WO2013099876A1 - 4-メチル-1-ペンテン(共)重合体組成物、該組成物からなるフィルムおよび中空成形体 - Google Patents

4-メチル-1-ペンテン(共)重合体組成物、該組成物からなるフィルムおよび中空成形体 Download PDF

Info

Publication number
WO2013099876A1
WO2013099876A1 PCT/JP2012/083499 JP2012083499W WO2013099876A1 WO 2013099876 A1 WO2013099876 A1 WO 2013099876A1 JP 2012083499 W JP2012083499 W JP 2012083499W WO 2013099876 A1 WO2013099876 A1 WO 2013099876A1
Authority
WO
WIPO (PCT)
Prior art keywords
methyl
pentene
weight
polymer
copolymer
Prior art date
Application number
PCT/JP2012/083499
Other languages
English (en)
French (fr)
Inventor
田中 宏和
貴行 植草
勝彦 岡本
克正 田茂
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2013551707A priority Critical patent/JP5769821B2/ja
Priority to KR1020147019295A priority patent/KR101567269B1/ko
Priority to CN201280061026.6A priority patent/CN103987779B/zh
Priority to US14/364,211 priority patent/US9902847B2/en
Priority to EP12862805.4A priority patent/EP2799488B1/en
Publication of WO2013099876A1 publication Critical patent/WO2013099876A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2022/00Hollow articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/03Narrow molecular weight distribution, i.e. Mw/Mn < 3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/08Low density, i.e. < 0.91 g/cm3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/17Viscosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/26Use as polymer for film forming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08J2323/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/06Polymer mixtures characterised by other features having improved processability or containing aids for moulding methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1397Single layer [continuous layer]

Definitions

  • the present invention relates to a 4-methyl-1-pentene (co) polymer composition that gives a molded article excellent in transparency and heat resistance, and further excellent in elongation and toughness, and a molded article obtained therefrom, specifically, The present invention relates to a uniformly stretched film and a hollow molded article excellent in dimensional stability.
  • 4-Methyl-1-pentene (co) polymer is a resin with superior characteristics such as heat resistance, transparency, lightness, steam resistance, releasability, gas permeability, and electrical properties compared to polyethylene and polypropylene. It is used in various fields such as food containers, secondary materials for electronic and information members, laboratory instruments, stationery, cross-linking process members, release films, films for electronic and information members, food packaging materials, and synthetic paper.
  • the (co) polymer is generally poor in elongation, toughness, and stretchability, and the actual situation is that there are restrictions on applicable applications compared to, for example, polyethylene and polypropylene which are the same polyolefin.
  • stretchability is generally poor, for example, it is difficult to produce a stretched film or perform blow molding or vacuum molding compared to polyethylene and polypropylene, which are the same polyolefin, and there is a range that can be used. It was limited.
  • Patent Document 1 examines a wrap film made of a polymer in which 4-methyl-1-pentene and 1-hexene are copolymerized at a specific ratio. In this case, although the transparency and elongation of the film were improved, the heat resistance, which is a feature of the 4-methyl-1-pentene polymer, tended to decrease.
  • Patent Document 2 discloses a hose made of a thermoplastic elastomer containing a 4-methyl-1-pentene polymer having excellent heat resistance, elongation and flexibility. This hose has a tendency to lose transparency because a crosslinked rubber is present in the composition.
  • Patent Document 3 and Patent Document 4 the elongation of the film is imparted by laminating a polyester or polyamide rich in toughness or elongation and a composition containing 4-methyl-1-pentene polymer. It is expected that delamination will occur because non-polar polyolefin and polyester or polyamide, which are polar resins, are multilayered. If an adhesive resin is used in combination to suppress this, the molding method and the molding apparatus become complicated, and it is considered that the manufacturing cost is increased, and there is a concern about a decrease in transparency.
  • Patent Document 5 a liquid hydrocarbon compound is blended with 4-methyl-1-pentene polymer resin.
  • the manufactured sheet may be blocked or the hydrocarbon compound may bleed out when heated.
  • Patent Document 6 a high fluidity 4-methyl-1-pentene polymer resin and a low fluidity 4-methyl-1-pentene polymer resin are mixed under specific conditions. In this case, poor dispersion of the low fluidity polymer resin and low fluidity of the mixture result in poor fluidity such as melt fracture and surging during molding. Furthermore, the molding method used from fluidity is also limited.
  • Patent Document 7 polyethylene or polypropylene that is easily stretched is multilayered to give the uniaxial stretchability of a 4-methyl-1-pentene (co) polymer film. In this case, peeling after stretching is necessary, and it is difficult to obtain a uniform and thin film.
  • a low molecular weight compound or a high molecular weight compound is used as a modifier for improving the fluidity of the (co) polymer.
  • polyolefins such as polyethylene and polypropylene and polyesters such as polyethylene terephthalate are mainly used.
  • polyolefins such as polyethylene and polypropylene are widely used for liquid containers, bottles, fuel tanks, etc., and are generally formed by injection molding or blow molding.
  • the molded body may have poor transparency (Patent Document 8).
  • polyesters such as polyethylene terephthalate are widely used mainly as drinking water containers, and are formed by injection blow molding (hereinafter sometimes referred to as injection blow).
  • injection blow injection blow molding
  • the preform is reheated and then blow-molded to prepare a molded body.
  • the molded article is excellent in transparency, it has a problem in heat resistance (Patent Document 9).
  • Patent Document 10 In recent years, in order to obtain a molded body that overcomes the heat resistance, which is a disadvantage of polyethylene terephthalate, various studies have been conducted on injection blow molded bodies using polypropylene (Patent Documents 11 to 13). However, in the case of polypropylene, handling at the time of molding is often difficult due to the narrow molding temperature range. In addition, when homopolypropylene is used, transparency is difficult to develop, and when random polypropylene is used. However, there are drawbacks such as low heat resistance, and there are few usable polypropylenes (types, physical properties, etc.).
  • the problem to be solved by the present invention is to solve the above-mentioned problems, and is excellent in transparency and heat resistance, and further excellent in elongation and toughness.
  • a pentene-olefin (co) polymer composition Furthermore, a molded body comprising the composition, specifically, excellent transparency, heat resistance, dimensional stability, stretched uniformly, film comprising the composition, excellent transparency, heat resistance, toughness, Furthermore, it is providing the hollow molded object which consists of this composition excellent in dimensional stability.
  • 4-methyl-1-pentene (co) polymer and 4-methyl-1-pentene / ⁇ -olefin copolymer have specific physical properties.
  • 4-methyl-1-pentene (co) polymer composition formulated with a specific ratio is excellent in elongation and toughness, and a film comprising the composition has transparency, heat resistance, electrical properties, mechanical properties,
  • the present invention has been found to be excellent in uniform stretchability and dimensional stability, and that a hollow molded body comprising the composition is excellent in transparency, heat resistance, electrical properties, mechanical properties, uniform stretchability, and dimensional stability. It came.
  • the 4-methyl-1-pentene (co) polymer composition (X1) according to the present invention comprises 10 to 90 parts by weight of a specific 4-methyl-1-pentene (co) polymer (A) and a specific 4 -Methyl-1-pentene copolymer (B1) 90 to 10 parts by weight (provided that the sum of (A) and (B1) is 100 parts by weight).
  • the 4-methyl-1-pentene (co) polymer composition (X3) comprises 10 to 90 parts by weight of a specific 4-methyl-1-pentene (co) polymer (A) and a specific 4 90 to 10 parts by weight as a total of the methyl-1-pentene copolymer (B1) and the specific 4-methyl-1-pentene copolymer (B2) (provided that (A), (B1) and (B2) And (B1) / (B2) (the ratio of (B1) / (B2)) is 99/1 to 1/99).
  • the 4-methyl-1-pentene (co) polymer composition (X4) comprises 10 to 85 parts by weight of a specific 4-methyl-1-pentene (co) polymer (A), a specific 4- 85 to 10 parts by weight as a total of the methyl-1-pentene copolymer (B1) and the specific 4-methyl-1-pentene copolymer (B2) (however, the mixing ratio of (B1) and (B2) (( B1) / (B2)) is 99/1 to 1/99) and ⁇ -olefin polymer (C) (however, different from (A), (B1) and (B2)) 3 to 30 weight Parts (provided that the sum of (A), (B1), (B2) and (C) is 100 parts by weight),
  • the 4-methyl-1-pentene (co) polymer composition (X5) according to the present invention comprises 7 to 90 parts by weight of a specific 4-methyl-1-pentene (co) polymer (A), a specific 4- 90 to 7 parts by weight of methyl-1-pen
  • the 4-methyl-1-pentene (co) polymer composition (X6) according to the present invention comprises 7 to 90 parts by weight of a specific 4-methyl-1-pentene (co) polymer (A), a specific 4- 90 to 7 parts by weight of methyl-1-pentene copolymer (B2) and ⁇ -olefin polymer (C) (however, different from (A), (B1) and (B2)) 0.9 to 30 parts by weight (However, the total of (A), (B2) and (C) is 100 parts by weight).
  • the film of the present invention contains the 4-methyl-1-pentene (co) polymer composition according to the present invention.
  • the film is suitable as a release film.
  • the hollow molded article of the present invention contains the 4-methyl-1-pentene (co) polymer composition according to the present invention.
  • the molded body is preferably obtained by an injection blow molding method.
  • the 4-methyl-1-pentene (co) polymer composition of the present invention is excellent in transparency, heat resistance, and electrical properties, and is difficult to achieve with conventional 4-methyl-1-pentene polymers. It has a remarkable effect of having excellent elongation and toughness. Therefore, the composition can be suitably used for various molded products.
  • the film made of the composition is excellent in transparency, heat resistance, electrical properties, and dimensional stability, and uniform stretching which has been difficult with a film made of a commercially available 4-methyl-1-pentene polymer. There is a remarkable effect that has been made. Therefore, the film made of the composition can be preferably used in the technical fields of industrial materials and electronics. Moreover, since the film of this invention is excellent in mold release property, heat resistance, low outgas, and the low pollution property to copper foil, it can be preferably used for a mold release film use. Furthermore, since the film is excellent in releasability, heat resistance and dimensional stability, it can be preferably used for surface protective film applications.
  • the hollow molded body made of the composition has a remarkable effect of being excellent in transparency, heat resistance, toughness and dimensional stability. Therefore, the hollow molded body made of the composition can be preferably used in the technical field of industrial materials.
  • the 4-methyl-1-pentene (co) polymer composition according to the present invention a molded article comprising the composition, particularly a film and a hollow molded article will be described in detail.
  • the copolymerization is sometimes referred to as polymerization, and the copolymer is sometimes referred to as a polymer.
  • the 4-methyl-1-pentene (co) polymer composition in the present invention contains two different 4-methyl-1-pentene (co) polymers (A) and (B), and if necessary, An ⁇ -olefin polymer (C) is contained.
  • the composition preferably satisfies the requirement (a) below, and more preferably further satisfies one or more of the requirements (b) to (h) depending on the conditions.
  • the total amount (UX-1) of structural units derived from 4-methyl-1-pentene derived from all (co) polymers contained in the composition is 99 mol% to 65 mol%, 1 mol% of the total amount (UX-2) of structural units derived from ⁇ -olefins having 2 to 20 carbon atoms (excluding 4-methyl-1-pentene) derived from all (co) polymers contained therein ⁇ 35 mol% (provided that the sum of UX-1 and UX-2 is 100 mol%).
  • the internal haze of the injection square plate having a thickness of 2 mm is usually 20.0 or less.
  • the internal haze of the test film having a thickness of 50 ⁇ m is usually 1.0 or less.
  • Young's modulus (tensile modulus) is usually in the range of 200 to 2000 MPa.
  • the gloss is usually in the range of 5 to 150.
  • the 4-methyl-1-pentene (co) polymer composition in the present invention contains 99 mol% to 65 mol% of UX-1 and 1 mol% to 35 mol% of UX-2.
  • the ⁇ -olefin having 2 to 20 carbon atoms is not limited to one type, and two or more types may be selected. When a plurality of ⁇ -olefins are selected, the total amount of the structural units may satisfy the above range. That's fine.
