成物および潤滑油組成物
WO2017105614A1 (en) 2015-12-16 2017-06-22 Exxonmobil Chemical Patents Inc. Low crystalline polymer compositions
SG11201807680TA (en) 2016-03-31 2018-10-30 Exxonmobil Chemical Patents Inc Low crystalline polymer compositions prepared in a dual reactor
US11059918B2 (en) 2016-05-27 2021-07-13 Exxonmobil Chemical Patents Inc. Metallocene catalyst compositions and polymerization process therewith
CN106046212B (zh) * 2016-07-04 2018-06-15 吉林大学 非桥连两性离子型单茂金属配合物及其用途
US10647626B2 (en) 2016-07-12 2020-05-12 Chevron Phillips Chemical Company Lp Decene oligomers
MX2019008213A (es) 2017-01-13 2019-09-05 Total Res & Technology Feluy Polipropilenos y composiciones de polipropileno de alta pureza para moldeo.
WO2018131543A1 (ja) 2017-01-16 2018-07-19 三井化学株式会社 自動車ギア用潤滑油組成物
BR112019017366B1 (pt) 2017-02-20 2023-03-07 Mitsui Chemicals, Inc Laminado, mangueira e método para produzir o referido laminado
US10508179B2 (en) 2017-02-28 2019-12-17 Exxonmobil Chemical Patents Inc. Thermoplastic vulcanizate prepared with oil-extended, bimodal metallocene-synthesized EPDM
CA3068805C (en) 2017-07-06 2023-05-16 Mitsui Chemicals, Inc. Olefin oligomerization catalyst and method for producing olefin oligomer in the presence of the same catalyst
WO2019027524A1 (en) 2017-08-02 2019-02-07 Exxonmobil Chemical Patents Inc. MULTILAYER FILMS AND METHODS OF MANUFACTURE
KR102405495B1 (ko) 2017-12-01 2022-06-08 엑손모빌 케미칼 패턴츠 인코포레이티드 촉매계 및 이를 사용하기 위한 중합 방법
WO2019108327A1 (en) 2017-12-01 2019-06-06 Exxonmobil Chemical Patents Inc. Films comprising polyethylene composition
US11028196B2 (en) 2017-12-22 2021-06-08 Exxonmobil Chemical Patents Inc. Polyolefin compositions
EP3755705B1 (de) 2018-02-19 2024-09-04 ExxonMobil Chemical Patents Inc. Katalysatoren, katalysatorsysteme und verfahren zu ihrer verwendung
US11905348B2 (en) 2018-03-20 2024-02-20 Mitsui Chemicals, Inc. Ethylene/alpha-olefin/non-conjugated polyene copolymer, method for producing the same, and use thereof
EP3807358B1 (de) 2018-06-13 2023-11-15 ExxonMobil Chemical Patents Inc. Polyolefingemischzusammensetzungen
EP3827033A4 (de) 2018-07-23 2022-06-01 ExxonMobil Chemical Patents Inc. Herstellung von bimodalem kautschuk, thermoplastischen vulkanisaten und daraus hergestellte artikel
EP3841187A1 (de) 2018-08-22 2021-06-30 ExxonMobil Research and Engineering Company Herstellung von kohlenwasserstoffen
EP3841188A1 (de) 2018-08-22 2021-06-30 ExxonMobil Research and Engineering Company Herstellung eines grundstoffes aus ethanol
US11993699B2 (en) 2018-09-14 2024-05-28 Fina Technology, Inc. Polyethylene and controlled rheology polypropylene polymer blends and methods of use
SG11202102663QA (en) 2018-09-19 2021-04-29 Exxonmobil Chemical Patents Inc Devolatilization processes
WO2020069086A2 (en) 2018-09-27 2020-04-02 Exxonmobil Chemical Patents Inc. C1,c2-bridged ligands and catalysts
WO2020116368A1 (ja) 2018-12-04 2020-06-11 三井化学株式会社 4-メチル-1-ペンテン共重合体を含有する樹脂組成物、およびキャパシタ用フィルム
WO2020167399A1 (en) 2019-02-11 2020-08-20 Exxonmobil Chemical Patents Inc. Biphasic polymerization processes and ethylene-based polyolefins therefrom
JP2022522649A (ja) 2019-02-20 2022-04-20 フイナ・テクノロジー・インコーポレーテツド 低い反りを有するポリマー組成物
JP7155398B2 (ja) 2019-03-19 2022-10-18 三井化学株式会社 プロピレン系樹脂組成物、成形体およびプロピレン重合体
