WO2013099876A1 - 4-メチル-1-ペンテン(共)重合体組成物、該組成物からなるフィルムおよび中空成形体 - Google Patents
4-メチル-1-ペンテン(共)重合体組成物、該組成物からなるフィルムおよび中空成形体 Download PDFInfo
- Publication number
- WO2013099876A1 WO2013099876A1 PCT/JP2012/083499 JP2012083499W WO2013099876A1 WO 2013099876 A1 WO2013099876 A1 WO 2013099876A1 JP 2012083499 W JP2012083499 W JP 2012083499W WO 2013099876 A1 WO2013099876 A1 WO 2013099876A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- methyl
- pentene
- weight
- polymer
- copolymer
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/18—Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
- C08L23/20—Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C49/00—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F10/14—Monomers containing five or more carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/14—Monomers containing five or more carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2022/00—Hollow articles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2500/00—Characteristics or properties of obtained polyolefins; Use thereof
- C08F2500/03—Narrow molecular weight distribution, i.e. Mw/Mn < 3
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2500/00—Characteristics or properties of obtained polyolefins; Use thereof
- C08F2500/08—Low density, i.e. < 0.91 g/cm3
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2500/00—Characteristics or properties of obtained polyolefins; Use thereof
- C08F2500/17—Viscosity
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2500/00—Characteristics or properties of obtained polyolefins; Use thereof
- C08F2500/26—Use as polymer for film forming
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/18—Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
- C08J2323/20—Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/08—Stabilised against heat, light or radiation or oxydation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/10—Transparent films; Clear coatings; Transparent materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/16—Applications used for films
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
- C08L2205/035—Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/06—Polymer mixtures characterised by other features having improved processability or containing aids for moulding methods
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
- Y10T428/1397—Single layer [continuous layer]
Definitions
- the present invention relates to a 4-methyl-1-pentene (co) polymer composition that gives a molded article excellent in transparency and heat resistance, and further excellent in elongation and toughness, and a molded article obtained therefrom, specifically, The present invention relates to a uniformly stretched film and a hollow molded article excellent in dimensional stability.
- 4-Methyl-1-pentene (co) polymer is a resin with superior characteristics such as heat resistance, transparency, lightness, steam resistance, releasability, gas permeability, and electrical properties compared to polyethylene and polypropylene. It is used in various fields such as food containers, secondary materials for electronic and information members, laboratory instruments, stationery, cross-linking process members, release films, films for electronic and information members, food packaging materials, and synthetic paper.
- the (co) polymer is generally poor in elongation, toughness, and stretchability, and the actual situation is that there are restrictions on applicable applications compared to, for example, polyethylene and polypropylene which are the same polyolefin.
- stretchability is generally poor, for example, it is difficult to produce a stretched film or perform blow molding or vacuum molding compared to polyethylene and polypropylene, which are the same polyolefin, and there is a range that can be used. It was limited.
- Patent Document 1 examines a wrap film made of a polymer in which 4-methyl-1-pentene and 1-hexene are copolymerized at a specific ratio. In this case, although the transparency and elongation of the film were improved, the heat resistance, which is a feature of the 4-methyl-1-pentene polymer, tended to decrease.
- Patent Document 2 discloses a hose made of a thermoplastic elastomer containing a 4-methyl-1-pentene polymer having excellent heat resistance, elongation and flexibility. This hose has a tendency to lose transparency because a crosslinked rubber is present in the composition.
- Patent Document 3 and Patent Document 4 the elongation of the film is imparted by laminating a polyester or polyamide rich in toughness or elongation and a composition containing 4-methyl-1-pentene polymer. It is expected that delamination will occur because non-polar polyolefin and polyester or polyamide, which are polar resins, are multilayered. If an adhesive resin is used in combination to suppress this, the molding method and the molding apparatus become complicated, and it is considered that the manufacturing cost is increased, and there is a concern about a decrease in transparency.
- Patent Document 5 a liquid hydrocarbon compound is blended with 4-methyl-1-pentene polymer resin.
- the manufactured sheet may be blocked or the hydrocarbon compound may bleed out when heated.
- Patent Document 6 a high fluidity 4-methyl-1-pentene polymer resin and a low fluidity 4-methyl-1-pentene polymer resin are mixed under specific conditions. In this case, poor dispersion of the low fluidity polymer resin and low fluidity of the mixture result in poor fluidity such as melt fracture and surging during molding. Furthermore, the molding method used from fluidity is also limited.
- Patent Document 7 polyethylene or polypropylene that is easily stretched is multilayered to give the uniaxial stretchability of a 4-methyl-1-pentene (co) polymer film. In this case, peeling after stretching is necessary, and it is difficult to obtain a uniform and thin film.
- a low molecular weight compound or a high molecular weight compound is used as a modifier for improving the fluidity of the (co) polymer.
- polyolefins such as polyethylene and polypropylene and polyesters such as polyethylene terephthalate are mainly used.
- polyolefins such as polyethylene and polypropylene are widely used for liquid containers, bottles, fuel tanks, etc., and are generally formed by injection molding or blow molding.
- the molded body may have poor transparency (Patent Document 8).
- polyesters such as polyethylene terephthalate are widely used mainly as drinking water containers, and are formed by injection blow molding (hereinafter sometimes referred to as injection blow).
- injection blow injection blow molding
- the preform is reheated and then blow-molded to prepare a molded body.
- the molded article is excellent in transparency, it has a problem in heat resistance (Patent Document 9).
- Patent Document 10 In recent years, in order to obtain a molded body that overcomes the heat resistance, which is a disadvantage of polyethylene terephthalate, various studies have been conducted on injection blow molded bodies using polypropylene (Patent Documents 11 to 13). However, in the case of polypropylene, handling at the time of molding is often difficult due to the narrow molding temperature range. In addition, when homopolypropylene is used, transparency is difficult to develop, and when random polypropylene is used. However, there are drawbacks such as low heat resistance, and there are few usable polypropylenes (types, physical properties, etc.).
- the problem to be solved by the present invention is to solve the above-mentioned problems, and is excellent in transparency and heat resistance, and further excellent in elongation and toughness.
- a pentene-olefin (co) polymer composition Furthermore, a molded body comprising the composition, specifically, excellent transparency, heat resistance, dimensional stability, stretched uniformly, film comprising the composition, excellent transparency, heat resistance, toughness, Furthermore, it is providing the hollow molded object which consists of this composition excellent in dimensional stability.
- 4-methyl-1-pentene (co) polymer and 4-methyl-1-pentene / ⁇ -olefin copolymer have specific physical properties.
- 4-methyl-1-pentene (co) polymer composition formulated with a specific ratio is excellent in elongation and toughness, and a film comprising the composition has transparency, heat resistance, electrical properties, mechanical properties,
- the present invention has been found to be excellent in uniform stretchability and dimensional stability, and that a hollow molded body comprising the composition is excellent in transparency, heat resistance, electrical properties, mechanical properties, uniform stretchability, and dimensional stability. It came.
- the 4-methyl-1-pentene (co) polymer composition (X1) according to the present invention comprises 10 to 90 parts by weight of a specific 4-methyl-1-pentene (co) polymer (A) and a specific 4 -Methyl-1-pentene copolymer (B1) 90 to 10 parts by weight (provided that the sum of (A) and (B1) is 100 parts by weight).
- the 4-methyl-1-pentene (co) polymer composition (X3) comprises 10 to 90 parts by weight of a specific 4-methyl-1-pentene (co) polymer (A) and a specific 4 90 to 10 parts by weight as a total of the methyl-1-pentene copolymer (B1) and the specific 4-methyl-1-pentene copolymer (B2) (provided that (A), (B1) and (B2) And (B1) / (B2) (the ratio of (B1) / (B2)) is 99/1 to 1/99).
- the 4-methyl-1-pentene (co) polymer composition (X4) comprises 10 to 85 parts by weight of a specific 4-methyl-1-pentene (co) polymer (A), a specific 4- 85 to 10 parts by weight as a total of the methyl-1-pentene copolymer (B1) and the specific 4-methyl-1-pentene copolymer (B2) (however, the mixing ratio of (B1) and (B2) (( B1) / (B2)) is 99/1 to 1/99) and ⁇ -olefin polymer (C) (however, different from (A), (B1) and (B2)) 3 to 30 weight Parts (provided that the sum of (A), (B1), (B2) and (C) is 100 parts by weight),
- the 4-methyl-1-pentene (co) polymer composition (X5) according to the present invention comprises 7 to 90 parts by weight of a specific 4-methyl-1-pentene (co) polymer (A), a specific 4- 90 to 7 parts by weight of methyl-1-pen
- the 4-methyl-1-pentene (co) polymer composition (X6) according to the present invention comprises 7 to 90 parts by weight of a specific 4-methyl-1-pentene (co) polymer (A), a specific 4- 90 to 7 parts by weight of methyl-1-pentene copolymer (B2) and ⁇ -olefin polymer (C) (however, different from (A), (B1) and (B2)) 0.9 to 30 parts by weight (However, the total of (A), (B2) and (C) is 100 parts by weight).
- the film of the present invention contains the 4-methyl-1-pentene (co) polymer composition according to the present invention.
- the film is suitable as a release film.
- the hollow molded article of the present invention contains the 4-methyl-1-pentene (co) polymer composition according to the present invention.
- the molded body is preferably obtained by an injection blow molding method.
- the 4-methyl-1-pentene (co) polymer composition of the present invention is excellent in transparency, heat resistance, and electrical properties, and is difficult to achieve with conventional 4-methyl-1-pentene polymers. It has a remarkable effect of having excellent elongation and toughness. Therefore, the composition can be suitably used for various molded products.
- the film made of the composition is excellent in transparency, heat resistance, electrical properties, and dimensional stability, and uniform stretching which has been difficult with a film made of a commercially available 4-methyl-1-pentene polymer. There is a remarkable effect that has been made. Therefore, the film made of the composition can be preferably used in the technical fields of industrial materials and electronics. Moreover, since the film of this invention is excellent in mold release property, heat resistance, low outgas, and the low pollution property to copper foil, it can be preferably used for a mold release film use. Furthermore, since the film is excellent in releasability, heat resistance and dimensional stability, it can be preferably used for surface protective film applications.
- the hollow molded body made of the composition has a remarkable effect of being excellent in transparency, heat resistance, toughness and dimensional stability. Therefore, the hollow molded body made of the composition can be preferably used in the technical field of industrial materials.
- the 4-methyl-1-pentene (co) polymer composition according to the present invention a molded article comprising the composition, particularly a film and a hollow molded article will be described in detail.
- the copolymerization is sometimes referred to as polymerization, and the copolymer is sometimes referred to as a polymer.
- the 4-methyl-1-pentene (co) polymer composition in the present invention contains two different 4-methyl-1-pentene (co) polymers (A) and (B), and if necessary, An ⁇ -olefin polymer (C) is contained.
- the composition preferably satisfies the requirement (a) below, and more preferably further satisfies one or more of the requirements (b) to (h) depending on the conditions.
- the total amount (UX-1) of structural units derived from 4-methyl-1-pentene derived from all (co) polymers contained in the composition is 99 mol% to 65 mol%, 1 mol% of the total amount (UX-2) of structural units derived from ⁇ -olefins having 2 to 20 carbon atoms (excluding 4-methyl-1-pentene) derived from all (co) polymers contained therein ⁇ 35 mol% (provided that the sum of UX-1 and UX-2 is 100 mol%).
- the internal haze of the injection square plate having a thickness of 2 mm is usually 20.0 or less.
- the internal haze of the test film having a thickness of 50 ⁇ m is usually 1.0 or less.
- Young's modulus (tensile modulus) is usually in the range of 200 to 2000 MPa.
- the gloss is usually in the range of 5 to 150.
- the 4-methyl-1-pentene (co) polymer composition in the present invention contains 99 mol% to 65 mol% of UX-1 and 1 mol% to 35 mol% of UX-2.
- the ⁇ -olefin having 2 to 20 carbon atoms is not limited to one type, and two or more types may be selected. When a plurality of ⁇ -olefins are selected, the total amount of the structural units may satisfy the above range. That's fine.
- the upper limit of UX-1 is preferably 97 mol%, more preferably 95 mol%, still more preferably 93 mol%, and particularly preferably 91 mol%. It is mol%, more preferably 87 mol%. Further, the lower limit of UX-1 is preferably 70 mol%, more preferably 72 mol%, even more preferably 75 mol%, particularly preferably 80 mol%, more particularly preferably 82 mol%. Most preferably, it is 85 mol%.
- the upper limit of UX-2 is preferably 30 mol%, more preferably 28 mol%, even more preferably 25 mol%, particularly preferably 20 mol%, more particularly preferably 18 mol%. Most preferably, it is 15 mol%. Further, the lower limit of UX-2 is preferably 3 mol%, more preferably 5 mol%, even more preferably 7 mol%, particularly preferably 9 mol%, more particularly preferably 13 mol%.
- the total of UX-1 and UX-2 is 100 mol%.
- the (co) polymer composition comprises a random copolymer containing structural units derived from 4-methyl-1-pentene and an ⁇ -olefin having 2 to 20 carbon atoms (excluding 4-methyl-1-pentene). Even if the composition contains a block comprising a 4-methyl-1-pentene structural unit chain and a structural unit chain derived from an ⁇ -olefin having 2 to 20 carbon atoms (excluding 4-methyl-1-pentene) A composition containing a copolymer may also be used. From the viewpoint of transparency and heat resistance, a composition containing a random copolymer of 4-methyl-1-pentene and an ⁇ -olefin having 2 to 20 carbon atoms is preferred.
- Examples of the ⁇ -olefin having 2 to 20 carbon atoms other than 4-methyl-1-pentene include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl- Suitable examples include 1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-eicocene and the like.
- ethylene, propylene, 1-butene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 1-octene, 1-decene, 1 are preferable from the viewpoint of copolymerizability.
- ⁇ -olefins such as hexadecene, 1-heptadecene, 1-octadecene and the like. More preferred are ethylene, propylene, 1-butene, 1-hexene, 1-decene, 1-hexadecene, 1-heptadecene and 1-octadecene.
- ⁇ -olefins having 2 to 20 carbon atoms can be used alone or in combination of two or more.
- the (co) polymer composition may contain units derived from other polymerizable compounds in addition to these units within a range not impairing the object of the present invention.
- Examples of such other compounds include vinyl compounds having a cyclic structure such as styrene, vinylcyclopentene, vinylcyclohexane, and vinylnorbornane; vinyl esters such as vinyl acetate; unsaturated organic acids such as maleic anhydride or derivatives thereof; Conjugated dienes such as butadiene, isoprene, pentadiene, 2,3-dimethylbutadiene; 1,4-hexadiene, 1,6-octadiene, 2-methyl-1,5-hexadiene, 6-methyl-1,5-heptadiene, 7-methyl-1,6-octadiene, dicyclopentadiene, cyclohexadiene, dicyclooctadiene, methylene norbornene, 5-vinyl norbornene, 5-ethylidene-2-norbornene, 5-methylene-2-norbornene, 5-isopropylidene -2-Norbornene
- the unit derived from such other polymerizable compound is preferably 10 mol% or less, more preferably 5 mol% or less, and even more preferably 3 mol when the total of UX-1 and UX-2 is 100 mol%. The amount is less than mol%.
- the internal haze of the 2-mm-thickness injection square plate of the 4-methyl-1-pentene (co) polymer composition in the present invention is usually preferably 20.0 or less.
- the upper limit of internal haze becomes a more preferable aspect in the order of 19.0, 18.0, 15.0, 12.5, 10.0, 7.0, 5.0, 3.0.
- the lower limit of the internal haze is not particularly required, and specifically, it is 0. Is the most desirable mode, but a practical lower limit is 0.1.
- the internal haze can be adjusted from the components of the composition to be mixed. In the (co) polymer composition having an internal haze value in the above range, the respective components are well compatible and excellent in transparency.
- the internal haze of the test film having a thickness of 50 ⁇ m obtained from the 4-methyl-1-pentene (co) polymer composition in the present invention is usually 1.0 or less. Preferably it is 0.01 to 1.0, more preferably 0.01 to 0.8.
- the internal haze can be adjusted from the components of the composition to be mixed.
- the (co) polymer composition having an internal haze value in the above range is excellent in transparency because the respective components are well compatible.
- the storage elastic modulus (G ′) of the 2 mm-thick test piece obtained from the 4-methyl-1-pentene (co) polymer composition in the present invention measured by dynamic viscoelasticity measurement in the torsion mode 1.
- the temperature of 0 ⁇ 10 6 (Pa) is usually in the range of 160 ° C. to 250 ° C., preferably 160 ° C. to 240 ° C., more preferably 160 ° C. to 230 ° C., and further preferably 165 ° C. to 225 ° C. .
- the above temperature range is a value that varies depending on the ratio and type of the composition, and is considered as an index of the balance of heat resistance, elongation, and toughness.
- the (co) polymer composition having a temperature value in the above range is preferable from the viewpoints of heat resistance, elongation and toughness.
- Storage elastic modulus (E ′) 1 when a film for test having a thickness of 50 ⁇ m obtained from 4-methyl-1-pentene (co) polymer composition in the present invention is measured in a tensile mode by dynamic viscoelasticity measurement.
- the temperature of 0.0 ⁇ 10 6 (Pa) is usually in the range of 160 ° C. to 250 ° C., preferably 160 ° C. to 240 ° C., more preferably 160 ° C. to 230 ° C., and even more preferably 165 ° C. to 225 ° C. is there.
- the temperature range is a value that varies depending on the ratio and type of the composition, and a molded body made of the (co) polymer composition having a temperature value in the above range is preferable from the viewpoints of heat resistance, elongation, and toughness. .
- the 4-methyl-1-pentene (co) polymer composition is a film having a thickness of 50 ⁇ m obtained from the composition measured in accordance with JIS K6781 at a tensile rate of 200 mm / min.
- the Young's modulus (tensile modulus) is usually 200 to 2000 MPa, preferably 200 to 1800 MPa, more preferably 200 to 1600 MPa.
- the above range is a value that varies depending on the ratio and type of the composition, and is a measure of stretchability.
- the (co) polymer composition having a Young's modulus in the above range is preferable because a molded article excellent in uniform stretchability can be obtained.
- the 4-methyl-1-pentene (co) polymer composition in the present invention generally has a gloss of 5 to 150 as measured with a 50 ⁇ m-thick test film obtained from the composition. Yes, preferably 60 to 150, more preferably 60 to 140, and still more preferably 60 to 130.
- the above range is a value that varies depending on the ratio and type of the composition, and is a measure of the surface gloss of the molded product.
- the (co) polymer composition having a value in the above range is preferable because a molded article having a good surface gloss and a good design can be obtained.
- ⁇ Requirement (h)> a specimene (ASTM D638-IV type test piece) obtained from the 4-methyl-1-pentene (co) polymer composition was stretched between the marked lines at the time of 200% tensile stretching at a tensile speed of 200 mm / min.
- the standard deviation is usually 50% or less, preferably 1 to 45%, more preferably 1 to 40%, and still more preferably 1 to 35%.
- the above range is a value that varies depending on the ratio and type of the composition, and is a measure of moldability.
- the use of the (co) polymer composition having a value in the above range is preferable because a molded article having excellent dimensional stability can be formed.
- the tensile elongation at break when a tensile test was carried out on a specimen ASTM D638-IV type test piece prepared using the (co) polymer composition under the injection conditions described later at a tensile speed of 30 mm / min ( EL) is preferably 50% or more, more preferably 70% or more, and further preferably 80% or more.
- the (co) polymer composition has excellent heat resistance and transparency, and is further excellent in elongation. This is presumed that two or more different 4-methyl-1-pentene polymers are in a state of being extremely dispersible but not completely compatible.
- the 4-methyl-1-pentene (co) polymer composition of the present invention comprises 1 to 99 parts by weight of 4-methyl-1-pentene (co) polymer (A) having the following characteristics, and 4-methyl- It preferably contains 99 to 1 part by weight of 1-pentene copolymer (B). (However, the total of the (co) polymer (A) and the copolymer (B) is 100 parts by weight.)
- the upper limit of the content of the (co) polymer (A) in the (co) polymer composition is preferably 95 parts by weight, more preferably 90 parts by weight, still more preferably 85 parts by weight, Particularly preferred is 80 parts by weight.
- the lower limit of the content of the (co) polymer (A) is preferably 5 parts by weight, more preferably 10 parts by weight, still more preferably 15 parts by weight, and particularly preferably 20 parts by weight.
- the upper limit of the content of the copolymer (B) is preferably 95 parts by weight, more preferably 90 parts by weight, still more preferably 85 parts by weight, particularly preferably 80 parts by weight.
- the lower limit of the content of the (co) polymer (A) is preferably 5 parts by weight, more preferably 10 parts by weight, still more preferably 15 parts by weight, and particularly preferably 20 parts by weight.
- the (co) polymer composition containing the (co) polymer (A) and the copolymer (B) has a balance between heat resistance, moldability, mechanical properties, transparency, elongation and toughness. It is preferable at the point which is excellent.
- a hollow molded body made of the composition is preferred because it inherits such excellent effects, is excellent in heat resistance and transparency, and is excellent in dimensional stability.
- a film made of the composition is preferable because it inherits such excellent effects, is excellent in heat resistance and transparency, and is uniformly stretch-formed.
- the 4-methyl-1-pentene (co) polymer (A) satisfies the following requirements (Aa) to (Ae).
- the total amount (U2) of structural units derived from 0 to 10 mol% (the structural unit derived from 4-methyl-1-pentene (U1) and the structural unit derived from ⁇ -olefin having 2 to 20 carbon atoms (U2) )) Is 100 mol%).
- T m The melting point measured by DSC is usually in the range of 200 to 250 ° C.
- T c The crystallization temperature measured by DSC is usually in the range of 150 to 225 ° C.
- the density is usually 820 to 850 kg / m 3 .
- the 4-methyl-1-pentene (co) polymer (A) has a constitutional unit (U1) derived from 4-methyl-1-pentene of 100 to 90 mol%,
- the total amount (U2) of structural units derived from 2 to 20 ⁇ -olefin (excluding 4-methyl-1-pentene) is 0 to 10 mol%.
- the upper limit of U1 is preferably 99 mol%, more preferably 98 mol%, and the lower limit is preferably 91 mol%, more preferably 93 mol%, still more preferably 94 mol%.
- the upper limit of U2 is preferably 9 mol%, more preferably 7 mol%, still more preferably 6 mol%, and the lower limit is preferably 1 mol%, more preferably 2 mol% (provided that U1 and U2 are combined) Is 100 mol%).
- U1 of 100 mol% (U2 of 0 mol%) indicates that the (co) polymer (A) is a homopolymer of 4-methyl-1-pentene.
- the polymer composition containing the (co) polymer (A) is excellent in heat resistance and transparency, and is preferable from the viewpoint of elongation and toughness.
- a hollow molded body obtained from the composition is also preferable because of excellent heat resistance and transparency and excellent dimensional stability.
- a film obtained from the composition is also preferable because it is excellent in heat resistance and transparency and excellent in moldability of the film.
- the ⁇ -olefin having 2 to 20 carbon atoms may be ethylene , Propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene , 1-heptadecene, 1-octadecene, 1-eicocene and the like are preferable examples.
- ethylene, propylene, 1-butene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, and 1 are preferable from the viewpoints of copolymerizability and physical properties of the obtained copolymer.
- -Octene 1-decene, 1-hexadecene, 1-heptadecene, 1-octadecene, and more preferably ethylene, propylene, 1-butene, 1-hexene, 1-octene, 1-decene, 1-hexadecene, 1-heptadecene and 1-octadecene are more preferable, and 1-octene, 1-decene, 1-hexadecene, 1-heptadecene and 1-octadecene are more preferable.
- ⁇ -olefins having 2 to 20 carbon atoms can be used alone or in combination of two or more.
- the (co) polymer (A) may contain structural units derived from other polymerizable compounds as long as the object of the present invention is not impaired.
- Examples of such other polymerizable compounds include vinyl compounds having a cyclic structure such as styrene, vinylcyclopentene, vinylcyclohexane, and vinylnorbornane; vinyl esters such as vinyl acetate; unsaturated organic acids such as maleic anhydride or the like Derivatives; Conjugated dienes such as butadiene, isoprene, pentadiene, 2,3-dimethylbutadiene; 1,4-hexadiene, 1,6-octadiene, 2-methyl-1,5-hexadiene, 6-methyl-1,5- Heptadiene, 7-methyl-1,6-octadiene, dicyclopentadiene, cyclohexadiene, dicyclooctadiene, methylene norbornene, 5-vinyl norbornene, 5-ethylidene-2-norbornene, 5-methylene-2-norbornene, 5- Isopropylidene-2-
- 100 mol% of structural units derived from all the polymerizable compounds contained in the (co) polymer (A) are derived from such other polymerizable compounds. It may be contained in an amount of 10 mol% or less, preferably 5 mol% or less, more preferably 3 mol% or less.
- the intrinsic viscosity [ ⁇ ] of 4-methyl-1-pentene (co) polymer (A) measured in decalin at 135 ° C. is usually 0.5 to 5.0 dl / g, preferably 1 It is 0.0 to 4.0 dl / g, and more preferably 1.2 to 3.5 dl / g.
- the value of the intrinsic viscosity [ ⁇ ] can be adjusted by the amount of hydrogen added during the polymerization when the (co) polymer (A) is produced.
- the (co) polymer (A) having an intrinsic viscosity [ ⁇ ] in the above range exhibits good fluidity at the time of mixing and various moldings of the resin composition, and further described later in 4-methyl-1- When combined with the pentene copolymer (B), it is considered that it contributes to toughness. Further, the (co) polymer (A), the hollow molded article and the film obtained from the composition are excellent in transparency.
- the melting point (T m ) of 4-methyl-1-pentene (co) polymer (A) measured by DSC is usually 200 ° C. to 250 ° C., preferably 210 ° C. It is ⁇ 240 ° C., more preferably 215 ° C. to 240 ° C.
- the melting point (T m ) value tends to depend on the stereoregularity of the polymer and the content of the ⁇ -olefin structural unit having 2 to 20 carbon atoms. Further, it can be obtained by controlling the content of the ⁇ -olefin structural unit having 2 to 20 carbon atoms.
- the polymer (A) having a melting point (T m ) value within the above range is preferable from the viewpoints of heat resistance and moldability. Moreover, since a hollow molded object and a film are excellent also in heat resistance and the property is uniform and excellent, it is preferable.
- the crystallization temperature (T c ) of the 4-methyl-1-pentene (co) polymer (A) measured by DSC is usually 150 to 225 ° C., preferably 160 to 223 ° C., More preferably, it is 170 to 221 ° C.
- the value of the crystallization temperature (T c ) tends to depend on the stereoregularity of the polymer and the content of the ⁇ -olefin structural unit having 2 to 20 carbon atoms. Further, it can be obtained by controlling the content of the ⁇ -olefin structural unit having 2 to 20 carbon atoms.
- the (co) polymer (A), hollow molded body and film having a crystallization temperature (T c ) value within the above range are preferred from the viewpoint of moldability.
- the density of the 4-methyl-1-pentene (co) polymer (A) is usually 820 to 850 kg / m 3 , preferably 825 to 850 kg / m 3 , more preferably 825 to 845 kg. / M 3 , more preferably 825 to 840 kg / m 3 .
- the density value can be adjusted by selecting the type and content of other ⁇ -olefins polymerized with 4-methyl-1-pentene.
- the (co) polymer (A), hollow molded body and film having a density value in the above range are preferred from the viewpoint of heat resistance.
- the 4-methyl-1-pentene (co) polymer (A) in the present invention is a known olefin polymerization catalyst such as a vanadium catalyst, a titanium catalyst, a magnesium-supported titanium catalyst, WO 01/53369.
- 4-methyl-1-pentene and, if necessary, using a metallocene catalyst described in the pamphlet of International Publication No. WO01 / 27124, JP-A-3-193966 or JP-A-02-41303 It can be obtained by polymerizing the ⁇ -olefin having 2 to 20 carbon atoms (excluding 4-methyl-1-pentene) and the other polymerizable compounds.
- the (co) polymer (A) may be a general commercially available 4-methyl-1-pentene polymer.
- TPX registered trademark
- Mitsui Chemicals, Inc. may be used. Can be used.
- the 4-methyl-1-pentene copolymer (B) is selected from the following 4-methyl-1-pentene copolymer (B1) and 4-methyl-1-pentene copolymer (B2). It consists of at least one kind.
- the copolymer (B) preferably includes both the copolymer (B1) and the copolymer (B2).
- copolymers (B1) and (B2) will be described.
- the 4-methyl-1-pentene copolymer (B1) satisfies the following requirements (B1-a) to (B1-e), and preferably further satisfies the requirement (B1-f).
- the structural unit (U3) derived from 4-methyl-1-pentene is 99 to 80 mol%, and the total amount of the structural unit (U4) derived from the ⁇ -olefin having 2 to 20 carbon atoms is 1 to 20 mol% (a structural unit derived from 4-methyl-1-pentene (U3) and a structural unit derived from an ⁇ -olefin having 2 to 20 carbon atoms (excluding 4-methyl-1-pentene) (U4 )) Is 100 mol%).
- the intrinsic viscosity [ ⁇ ] measured in 135 ° C. decalin is usually 0.5 to 5.0 dl / g.
- the density is usually 825 to 860 kg / m 3 .
- T m The melting point (T m ) measured by DSC is usually in the range of 110 ° C. to less than 200 ° C.
- Tensile modulus (YM) is usually 200 to 2,000 (MPa).
- the 4-methyl-1-pentene copolymer (B1) is composed of 99 to 80 mol% of structural units (U3) derived from 4-methyl-1-pentene and having 2 to 20 carbon atoms.
- the total amount (U4) of structural units derived from ⁇ -olefin (excluding 4-methyl-1-pentene) is 1 to 20 mol%.
- the upper limit of U3 is preferably 98 mol%, more preferably 97 mol%, still more preferably 96 mol%, still more preferably 95 mol%, and the lower limit is preferably 82 mol%, more preferably 83 mol%. %.