  • the upper limit of UX-1 is preferably 97 mol%, more preferably 95 mol%, still more preferably 93 mol%, and particularly preferably 91 mol%. It is mol%, more preferably 87 mol%. Further, the lower limit of UX-1 is preferably 70 mol%, more preferably 72 mol%, even more preferably 75 mol%, particularly preferably 80 mol%, more particularly preferably 82 mol%. Most preferably, it is 85 mol%.
  • the upper limit of UX-2 is preferably 30 mol%, more preferably 28 mol%, even more preferably 25 mol%, particularly preferably 20 mol%, more particularly preferably 18 mol%. Most preferably, it is 15 mol%. Further, the lower limit of UX-2 is preferably 3 mol%, more preferably 5 mol%, even more preferably 7 mol%, particularly preferably 9 mol%, more particularly preferably 13 mol%.
  • the total of UX-1 and UX-2 is 100 mol%.
  • the (co) polymer composition comprises a random copolymer containing structural units derived from 4-methyl-1-pentene and an ⁇ -olefin having 2 to 20 carbon atoms (excluding 4-methyl-1-pentene). Even if the composition contains a block comprising a 4-methyl-1-pentene structural unit chain and a structural unit chain derived from an ⁇ -olefin having 2 to 20 carbon atoms (excluding 4-methyl-1-pentene) A composition containing a copolymer may also be used. From the viewpoint of transparency and heat resistance, a composition containing a random copolymer of 4-methyl-1-pentene and an ⁇ -olefin having 2 to 20 carbon atoms is preferred.
  • Examples of the ⁇ -olefin having 2 to 20 carbon atoms other than 4-methyl-1-pentene include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl- Suitable examples include 1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-eicocene and the like.
  • ethylene, propylene, 1-butene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 1-octene, 1-decene, 1 are preferable from the viewpoint of copolymerizability.
  • ⁇ -olefins such as hexadecene, 1-heptadecene, 1-octadecene and the like. More preferred are ethylene, propylene, 1-butene, 1-hexene, 1-decene, 1-hexadecene, 1-heptadecene and 1-octadecene.
  • ⁇ -olefins having 2 to 20 carbon atoms can be used alone or in combination of two or more.
  • the (co) polymer composition may contain units derived from other polymerizable compounds in addition to these units within a range not impairing the object of the present invention.
  • Examples of such other compounds include vinyl compounds having a cyclic structure such as styrene, vinylcyclopentene, vinylcyclohexane, and vinylnorbornane; vinyl esters such as vinyl acetate; unsaturated organic acids such as maleic anhydride or derivatives thereof; Conjugated dienes such as butadiene, isoprene, pentadiene, 2,3-dimethylbutadiene; 1,4-hexadiene, 1,6-octadiene, 2-methyl-1,5-hexadiene, 6-methyl-1,5-heptadiene, 7-methyl-1,6-octadiene, dicyclopentadiene, cyclohexadiene, dicyclooctadiene, methylene norbornene, 5-vinyl norbornene, 5-ethylidene-2-norbornene, 5-methylene-2-norbornene, 5-isopropylidene -2-Norbornene
  • the unit derived from such other polymerizable compound is preferably 10 mol% or less, more preferably 5 mol% or less, and even more preferably 3 mol when the total of UX-1 and UX-2 is 100 mol%. The amount is less than mol%.
  • the internal haze of the 2-mm-thickness injection square plate of the 4-methyl-1-pentene (co) polymer composition in the present invention is usually preferably 20.0 or less.
  • the upper limit of internal haze becomes a more preferable aspect in the order of 19.0, 18.0, 15.0, 12.5, 10.0, 7.0, 5.0, 3.0.
  • the lower limit of the internal haze is not particularly required, and specifically, it is 0. Is the most desirable mode, but a practical lower limit is 0.1.
  • the internal haze can be adjusted from the components of the composition to be mixed. In the (co) polymer composition having an internal haze value in the above range, the respective components are well compatible and excellent in transparency.
  • the internal haze of the test film having a thickness of 50 ⁇ m obtained from the 4-methyl-1-pentene (co) polymer composition in the present invention is usually 1.0 or less. Preferably it is 0.01 to 1.0, more preferably 0.01 to 0.8.
  • the internal haze can be adjusted from the components of the composition to be mixed.
  • the (co) polymer composition having an internal haze value in the above range is excellent in transparency because the respective components are well compatible.
  • the storage elastic modulus (G ′) of the 2 mm-thick test piece obtained from the 4-methyl-1-pentene (co) polymer composition in the present invention measured by dynamic viscoelasticity measurement in the torsion mode 1.
  • the temperature of 0 ⁇ 10 6 (Pa) is usually in the range of 160 ° C. to 250 ° C., preferably 160 ° C. to 240 ° C., more preferably 160 ° C. to 230 ° C., and further preferably 165 ° C. to 225 ° C. .
  • the above temperature range is a value that varies depending on the ratio and type of the composition, and is considered as an index of the balance of heat resistance, elongation, and toughness.
  • the (co) polymer composition having a temperature value in the above range is preferable from the viewpoints of heat resistance, elongation and toughness.
  • Storage elastic modulus (E ′) 1 when a film for test having a thickness of 50 ⁇ m obtained from 4-methyl-1-pentene (co) polymer composition in the present invention is measured in a tensile mode by dynamic viscoelasticity measurement.
  • the temperature of 0.0 ⁇ 10 6 (Pa) is usually in the range of 160 ° C. to 250 ° C., preferably 160 ° C. to 240 ° C., more preferably 160 ° C. to 230 ° C., and even more preferably 165 ° C. to 225 ° C. is there.
  • the temperature range is a value that varies depending on the ratio and type of the composition, and a molded body made of the (co) polymer composition having a temperature value in the above range is preferable from the viewpoints of heat resistance, elongation, and toughness. .
  • the 4-methyl-1-pentene (co) polymer composition is a film having a thickness of 50 ⁇ m obtained from the composition measured in accordance with JIS K6781 at a tensile rate of 200 mm / min.
  • the Young's modulus (tensile modulus) is usually 200 to 2000 MPa, preferably 200 to 1800 MPa, more preferably 200 to 1600 MPa.
  • the above range is a value that varies depending on the ratio and type of the composition, and is a measure of stretchability.
  • the (co) polymer composition having a Young's modulus in the above range is preferable because a molded article excellent in uniform stretchability can be obtained.
  • the 4-methyl-1-pentene (co) polymer composition in the present invention generally has a gloss of 5 to 150 as measured with a 50 ⁇ m-thick test film obtained from the composition. Yes, preferably 60 to 150, more preferably 60 to 140, and still more preferably 60 to 130.
  • the above range is a value that varies depending on the ratio and type of the composition, and is a measure of the surface gloss of the molded product.
  • the (co) polymer composition having a value in the above range is preferable because a molded article having a good surface gloss and a good design can be obtained.
  • ⁇ Requirement (h)> a specimene (ASTM D638-IV type test piece) obtained from the 4-methyl-1-pentene (co) polymer composition was stretched between the marked lines at the time of 200% tensile stretching at a tensile speed of 200 mm / min.
  • the standard deviation is usually 50% or less, preferably 1 to 45%, more preferably 1 to 40%, and still more preferably 1 to 35%.
  • the above range is a value that varies depending on the ratio and type of the composition, and is a measure of moldability.
  • the use of the (co) polymer composition having a value in the above range is preferable because a molded article having excellent dimensional stability can be formed.
  • the tensile elongation at break when a tensile test was carried out on a specimen ASTM D638-IV type test piece prepared using the (co) polymer composition under the injection conditions described later at a tensile speed of 30 mm / min ( EL) is preferably 50% or more, more preferably 70% or more, and further preferably 80% or more.
  • the (co) polymer composition has excellent heat resistance and transparency, and is further excellent in elongation. This is presumed that two or more different 4-methyl-1-pentene polymers are in a state of being extremely dispersible but not completely compatible.
  • the 4-methyl-1-pentene (co) polymer composition of the present invention comprises 1 to 99 parts by weight of 4-methyl-1-pentene (co) polymer (A) having the following characteristics, and 4-methyl- It preferably contains 99 to 1 part by weight of 1-pentene copolymer (B). (However, the total of the (co) polymer (A) and the copolymer (B) is 100 parts by weight.)
  • the upper limit of the content of the (co) polymer (A) in the (co) polymer composition is preferably 95 parts by weight, more preferably 90 parts by weight, still more preferably 85 parts by weight, Particularly preferred is 80 parts by weight.
  • the lower limit of the content of the (co) polymer (A) is preferably 5 parts by weight, more preferably 10 parts by weight, still more preferably 15 parts by weight, and particularly preferably 20 parts by weight.
  • the upper limit of the content of the copolymer (B) is preferably 95 parts by weight, more preferably 90 parts by weight, still more preferably 85 parts by weight, particularly preferably 80 parts by weight.
  • the lower limit of the content of the (co) polymer (A) is preferably 5 parts by weight, more preferably 10 parts by weight, still more preferably 15 parts by weight, and particularly preferably 20 parts by weight.
  • the (co) polymer composition containing the (co) polymer (A) and the copolymer (B) has a balance between heat resistance, moldability, mechanical properties, transparency, elongation and toughness. It is preferable at the point which is excellent.
  • a hollow molded body made of the composition is preferred because it inherits such excellent effects, is excellent in heat resistance and transparency, and is excellent in dimensional stability.
  • a film made of the composition is preferable because it inherits such excellent effects, is excellent in heat resistance and transparency, and is uniformly stretch-formed.
  • the 4-methyl-1-pentene (co) polymer (A) satisfies the following requirements (Aa) to (Ae).
  • the total amount (U2) of structural units derived from 0 to 10 mol% (the structural unit derived from 4-methyl-1-pentene (U1) and the structural unit derived from ⁇ -olefin having 2 to 20 carbon atoms (U2) )) Is 100 mol%).
  • T m The melting point measured by DSC is usually in the range of 200 to 250 ° C.
  • T c The crystallization temperature measured by DSC is usually in the range of 150 to 225 ° C.
  • the density is usually 820 to 850 kg / m 3 .
  • the 4-methyl-1-pentene (co) polymer (A) has a constitutional unit (U1) derived from 4-methyl-1-pentene of 100 to 90 mol%,
  • the total amount (U2) of structural units derived from 2 to 20 ⁇ -olefin (excluding 4-methyl-1-pentene) is 0 to 10 mol%.
  • the upper limit of U1 is preferably 99 mol%, more preferably 98 mol%, and the lower limit is preferably 91 mol%, more preferably 93 mol%, still more preferably 94 mol%.
  • the upper limit of U2 is preferably 9 mol%, more preferably 7 mol%, still more preferably 6 mol%, and the lower limit is preferably 1 mol%, more preferably 2 mol% (provided that U1 and U2 are combined) Is 100 mol%).
  • U1 of 100 mol% (U2 of 0 mol%) indicates that the (co) polymer (A) is a homopolymer of 4-methyl-1-pentene.
  • the polymer composition containing the (co) polymer (A) is excellent in heat resistance and transparency, and is preferable from the viewpoint of elongation and toughness.
  • a hollow molded body obtained from the composition is also preferable because of excellent heat resistance and transparency and excellent dimensional stability.
  • a film obtained from the composition is also preferable because it is excellent in heat resistance and transparency and excellent in moldability of the film.
  • the ⁇ -olefin having 2 to 20 carbon atoms may be ethylene , Propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene , 1-heptadecene, 1-octadecene, 1-eicocene and the like are preferable examples.
  • ethylene, propylene, 1-butene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, and 1 are preferable from the viewpoints of copolymerizability and physical properties of the obtained copolymer.
  • -Octene 1-decene, 1-hexadecene, 1-heptadecene, 1-octadecene, and more preferably ethylene, propylene, 1-butene, 1-hexene, 1-octene, 1-decene, 1-hexadecene, 1-heptadecene and 1-octadecene are more preferable, and 1-octene, 1-decene, 1-hexadecene, 1-heptadecene and 1-octadecene are more preferable.