EP3947480A1 (de) 2019-04-05 2022-02-09 ExxonMobil Chemical Patents Inc. Polymerprodukt mit breiter molekulargewichtsverteilung aus schlaufenreaktoren mit gezielten thermischen gradienten
WO2020205337A1 (en) 2019-04-05 2020-10-08 Exxonmobil Chemical Patents Inc. Controlling molecular weight distribution and chemical composition distribution of a polyolefin product
US20220380585A1 (en) 2019-08-08 2022-12-01 Prime Polymer Co., Ltd. Propylene polymer composition and shaped article
WO2021034471A1 (en) 2019-08-16 2021-02-25 Exxonmobil Chemical Patents Inc. Producing blocks of block copolymer in a separator downstream of a reactor
CN114364733B (zh) 2019-10-29 2023-11-10 三井化学株式会社 乙烯系共聚物组合物及其用途
WO2021086552A1 (en) 2019-10-29 2021-05-06 Exxonmobil Chemical Patents Inc. Production of gradient copolymers using monomer and comonomer concentration gradients in a loop reactor
CN114729167B (zh) 2019-12-03 2023-09-26 巴塞尔聚烯烃股份有限公司 用于长丝或纤维的聚乙烯组合物
AU2020398364A1 (en) 2019-12-03 2022-06-16 Basell Polyolefine Gmbh Polyethylene composition for filaments or fibers
CN115151581A (zh) 2019-12-17 2022-10-04 埃克森美孚化学专利公司 制备具有长链支化的高密度聚乙烯的溶液聚合方法
EP4098693A4 (de) 2020-01-30 2024-03-13 Mitsui Chemicals, Inc. Polyamidzusammensetzung
WO2021188256A1 (en) 2020-03-18 2021-09-23 Exxonmobil Chemical Patents Inc. Extrusion blow molded articles and processes for making same
US20230182366A1 (en) 2020-05-19 2023-06-15 Exxonmobil Chemical Patents Inc. Extrusion Blow Molded Containers And Processes For Making Same
WO2021247244A2 (en) 2020-06-03 2021-12-09 Exxonmobil Chemical Patents Inc. Process for production of thermoplastic vulcanizates using supported catalyst systems and compositions made therefrom
EP4176005A1 (de) 2020-07-02 2023-05-10 Celanese International Corporation Thermoplastische vulkanisatzusammensetzungen mit multimodalem metallocencopolymerkautschuk und herstellungsverfahren dafür
JPWO2022024687A1 (de) 2020-07-31 2022-02-03
KR20230122111A (ko) 2021-01-18 2023-08-22 미쓰이 가가쿠 가부시키가이샤 수분산체 조성물, 당해 수분산체 조성물의 제조 방법및 에틸렌·α-올레핀 공중합체 산변성물
WO2022186053A1 (ja) 2021-03-05 2022-09-09 三井化学株式会社 熱可塑性エラストマー組成物
EP4316834A1 (de) 2021-03-31 2024-02-07 Mitsui Chemicals, Inc. Ethylen-a-olefin-copolymer, thermoplastische harzzusammensetzung und film
US20240191068A1 (en) 2021-03-31 2024-06-13 Mitsui Chemicals, Inc. Ethylene resin composition and shaped article
BR112023019645A2 (pt) 2021-04-26 2023-11-07 Fina Technology Folhas de polímero catalisadas de sítio único finas
WO2022244879A1 (ja) 2021-05-20 2022-11-24 三井化学株式会社 樹脂組成物及びその用途ならびに製造方法
CN118202023A (zh) 2021-11-05 2024-06-14 埃克森美孚化学专利公司 聚丙烯粘度改性剂及其润滑油
WO2023081327A1 (en) 2021-11-05 2023-05-11 Chevron Oronite Company Llc Lubricating oil composition with viscosity modifier based on syndiotactic propylene-based ethylene-propylene copolymers with improved properties
KR20240096736A (ko) 2021-11-05 2024-06-26 엑손모빌 케미컬 패튼츠, 아이엔씨. 신디오택틱 프로필렌계 에틸렌-프로필렌 공중합체
JPWO2023090308A1 (de) 2021-11-16 2023-05-25
WO2023150480A1 (en) 2022-02-07 2023-08-10 Exxonmobil Chemical Patents Inc. C1 symmetric 5-ome-6-alkyl substituted metallocenes
WO2023225428A1 (en) 2022-05-18 2023-11-23 Exxonmobil Chemical Patents Inc. Polyethylene compositions and processes for their production