- the upper limit of U4 is preferably 18 mol%, more preferably 17 mol%, and the lower limit is preferably 2 mol%, more preferably 3 mol%, still more preferably 4 mol%, even more preferably 5 mol%. (However, the total of U3 and U4 is 100 mol%).
- the polymer composition containing the copolymer (B1) is preferable from the viewpoints of transparency, elongation, toughness, and heat resistance.
- the hollow molded body and film obtained from the composition are preferable because of excellent transparency and moldability.
- the composition containing the copolymer (B1) is preferable because it is more excellent in transparency, elongation and toughness, and particularly in heat resistance.
- Examples of the ⁇ -olefin having 2 to 20 carbon atoms contained in the copolymer (B1) include the same as those mentioned in the description of the (co) polymer (A). Of these, ⁇ -olefins having 2 to 4 carbon atoms are preferred, and specific examples include ethylene, propylene, and 1-butene.
- ⁇ -olefins having 2 to 20 carbon atoms can be used alone or in combination of two or more.
- propylene is preferably used from the viewpoint of copolymerizability.
- the copolymer (B1) may contain structural units derived from other polymerizable compounds as long as the object of the present invention is not impaired.
- the same compounds as mentioned in the explanation of the (co) polymer (A) may be contained, and the proportion of the structural units is also in the same range. is there.
- the intrinsic viscosity [ ⁇ ] of the 4-methyl-1-pentene copolymer (B1) measured in decalin at 135 ° C. is usually 0.5 to 5.0 dL / g, preferably 1.0. It is -4.0 dL / g, More preferably, it is 1.2-3.5 dL / g.
- the value of the intrinsic viscosity [ ⁇ ] can be adjusted by the amount of hydrogen added during the polymerization when the copolymer (B1) is produced.
- the copolymer (B1) having a value of the intrinsic viscosity [ ⁇ ] in the above range exhibits good fluidity during the production of the resin composition and various moldings, and further, the (co) polymer (A) described above.
- the polymer composition obtained when combined with the above exhibits good elongation and toughness, and tends to provide a molded article having excellent transparency.
- molecular weight distribution (ratio of weight average molecular weight (Mw) and number average molecular weight (Mn) measured by gel permeation chromatography (GPC) of 4-methyl-1-pentene copolymer (B1) ( Mw / Mn) is usually 1.0 to 3.5, preferably 1.0 to 3.0, more preferably 1.5 to 2.5.
- the value of the molecular weight distribution (Mw / Mn) can be controlled and adjusted according to the type of olefin polymerization catalyst described later.
- the polymer composition containing the copolymer (B1) having a molecular weight distribution (Mw / Mn) value in the above range tends to have a relatively low content of a low molecular weight component. It is preferable from the viewpoint that transparency decreases due to out and the possibility that a low molecular weight component weakens the crystal structure is lowered, and it is considered that there is a favorable influence on mechanical properties. Since there exists a tendency for the molded article excellent in transparency to be obtained, it is preferable.
- 4-methyl-1-pentene copolymer (B1) is 825 ⁇ 860kg / m 3, preferably 830 ⁇ 855kg / m 3, more preferably 830 ⁇ 850kg / m 3 More preferably, it is 830 to 845 kg / m 3 .
- the density value can be adjusted by selecting the type and blending amount of other ⁇ -olefin polymerized with 4-methyl-1-pentene.
- a polymer composition containing the copolymer (B1) having a density value in the above range, a hollow molded product obtained from the composition, and a film are preferable because of excellent transparency and heat resistance.
- the melting point (T m ) of 4-methyl-1-pentene copolymer (B1) measured by DSC is usually 110 to less than 200 ° C., preferably 115 to 199 ° C., more preferably 115 to 197. ° C, still more preferably 120 to 195 ° C, particularly preferably 125 to 190 ° C from the viewpoint of achieving both heat resistance and moldability.
- the melting point (T m ) is a value that varies depending on the stereoregularity of the polymer and the amount of ⁇ -olefin polymerized together, and is controlled and adjusted to a desired composition using an olefin polymerization catalyst described later. Is possible.
- a polymer composition containing the copolymer (B1) having a melting point (T m ) in the above range is preferable from the viewpoints of transparency, moldability, and heat resistance.
- a hollow molded body and a film are also preferable because they are excellent in heat resistance and uniform and excellent in properties.
- the difference in melting point between the (co) polymer (A) and the copolymer (B1) is that the compatibility between (A) and (B1) is improved, thereby improving the moldability, mechanical strength and impact strength. Is preferably 5 ° C. or higher, more preferably 10 ° C. or higher, further preferably 20 ° C. or higher, particularly preferably 30 ° C. or higher, and particularly preferably 35 ° C. or higher.
- the upper limit of the difference between the melting points is not limited as long as the (co) polymer (A) and the copolymer (B1) satisfy a desired melting point, but is preferably 120 ° C., more preferably 110 ° C. Thus, it is considered that 4-methyl-1-pentene polymers having different melting points tend to have appropriate compatibility, unlike propylene-based polymers.
- the tensile elastic modulus (YM) of the 4-methyl-1-pentene copolymer (B) preferably satisfies 200 to 2,000 (MPa), preferably 200 MPa to 1900 MPa, more preferably 300 MPa. It is ⁇ 1900 MPa, more preferably 300 MPa to 1800 MPa.
- the value of the tensile elastic modulus (YM) is a value that varies depending on the amount of olefin to be polymerized, and can be controlled and adjusted using a polymerization catalyst described later.
- a polymer composition containing the copolymer (B) having a tensile modulus (YM) value that satisfies the above range is preferable from the viewpoints of moldability and mechanical properties. Moreover, it is thought that satisfy
- the total amount of structural units (U6) derived from (excluding the above) exceeds 20 mol% to 40 mol% (the structural unit derived from 4-methyl-1-pentene (U5) and ⁇ -carbon having 2 to 4 carbon atoms)
- the total of the structural units derived from olefin (U6) is 100 mol%).
- T m The melting point measured by DSC is usually less than 110 ° C. or no melting point is observed.
- the density is usually 830 to 860 kg / m 3 .
- the 4-methyl-1-pentene copolymer (B2) has a constitutional unit (U5) derived from 4-methyl-1-pentene of less than 80 mol% to 60 mol%, and a carbon atom.
- the total amount of structural units (U6) derived from ⁇ -olefins of 2 to 4 (excluding 4-methyl-1-pentene) is more than 20 mol% and ⁇ 40 mol%.
- the upper limit of U5 is preferably 79 mol%, more preferably 78 mol%, even more preferably 75 mol%, and the lower limit is preferably 65 mol%, more preferably 68 mol%.
- the upper limit of U6 is preferably 35 mol%, more preferably 32 mol%, and the lower limit is preferably 21 mol%, more preferably 22 mol%, and even more preferably 25 mol% (provided that U5 and The total of U6 is 100 mol%).
- the polymer composition containing the copolymer (B2) in which each constituent unit is in the above range is more excellent in flexibility.
- the hollow molded body obtained from the composition is excellent in flexibility and tends to have improved impact resistance. For example, cracks and breakage are unlikely to occur during dropping.
- a film obtained from the composition is also preferable because it is more excellent in flexibility.
- Preferred examples of the ⁇ -olefin having 2 to 4 carbon atoms contained in the copolymer (B2) include ethylene, propylene, and 1-butene.
- propylene is preferably used from the viewpoint of copolymerizability.
- ⁇ -olefins having 2 to 4 carbon atoms can be used alone or in combination of two or more.
- the copolymer (B2) may contain structural units derived from other polymerizable compounds as long as the object of the present invention is not impaired.
- the same compounds as mentioned in the explanation of the (co) polymer (A) may be contained, and the proportion of the structural units is also in the same range. is there.
- the intrinsic viscosity [ ⁇ ] of the 4-methyl-1-pentene copolymer (B2) measured in decalin at 135 ° C. is usually 0.5 to 5.0 dL / g, preferably 1.0. It is -4.0 dL / g, More preferably, it is 1.2-3.5 dL / g.
- the value of the intrinsic viscosity [ ⁇ ] can be adjusted by the amount of hydrogen added during the polymerization when the copolymer (B2) is produced.
- the copolymer (B2) having an intrinsic viscosity [ ⁇ ] in the above range exhibits good fluidity at the time of resin composition production and various moldings, and further, the (co) polymer (A) described above.
- the polymer composition tends to exhibit good elongation and toughness and excellent transparency.
- a hollow molded object and a film are also excellent in transparency and excellent in a moldability, they are preferable.
- the melting point (T m ) of the 4-methyl-1-pentene copolymer (B2) measured by DSC is usually less than 110 ° C. or no melting point is observed.
- the upper limit thereof is preferably 100 ° C., more preferably 99 ° C., even more preferably 95 ° C., but particularly preferably in a mode in which the melting point is not observed. is there.
- a minimum is not specifically limited, Usually, it is 80 degreeC.
- the melting point (T m ) is a value that varies depending on the stereoregularity of the polymer and the amount of ⁇ -olefin polymerized together, and is controlled and adjusted to a desired composition using an olefin polymerization catalyst described later. Is possible.
- the copolymer (B2) having a melting point (T m ) in the above range is preferable from the viewpoints of transparency and moldability, flexibility and impact resistance, molding obtained from a polymer composition containing the copolymer (B2) is preferable.
- the body also has excellent transparency and further tends to have excellent moldability. Moreover, it exists in the tendency which can provide a softness
- the heat resistance of (B1) When combined with the copolymer (B1), the heat resistance of (B1) is high and the compatibility is good, so the heat resistance tends to be improved without degrading the moldability and mechanical properties. preferable.
- the moldability, particularly stretchability and blow moldability are improved and the electrical properties tend to be improved without significantly reducing the heat resistance. Therefore, it is preferable.
- molecular weight distribution ratio of weight average molecular weight (Mw) and number average molecular weight (Mn) measured by gel permeation chromatography (GPC) of 4-methyl-1-pentene copolymer (B2) ( Mw / Mn) is usually 1.0 to 3.5, preferably 1.0 to 3.0, more preferably 1.5 to 2.5.
- the value of the molecular weight distribution (Mw / Mn) can be controlled and adjusted according to the type of olefin polymerization catalyst described later.
- the copolymer (B2) having a molecular weight distribution (Mw / Mn) value in the above range is preferable from the viewpoint of transparency and mechanical properties, a molded product obtained from a polymer composition containing the copolymer (B2) is more transparent. There is a tendency to obtain an excellent product. Further, when combined with the above-mentioned (co) polymer (A), the molecular weight distribution of (A) is wide, so that the moldability tends to be improved and the productivity is also improved, which is preferable.
- the density of the 4-methyl-1-pentene copolymer (B2) is usually 830 to 860 kg / m 3 , preferably 830 to 855 kg / m 3 , more preferably 830 to 850 kg / m 3. 3 , more preferably 830 to 845 kg / m 3 .
- the density value can be adjusted by selecting the type and blending amount of other ⁇ -olefin polymerized with 4-methyl-1-pentene.
- the copolymer (B2) having a density value in the above range is preferable from the viewpoint of transparency and flexibility, a molded product obtained from a polymer composition containing the copolymer (B2) is also more excellent in transparency and flexibility. Things tend to be obtained.
- the 4-methyl-1-pentene copolymer (B) in the present invention is prepared in the presence of the same olefin polymerization catalyst as described in the above-mentioned method for producing the (co) polymer (A).
- -Methyl-1-pentene can be obtained by polymerizing the above-mentioned specific ⁇ -olefin and, if necessary, the other polymerizable compound.
- a metallocene catalyst can be mentioned as a preferred embodiment of the catalyst for producing the 4-methyl-1-pentene copolymer (B).
- Preferred metallocene catalysts are as described above in WO 01/53369 pamphlet, WO 01/27124 pamphlet, JP-A-3-193396, JP-A-02-41303, or WO06 / The metallocene catalyst described in the pamphlet of No. 0255540 is mentioned.
- 4-methyl-1-pentene copolymer (B) when 4-methyl-1-pentene copolymer (B) is produced using 4-methyl-1-pentene and a specific ⁇ -olefin in the presence of a metallocene catalyst, it is introduced into the molecule. Olefins tend to be introduced relatively randomly. In such a case, since the copolymer (B) has a low melting point with a small amount of olefin, the chain of 4-methyl-1-pentene units becomes long, so that the phase with the (co) polymer (A) is increased. It is considered that the solubility is good. Furthermore, when combined with the (co) polymer (A), in addition to excellent transparency considered to be derived from good compatibility, the balance between rigidity and melting point is excellent.
- ( ⁇ ) a metallocene compound represented by the following general formula (1) or (2); ( ⁇ ) ( ⁇ -1) an organometallic compound, ( ⁇ -2) an organoaluminum oxy compound, and ( ⁇ -3) a compound that reacts with the metallocene compound ( ⁇ ) to form an ion pair, At least one compound selected from: If necessary, A metallocene catalyst composed of ( ⁇ ) a particulate carrier is preferably used.
- examples of the metallocene compound that can be used for the production of the 4-methyl-1-pentene copolymer (B) include compounds represented by the following general formula (1) or (2).
- the substituents represented by R 1 to R 14 are selected from a hydrogen atom, a hydrocarbon group, and a silicon-containing hydrocarbon group, and may be the same or different, Adjacent substituents from R 1 to R 4 may be bonded to each other to form a ring, adjacent substituents from R 5 to R 12 may be bonded to each other to form a ring, and A is A divalent hydrocarbon group having 2 to 20 carbon atoms which may partially contain an unsaturated bond and / or an aromatic ring, and A represents two or more ring structures including a ring formed with Y; M is a metal selected from Group 4 of the periodic table, Y is carbon or silicon, and Q can be coordinated by a halogen, a hydrocarbon group, an anionic ligand or a lone electron pair.
- the neutral ligands may be selected in the same or different combinations, and j is an integer of 1 to 4.
- the hydrocarbon group is preferably an alkyl group having 1 to 20 carbon atoms, an arylalkyl group having 7 to 20 carbon atoms, or the number of carbon atoms It is an aryl group having 6 to 20 carbon atoms or an alkylaryl group having 7 to 20 carbon atoms, and may contain one or more ring structures. Further, a part or all of the hydrocarbon group may be substituted with a functional group such as a hydroxyl group, an amino group, a halogen group, or a fluorine-containing hydrocarbon group.
- the silicon-containing hydrocarbon group is preferably an alkylsilyl group or arylsilyl group having 1 to 4 silicon atoms and 3 to 20 carbon atoms. Specific examples thereof include trimethylsilyl, tert-butyldimethylsilyl, triphenylsilyl and the like.
- Adjacent substituents from R 5 to R 12 on the fluorene ring may be bonded to each other to form a ring.
- substituted fluorenyl groups include benzofluorenyl, dibenzofluorenyl, octahydrodibenzofluorenyl, octamethyloctahydrodibenzofluorenyl and the like.
- it is unsubstituted fluorene, 3,6-disubstituted fluorene, 2,7-disubstituted fluorene or 2,3,6,7-tetrasubstituted fluorene.
- the 3-position on the fluorene ring, 6-position, 2-position, 7-position corresponds to the R 7, R 10, R 6 , R 11 , respectively.
- R 13 and R 14 in the general formula (1) are selected from a hydrogen atom or a hydrocarbon group, and may be the same or different. Specific examples of preferred hydrocarbon groups include those similar to the above R 1 to R 14 .
- Y is a carbon atom or a silicon atom.
- R 13 and R 14 are bonded to Y to form a substituted methylene group or a substituted silylene group as a bridging part.
- Preferred examples include, for example, methylene, dimethylmethylene, diisopropylmethylene, methyl tert-butylmethylene, dicyclohexylmethylene, methylcyclohexylmethylene, methylphenylmethylene, fluoromethylphenylmethylene, chloromethylphenylmethylene, diphenylmethylene, dichlorophenylmethylene, difluorophenyl.
- Methylene methylnaphthylmethylene, dibiphenylmethylene, di-p-methylphenylmethylene, methyl-p-methylphenylmethylene, ethyl-p-methylphenylmethylene, dinaphthylmethylene or dimethylsilylene, diisopropylsilylene, methyl-tert-butylsilylene, Dicyclohexylsilylene, methylcyclohexylsilylene, methylphenylsilylene, fluoro Chill silylene, chloromethyl silylene, diphenyl silylene, mention may be made of di-p- methylphenyl silylene, methyl -p- methylphenyl silylene, ethyl -p- methylphenyl silylene, methyl naphthyl silylene, a dinaphthyl silylene like.
- Y is bonded to a divalent hydrocarbon group A having 2 to 20 carbon atoms which may partially contain an unsaturated bond and / or an aromatic ring, and a cycloalkylidene group or It constitutes a cyclomethylenesilylene group and the like.
- Preferable specific examples include, for example, cyclopropylidene, cyclobutylidene, cyclopentylidene, cyclohexylidene, cycloheptylidene, bicyclo [3.3.1] nonylidene, norbornylidene, adamantylidene, tetrahydronaphthylidene, dihydroin Examples include danylidene, cyclodimethylenesilylene, cyclotrimethylenesilylene, cyclotetramethylenesilylene, cyclopentamethylenesilylene, cyclohexamethylenesilylene, cycloheptamethylenesilylene, and the like.
- M is a metal selected from Group 4 of the periodic table, and examples of M include titanium, zirconium, and hafnium.
- Q is selected from the same or different combinations from halogen, a hydrocarbon group having 1 to 20 carbon atoms, an anionic ligand, or a neutral ligand capable of coordinating with a lone electron pair.
- halogen include fluorine, chlorine, bromine and iodine
- hydrocarbon group include the same as those described above.
- anionic ligand include alkoxy groups such as methoxy, tert-butoxy and phenoxy, carboxylate groups such as acetate and benzoate, and sulfonate groups such as mesylate and tosylate.
- organophosphorus compounds such as trimethylphosphine, triethylphosphine, triphenylphosphine, diphenylmethylphosphine, tetrahydrofuran, diethyl ether, dioxane, 1,2- And ethers such as dimethoxyethane.
- Q may be the same or different combinations, but at least one is preferably a halogen or an alkyl group.
- metallocene compound in the present invention examples include, for example, compounds exemplified in International Publication No. 01/27124 Pamphlet, International Publication No. 2006/025540 Pamphlet or International Publication No. 2007/308607 Pamphlet. In particular, this does not limit the scope of the present invention.
- the compound ( ⁇ ) is selected from the organoaluminum compound ( ⁇ -1), the organoaluminum oxy compound ( ⁇ -2), and the compound ( ⁇ -3) that reacts with the metallocene compound ( ⁇ ) to form an ion pair. It is composed of at least one compound.
- ( ⁇ -1) organometallic compound used as necessary in the present invention, specifically, groups 1 and 2 and 12, 13 of the periodic table as shown below Examples of the organic metal compounds include ( ⁇ -1a), ( ⁇ -1b), and ( ⁇ -1c) described below.
- the ( ⁇ -1) organometallic compound does not include the ( ⁇ -2) organoaluminum oxy compound described later.
- M 2 AlR a 4 and aluminum A complex alkylated product of a group 1 metal of the periodic table represented by the general formula M 2 AlR a 4 and aluminum.
- R a represents a hydrocarbon group having 1 to 15 carbon atoms, preferably 1 to 4 carbon atoms
- ⁇ -1c A dialkyl compound of a Group 2 or Group 12 metal represented by the general formula R a R b M 3 .
- R a and R b represent a hydrocarbon group having 1 to 15, preferably 1 to 4 carbon atoms which may be the same or different from each other, and M 3 is Mg, Zn or Cd
- organoaluminum compound belonging to ( ⁇ -1a) include the following compounds.
- R a m Al (OR b ) 3-m wherein R a and R b represent a hydrocarbon group having 1 to 15, preferably 1 to 4 carbon atoms which may be the same or different from each other). M is preferably a number of 1.5 ⁇ m ⁇ 3.
- An organic aluminum compound represented by the general formula R a m AlX 3-m (wherein R a is from 1 to 15, preferably 1 to 4 hydrocarbon groups, X represents a halogen atom, and m is preferably 0 ⁇ m ⁇ 3.)
- An organoaluminum compound represented by the general formula R a m AlH 3 ⁇ m wherein R a represents a hydrocarbon group having 1 to 15 carbon atoms, preferably 1 to 4 carbon atoms, and m is preferably 2 ⁇ m ⁇ 3), during R a m Al (oR b) n X q (wherein, R a and R b are optionally carbon atoms be the same or different from each other 1 15,
- organoaluminum compound belonging to ( ⁇ -1a) trimethylaluminum, triethylaluminum, tri (n-butyl) aluminum, tripropylaluminum, tripentylaluminum, trihexylaluminum, trioctylaluminum, tridecyl Tri (n-alkyl) aluminum such as aluminum; triisopropylaluminum, triisobutylaluminum, tri (sec-butyl) aluminum, tri (tert-butyl) aluminum, tri (2-methylbutyl) aluminum, tri (3-methylbutyl) aluminum , Tri (2-methylpentyl) aluminum, tri (3-methylpentyl) aluminum, tri (4-methylpentyl) aluminum, tri (2-methylhexyl) Tri-branched alkylaluminums such as luminium, tri (3-methylhexyl) aluminum, tri (2-ethylhexyl) aluminum; tricycloalkylaluminums such as tri
- a compound similar to ( ⁇ -1a) can also be used, and examples thereof include an organoaluminum compound in which two or more aluminum compounds are bonded through a nitrogen atom.
- organoaluminum compound in which two or more aluminum compounds are bonded through a nitrogen atom.
- Specific examples of such a compound include (C 2 H 5 ) 2 AlN (C 2 H 5 ) Al (C 2 H 5 ) 2 .
- Examples of the compound belonging to ( ⁇ -1b) include LiAl (C 2 H 5 ) 4 and LiAl (C 7 H 15 ) 4 .
- Examples of the compound belonging to ( ⁇ -1c) include dimethylmagnesium, diethylmagnesium, dibutylmagnesium, and butylethylmagnesium.
- Examples of ( ⁇ -1) organometallic compounds other than the above ( ⁇ -1a) to ( ⁇ -1c) include methyl lithium, ethyl lithium, propyl lithium, butyl lithium, methyl magnesium bromide, methyl magnesium chloride, ethyl magnesium bromide, ethyl Magnesium chloride, propylmagnesium bromide, propylmagnesium chloride, butylmagnesium bromide, butylmagnesium chloride and the like can also be used.
- a compound that can form the organoaluminum compound in the multimerization reaction system for example, a combination of aluminum halide and alkyllithium, or a combination of aluminum halide and alkylmagnesium can be used.
- organometallic compounds organoaluminum compounds are preferred.
- the ( ⁇ -1) organometallic compounds as described above are used singly or in combination of two or more.
- the ( ⁇ -2) organoaluminum oxy compound used as necessary in the present invention may be a conventionally known aluminoxane, and is exemplified in JP-A-2-78687. It may be a benzene insoluble organoaluminum oxy compound.
- the conventionally known aluminoxane can be produced, for example, by the following method and is usually obtained as a solution in a hydrocarbon solvent.
- Compounds containing adsorbed water or salts containing water of crystallization such as magnesium chloride hydrate, copper sulfate hydrate, aluminum sulfate hydrate, nickel sulfate hydrate, first cerium chloride hydrate, etc.
- a method of reacting adsorbed water or crystal water with an organoaluminum compound by adding an organoaluminum compound such as trialkylaluminum to the suspension of the hydrocarbon.
- the aluminoxane may contain a small amount of an organometallic component. Further, after removing the solvent or the unreacted organoaluminum compound from the recovered aluminoxane solution by distillation, it may be redissolved in a solvent or suspended in a poor aluminoxane solvent.
- organoaluminum compound used in preparing the aluminoxane include the same organoaluminum compounds as those exemplified as the organoaluminum compound belonging to the above ( ⁇ -1a).
- trialkylaluminum and tricycloalkylaluminum are preferable, and trimethylaluminum is particularly preferable.
- organoaluminum compounds are used singly or in combination of two or more.
- Solvents used for the preparation of aluminoxane include aromatic hydrocarbons such as benzene, toluene, xylene, cumene, and cymene, aliphatic hydrocarbons such as pentane, hexane, heptane, octane, decane, dodecane, hexadecane, and octadecane, and cyclopentane.
- aromatic hydrocarbons such as benzene, toluene, xylene, cumene, and cymene
- aliphatic hydrocarbons such as pentane, hexane, heptane, octane, decane, dodecane, hexadecane, and octadecane
- aliphatic hydrocarbons such as pentane, hexane, heptane, octane, decane, dodecan
- Cycloaliphatic hydrocarbons such as cyclohexane, cyclooctane and methylcyclopentane, petroleum fractions such as gasoline, kerosene and light oil, or halides of the above aromatic hydrocarbons, aliphatic hydrocarbons and alicyclic hydrocarbons, especially chlorine And hydrocarbon solvents such as bromide and bromide.
- ethers such as ethyl ether and tetrahydrofuran can also be used. Of these solvents, aromatic hydrocarbons or aliphatic hydrocarbons are particularly preferable.
- the benzene-insoluble organoaluminum oxy compound used in the present invention has an Al component dissolved in benzene at 60 ° C. of usually 10% or less, preferably 5% or less, particularly preferably 2% or less in terms of Al atom, That is, those which are insoluble or hardly soluble in benzene are preferred.
- organoaluminum oxy compound used in the present invention also include an organoaluminum oxy compound containing boron represented by the following general formula (i).
- R 15 represents a hydrocarbon group having 1 to 10 carbon atoms.
- R 16 represents a hydrogen atom, a halogen atom, or a hydrocarbon group having 1 to 10 carbon atoms, which may be the same or different from each other.
- the organoaluminum oxy compound containing boron represented by the general formula (i) includes an alkyl boronic acid represented by the following general formula (ii) and an organoaluminum compound in an inert solvent under an inert gas atmosphere. In particular, it can be produced by reacting at a temperature of ⁇ 80 ° C. to room temperature for 1 minute to 24 hours.
- R 15 -B (OH) 2 (ii) (In the formula (ii), R 15 is selected from the same groups as in the above formula (i).) Specific examples of the alkyl boronic acid represented by the general formula (ii) include methyl boronic acid, ethyl boronic acid, isopropyl boronic acid, n-propyl boronic acid, n-butyl boronic acid, isobutyl boronic acid, n-hexyl boron.
- Examples include acid, cyclohexyl boronic acid, phenyl boronic acid, 3,5-difluorophenyl boronic acid, pentafluorophenyl boronic acid, 3,5-bis (trifluoromethyl) phenyl boronic acid and the like.
- methyl boronic acid, n-butyl boronic acid, isobutyl boronic acid, 3,5-difluorophenyl boronic acid, and pentafluorophenyl boronic acid are preferable.
- organoaluminum compound to be reacted with the alkylboronic acid include the same organoaluminum compounds as those exemplified as the organoaluminum compound belonging to ( ⁇ -1a). Of these, trialkylaluminum and tricycloalkylaluminum are preferable, and trimethylaluminum, triethylaluminum, and triisobutylaluminum are particularly preferable. These may be used alone or in combination of two or more.
- the ( ⁇ -2) organoaluminum oxy compounds as described above are used singly or in combination of two or more.
- the compound is a compound that reacts with the metallocene compound ( ⁇ ) to form an ion pair. Therefore, what forms an ion pair by making it contact with a metallocene compound ((alpha)) at least is contained in this compound.
- Examples of such compounds include JP-A-1-501950, JP-A-1-502036, JP-A-3-179905, JP-A-3-179006, JP-A-3-207703, JP-A-3.
- Examples include Lewis acids, ionic compounds, borane compounds and carborane compounds described in US Pat. No. 207704 and US Pat. No. 5,321,106.
- heteropoly compounds and isopoly compounds can also be mentioned.
- a compound represented by BR 3 (R is a phenyl group or fluorine which may have a substituent such as fluorine, methyl group or trifluoromethyl group) can be mentioned.
- R is a phenyl group or fluorine which may have a substituent such as fluorine, methyl group or trifluoromethyl group
- trifluoroboron triphenylboron, tris (4-fluorophenyl) boron, tris (3,5-difluorophenyl) boron, tris (4-fluoromethylphenyl) boron, tris (pentafluorophenyl) boron, tris
- Examples thereof include (p-tolyl) boron, tris (o-tolyl) boron, and tris (3,5-dimethylphenyl) boron.
- ionic compounds examples include compounds represented by the following general formula (iii)
- examples of R 17+ include H + , a carbonium cation, an oxonium cation, an ammonium cation, a phosphonium cation, a cycloheptyltrienyl cation, and a ferrocenium cation having a transition metal.
- R 18 to R 21 are organic groups which may be the same or different from each other, preferably an aryl group or a substituted aryl group.
- carbonium cation examples include trisubstituted carbonium cations such as triphenylcarbonium cation, tri (methylphenyl) carbonium cation, and tri (dimethylphenyl) carbonium cation.
- ammonium cation examples include trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tri (n-propyl) ammonium cation, and tri (n-butyl) ammonium cation; N, N-dimethylanilinium cation, N, N-diethylanilinium cation, N, N, 2,4,6-pentamethylanilinium cation and other N, N-dialkylanilinium cation; di (isopropyl) ammonium cation, dicyclohexylammonium cation and other dialkylammonium cation Etc.
- trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tri (n-propyl) ammonium cation, and tri (n-butyl) ammonium cation
- phosphonium cation examples include triarylphosphonium cations such as triphenylphosphonium cation, tri (methylphenyl) phosphonium cation, and tri (dimethylphenyl) phosphonium cation.
- R 17+ is preferably a carbonium cation, an ammonium cation or the like, and particularly preferably a triphenylcarbonium cation, an N, N-dimethylanilinium cation or an N, N-diethylanilinium cation.
- ionic compounds include trialkyl-substituted ammonium salts, N, N-dialkylanilinium salts, dialkylammonium salts, and triarylphosphonium salts.