  • ⁇ -olefins having 2 to 20 carbon atoms can be used alone or in combination of two or more.
  • the (co) polymer (A) may contain structural units derived from other polymerizable compounds as long as the object of the present invention is not impaired.
  • Examples of such other polymerizable compounds include vinyl compounds having a cyclic structure such as styrene, vinylcyclopentene, vinylcyclohexane, and vinylnorbornane; vinyl esters such as vinyl acetate; unsaturated organic acids such as maleic anhydride or the like Derivatives; Conjugated dienes such as butadiene, isoprene, pentadiene, 2,3-dimethylbutadiene; 1,4-hexadiene, 1,6-octadiene, 2-methyl-1,5-hexadiene, 6-methyl-1,5- Heptadiene, 7-methyl-1,6-octadiene, dicyclopentadiene, cyclohexadiene, dicyclooctadiene, methylene norbornene, 5-vinyl norbornene, 5-ethylidene-2-norbornene, 5-methylene-2-norbornene, 5- Isopropylidene-2-
  • 100 mol% of structural units derived from all the polymerizable compounds contained in the (co) polymer (A) are derived from such other polymerizable compounds. It may be contained in an amount of 10 mol% or less, preferably 5 mol% or less, more preferably 3 mol% or less.
  • the intrinsic viscosity [ ⁇ ] of 4-methyl-1-pentene (co) polymer (A) measured in decalin at 135 ° C. is usually 0.5 to 5.0 dl / g, preferably 1 It is 0.0 to 4.0 dl / g, and more preferably 1.2 to 3.5 dl / g.
  • the value of the intrinsic viscosity [ ⁇ ] can be adjusted by the amount of hydrogen added during the polymerization when the (co) polymer (A) is produced.
  • the (co) polymer (A) having an intrinsic viscosity [ ⁇ ] in the above range exhibits good fluidity at the time of mixing and various moldings of the resin composition, and further described later in 4-methyl-1- When combined with the pentene copolymer (B), it is considered that it contributes to toughness. Further, the (co) polymer (A), the hollow molded article and the film obtained from the composition are excellent in transparency.
  • the melting point (T m ) of 4-methyl-1-pentene (co) polymer (A) measured by DSC is usually 200 ° C. to 250 ° C., preferably 210 ° C. It is ⁇ 240 ° C., more preferably 215 ° C. to 240 ° C.
  • the melting point (T m ) value tends to depend on the stereoregularity of the polymer and the content of the ⁇ -olefin structural unit having 2 to 20 carbon atoms. Further, it can be obtained by controlling the content of the ⁇ -olefin structural unit having 2 to 20 carbon atoms.
  • the polymer (A) having a melting point (T m ) value within the above range is preferable from the viewpoints of heat resistance and moldability. Moreover, since a hollow molded object and a film are excellent also in heat resistance and the property is uniform and excellent, it is preferable.
  • the crystallization temperature (T c ) of the 4-methyl-1-pentene (co) polymer (A) measured by DSC is usually 150 to 225 ° C., preferably 160 to 223 ° C., More preferably, it is 170 to 221 ° C.
  • the value of the crystallization temperature (T c ) tends to depend on the stereoregularity of the polymer and the content of the ⁇ -olefin structural unit having 2 to 20 carbon atoms. Further, it can be obtained by controlling the content of the ⁇ -olefin structural unit having 2 to 20 carbon atoms.
  • the (co) polymer (A), hollow molded body and film having a crystallization temperature (T c ) value within the above range are preferred from the viewpoint of moldability.
  • the density of the 4-methyl-1-pentene (co) polymer (A) is usually 820 to 850 kg / m 3 , preferably 825 to 850 kg / m 3 , more preferably 825 to 845 kg. / M 3 , more preferably 825 to 840 kg / m 3 .
  • the density value can be adjusted by selecting the type and content of other ⁇ -olefins polymerized with 4-methyl-1-pentene.
  • the (co) polymer (A), hollow molded body and film having a density value in the above range are preferred from the viewpoint of heat resistance.
  • the 4-methyl-1-pentene (co) polymer (A) in the present invention is a known olefin polymerization catalyst such as a vanadium catalyst, a titanium catalyst, a magnesium-supported titanium catalyst, WO 01/53369.
  • 4-methyl-1-pentene and, if necessary, using a metallocene catalyst described in the pamphlet of International Publication No. WO01 / 27124, JP-A-3-193966 or JP-A-02-41303 It can be obtained by polymerizing the ⁇ -olefin having 2 to 20 carbon atoms (excluding 4-methyl-1-pentene) and the other polymerizable compounds.
  • the (co) polymer (A) may be a general commercially available 4-methyl-1-pentene polymer.
  • TPX registered trademark
  • Mitsui Chemicals, Inc. may be used. Can be used.
  • the 4-methyl-1-pentene copolymer (B) is selected from the following 4-methyl-1-pentene copolymer (B1) and 4-methyl-1-pentene copolymer (B2). It consists of at least one kind.
  • the copolymer (B) preferably includes both the copolymer (B1) and the copolymer (B2).
  • copolymers (B1) and (B2) will be described.
  • the 4-methyl-1-pentene copolymer (B1) satisfies the following requirements (B1-a) to (B1-e), and preferably further satisfies the requirement (B1-f).
  • the structural unit (U3) derived from 4-methyl-1-pentene is 99 to 80 mol%, and the total amount of the structural unit (U4) derived from the ⁇ -olefin having 2 to 20 carbon atoms is 1 to 20 mol% (a structural unit derived from 4-methyl-1-pentene (U3) and a structural unit derived from an ⁇ -olefin having 2 to 20 carbon atoms (excluding 4-methyl-1-pentene) (U4 )) Is 100 mol%).
  • the intrinsic viscosity [ ⁇ ] measured in 135 ° C. decalin is usually 0.5 to 5.0 dl / g.
  • the density is usually 825 to 860 kg / m 3 .
  • T m The melting point (T m ) measured by DSC is usually in the range of 110 ° C. to less than 200 ° C.
  • Tensile modulus (YM) is usually 200 to 2,000 (MPa).
  • the 4-methyl-1-pentene copolymer (B1) is composed of 99 to 80 mol% of structural units (U3) derived from 4-methyl-1-pentene and having 2 to 20 carbon atoms.
  • the total amount (U4) of structural units derived from ⁇ -olefin (excluding 4-methyl-1-pentene) is 1 to 20 mol%.
  • the upper limit of U3 is preferably 98 mol%, more preferably 97 mol%, still more preferably 96 mol%, still more preferably 95 mol%, and the lower limit is preferably 82 mol%, more preferably 83 mol%. %.
  • the upper limit of U4 is preferably 18 mol%, more preferably 17 mol%, and the lower limit is preferably 2 mol%, more preferably 3 mol%, still more preferably 4 mol%, even more preferably 5 mol%. (However, the total of U3 and U4 is 100 mol%).
  • the polymer composition containing the copolymer (B1) is preferable from the viewpoints of transparency, elongation, toughness, and heat resistance.
  • the hollow molded body and film obtained from the composition are preferable because of excellent transparency and moldability.
  • the composition containing the copolymer (B1) is preferable because it is more excellent in transparency, elongation and toughness, and particularly in heat resistance.
  • Examples of the ⁇ -olefin having 2 to 20 carbon atoms contained in the copolymer (B1) include the same as those mentioned in the description of the (co) polymer (A). Of these, ⁇ -olefins having 2 to 4 carbon atoms are preferred, and specific examples include ethylene, propylene, and 1-butene.
  • ⁇ -olefins having 2 to 20 carbon atoms can be used alone or in combination of two or more.
  • propylene is preferably used from the viewpoint of copolymerizability.
  • the copolymer (B1) may contain structural units derived from other polymerizable compounds as long as the object of the present invention is not impaired.
  • the same compounds as mentioned in the explanation of the (co) polymer (A) may be contained, and the proportion of the structural units is also in the same range. is there.
  • the intrinsic viscosity [ ⁇ ] of the 4-methyl-1-pentene copolymer (B1) measured in decalin at 135 ° C. is usually 0.5 to 5.0 dL / g, preferably 1.0. It is -4.0 dL / g, More preferably, it is 1.2-3.5 dL / g.
  • the value of the intrinsic viscosity [ ⁇ ] can be adjusted by the amount of hydrogen added during the polymerization when the copolymer (B1) is produced.
  • the copolymer (B1) having a value of the intrinsic viscosity [ ⁇ ] in the above range exhibits good fluidity during the production of the resin composition and various moldings, and further, the (co) polymer (A) described above.
  • the polymer composition obtained when combined with the above exhibits good elongation and toughness, and tends to provide a molded article having excellent transparency.
  • molecular weight distribution (ratio of weight average molecular weight (Mw) and number average molecular weight (Mn) measured by gel permeation chromatography (GPC) of 4-methyl-1-pentene copolymer (B1) ( Mw / Mn) is usually 1.0 to 3.5, preferably 1.0 to 3.0, more preferably 1.5 to 2.5.
  • the value of the molecular weight distribution (Mw / Mn) can be controlled and adjusted according to the type of olefin polymerization catalyst described later.
  • the polymer composition containing the copolymer (B1) having a molecular weight distribution (Mw / Mn) value in the above range tends to have a relatively low content of a low molecular weight component. It is preferable from the viewpoint that transparency decreases due to out and the possibility that a low molecular weight component weakens the crystal structure is lowered, and it is considered that there is a favorable influence on mechanical properties. Since there exists a tendency for the molded article excellent in transparency to be obtained, it is preferable.
  • 4-methyl-1-pentene copolymer (B1) is 825 ⁇ 860kg / m 3, preferably 830 ⁇ 855kg / m 3, more preferably 830 ⁇ 850kg / m 3 More preferably, it is 830 to 845 kg / m 3 .
  • the density value can be adjusted by selecting the type and blending amount of other ⁇ -olefin polymerized with 4-methyl-1-pentene.
  • a polymer composition containing the copolymer (B1) having a density value in the above range, a hollow molded product obtained from the composition, and a film are preferable because of excellent transparency and heat resistance.
  • the melting point (T m ) of 4-methyl-1-pentene copolymer (B1) measured by DSC is usually 110 to less than 200 ° C., preferably 115 to 199 ° C., more preferably 115 to 197. ° C, still more preferably 120 to 195 ° C, particularly preferably 125 to 190 ° C from the viewpoint of achieving both heat resistance and moldability.
  • the melting point (T m ) is a value that varies depending on the stereoregularity of the polymer and the amount of ⁇ -olefin polymerized together, and is controlled and adjusted to a desired composition using an olefin polymerization catalyst described later. Is possible.
  • a polymer composition containing the copolymer (B1) having a melting point (T m ) in the above range is preferable from the viewpoints of transparency, moldability, and heat resistance.
  • a hollow molded body and a film are also preferable because they are excellent in heat resistance and uniform and excellent in properties.
  • the difference in melting point between the (co) polymer (A) and the copolymer (B1) is that the compatibility between (A) and (B1) is improved, thereby improving the moldability, mechanical strength and impact strength. Is preferably 5 ° C. or higher, more preferably 10 ° C. or higher, further preferably 20 ° C. or higher, particularly preferably 30 ° C. or higher, and particularly preferably 35 ° C. or higher.
  • the upper limit of the difference between the melting points is not limited as long as the (co) polymer (A) and the copolymer (B1) satisfy a desired melting point, but is preferably 120 ° C., more preferably 110 ° C. Thus, it is considered that 4-methyl-1-pentene polymers having different melting points tend to have appropriate compatibility, unlike propylene-based polymers.
  • the tensile elastic modulus (YM) of the 4-methyl-1-pentene copolymer (B) preferably satisfies 200 to 2,000 (MPa), preferably 200 MPa to 1900 MPa, more preferably 300 MPa. It is ⁇ 1900 MPa, more preferably 300 MPa to 1800 MPa.
  • the value of the tensile elastic modulus (YM) is a value that varies depending on the amount of olefin to be polymerized, and can be controlled and adjusted using a polymerization catalyst described later.