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE551488A (de) * 1955-10-05
CA849081A (en) 1967-03-02 1970-08-11 Du Pont Of Canada Limited PRODUCTION OF ETHYLENE/.alpha.-OLEFIN COPOLYMERS OF IMPROVED PHYSICAL PROPERTIES
CA1263498A (en) * 1985-03-26 1989-11-28 Mitsui Chemicals, Incorporated Liquid ethylene-type random copolymer, process for production thereof, and use thereof
JPH0780930B2 (ja) 1985-12-26 1995-08-30 三井石油化学工業株式会社 α−オレフインの重合方法
PL276385A1 (en) * 1987-01-30 1989-07-24 Exxon Chemical Patents Inc Method for polymerization of olefines,diolefins and acetylene unsaturated compounds
IL85097A (en) * 1987-01-30 1992-02-16 Exxon Chemical Patents Inc Catalysts based on derivatives of a bis(cyclopentadienyl)group ivb metal compound,their preparation and their use in polymerization processes
US5218071A (en) 1988-12-26 1993-06-08 Mitsui Petrochemical Industries, Ltd. Ethylene random copolymers

Also Published As

Publication number Publication date
EP0468537A1 (de) 1992-01-29
DE3856424T2 (de) 2001-03-15
RU2139291C1 (ru) 1999-10-10
WO1988005793A1 (en) 1988-08-11
ATE286515T1 (de) 2005-01-15
EP0558158A1 (de) 1993-09-01
JP2918193B2 (ja) 1999-07-12
DE3855666T4 (de) 1997-09-04
EP0561479A1 (de) 1993-09-22
PT86672A (pt) 1989-01-30
CZ57988A3 (en) 1995-02-15
NO179589B (no) 1996-07-29
NO884210L (no) 1988-09-22
ATE145211T1 (de) 1996-11-15
ES2150931T5 (es) 2005-03-16
FI884487A (fi) 1988-09-29
DE3856577D1 (de) 2005-02-10
ES2150931T3 (es) 2000-12-16
ES2237031T3 (es) 2005-07-16
ES2094174T5 (es) 2005-06-01
ES2094461T3 (es) 1997-01-16
YU178689A (en) 1991-04-30
ATE195524T1 (de) 2000-09-15
NO884210D0 (no) 1988-09-22
CA1340578C (en) 1999-06-01
FI101477B (fi) 1998-06-30
ES2094174T3 (es) 1997-01-16
CA1337142C (en) 1995-09-26
ATE145218T1 (de) 1996-11-15
JP2953686B2 (ja) 1999-09-27
EP0558158B2 (de) 2004-10-06
DE3855668T2 (de) 1997-03-20
EP0949278B2 (de) 2009-11-04
PL270367A1 (en) 1988-10-13
DK548888A (da) 1988-11-30
DE3856574D1 (de) 2004-12-09
EP0468537B1 (de) 1996-11-13
CA1339142C (en) 1997-07-29
DE3856424D1 (de) 2000-09-21
JPH11255814A (ja) 1999-09-21
JP3119305B2 (ja) 2000-12-18
DE3856574T2 (de) 2006-02-02
JP2965572B2 (ja) 1999-10-18
DE3855666T3 (de) 2005-06-30
NO179589C (no) 1996-11-06
ES2229620T3 (es) 2005-04-16
EP0277004A1 (de) 1988-08-03
JPH0834809A (ja) 1996-02-06
KR890700612A (ko) 1989-04-26
BR8805026A (pt) 1989-10-17
FI101477B1 (fi) 1998-06-30
DK548888D0 (da) 1988-09-30
EP0561479B1 (de) 1996-11-13
YU45838B (sh) 1992-07-20
HU211065B (en) 1995-10-30
PL159196B1 (en) 1992-11-30
DE3856577T2 (de) 2005-12-29
KR960015192B1 (ko) 1996-11-01
ATE281478T1 (de) 2004-11-15
IL85097A (en) 1992-02-16
DE3855666D1 (de) 1996-12-19
EP0949279A2 (de) 1999-10-13
FI884487A0 (fi) 1988-09-29
DE3856574T3 (de) 2010-06-10
EP0949279B1 (de) 2005-01-05
RU2062649C1 (ru) 1996-06-27
JPH01502036A (ja) 1989-07-13
JP3119304B2 (ja) 2000-12-18
DE3855666T2 (de) 1997-03-27
EP0558158B1 (de) 2000-08-16
EP0468537B2 (de) 2004-11-24
JPH0834810A (ja) 1996-02-06
EP0949279A3 (de) 2000-09-13
EP0949278B1 (de) 2004-11-03
JPH11255815A (ja) 1999-09-21
AU1245288A (en) 1988-08-24
EP0949278A3 (de) 2000-09-13
YU16288A (en) 1990-02-28
DE3855668D1 (de) 1996-12-19
EP0949278A2 (de) 1999-10-13
AU617990B2 (en) 1991-12-12