- trialkyl-substituted ammonium salt examples include triethylammonium tetraphenylborate, tri (n-propyl) ammonium tetraphenylborate, tri (n-butyl) ammonium tetraphenylborate, trimethylammonium tetra (p-tolyl) borate, Trimethylammonium tetra (o-tolyl) borate, tri (n-butyl) ammonium tetra (pentafluorophenyl) borate, tri (n-propyl) ammonium tetra (o, p-dimethylphenyl) borate, tri (n-butyl) ammonium Tetra (m, m-dimethylphenyl) borate, tri (n-butyl) ammonium tetra (p-trifluoromethylphenyl) borate, tri (n-butyl) ammonium tetra (3,5-d
- N, N-dialkylanilinium salts include, for example, N, N-dimethylanilinium tetraphenylborate, N, N-diethylanilinium tetraphenylborate, N, N, 2,4,6-pentamethylaniline. Examples thereof include nium tetraphenylborate.
- dialkylammonium salt examples include di (n-propyl) ammonium tetra (pentafluorophenyl) borate and dicyclohexylammonium tetraphenylborate.
- triphenylcarbenium tetrakis (pentafluorophenyl) borate N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, ferrocenium tetra (pentafluorophenyl) borate, triphenylcarbenium pentaphenyl
- Examples thereof include cyclopentadienyl complexes, N, N-diethylanilinium pentaphenylcyclopentadienyl complexes, and boron compounds represented by the following formula (iv) or (v).
- Et represents an ethyl group.
- borane compound examples include decaborane (14); bis [tri (n-butyl) ammonium] nonaborate, bis [tri (n-butyl) ammonium] decaborate, bis [tri (n-butyl) ammonium] undeca Salts of anions such as borate, bis [tri (n-butyl) ammonium] dodecaborate, bis [tri (n-butyl) ammonium] decachlorodecaborate, bis [tri (n-butyl) ammonium] dodecachlorododecaborate; Of metal borane anions such as tri (n-butyl) ammonium bis (dodecahydridododecaborate) cobaltate (III) and bis [tri (n-butyl) ammonium] bis (dodecahydridododecaborate) nickate (III) Examples include salt.
- carborane compound examples include 4-carbanonaborane (14), 1,3-dicarbanonaborane (13), 6,9-dicarbadecarborane (14), dodecahydride-1-phenyl-1, 3-dicarbanonaborane, dodecahydride-1-methyl-1,3-dicarbanonaborane, undecahydride-1,3-dimethyl-1,3-dicarbanonaborane, 7,8-dicarbaundecaborane (13), 2,7-dicarboundecarborane (13), undecahydride-7,8-dimethyl-7,8-dicarboundecarborane, dodecahydride-11-methyl-2,7-dicarboundecarborane Tri (n-butyl) ammonium 1-carbadecaborate, tri (n-butyl) ammonium 1-carbaundecaborate, (N-butyl) ammonium 1-carbadodecaborate, tri (n-butyl) ammonium 1-trimethyls
- the heteropoly compound is composed of one or more atoms selected from silicon, phosphorus, titanium, germanium, arsenic or tin and vanadium, niobium, molybdenum and tungsten.
- the heteropoly compound and the isopoly compound are not limited to one of the above compounds, and two or more of them can be used.
- the metallocene catalyst preferably used for the production of the 4-methyl-1-pentene copolymer (B) may contain a ( ⁇ ) fine particle carrier, if necessary.
- the above-described olefin polymerization catalyst may be used by being supported on a ( ⁇ ) particulate carrier.
- the form ( ⁇ ) supported on a particulate carrier is preferably used.
- the particulate carrier is an inorganic or organic compound and is a granular or particulate solid.
- a porous oxide, an inorganic halide, clay, clay mineral, or an ion-exchange layered compound is preferable.
- the porous oxide specifically, SiO 2 , Al 2 O 3 , MgO, ZrO, TiO 2 , B 2 O 3 , CaO, ZnO, BaO, ThO 2 and the like, or a composite or mixture containing these, for example,
- Use natural or synthetic zeolite, SiO 2 —MgO, SiO 2 —Al 2 O 3 , SiO 2 —TiO 2 , SiO 2 —V 2 O 5 , SiO 2 —Cr 2 O 3 , SiO 2 —TiO 2 —MgO, etc. can do.
- those containing SiO 2 and / or Al 2 O 3 as main components are preferred.
- the inorganic oxide includes a small amount of Na 2 CO 3 , K 2 CO 3 , CaCO 3 , MgCO 3 , Na 2 SO 4 , Al 2 (SO 4 ) 3 , BaSO 4 , KNO 3 , Mg (NO 3 ). 2 , carbonates such as Al (NO 3 ) 3 , Na 2 O, K 2 O, Li 2 O, sulfates, nitrates, and oxide components may be contained.
- the inorganic halide MgCl 2 , MgBr 2 , MnCl 2 , MnBr 2 or the like is used.
- the inorganic halide may be used as it is or after being pulverized by a ball mill or a vibration mill. Further, it is also possible to use a material obtained by dissolving an inorganic halide in a solvent such as alcohol and then precipitating the fine particles with a precipitating agent.
- Clay is usually composed mainly of clay minerals.
- the ion-exchangeable layered compound is a compound having a crystal structure in which surfaces formed by ionic bonds and the like are stacked in parallel with a weak binding force, and the ions contained therein can be exchanged.
- Most clay minerals are ion-exchangeable layered compounds.
- these clays, clay minerals, and ion-exchange layered compounds are not limited to natural products, and artificial synthetic products can also be used.
- clay clay mineral or ion-exchangeable layered compound
- clay clay mineral, ionic crystalline compound having a layered crystal structure such as hexagonal fine packing type, antimony type, CdCl 2 type, CdI 2 type, etc. It can be illustrated.
- clays and clay minerals examples include kaolin, bentonite, kibushi clay, gyrome clay, allophane, hysinger gel, pyrophyllite, ummo group, montmorillonite group, vermiculite, ryokdeite group, palygorskite, kaolinite, nacrite, dickite
- ion-exchangeable layered compounds include ⁇ -Zr (HAsO 4 ) 2 .H 2 O, ⁇ -Zr (HPO 4 ) 2 , ⁇ -Zr (KPO 4 ) 2 .3H 2 O, ⁇ -Ti (HPO 4 ) 2 , ⁇ -Ti (HAsO 4 ) 2 .H 2 O, ⁇ -Sn (HPO 4 ) 2 .H 2 O, ⁇ -Zr (HPO 4 ) 2 , ⁇ -Ti (HPO 4 ) 2 and crystalline acidic salts of polyvalent metals such as ⁇ -T
- Such a clay, clay mineral or ion exchange layered compound preferably has a pore volume of not less than 0.1 cc / g having a radius of 20 mm or more as measured by a mercury intrusion method, and is preferably from 0.3 to 5 cc / g. Particularly preferred.
- the pore volume is measured in a pore radius range of 20 to 3 ⁇ 10 4 ⁇ by mercury porosimetry using a mercury porosimeter.
- any of a surface treatment that removes impurities adhering to the surface and a treatment that affects the crystal structure of the clay can be used.
- Specific examples of the chemical treatment include acid treatment, alkali treatment, salt treatment, and organic matter treatment.
- the acid treatment increases the surface area by eluting cations such as Al, Fe, and Mg in the crystal structure.
- Alkali treatment destroys the crystal structure of the clay, resulting in a change in the structure of the clay.
- salt treatment and organic matter treatment ion complexes, molecular complexes, organic derivatives, etc. can be formed, and the surface area and interlayer distance can be changed.
- the ion-exchangeable layered compound may be a layered compound in a state where the layers are expanded by exchanging the exchangeable ions between the layers with other large and bulky ions using the ion-exchangeability.
- Such a bulky ion plays a role of a column supporting the layered structure and is usually called a pillar.
- intercalation introducing another substance between the layers of the layered compound in this way is called intercalation.
- guest compounds to be intercalated include cationic inorganic compounds such as TiCl 4 and ZrCl 4 , metal alkoxides such as Ti (OR) 4 , Zr (OR) 4 , PO (OR) 3 , and B (OR) 3 ( R is a hydrocarbon group), metal hydroxide ions such as [Al 13 O 4 (OH) 24 ] 7+ , [Zr 4 (OH) 14 ] 2+ , [Fe 3 O (OCOCH 3 ) 6 ] + Etc.
- These compounds are used alone or in combination of two or more. Further, when these compounds were intercalated, they were obtained by hydrolyzing metal alkoxides such as Si (OR) 4 , Al (OR) 3 , Ge (OR) 4 (R is a hydrocarbon group, etc.). Polymers, colloidal inorganic compounds such as SiO 2, and the like can also coexist. Examples of the pillar include oxides formed by heat dehydration after intercalation of the metal hydroxide ions between layers.
- Clay, clay mineral, and ion-exchange layered compound may be used as they are, or may be used after treatment such as ball milling or sieving. Further, it may be used after newly adsorbing and adsorbing water or after heat dehydration treatment. Furthermore, you may use individually or in combination of 2 or more types.
- ion exchange layered silicate When ion exchange layered silicate is used, in addition to its function as a carrier, it can also reduce the amount of organoaluminum oxy compounds such as alkylaluminoxane by utilizing its ion exchange properties and layer structure. Is possible.
- the ion-exchange layered silicate is naturally produced mainly as a main component of clay mineral, but is not limited to a natural product, and may be a synthetic product.
- Specific examples of clay, clay mineral, and ion-exchange layered silicate include kaolinite, montmorillonite, hectorite, bentonite, smectite, vermiculite, teniolite, synthetic mica, synthetic hectorite, and the like.
- Examples of the organic compound include granular or particulate solids having a particle size in the range of 5 to 300 ⁇ m.
- polar functional groups obtained by copolymerizing or graft polymerizing polar monomers such as acrylic acid, acrylic acid ester, and maleic anhydride to these polymers
- a polymer or modified product having These particulate carriers can be used alone or in combination of two or more.
- the polymerization of 4-methyl-1-pentene with a specific ⁇ -olefin for obtaining the copolymer (B) is either a liquid phase polymerization method such as solution polymerization or suspension polymerization, or a gas phase polymerization method. Can also be implemented. In the liquid phase polymerization method, an inert hydrocarbon solvent may be used.
- aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, octane, decane, dodecane, and kerosene; cyclopentane, Cycloaliphatic hydrocarbons such as cyclohexane, methylcyclopentane and methylcyclohexane; aromatic hydrocarbons such as benzene, toluene and xylene; halogenated hydrocarbons such as ethylene chloride, chlorobenzene, dichloromethane, lichloromethane and tetrachloromethane or mixtures thereof And so on. Bulk polymerization using olefins containing 4-methyl-1-pentene as a solvent can also be carried out.
- so-called multistage polymerization in which the polymerization conditions are changed stepwise can also be performed.
- the copolymer having a desired broad molecular weight distribution or a wide composition distribution by performing polymerization stepwise under two conditions with different amounts of hydrogen used or the ratio of 4-methyl-1-pentene and olefin It is also possible to obtain (B). Further, the copolymer (B) having a controlled composition distribution is obtained by performing stepwise polymerization of 4-methyl-1-pentene and copolymerization of 4-methyl-1-pentene with other olefins. It is also possible to obtain.
- the component ( ⁇ ) is usually 10 ⁇ 8 to 10 ⁇ 2 mol, preferably 10 ⁇ 7 to 10 ⁇ 3 mol in terms of Group 4 metal atom in the periodic table per liter of reaction volume. Used in various amounts.
- the component ( ⁇ -1) is a molar ratio of the component ( ⁇ -1) to the transition metal atom (M) in the component ( ⁇ ) [( ⁇ -1) / M ] Is usually used in an amount of 0.01 to 100,000, preferably 0.05 to 50,000.
- the molar ratio [( ⁇ -2) / M] of the aluminum atom in ( ⁇ -2) and the transition metal atom (M) in ( ⁇ ) is usually 10 to 500,000, preferably Is used in an amount of 20 to 100,000.
- the molar ratio [( ⁇ -3) / M] of ( ⁇ -3) to the transition metal atom (M) in ( ⁇ ) is usually 1 to 10, preferably 1 to 5. Is used in such an amount that
- the polymerization temperature is usually in the range of ⁇ 50 to 200 ° C., preferably 0 to 100 ° C., more preferably 20 to 100 ° C. If the polymerization temperature is too low, there is an industrial disadvantage in terms of polymerization activity per unit catalyst and heat recovery efficiency.
- the polymerization pressure is usually from normal pressure to 10 MPa gauge pressure, preferably from normal pressure to 5 MPa gauge pressure, and the polymerization reaction can be carried out by any of batch, semi-continuous and continuous methods. Furthermore, the polymerization can be performed in two or more stages having different reaction conditions.
- hydrogen can be added for the purpose of controlling the molecular weight and polymerization activity of the produced polymer, and the amount is suitably about 0.001 to 100 NL per kg of olefin.
- the components (A) and (B) described above are blended in specific amounts, and if necessary, an additive, an ⁇ -olefin polymer (C) described later, is added. It can be obtained by blending and mixing.
- each component various known methods such as a multistage polymerization method, a plastmill, a Henschel mixer, a V-blender, a ribbon blender, a tumbler, a blender, a kneader ruder or the like, or after mixing, a single screw extruder
- a method of granulating or pulverizing after melt-kneading with a twin screw extruder, kneader, Banbury mixer or the like can be employed. By this method, it is possible to obtain a high-quality (co) polymer composition in which each component and additive are uniformly dispersed and mixed.
- the (co) polymer composition in the present invention may contain a nucleating agent as a specific optional component in order to further improve its moldability, that is, to increase the crystallization temperature and increase the crystallization speed.
- the nucleating agent is a dibenzylidene sorbitol-based nucleating agent, a phosphate ester-based nucleating agent, a rosin-based nucleating agent, a benzoic acid metal salt-based nucleating agent, fluorinated polyethylene, 2,2-methylenebis (4,6-di-).
- a secondary antioxidant In the (co) polymer composition, a secondary antioxidant, a heat stabilizer, a weather stabilizer, an antistatic agent, a slip agent, an antiblocking agent may be added to the composition as long as the purpose of the present invention is not impaired.
- Agents, antifogging agents, lubricants, dyes, pigments, natural oils, synthetic oils, waxes, fillers, hydrochloric acid absorbents, other olefin polymers, and the like can be blended.
- the blending amount is not particularly limited, but is usually 0 to 50 parts by weight, preferably 0 to 30 parts by weight, more preferably 0 to 10 parts by weight, particularly preferably 100 parts by weight of the (co) polymer composition. 0 to 1 part by weight.
- antioxidant known antioxidants can be used. Specifically, a hindered phenol compound, a sulfur-based antioxidant, a lactone-based antioxidant, an organic phosphite compound, an organic phosphonite compound, or a combination of these can be used.
- the lubricant examples include sodium, calcium and magnesium salts of saturated or unsaturated fatty acids such as lauric acid, palmitic acid, oleic acid and stearic acid, and these may be used alone or in combination of two or more. it can.
- the blending amount of such a lubricant is usually about 0.1 to 3 parts by weight, preferably about 0.1 to 2 parts by weight with respect to 100 parts by weight of the (co) polymer composition.
- amides of saturated or unsaturated fatty acids such as lauric acid, palmitic acid, oleic acid, stearic acid, erucic acid and ariaic acid, or bisamides of these saturated or unsaturated fatty acids.
- erucic acid amide and ethylene bisstearamide are particularly preferred.
- These fatty acid amides are preferably blended in an amount of usually 0.01 to 5 parts by weight per 100 parts by weight of the polymer composition of the present invention.
- anti-blocking agent examples include fine powder silica, fine powder aluminum oxide, fine powder clay, powdered or liquid silicon resin, tetrafluoroethylene resin, fine powder cross-linked resin such as cross-linked acrylic and methacrylic resin powder. be able to. Of these, fine powder silica and crosslinked acrylic and methacrylic resin powders are preferred.
- olefin polymers include known ethylene polymers and propylene polymers different from the (co) polymer (A), copolymer (B) and ⁇ -olefin polymer (C) according to the present invention. Examples thereof include a polymer, a pentene polymer, and a cyclic olefin copolymer.
- the ethylene polymer is an ethylene / propylene copolymer, an ethylene / butene copolymer, an ethylene / hexene copolymer, an ethylene / octene copolymer or the like, and the propylene polymer is a propylene / propylene copolymer.
- Copolymers such as ethylene copolymers, propylene / butene copolymers, propylene / butene / ethylene copolymers, and butene-based polymers are copolymers of butene / propylene copolymers and butene / ethylene copolymers.
- a polymer is included.
- Preferred embodiment of 4-methyl-1-pentene (co) polymer composition Preferred embodiments of the 4-methyl-1-pentene (co) polymer composition include 4-methyl-1-pentene (co) polymer composition (X) described below, and more preferred embodiments include 4- And methyl-1-pentene (co) polymer compositions (X1) to (X6).
- each composition can be obtained according to the above-described method for producing a 4-methyl-1-pentene (co) polymer composition.
- the 4-methyl-1-pentene (co) polymer composition (X) contains two or more different 4-methyl-1-pentene (co) polymers.
- UX-1 is preferably 99 mol% to 65 mol%, more preferably 95 to 70 mol%, and UX-2 is preferably 1 mol% to 35 mol%, more Preferably, it is 5 to 30 mol%.
- the (co) polymer composition (X) may contain 4-methyl-1-pentene copolymer (B1) and / or 4-methyl-1-pentene copolymer (B2).
- the mixing ratio of B1 and B2 ((B1) / (B2)) is 100/0 to 0/100, and the mixing ratio is to obtain the desired physical properties of the (co) polymer composition (X).
- a composition containing each component in such a range is excellent in heat resistance, moldability, mechanical properties, balance of transparency and elongation and toughness, and thus a molded article made of the composition has such excellent effects. Is preferable because it is excellent in heat resistance and transparency and tends to be obtained by uniformly stretching.
- UX-1 is preferably 95 to 72 mol%, more preferably 93 to 75 mol%
- UX-2 is preferably 5 to 28 mol%, more preferably 7 to 25 mol% (provided that the sum of UX-1 and UX-2 is 100 mol%).
- 4-methyl-1-pentene (co) polymer composition (X1) 4-methyl-1-pentene (co) polymer composition (X1) 4-methyl-1-pentene (co) polymer (A) 10 to 90 parts by weight, preferably 15 to 85 parts by weight, more preferably 20 to 80 parts by weight, and a 4-methyl-1-pentene copolymer ( B) 4-methyl-1-pentene copolymer (B1) 90 to 10 parts by weight, preferably 85 to 15 parts by weight, more preferably 80 to 20 parts by weight (provided that (A) and (B1) The total is 100 parts by weight).
- the composition (X1) has a total amount of constituent units (UX1-1) derived from 4-methyl-1-pentene derived from all (co) polymers contained in the composition of 95 to 70 mol%.
- the total amount of constituent units (UX1-2) derived from ⁇ -olefins having 2 to 20 carbon atoms (excluding 4-methyl-1-pentene) derived from all (co) polymers contained in the product is 5 to It is preferably 30 mol% (provided that the sum of UX1-1 and UX1-2 is 100 mol%).
- the copolymer (B1) satisfying U3 of 99 to 83 mol% and U4 of 1 to 17 mol% provided that the total of U3 and U4 is 100 mol%)
- the composition to be contained is preferable because it is more excellent in transparency, elongation and toughness, and particularly excellent in heat resistance.
- composition (X1) is particularly excellent in transparency and heat resistance
- a molded article made of the composition inherits such excellent effects, has excellent heat resistance, is transparent and has excellent uniform stretchability. It is preferable in that it tends to be obtained.
- UX1-1 is preferably 95 to 80 mol%, more preferably 95 to 82 mol%, still more preferably 95 to 85 mol%
- UX1-2 is , Preferably 5 to 20 mol%, more preferably 5 to 18 mol%, and even more preferably 5 to 15 mol% (provided that the sum of UX1-1 and UX1-2 is 100 mol%).
- the 4-methyl-1-pentene (co) polymer composition (X2) is 10 to 90 parts by weight, preferably 50 to 90 parts by weight, more preferably 4-methyl-1-pentene (co) polymer (A). Is 60 to 85 parts by weight, 90 to 10 parts by weight, preferably 50 to 10 parts by weight of 4-methyl-1-pentene copolymer (B2) as 4-methyl-1-pentene copolymer (B), Preferably, it contains 40 to 15 parts by weight (provided that the total of (A) and (B2) is 100 parts by weight).
- the composition (X2) has a total amount (UX2-1) of structural units derived from 4-methyl-1-pentene derived from all (co) polymers contained in the composition of 95 to 70 mol%, preferably Is from 95 to 75 mol%, more preferably from 93 to 75 mol%, and an ⁇ -olefin having 2 to 20 carbon atoms derived from all (co) polymer contained in the composition (4-methyl-1-
- the total amount (UX1-2) of structural units derived from (excluding pentene) is 5 to 30 mol%, preferably 5 to 25 mol%, more preferably 7 to 25 mol% (however, UX2-1 and UX2-2) The total is 100 mol%).
- composition (X2) is particularly flexible (B2) dispersed in (A) without impairing transparency, the composition (X2) is excellent in elongation, flexibility and impact resistance. Is preferable in that it has a tendency to inherit such an excellent effect and to obtain a product excellent in flexibility and impact resistance.
- 4-methyl-1-pentene (co) polymer composition (X3) comprises 10 to 90 parts by weight of 4-methyl-1-pentene (co) polymer (A), 4-methyl-1 -90 to 10 parts by weight of the total of 4-methyl-1-pentene copolymer (B1) and 4-methyl-1-pentene copolymer (B2) as pentene copolymer (B) (however, (A) And (B) is 100 parts by weight, and the mixing ratio of (B1) and (B2) ((B1) / (B2)) is 99/1 to 1/99).
- the total amount (UX3-1) of structural units derived from 4-methyl-1-pentene derived from all (co) polymers contained in the composition is preferably 95 to 70 mol%.
- the total amount of constituent units (UX3-2) derived from ⁇ -olefins having 2 to 20 carbon atoms (excluding 4-methyl-1-pentene) derived from all (co) polymers contained in the composition is 30 to 5 mol% (provided that the sum of UX3-1 and UX3-2 is 100 mol%).
- the (co) polymer (A) is preferably 15 to 90 parts by weight, more preferably 20 to 90 parts by weight, and even more preferably 30 to 85 parts by weight.
- composition (X3) is that the (co) polymer (A) is 50 to 90 parts by weight, preferably 55 to 85 parts by weight, and the copolymer (B) is 50 parts by weight. -10 parts by weight, preferably 45-15 parts by weight (provided that the sum of (A) and (B) is 100 parts by weight).
- the mixing ratio ((B1) / (B2)) of the copolymer (B1) and the copolymer (B2) is preferably 90/10 to 10/90, more preferably 70/30 to 15/85, A ratio of 60/40 to 15/85 is more preferable, and a ratio of 50/50 to 15/85 is particularly preferable because a molded article excellent in stretchability and blow moldability tends to be obtained.
- the mixing ratio ((B1) / (B2)) of the copolymer (B1) and the copolymer (B2) is preferably 90/10 to 10/90, more preferably 85/15 to 30 / 70, more preferably 85/15 to 40/60, and particularly preferably 85/15 to 50/50 is preferable because a molded article having excellent heat resistance tends to be obtained.
- UX3-1 is preferably 95 to 75 mol%, more preferably 93 to 75 mol%
- UX3-2 is preferably 5 to 25 mol%, more preferably 7 to 25 mol% ( However, the sum of UX3-1 and UX3-2 is 100 mol%).
- the composition (X3) is preferable because it is imparted with transparency and heat resistance, which are the characteristics of (B1), and is further provided with flexibility, elongation and impact resistance, which are the characteristics of (B2).
- a hollow molded body made of the composition is preferable because it can inherit such excellent effects and has excellent heat resistance, high transparency and excellent dimensional stability.
- a film is preferable because it inherits such excellent effects and is excellent in heat resistance, high in transparency, and excellent in moldability.
- 4-methyl-1-pentene (co) polymer composition (X4) to (X6) are 4-methyl-1-pentene (co) polymer (A), 4-methyl-1-pentene, It comprises a copolymer (B) and an ⁇ -olefin polymer (C) described later.
- the copolymer (B) As the copolymer (B), as shown in the description of the 4-methyl-1-pentene copolymer (B), the copolymer (B1) and the copolymer (B2) And the mixing ratio can be arbitrarily changed.
- composition (X4) A preferred embodiment of the 4-methyl-1-pentene (co) polymer composition (X4) is 10 to 85 parts by weight, preferably 15 to 80 parts by weight of the (co) polymer (A). 85 to 10 parts by weight of (B), preferably 80 to 15 parts by weight, and 3 to 30 parts by weight of ⁇ -olefin polymer (C), preferably 3 to 25 parts by weight (provided that (A), (B) and The total of (C) is 100 parts by weight).
- the composition (X4) includes both the copolymer (B1) and the copolymer (B2) as the copolymer (B), and the copolymer (B) includes (B1) and (B).
- the description of the composition (X3) can be referred to for the total amount of B2) and the mixing ratio ((B1) / (B2)).
- the copolymer (X4) contains the copolymers (B1) and (B2) and further contains the ⁇ -olefin polymer (C), the composition has the flexibility and extensibility of (C). It is preferable because good stretchability and toughness can be obtained from the reason that it can be imparted.
- composition (X4) is an embodiment containing the ⁇ -olefin polymer (C) in the composition (X3), and the effect of the composition (X3) is also included.
- the total amount (UX4-1) of structural units derived from 4-methyl-1-pentene derived from all (co) polymers contained in the composition is 95 to 65 mol%.
- the total amount (UX4-2) of structural units derived from ⁇ -olefins having 2 to 20 carbon atoms (excluding 4-methyl-1-pentene) derived from all (co) polymers contained in the composition is 5 to 35 mol% (provided that the sum of UX4-1 and UX4-2 is 100 mol%).
- composition (X5) A preferred embodiment of the 4-methyl-1-pentene (co) polymer composition (X5) is such that the (co) polymer (A) is 7 to 90 parts by weight, preferably 10 to 85 parts by weight. (B) is 90 to 7 parts by weight, preferably 85 to 10 parts by weight, and the ⁇ -olefin polymer (C) is 0.9 to 30 parts by weight, preferably 1 to 25 parts by weight (provided that (A), (B ) And (C) is 100 parts by weight).
- the composition (X5) contains the copolymer (B1) as the copolymer (B).
- the copolymer (X5) contains the ⁇ -olefin polymer (C), even if the copolymer (B2) is not included, the flexibility and extensibility of (C) are imparted to the composition. This is preferable because good stretchability and toughness can be obtained.
- composition (X5) is an embodiment containing the ⁇ -olefin polymer (C) in the composition (X1), and the effect of the composition (X1) is also included.
- the composition (X5) preferably has a total amount of constituent units (UX5-1) derived from 4-methyl-1-pentene derived from all (co) polymers contained in the composition (UX5-1). Mol%, the total amount of structural units derived from ⁇ -olefins having 2 to 20 carbon atoms (excluding 4-methyl-1-pentene) derived from all (co) polymers contained in the composition (UX5-2 ) Is 35 to 5 mol% (provided that the sum of UX5-1 and UX5-2 is 100 mol%).
- ⁇ is added to 100 parts by weight of the composition (X1) or the composition (X3).
- ⁇ containing 1 to 40 parts by weight of olefin polymer (C).
- the embodiment in which the ⁇ -olefin polymer (C) is contained in the composition (X1) means that the (co) polymer (A), the copolymer (B1) and the ⁇ -olefin polymer (C) are mixed.
- the embodiment in which the ⁇ -olefin polymer (C) is contained in the composition (X3) includes the (co) polymer (A), the copolymer (B1), and the copolymer.
- the total amount of the structural units derived from 4-methyl-1-pentene and the structural units derived from an ⁇ -olefin having 2 to 20 carbon atoms (excluding 4-methyl-1-pentene). Satisfies the total amount range.
- composition (X6) A preferred embodiment of the 4-methyl-1-pentene (co) polymer composition (X6) is such that the (co) polymer (A) is 7 to 90 parts by weight, preferably 10 to 85 parts by weight. (B) is 90 to 7 parts by weight, preferably 85 to 10 parts by weight, and the ⁇ -olefin polymer (C) is 0.9 to 30 parts by weight, preferably 5 to 25 parts by weight, more preferably 10 to 25 parts by weight. Parts (provided that the total of (A), (B) and (C) is 100 parts by weight).
- the composition (X5) contains the copolymer (B2) as the copolymer (B).
- the copolymer (X6) contains the ⁇ -olefin polymer (C), even if the copolymer (B1) is not included, the flexibility and extensibility of (C) are imparted to the composition. This is preferable because good stretchability and toughness can be obtained.
- composition (X6) is an embodiment containing the ⁇ -olefin polymer (C) in the composition (X2), preferably an embodiment containing the ⁇ -olefin polymer (C) having a specific melting point described later. Yes, the effect of the composition (X2) is also included.
- the composition (X6) preferably has a total amount of constituent units (UX6-1) derived from 4-methyl-1-pentene derived from all (co) polymers contained in the composition (UX6-1) of 95 to 65. Mol%, the total amount of structural units derived from ⁇ -olefins having 2 to 20 carbon atoms (excluding 4-methyl-1-pentene) derived from all (co) polymers contained in the composition (UX6-2) ) Is 5 to 35 mol% (provided that the sum of UX6-1 and UX6-2 is 100 mol%).
- the total amount of structural units derived from 4-methyl-1-pentene derived from all (co) polymers contained in the composition (UX4-1) UX5-1 or UX6-1) is preferably 90 to 68 mol%, more preferably 88 to 70 mol%, and 2 to 20 carbon atoms derived from the total (co) polymer contained in the composition.
- the total amount of constituent units derived from ⁇ -olefin (excluding 4-methyl-1-pentene) (UX4-2, UX5-2 or UX6-2) is preferably 10 to 32 mol%, more preferably 12 to 30 Mol% (however, the sum of UX4-1 and UX4-2 is 100 mol%, or the sum of UX5-1 and UX5-2 is 100 mol%. The sum of UX6-1 and UX6-2) And 100 mol% That).