  • a polymer composition containing the copolymer (B) having a tensile modulus (YM) value that satisfies the above range is preferable from the viewpoints of moldability and mechanical properties. Moreover, it is thought that satisfy
  • the total amount of structural units (U6) derived from (excluding the above) exceeds 20 mol% to 40 mol% (the structural unit derived from 4-methyl-1-pentene (U5) and ⁇ -carbon having 2 to 4 carbon atoms)
  • the total of the structural units derived from olefin (U6) is 100 mol%).
  • T m The melting point measured by DSC is usually less than 110 ° C. or no melting point is observed.
  • the density is usually 830 to 860 kg / m 3 .
  • the 4-methyl-1-pentene copolymer (B2) has a constitutional unit (U5) derived from 4-methyl-1-pentene of less than 80 mol% to 60 mol%, and a carbon atom.
  • the total amount of structural units (U6) derived from ⁇ -olefins of 2 to 4 (excluding 4-methyl-1-pentene) is more than 20 mol% and ⁇ 40 mol%.
  • the upper limit of U5 is preferably 79 mol%, more preferably 78 mol%, even more preferably 75 mol%, and the lower limit is preferably 65 mol%, more preferably 68 mol%.
  • the upper limit of U6 is preferably 35 mol%, more preferably 32 mol%, and the lower limit is preferably 21 mol%, more preferably 22 mol%, and even more preferably 25 mol% (provided that U5 and The total of U6 is 100 mol%).
  • the polymer composition containing the copolymer (B2) in which each constituent unit is in the above range is more excellent in flexibility.
  • the hollow molded body obtained from the composition is excellent in flexibility and tends to have improved impact resistance. For example, cracks and breakage are unlikely to occur during dropping.
  • a film obtained from the composition is also preferable because it is more excellent in flexibility.
  • Preferred examples of the ⁇ -olefin having 2 to 4 carbon atoms contained in the copolymer (B2) include ethylene, propylene, and 1-butene.
  • propylene is preferably used from the viewpoint of copolymerizability.
  • ⁇ -olefins having 2 to 4 carbon atoms can be used alone or in combination of two or more.
  • the copolymer (B2) may contain structural units derived from other polymerizable compounds as long as the object of the present invention is not impaired.
  • the same compounds as mentioned in the explanation of the (co) polymer (A) may be contained, and the proportion of the structural units is also in the same range. is there.
  • the intrinsic viscosity [ ⁇ ] of the 4-methyl-1-pentene copolymer (B2) measured in decalin at 135 ° C. is usually 0.5 to 5.0 dL / g, preferably 1.0. It is -4.0 dL / g, More preferably, it is 1.2-3.5 dL / g.
  • the value of the intrinsic viscosity [ ⁇ ] can be adjusted by the amount of hydrogen added during the polymerization when the copolymer (B2) is produced.
  • the copolymer (B2) having an intrinsic viscosity [ ⁇ ] in the above range exhibits good fluidity at the time of resin composition production and various moldings, and further, the (co) polymer (A) described above.
  • the polymer composition tends to exhibit good elongation and toughness and excellent transparency.
  • a hollow molded object and a film are also excellent in transparency and excellent in a moldability, they are preferable.
  • the melting point (T m ) of the 4-methyl-1-pentene copolymer (B2) measured by DSC is usually less than 110 ° C. or no melting point is observed.
  • the upper limit thereof is preferably 100 ° C., more preferably 99 ° C., even more preferably 95 ° C., but particularly preferably in a mode in which the melting point is not observed. is there.
  • a minimum is not specifically limited, Usually, it is 80 degreeC.
  • the melting point (T m ) is a value that varies depending on the stereoregularity of the polymer and the amount of ⁇ -olefin polymerized together, and is controlled and adjusted to a desired composition using an olefin polymerization catalyst described later. Is possible.
  • the copolymer (B2) having a melting point (T m ) in the above range is preferable from the viewpoints of transparency and moldability, flexibility and impact resistance, molding obtained from a polymer composition containing the copolymer (B2) is preferable.
  • the body also has excellent transparency and further tends to have excellent moldability. Moreover, it exists in the tendency which can provide a softness
  • the heat resistance of (B1) When combined with the copolymer (B1), the heat resistance of (B1) is high and the compatibility is good, so the heat resistance tends to be improved without degrading the moldability and mechanical properties. preferable.
  • the moldability, particularly stretchability and blow moldability are improved and the electrical properties tend to be improved without significantly reducing the heat resistance. Therefore, it is preferable.
  • molecular weight distribution ratio of weight average molecular weight (Mw) and number average molecular weight (Mn) measured by gel permeation chromatography (GPC) of 4-methyl-1-pentene copolymer (B2) ( Mw / Mn) is usually 1.0 to 3.5, preferably 1.0 to 3.0, more preferably 1.5 to 2.5.
  • the value of the molecular weight distribution (Mw / Mn) can be controlled and adjusted according to the type of olefin polymerization catalyst described later.
  • the copolymer (B2) having a molecular weight distribution (Mw / Mn) value in the above range is preferable from the viewpoint of transparency and mechanical properties, a molded product obtained from a polymer composition containing the copolymer (B2) is more transparent. There is a tendency to obtain an excellent product. Further, when combined with the above-mentioned (co) polymer (A), the molecular weight distribution of (A) is wide, so that the moldability tends to be improved and the productivity is also improved, which is preferable.
  • the density of the 4-methyl-1-pentene copolymer (B2) is usually 830 to 860 kg / m 3 , preferably 830 to 855 kg / m 3 , more preferably 830 to 850 kg / m 3. 3 , more preferably 830 to 845 kg / m 3 .
  • the density value can be adjusted by selecting the type and blending amount of other ⁇ -olefin polymerized with 4-methyl-1-pentene.
  • the copolymer (B2) having a density value in the above range is preferable from the viewpoint of transparency and flexibility, a molded product obtained from a polymer composition containing the copolymer (B2) is also more excellent in transparency and flexibility. Things tend to be obtained.
  • the 4-methyl-1-pentene copolymer (B) in the present invention is prepared in the presence of the same olefin polymerization catalyst as described in the above-mentioned method for producing the (co) polymer (A).
  • -Methyl-1-pentene can be obtained by polymerizing the above-mentioned specific ⁇ -olefin and, if necessary, the other polymerizable compound.
  • a metallocene catalyst can be mentioned as a preferred embodiment of the catalyst for producing the 4-methyl-1-pentene copolymer (B).
  • Preferred metallocene catalysts are as described above in WO 01/53369 pamphlet, WO 01/27124 pamphlet, JP-A-3-193396, JP-A-02-41303, or WO06 / The metallocene catalyst described in the pamphlet of No. 0255540 is mentioned.
  • 4-methyl-1-pentene copolymer (B) when 4-methyl-1-pentene copolymer (B) is produced using 4-methyl-1-pentene and a specific ⁇ -olefin in the presence of a metallocene catalyst, it is introduced into the molecule. Olefins tend to be introduced relatively randomly. In such a case, since the copolymer (B) has a low melting point with a small amount of olefin, the chain of 4-methyl-1-pentene units becomes long, so that the phase with the (co) polymer (A) is increased. It is considered that the solubility is good. Furthermore, when combined with the (co) polymer (A), in addition to excellent transparency considered to be derived from good compatibility, the balance between rigidity and melting point is excellent.
  • ( ⁇ ) a metallocene compound represented by the following general formula (1) or (2); ( ⁇ ) ( ⁇ -1) an organometallic compound, ( ⁇ -2) an organoaluminum oxy compound, and ( ⁇ -3) a compound that reacts with the metallocene compound ( ⁇ ) to form an ion pair, At least one compound selected from: If necessary, A metallocene catalyst composed of ( ⁇ ) a particulate carrier is preferably used.
  • examples of the metallocene compound that can be used for the production of the 4-methyl-1-pentene copolymer (B) include compounds represented by the following general formula (1) or (2).
  • the substituents represented by R 1 to R 14 are selected from a hydrogen atom, a hydrocarbon group, and a silicon-containing hydrocarbon group, and may be the same or different, Adjacent substituents from R 1 to R 4 may be bonded to each other to form a ring, adjacent substituents from R 5 to R 12 may be bonded to each other to form a ring, and A is A divalent hydrocarbon group having 2 to 20 carbon atoms which may partially contain an unsaturated bond and / or an aromatic ring, and A represents two or more ring structures including a ring formed with Y; M is a metal selected from Group 4 of the periodic table, Y is carbon or silicon, and Q can be coordinated by a halogen, a hydrocarbon group, an anionic ligand or a lone electron pair.
  • the neutral ligands may be selected in the same or different combinations, and j is an integer of 1 to 4.
  • the hydrocarbon group is preferably an alkyl group having 1 to 20 carbon atoms, an arylalkyl group having 7 to 20 carbon atoms, or the number of carbon atoms It is an aryl group having 6 to 20 carbon atoms or an alkylaryl group having 7 to 20 carbon atoms, and may contain one or more ring structures. Further, a part or all of the hydrocarbon group may be substituted with a functional group such as a hydroxyl group, an amino group, a halogen group, or a fluorine-containing hydrocarbon group.
  • the silicon-containing hydrocarbon group is preferably an alkylsilyl group or arylsilyl group having 1 to 4 silicon atoms and 3 to 20 carbon atoms. Specific examples thereof include trimethylsilyl, tert-butyldimethylsilyl, triphenylsilyl and the like.
  • Adjacent substituents from R 5 to R 12 on the fluorene ring may be bonded to each other to form a ring.
  • substituted fluorenyl groups include benzofluorenyl, dibenzofluorenyl, octahydrodibenzofluorenyl, octamethyloctahydrodibenzofluorenyl and the like.
  • it is unsubstituted fluorene, 3,6-disubstituted fluorene, 2,7-disubstituted fluorene or 2,3,6,7-tetrasubstituted fluorene.
  • the 3-position on the fluorene ring, 6-position, 2-position, 7-position corresponds to the R 7, R 10, R 6 , R 11 , respectively.
  • R 13 and R 14 in the general formula (1) are selected from a hydrogen atom or a hydrocarbon group, and may be the same or different. Specific examples of preferred hydrocarbon groups include those similar to the above R 1 to R 14 .
  • Y is a carbon atom or a silicon atom.
  • R 13 and R 14 are bonded to Y to form a substituted methylene group or a substituted silylene group as a bridging part.
  • Preferred examples include, for example, methylene, dimethylmethylene, diisopropylmethylene, methyl tert-butylmethylene, dicyclohexylmethylene, methylcyclohexylmethylene, methylphenylmethylene, fluoromethylphenylmethylene, chloromethylphenylmethylene, diphenylmethylene, dichlorophenylmethylene, difluorophenyl.
  • Methylene methylnaphthylmethylene, dibiphenylmethylene, di-p-methylphenylmethylene, methyl-p-methylphenylmethylene, ethyl-p-methylphenylmethylene, dinaphthylmethylene or dimethylsilylene, diisopropylsilylene, methyl-tert-butylsilylene, Dicyclohexylsilylene, methylcyclohexylsilylene, methylphenylsilylene, fluoro Chill silylene, chloromethyl silylene, diphenyl silylene, mention may be made of di-p- methylphenyl silylene, methyl -p- methylphenyl silylene, ethyl -p- methylphenyl silylene, methyl naphthyl silylene, a dinaphthyl silylene like.
  • Y is bonded to a divalent hydrocarbon group A having 2 to 20 carbon atoms which may partially contain an unsaturated bond and / or an aromatic ring, and a cycloalkylidene group or It constitutes a cyclomethylenesilylene group and the like.
  • Preferable specific examples include, for example, cyclopropylidene, cyclobutylidene, cyclopentylidene, cyclohexylidene, cycloheptylidene, bicyclo [3.3.1] nonylidene, norbornylidene, adamantylidene, tetrahydronaphthylidene, dihydroin Examples include danylidene, cyclodimethylenesilylene, cyclotrimethylenesilylene, cyclotetramethylenesilylene, cyclopentamethylenesilylene, cyclohexamethylenesilylene, cycloheptamethylenesilylene, and the like.