Similar Documents

Publication Publication Date Title
DE3856424T3 (de) Katalysatoren, Verfahren zur Herstellung derselben und Verfahren zu deren Anwendung
DE69120667T2 (de) Katalysatorsystem mit gesteigertem leistungsvermögen
DE69033368T3 (de) Ionische Metallocenkatalysatoren auf Träger für Olefinpolymerisation
DE69320805T2 (de) Verfahren zur herstellung von cyclopentadien-metallkomplex verbindungen und verfahren zur verwendung
DE69334188T2 (de) Verfahren zur Herstellung von einem geträgertem Aktivatorkomponenten
DE69922536T2 (de) Verbrückte hafnocenen für die copolymerisation von olefinen
DE69910611T2 (de) Stickstoff-enthaltende anionische komplexe der gruppe 13 für olefinpolymerisation
DE69722902T2 (de) Katalysator für Alpha-Olefinpolymerisation
DE60102156T2 (de) Verbrückte Bisindenyl Substituierte Metallogen-Verbindungen
DE69922548T2 (de) Verbrückte metallocene zur olefincopolymerisation
DE69434894T2 (de) Übergangsmetallverbindungen, olefinpolymerisationskatalysatoren und verfahren zur herstellung von olefinpolymeren mittels besagter katalysatoren
DE69621796T2 (de) Azaborolinylmetallkomplexe als olefinpolymerisationskatalysatoren
EP0824113B1 (de) Geträgertes Katalysatorsystem, Verfahren zu seiner Herstellung und seine Verwendung zur Polymerisation von Olefinen
DE69520450T2 (de) Verfahren zur Herstellung von Polyolefinen in Gegenwart von Katalysatorsystemen sowie Katalysatorsysteme, die Azametallocene enthalten
DE69635719T2 (de) Polymerisation von α-Olefinen in Gegenwart von Übergangsmetallkatalysatoren basierend auf Pyridin oder Chinolin enthaltenden zweizähnigen Liganden
DE69703438T2 (de) Metallocen cokatalysator
DE69117520T2 (de) Ionischer katalysator zur herstellung von polyalphaolefinen mit kontrollierter takticität
DE69629227T2 (de) Verfahren zur Herstellung ataktischer Copolymeren aus Propylene mit Ethylen
DE69325716T2 (de) Polymerisationsverfahren mittels eines katalysatorsystems mit gesteigertem leistungsvermögen
DE69522806T2 (de) Monocyclopentadienyl-metalverbindungen als katalysatoren zur produktion von ethylen-alpha-olefincopolymeren
DE69027652T2 (de) Verfahren zur Herstellung von syndiotaktischen Copolymeren aus Propylen und Olefinen
EP1000092B1 (de) Katalysatoren auf basis von fulven-metallkomplexen
EP1480987B1 (de) Kovalent fixierte non-metallocene, verfahren zur herstellung von diesen und deren verwendung zur polymerisation von olefinen
DE60205597T2 (de) Metall-komplexverbindungen mit einem acetylen-liganden, polymerisations-katalysatoren und ein additions-polymerisations-prozess
EP1523508A1 (de) "constrained geometry" metallocene, verfahren zur herstellung von diesen und deren verwendung zur polymerisation von olefinen

Legal Events

Date Code Title Description
8363 Opposition against the patent
8366 Restricted maintained after opposition proceedings
8327 Change in the person/name/address of the patent owner

Owner name: EXXONMOBIL CHEMICAL PATENTS INC., LINDEN, N.J., US