- another embodiment of the 4-methyl-1-pentene (co) polymer composition includes 5-90 parts by weight of 4-methyl-1-pentene (co) polymer (A), 4-methyl -1-pentene copolymer (B) 90 to 10 parts by weight and ⁇ -olefin polymer (C) 1 to 40 parts by weight described later (however, the total of (A), (B) and (C) is 100 parts by weight) Part).
- the ⁇ -olefin polymer (C) is selected from ⁇ -olefins having 2 to 20 carbon atoms, unlike the (co) polymer (A), the copolymers (B1) and (B2) according to the present invention.
- One or two or more types of olefin polymers for example, olefin homopolymers and binary or more copolymers.
- the constituent unit of each olefin may be 50 to 99% by weight on one side and 1 to 50% by weight on the other side (the total amount of the constituent units is 100% by weight).
- the composition ratio of each olefin is arbitrarily determined.
- linear ⁇ -olefin having 2 to 20 carbon atoms examples include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-undecene, 1-dodecene, - ⁇ -olefins such as tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene and the like are preferable, and linear ⁇ -olefins having 2 to 15 carbon atoms, more preferably 2 to 10 carbon atoms are preferable. Particularly preferred are ethylene, propylene, 1-butene, 1-pentene, 1-hexene and 1-octene.
- Examples of the branched ⁇ -olefin having 4 to 20 carbon atoms include isobutene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, and 4-methyl-1- ⁇ -olefins such as pentene, 4,4-dimethyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4-ethyl-1-hexene, 3-ethyl-1-hexene
- the olefin constituting the ⁇ -olefin polymer (C) used in the polymer composition (X4) is preferably 50 to 100% by weight of at least one structural unit selected from ethylene, propylene and 1-butene, More preferably 55 to 100% by weight and a structural unit selected from ethylene and an ⁇ -olefin having 3 to 20 carbon atoms (excluding olefins similar to the above olefins) 0 to 50% by weight, more preferably 0 to 45% by weight (the total amount of structural units is 100 mol%).
- the structural unit of 100% by weight means a homopolymer.
- the ⁇ -olefin polymer (C) preferably has an MFR measured in a range of 0.01 to 100 g / 10 min at 190 ° C. or 230 ° C. under a load of 2.16 kg in accordance with JIS K-6721.
- the density is in the range of 830 to 930 kg / m 3 .
- the ⁇ -olefin polymer (C) has an intrinsic viscosity [ ⁇ ] measured in decalin at 135 ° C. is usually 0.1 to 10 dL / g, more preferably 0.5 to 5 dL / g.
- the melting point of the ⁇ -olefin polymer (C) is not particularly limited, but is preferably 100 ° C. or higher, more preferably 110 to 170 ° C., for reasons of heat resistance and strength.
- the ⁇ -olefin polymer (C) having the melting point is contained in the composition (X6) because the heat resistance and strength are further improved.
- the ⁇ -olefin polymer (C) may contain units derived from other polymerizable monomers within the range not impairing the object of the present invention, in addition to the structural units described above.
- Examples of such other polymerizable monomers include vinyl compounds such as styrene, vinylcyclopentene, vinylcyclohexane, and vinylnorbornane; vinyl esters such as vinyl acetate; unsaturated organic acids such as maleic anhydride or derivatives thereof; butadiene Conjugated dienes such as isoprene, pentadiene, 2,3-dimethylbutadiene; 1,4-hexadiene, 1,6-octadiene, 2-methyl-1,5-hexadiene, 6-methyl-1,5-heptadiene, 7 -Methyl-1,6-octadiene, dicyclopentadiene, cyclohexadiene, dicyclooctadiene, methylene norbornene, 5-vinyl norbornene, 5-ethylidene-2-norbornene, 5-methylene-2-norbornene, 5-isopropylidene- 2-Norborne 6-chloro
- the unit derived from such other polymerizable monomer is 10 mol% or less, preferably 5 mol, based on 100 mol% of all the structural units constituting the polymer (C). It may be contained in an amount of not more than mol%, more preferably not more than 3 mol%.
- ⁇ -olefin polymer (C) examples include low density polyethylene, high density polyethylene, polypropylene, polybutene, ethylene / propylene random copolymer, ethylene / 1-butene random copolymer, ethylene / propylene 1-butene random copolymer, ethylene / 1-hexene random copolymer, ethylene / 1-octene random copolymer, ethylene / propylene / ethylidene norbornene random copolymer, ethylene / propylene / vinylidene norbornene random copolymer, Ethylene / 1-butene / ethylidene norbornene random copolymer, ethylene / 1-butene / 1-octene random copolymer, propylene / 1-butene random copolymer, propylene / 1-hexene random copolymer, propylene / 1 -Octe Random copoly
- the ⁇ -olefin polymer (C) can be produced by a conventionally known method using a vanadium catalyst, a titanium catalyst or a metallocene catalyst.
- a commercially available product may be used, or a trade name “Tuffmer TM ” manufactured by Mitsui Chemicals, Inc. may be used.
- the 4-methyl-1-pentene (co) polymer composition of the present invention is mixed with a polar resin and laminated, or when laminated with a metal and bonded, preferably the above-mentioned (co) polymer (A), It is preferable that at least a part of components such as the copolymer (B) or the (co) polymer contained in the (co) polymer composition is graft-modified with a polar compound.
- the modified product of the (co) polymer composition includes, in addition to those obtained by directly modifying the (co) polymer composition, the (co) polymer (A) and the copolymer (B). Is a concept including those having a polymer modified as a constituent of the polymer composition.
- the (co) polymer composition includes a modified product.
- Examples of polar compounds used for graft modification include hydroxyl group-containing ethylenically unsaturated compounds, amino group-containing ethylenically unsaturated compounds, epoxy group-containing ethylenically unsaturated compounds, aromatic vinyl compounds, unsaturated carboxylic acids or their derivatives, and vinyl esters.
- Compounds, vinyl chloride, vinyl group-containing organosilicon compounds, carbodiimide compounds and the like can be mentioned. Of these, unsaturated carboxylic acids or derivatives thereof and vinyl group-containing organosilicon compounds are particularly preferred.
- Examples of the unsaturated carboxylic acid or a derivative thereof include an unsaturated compound having one or more carboxylic acid groups, an ester of a compound having a carboxylic acid group and an alkyl alcohol, and an unsaturated compound having one or more carboxylic anhydride groups.
- Examples of the unsaturated group include a vinyl group, a vinylene group, and an unsaturated cyclic hydrocarbon group.
- Such derivatives include maleyl chloride, maleimide, maleic anhydride, citraconic anhydride, monomethyl maleate, dimethyl maleate, glycidyl maleate and the like.
- unsaturated carboxylic acids and / or derivatives thereof can be used singly or in combination of two or more.
- unsaturated dicarboxylic acids or acid anhydrides thereof are preferred, and maleic acid, nadic acid [trademark] or acid anhydrides thereof are particularly preferably used.
- vinyl group-containing organosilicon compound conventionally known compounds can be used, and there is no particular limitation, but specific examples include vinyltriethoxysilane, vinyltrimethoxysilane, vinyltris ( ⁇ -methoxy-ethoxysilane), ⁇ -glycol.
- the modified product of the 4-methyl-1-pentene (co) polymer composition is the (co) polymer (A), the copolymer (B) or the (co) polymer composition 100. It can be obtained by graft reaction of the polar compound in an amount of usually 1 to 100 parts by weight, preferably 5 to 80 parts by weight with respect to parts by weight. This grafting reaction is usually performed in the presence of a radical initiator.
- radical initiator used for graft polymerization examples include organic peroxides and azo compounds.
- the radical initiator can be used as it is by mixing it with the (co) polymer (A), the copolymer (B) or the (co) polymer composition, and the polar compound. It can also be used after being dissolved in a solvent. Any organic solvent that can dissolve the radical initiator can be used without particular limitation.
- a reducing substance may be used. If a reducing substance is used, the graft amount of the polar compound may be improved.
- the graft modification reaction of the (co) polymer (A), the copolymer (B) or the (co) polymer composition with a polar compound can be performed by a conventionally known method.
- the (co) polymer (A), the copolymer (B) or the (co) polymer composition is dissolved in an organic solvent, and then a polar compound and a radical initiator are added to the solution.
- a method of reacting at a temperature of 200 ° C., preferably 80 to 190 ° C., usually for 0.5 to 15 hours, preferably 1 to 10 hours can be mentioned.
- the (co) polymer (A), the copolymer (B) or the (co) polymer composition can be reacted with the polar compound in the absence of a solvent using an extruder or the like. This reaction is usually carried out at a temperature not lower than the melting point of 4-methyl-1-pentene polymer, specifically at a temperature of 160 to 290 ° C., usually for 0.5 to 10 minutes.
- the modified amount of the (co) polymer composition thus obtained (the graft amount of the polar compound) is usually 0.1 to 50% by weight, preferably 0.2 to 30% by weight, more preferably Is 0.2 to 10% by weight.
- the molded product of the present invention can also be produced by appropriately combining the (co) polymer, copolymer composition and modified product according to the present invention.
- the control of melt properties is easy and the moldability is improved. Also exhibits excellent properties.
- the degree of freedom in controlling the crystallization rate mainly derived from the (co) polymer (A) is increased, which is advantageous for obtaining a wide film, a large blow molded article, a stretched film and the like.
- the molded product of the present invention is preferably a molded product obtained by further processing a molded product obtained by primary molding such as extrusion molding, injection molding, or solution casting by a method such as blow molding or stretching.
- a molded product obtained by primary molding such as extrusion molding, injection molding, or solution casting by a method such as blow molding or stretching.
- the molded product is a film or a sheet
- the molded product obtained by molding into a sheet by a T-die extrusion method or the like is obtained by further uniaxially stretching or biaxially stretching. Is also preferable.
- a specific application of such a stretched film is a film for a capacitor. It has been known that 4-methyl-1-pentene (co) polymer has a high crystallization rate and tends to have a small degree of freedom in molding. By controlling the stretching conditions such as the molding temperature and the stretching ratio, the crystallization speed can be controlled and the surface can be roughened.
- the molded product is an extrusion-molded product
- a commercially available 4-methyl-1-pentene (co) polymer such as heat resistance and electrical properties, toughness and flexibility
- it has excellent properties and moldability, as a tubular molded body, medical tubes, cooling water piping, hot water piping, cosmetic tubes, wire coating materials, millimeter wave signal cable coating, high frequency signal cable coating, eco wire coating, It can be preferably used in industrial materials, industrial members, building materials, medical parts, and electrical parts such as chemical liquid tubes, cosmetic tubes, in-vehicle cable covering materials, and signal cable covering materials.
- the film of the present invention can be obtained by melt-extruding the above-mentioned 4-methyl-1-pentene (co) polymer composition usually in the range of 180 to 300 ° C. Since the film of the present invention has a critical surface tension equivalent to that of a conventionally known 4-methyl-pentene (co) polymer film, it has excellent releasability and excellent electrical characteristics such as dielectric breakdown voltage.
- Such films include release films and packaging films.
- the film of the present invention is preferably obtained by further uniaxially or biaxially stretching a molded product obtained by molding into a film or sheet by a T-die extrusion molding method or the like.
- stretched films include capacitor films.
- 4-methyl-1-pentene polymer has a high crystallization rate and tends to have a small degree of freedom in molding, but the (co) polymer composition in the present invention.
- the stretching conditions such as the molding temperature and the stretching ratio
- the crystallization speed can be controlled and the surface can be roughened
- the stretched film also has physical properties such as dielectric breakdown voltage. Is also considered excellent.
- the crystallization speed is high, it is difficult to adjust the crystallization at the time of molding, and the copolymer (B) is in phase with the (co) polymer (A), which is inferior in the stability of molding production.
- the structure such as the interplanar spacing of crystals to be formed can be changed, so that the crystallization speed can be slowed down, and the degree of freedom in controlling the crystallization speed can be increased.
- the (co) polymer (A) which is inferior in mechanical properties such as flexibility and elongation because of its high storage elastic modulus in the temperature region above the glass transition temperature (Tg), has a flexible characteristic.
- the storage elastic modulus in the temperature region above the glass transition temperature (Tg) can be lowered as compared with the (co) polymer (A) alone. Become.
- the (co) polymer (A) having high crystallinity and uneven distribution of the crystal component is mixed with the copolymer (B) having low crystallinity or non-crystallinity so that the crystal component is changed. It becomes possible to obtain a uniform composition by being dispersed throughout the composition.
- the (co) polymer (A) having a high melting point (Tm) is combined with the copolymer (B) having a lower melting point or no melting point than the (co) polymer (A). Since the melting point in the composition can be distributed, the melt physical properties at the preheating temperature during stretching can be controlled.
- the film when the film is formed using the (co) polymer composition according to the present invention, the film can be stretched uniformly during stretching. Therefore, the film of the present invention is particularly advantageous in obtaining a stretched film.
- the film of the present invention exhibits excellent properties in terms of dimensional stability, particularly shrinkage during heating.
- the reason for such excellent properties is considered to be that the physical properties of the (co) polymer (A) are modified by the presence of the copolymer (B) as shown below. .
- an extruded film made of the copolymer (B) exhibits a behavior of expanding when heated to a glass transition temperature (Tg) or higher, contrary to a general polymer film. This is considered due to the high stress absorbability of the copolymer (B).
- the copolymer (B) Even if the copolymer (B) is flow-oriented in the flow direction MD, the copolymer (B) absorbs heat energy generated by deformation of the polymer molecules involved in the alignment, and thus is thermally stabilized in the oriented state. Therefore, even when heated to the glass transition temperature (Tg) or higher, it is not necessary to relax the orientation, so that no shrinkage occurs.
- Tg glass transition temperature
- molecular motion is simply activated and the film expands.
- the (co) polymer (A) can be imparted with appropriate thermal expansibility and shrinkable.
- the film obtained from the (co) polymer composition according to the present invention is considered to have a small heat shrinkage.
- the film of the present invention may be a laminated film in which the (co) polymer composition is contained in any one layer in addition to the single-layer film obtained from the (co) polymer composition described above.
- a method for obtaining such a laminated film is not particularly limited, but a method of laminating by a known laminating method such as extrusion lamination or extrusion coating on a surface layer film obtained in advance by T-die molding or inflation molding. Or a method of laminating each film by dry lamination after independently molding a plurality of films, etc. From the viewpoint of productivity, coextrusion in which a plurality of components are subjected to a multilayer extruder for molding. Molding is preferred.
- the present invention can be suitably used for a multilayer surface protective film including a film of the present invention in a film surface layer and a multilayer release film.
- the film comprising the 4-methyl-1-pentene (co) polymer composition of the present invention has characteristics of the conventional 4-methyl-1-pentene copolymer such as heat resistance, mechanical properties, electrical characteristics, and releasability.
- characteristics of the conventional 4-methyl-1-pentene copolymer such as heat resistance, mechanical properties, electrical characteristics, and releasability.
- it is excellent in flexibility, glossiness, uniform stretchability, etc., it is suitably used for the following applications, for example.
- Packaging film for example, food packaging film, stretch film, wrap film, breathable film, shrink film, easy peel film, Separators; for example, battery separators, lithium ion battery separators, fuel cell electrolyte membranes, adhesive / adhesive separators, Stretched film; for example, film for film capacitor, capacitor film, capacitor film for fuel cell, Semiconductor process film; for example, dicing tape, back grind tape, die bonding film, polarizing film, Surface protective films; for example, protective films for polarizing plates, protective films for liquid crystal panels, protective films for optical parts, protective films for lenses, protective films for electrical parts and electrical appliances, protective films for mobile phones, protective films for personal computers, masking Film, protective film for touch panel, film for electronic member; for example, diffusion film, reflection film, radiation resistant film, gamma ray resistant film, porous film, Building material films; for example, building material window films, laminated glass films, bulletproof materials, bulletproof glass films, heat shield sheets, and heat shield films.
- the film comprising the (co) polymer composition of the present invention is excellent in releasability, heat resistance, low outgas, and low contamination to copper foil, and therefore has been a problem in printed wiring boards, particularly flexible. There is little contamination to the wiring board and copper foil due to the transfer of low molecular weight substances during the production of printed wiring boards. Therefore, it is particularly suitably used for the release film applications described below.
- release films for flexible printed boards release films for ACM boards, release films for rigid flexible boards, release films for advanced composite materials, release films for curing carbon fiber composites Release film for curing glass fiber composites, Release film for curing aramid fiber composites, Release film for curing nanocomposites, Release film for curing filler filler, Release film for semiconductor encapsulation, For polarizing plate Release film, Release film for diffusion sheet, Release film for prism sheet, Release film for reflection sheet, Cushion film for release film, Release film for fuel cell, Release film for various rubber sheets, Urethane curing Release film, release film for epoxy curing (manufacturing process members such as metal bats and golf clubs) And the like.
- the hollow molded article of the present invention can be obtained by melt-extruding the above-mentioned 4-methyl-1-pentene (co) polymer composition usually in the range of 180 to 300 ° C.
- the control of melt properties is easy, and the moldability of the hollow molded body also exhibits excellent properties.
- the degree of freedom in controlling the crystallization rate mainly derived from the (co) polymer (A) is increased, which is advantageous for obtaining a hollow molded article.
- the blow molded article comprising the (co) polymer composition has a single layer of the (co) polymer composition or a multilayer structure containing at least one or more of the (co) polymer composition. May be provided.
- the blow molded article according to the present invention preferably has a multilayer structure including at least one (co) polymer composition.
- the blow molded article made of the (co) polymer composition has a multilayer configuration
- the following configurations can be exemplified.
- a conventionally known polyolefin resin excluding the polymer according to the present invention; the same shall apply hereinafter
- a conventionally known polyolefin resin may be mentioned.
- a blow molded article comprising a 4-methyl-1-pentene (co) polymer composition
- a general known blow molding method examples include a direct blow molding method in which a parison is molded from a molten resin, the parison is sandwiched between molds, and then a pressurized gas is blown into the parison to mold a container, or once an injection molding
- the injection blow molding method includes a hot parison method in which an injection molding machine and a blow molding machine are integrated, and a cold parison in which the injection molded preform is completely cooled and then reheated to perform blow molding.
- the preform is formed by melting the (co) polymer composition and injection molding the resin in a mold. Subsequently, the preform is reheated to a predetermined temperature using an infrared heater or the like in a molten state, a softened state, or in a cooled and solidified state. Stretch to form the desired shape.
- the melting and injection temperature of the (co) polymer composition is usually in the range of 180 to 320 ° C.
- the blow stretching temperature is usually 100 to 250 ° C.
- the longitudinal / lateral stretching ratio is usually 1.5 to 4.0 times.
- the blow molded article made of the (co) polymer composition may be in at least one layer among the components constituting the formed molded article.
- a blow molded product having at least one layer of the (co) polymer composition can be obtained by blow molding after preforming two colors during injection molding.
- a general known apparatus can be used for the molding machine as described above.
- the hollow molded body comprising the 4-methyl-1-pentene (co) polymer composition of the present invention is flexible in addition to the properties of conventional 4-methyl-1-pentene copolymer such as heat resistance and mechanical properties. Since it is excellent in blow moldability and the like, it is suitably used for hollow containers, bottles, cups and the like.
- Bottles Cosmetic bottles, hair conditioners, drinking water bottles, carbonated drink bottles, alcohols, bottles, detergent bottles, softener bottles, bleach bottles, shampoo bottles, rinse bottles, drug bottles, adhesives Bottle, pesticide bottle, medical bottle, infusion bottle, baby bottle, medical bag, infusion bag, blood storage bag, Cups: food cups, packaging cups, Etc.
- Intrinsic viscosity [ ⁇ ] It is a value measured at 135 ° C. using a decalin solvent. That is, about 20 mg of polymer powder, pellets or resin mass was dissolved in 15 ml of decalin, and the specific viscosity ⁇ sp was measured in an oil bath at 135 ° C. After diluting the decalin solution with 5 ml of decalin solvent, the specific viscosity ⁇ sp was measured in the same manner. This dilution operation was further repeated twice, and the value of ⁇ sp / C when the concentration (C) was extrapolated to 0 was obtained as the intrinsic viscosity (see the following formula).
- [ ⁇ ] lim ( ⁇ sp / C) (C ⁇ 0) [MFR]
- the MFR of 4-methyl-1-pentene (co) polymer (A) and 4-methyl-1-pentene copolymer (B) is a load of 5 kg at 260 ° C. or 230 ° C. according to JIS K7210. , And measured at a load of 2.16 kg.
- the MFR of the ⁇ -olefin polymer (C) was measured under the conditions of 230 ° C. and 2.16 kg load.
- the number average molecular weight (Mn), weight average molecular weight (Mw), and molecular weight distribution (Mw / Mn) were measured as follows using a gel permeation chromatograph Alliance GPC-2000 manufactured by Waters.
- the separation columns are two TSKgel GNH6-HT and two TSKgel GNH6-HTL.
- the column size is 7.5 mm in diameter and 300 mm in length, the column temperature is 140 ° C., and the mobile phase is o -Using dichlorobenzene (Wako Pure Chemical Industries) and 0.025 wt% BHT (Takeda Pharmaceutical) as an antioxidant, moving at 1.0 ml / min, sample concentration 15 mg / 10 mL, sample injection volume 500 micron A differential refractometer was used as a detector.
- the standard polystyrene used was manufactured by Tosoh Corporation for molecular weights of Mw ⁇ 1000 and Mw> 4 ⁇ 10 6 , and used by Pressure Chemical Co. for 1000 ⁇ Mw ⁇ 4 ⁇ 10 6 .
- Crystallization temperature (Tc) from the peak of the crystallization peak when the temperature is lowered to -100 ° C in min, and then the inflection point from the calorific curve when the temperature is raised from -100 ° C to 290 ° C at 10 ° C / min From the glass transition temperature (Tg), the melting point (Tm) was calculated from the peak apex of the crystal melting peak.
- the 1 mm-thick press sheet obtained by the above method was cut into 30 mm squares and measured by an underwater substitution method using an electronic hydrometer in accordance with JIS K6268.
- Thickness 200 ⁇ m (for stretching test): cylinder temperature 250 ° C., die temperature 250 ° C., roll temperature 80 ° C., take-up speed 1 m / min (film in Table 5)
- Thickness 100 ⁇ m (for shrinkage ratio measurement): cylinder temperature, die temperature, roll temperature, and take-up speed are the conditions shown in Table 7.
- Thickness 50 ⁇ m (for various physical property measurements): cylinder temperature 250 ° C., die temperature 250 ° C., roll temperature 80 ° C, take-up speed 1 m / min, film forming temperature: 250 ° C or 270 ° C (films in Tables 5 and 6) [Young's modulus (tensile modulus) (YM), tensile elongation at break (EL), tensile breaking stress (TS)] The evaluation of the Young's modulus (YM), tensile elongation at break (EL), and tensile stress at break (TS), which are tensile properties, was performed by testing a film having a thickness of 50 ⁇ m obtained by the above film forming method in accordance with JIS K6781. As a piece, using a universal tensile tester 3380 manufactured by Instron Co., Ltd., the tensile speed was 200 mm / min.
- the gloss was measured at a room temperature with a gloss angle of 20 ° using a gloss meter using a film having a thickness of 50 ⁇ m obtained by the above film forming method in accordance with JIS K7105 as a test piece.
- the dielectric breakdown voltage (kV) was measured using a dielectric breakdown tester manufactured by Yamayo Tester Co., Ltd. according to ASTM-D149. A breakdown voltage was measured by applying a voltage to the film having a thickness of 50 ⁇ m obtained by the above film forming method at a boosting speed of 500 V / sec to obtain a withstand voltage characteristic.
- ⁇ Uniform stretching
- ⁇ Non-uniform stretching
- x Film break [Film outgas analysis]
- the amount of film outgas generation was carried out with reference to test methods such as JP2011-88352A and JP2007-224311A.
- the amount transferred to the copper foil (1 / ⁇ m 3 ) was referred to the test method described in JP-A-2008-94909.
- the film having a thickness of 50 ⁇ m obtained by the film forming method was sandwiched between copper foils of the same size and hot-pressed, and then the copper foil was washed with chloroform.
- the chloroform solution thus obtained was heated to distill off the chloroform to obtain a concentrated residue.
- the concentration residue on this substrate was measured using a confocal laser microscope (OLS4000) manufactured by OLYMPUS, and measured by analyzing the three-dimensional data.
- OLS4000 confocal laser microscope
- a film having a thickness of 50 ⁇ m obtained by the above film forming method is cut into a size of 50 mm ⁇ 5 mm, and a temperature rising rate from a temperature of ⁇ 40 ° C. to 250 ° C. is 4 ° C. using a rheometer RSA3 manufactured by TA Instruments.
- the temperature at which the storage elastic modulus E ′ was 1.0 ⁇ 10 6 Pa was measured.
- the storage elastic modulus is the above-mentioned 4-methyl-1-pentene (co) polymer (A), 4-methyl-1-pentene copolymer (B) and ⁇ -olefin polymer (C), and Examples 1 to 7.
- a 2 mm thick press sheet obtained by the press sheet preparation method described in the measurement of the compositions of Comparative Examples 1 and 2 was cut into 45 mm ⁇ 10 mm ⁇ 2 mm, and a rheometer Physica MCR-301 manufactured by Anton Paar was used. Measure the temperature dependence of dynamic viscoelasticity by loading the torsion mode at a rate of temperature rise of 2 ° C./min from -40 ° C.
- Test tube-shaped preforms having an outer diameter of 30 mm, a height of 45 mm, and a weight of about 30 g are injection-molded under the conditions, and the resulting preform is put into a heating pot and heated to a predetermined temperature to become a hollow container of about 240 cc.
- blow molding was performed at a blow primary pressure of 0.4 MPa and a secondary pressure of 0.9 MPa.
- the autoclave was heated to an internal temperature of 60 ° C. and pressurized with propylene so that the total pressure became 0.15 MPa (gauge pressure). Subsequently, 1 mmol of methylaluminoxane prepared in advance, diphenylmethylene (1-ethyl-3-t-butyl-cyclopentadienyl) (2,7-di-t-butyl-fluorenyl) zirconium prepared in advance. Polymerization was initiated by injecting 0.34 ml of a toluene solution containing 0.005 mmol of dichloride into an autoclave with nitrogen. During the polymerization reaction, the temperature was adjusted so that the internal temperature of the autoclave was 60 ° C. Sixty minutes after the start of polymerization, 5 ml of methanol was pressed into the autoclave with nitrogen to stop the polymerization, and the autoclave was depressurized to atmospheric pressure. Acetone was poured into the reaction solution with stirring.
- the obtained powdery polymer containing the solvent was dried at 130 ° C. under reduced pressure for 12 hours.
- the obtained polymer was 45.9 g, and the 4-methyl-1-pentene content in the polymer was 92 mol% and the propylene content was 8 mol%.
- the melting point (T m ) of the polymer was 180 ° C., and the intrinsic viscosity [ ⁇ ] was 1.7 dl / g. Table 1 shows the measurement results of various physical properties.
- the autoclave was heated to an internal temperature of 60 ° C. and pressurized with propylene so that the total pressure was 0.19 MPa (gauge pressure).
- methylaluminoxane prepared in advance, 1 mmol in terms of Al, diphenylmethylene (1-ethyl-3-t-butyl-cyclopentadienyl) (2,7-di-t-butyl-fluorenyl) zirconium Polymerization was initiated by injecting 0.34 ml of a toluene solution containing 0.01 mmol of dichloride into the autoclave with nitrogen. During the polymerization reaction, the temperature was adjusted so that the internal temperature of the autoclave was 60 ° C. Sixty minutes after the start of polymerization, 5 ml of methanol was injected into the autoclave with nitrogen to stop the polymerization, and the autoclave was depressurized to atmospheric pressure. Acetone was poured into the reaction solution with stirring.
- the obtained powdered polymer containing the solvent was dried at 100 ° C. under reduced pressure for 12 hours.
- the obtained polymer was 44.0 g, and the 4-methyl-1-pentene content in the polymer was 84 mol% and the propylene content was 16 mol%.
- the melting point (T m ) of the polymer was 131 ° C., and the intrinsic viscosity [ ⁇ ] was 1.4 dl / g. Table 1 shows the measurement results of various physical properties.
- the autoclave was heated to an internal temperature of 60 ° C. and pressurized with propylene so that the total pressure was 0.40 MPa (gauge pressure). Subsequently, 1 mmol of methylaluminoxane prepared in advance, diphenylmethylene (1-ethyl-3-t-butyl-cyclopentadienyl) (2,7-di-t-butyl-fluorenyl) zirconium prepared in advance. Polymerization was initiated by injecting 0.34 ml of a toluene solution containing 0.01 mmol of dichloride into an autoclave with nitrogen. During the polymerization reaction, the temperature was adjusted so that the internal temperature of the autoclave was 60 ° C. Sixty minutes after the start of polymerization, 5 ml of methanol was pressed into the autoclave with nitrogen to stop the polymerization, and the autoclave was depressurized to atmospheric pressure. Acetone was poured into the reaction solution with stirring.
- the powdered polymer containing the obtained solvent was dried at 100 ° C. under reduced pressure for 12 hours.
- the obtained polymer was 36.9 g, and the 4-methyl-1-pentene content in the polymer was 74 mol% and the propylene content was 26 mol%.
- the intrinsic viscosity [ ⁇ ] was 1.6 dl / g and showed no melting point. Table 1 shows the measurement results of various physical properties.
- Example 1 20 parts by weight of the copolymer (A-3) and 80 parts by weight of the copolymer (B1-2) obtained in Synthesis Example 2-2 were mixed, and 100 parts by weight of the composition was mixed. 0.1 parts by weight of tri (2,4-di-t-butylphenyl) phosphate as a secondary antioxidant and n-octadecyl-3- (4′-hydroxy-3 ′, 5 as a heat stabilizer 0.1 parts by weight of '-di-t-butylphenyl) propinate and 0.1 parts by weight of calcium stearate as a hydrochloric acid absorbent were blended.