  • M is a metal selected from Group 4 of the periodic table, and examples of M include titanium, zirconium, and hafnium.
  • Q is selected from the same or different combinations from halogen, a hydrocarbon group having 1 to 20 carbon atoms, an anionic ligand, or a neutral ligand capable of coordinating with a lone electron pair.
  • halogen include fluorine, chlorine, bromine and iodine
  • hydrocarbon group include the same as those described above.
  • anionic ligand include alkoxy groups such as methoxy, tert-butoxy and phenoxy, carboxylate groups such as acetate and benzoate, and sulfonate groups such as mesylate and tosylate.
  • organophosphorus compounds such as trimethylphosphine, triethylphosphine, triphenylphosphine, diphenylmethylphosphine, tetrahydrofuran, diethyl ether, dioxane, 1,2- And ethers such as dimethoxyethane.
  • Q may be the same or different combinations, but at least one is preferably a halogen or an alkyl group.
  • metallocene compound in the present invention examples include, for example, compounds exemplified in International Publication No. 01/27124 Pamphlet, International Publication No. 2006/025540 Pamphlet or International Publication No. 2007/308607 Pamphlet. In particular, this does not limit the scope of the present invention.
  • the compound ( ⁇ ) is selected from the organoaluminum compound ( ⁇ -1), the organoaluminum oxy compound ( ⁇ -2), and the compound ( ⁇ -3) that reacts with the metallocene compound ( ⁇ ) to form an ion pair. It is composed of at least one compound.
  • ( ⁇ -1) organometallic compound used as necessary in the present invention, specifically, groups 1 and 2 and 12, 13 of the periodic table as shown below Examples of the organic metal compounds include ( ⁇ -1a), ( ⁇ -1b), and ( ⁇ -1c) described below.
  • the ( ⁇ -1) organometallic compound does not include the ( ⁇ -2) organoaluminum oxy compound described later.
  • M 2 AlR a 4 and aluminum A complex alkylated product of a group 1 metal of the periodic table represented by the general formula M 2 AlR a 4 and aluminum.
  • R a represents a hydrocarbon group having 1 to 15 carbon atoms, preferably 1 to 4 carbon atoms
  • ⁇ -1c A dialkyl compound of a Group 2 or Group 12 metal represented by the general formula R a R b M 3 .
  • R a and R b represent a hydrocarbon group having 1 to 15, preferably 1 to 4 carbon atoms which may be the same or different from each other, and M 3 is Mg, Zn or Cd
  • organoaluminum compound belonging to ( ⁇ -1a) include the following compounds.
  • R a m Al (OR b ) 3-m wherein R a and R b represent a hydrocarbon group having 1 to 15, preferably 1 to 4 carbon atoms which may be the same or different from each other). M is preferably a number of 1.5 ⁇ m ⁇ 3.
  • An organic aluminum compound represented by the general formula R a m AlX 3-m (wherein R a is from 1 to 15, preferably 1 to 4 hydrocarbon groups, X represents a halogen atom, and m is preferably 0 ⁇ m ⁇ 3.)
  • An organoaluminum compound represented by the general formula R a m AlH 3 ⁇ m wherein R a represents a hydrocarbon group having 1 to 15 carbon atoms, preferably 1 to 4 carbon atoms, and m is preferably 2 ⁇ m ⁇ 3), during R a m Al (oR b) n X q (wherein, R a and R b are optionally carbon atoms be the same or different from each other 1 15,
  • organoaluminum compound belonging to ( ⁇ -1a) trimethylaluminum, triethylaluminum, tri (n-butyl) aluminum, tripropylaluminum, tripentylaluminum, trihexylaluminum, trioctylaluminum, tridecyl Tri (n-alkyl) aluminum such as aluminum; triisopropylaluminum, triisobutylaluminum, tri (sec-butyl) aluminum, tri (tert-butyl) aluminum, tri (2-methylbutyl) aluminum, tri (3-methylbutyl) aluminum , Tri (2-methylpentyl) aluminum, tri (3-methylpentyl) aluminum, tri (4-methylpentyl) aluminum, tri (2-methylhexyl) Tri-branched alkylaluminums such as luminium, tri (3-methylhexyl) aluminum, tri (2-ethylhexyl) aluminum; tricycloalkylaluminums such as tri
  • a compound similar to ( ⁇ -1a) can also be used, and examples thereof include an organoaluminum compound in which two or more aluminum compounds are bonded through a nitrogen atom.
  • organoaluminum compound in which two or more aluminum compounds are bonded through a nitrogen atom.
  • Specific examples of such a compound include (C 2 H 5 ) 2 AlN (C 2 H 5 ) Al (C 2 H 5 ) 2 .
  • Examples of the compound belonging to ( ⁇ -1b) include LiAl (C 2 H 5 ) 4 and LiAl (C 7 H 15 ) 4 .
  • Examples of the compound belonging to ( ⁇ -1c) include dimethylmagnesium, diethylmagnesium, dibutylmagnesium, and butylethylmagnesium.
  • Examples of ( ⁇ -1) organometallic compounds other than the above ( ⁇ -1a) to ( ⁇ -1c) include methyl lithium, ethyl lithium, propyl lithium, butyl lithium, methyl magnesium bromide, methyl magnesium chloride, ethyl magnesium bromide, ethyl Magnesium chloride, propylmagnesium bromide, propylmagnesium chloride, butylmagnesium bromide, butylmagnesium chloride and the like can also be used.
  • a compound that can form the organoaluminum compound in the multimerization reaction system for example, a combination of aluminum halide and alkyllithium, or a combination of aluminum halide and alkylmagnesium can be used.
  • organometallic compounds organoaluminum compounds are preferred.
  • the ( ⁇ -1) organometallic compounds as described above are used singly or in combination of two or more.
  • the ( ⁇ -2) organoaluminum oxy compound used as necessary in the present invention may be a conventionally known aluminoxane, and is exemplified in JP-A-2-78687. It may be a benzene insoluble organoaluminum oxy compound.
  • the conventionally known aluminoxane can be produced, for example, by the following method and is usually obtained as a solution in a hydrocarbon solvent.
  • Compounds containing adsorbed water or salts containing water of crystallization such as magnesium chloride hydrate, copper sulfate hydrate, aluminum sulfate hydrate, nickel sulfate hydrate, first cerium chloride hydrate, etc.
  • a method of reacting adsorbed water or crystal water with an organoaluminum compound by adding an organoaluminum compound such as trialkylaluminum to the suspension of the hydrocarbon.
  • the aluminoxane may contain a small amount of an organometallic component. Further, after removing the solvent or the unreacted organoaluminum compound from the recovered aluminoxane solution by distillation, it may be redissolved in a solvent or suspended in a poor aluminoxane solvent.
  • organoaluminum compound used in preparing the aluminoxane include the same organoaluminum compounds as those exemplified as the organoaluminum compound belonging to the above ( ⁇ -1a).
  • trialkylaluminum and tricycloalkylaluminum are preferable, and trimethylaluminum is particularly preferable.
  • organoaluminum compounds are used singly or in combination of two or more.
  • Solvents used for the preparation of aluminoxane include aromatic hydrocarbons such as benzene, toluene, xylene, cumene, and cymene, aliphatic hydrocarbons such as pentane, hexane, heptane, octane, decane, dodecane, hexadecane, and octadecane, and cyclopentane.
  • aromatic hydrocarbons such as benzene, toluene, xylene, cumene, and cymene
  • aliphatic hydrocarbons such as pentane, hexane, heptane, octane, decane, dodecane, hexadecane, and octadecane
  • aliphatic hydrocarbons such as pentane, hexane, heptane, octane, decane, dodecan
  • Cycloaliphatic hydrocarbons such as cyclohexane, cyclooctane and methylcyclopentane, petroleum fractions such as gasoline, kerosene and light oil, or halides of the above aromatic hydrocarbons, aliphatic hydrocarbons and alicyclic hydrocarbons, especially chlorine And hydrocarbon solvents such as bromide and bromide.
  • ethers such as ethyl ether and tetrahydrofuran can also be used. Of these solvents, aromatic hydrocarbons or aliphatic hydrocarbons are particularly preferable.
  • the benzene-insoluble organoaluminum oxy compound used in the present invention has an Al component dissolved in benzene at 60 ° C. of usually 10% or less, preferably 5% or less, particularly preferably 2% or less in terms of Al atom, That is, those which are insoluble or hardly soluble in benzene are preferred.
  • organoaluminum oxy compound used in the present invention also include an organoaluminum oxy compound containing boron represented by the following general formula (i).
  • R 15 represents a hydrocarbon group having 1 to 10 carbon atoms.
  • R 16 represents a hydrogen atom, a halogen atom, or a hydrocarbon group having 1 to 10 carbon atoms, which may be the same or different from each other.
  • the organoaluminum oxy compound containing boron represented by the general formula (i) includes an alkyl boronic acid represented by the following general formula (ii) and an organoaluminum compound in an inert solvent under an inert gas atmosphere. In particular, it can be produced by reacting at a temperature of ⁇ 80 ° C. to room temperature for 1 minute to 24 hours.
  • R 15 -B (OH) 2 (ii) (In the formula (ii), R 15 is selected from the same groups as in the above formula (i).) Specific examples of the alkyl boronic acid represented by the general formula (ii) include methyl boronic acid, ethyl boronic acid, isopropyl boronic acid, n-propyl boronic acid, n-butyl boronic acid, isobutyl boronic acid, n-hexyl boron.
  • Examples include acid, cyclohexyl boronic acid, phenyl boronic acid, 3,5-difluorophenyl boronic acid, pentafluorophenyl boronic acid, 3,5-bis (trifluoromethyl) phenyl boronic acid and the like.
  • methyl boronic acid, n-butyl boronic acid, isobutyl boronic acid, 3,5-difluorophenyl boronic acid, and pentafluorophenyl boronic acid are preferable.
  • organoaluminum compound to be reacted with the alkylboronic acid include the same organoaluminum compounds as those exemplified as the organoaluminum compound belonging to ( ⁇ -1a). Of these, trialkylaluminum and tricycloalkylaluminum are preferable, and trimethylaluminum, triethylaluminum, and triisobutylaluminum are particularly preferable. These may be used alone or in combination of two or more.
  • the ( ⁇ -2) organoaluminum oxy compounds as described above are used singly or in combination of two or more.
  • the compound is a compound that reacts with the metallocene compound ( ⁇ ) to form an ion pair. Therefore, what forms an ion pair by making it contact with a metallocene compound ((alpha)) at least is contained in this compound.
  • Examples of such compounds include JP-A-1-501950, JP-A-1-502036, JP-A-3-179905, JP-A-3-179006, JP-A-3-207703, JP-A-3.
  • Examples include Lewis acids, ionic compounds, borane compounds and carborane compounds described in US Pat. No. 207704 and US Pat. No. 5,321,106.
  • heteropoly compounds and isopoly compounds can also be mentioned.
  • a compound represented by BR 3 (R is a phenyl group or fluorine which may have a substituent such as fluorine, methyl group or trifluoromethyl group) can be mentioned.
  • R is a phenyl group or fluorine which may have a substituent such as fluorine, methyl group or trifluoromethyl group
  • trifluoroboron triphenylboron, tris (4-fluorophenyl) boron, tris (3,5-difluorophenyl) boron, tris (4-fluoromethylphenyl) boron, tris (pentafluorophenyl) boron, tris
  • Examples thereof include (p-tolyl) boron, tris (o-tolyl) boron, and tris (3,5-dimethylphenyl) boron.
  • ionic compounds examples include compounds represented by the following general formula (iii)
  • examples of R 17+ include H + , a carbonium cation, an oxonium cation, an ammonium cation, a phosphonium cation, a cycloheptyltrienyl cation, and a ferrocenium cation having a transition metal.
  • R 18 to R 21 are organic groups which may be the same or different from each other, preferably an aryl group or a substituted aryl group.