- Example 2 70 parts by weight of the copolymer (A-2) and 30 parts by weight of the copolymer (B1-2) obtained in Synthesis Example 2-2 were mixed, and 100 parts by weight of the composition was mixed. The same amount of secondary antioxidant, heat resistance stabilizer and hydrochloric acid absorbent as in Example 1 were blended and extrusion granulated under the same conditions to obtain pellets for evaluation. Various physical properties obtained by injection molding or press molding the pellets under the above conditions are shown in Table 3. It turns out that it is excellent in transparency, heat resistance, and elongation.
- Example 3 40 parts by weight of the copolymer (A-1) and 60 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1 were mixed, and 100 parts by weight of the composition was mixed. The same amount of secondary antioxidant, heat resistance stabilizer and hydrochloric acid absorbent as in Example 1 were blended and extrusion granulated under the same conditions to obtain pellets for evaluation. Various physical properties obtained by injection molding or press molding the pellets under the above conditions are shown in Table 3. It turns out that it is excellent in transparency, heat resistance, and elongation.
- Example 4 85 parts by weight of the copolymer (A-2) and 15 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1 were mixed, and with respect to 100 parts by weight of the composition, The same amount of secondary antioxidant, heat resistance stabilizer and hydrochloric acid absorbent as in Example 1 were blended and extrusion granulated under the same conditions to obtain pellets for evaluation.
- Table 3 Various physical properties obtained by injection molding or press molding the pellets under the above conditions are shown in Table 3. It turns out that it is excellent in transparency, heat resistance, and elongation.
- Example 5 60 parts by weight of the copolymer (A-1), 10 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1, and the copolymer polymerized in Synthesis Example 3 ( B2) 30 parts by weight are mixed, 100 parts by weight of the composition is blended with the same amount of secondary antioxidant, heat stabilizer and hydrochloric acid absorbent as in Example 1 and extruded under the same conditions.
- the pellet for evaluation was obtained by granulation.
- Table 3 Various physical properties obtained by injection molding or press molding the pellets under the above conditions are shown in Table 3. It turns out that it is excellent in transparency, heat resistance, and elongation.
- Example 6 60 parts by weight of the copolymer (A-2), 10 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1, and the copolymer obtained in Synthesis Example 3 (B2) 30 parts by weight is mixed, and 100 parts by weight of the composition is blended with the same amount of secondary antioxidant, heat-resistant stabilizer, and hydrochloric acid absorbent as in Example 1, and under the same conditions.
- the pellet for evaluation was obtained by extrusion granulation.
- Table 3 Various physical properties obtained by injection molding or press molding the pellets under the above conditions are shown in Table 3. It turns out that it is excellent in transparency, heat resistance, and elongation.
- Example 7 70 parts by weight of the copolymer (A-2), 15 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1, and 15 parts by weight of the ⁇ -olefin polymer (C-2) The same amount of secondary antioxidant, heat stabilizer and hydrochloric acid absorbent as in Example 1 are blended with 100 parts by weight of the composition, and extrusion granulation is performed under the same conditions. An evaluation pellet was obtained. Various physical properties obtained by injection molding or press molding the pellets under the above conditions are shown in Table 3. It turns out that it is excellent in heat resistance and elongation.
- Table 3 shows various physical properties of the pellets obtained by injection molding or press molding of the ⁇ -olefin polymer (C-4) under the above conditions. It turns out that it is a result inferior to transparency and heat resistance compared with the result of the said Example.
- Table 3 shows various physical properties obtained by injection-molding or press-molding the pellets under the above conditions using the copolymer (A-3). It turns out that it is a result inferior to elongation compared with the result of the said Example.
- Example 8 80 parts by weight of the copolymer (A-2) and 20 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1 were mixed, and with respect to 100 parts by weight of the composition, 0.1 parts by weight of tri (2,4-di-t-butylphenyl) phosphate as a secondary antioxidant and n-octadecyl-3- (4′-hydroxy-3 ′, 5 as a heat stabilizer 0.1 parts by weight of '-di-t-butylphenyl) propinate and 0.1 parts by weight of calcium stearate as a hydrochloric acid absorbent were blended.
- Example 9 40 parts by weight of the copolymer (A-2) and 60 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1 were mixed, and 100 parts by weight of the composition was mixed. The same amount of secondary antioxidant, heat resistance stabilizer and hydrochloric acid absorbent as in Example 8 were blended and extrusion granulated under the same conditions to obtain pellets for evaluation. Table 4 shows measurement results of various physical properties of the film obtained by molding the pellets under the above conditions. It turns out that it is excellent in transparency and heat resistance.
- Example 10 80 parts by weight of the copolymer (A-2) and 20 parts by weight of the copolymer (B1-2) obtained in Synthesis Example 2-2 were mixed, and 100 parts by weight of the composition was mixed. The same amount of secondary antioxidant, heat resistance stabilizer and hydrochloric acid absorbent as in Example 8 were blended and extrusion granulated under the same conditions to obtain pellets for evaluation. Table 4 shows measurement results of various physical properties of the film obtained by molding the pellets under the above conditions. It turns out that it is excellent in transparency and heat resistance.
- Example 11 80 parts by weight of the copolymer (A-1) and 20 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1 were mixed, and with respect to 100 parts by weight of the composition, The same amount of secondary antioxidant, heat resistance stabilizer and hydrochloric acid absorbent as in Example 8 were blended and extrusion granulated under the same conditions to obtain pellets for evaluation.
- Table 4 shows measurement results of various physical properties of the film obtained by molding the pellets under the above conditions. It turns out that it is excellent in transparency and heat resistance.
- Example 12 40 parts by weight of the copolymer (A-1) and 60 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1 were mixed, and 100 parts by weight of the composition was mixed. The same amount of secondary antioxidant, heat resistance stabilizer and hydrochloric acid absorbent as in Example 8 were blended and extrusion granulated under the same conditions to obtain pellets for evaluation. Table 4 shows measurement results of various physical properties of the film obtained by molding the pellets under the above conditions. It turns out that it is excellent in transparency and heat resistance.
- Example 13 60 parts by weight of the copolymer (A-1), 10 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1, and the copolymer (B2) obtained in Synthesis Example 3 ) Mix 30 parts by weight, mix 100 parts by weight of the composition with the same amount of secondary antioxidant, heat stabilizer and hydrochloric acid absorbent as in Example 8 and extrude under the same conditions.
- the pellet for evaluation was obtained by granulation.
- Table 4 shows measurement results of various physical properties of the film obtained by molding the pellets under the above conditions. It turns out that it is excellent in heat resistance and stretchability.
- Example 14 60 parts by weight of the copolymer (A-2), 10 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1, and the copolymer (B2) obtained in Synthesis Example 3 ) Mix 30 parts by weight, mix 100 parts by weight of the composition with the same amount of secondary antioxidant, heat stabilizer and hydrochloric acid absorbent as in Example 8 and extrude under the same conditions.
- the pellet for evaluation was obtained by granulation.
- Table 4 shows measurement results of various physical properties of the film obtained by molding the pellets under the above conditions. It turns out that it is excellent in heat resistance and stretchability.
- Example 15 70 parts by weight of the copolymer (A-2), 15 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1 and 15 parts by weight of the ⁇ -olefin polymer (C-2) Mix, mix 100 parts by weight of the composition with the same amount of secondary antioxidant, heat stabilizer and hydrochloric acid absorbent as in Example 8, and extrude granulate under the same conditions for evaluation. Pellets were obtained. Table 4 shows measurement results of various physical properties of the film obtained by molding the pellets under the above conditions. It turns out that it is excellent in heat resistance and stretchability.
- Example 16 60 parts by weight of the copolymer (A-1), 10 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1 and 30 parts by weight of an ⁇ -olefin polymer (C-3)
- 100 parts by weight of the composition was mixed with the same amount of secondary antioxidant, heat resistance stabilizer and hydrochloric acid absorbent as in Example 8, and extruded and granulated under the same conditions for evaluation. Pellets were obtained.
- Table 4 shows the measurement results of various physical properties of the film obtained by molding the pellets under the above conditions. It can be seen that it has excellent electrical properties and stretchability.
- Table 5 shows measurement results of various physical properties of films obtained by molding the pellets under the above conditions using the ⁇ -olefin polymer (C-4). It turns out that it is a result inferior to transparency and heat resistance compared with the result of the said Example.
- Table 5 shows the measurement results of various physical properties of films obtained by molding the pellets under the above conditions using the polymer (A-1). It turns out that it is a result inferior to film stretchability compared with the result of the said Example.
- Table 5 shows the measurement results of various physical properties of films obtained by molding the pellets under the above conditions using the polymer (A-2). It turns out that it is a result inferior to film stretchability compared with the result of the said Example.
- Example 17 70 parts by weight of the copolymer (A-3) and 30 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1 were mixed, and with respect to 100 parts by weight of the composition, The same amount of secondary antioxidant, heat resistance stabilizer and hydrochloric acid absorbent as in Example 8 were blended and extrusion granulated under the same conditions to obtain pellets for evaluation.
- Table 6 shows the results of measuring various physical properties of films obtained by molding the pellets under the above conditions. It can be seen that the molding temperature can be lowered and the amount of transition to copper foil is small.
- Example 18 50 parts by weight of the copolymer (A-3) and 50 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1 were mixed, and 100 parts by weight of the composition was mixed. The same amount of secondary antioxidant, heat resistance stabilizer and hydrochloric acid absorbent as in Example 8 were blended and extrusion granulated under the same conditions to obtain pellets for evaluation. Table 6 shows the results of measuring various physical properties of films obtained by molding the pellets under the above conditions. It can be seen that the molding temperature can be lowered and the amount of transition to copper foil is small.
- Example 19 30 parts by weight of the copolymer (A-3) and 70 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1 were mixed, and with respect to 100 parts by weight of the composition, The same amount of secondary antioxidant, heat resistance stabilizer and hydrochloric acid absorbent as in Example 8 were blended and extrusion granulated under the same conditions to obtain pellets for evaluation.
- Table 6 shows the results of measuring various physical properties of films obtained by molding the pellets under the above conditions. It can be seen that the molding temperature can be lowered and the amount of transition to copper foil is small.
- Example 20 90 parts by weight of the copolymer (A-1) and 10 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1 were mixed, and with respect to 100 parts by weight of the composition, The same amount of secondary antioxidant, heat resistance stabilizer and hydrochloric acid absorbent as in Example 8 were blended and extrusion granulated under the same conditions to obtain pellets for evaluation.
- Table 7 shows the measurement results of various physical properties of films obtained by molding the pellets by the film forming method.
- Example 21 70 parts by weight of the copolymer (A-1) and 30 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1 were mixed, and with respect to 100 parts by weight of the composition, The same amount of secondary antioxidant, heat resistance stabilizer and hydrochloric acid absorbent as in Example 8 were blended and extrusion granulated under the same conditions to obtain pellets for evaluation.
- Table 7 shows the measurement results of various physical properties of films obtained by molding the pellets by the film forming method.
- Table 7 shows the measurement results of various physical properties of the film obtained in the same manner as in Example 21, except that the film forming conditions were changed to the conditions shown in Table 7.
- Example 24 50 parts by weight of the copolymer (A-1) and 50 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1 were mixed, and 100 parts by weight of the composition was mixed. The same amount of secondary antioxidant, heat resistance stabilizer and hydrochloric acid absorbent as in Example 8 were blended and extrusion granulated under the same conditions to obtain pellets for evaluation. Table 7 shows the measurement results of various physical properties of films obtained by molding the pellets by the film forming method.
- Table 7 shows measurement results of various physical properties of TPX (registered trademark) film “Opyran X44B” (film thickness: 100 ⁇ m) manufactured by Mitsui Chemicals, Inc. It can be seen that the shrinkage is larger than the films of the present invention shown in Examples 20-24.
- Table 7 shows measurement results of various physical properties of Mitsui Chemicals Tosero Co., Ltd. TPX (registered trademark) film “Opylan X44B” after heating in an oven at 180 ° C. for 1 hour. Although it is excellent in that the shrinkage ratio is reduced as compared with Comparative Example 8, wrinkles and warpage were generated by heat treatment, and the appearance was remarkably deteriorated.
- TPX registered trademark
- Example 25 70 parts by weight of the copolymer (A-2) and 30 parts by weight of the copolymer (B1-2) obtained in Synthesis Example 2-2 were mixed, and 100 parts by weight of the composition was mixed. 0.1 parts by weight of tri (2,4-di-t-butylphenyl) phosphate as a secondary antioxidant and n-octadecyl-3- (4′-hydroxy-3 ′, 5 as a heat stabilizer 0.1 parts by weight of '-di-t-butylphenyl) propinate and 0.1 parts by weight of calcium stearate as a hydrochloric acid absorbent were blended.
- Example 26 40 parts by weight of the copolymer (A-1) and 60 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1 were mixed, and 100 parts by weight of the composition was mixed. The same amount of secondary antioxidant, heat resistance stabilizer and hydrochloric acid absorbent as in Example 25 were blended and extruded and granulated under the same conditions to obtain pellets for evaluation.
- Table 8 shows various physical properties obtained by injection molding, press molding, and injection blow molding of the pellets under the above conditions. It turns out that it is excellent in blow moldability, transparency, and heat resistance.
- Example 27 85 parts by weight of the copolymer (A-2) and 15 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1 were mixed, and with respect to 100 parts by weight of the composition, The same amount of secondary antioxidant, heat resistance stabilizer and hydrochloric acid absorbent as in Example 25 were blended and extruded and granulated under the same conditions to obtain pellets for evaluation.
- Table 8 shows various physical properties obtained by injection molding, press molding, and injection blow molding of the pellets under the above conditions. It turns out that it is excellent in blow moldability, transparency, and heat resistance.
- Example 28 30 parts by weight of the copolymer (A-2) and 70 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1 were mixed, and with respect to 100 parts by weight of the composition, The same amount of secondary antioxidant, heat resistance stabilizer and hydrochloric acid absorbent as in Example 25 were blended and extruded and granulated under the same conditions to obtain pellets for evaluation.
- Table 8 shows various physical properties obtained by injection molding, press molding, and injection blow molding of the pellets under the above conditions. It turns out that it is excellent in blow moldability, transparency, and heat resistance.
- Example 29 70 parts by weight of the copolymer (A-2), 15 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1, and the copolymer obtained in Synthesis Example 3 ( B2) Mixing 15 parts by weight, mixing 100 parts by weight of the composition with the same amount of secondary antioxidant, heat stabilizer and hydrochloric acid absorbent as in Example 25 and extruding under the same conditions
- the pellet for evaluation was obtained by granulation.
- Table 8 shows various physical properties obtained by injection molding, press molding, and injection blow molding of the pellets under the above conditions. It turns out that it is excellent in blow moldability, transparency, and heat resistance.
- Example 30 18 parts by weight of the copolymer (A-2), 42 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1, and the copolymer obtained in Synthesis Example 3 ( B2) 40 parts by weight was mixed, 100 parts by weight of the composition was blended with the same amount of secondary antioxidant, heat stabilizer and hydrochloric acid absorbent as in Example 25, and extruded under the same conditions.
- the pellet for evaluation was obtained by granulation.
- Table 8 shows various physical properties obtained by injection molding, press molding, and injection blow molding of the pellets under the above conditions. It turns out that it is excellent in blow moldability, transparency, and heat resistance.
- Example 31 56 parts by weight of the copolymer (A-2), 24 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1, and the copolymer (B2) polymerized in Synthesis Example 3 ) 20 parts by weight was mixed, and 100 parts by weight of the composition was blended with the same amount of secondary antioxidant, heat stabilizer and hydrochloric acid absorbent as in Example 25, and extruded under the same conditions.
- the pellet for evaluation was obtained by granulation.
- Table 8 shows various physical properties obtained by injection molding, press molding, and injection blow molding of the pellets under the above conditions. It turns out that it is excellent in blow moldability, transparency, and heat resistance.
- Example 32 42 parts by weight of the copolymer (A-2), 18 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1, and the copolymer obtained in Synthesis Example 3 ( B2) 40 parts by weight was mixed, 100 parts by weight of the composition was blended with the same amount of secondary antioxidant, heat stabilizer and hydrochloric acid absorbent as in Example 25, and extruded under the same conditions.
- the pellet for evaluation was obtained by granulation.
- Table 8 shows various physical properties obtained by injection molding, press molding, and injection blow molding of the pellets under the above conditions. It turns out that it is excellent in blow moldability, transparency, and heat resistance.
- Example 33 24 parts by weight of the copolymer (A-2), 56 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1, and 20 parts by weight of an ⁇ -olefin copolymer (C-1) The same amount of secondary antioxidant, heat stabilizer and hydrochloric acid absorbent as in Example 25 are blended with 100 parts by weight of the composition, and extrusion granulation is performed under the same conditions. An evaluation pellet was obtained. Table 9 shows various physical properties obtained by injection molding, press molding, and injection blow molding of the pellets under the above conditions. It turns out that it is excellent in blow moldability, transparency, and heat resistance.
- Example 34 24 parts by weight of the copolymer (A-2) and 57 parts by weight of the copolymer (B1-2) obtained in Synthesis Example 2-2 and the copolymer (B2) obtained in Synthesis Example 3 ) 14 parts by weight and 5 parts by weight of ⁇ -olefin polymer (C-2) are mixed, and 100 parts by weight of the composition is the same amount of the secondary antioxidant, heat resistance stabilizer as in Example 25, A hydrochloric acid absorbent was blended and extrusion granulated under the same conditions to obtain pellets for evaluation.
- Table 9 shows various physical properties obtained by injection molding, press molding, and injection blow molding of the pellets under the above conditions. It turns out that it is excellent in blow moldability and heat resistance.
- Example 35 60 parts by weight of the copolymer (A-2), 10 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1, and the copolymer (B2) obtained in Synthesis Example 3 ) 30 parts by weight, 100 parts by weight of the composition is blended with the same amount of secondary antioxidant, heat stabilizer and hydrochloric acid absorbent as in Example 25 and extruded under the same conditions.
- the pellet for evaluation was obtained by granulation.
- Table 9 shows various physical properties obtained by injection molding, press molding, and injection blow molding of the pellets under the above conditions. It turns out that it is excellent in blow moldability, transparency, and heat resistance.
- Example 36 Synthesis with 15 parts by weight of the copolymer (A-3), 45 parts by weight of the copolymer (A-2) and 10 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1. 30 parts by weight of the copolymer (B2) obtained in Example 3 was mixed, and the same amount of secondary antioxidant, heat-resistant stabilizer as in Example 25 with respect to 100 parts by weight of the composition, A hydrochloric acid absorbent was blended and extrusion granulated under the same conditions to obtain pellets for evaluation.
- Table 9 shows various physical properties obtained by injection molding, press molding, and injection blow molding of the pellets under the above conditions. It turns out that it is excellent in blow moldability, transparency, and heat resistance.
- Table 9 shows various physical properties obtained by injection molding, press molding, and injection blow molding of the pellets using the ⁇ -olefin polymer (C-4) under the above conditions. It turns out that it is a result inferior to the result of the said Example in transparency and heat resistance.
- Table 9 shows various physical properties obtained by injection molding, press molding, and injection blow molding of the pellets under the above conditions using the copolymer (A-3). It turns out that it is a result inferior to blow moldability compared with the result of the said Example.
- Table 9 shows various physical properties obtained by injection molding, press molding, and injection blow molding of the pellets under the above conditions using the copolymer (B1-1) obtained in Synthesis Example 2-1. It turns out that it is a result inferior to blow moldability compared with the result of the said Example.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
近年、ポリエチレンテレフタレートの欠点である耐熱性を克服した成形体を得るために、ポリプロピレンを用いた射出ブロー成形体に関する種々の検討が行われている(特許文献11~13)。しかし、ポリプロピレンの場合、成形温度幅が狭いため成型時のハンドリングが困難であることが多いことに加えて、ホモポリプロピレンを使用した場合、透明性が発現し難く、また、ランダムポリプロピレンを使用した場合、耐熱性が低い等、使用可能なポリプロピレン(種類、物性等)が少ないという欠点が存在していた。
本発明に係る4-メチル-1-ペンテン(共)重合体組成物(X5)は、特定の4-メチル-1-ペンテン(共)重合体(A)7~90重量部、特定の4-メチル-1-ペンテン共重合体(B1)90~7重量部およびα-オレフィン重合体(C)(ただし、(A)、(B1)および(B2)とは異なる)0.9~30重量部(ただし、(A)、(B1)および(C)の合計を100重量部とする)を含んでなる。
本発明における4-メチル-1-ペンテン(共)重合体組成物は、異なる2種の4-メチル-1-ペンテン(共)重合体(A)および(B)を含み、必要に応じて、α-オレフィン重合体(C)を含む。該組成物は、下記(a)の要件を満たすことが好ましく、条件に応じて(b)~(h)の要件の一つ以上をさらに満たすことがより好ましい。
本発明における、4-メチル-1-ペンテン(共)重合体組成物は、UX-1を99モル%~65モル%含み、UX-2を1モル%~35モル%で含む。なお、炭素原子数2~20のα-オレフィンとしては、1種類に限定されることなく、2種以上を選択してもよく、複数選択した場合、その構成単位の総量として、上記範囲を満たせばよい。
本発明における4-メチル-1-ペンテン(共)重合体組成物の厚み2mm射出角板の内部ヘイズが、通常20.0以下であることが好ましい。ここで、内部ヘイズの上限は、19.0、18.0、15.0、12.5、10.0、7.0、5.0、3.0の順番でより好ましい態様となる。また、該(共)重合体組成物は透明性が高いことに優れた効果を見出しているところから、内部ヘイズの下限については、特に規定を要せず、具体的には、0であることが最も望ましい態様であるが、現実的な下限値としては、0.1である。上記内部ヘイズは、混合する組成物の成分より調整することが可能である。内部ヘイズの値が上記範囲にある該(共)重合体組成物は、それぞれの成分がよく相溶しており、透明性に優れる。
本発明における4-メチル-1-ペンテン(共)重合体組成物から得られる厚み50μmの試験用フィルムの内部ヘイズが、通常1.0以下である。好ましくは0.01~1.0、より好ましくは0.01~0.8である。上記内部ヘイズは混合する組成物の成分より調整することが可能である。内部ヘイズの値が上記範囲にある該(共)重合体組成物は、それぞれの成分がよく相溶しており透明性に優れる。
本発明における、4-メチル-1-ペンテン(共)重合体組成物から得られる厚み2mm試験片を、動的粘弾性測定でトーションモードにより測定したときの貯蔵弾性率(G’)=1.0×106(Pa)となる温度が、通常160℃~250℃の範囲にあり、好ましくは160℃~240℃、より好ましくは160℃~230℃、さらに好ましくは165℃~225℃である。
本発明における、4-メチル-1-ペンテン(共)重合体組成物から得られる厚み50μm試験用フィルムを、動的粘弾性測定で引張モードにより測定したときの貯蔵弾性率(E’)=1.0×106(Pa)となる温度は、通常160℃~250℃の範囲にあり、好ましくは160℃~240℃、より好ましくは160℃~230℃、さらに好ましくは165℃~225℃である。上記温度の範囲は組成物の比率や種類により変化する値であり、温度の値が上記範囲にある該(共)重合体組成物からなる成形体は、耐熱性と伸びや靭性の観点から好ましい。
本発明における、4-メチル-1-ペンテン(共)重合体組成物は、JIS K6781に準拠して、該組成物から得られる厚み50μm試験用フィルムを、引張速度=200mm/minで測定したときのヤング率(引張弾性率)が、通常200~2000MPa、好ましくは200~1800MPa、より好ましくは200~1600MPaである。
本発明における、4-メチル-1-ペンテン(共)重合体組成物は、JIS K7105に準拠して、該組成物から得られる厚み50μm試験用フィルムで測定されるグロスが、通常5~150であり、好ましくは60~150であり、より好ましくは60~140であり、さらに好ましくは60~130である。
本発明における、4-メチル-1-ペンテン(共)重合体組成物から得られるスペシメン(ASTM D638-IV型試験片)を引張速度=200mm/minで200%引張延伸時の標線間のびの標準偏差が、通常50%以下であり、好ましくは1~45%であり、より好ましくは1~40%であり、さらに好ましくは1~35%である。上記範囲は組成物の比率や種類により変化する値であり、成形性の尺度となる。その値が上記範囲にある該(共)重合体組成物を用いると寸法安定性に優れた成形体を成形できることから好ましい。
該(共)重合体組成物における、該(共)重合体(A)の含有量の上限は、好ましくは95重量部であり、より好ましくは90重量部であり、さらに好ましくは85重量部、特に好ましくは80重量部である。また、該(共)重合体(A)の含有量の下限は、好ましくは5重量部であり、より好ましくは10重量部であり、さらに好ましくは15重量部、特に好ましくは20重量部である。また、該共重合体(B)の含有量の上限は、好ましくは95重量部であり、より好ましくは90重量部であり、さらに好ましくは85重量部、特に好ましくは80重量部である。また、該(共)重合体(A)の含有量の下限は、好ましくは5重量部であり、より好ましくは10重量部であり、さらに好ましくは15重量部、特に好ましくは20重量部である。このような割合で該(共)重合体(A)および該共重合体(B)を含む(共)重合体組成物は、耐熱性、成形性、機械特性、透明性と伸びや靭性のバランスに優れる点で好ましい。また、該組成物からなる中空成形体はこのような優れた効果を引き継ぎ、耐熱性や透明性に優れ、かつ寸法安定性に優れるため、好ましい。該組成物からなるフィルムはこのような優れた効果を引き継ぎ、耐熱性や透明性に優れ、かつ均一に延伸成形されるため、好ましい。
本発明において、4-メチル-1-ペンテン(共)重合体(A)は、下記要件(A-a)~(A-e)を満たす。
本発明において、4-メチル-1-ペンテン(共)重合体(A)の構成は、4-メチル-1-ペンテンから導かれる構成単位(U1)が100~90モル%であり、炭素原子数2~20のα-オレフィン(4-メチル-1-ペンテンを除く)から導かれる構成単位の総量(U2)が0~10モル%である。
本発明における、4-メチル-1-ペンテン(共)重合体(A)の135℃デカリン中で測定した極限粘度[η]は、通常0.5~5.0dl/gであり、好ましくは1.0~4.0dl/gであり、さらに好ましくは1.2~3.5dl/gである。
本発明における、4-メチル-1-ペンテン(共)重合体(A)のDSC(示差走査熱量計)で測定した融点(Tm)は、通常200℃~250℃であり、好ましくは210℃~240℃であり、さらに好ましくは215℃~240℃である。
本発明における、4-メチル-1-ペンテン(共)重合体(A)のDSCで測定した結晶化温度(Tc)は、通常150~225℃であり、好ましくは160~223℃であり、さらに好ましくは170~221℃である。
本発明における、4-メチル-1-ペンテン(共)重合体(A)の密度は、通常820~850kg/m3であり、好ましくは825~850kg/m3であり、より好ましくは825~845kg/m3、さらに好ましくは825~840kg/m3である。
本発明における4-メチル-1-ペンテン(共)重合体(A)は、従来公知のオレフィン重合用触媒、例えば、バナジウム系触媒、チタン系触媒、マグネシウム担持型チタン触媒、国際公開第01/53369号パンフレット、国際公開第01/27124号パンフレット、特開平3-193796号公報あるいは特開平02-41303号公報中に記載のメタロセン触媒などを用いて、4-メチル-1-ペンテンと、必要に応じて前記炭素原子数2~20のα-オレフィン(4-メチル-1-ペンテンを除く)や前記その他の重合性化合物を重合することにより得ることができる。
本発明において、4-メチル-1-ペンテン共重合体(B)は、下記4-メチル-1-ペンテン共重合体(B1)および4-メチル-1-ペンテン共重合体(B2)から選ばれる少なくとも1種からなることを特徴とする。該共重合体(B)は、該共重合体(B1)および該共重合体(B2)の両方を含むことが好ましい。
本発明において、4-メチル-1-ペンテン共重合体(B1)は、下記要件(B1-a)~(B1-e)を満たし、好ましくは、さらに要件(B1-f)を満たす。
本発明において、4-メチル-1-ペンテン共重合体(B1)の構成は、4-メチル-1-ペンテンから導かれる構成単位(U3)が99~80モル%、炭素原子数2~20のα-オレフィン(4-メチル-1-ペンテンを除く)から導かれる構成単位の総量(U4)が1~20モル%である。
本発明における、4-メチル-1-ペンテン共重合体(B1)の135℃デカリン中で測定した極限粘度[η]は、通常0.5~5.0dL/gであり、好ましくは1.0~4.0dL/gであり、さらに好ましくは1.2~3.5dL/gである。
本発明における、4-メチル-1-ペンテン共重合体(B1)のゲルパーミエーションクロマトグラフィー(GPC)で測定する重量平均分子量(Mw)と数平均分子量(Mn)との比である分子量分布(Mw/Mn)は、通常1.0~3.5であり、好ましくは1.0~3.0、さらに好ましくは1.5~2.5である。
本発明における、4-メチル-1-ペンテン共重合体(B1)の密度は、825~860kg/m3であり、好ましくは830~855kg/m3であり、より好ましくは830~850kg/m3、さらに好ましくは830~845kg/m3である。
本発明における、4-メチル-1-ペンテン共重合体(B1)のDSCで測定した融点(Tm)は、通常110~200℃未満であり、好ましくは115~199℃、より好ましく115~197℃であり、さらにより好ましくは120~195℃、特に好ましくは耐熱性と成形性の両立という点から、125~190℃である。
本発明における、4-メチル-1-ペンテン共重合体(B)の引張り弾性率(YM)は、好ましくは、200~2,000(MPa)を満たし、好ましくは200MPa~1900MPa、より好ましくは300MPa~1900MPa、さらに好ましくは300MPa~1800MPaである。
本発明において、4-メチル-1-ペンテン共重合体(B2)は、下記要件(B2-a)~(B2-e)を満たす。
本発明において、4-メチル-1-ペンテン共重合体(B2)の構成は、4-メチル-1-ペンテンから導かれる構成単位(U5)が80モル%未満~60モル%であり、炭素原子数2~4のα-オレフィン(4-メチル-1-ペンテンを除く)から導かれる構成単位の総量(U6)が20モル%を超えて~40モル%である。
本発明における、4-メチル-1-ペンテン共重合体(B2)の135℃デカリン中で測定した極限粘度[η]は、通常0.5~5.0dL/gであり、好ましくは1.0~4.0dL/gであり、さらに好ましくは1.2~3.5dL/gである。
本発明における、4-メチル-1-ペンテン共重合体(B2)のDSCで測定した融点(Tm)は、通常110℃未満または融点が観測されない。該共重合体(B2)が融点(Tm)を有する場合、その上限は好ましくは100℃、より好ましくは99℃、さらにより好ましくは95℃であるが、特に好ましくは融点が観測されない態様である。なお、下限は特に限定されないが、通常80℃である。
本発明における、4-メチル-1-ペンテン共重合体(B2)のゲルパーミエーションクロマトグラフィー(GPC)で測定する重量平均分子量(Mw)と数平均分子量(Mn)との比である分子量分布(Mw/Mn)は、通常1.0~3.5であり、好ましくは1.0~3.0、さらに好ましくは1.5~2.5である。
本発明における、4-メチル-1-ペンテン共重合体(B2)の密度は、通常830~860kg/m3であり、好ましくは830~855kg/m3であり、より好ましくは830~850kg/m3、さらに好ましくは830~845kg/m3である。
本発明における4-メチル-1-ペンテン共重合体(B)は、上述の該(共)重合体(A)の製造方法の項で記載したものと同様のオレフィン重合用触媒の存在下、4-メチル-1-ペンテンと上述した特定のα-オレフィン、さらに必要に応じて前記その他の重合性化合物を重合することにより得ることができる。
(α)下記一般式(1)または(2)で表されるメタロセン化合物と、
(β)(β-1)有機金属化合物
(β-2)有機アルミニウムオキシ化合物、および
(β-3)メタロセン化合物(α)と反応してイオン対を形成する化合物、
から選ばれる少なくとも1種の化合物、
さらに必要に応じて、
(γ)微粒子状担体
から構成されるメタロセン触媒が好適に用いられる。
本発明において、4-メチル-1-ペンテン共重合体(B)の製造に用いられ得るメタロセン化合物としては、下記一般式(1)または(2)で表される化合物が例示できる。
上記一般式(1)または(2)のR1~R14中、炭化水素基としては、好ましくは炭素原子数1~20のアルキル基、炭素原子数7~20のアリールアルキル基、炭素原子数6~20のアリール基、または炭素原子数7~20のアルキルアリール基であり、1つ以上の環構造を含んでいてもよい。また、炭化水素基の一部または全部に水酸基、アミノ基、ハロゲン基、フッ素含有炭化水素基などの官能基で置換されていても良い。具体例としては、メチル、エチル、n-プロピル、イソプロピル、2-メチルプロピル、1,1-ジメチルプロピル、2,2-ジメチルプロピル、1,1-ジエチルプロピル、1-エチル-1-メチルプロピル、1,1,2,2-テトラメチルプロピル、sec-ブチル、tert-ブチル、1,1-ジメチルブチル、1,1,3-トリメチルブチル、ネオペンチル、シクロヘキシルメチル、シクロヘキシル、1-メチル-1-シクロヘキシル、1-アダマンチル、2-アダマンチル、2-メチル-2-アダマンチル、メンチル、ノルボルニル、ベンジル、2-フェニルエチル、1-テトラヒドロナフチル、1-メチル-1-テトラヒドロナフチル、フェニル、ビフェニル、ナフチル、トリル、クロロフェニル、クロロビフェニル、クロロナフチル等が挙げられる。
化合物(β)は、有機アルミニウム化合物(β-1)、有機アルミニウムオキシ化合物(β-2)、および前記メタロセン化合物(α)と反応してイオン対を形成する化合物(β-3)から選ばれる少なくとも1種の化合物から構成される。
本発明で必要に応じて用いられる(β-1)有機金属化合物として、具体的には下記のような周期律表第1、2族および第12、13族の有機金属化合物を挙げることができ、例えば以下に説明する(β-1a)、(β-1b)、(β-1c)等が挙げられる。なお、本発明においては、(β-1)有機金属化合物には後述する(β-2)有機アルミニウムオキシ化合物は含まれないものとする。
(式中、RaおよびRbは、互いに同一でも異なっていてもよい炭素原子数が1~15、好ましくは1~4の炭化水素基を示し、Xはハロゲン原子を示し、mは0<m≦3、nは0≦n<3、pは0≦p<3、qは0≦q<3の数であり、かつm+n+p+q=3である)
(β-1b)一般式M2AlRa 4で表される周期律表第1族金属とアルミニウムとの錯アルキル化物。
(式中、M2はLi、NaまたはKを示し、Raは炭素原子数が1~15、好ましくは1~4の炭化水素基を示す)
(β-1c)一般式RaRbM3で表される周期律表第2族または12族金属のジアルキル化合物。
(式中、RaおよびRbは、互いに同一でも異なっていてもよい炭素原子数が1~15、好ましくは1~4の炭化水素基を示し、M3はMg、ZnまたはCdである)
前記の(β-1a)に属する有機アルミニウム化合物としては、次のような化合物を例示できる。
本発明で必要に応じて用いられる(β-2)有機アルミニウムオキシ化合物は、従来公知のアルミノキサンであってもよく、また特開平2-78687号公報に例示されているようなベンゼン不溶性の有機アルミニウムオキシ化合物であってもよい。
(式(ii)中、R15は上記式(i)と同じ基から選ばれる。)
前記一般式(ii)で表されるアルキルボロン酸の具体的なものとしては、メチルボロン酸、エチルボロン酸、イソプロピルボロン酸、n-プロピルボロン酸、n-ブチルボロン酸、イソブチルボロン酸、n-ヘキシルボロン酸、シクロヘキシルボロン酸、フェニルボロン酸、3,5-ジフルオロフェニルボロン酸、ペンタフルオロフェニルボロン酸、3,5-ビス(トリフルオロメチル)フェニルボロン酸等が挙げられる。これらの中では、メチルボロン酸、n-ブチルボロン酸、イソブチルボロン酸、3,5-ジフルオロフェニルボロン酸、ペンタフルオロフェニルボロン酸が好ましい。
本発明で必要に応じて用いられる、(β-3)メタロセン化合物(α)と反応してイオン対を形成する化合物は、メタロセン化合物(α)と反応してイオン対を形成する化合物である。従って、少なくともメタロセン化合物(α)と接触させてイオン対を形成するものは、この化合物に含まれる。
本発明において4-メチル-1-ペンテン共重合体(B)の製造に好ましく用いられるメタロセン触媒は、必要に応じて(γ)微粒子状担体を含んでいてもよい。
本発明では、該共重合体(B)を得るための4-メチル-1-ペンテンと特定のα-オレフィンとの重合は溶解重合、懸濁重合などの液相重合法または気相重合法いずれにおいても実施できる。液相重合法においては、不活性炭化水素溶媒を用いてもよく、具体的には、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン、メチルシクロヘキサンなどの脂環族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;エチレンクロリド、クロロベンゼン、ジクロロメタン、リクロロメタン、テトラクロロメタンなどのハロゲン化炭化水素またはこれらの混合物などを挙げることができる。また4-メチル-1-ペンテンを含んだオレフィン類自身を溶媒とする塊状重合を実施することもできる。
重合に際して生成ポリマーの分子量や重合活性を制御する目的で水素を添加することができ、その量はオレフィン1kgあたり0.001~100NL程度が適当である。
本発明の4-メチル-1-ペンテン(共)重合体組成物の製造方法について説明する。
本発明における該(共)重合体組成物には、その成形性をさらに改善させる、すなわち結晶化温度を高め結晶化速度を速めるために、特定の任意成分である核剤が配合されていてもよい。この場合、例えば核剤はジベンジリデンソルビトール系核剤、リン酸エステル塩系核剤、ロジン系核剤、安息香酸金属塩系核剤、フッ素化ポリエチレン、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)リン酸ナトリウム、ピメリン酸やその塩、2,6-ナフタレン酸ジカルボン酸ジシクロヘキシルアミド等であり、配合量は特に制限されないが、該(共)重合体組成物100重量部に対して0.1~1重量部程度があることが好ましい。配合タイミングに特に制限は無く、重合中、重合後、あるいは成形加工時での添加が可能である。
4-メチル-1-ペンテン(共)重合体組成物の好ましい態様としては、以下に記載する4-メチル-1-ペンテン(共)重合体組成物(X)、より好ましい態様としては、4-メチル-1-ペンテン(共)重合体組成物(X1)~(X6)が挙げられる。
本発明において4-メチル-1-ペンテン(共)重合体組成物(X)は、異なる2種以上の4-メチル-1-ペンテン(共)重合体を含み、より詳細には、4-メチル-1-ペンテン(共)重合体(A)1~99重量部、好ましくは5~90重量部、より好ましくは10~90重量部、さらにより好ましくは20~80重量部と、4-メチル-1-ペンテン共重合体(B)99~1重量部、好ましくは95~10重量部、より好ましくは90~10重量部、さらにより好ましくは80~20重量部(ただし、(A)と(B)との合計を100重量部とする)とを含んでなる。
本発明において、4-メチル-1-ペンテン(共)重合体組成物(X1)は、
4-メチル-1-ペンテン(共)重合体(A)10~90重量部、好ましくは15~85重量部、より好ましくは20~80重量部と、4-メチル-1-ペンテン共重合体(B)として4-メチル-1-ペンテン共重合体(B1)90~10重量部、好ましくは85~15重量部、より好ましくは80~20重量部(ただし、(A)と(B1)との合計を100重量部とする)とを含んでなる。
4-メチル-1-ペンテン(共)重合体組成物(X2)は、4-メチル-1-ペンテン(共)重合体(A)10~90重量部、好ましくは50~90重量部、より好ましくは60~85重量部と、4-メチル-1-ペンテン共重合体(B)として4-メチル-1-ペンテン共重合体(B2)90~10重量部、好ましくは50~10重量部、より好ましくは40~15重量部(ただし(A)と(B2)との合計を100重量部とする)とを含んでなる。
本発明において、4-メチル-1-ペンテン(共)重合体組成物(X3)は、4-メチル-1-ペンテン(共)重合体(A)10~90重量部と、4-メチル-1-ペンテン共重合体(B)として4-メチル-1-ペンテン共重合体(B1)および4-メチル-1-ペンテン共重合体(B2)の合計として90~10重量部(ただし、(A)と(B)の合計を100重量部とし、(B1)と(B2)の混合比((B1)/(B2))は、99/1~1/99である)を含んでなる。
本発明において、4-メチル-1-ペンテン(共)重合体組成物(X4)~(X6)は、4-メチル-1-ペンテン(共)重合体(A)、4-メチル-1-ペンテン共重合体(B)と、後述するα-オレフィン重合体(C)を含んでなる。
4-メチル-1-ペンテン(共)重合体組成物(X4)の好ましい態様は、該(共)重合体(A)を10~85重量部、好ましくは15~80重量部、該共重合体(B)を85~10重量部、好ましくは80~15重量部、α-オレフィン重合体(C)を3~30重量部、好ましくは3~25重量部(ただし(A)、(B)および(C)の合計を100重量部とする)含んでなる。該組成物(X4)は、該共重合体(B)として、該共重合体(B1)と該共重合体(B2)の両方を含み、該共重合体(B)は(B1)と(B2)の合計量であり、かつ、それらの混合比((B1)/(B2))は、前記組成物(X3)の記載を参照できる。
4-メチル-1-ペンテン(共)重合体組成物(X5)の好ましい態様は、該(共)重合体(A)を7~90重量部、好ましくは10~85重量部、該共重合体(B)を90~7重量部、好ましくは85~10重量部、α-オレフィン重合体(C)を0.9~30重量部、好ましくは1~25重量部(ただし(A)、(B)および(C)の合計を100重量部とする)含んでなる。該組成物(X5)は、該共重合体(B)として該共重合体(B1)を含む。
4-メチル-1-ペンテン(共)重合体組成物(X6)の好ましい態様は、該(共)重合体(A)を7~90重量部、好ましくは10~85重量部、該共重合体(B)を90~7重量部、好ましくは85~10重量部、α-オレフィン重合体(C)を0.9~30重量部、好ましくは5~25重量部、より好ましくは10~25重量部(ただし(A)、(B)および(C)の合計を100重量部とする)含んでなる。該組成物(X5)は、該共重合体(B)として該共重合体(B2)を含む。
α-オレフィン重合体(C)としては、本発明に係る(共)重合体(A)、共重合体(B1)および(B2)とは異なり、炭素原子数2~20のα-オレフィンから選ばれる1種類または2種類以上のオレフィンの重合体であり、例えばオレフィンの単独重合体や、二元以上の共重合体が挙げられる。例えば、二元共重合体の場合、各オレフィンの構成単位は、一方が50~99重量%、もう一方が1~50重量%(構成単位の全量を100重量%とする)であればよいが特に制限はない。また、三元以上の共重合体の場合には、各々のオレフィンの構成比率は任意に決定される。
本発明の4-メチル-1-ペンテン(共)重合体組成物を極性樹脂と混合、積層する場合や金属と積層、接着する場合は、好ましくは上述の該(共)重合体(A)、該共重合体(B)または該(共)重合体組成物中に含まれる(共)重合体などの成分の少なくとも一部が極性化合物によりグラフト変性されていることが好ましい。この際、該(共)重合体組成物の変性体とは、該(共)重合体組成物が直接変性されたもののほか、該(共)重合体(A)や該共重合体(B)がグラフト変性されたものを該重合体組成物の構成要素として有するものも包含する概念である。また、以下においては、該(共)重合体組成物には、変性体も包含されるものとする。
本発明にかかる4-メチル-1-ペンテン(共)重合体組成物を含む成形体またはこれらのいずれかを用いて得られる変性体を含む成形体は、例えば押出成形、射出成形、インフレーション成形、ブロー成形、押出ブロー成形、射出ブロー成形、プレス成形、スタンピング成形、真空成形、カレンダー成形、フィラメント成形、発泡成形、パウダースラッシュ成形などの公知の熱成形方法により得られる。また、本発明の成形体は、本発明に係る(共)重合体、共重合体組成物および変性体を適宜組み合せても製造できる。
本発明のフィルムは、上述した4-メチル-1-ペンテン(共)重合体組成物を、通常180~300℃の範囲で溶融押出して得ることができる。本発明のフィルムは、従来公知である4-メチル-ペンテン(共)重合体フィルムと同等の臨界表面張力を有するため離型性に優れ、また、絶縁破壊電圧等の電気特性に優れている。
本発明の4-メチル-1-ペンテン(共)重合体組成物からなるフィルムは、耐熱性、機械物性、電気特性、離型性といった従来からある4-メチル-1-ペンテン共重合体の特性に加え、柔軟性、光沢性、均一延伸性などに優れることから、例えば、以下のような用途に好適に用いられる。
セパレーター;例えば、バッテリーセパレーター、リチウムイオン電池用セパレーター、燃料電池用電解質膜、粘着・接着材セパレーター、
延伸フィルム;例えば、フィルムコンデンサ用フィルム、キャパシターフィルム、燃料電池用キャパシターフィルム、
半導体工程フィルム;例えば、ダイシングテープ・バックグラインドテープ・ダイボンディングフィルム、偏光板用フィルム、
表面保護フィルム;例えば、偏光板用保護フィルム、液晶パネル用保護フィルム、光学部品用保護フィルム、レンズ用保護フィルム、電気部品・電化製品用保護フィルム、携帯電話用保護フィルム、パソコン用保護フィルム、マスキングフィルム、タッチパネル用保護フィルム
電子部材用フィルム;例えば、拡散フィルム、反射フィルム、耐放射線フィルム、耐γ線フィルム、多孔フィルム、
建材フィルム;例えば、建材用ウインドウフィルム、合わせガラス用フィルム、防弾材、防弾ガラス用フィルム、遮熱シート、遮熱フィルム、などが挙げられる。
本発明の中空成形体は、上述した4-メチル-1-ペンテン(共)重合体組成物を、通常180~300℃の範囲で溶融押出して得ることができる。
・4-メチル-1-ペンテン(共)重合体組成物/接着層/機能付与樹脂/接着層/4-メチル-1-ペンテン(共)重合体組成物、の順で積層された多層成形体
前記機能付与樹脂としては、例えば、従来公知のポリオレフィン樹脂(本発明にかかる重合体を除く。以下同じ。)が挙げられる。
本発明において、4-メチル-1-ペンテン(共)重合体組成物からなるブロー成形体は、一般的な公知のブロー成形方法によって製造することができる。該成形方法の例示としては、溶融した樹脂からパリソンを成形し、そのパリソンを金型で挟んだ後、パリソン内部に加圧気体をブローして容器を成形するダイレクトブロー成形法や、一旦射出成形または押出成形でプリフォームを成形し、そのプリフォームをブロー成形する射出ブロー成形法等がある。
本発明の4-メチル-1-ペンテン(共)重合体組成物からなる中空成形体は、耐熱性、機械物性など従来からある4-メチル-1-ペンテン共重合体の特性に加え、柔軟性、ブロー成形性などに優れることから、中空容器、ボトル、カップなどに好適に用いられる。
ボトル;化粧品ボトル、整髪剤、飲料水用ボトル、炭酸飲料ボトル、アルコール類用、ボトル、洗剤用ボトル、柔軟剤用ボトル、漂白剤用ボトル、シャンプー用ボトル、リンス用ボトル、薬剤ボトル、接着剤用ボトル、農薬用ボトル、医療用ボトル、輸液ボトル、哺乳瓶、医療バック、輸液バック、血液保存バック、
カップ;食品用カップ、包装用カップ、
等が挙げられる。
[極限粘度[η]]
デカリン溶媒を用いて、135℃で測定した値である。すなわち重合パウダー、ペレットまたは樹脂塊約20mgをデカリン15mlに溶解し、135℃のオイルバス中で比粘度ηspを測定した。このデカリン溶液にデカリン溶媒を5ml追加して希釈後、同様にして比粘度ηspを測定した。この希釈操作をさらに2回繰り返し、濃度(C)を0に外挿した時のηsp/Cの値を極限粘度として求めた(下式参照)。
[MFR]
4-メチル-1-ペンテン(共)重合体(A)、4-メチル-1-ペンテン共重合体(B)のMFRは、JIS K7210に準拠して、260℃で5kgの荷重、または230℃、2.16kgの荷重にて測定した。α-オレフィン重合体(C)のMFRは、230℃、2.16kg荷重の条件で測定した。
数平均分子量(Mn)、重量平均分子量(Mw)、分子量分布(Mw/Mn)は、Waters社製ゲル浸透クロマトグラフAlliance GPC-2000型を用い、以下のようにして測定した。分離カラムは、TSKgel GNH6-HTを2本およびTSKgel GNH6-HTLを2本であり、カラムサイズはいずれも直径7.5mm、長さ300mmであり、カラム温度は140℃とし、移動相にはo-ジクロロベンゼン(和光純薬工業)および酸化防止剤としてBHT(武田薬品)0.025重量%を用い、1.0ml/分で移動させ、試料濃度は15mg/10mLとし、試料注入量は500マイクロリットルとし、検出器として示差屈折計を用いた。標準ポリスチレンは、分子量がMw<1000およびMw>4×106については東ソー社製を用い、1000≦Mw≦4×106についてはプレッシャーケミカル社製を用いた。
ポリマー中の4-メチル-1-ペンテンおよびα-オレフィン含量の定量化は、以下の装置および条件により13C-NMRにより測定した結果から行った。なお、本測定結果では、α-オレフィン含量には、4-メチル-1-ペンテンの含量は含まないものとする。
セイコーインスツルメンツ社製DSC測定装置(DSC220C)を用い、測定用アルミパンに約5mgの試料をつめて、100℃/minで290℃まで昇温し、290℃で5分間保持した後、10℃/minで-100℃まで降温させた時の結晶化ピークのピーク頂点から結晶化温度(Tc)、ついで-100℃から10℃/minで290℃まで昇温させた時の熱量曲線から変曲点からガラス転移温度(Tg)さらに結晶溶融ピークのピーク頂点から融点(Tm)を算出した。
[各種測定用プレスシートの作製法]
[ペレット化]
4-メチル-1-ペンテン(共)重合体(A)、4-メチル-1-ペンテン共重合体(B)およびα-オレフィン重合体(C)を所定の配合量で混合して得られた該組成物100重量部に対して、二次抗酸化剤としてトリ(2,4-ジ-t-ブチルフェニル)フォスフェートを0.1重量部、耐熱安定剤としてn-オクタデシル-3-(4’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)プロピネートを0.1重量部、塩酸吸収剤としてステアリン酸カルシウムを0.1重量部配合した。然る後に、(株)プラスチック工学研究所社製2軸押出機BT-30(スクリュー系30mmφ、L/D=46)を用い、設定温度270℃、樹脂押出量60g/minおよび200rpmの条件で造粒し各種測定用ペレットを得た。