  • carbonium cation examples include trisubstituted carbonium cations such as triphenylcarbonium cation, tri (methylphenyl) carbonium cation, and tri (dimethylphenyl) carbonium cation.
  • ammonium cation examples include trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tri (n-propyl) ammonium cation, and tri (n-butyl) ammonium cation; N, N-dimethylanilinium cation, N, N-diethylanilinium cation, N, N, 2,4,6-pentamethylanilinium cation and other N, N-dialkylanilinium cation; di (isopropyl) ammonium cation, dicyclohexylammonium cation and other dialkylammonium cation Etc.
  • trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tri (n-propyl) ammonium cation, and tri (n-butyl) ammonium cation
  • phosphonium cation examples include triarylphosphonium cations such as triphenylphosphonium cation, tri (methylphenyl) phosphonium cation, and tri (dimethylphenyl) phosphonium cation.
  • R 17+ is preferably a carbonium cation, an ammonium cation or the like, and particularly preferably a triphenylcarbonium cation, an N, N-dimethylanilinium cation or an N, N-diethylanilinium cation.
  • ionic compounds include trialkyl-substituted ammonium salts, N, N-dialkylanilinium salts, dialkylammonium salts, and triarylphosphonium salts.
  • trialkyl-substituted ammonium salt examples include triethylammonium tetraphenylborate, tri (n-propyl) ammonium tetraphenylborate, tri (n-butyl) ammonium tetraphenylborate, trimethylammonium tetra (p-tolyl) borate, Trimethylammonium tetra (o-tolyl) borate, tri (n-butyl) ammonium tetra (pentafluorophenyl) borate, tri (n-propyl) ammonium tetra (o, p-dimethylphenyl) borate, tri (n-butyl) ammonium Tetra (m, m-dimethylphenyl) borate, tri (n-butyl) ammonium tetra (p-trifluoromethylphenyl) borate, tri (n-butyl) ammonium tetra (3,5-d
  • N, N-dialkylanilinium salts include, for example, N, N-dimethylanilinium tetraphenylborate, N, N-diethylanilinium tetraphenylborate, N, N, 2,4,6-pentamethylaniline. Examples thereof include nium tetraphenylborate.
  • dialkylammonium salt examples include di (n-propyl) ammonium tetra (pentafluorophenyl) borate and dicyclohexylammonium tetraphenylborate.
  • triphenylcarbenium tetrakis (pentafluorophenyl) borate N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, ferrocenium tetra (pentafluorophenyl) borate, triphenylcarbenium pentaphenyl
  • Examples thereof include cyclopentadienyl complexes, N, N-diethylanilinium pentaphenylcyclopentadienyl complexes, and boron compounds represented by the following formula (iv) or (v).
  • Et represents an ethyl group.
  • borane compound examples include decaborane (14); bis [tri (n-butyl) ammonium] nonaborate, bis [tri (n-butyl) ammonium] decaborate, bis [tri (n-butyl) ammonium] undeca Salts of anions such as borate, bis [tri (n-butyl) ammonium] dodecaborate, bis [tri (n-butyl) ammonium] decachlorodecaborate, bis [tri (n-butyl) ammonium] dodecachlorododecaborate; Of metal borane anions such as tri (n-butyl) ammonium bis (dodecahydridododecaborate) cobaltate (III) and bis [tri (n-butyl) ammonium] bis (dodecahydridododecaborate) nickate (III) Examples include salt.
  • carborane compound examples include 4-carbanonaborane (14), 1,3-dicarbanonaborane (13), 6,9-dicarbadecarborane (14), dodecahydride-1-phenyl-1, 3-dicarbanonaborane, dodecahydride-1-methyl-1,3-dicarbanonaborane, undecahydride-1,3-dimethyl-1,3-dicarbanonaborane, 7,8-dicarbaundecaborane (13), 2,7-dicarboundecarborane (13), undecahydride-7,8-dimethyl-7,8-dicarboundecarborane, dodecahydride-11-methyl-2,7-dicarboundecarborane Tri (n-butyl) ammonium 1-carbadecaborate, tri (n-butyl) ammonium 1-carbaundecaborate, (N-butyl) ammonium 1-carbadodecaborate, tri (n-butyl) ammonium 1-trimethyls
  • the heteropoly compound is composed of one or more atoms selected from silicon, phosphorus, titanium, germanium, arsenic or tin and vanadium, niobium, molybdenum and tungsten.
  • the heteropoly compound and the isopoly compound are not limited to one of the above compounds, and two or more of them can be used.
  • the metallocene catalyst preferably used for the production of the 4-methyl-1-pentene copolymer (B) may contain a ( ⁇ ) fine particle carrier, if necessary.
  • the above-described olefin polymerization catalyst may be used by being supported on a ( ⁇ ) particulate carrier.
  • the form ( ⁇ ) supported on a particulate carrier is preferably used.
  • the particulate carrier is an inorganic or organic compound and is a granular or particulate solid.
  • a porous oxide, an inorganic halide, clay, clay mineral, or an ion-exchange layered compound is preferable.
  • the porous oxide specifically, SiO 2 , Al 2 O 3 , MgO, ZrO, TiO 2 , B 2 O 3 , CaO, ZnO, BaO, ThO 2 and the like, or a composite or mixture containing these, for example,
  • Use natural or synthetic zeolite, SiO 2 —MgO, SiO 2 —Al 2 O 3 , SiO 2 —TiO 2 , SiO 2 —V 2 O 5 , SiO 2 —Cr 2 O 3 , SiO 2 —TiO 2 —MgO, etc. can do.
  • those containing SiO 2 and / or Al 2 O 3 as main components are preferred.
  • the inorganic oxide includes a small amount of Na 2 CO 3 , K 2 CO 3 , CaCO 3 , MgCO 3 , Na 2 SO 4 , Al 2 (SO 4 ) 3 , BaSO 4 , KNO 3 , Mg (NO 3 ). 2 , carbonates such as Al (NO 3 ) 3 , Na 2 O, K 2 O, Li 2 O, sulfates, nitrates, and oxide components may be contained.
  • the inorganic halide MgCl 2 , MgBr 2 , MnCl 2 , MnBr 2 or the like is used.
  • the inorganic halide may be used as it is or after being pulverized by a ball mill or a vibration mill. Further, it is also possible to use a material obtained by dissolving an inorganic halide in a solvent such as alcohol and then precipitating the fine particles with a precipitating agent.
  • Clay is usually composed mainly of clay minerals.
  • the ion-exchangeable layered compound is a compound having a crystal structure in which surfaces formed by ionic bonds and the like are stacked in parallel with a weak binding force, and the ions contained therein can be exchanged.
  • Most clay minerals are ion-exchangeable layered compounds.
  • these clays, clay minerals, and ion-exchange layered compounds are not limited to natural products, and artificial synthetic products can also be used.
  • clay clay mineral or ion-exchangeable layered compound
  • clay clay mineral, ionic crystalline compound having a layered crystal structure such as hexagonal fine packing type, antimony type, CdCl 2 type, CdI 2 type, etc. It can be illustrated.
  • clays and clay minerals examples include kaolin, bentonite, kibushi clay, gyrome clay, allophane, hysinger gel, pyrophyllite, ummo group, montmorillonite group, vermiculite, ryokdeite group, palygorskite, kaolinite, nacrite, dickite
  • ion-exchangeable layered compounds include ⁇ -Zr (HAsO 4 ) 2 .H 2 O, ⁇ -Zr (HPO 4 ) 2 , ⁇ -Zr (KPO 4 ) 2 .3H 2 O, ⁇ -Ti (HPO 4 ) 2 , ⁇ -Ti (HAsO 4 ) 2 .H 2 O, ⁇ -Sn (HPO 4 ) 2 .H 2 O, ⁇ -Zr (HPO 4 ) 2 , ⁇ -Ti (HPO 4 ) 2 and crystalline acidic salts of polyvalent metals such as ⁇ -T
  • Such a clay, clay mineral or ion exchange layered compound preferably has a pore volume of not less than 0.1 cc / g having a radius of 20 mm or more as measured by a mercury intrusion method, and is preferably from 0.3 to 5 cc / g. Particularly preferred.
  • the pore volume is measured in a pore radius range of 20 to 3 ⁇ 10 4 ⁇ by mercury porosimetry using a mercury porosimeter.
  • any of a surface treatment that removes impurities adhering to the surface and a treatment that affects the crystal structure of the clay can be used.
  • Specific examples of the chemical treatment include acid treatment, alkali treatment, salt treatment, and organic matter treatment.
  • the acid treatment increases the surface area by eluting cations such as Al, Fe, and Mg in the crystal structure.
  • Alkali treatment destroys the crystal structure of the clay, resulting in a change in the structure of the clay.
  • salt treatment and organic matter treatment ion complexes, molecular complexes, organic derivatives, etc. can be formed, and the surface area and interlayer distance can be changed.
  • the ion-exchangeable layered compound may be a layered compound in a state where the layers are expanded by exchanging the exchangeable ions between the layers with other large and bulky ions using the ion-exchangeability.
  • Such a bulky ion plays a role of a column supporting the layered structure and is usually called a pillar.
  • intercalation introducing another substance between the layers of the layered compound in this way is called intercalation.
  • guest compounds to be intercalated include cationic inorganic compounds such as TiCl 4 and ZrCl 4 , metal alkoxides such as Ti (OR) 4 , Zr (OR) 4 , PO (OR) 3 , and B (OR) 3 ( R is a hydrocarbon group), metal hydroxide ions such as [Al 13 O 4 (OH) 24 ] 7+ , [Zr 4 (OH) 14 ] 2+ , [Fe 3 O (OCOCH 3 ) 6 ] + Etc.
  • These compounds are used alone or in combination of two or more. Further, when these compounds were intercalated, they were obtained by hydrolyzing metal alkoxides such as Si (OR) 4 , Al (OR) 3 , Ge (OR) 4 (R is a hydrocarbon group, etc.). Polymers, colloidal inorganic compounds such as SiO 2, and the like can also coexist. Examples of the pillar include oxides formed by heat dehydration after intercalation of the metal hydroxide ions between layers.
  • Clay, clay mineral, and ion-exchange layered compound may be used as they are, or may be used after treatment such as ball milling or sieving. Further, it may be used after newly adsorbing and adsorbing water or after heat dehydration treatment. Furthermore, you may use individually or in combination of 2 or more types.
  • ion exchange layered silicate When ion exchange layered silicate is used, in addition to its function as a carrier, it can also reduce the amount of organoaluminum oxy compounds such as alkylaluminoxane by utilizing its ion exchange properties and layer structure. Is possible.
  • the ion-exchange layered silicate is naturally produced mainly as a main component of clay mineral, but is not limited to a natural product, and may be a synthetic product.
  • Specific examples of clay, clay mineral, and ion-exchange layered silicate include kaolinite, montmorillonite, hectorite, bentonite, smectite, vermiculite, teniolite, synthetic mica, synthetic hectorite, and the like.
  • Examples of the organic compound include granular or particulate solids having a particle size in the range of 5 to 300 ⁇ m.
  • polar functional groups obtained by copolymerizing or graft polymerizing polar monomers such as acrylic acid, acrylic acid ester, and maleic anhydride to these polymers
  • a polymer or modified product having These particulate carriers can be used alone or in combination of two or more.
  • the polymerization of 4-methyl-1-pentene with a specific ⁇ -olefin for obtaining the copolymer (B) is either a liquid phase polymerization method such as solution polymerization or suspension polymerization, or a gas phase polymerization method. Can also be implemented. In the liquid phase polymerization method, an inert hydrocarbon solvent may be used.
  • aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, octane, decane, dodecane, and kerosene; cyclopentane, Cycloaliphatic hydrocarbons such as cyclohexane, methylcyclopentane and methylcyclohexane; aromatic hydrocarbons such as benzene, toluene and xylene; halogenated hydrocarbons such as ethylene chloride, chlorobenzene, dichloromethane, lichloromethane and tetrachloromethane or mixtures thereof And so on. Bulk polymerization using olefins containing 4-methyl-1-pentene as a solvent can also be carried out.