上記方法で得られたペレットを、230~290℃に設定した神藤金属工業社製油圧式熱プレス機(NS-50)を用い、ゲージ圧10MPaでシート成形した。厚み1~2mmのシート(ペーサー形状;240×240×2mm厚の板に200×200×1~2mm)の場合、余熱を5~7分程度し、ゲージ圧10MPaで1~2分間加圧した後、20℃に設定した別の神藤金属工業社製油圧式熱プレス機を用い、ゲージ圧10MPaで圧縮し、5分程度冷却して測定用試料を作成した。熱板として5mm厚の真鍮板を用いた。上記方法により作製したサンプルを用いて各種物性評価試料に供した。
上記で得られたペレットを、東芝機械株式会社製射出成形機IS-55にて、シリンダ温度=250~290℃、射出速度=30~40%、スクリュー回転数60rpm、金型温度40~60℃にて厚み2mm射出角板ならびにスペシメンを作製した。
引張特性であるヤング率(YM)、引張破断点伸度(EL)および引張破断点応力(TS)の評価は、上記射出成形の条件で作製したスペシメン(ASTM D638-IV型試験片)を評価用試料として、インストロン社製万能引張試験機3380を用いて、引張速度=30mm/minで実施した。
厚み2mmの射出角板を試験片として用いて、ベンジルアルコール中で日本電色工業(株)製のデジタル濁度計(NDH-20D)にて測定した。
密度測定は、上記の方法で得られた厚み1mmプレスシートを30mm角に切り取り、JIS K6268に準拠して、電子比重計を用いて水中置換方法で測定した。
上記プレス成形にて成形した厚み2mmシートを任意のサイズに切り出し、Anton Paar社製レオメーターPhysicaMCR-301を用いて、-40℃から250℃の温度まで昇温速度=2℃/minで、周波数=10rad/s、歪み量=0.1をトーションモード負荷して動的粘弾性の温度依存性を測定し、貯蔵弾性率G’が1.0×106Paとなる際の温度を測定した。
[ペレット化]
4-メチル-1-ペンテン(共)重合体(A)、4-メチル-1-ペンテン共重合体(B)およびα-オレフィン重合体(C)を所定の配合量で混合して得られた該組成物100重量部に対して、二次抗酸化剤としてトリ(2,4-ジ-t-ブチルフェニル)フォスフェートを0.1重量部、耐熱安定剤としてn-オクタデシル-3-(4’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)プロピネートを0.1重量部、塩酸吸収剤としてステアリン酸カルシウムを0.1重量部配合した。然る後に、(株)プラスチック工学研究所社製2軸押出機BT-30(スクリュー系30mmφ、L/D=46)を用い、設定温度270℃、樹脂押出量60g/minおよび200rpmの条件で造粒して評価用ペレットを得た。
上記にて得られたペレットを、株式会社田中鉄工所社製単軸シート成形機を用い、溶融キャスト成形して、下記厚みのフィルムを得た。
厚み100μm(収縮率測定用):シリンダ温度、ダイス温度、ロール温度、引取速度はそれぞれ、表7に示す条件
厚み50μm(各種物性測定用):シリンダ温度250℃、ダイス温度250℃、ロール温度80℃、引取速度1m/min、フィルム成形温度:250℃または270℃(表5、6のフィルム)
[ヤング率(引張弾性率)(YM)、引張破断伸び(EL)、引張破断点応力(TS)]
引張特性であるヤング率(YM)、引張破断点伸度(EL)および引張破断点応力(TS)の評価は、JIS K6781に準拠して上記フィルム成形法で得られた厚み50μmのフィルムを試験片として、インストロン社製万能引張試験機3380を用いて、引張速度=200mm/minで実施した。
内部ヘイズは、上記フィルム成形法で得られた厚み50μmのフィルムを試験片として用いて、ベンジルアルコール中で日本電色工業株式会社製のデジタル濁度計(NDH-20D)にて測定した。
グロスは、JIS K7105に準拠して上記フィルム成形法で得られた厚み50μmのフィルムを試験片として用いて、グロスメーターを用いて室温にてグロス角度20°で測定した。
絶縁破壊電圧(kV)測定は、ASTM-D149に準じ、ヤマヨ試験器有限会社製絶縁破壊試験機を用いた。上記のフィルム成形法で得られた厚み50μmのフィルムを昇圧速度500V/secにて電圧を印加して破壊耐電圧を測定し、耐電圧特性を求めた。
上記フィルム成形法で得られた厚み200μmのフィルムを60mm×60mmにカットし、株式会社井元製作所社製バッチ式二軸延伸機を利用し、50~200℃にて1分間予熱後、延伸速度50mm/minにて同時二軸延伸し、二軸延伸フィルムを得た。延伸倍率は、2.9×2.9倍(流れ方向(Machine Direction:MD):3倍、垂直方向(Transverse Direction:TD):3倍)にて実施した。延伸後のフィルム状態から、以下のように延伸性の評価を行った。
[フィルムアウトガス分析]
フィルムアウトガス発生量は、特開2011-88352号公報、特開2007-224311号公報等の試験方法を参考にして実施した。上記フィルム成形法で得られた厚み50μmのフィルムを、20×2mmの短冊状にカットし、約10mg分を精秤後、ヘリウム気流下にて180℃で30分加熱した際に発生するガス成分を動的ヘッドスペース法で捕集し、熱脱着GC/MSスペクトル分析装置(アジレントテクノロジー社製HP6890/HP5975)にて測定した。MSスペクトル結果からデカンを標準試料とした換算定量値をアウトガス量として規定した。
銅箔への移行物量(1/μm3)は特開2008-94909号公報記載の試験方法を参考にした。上記フィルム成形法で得られた厚み50μmのフィルムを、同じ大きさの銅箔で挟んで熱プレスした後、銅箔をクロロホルムで洗浄した。こうして得られたクロロホルム溶液を加熱してクロロホルムを留去して濃縮残渣を得た。この基板上の濃縮残査を、OLYMPUS社製共焦点レーザー顕微鏡(OLS4000)を用いて測定し、3次元データを解析することにより計測した。
上記フィルム成形法で得られた厚み100μmのフィルムを、流れ方向MD、垂直方向TDにそれぞれ幅2cm、長さ12cmの短冊状に切り出し、このフィルム面上に2つの標点を記した。この標点間の距離をデジタルノギスで測定しL0(cm)とした。この短冊状フィルムを160℃に設定したオーブン中に吊り下げて30分加熱した。加熱後、フィルムを取り出し室温で30分冷却した後、標点間距離を測定しこれをL(cm)とした。収縮率を下式で算出した。
[フィルムの外観]
フィルムの外観は以下の評価に基づく。
×・・・加熱によりシワ、ソリ、黄変などの変化が見られる
[動的粘弾性測定]
上記フィルム成形法で得られた厚み50μmのフィルムを50mm×5mmに切り取り、ティー・エイ・インスツルメント社製レオメーターRSA3を用いて、-40℃から250℃の温度まで昇温速度=4℃/minで、周波数=1Hz、歪み量=0.1%の条件で、引張モードで貯蔵弾性率E’の温度依存性を測定した。貯蔵弾性率E’が1.0×106Paとなる際の温度を測定した。
[ヤング率(引張弾性率)(YM)、引張破断伸び(EL)、引張破断点応力(TS)、標線間の標準偏差]
引張特性であるヤング率(YM)、引張破断点伸度(EL)および引張破断点応力(TS)の評価は、上記4-メチル-1-ペンテン(共)重合体(A)、4-メチル-1-ペンテン共重合体(B)およびα-オレフィン重合体(C)、並びに実施例1~7、比較例1,2の組成物の測定において記載した射出成形の条件で作製したスペシメン(ASTM D638-IV型試験片)を評価用試料として、インストロン社製万能引張試験機3380を用いて、引張速度=200mm/minで実施した。また、上記の引張り試験にて測定した結果より標線間の引張破断伸び(EL)の標準偏差を求めた。
貯蔵弾性率は、上記4-メチル-1-ペンテン(共)重合体(A)、4-メチル-1-ペンテン共重合体(B)およびα-オレフィン重合体(C)、並びに実施例1~7、比較例1,2の組成物の測定において記載したプレスシート作成法にて得られた厚み2mmプレスシートを45mm×10mm×2mmに切り取り、Anton Paar社製レオメーターPhysicaMCR-301を用いて、-40℃から250℃の温度まで昇温速度=2℃/minで、周波数=10rad/s、歪み量=0.1をトーションモード負荷して動的粘弾性の温度依存性を測定し、貯蔵弾性率G’が1.0×106Paとなる際の温度を測定した。また、100℃における貯蔵弾性率G’(MPa)も併せて測定した。
4-メチル-1-ペンテン(共)重合体(A)、4-メチル-1-ペンテン共重合体(B)およびα-オレフィン重合体(C)を所定の配合量で混合して得られた該組成物100重量部に対して、二次抗酸化剤としてトリ(2,4-ジ-t-ブチルフェニル)フォスフェートを0.1重量部、耐熱安定剤としてn-オクタデシル-3-(4’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)プロピネートを0.1重量部、塩酸吸収剤としてステアリン酸カルシウムを0.1重量部配合した。然る後に、(株)プラスチック工学研究所社製2軸押出機BT-30(スクリュー系30mmφ、L/D=46)を用い、設定温度270℃、樹脂押出量60g/minおよび200rpmの条件で造粒し各種測定用ペレットを得た。得られたペレットを、日精エー・エス・ビー機械株式会社製ワンステップストレッチブロー成形機ASB-12N/10を用い、射出樹脂温度;240~290℃の範囲、金型冷却温度18~60℃の条件で外径30mm、高さ45mm、重量約30gの試験管形状のプリフォームを射出成形し、得られたプリフォームを加熱ポットに入れて所定の温度に加熱した後に約240ccの中空容器になるようにブロー1次圧力0.4MPa、2次圧力0.9MPaでブロー成形した。
射出ブロー成形品がブロー時に延伸できずに破れた場合:×
[ボトル透明性]
ボトルの透明性は、上記で得られたブローボトルを試験片として用いて、日本電色工業株式会社製のデジタル濁度計(NDH-20D)にて測定した全ヘイズ値で示した。
国際公開2006/054613号パンフレットの比較例7や比較例9の方法に準じ、4-メチル-1-ペンテン、1-デセン、1-ヘキサデセン、1-オクタデセン、水素の割合を変更することによって、表1に示す物性を有する4-メチル-1-ペンテン重合体(A-1)~(A-3)を得た。
[合成例2-1]4-メチル-1-ペンテン共重合体(B1-1)の製造
充分窒素置換した容量1.5リットルの攪拌翼付SUS製オートクレーブに、23℃で4-メチル-1-ペンテンを750ml装入した。このオートクレーブに、トリイソブチルアルミニウム(TIBAL)の1.0mmol/mlトルエン溶液を0.75ml装入し攪拌機を回した。
充分窒素置換した容量1.5リットルの攪拌翼付SUS製オートクレーブに、23℃でノルマルヘキサン300ml(乾燥窒素雰囲気、活性アルミナ上で乾燥したもの)、4-メチル-1-ペンテンを450ml装入した。このオートクレーブに、トリイソブチルアルミニウム(TIBAL)の1.0mmol/mlトルエン溶液を0.75ml装入し攪拌機を回した。
充分窒素置換した容量1.5リットルの攪拌翼付SUS製オートクレーブに、23℃でノルマルヘキサン300ml(乾燥窒素雰囲気、活性アルミナ上で乾燥したもの)、4-メチル-1-ペンテンを450ml装入した。このオートクレーブに、トリイソブチルアルミニウム(TIBAL)の1.0mmol/mlトルエン溶液を0.75ml装入し攪拌機を回した。
[合成例4-1]α-オレフィン共重合体(C-1)の製造
特開2008-144155号パンフレットの実施例8の方法に準じ、表2に示すα-オレフィン共重合体(C-1)を得た。
国際公開WO2002/002659号パンフレットの比較例1に記載の方法に準じ、表2に示すα-オレフィン共重合体(C-2)を得た。
α-オレフィン共重合体(C-3)として、ホモポリプロピレン(株式会社プライムポリマー製 品番:F123P、MFR=3g/10分(230℃、2.16kg荷重))を使用した。各種物性について測定した結果を表2に示す。
α-オレフィン共重合体(C-4)として、ホモポリプロピレン(株式会社プライムポリマー製 品番:F107、MFR=7g/10分(230℃、2.16kg荷重))を使用した。各種物性について測定した結果を表2に示す。
該共重合体(A-3)20重量部と合成例2-2にて得られた該共重合体(B1-2)80重量部を混合して、該組成物100重量部に対して、二次抗酸化剤としてのトリ(2,4-ジ-t-ブチルフェニル)フォスフェートを0.1重量部、耐熱安定剤としてのn-オクタデシル-3-(4’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)プロピネートを0.1重量部、塩酸吸収剤としてのステアリン酸カルシウムを0.1重量部配合した。然る後に、(株)プラスチック工学研究所社製2軸押出機BT-30(スクリュー系30mmφ、L/D=46)を用い、設定温度280℃、樹脂押出量60g/minおよび200rpmの条件で造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形またはプレス成形して得た各種物性を表3に示した。透明性と耐熱性、さらに伸びに優れることがわかる。
該共重合体(A-2)70重量部と合成例2-2にて得られた該共重合体(B1-2)30重量部を混合して、該組成物100重量部に対して、実施例1と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形またはプレス成形して得た各種物性を表3に示した。透明性と耐熱性、さらに伸びに優れることがわかる。
該共重合体(A-1)40重量部と合成例2-1にて得られた該共重合体(B1-1)60重量部を混合して、該組成物100重量部に対して、実施例1と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形またはプレス成形して得た各種物性を表3に示した。透明性と耐熱性、さらに伸びに優れることがわかる。
該共重合体(A-2)85重量部と合成例2-1にて得られた該共重合体(B1-1)15重量部を混合して、該組成物100重量部に対して、実施例1と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形またはプレス成形して得た各種物性を表3に示した。透明性と耐熱性、さらに伸びに優れることがわかる。
該共重合体(A-1)60重量部と、合成例2-1にて得られた該共重合体(B1-1)10重量部と、合成例3にて重合した該共重合体(B2)30重量部を混合して、該組成物100重量部に対して、実施例1と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形またはプレス成形して得た各種物性を表3に示した。透明性と耐熱性、さらに伸びに優れることがわかる。
該共重合体(A-2)60重量部と、合成例2-1にて得られた該共重合体(B1-1)10重量部と、合成例3にて得られた該共重合体(B2)30重量部を混合して、該組成物100重量部に対して、実施例1と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形またはプレス成形して得た各種物性を表3に示した。透明性と耐熱性、さらに伸びに優れることがわかる。
該共重合体(A-2)70重量部と、合成例2-1にて得られた該共重合体(B1-1)15重量部と、α-オレフィン重合体(C-2)15重量部を混合して、該組成物100重量部に対して、実施例1と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形またはプレス成形して得た各種物性を表3に示した。耐熱性と伸びに優れることがわかる。
α-オレフィン重合体(C-4)を用いて、該ペレットを上記条件で射出成形またはプレス成形して得た各種物性を表3に示した。前記実施例の結果に比して、透明性と耐熱性に劣る結果であることがわかる。
該共重合体(A-3)を用いて、該ペレットを上記条件で射出成形またはプレス成形して得た各種物性を表3に示した。前記実施例の結果に比して、伸びに劣る結果であることがわかる。
該共重合体(A-2)80重量部と合成例2-1にて得られた該共重合体(B1-1)20重量部を混合して、該組成物100重量部に対して、二次抗酸化剤としてのトリ(2,4-ジ-t-ブチルフェニル)フォスフェートを0.1重量部、耐熱安定剤としてのn-オクタデシル-3-(4’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)プロピネートを0.1重量部、塩酸吸収剤としてのステアリン酸カルシウムを0.1重量部配合した。然る後に、株式会社プラスチック工学研究所社製2軸押出機BT-30(スクリュー系30mmφ、L/D=46)を用い、設定温度280℃、樹脂押出量60g/minおよび200rpmの条件で造粒して評価用ペレットを得た。該ペレットを上記条件で成形して得たフィルムの各種物性測定結果を表4に示した。透明性と耐熱性に優れることがわかる。
該共重合体(A-2)40重量部と合成例2-1にて得られた該共重合体(B1-1)60重量部を混合して、該組成物100重量部に対して、実施例8と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で成形して得たフィルムの各種物性測定結果を表4に示した。透明性と耐熱性に優れることがわかる。
該共重合体(A-2)80重量部と合成例2-2にて得られた該共重合体(B1-2)20重量部を混合して、該組成物100重量部に対して、実施例8と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で成形して得たフィルムの各種物性測定結果を表4に示した。透明性と耐熱性に優れることがわかる。
該共重合体(A-1)80重量部と合成例2-1にて得られた該共重合体(B1-1)20重量部を混合して、該組成物100重量部に対して、実施例8と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で成形して得たフィルムの各種物性測定結果を表4に示した。透明性と耐熱性に優れることがわかる。
該共重合体(A-1)40重量部と合成例2-1にて得られた該共重合体(B1-1)60重量部を混合して、該組成物100重量部に対して、実施例8と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で成形して得たフィルムの各種物性測定結果を表4に示した。透明性と耐熱性に優れることがわかる。
該共重合体(A-1)60重量部と合成例2-1にて得られた該共重合体(B1-1)10重量部と合成例3にて得られた該共重合体(B2)30重量部を混合して、該組成物100重量部に対して、実施例8と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で成形して得たフィルムの各種物性測定結果を表4に示した。耐熱性と延伸性に優れることがわかる。
該共重合体(A-2)60重量部と合成例2-1にて得られた該共重合体(B1-1)10重量部と合成例3にて得られた該共重合体(B2)30重量部を混合して、該組成物100重量部に対して、実施例8と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で成形して得たフィルムの各種物性測定結果を表4に示した。耐熱性と延伸性に優れることがわかる。
該共重合体(A-2)70重量部と合成例2-1にて得られた該共重合体(B1-1)15重量部とα-オレフィン重合体(C-2)15重量部を混合して、該組成物100重量部に対して、実施例8と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で成形して得たフィルムの各種物性測定結果を表4に示した。耐熱性と延伸性に優れることがわかる。
該共重合体(A-1)60重量部と合成例2-1にて得られた該共重合体(B1-1)10重量部とα-オレフィン重合体(C-3)30重量部を混合して、該組成物100重量部に対して、実施例8と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で成形して得たフィルムの各種物性測定結果を表4に示した。電気特性と延伸性に優れることがわかる。
α-オレフィン重合体(C-4)を用いて、該ペレットを上記条件で成形して得たフィルムの各種物性測定結果を表5に示した。前記実施例の結果に比して、透明性、耐熱性に劣る結果であることがわかる。
該重合体(A-1)を用いて、該ペレットを上記条件で成形して得たフィルムの各種物性測定結果を表5に示した。前記実施例の結果に比して、フィルム延伸性に劣る結果であることがわかる。
該重合体(A-2)を用いて、該ペレットを上記条件で成形して得たフィルムの各種物性測定結果を表5に示した。前記実施例の結果に比して、フィルム延伸性に劣る結果であることがわかる。
該共重合体(A-2)80重量部と合成例3にて得られた該重合体(B2)20重量部を混合して、該組成物100重量部に対して、実施例8と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で成形して得たフィルムの各種物性測定結果を表5に示した。
該共重合体(A-2)60重量部と合成例3にて得られた該重合体(B2)40重量部を混合して、該組成物100重量部に対して、実施例8と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で成形して得たフィルムの各種物性測定結果を表5に示した。
該共重合体(A-3)70重量部と合成例2-1にて得られた該共重合体(B1-1)30重量部を混合して、該組成物100重量部に対して、実施例8と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で成形して得たフィルムの各種物性測定結果を表6に示した。成形温度を低くでき、銅箔への移行物量が少ないことが分かる。
該共重合体(A-3)50重量部と合成例2-1にて得られた該共重合体(B1-1)50重量部を混合して、該組成物100重量部に対して、実施例8と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で成形して得たフィルムの各種物性測定結果を表6に示した。成形温度を低くでき、銅箔への移行物量が少ないことが分かる。
該共重合体(A-3)30重量部と合成例2-1にて得られた該共重合体(B1-1)70重量部を混合して、該組成物100重量部に対して、実施例8と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で成形して得たフィルムの各種物性測定結果を表6に示した。成形温度を低くでき、銅箔への移行物量が少ないことが分かる。
該共重合体(A-3)100重量部に対して、実施例8と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で成形して得たフィルムの各種物性測定結果を表6に示した。フィルムアウトガス量、銅箔への移行物量が多いことが分かる。
特殊ポリエステルからなる厚み50μmの離型フィルム(積水化学工業株式会社製RP-50)を用いて銅箔への移行物量を測定した。銅箔への移行物の濃縮溶媒はクロロホルム/1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール混合溶媒を用いて同様に測定した。該材料からなるフィルムの銅箔への移行物量の測定結果は、690×104(1/μm3)となっており、本発明にかかるフィルムの実施例17~19と対比して大幅に多いことが分かる。
該共重合体(A-1)90重量部と合成例2-1にて得られた該共重合体(B1-1)10重量部を混合して、該組成物100重量部に対して、実施例8と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記フィルム成形法によって成形して得たフィルムの各種物性測定結果を表7に示した。
該共重合体(A-1)70重量部と合成例2-1にて得られた該共重合体(B1-1)30重量部を混合して、該組成物100重量部に対して、実施例8と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記フィルム成形法によって成形して得たフィルムの各種物性測定結果を表7に示した。
フィルム成形条件を表7に記載の条件に変えたこと以外は実施例21と同様にして得たフィルムの各種物性測定結果を表7に示した。
該共重合体(A-1)50重量部と合成例2-1にて得られた該共重合体(B1-1)50重量部を混合して、該組成物100重量部に対して、実施例8と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記フィルム成形法によって成形して得たフィルムの各種物性測定結果を表7に示した。
三井化学東セロ株式会社製TPX(登録商標)フィルム「オピュランX44B」(フィルム厚み100μm)の各種物性測定結果を表7に示した。収縮率が実施例20~24に示した本発明のフィルムに比べて大きいことが分かる。
三井化学東セロ株式会社製TPX(登録商標)フィルム「オピュランX44B」を180℃のオーブン中で1時間加熱した後の各種物性測定結果を表7に示した。比較例8に比べて収縮率が低下している点で優れているが、加熱処理によりシワやソリが発生し外観が著しく悪化した。
東レ株式会社製ポリエチレンテレフタレートフィルム「ルミラー」(フィルム厚み100μm)を用いて収縮率の測定および加熱後のフィルム外観を観察した。実施例20~24に示した本発明のフィルムと比べて収縮率が大きいことが分かる。
該共重合体(A-1)70重量部と合成例3にて得られた該共重合体(B2)30重量部を混合して、該組成物100重量部に対して、実施例8と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記フィルム成形法によって成形して得たフィルムの各種物性測定結果を表7に示した。
該共重合体(A-2)70重量部と合成例2-2にて得られた該共重合体(B1-2)30重量部を混合して、該組成物100重量部に対して、二次抗酸化剤としてのトリ(2,4-ジ-t-ブチルフェニル)フォスフェートを0.1重量部、耐熱安定剤としてのn-オクタデシル-3-(4’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)プロピネートを0.1重量部、塩酸吸収剤としてのステアリン酸カルシウムを0.1重量部配合した。然る後に、株式会社プラスチック工学研究所社製2軸押出機BT-30(スクリュー系30mmφ、L/D=46)を用い、設定温度280℃、樹脂押出量60g/minおよび200rpmの条件で造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形、プレス成形、射出ブロー成形して得た各種物性を表8に示した。ブロー成形性、透明性、耐熱性に優れることがわかる。
該共重合体(A-1)40重量部と合成例2-1にて得られた該共重合体(B1-1)60重量部を混合して、該組成物100重量部に対して、実施例25と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形、プレス成形、射出ブロー成形して得た各種物性を表8に示した。ブロー成形性、透明性、耐熱性に優れることがわかる。
該共重合体(A-2)85重量部と合成例2-1にて得られた該共重合体(B1-1)15重量部を混合して、該組成物100重量部に対して、実施例25と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形、プレス成形、射出ブロー成形して得た各種物性を表8に示した。ブロー成形性、透明性、耐熱性に優れることがわかる。
該共重合体(A-2)30重量部と合成例2-1にて得られた該共重合体(B1-1)70重量部を混合して、該組成物100重量部に対して、実施例25と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形、プレス成形、射出ブロー成形して得た各種物性を表8に示した。ブロー成形性、透明性、耐熱性に優れることがわかる。
該共重合体(A-2)70重量部と合成例2-1にて得られた該共重合体(B1-1)15重量部と、合成例3にて得られた該共重合体(B2)15重量部を混合して、該組成物100重量部に対して、実施例25と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形、プレス成形、射出ブロー成形して得た各種物性を表8に示した。ブロー成形性、透明性、耐熱性に優れることがわかる。
該共重合体(A-2)18重量部と合成例2-1にて得られた該共重合体(B1-1)42重量部と、合成例3にて得られた該共重合体(B2)40重量部を混合して、該組成物100重量部に対して、実施例25と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形、プレス成形、射出ブロー成形して得た各種物性を表8に示した。ブロー成形性、透明性、耐熱性に優れることがわかる。
該共重合体(A-2)56重量部と合成例2-1にて得られた該共重合体(B1-1)24重量部と、合成例3にて重合した該共重合体(B2)20重量部を混合して、該組成物100重量部に対して、実施例25と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形、プレス成形、射出ブロー成形して得た各種物性を表8に示した。ブロー成形性、透明性、耐熱性に優れることがわかる。
該共重合体(A-2)42重量部と合成例2-1にて得られた該共重合体(B1-1)18重量部と、合成例3にて得られた該共重合体(B2)40重量部を混合して、該組成物100重量部に対して、実施例25と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形、プレス成形、射出ブロー成形して得た各種物性を表8に示した。ブロー成形性、透明性、耐熱性に優れることがわかる。
該共重合体(A-2)24重量部と合成例2-1にて得られた該共重合体(B1-1)56重量部と、α-オレフィン共重合体(C-1)20重量部を混合して、該組成物100重量部に対して、実施例25と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形、プレス成形、射出ブロー成形して得た各種物性を表9に示した。ブロー成形性、透明性、耐熱性に優れることがわかる。
該共重合体(A-2)24重量部と合成例2-2にて得られた該共重合体(B1-2)57重量部と合成例3にて得られた該共重合体(B2)14重量部とα-オレフィン重合体(C-2)5重量部を混合して、該組成物100重量部に対して、実施例25と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形、プレス成形、射出ブロー成形して得た各種物性を表9に示した。ブロー成形性、耐熱性に優れることがわかる。
該共重合体(A-2)60重量部と合成例2-1にて得られた該共重合体(B1-1)10重量部と合成例3にて得られた該共重合体(B2)30重量部とを混合して、該組成物100重量部に対して、実施例25と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形、プレス成形、射出ブロー成形して得た各種物性を表9に示した。ブロー成形性、透明性、耐熱性に優れることがわかる。
該共重合体(A-3)15重量部と該共重合体(A-2)45重量部と合成例2-1にて得られた該共重合体(B1-1)10重量部と合成例3にて得られた該共重合体(B2)30重量部とを混合して、該組成物100重量部に対して、実施例25と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形、プレス成形、射出ブロー成形して得た各種物性を表9に示した。ブロー成形性、透明性、耐熱性に優れることがわかる。
α-オレフィン重合体(C-4)を用いて、該ペレットを上記条件で射出成形、プレス成形、射出ブロー成形して得た各種物性を表9に示した。前記実施例の結果に比して、透明性、耐熱性に劣る結果であることがわかる。
該共重合体(A-3)を用いて、該ペレットを上記条件で射出成形、プレス成形、射出ブロー成形して得た各種物性を表9に示した。前記実施例の結果に比して、ブロー成形性に劣る結果であることがわかる。
合成例2-1で得られた該共重合体(B1-1)を用いて、該ペレットを上記条件で射出成形、プレス成形、射出ブロー成形して得た各種物性を表9に示した。前記実施例の結果に比して、ブロー成形性に劣る結果であることがわかる。
該共重合体(A-2)60重量部と合成例3にて得られた該共重合体(B2)40重量部を混合して、該組成物100重量部に対して、実施例25と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形、プレス成形、射出ブロー成形して得た各種物性を表9に示した。
Claims (11)
- (X1)下記要件(A-a)~(A-e)を満たす4-メチル-1-ペンテン(共)重合体(A)10~90重量部と、下記要件(B1-a)~(B1-e)を満たす4-メチル-1-ペンテン共重合体(B1)90~10重量部(ただし、(A)および(B1)の合計を100重量部とする)を含んでなる組成物か、または
(X3)該4-メチル-1-ペンテン(共)重合体(A)10~90重量部と、該4-メチル-1-ペンテン共重合体(B1)および下記要件(B2-a)~(B2-e)を満たす4-メチル-1-ペンテン共重合体(B2)の合計として90~10重量部(ただし、(A)、(B1)および(B2)の合計を100重量部とし、(B1)と(B2)の混合比((B1)/(B2))は、99/1~1/99である)とを含んでなる組成物である、
4-メチル-1-ペンテン(共)重合体組成物。
・4-メチル-1-ペンテン(共)重合体(A)
(A-a)4-メチル-1-ペンテンから導かれる構成単位(U1)が100~90モル%であり、炭素原子数2~20のα-オレフィン(4-メチル-1-ペンテンを除く)から導かれる構成単位の総量(U2)が0~10モル%(ただし、U1とU2との合計は100モル%である)である、
(A-b)135℃デカリン中で測定した極限粘度[η]が0.5~5.0dl/gである、
(A-c)DSCで測定した融点(Tm)が200~250℃の範囲にある、
(A-d)DSCで測定した結晶化温度(Tc)が150~225℃の範囲にある、
(A-e)密度が820~850kg/m3である。
・4-メチル-1-ペンテン共重合体(B1)
(B1-a)4-メチル-1-ペンテンから導かれる構成単位(U3)が99~80モル%であり、炭素原子数2~20のα-オレフィン(4-メチル-1-ペンテンを除く)から導かれる構成単位の総量(U4)が1~20モル%(U3とU4との合計は100モル%である)である、
(B1-b)135℃デカリン中で測定した極限粘度[η]が0.5~5.0dl/gである、
(B1-c)ゲルパーミエーションクロマトグラフィー(GPC)で測定する重量平均分子量(Mw)と数平均分子量(Mn)との比である分子量分布(Mw/Mn)が1.0~3.5である、
(B1-d)密度が825~860kg/m3である、
(B1-e)DSCで測定した融点(Tm)が110℃~200℃未満の範囲にある、
・4-メチル-1-ペンテン共重合体(B2)
(B2-a)4-メチル-1-ペンテンから導かれる構成単位(U5)が80モル%未満~60モル%であり、炭素原子数2~4のα-オレフィン(4-メチル-1-ペンテンを除く)から導かれる構成単位の総量(U6)が20モル%を超えて~40モル%(U5とU6との合計は100モル%である)である、
(B2-b)135℃デカリン中で測定した極限粘度[η]が0.5~5.0dl/gである、
(B2-c)DSCで測定した融点(Tm)110℃未満または融点が観測されない、
(B2-d)ゲルパーミエーションクロマトグラフィー(GPC)で測定する重量平均分子量(Mw)と数平均分子量(Mn)との比である分子量分布(Mw/Mn)が1.0~3.5である、
(B2-e)密度が830~860kg/m3である。 - 前記(X1)に記載の4-メチル-1-ペンテン(共)重合体組成物において、
前記(B1-a)U3が99~83モル%であり、U4が1~17モル%(U3とU4との合計は100モル%である)である、請求項1に記載の4-メチル-1-ペンテン(共)重合体組成物。 - 前記(共)重合体(A)10~85重量部、前記共重合体(B1)および前記共重合体(B2)を合計として85~10重量部(ただし、(B1)と(B2)の混合比((B1)/(B2))は、99/1~1/99である)およびα-オレフィン重合体(C)(ただし、(共)重合体(A)、共重合体(B1)および(B2)とは異なる)3~30重量部(ただし、(A)、(B1)、(B2)および(C)の合計を100重量部とする)を含んでなる、請求項1または2に記載の4-メチル-1-ペンテン(共)重合体組成物(X4)。
- 前記(共)重合体(A)7~90重量部、前記共重合体(B1)90~7重量部およびα-オレフィン重合体(C)(ただし、(共)重合体(A)、共重合体(B1)および(B2)とは異なる)0.9~30重量部(ただし、(A)、(B1)および(C)の合計を100重量部とする)を含んでなる、請求項1または2に記載の4-メチル-1-ペンテン(共)重合体組成物(X5)。
- 前記(B1-e)DSCで測定した融点(Tm)が125~190℃の範囲にある、請求項1~4のいずれか1項に記載の4-メチル-1-ペンテン(共)重合体組成物。
- 下記要件(A-a)~(A-e)を満たす4-メチル-1-ペンテン(共)重合体(A)7~90重量部と、下記要件(B2-a)~(B2-e)を満たす4-メチル-1-ペンテン共重合体(B2)90~7重量部と、α-オレフィン重合体(C)(ただし、該(共)重合体(A)、下記要件(B1-a)~(B1-e)を満たす4-メチル-1-ペンテン共重合体(B1)および該共重合体(B2)とは異なる)0.9~30重量部(ただし、(A)、(B2)および(C)の合計を100重量部とする)を含んでなる、4-メチル-1-ペンテン(共)重合体組成物(X6)。
・4-メチル-1-ペンテン(共)重合体(A)
(A-a)4-メチル-1-ペンテンから導かれる構成単位(U1)が100~90モル%であり、炭素原子数2~20のα-オレフィン(4-メチル-1-ペンテンを除く)から導かれる構成単位の総量(U2)が0~10モル%(ただし、U1とU2との合計は100モル%である)である、
(A-b)135℃デカリン中で測定した極限粘度[η]が0.5~5.0dl/gである、
(A-c)DSCで測定した融点(Tm)が200~250℃の範囲にある、
(A-d)DSCで測定した結晶化温度(Tc)が150~225℃の範囲にある、
(A-e)密度が820~850kg/m3である。
・4-メチル-1-ペンテン共重合体(B1)
(B1-a)4-メチル-1-ペンテンから導かれる構成単位(U3)が99~80モル%であり、炭素原子数2~20のα-オレフィン(4-メチル-1-ペンテンを除く)から導かれる構成単位の総量(U4)が1~20モル%(U3とU4との合計は100モル%である)である、
(B1-b)135℃デカリン中で測定した極限粘度[η]が0.5~5.0dl/gである、
(B1-c)ゲルパーミエーションクロマトグラフィー(GPC)で測定する重量平均分子量(Mw)と数平均分子量(Mn)との比である分子量分布(Mw/Mn)が1.0~3.5である、
(B1-d)密度が825~860kg/m3である、
(B1-e)DSCで測定した融点(Tm)が110℃~200℃未満の範囲にある、
・4-メチル-1-ペンテン共重合体(B2)
(B2-a)4-メチル-1-ペンテンから導かれる構成単位(U5)が80モル%未満~60モル%であり、炭素原子数2~4のα-オレフィン(4-メチル-1-ペンテンを除く)から導かれる構成単位の総量(U6)が20モル%を超えて~40モル%(U5とU6との合計は100モル%である)である、
(B2-b)135℃デカリン中で測定した極限粘度[η]が0.5~5.0dl/gである、
(B2-c)DSCで測定した融点(Tm)110℃未満または融点が観測されない、
(B2-d)ゲルパーミエーションクロマトグラフィー(GPC)で測定する重量平均分子量(Mw)と数平均分子量(Mn)との比である分子量分布(Mw/Mn)が1.0~3.5である、
(B2-e)密度が830~860kg/m3である。 - 請求項1~6のいずれか1項に記載の4-メチル-1-ペンテン(共)重合体組成物からなる、フィルム。
- 請求項7に記載のフィルムからなる、離形フィルム。
- 請求項1~6のいずれか1項に記載の4-メチル-1-ペンテン(共)重合体組成物からなる、中空成形体。
- 請求項1~6のいずれか1項に記載の4-メチル-1-ペンテン(共)重合体組成物を少なくとも1層として含んでなる、中空成形体。
- 射出ブロー成形法によって得られる、請求項9または10に記載の中空成形体。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013551707A JP5769821B2 (ja) | 2011-12-27 | 2012-12-25 | 4−メチル−1−ペンテン(共)重合体組成物、該組成物からなるフィルムおよび中空成形体 |
KR1020147019295A KR101567269B1 (ko) | 2011-12-27 | 2012-12-25 | 4-메틸-1-펜텐 (공)중합체 조성물, 해당 조성물로 이루어지는 필름 및 중공 성형체 |
CN201280061026.6A CN103987779B (zh) | 2011-12-27 | 2012-12-25 | 4-甲基-1-戊烯(共)聚合物组合物、包含该组合物的膜和中空成型体 |
US14/364,211 US9902847B2 (en) | 2011-12-27 | 2012-12-25 | 4-methyl-1-pentene (co)polymer composition, and film and hollow molded product composed of the composition |
EP12862805.4A EP2799488B1 (en) | 2011-12-27 | 2012-12-25 | 4-methyl-1-pentene (co)polymer composition, and film and hollow molded body, each of which is formed from 4-methyl-1-pentene (co)polymer composition |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-285679 | 2011-12-27 | ||
JP2011285679 | 2011-12-27 | ||
JP2012-017761 | 2012-01-31 | ||
JP2012017761 | 2012-01-31 | ||
JP2012044990 | 2012-03-01 | ||
JP2012-044990 | 2012-03-01 | ||
JP2012066877 | 2012-03-23 | ||
JP2012-066877 | 2012-03-23 | ||
JP2012-231666 | 2012-10-19 | ||