  • so-called multistage polymerization in which the polymerization conditions are changed stepwise can also be performed.
  • the copolymer having a desired broad molecular weight distribution or a wide composition distribution by performing polymerization stepwise under two conditions with different amounts of hydrogen used or the ratio of 4-methyl-1-pentene and olefin It is also possible to obtain (B). Further, the copolymer (B) having a controlled composition distribution is obtained by performing stepwise polymerization of 4-methyl-1-pentene and copolymerization of 4-methyl-1-pentene with other olefins. It is also possible to obtain.
  • the component ( ⁇ ) is usually 10 ⁇ 8 to 10 ⁇ 2 mol, preferably 10 ⁇ 7 to 10 ⁇ 3 mol in terms of Group 4 metal atom in the periodic table per liter of reaction volume. Used in various amounts.
  • the component ( ⁇ -1) is a molar ratio of the component ( ⁇ -1) to the transition metal atom (M) in the component ( ⁇ ) [( ⁇ -1) / M ] Is usually used in an amount of 0.01 to 100,000, preferably 0.05 to 50,000.
  • the molar ratio [( ⁇ -2) / M] of the aluminum atom in ( ⁇ -2) and the transition metal atom (M) in ( ⁇ ) is usually 10 to 500,000, preferably Is used in an amount of 20 to 100,000.
  • the molar ratio [( ⁇ -3) / M] of ( ⁇ -3) to the transition metal atom (M) in ( ⁇ ) is usually 1 to 10, preferably 1 to 5. Is used in such an amount that
  • the polymerization temperature is usually in the range of ⁇ 50 to 200 ° C., preferably 0 to 100 ° C., more preferably 20 to 100 ° C. If the polymerization temperature is too low, there is an industrial disadvantage in terms of polymerization activity per unit catalyst and heat recovery efficiency.
  • the polymerization pressure is usually from normal pressure to 10 MPa gauge pressure, preferably from normal pressure to 5 MPa gauge pressure, and the polymerization reaction can be carried out by any of batch, semi-continuous and continuous methods. Furthermore, the polymerization can be performed in two or more stages having different reaction conditions.
  • hydrogen can be added for the purpose of controlling the molecular weight and polymerization activity of the produced polymer, and the amount is suitably about 0.001 to 100 NL per kg of olefin.
  • the components (A) and (B) described above are blended in specific amounts, and if necessary, an additive, an ⁇ -olefin polymer (C) described later, is added. It can be obtained by blending and mixing.
  • each component various known methods such as a multistage polymerization method, a plastmill, a Henschel mixer, a V-blender, a ribbon blender, a tumbler, a blender, a kneader ruder or the like, or after mixing, a single screw extruder
  • a method of granulating or pulverizing after melt-kneading with a twin screw extruder, kneader, Banbury mixer or the like can be employed. By this method, it is possible to obtain a high-quality (co) polymer composition in which each component and additive are uniformly dispersed and mixed.
  • the (co) polymer composition in the present invention may contain a nucleating agent as a specific optional component in order to further improve its moldability, that is, to increase the crystallization temperature and increase the crystallization speed.
  • the nucleating agent is a dibenzylidene sorbitol-based nucleating agent, a phosphate ester-based nucleating agent, a rosin-based nucleating agent, a benzoic acid metal salt-based nucleating agent, fluorinated polyethylene, 2,2-methylenebis (4,6-di-).
  • a secondary antioxidant In the (co) polymer composition, a secondary antioxidant, a heat stabilizer, a weather stabilizer, an antistatic agent, a slip agent, an antiblocking agent may be added to the composition as long as the purpose of the present invention is not impaired.
  • Agents, antifogging agents, lubricants, dyes, pigments, natural oils, synthetic oils, waxes, fillers, hydrochloric acid absorbents, other olefin polymers, and the like can be blended.
  • the blending amount is not particularly limited, but is usually 0 to 50 parts by weight, preferably 0 to 30 parts by weight, more preferably 0 to 10 parts by weight, particularly preferably 100 parts by weight of the (co) polymer composition. 0 to 1 part by weight.
  • antioxidant known antioxidants can be used. Specifically, a hindered phenol compound, a sulfur-based antioxidant, a lactone-based antioxidant, an organic phosphite compound, an organic phosphonite compound, or a combination of these can be used.
  • the lubricant examples include sodium, calcium and magnesium salts of saturated or unsaturated fatty acids such as lauric acid, palmitic acid, oleic acid and stearic acid, and these may be used alone or in combination of two or more. it can.
  • the blending amount of such a lubricant is usually about 0.1 to 3 parts by weight, preferably about 0.1 to 2 parts by weight with respect to 100 parts by weight of the (co) polymer composition.
  • amides of saturated or unsaturated fatty acids such as lauric acid, palmitic acid, oleic acid, stearic acid, erucic acid and ariaic acid, or bisamides of these saturated or unsaturated fatty acids.
  • erucic acid amide and ethylene bisstearamide are particularly preferred.
  • These fatty acid amides are preferably blended in an amount of usually 0.01 to 5 parts by weight per 100 parts by weight of the polymer composition of the present invention.
  • anti-blocking agent examples include fine powder silica, fine powder aluminum oxide, fine powder clay, powdered or liquid silicon resin, tetrafluoroethylene resin, fine powder cross-linked resin such as cross-linked acrylic and methacrylic resin powder. be able to. Of these, fine powder silica and crosslinked acrylic and methacrylic resin powders are preferred.
  • olefin polymers include known ethylene polymers and propylene polymers different from the (co) polymer (A), copolymer (B) and ⁇ -olefin polymer (C) according to the present invention. Examples thereof include a polymer, a pentene polymer, and a cyclic olefin copolymer.
  • the ethylene polymer is an ethylene / propylene copolymer, an ethylene / butene copolymer, an ethylene / hexene copolymer, an ethylene / octene copolymer or the like, and the propylene polymer is a propylene / propylene copolymer.
  • Copolymers such as ethylene copolymers, propylene / butene copolymers, propylene / butene / ethylene copolymers, and butene-based polymers are copolymers of butene / propylene copolymers and butene / ethylene copolymers.
  • a polymer is included.
  • Preferred embodiment of 4-methyl-1-pentene (co) polymer composition Preferred embodiments of the 4-methyl-1-pentene (co) polymer composition include 4-methyl-1-pentene (co) polymer composition (X) described below, and more preferred embodiments include 4- And methyl-1-pentene (co) polymer compositions (X1) to (X6).
  • each composition can be obtained according to the above-described method for producing a 4-methyl-1-pentene (co) polymer composition.
  • the 4-methyl-1-pentene (co) polymer composition (X) contains two or more different 4-methyl-1-pentene (co) polymers.
  • UX-1 is preferably 99 mol% to 65 mol%, more preferably 95 to 70 mol%, and UX-2 is preferably 1 mol% to 35 mol%, more Preferably, it is 5 to 30 mol%.
  • the (co) polymer composition (X) may contain 4-methyl-1-pentene copolymer (B1) and / or 4-methyl-1-pentene copolymer (B2).
  • the mixing ratio of B1 and B2 ((B1) / (B2)) is 100/0 to 0/100, and the mixing ratio is to obtain the desired physical properties of the (co) polymer composition (X).
  • a composition containing each component in such a range is excellent in heat resistance, moldability, mechanical properties, balance of transparency and elongation and toughness, and thus a molded article made of the composition has such excellent effects. Is preferable because it is excellent in heat resistance and transparency and tends to be obtained by uniformly stretching.
  • UX-1 is preferably 95 to 72 mol%, more preferably 93 to 75 mol%
  • UX-2 is preferably 5 to 28 mol%, more preferably 7 to 25 mol% (provided that the sum of UX-1 and UX-2 is 100 mol%).
  • 4-methyl-1-pentene (co) polymer composition (X1) 4-methyl-1-pentene (co) polymer composition (X1) 4-methyl-1-pentene (co) polymer (A) 10 to 90 parts by weight, preferably 15 to 85 parts by weight, more preferably 20 to 80 parts by weight, and a 4-methyl-1-pentene copolymer ( B) 4-methyl-1-pentene copolymer (B1) 90 to 10 parts by weight, preferably 85 to 15 parts by weight, more preferably 80 to 20 parts by weight (provided that (A) and (B1) The total is 100 parts by weight).
  • the composition (X1) has a total amount of constituent units (UX1-1) derived from 4-methyl-1-pentene derived from all (co) polymers contained in the composition of 95 to 70 mol%.
  • the total amount of constituent units (UX1-2) derived from ⁇ -olefins having 2 to 20 carbon atoms (excluding 4-methyl-1-pentene) derived from all (co) polymers contained in the product is 5 to It is preferably 30 mol% (provided that the sum of UX1-1 and UX1-2 is 100 mol%).
  • the copolymer (B1) satisfying U3 of 99 to 83 mol% and U4 of 1 to 17 mol% provided that the total of U3 and U4 is 100 mol%)
  • the composition to be contained is preferable because it is more excellent in transparency, elongation and toughness, and particularly excellent in heat resistance.
  • composition (X1) is particularly excellent in transparency and heat resistance
  • a molded article made of the composition inherits such excellent effects, has excellent heat resistance, is transparent and has excellent uniform stretchability. It is preferable in that it tends to be obtained.
  • UX1-1 is preferably 95 to 80 mol%, more preferably 95 to 82 mol%, still more preferably 95 to 85 mol%
  • UX1-2 is , Preferably 5 to 20 mol%, more preferably 5 to 18 mol%, and even more preferably 5 to 15 mol% (provided that the sum of UX1-1 and UX1-2 is 100 mol%).
  • the 4-methyl-1-pentene (co) polymer composition (X2) is 10 to 90 parts by weight, preferably 50 to 90 parts by weight, more preferably 4-methyl-1-pentene (co) polymer (A). Is 60 to 85 parts by weight, 90 to 10 parts by weight, preferably 50 to 10 parts by weight of 4-methyl-1-pentene copolymer (B2) as 4-methyl-1-pentene copolymer (B), Preferably, it contains 40 to 15 parts by weight (provided that the total of (A) and (B2) is 100 parts by weight).
  • the composition (X2) has a total amount (UX2-1) of structural units derived from 4-methyl-1-pentene derived from all (co) polymers contained in the composition of 95 to 70 mol%, preferably Is from 95 to 75 mol%, more preferably from 93 to 75 mol%, and an ⁇ -olefin having 2 to 20 carbon atoms derived from all (co) polymer contained in the composition (4-methyl-1-
  • the total amount (UX1-2) of structural units derived from (excluding pentene) is 5 to 30 mol%, preferably 5 to 25 mol%, more preferably 7 to 25 mol% (however, UX2-1 and UX2-2) The total is 100 mol%).
  • composition (X2) is particularly flexible (B2) dispersed in (A) without impairing transparency, the composition (X2) is excellent in elongation, flexibility and impact resistance. Is preferable in that it has a tendency to inherit such an excellent effect and to obtain a product excellent in flexibility and impact resistance.
  • 4-methyl-1-pentene (co) polymer composition (X3) comprises 10 to 90 parts by weight of 4-methyl-1-pentene (co) polymer (A), 4-methyl-1 -90 to 10 parts by weight of the total of 4-methyl-1-pentene copolymer (B1) and 4-methyl-1-pentene copolymer (B2) as pentene copolymer (B) (however, (A) And (B) is 100 parts by weight, and the mixing ratio of (B1) and (B2) ((B1) / (B2)) is 99/1 to 1/99).
  • the total amount (UX3-1) of structural units derived from 4-methyl-1-pentene derived from all (co) polymers contained in the composition is preferably 95 to 70 mol%.
  • the total amount of constituent units (UX3-2) derived from ⁇ -olefins having 2 to 20 carbon atoms (excluding 4-methyl-1-pentene) derived from all (co) polymers contained in the composition is 30 to 5 mol% (provided that the sum of UX3-1 and UX3-2 is 100 mol%).
  • the (co) polymer (A) is preferably 15 to 90 parts by weight, more preferably 20 to 90 parts by weight, and even more preferably 30 to 85 parts by weight.