JP2012231666 | 2012-10-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013099876A1 true WO2013099876A1 (ja) | 2013-07-04 |
Family
ID=48697361
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/083499 WO2013099876A1 (ja) | 2011-12-27 | 2012-12-25 | 4-メチル-1-ペンテン(共)重合体組成物、該組成物からなるフィルムおよび中空成形体 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9902847B2 (ja) |
EP (1) | EP2799488B1 (ja) |
JP (1) | JP5769821B2 (ja) |
KR (1) | KR101567269B1 (ja) |
CN (1) | CN103987779B (ja) |
TW (1) | TWI550007B (ja) |
WO (1) | WO2013099876A1 (ja) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014208564A1 (ja) * | 2013-06-28 | 2014-12-31 | 三井化学株式会社 | 応力緩和性フィルム及び半導体用表面保護フィルム |
JP2015034258A (ja) * | 2013-08-09 | 2015-02-19 | 三井化学株式会社 | 組成物、フィルム、前記フィルムの製造方法 |
JP2015063079A (ja) * | 2013-09-25 | 2015-04-09 | 三井化学株式会社 | 積層体 |
JP2015214658A (ja) * | 2014-05-12 | 2015-12-03 | 三井化学株式会社 | 拡張性基材フィルム、拡張性粘着フィルム、ダイシングフィルム、拡張性基材フィルムの製造方法、及び半導体装置の製造方法 |
JP2016014129A (ja) * | 2014-03-14 | 2016-01-28 | 三井化学株式会社 | 樹脂組成物、フィルム、積層フィルム、積層体、イージーピール用材料およびカバーテープ |
JP2016126995A (ja) * | 2014-12-26 | 2016-07-11 | 三井化学株式会社 | 電池部材用フィルム |
JP2016183207A (ja) * | 2015-03-25 | 2016-10-20 | 三井化学株式会社 | 4−メチル−1−ペンテン系共重合体を含む樹脂組成物およびその成形体 |
JP2017074775A (ja) * | 2015-10-16 | 2017-04-20 | 三井化学株式会社 | 積層体および離型紙 |
JP2017165928A (ja) * | 2016-03-18 | 2017-09-21 | 三井化学株式会社 | 熱可塑性樹脂組成物およびこれから得られる成形体 |
JP2018145350A (ja) * | 2017-03-08 | 2018-09-20 | 三井化学株式会社 | 熱可塑性エラストマー組成物、その成形体及びそれらの製造方法 |
JP2018158451A (ja) * | 2017-03-22 | 2018-10-11 | 三井化学株式会社 | 3次元プリンター造形用フィラメント |
JP2018162408A (ja) * | 2017-03-27 | 2018-10-18 | 三井化学株式会社 | 4−メチル−1−ペンテン共重合体組成物 |
JP2019001139A (ja) * | 2017-06-20 | 2019-01-10 | 三井化学株式会社 | 多層二軸延伸フィルムおよび転写フィルム |
JP2019204897A (ja) * | 2018-05-24 | 2019-11-28 | 三井化学株式会社 | 冷却ジャケット |
JPWO2018155179A1 (ja) * | 2017-02-23 | 2020-01-16 | 三井化学株式会社 | 成形体およびその製造方法 |
WO2020116368A1 (ja) | 2018-12-04 | 2020-06-11 | 三井化学株式会社 | 4-メチル-1-ペンテン共重合体を含有する樹脂組成物、およびキャパシタ用フィルム |
JP2020105446A (ja) * | 2018-12-28 | 2020-07-09 | 三井化学株式会社 | 成形体およびその製造方法 |
JP2020142474A (ja) * | 2019-03-08 | 2020-09-10 | 三井化学株式会社 | 多層離型フィルム |
JP2020158681A (ja) * | 2019-03-27 | 2020-10-01 | 三井化学株式会社 | 4−メチル−1−ペンテン系重合体を含む重合体組成物および成形体 |
JP2020186413A (ja) * | 2020-08-24 | 2020-11-19 | 三井化学株式会社 | 熱可塑性樹脂組成物およびこれから得られる成形体 |
JP2020186412A (ja) * | 2020-08-24 | 2020-11-19 | 三井化学株式会社 | 熱可塑性樹脂組成物およびこれから得られる成形体 |
JP2021014531A (ja) * | 2019-07-12 | 2021-02-12 | 三井化学株式会社 | 表面保護フィルム |
WO2022050208A1 (ja) | 2020-09-01 | 2022-03-10 | 三井化学株式会社 | 樹脂組成物および成形体 |
WO2022107578A1 (ja) * | 2020-11-17 | 2022-05-27 | 三井化学株式会社 | 樹脂組成物、粘着剤、積層体、表面保護フィルム、表面保護フィルムの製造方法および面を保護する方法 |
WO2023162335A1 (ja) * | 2022-02-22 | 2023-08-31 | 三井化学株式会社 | 4-メチル-1-ペンテン共重合体組成物、成形体、マンドレルおよびゴムホースの製造方法 |
JP7433108B2 (ja) | 2020-03-27 | 2024-02-19 | 三井化学株式会社 | フィルム |
EP4450253A1 (en) * | 2023-04-21 | 2024-10-23 | Canon Kabushiki Kaisha | Stretch blow-molded article, toner bottle, and method for manufacturing stretch blow-molded article, molded article, and pellet |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9725540B2 (en) * | 2009-11-06 | 2017-08-08 | Mitsui Chemicals, Inc. | 4-methyl-1-pentene/α-olefin copolymer, composition comprising the copolymer and 4-methyl-1-pentene copolymer composition |
WO2018008563A1 (ja) * | 2016-07-04 | 2018-01-11 | 旭硝子株式会社 | フィルムおよびその製造方法 |
Citations (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58191734A (ja) | 1982-05-01 | 1983-11-09 | Fujikura Ltd | 延伸フイルム |
JPH01501950A (ja) | 1987-01-30 | 1989-07-06 | エクソン・ケミカル・パテンツ・インク | 触媒、これらの触媒の製法およびこれらの触媒を使用する重合プロセス |
JPH01502036A (ja) | 1987-01-30 | 1989-07-13 | エクソン・ケミカル・パテンツ・インク | 触媒、これら触媒の製法、およびこれら触媒の使用法 |
JPH0241303A (ja) | 1988-07-15 | 1990-02-09 | Fina Technol Inc | シンジオタクチツクポリオレフインの製造方法及び触媒 |
JPH0278687A (ja) | 1988-09-14 | 1990-03-19 | Mitsui Petrochem Ind Ltd | ベンゼン不溶性の有機アルミニウムオキシ化合物の製造方法 |
JPH03179006A (ja) | 1989-10-10 | 1991-08-05 | Fina Technol Inc | シンジオタクチツク重合体の製造方法および製造用触媒 |
JPH03179005A (ja) | 1989-10-10 | 1991-08-05 | Fina Technol Inc | メタロセン触媒 |
JPH03193796A (ja) | 1989-10-10 | 1991-08-23 | Fina Technol Inc | メタロセン化合物 |
JPH03207704A (ja) | 1989-10-30 | 1991-09-11 | Fina Technol Inc | オレフイン重合触媒 |
JPH03207703A (ja) | 1989-10-30 | 1991-09-11 | Fina Technol Inc | オレフイン重合触媒の製造法 |
JPH0531792A (ja) | 1990-12-04 | 1993-02-09 | Dainippon Printing Co Ltd | 耐熱性容器の製造方法 |
JPH0570659A (ja) | 1991-09-17 | 1993-03-23 | Asahi Chem Ind Co Ltd | ポリカーボネート樹脂組成物 |
JPH05245911A (ja) | 1991-03-01 | 1993-09-24 | Chisso Corp | ポリオレフィン系樹脂製中空容器 |
US5321106A (en) | 1990-07-03 | 1994-06-14 | The Dow Chemical Company | Addition polymerization catalyst with oxidative activation |
JPH0753804A (ja) * | 1993-08-20 | 1995-02-28 | Mitsui Petrochem Ind Ltd | 4−メチル−1−ペンテン系重合体組成物 |
JPH11255982A (ja) | 1997-07-24 | 1999-09-21 | Sumitomo Chem Co Ltd | 2軸延伸ブロー成形用プロピレン系樹脂組成物および容器 |
WO2001027124A1 (fr) | 1999-10-08 | 2001-04-19 | Mitsui Chemicals, Inc. | Compose metallocene, son procede de fabrication, catalyseur de polymerisation d'olefine, procede de production de polyolefine et polyolefine |
JP2001172408A (ja) | 1999-12-20 | 2001-06-26 | Mitsui Chemicals Inc | ラップフィルム |
WO2001053369A1 (fr) | 2000-01-21 | 2001-07-26 | Mitsui Chemicals, Inc. | Copolymeres blocs d'olefine, procedes de fabrication et utilisation |
WO2002002659A1 (fr) | 2000-07-03 | 2002-01-10 | Mitsui Chemicals, Inc. | Copolymere de butene, composition de resine renfermant ce copolymere et produits moules de cette composition, et catalyseur solide au titane pour la production du copolymere, ainsi que procede de preparation du catalyseur |
JP2002192673A (ja) | 2000-12-27 | 2002-07-10 | Mitsui Chemicals Inc | 多層延伸フィルム |
WO2002081958A1 (fr) | 2001-03-30 | 2002-10-17 | Mitsui Chemicals, Inc. | Tuyau fabrique en elastomere thermoplastique |
JP2003268044A (ja) | 2002-03-15 | 2003-09-25 | Mitsui Chemicals Inc | ポリプロピレン樹脂組成物および延伸ブロー容器 |
JP2003292704A (ja) * | 2002-03-29 | 2003-10-15 | Mitsui Chemicals Inc | 樹脂組成物及び延伸成形体 |
JP2004027071A (ja) * | 2002-06-27 | 2004-01-29 | Mitsui Chemicals Inc | 4−メチル−1−ペンテン系重合体樹脂組成物および成形品 |
JP2004035625A (ja) * | 2002-06-28 | 2004-02-05 | Mitsui Chemicals Inc | 4−メチル−1−ペンテン系重合体の樹脂組成物 |
WO2006025540A1 (ja) | 2004-08-30 | 2006-03-09 | Mitsui Chemicals, Inc. | プロピレン系重合体の製造方法 |
WO2006054613A1 (ja) | 2004-11-17 | 2006-05-26 | Mitsui Chemicals, Inc. | 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィン系重合体の製造方法 |
JP3779471B2 (ja) | 1998-05-22 | 2006-05-31 | 三井化学株式会社 | 4−メチル−1−ペンテン系重合体の延伸方法 |
JP2007224311A (ja) | 2001-06-29 | 2007-09-06 | Sekisui Chem Co Ltd | 離型フィルム |
JP2007321102A (ja) * | 2006-01-20 | 2007-12-13 | Mitsui Chemicals Inc | プロピレン系重合体組成物、該組成物からなる成形体 |
JP2008094909A (ja) | 2006-10-10 | 2008-04-24 | Mitsui Chemicals Inc | 4−メチル−1−ペンテン系重合体離型フィルム |
JP2008144155A (ja) | 2006-11-14 | 2008-06-26 | Mitsui Chemicals Inc | 4−メチル−1−ペンテン系ランダム共重合体およびその製造方法ならびに該共重合体を含む組成物 |
JP2009298139A (ja) | 2008-05-15 | 2009-12-24 | Japan Polypropylene Corp | ポリプロピレン系射出ブロー成形体 |
JP4489699B2 (ja) | 2003-03-28 | 2010-06-23 | 三井化学株式会社 | 延伸フィルムおよびその製造方法 |
JP2011088352A (ja) | 2009-10-22 | 2011-05-06 | Unitika Ltd | 離型フィルム |
WO2011055803A1 (ja) * | 2009-11-06 | 2011-05-12 | 三井化学株式会社 | 4-メチル-1-ペンテン・α-オレフィン共重合体、該共重合体を含む組成物および4-メチル-1-ペンテン共重合体組成物 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0729405B2 (ja) | 1987-05-28 | 1995-04-05 | 三井石油化学工業株式会社 | 積層フイルム |
US5162278A (en) | 1988-07-15 | 1992-11-10 | Fina Technology, Inc. | Non-bridged syndiospecific metallocene catalysts and polymerization process |
KR930002411B1 (ko) | 1988-09-14 | 1993-03-30 | 미쓰이세끼유 가가꾸고오교오 가부시끼가이샤 | 벤젠불용성 유기알루미늄 옥시화합물 및 그 제조방법 |
US5387568A (en) | 1989-10-30 | 1995-02-07 | Fina Technology, Inc. | Preparation of metallocene catalysts for polymerization of olefins |
CN1392835A (zh) | 2000-09-20 | 2003-01-22 | 三井化学株式会社 | 4-甲基-1-戊烯共聚物多层膜及其制备方法 |
US7485186B2 (en) | 2002-06-17 | 2009-02-03 | American Clay Enterprises, Llc | Clay plaster |
JP2006070252A (ja) | 2004-08-03 | 2006-03-16 | Mitsui Chemicals Inc | ポリ4−メチル−1−ペンテン樹脂組成物、フィルムおよび電子部品封止体製造用型枠 |
SG162743A1 (en) | 2005-05-18 | 2010-07-29 | Mitsui Chemicals Inc | Catalyst for olefin polymerization, method for producing olefin polymer, method for producing propylene copolymer, propylene polymer, propylene polymer composition, and use of those |
JP5423968B2 (ja) | 2010-01-08 | 2014-02-19 | 三井化学株式会社 | 熱可塑性樹脂組成物およびその成形品 |
CN102083914B (zh) * | 2008-07-10 | 2015-02-04 | 三井化学株式会社 | 4-甲基-1-戊烯类聚合物以及含有4-甲基-1-戊烯类聚合物的树脂组合物及其母料以及它们的成型品 |
US8211981B2 (en) * | 2008-08-01 | 2012-07-03 | Mitsui Chemicals, Inc. | Poly(4-methyl-1-pentene) resin composition, film containing same, microporous film, battery separator and lithium ion battery |
JP5684986B2 (ja) | 2010-01-08 | 2015-03-18 | 三井化学株式会社 | 樹脂組成物、およびその成形フィルム |
-
2012
- 2012-12-25 JP JP2013551707A patent/JP5769821B2/ja active Active
- 2012-12-25 KR KR1020147019295A patent/KR101567269B1/ko active IP Right Grant
- 2012-12-25 US US14/364,211 patent/US9902847B2/en active Active
- 2012-12-25 WO PCT/JP2012/083499 patent/WO2013099876A1/ja active Application Filing
- 2012-12-25 EP EP12862805.4A patent/EP2799488B1/en active Active
- 2012-12-25 CN CN201280061026.6A patent/CN103987779B/zh active Active
- 2012-12-26 TW TW101150072A patent/TWI550007B/zh active
Patent Citations (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58191734A (ja) | 1982-05-01 | 1983-11-09 | Fujikura Ltd | 延伸フイルム |
JPH01501950A (ja) | 1987-01-30 | 1989-07-06 | エクソン・ケミカル・パテンツ・インク | 触媒、これらの触媒の製法およびこれらの触媒を使用する重合プロセス |
JPH01502036A (ja) | 1987-01-30 | 1989-07-13 | エクソン・ケミカル・パテンツ・インク | 触媒、これら触媒の製法、およびこれら触媒の使用法 |
JPH0241303A (ja) | 1988-07-15 | 1990-02-09 | Fina Technol Inc | シンジオタクチツクポリオレフインの製造方法及び触媒 |
JPH0278687A (ja) | 1988-09-14 | 1990-03-19 | Mitsui Petrochem Ind Ltd | ベンゼン不溶性の有機アルミニウムオキシ化合物の製造方法 |
JPH03179006A (ja) | 1989-10-10 | 1991-08-05 | Fina Technol Inc | シンジオタクチツク重合体の製造方法および製造用触媒 |
JPH03179005A (ja) | 1989-10-10 | 1991-08-05 | Fina Technol Inc | メタロセン触媒 |
JPH03193796A (ja) | 1989-10-10 | 1991-08-23 | Fina Technol Inc | メタロセン化合物 |
JPH03207704A (ja) | 1989-10-30 | 1991-09-11 | Fina Technol Inc | オレフイン重合触媒 |
JPH03207703A (ja) | 1989-10-30 | 1991-09-11 | Fina Technol Inc | オレフイン重合触媒の製造法 |
US5321106A (en) | 1990-07-03 | 1994-06-14 | The Dow Chemical Company | Addition polymerization catalyst with oxidative activation |
JPH0531792A (ja) | 1990-12-04 | 1993-02-09 | Dainippon Printing Co Ltd | 耐熱性容器の製造方法 |
JPH05245911A (ja) | 1991-03-01 | 1993-09-24 | Chisso Corp | ポリオレフィン系樹脂製中空容器 |
JPH0570659A (ja) | 1991-09-17 | 1993-03-23 | Asahi Chem Ind Co Ltd | ポリカーボネート樹脂組成物 |
JPH0753804A (ja) * | 1993-08-20 | 1995-02-28 | Mitsui Petrochem Ind Ltd | 4−メチル−1−ペンテン系重合体組成物 |
JPH11255982A (ja) | 1997-07-24 | 1999-09-21 | Sumitomo Chem Co Ltd | 2軸延伸ブロー成形用プロピレン系樹脂組成物および容器 |
JP3779471B2 (ja) | 1998-05-22 | 2006-05-31 | 三井化学株式会社 | 4−メチル−1−ペンテン系重合体の延伸方法 |
WO2001027124A1 (fr) | 1999-10-08 | 2001-04-19 | Mitsui Chemicals, Inc. | Compose metallocene, son procede de fabrication, catalyseur de polymerisation d'olefine, procede de production de polyolefine et polyolefine |
JP2001172408A (ja) | 1999-12-20 | 2001-06-26 | Mitsui Chemicals Inc | ラップフィルム |
WO2001053369A1 (fr) | 2000-01-21 | 2001-07-26 | Mitsui Chemicals, Inc. | Copolymeres blocs d'olefine, procedes de fabrication et utilisation |
WO2002002659A1 (fr) | 2000-07-03 | 2002-01-10 | Mitsui Chemicals, Inc. | Copolymere de butene, composition de resine renfermant ce copolymere et produits moules de cette composition, et catalyseur solide au titane pour la production du copolymere, ainsi que procede de preparation du catalyseur |
JP2002192673A (ja) | 2000-12-27 | 2002-07-10 | Mitsui Chemicals Inc | 多層延伸フィルム |
WO2002081958A1 (fr) | 2001-03-30 | 2002-10-17 | Mitsui Chemicals, Inc. | Tuyau fabrique en elastomere thermoplastique |
JP2007224311A (ja) | 2001-06-29 | 2007-09-06 | Sekisui Chem Co Ltd | 離型フィルム |
JP2003268044A (ja) | 2002-03-15 | 2003-09-25 | Mitsui Chemicals Inc | ポリプロピレン樹脂組成物および延伸ブロー容器 |
JP2003292704A (ja) * | 2002-03-29 | 2003-10-15 | Mitsui Chemicals Inc | 樹脂組成物及び延伸成形体 |
JP3894822B2 (ja) | 2002-03-29 | 2007-03-22 | 三井化学株式会社 | 樹脂組成物及び延伸成形体 |
JP2004027071A (ja) * | 2002-06-27 | 2004-01-29 | Mitsui Chemicals Inc | 4−メチル−1−ペンテン系重合体樹脂組成物および成形品 |
JP2004035625A (ja) * | 2002-06-28 | 2004-02-05 | Mitsui Chemicals Inc | 4−メチル−1−ペンテン系重合体の樹脂組成物 |
JP4489699B2 (ja) | 2003-03-28 | 2010-06-23 | 三井化学株式会社 | 延伸フィルムおよびその製造方法 |
WO2006025540A1 (ja) | 2004-08-30 | 2006-03-09 | Mitsui Chemicals, Inc. | プロピレン系重合体の製造方法 |
WO2006054613A1 (ja) | 2004-11-17 | 2006-05-26 | Mitsui Chemicals, Inc. | 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィン系重合体の製造方法 |
JP2007321102A (ja) * | 2006-01-20 | 2007-12-13 | Mitsui Chemicals Inc | プロピレン系重合体組成物、該組成物からなる成形体 |
JP2008094909A (ja) | 2006-10-10 | 2008-04-24 | Mitsui Chemicals Inc | 4−メチル−1−ペンテン系重合体離型フィルム |
JP2008144155A (ja) | 2006-11-14 | 2008-06-26 | Mitsui Chemicals Inc | 4−メチル−1−ペンテン系ランダム共重合体およびその製造方法ならびに該共重合体を含む組成物 |
JP2009298139A (ja) | 2008-05-15 | 2009-12-24 | Japan Polypropylene Corp | ポリプロピレン系射出ブロー成形体 |
JP2011088352A (ja) | 2009-10-22 | 2011-05-06 | Unitika Ltd | 離型フィルム |
WO2011055803A1 (ja) * | 2009-11-06 | 2011-05-12 | 三井化学株式会社 | 4-メチル-1-ペンテン・α-オレフィン共重合体、該共重合体を含む組成物および4-メチル-1-ペンテン共重合体組成物 |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5965070B2 (ja) * | 2013-06-28 | 2016-08-03 | 三井化学株式会社 | 応力緩和性フィルム及び半導体用表面保護フィルム |
WO2014208564A1 (ja) * | 2013-06-28 | 2014-12-31 | 三井化学株式会社 | 応力緩和性フィルム及び半導体用表面保護フィルム |
JPWO2014208564A1 (ja) * | 2013-06-28 | 2017-02-23 | 三井化学株式会社 | 応力緩和性フィルム及び半導体用表面保護フィルム |
JP2015034258A (ja) * | 2013-08-09 | 2015-02-19 | 三井化学株式会社 | 組成物、フィルム、前記フィルムの製造方法 |
JP2015063079A (ja) * | 2013-09-25 | 2015-04-09 | 三井化学株式会社 | 積層体 |
JP2016014129A (ja) * | 2014-03-14 | 2016-01-28 | 三井化学株式会社 | 樹脂組成物、フィルム、積層フィルム、積層体、イージーピール用材料およびカバーテープ |
JP2015214658A (ja) * | 2014-05-12 | 2015-12-03 | 三井化学株式会社 | 拡張性基材フィルム、拡張性粘着フィルム、ダイシングフィルム、拡張性基材フィルムの製造方法、及び半導体装置の製造方法 |
JP2016126995A (ja) * | 2014-12-26 | 2016-07-11 | 三井化学株式会社 | 電池部材用フィルム |
JP2016183207A (ja) * | 2015-03-25 | 2016-10-20 | 三井化学株式会社 | 4−メチル−1−ペンテン系共重合体を含む樹脂組成物およびその成形体 |
JP2017074775A (ja) * | 2015-10-16 | 2017-04-20 | 三井化学株式会社 | 積層体および離型紙 |
JP2017165928A (ja) * | 2016-03-18 | 2017-09-21 | 三井化学株式会社 | 熱可塑性樹脂組成物およびこれから得られる成形体 |
JPWO2018155179A1 (ja) * | 2017-02-23 | 2020-01-16 | 三井化学株式会社 | 成形体およびその製造方法 |
JP2018145350A (ja) * | 2017-03-08 | 2018-09-20 | 三井化学株式会社 | 熱可塑性エラストマー組成物、その成形体及びそれらの製造方法 |
JP2018158451A (ja) * | 2017-03-22 | 2018-10-11 | 三井化学株式会社 | 3次元プリンター造形用フィラメント |
JP2018162408A (ja) * | 2017-03-27 | 2018-10-18 | 三井化学株式会社 | 4−メチル−1−ペンテン共重合体組成物 |
JP2019001139A (ja) * | 2017-06-20 | 2019-01-10 | 三井化学株式会社 | 多層二軸延伸フィルムおよび転写フィルム |
JP7130434B2 (ja) | 2018-05-24 | 2022-09-05 | 三井化学株式会社 | 冷却ジャケット |
JP2019204897A (ja) * | 2018-05-24 | 2019-11-28 | 三井化学株式会社 | 冷却ジャケット |
US12091536B2 (en) | 2018-12-04 | 2024-09-17 | Mitsui Chemicals, Inc. | Resin composition containing 4-methyl-1-pentene copolymer, and film for capacitors |
WO2020116368A1 (ja) | 2018-12-04 | 2020-06-11 | 三井化学株式会社 | 4-メチル-1-ペンテン共重合体を含有する樹脂組成物、およびキャパシタ用フィルム |
CN112969726A (zh) * | 2018-12-04 | 2021-06-15 | 三井化学株式会社 | 含有4-甲基-1-戊烯共聚物的树脂组合物及电容器用膜 |
JPWO2020116368A1 (ja) * | 2018-12-04 | 2021-10-14 | 三井化学株式会社 | 4−メチル−1−ペンテン共重合体を含有する樹脂組成物、およびキャパシタ用フィルム |
JP7182644B2 (ja) | 2018-12-04 | 2022-12-02 | 三井化学株式会社 | 4-メチル-1-ペンテン共重合体を含有する樹脂組成物、およびキャパシタ用フィルム |
JP2020105446A (ja) * | 2018-12-28 | 2020-07-09 | 三井化学株式会社 | 成形体およびその製造方法 |
JP7228383B2 (ja) | 2018-12-28 | 2023-02-24 | 三井化学株式会社 | 成形体およびその製造方法 |
JP2020142474A (ja) * | 2019-03-08 | 2020-09-10 | 三井化学株式会社 | 多層離型フィルム |
JP7267784B2 (ja) | 2019-03-08 | 2023-05-02 | 三井化学株式会社 | 多層離型フィルム |
JP2020158681A (ja) * | 2019-03-27 | 2020-10-01 | 三井化学株式会社 | 4−メチル−1−ペンテン系重合体を含む重合体組成物および成形体 |
JP7288325B2 (ja) | 2019-03-27 | 2023-06-07 | 三井化学株式会社 | 4-メチル-1-ペンテン系重合体を含む重合体組成物および成形体 |
JP2021014531A (ja) * | 2019-07-12 | 2021-02-12 | 三井化学株式会社 | 表面保護フィルム |
JP7389576B2 (ja) | 2019-07-12 | 2023-11-30 | 三井化学株式会社 | 表面保護フィルム |
JP7433108B2 (ja) | 2020-03-27 | 2024-02-19 | 三井化学株式会社 | フィルム |
JP7110286B2 (ja) | 2020-08-24 | 2022-08-01 | 三井化学株式会社 | 熱可塑性樹脂組成物およびこれから得られる成形体 |
JP7029500B2 (ja) | 2020-08-24 | 2022-03-03 | 三井化学株式会社 | 熱可塑性樹脂組成物およびこれから得られる成形体 |
JP2020186412A (ja) * | 2020-08-24 | 2020-11-19 | 三井化学株式会社 | 熱可塑性樹脂組成物およびこれから得られる成形体 |
JP2020186413A (ja) * | 2020-08-24 | 2020-11-19 | 三井化学株式会社 | 熱可塑性樹脂組成物およびこれから得られる成形体 |
WO2022050208A1 (ja) | 2020-09-01 | 2022-03-10 | 三井化学株式会社 | 樹脂組成物および成形体 |
KR20230043957A (ko) | 2020-09-01 | 2023-03-31 | 미쓰이 가가쿠 가부시키가이샤 | 수지 조성물 및 성형체 |
WO2022107578A1 (ja) * | 2020-11-17 | 2022-05-27 | 三井化学株式会社 | 樹脂組成物、粘着剤、積層体、表面保護フィルム、表面保護フィルムの製造方法および面を保護する方法 |
WO2023162335A1 (ja) * | 2022-02-22 | 2023-08-31 | 三井化学株式会社 | 4-メチル-1-ペンテン共重合体組成物、成形体、マンドレルおよびゴムホースの製造方法 |
EP4450253A1 (en) * | 2023-04-21 | 2024-10-23 | Canon Kabushiki Kaisha | Stretch blow-molded article, toner bottle, and method for manufacturing stretch blow-molded article, molded article, and pellet |
Also Published As
Publication number | Publication date |
---|---|
CN103987779A (zh) | 2014-08-13 |
US20140342111A1 (en) | 2014-11-20 |
TWI550007B (zh) | 2016-09-21 |
KR101567269B1 (ko) | 2015-11-06 |
EP2799488B1 (en) | 2016-07-20 |
EP2799488A4 (en) | 2015-04-01 |
JP5769821B2 (ja) | 2015-08-26 |
TW201335264A (zh) | 2013-09-01 |
EP2799488A1 (en) | 2014-11-05 |
KR20140101430A (ko) | 2014-08-19 |
JPWO2013099876A1 (ja) | 2015-05-07 |
CN103987779B (zh) | 2016-04-06 |
US9902847B2 (en) | 2018-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5769821B2 (ja) | 4−メチル−1−ペンテン(共)重合体組成物、該組成物からなるフィルムおよび中空成形体 | |
JP5020524B2 (ja) | プロピレン系重合体組成物、該組成物からなる成形体、プロピレン系重合体組成物からなるペレット、熱可塑性重合体用改質剤、熱可塑性重合体組成物の製造方法 | |
JP2002053615A (ja) | エチレン(共)重合体およびその用途 | |
WO2006123759A1 (ja) | オレフィン重合用触媒、オレフィン重合体の製造方法、プロピレン系共重合体の製造方法、プロピレン重合体、プロピレン系重合体組成物およびこれらの用途 | |
AU2006223826A1 (en) | Propylene polymer composition, use thereof, and process for production of thermoplastic polymer composition | |
JPWO2006068308A1 (ja) | プロピレン系重合体、該重合体を含む組成物及びこれらから得られる成形体 | |
JP5330637B2 (ja) | プロピレン系重合体組成物、該組成物からなる成形体、プロピレン系重合体組成物の製造方法 | |
JP2014125496A (ja) | 熱可塑性樹脂組成物およびそのフィルム | |
JP5511685B2 (ja) | プロピレン系樹脂組成物、成形体および容器 | |
JP6282504B2 (ja) | 4−メチル−1−ペンテン共重合体組成物 | |
WO2015147186A1 (ja) | オレフィン系樹脂およびその製造方法 | |
KR101130921B1 (ko) | 폴리프로필렌계 수지 필름 및 그의 용도 | |
WO2020116368A1 (ja) | 4-メチル-1-ペンテン共重合体を含有する樹脂組成物、およびキャパシタ用フィルム | |
JP2014011181A (ja) | コンデンサ用フィルム、金属化フィルムおよびフィルムコンデンサ | |
JP5506985B2 (ja) | プロピレン系重合体組成物、該組成物からなる成形体、プロピレン系重合体組成物の製造方法 | |
JP5374606B2 (ja) | プロピレン系重合体組成物およびその用途 | |
WO2010023906A1 (ja) | シンジオタクティック構造を有する4-メチルペンテン-1系重合体 | |
JP2008231266A (ja) | ポリプロピレン組成物およびその成形体 | |
JP5550615B2 (ja) | プロピレン系重合体組成物の製造方法 | |
JP6666089B2 (ja) | プロピレン系樹脂組成物および成形体 | |
JP7014819B2 (ja) | プロピレン系樹脂組成物、成形体および容器 | |
JP2019178254A (ja) | 1−ブテン共重合体、当該1−ブテン共重合体を含む重合体組成物および当該1−ブテン共重合体からなる成形体 | |
JP7544825B2 (ja) | 樹脂組成物および成形体 | |
JP2022152304A (ja) | プロピレン・α-オレフィン共重合体およびその用途 | |
JP2023030416A (ja) | 重合体組成物、成形体および食品用容器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201280061026.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12862805 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14364211 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2012862805 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012862805 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2013551707 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20147019295 Country of ref document: KR Kind code of ref document: A |