  • composition (X3) is that the (co) polymer (A) is 50 to 90 parts by weight, preferably 55 to 85 parts by weight, and the copolymer (B) is 50 parts by weight. -10 parts by weight, preferably 45-15 parts by weight (provided that the sum of (A) and (B) is 100 parts by weight).
  • the mixing ratio ((B1) / (B2)) of the copolymer (B1) and the copolymer (B2) is preferably 90/10 to 10/90, more preferably 70/30 to 15/85, A ratio of 60/40 to 15/85 is more preferable, and a ratio of 50/50 to 15/85 is particularly preferable because a molded article excellent in stretchability and blow moldability tends to be obtained.
  • the mixing ratio ((B1) / (B2)) of the copolymer (B1) and the copolymer (B2) is preferably 90/10 to 10/90, more preferably 85/15 to 30 / 70, more preferably 85/15 to 40/60, and particularly preferably 85/15 to 50/50 is preferable because a molded article having excellent heat resistance tends to be obtained.
  • UX3-1 is preferably 95 to 75 mol%, more preferably 93 to 75 mol%
  • UX3-2 is preferably 5 to 25 mol%, more preferably 7 to 25 mol% ( However, the sum of UX3-1 and UX3-2 is 100 mol%).
  • the composition (X3) is preferable because it is imparted with transparency and heat resistance, which are the characteristics of (B1), and is further provided with flexibility, elongation and impact resistance, which are the characteristics of (B2).
  • a hollow molded body made of the composition is preferable because it can inherit such excellent effects and has excellent heat resistance, high transparency and excellent dimensional stability.
  • a film is preferable because it inherits such excellent effects and is excellent in heat resistance, high in transparency, and excellent in moldability.
  • 4-methyl-1-pentene (co) polymer composition (X4) to (X6) are 4-methyl-1-pentene (co) polymer (A), 4-methyl-1-pentene, It comprises a copolymer (B) and an ⁇ -olefin polymer (C) described later.
  • the copolymer (B) As the copolymer (B), as shown in the description of the 4-methyl-1-pentene copolymer (B), the copolymer (B1) and the copolymer (B2) And the mixing ratio can be arbitrarily changed.
  • composition (X4) A preferred embodiment of the 4-methyl-1-pentene (co) polymer composition (X4) is 10 to 85 parts by weight, preferably 15 to 80 parts by weight of the (co) polymer (A). 85 to 10 parts by weight of (B), preferably 80 to 15 parts by weight, and 3 to 30 parts by weight of ⁇ -olefin polymer (C), preferably 3 to 25 parts by weight (provided that (A), (B) and The total of (C) is 100 parts by weight).
  • the composition (X4) includes both the copolymer (B1) and the copolymer (B2) as the copolymer (B), and the copolymer (B) includes (B1) and (B).
  • the description of the composition (X3) can be referred to for the total amount of B2) and the mixing ratio ((B1) / (B2)).
  • the copolymer (X4) contains the copolymers (B1) and (B2) and further contains the ⁇ -olefin polymer (C), the composition has the flexibility and extensibility of (C). It is preferable because good stretchability and toughness can be obtained from the reason that it can be imparted.
  • composition (X4) is an embodiment containing the ⁇ -olefin polymer (C) in the composition (X3), and the effect of the composition (X3) is also included.
  • the total amount (UX4-1) of structural units derived from 4-methyl-1-pentene derived from all (co) polymers contained in the composition is 95 to 65 mol%.
  • the total amount (UX4-2) of structural units derived from ⁇ -olefins having 2 to 20 carbon atoms (excluding 4-methyl-1-pentene) derived from all (co) polymers contained in the composition is 5 to 35 mol% (provided that the sum of UX4-1 and UX4-2 is 100 mol%).
  • composition (X5) A preferred embodiment of the 4-methyl-1-pentene (co) polymer composition (X5) is such that the (co) polymer (A) is 7 to 90 parts by weight, preferably 10 to 85 parts by weight. (B) is 90 to 7 parts by weight, preferably 85 to 10 parts by weight, and the ⁇ -olefin polymer (C) is 0.9 to 30 parts by weight, preferably 1 to 25 parts by weight (provided that (A), (B ) And (C) is 100 parts by weight).
  • the composition (X5) contains the copolymer (B1) as the copolymer (B).
  • the copolymer (X5) contains the ⁇ -olefin polymer (C), even if the copolymer (B2) is not included, the flexibility and extensibility of (C) are imparted to the composition. This is preferable because good stretchability and toughness can be obtained.
  • composition (X5) is an embodiment containing the ⁇ -olefin polymer (C) in the composition (X1), and the effect of the composition (X1) is also included.
  • the composition (X5) preferably has a total amount of constituent units (UX5-1) derived from 4-methyl-1-pentene derived from all (co) polymers contained in the composition (UX5-1). Mol%, the total amount of structural units derived from ⁇ -olefins having 2 to 20 carbon atoms (excluding 4-methyl-1-pentene) derived from all (co) polymers contained in the composition (UX5-2 ) Is 35 to 5 mol% (provided that the sum of UX5-1 and UX5-2 is 100 mol%).
  • is added to 100 parts by weight of the composition (X1) or the composition (X3).
  • containing 1 to 40 parts by weight of olefin polymer (C).
  • the embodiment in which the ⁇ -olefin polymer (C) is contained in the composition (X1) means that the (co) polymer (A), the copolymer (B1) and the ⁇ -olefin polymer (C) are mixed.
  • the embodiment in which the ⁇ -olefin polymer (C) is contained in the composition (X3) includes the (co) polymer (A), the copolymer (B1), and the copolymer.
  • the total amount of the structural units derived from 4-methyl-1-pentene and the structural units derived from an ⁇ -olefin having 2 to 20 carbon atoms (excluding 4-methyl-1-pentene). Satisfies the total amount range.
  • composition (X6) A preferred embodiment of the 4-methyl-1-pentene (co) polymer composition (X6) is such that the (co) polymer (A) is 7 to 90 parts by weight, preferably 10 to 85 parts by weight. (B) is 90 to 7 parts by weight, preferably 85 to 10 parts by weight, and the ⁇ -olefin polymer (C) is 0.9 to 30 parts by weight, preferably 5 to 25 parts by weight, more preferably 10 to 25 parts by weight. Parts (provided that the total of (A), (B) and (C) is 100 parts by weight).
  • the composition (X5) contains the copolymer (B2) as the copolymer (B).
  • the copolymer (X6) contains the ⁇ -olefin polymer (C), even if the copolymer (B1) is not included, the flexibility and extensibility of (C) are imparted to the composition. This is preferable because good stretchability and toughness can be obtained.
  • composition (X6) is an embodiment containing the ⁇ -olefin polymer (C) in the composition (X2), preferably an embodiment containing the ⁇ -olefin polymer (C) having a specific melting point described later. Yes, the effect of the composition (X2) is also included.
  • the composition (X6) preferably has a total amount of constituent units (UX6-1) derived from 4-methyl-1-pentene derived from all (co) polymers contained in the composition (UX6-1) of 95 to 65. Mol%, the total amount of structural units derived from ⁇ -olefins having 2 to 20 carbon atoms (excluding 4-methyl-1-pentene) derived from all (co) polymers contained in the composition (UX6-2) ) Is 5 to 35 mol% (provided that the sum of UX6-1 and UX6-2 is 100 mol%).
  • the total amount of structural units derived from 4-methyl-1-pentene derived from all (co) polymers contained in the composition (UX4-1) UX5-1 or UX6-1) is preferably 90 to 68 mol%, more preferably 88 to 70 mol%, and 2 to 20 carbon atoms derived from the total (co) polymer contained in the composition.
  • the total amount of constituent units derived from ⁇ -olefin (excluding 4-methyl-1-pentene) (UX4-2, UX5-2 or UX6-2) is preferably 10 to 32 mol%, more preferably 12 to 30 Mol% (however, the sum of UX4-1 and UX4-2 is 100 mol%, or the sum of UX5-1 and UX5-2 is 100 mol%. The sum of UX6-1 and UX6-2) And 100 mol% That).
  • another embodiment of the 4-methyl-1-pentene (co) polymer composition includes 5-90 parts by weight of 4-methyl-1-pentene (co) polymer (A), 4-methyl -1-pentene copolymer (B) 90 to 10 parts by weight and ⁇ -olefin polymer (C) 1 to 40 parts by weight described later (however, the total of (A), (B) and (C) is 100 parts by weight) Part).
  • the ⁇ -olefin polymer (C) is selected from ⁇ -olefins having 2 to 20 carbon atoms, unlike the (co) polymer (A), the copolymers (B1) and (B2) according to the present invention.
  • One or two or more types of olefin polymers for example, olefin homopolymers and binary or more copolymers.
  • the constituent unit of each olefin may be 50 to 99% by weight on one side and 1 to 50% by weight on the other side (the total amount of the constituent units is 100% by weight).
  • the composition ratio of each olefin is arbitrarily determined.
  • linear ⁇ -olefin having 2 to 20 carbon atoms examples include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-undecene, 1-dodecene, - ⁇ -olefins such as tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene and the like are preferable, and linear ⁇ -olefins having 2 to 15 carbon atoms, more preferably 2 to 10 carbon atoms are preferable. Particularly preferred are ethylene, propylene, 1-butene, 1-pentene, 1-hexene and 1-octene.
  • Examples of the branched ⁇ -olefin having 4 to 20 carbon atoms include isobutene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, and 4-methyl-1- ⁇ -olefins such as pentene, 4,4-dimethyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4-ethyl-1-hexene, 3-ethyl-1-hexene
  • the olefin constituting the ⁇ -olefin polymer (C) used in the polymer composition (X4) is preferably 50 to 100% by weight of at least one structural unit selected from ethylene, propylene and 1-butene, More preferably 55 to 100% by weight and a structural unit selected from ethylene and an ⁇ -olefin having 3 to 20 carbon atoms (excluding olefins similar to the above olefins) 0 to 50% by weight, more preferably 0 to 45% by weight (the total amount of structural units is 100 mol%).
  • the structural unit of 100% by weight means a homopolymer.
  • the ⁇ -olefin polymer (C) preferably has an MFR measured in a range of 0.01 to 100 g / 10 min at 190 ° C. or 230 ° C. under a load of 2.16 kg in accordance with JIS K-6721.
  • the density is in the range of 830 to 930 kg / m 3 .
  • the ⁇ -olefin polymer (C) has an intrinsic viscosity [ ⁇ ] measured in decalin at 135 ° C. is usually 0.1 to 10 dL / g, more preferably 0.5 to 5 dL / g.
  • the melting point of the ⁇ -olefin polymer (C) is not particularly limited, but is preferably 100 ° C. or higher, more preferably 110 to 170 ° C., for reasons of heat resistance and strength.
  • the ⁇ -olefin polymer (C) having the melting point is contained in the composition (X6) because the heat resistance and strength are further improved.
  • the ⁇ -olefin polymer (C) may contain units derived from other polymerizable monomers within the range not impairing the object of the present invention, in addition to the structural units described above.
  • Examples of such other polymerizable monomers include vinyl compounds such as styrene, vinylcyclopentene, vinylcyclohexane, and vinylnorbornane; vinyl esters such as vinyl acetate; unsaturated organic acids such as maleic anhydride or derivatives thereof; butadiene Conjugated dienes such as isoprene, pentadiene, 2,3-dimethylbutadiene; 1,4-hexadiene, 1,6-octadiene, 2-methyl-1,5-hexadiene, 6-methyl-1,5-heptadiene, 7 -Methyl-1,6-octadiene, dicyclopentadiene, cyclohexadiene, dicyclooctadiene, methylene norbornene, 5-vinyl norbornene, 5-ethylidene-2-norbornene, 5-methylene-2-norbornene, 5-isopropylidene- 2-Norborne 6-chloro
  • the unit derived from such other polymerizable monomer is 10 mol% or less, preferably 5 mol, based on 100 mol% of all the structural units constituting the polymer (C). It may be contained in an amount of not more than mol%, more preferably not more than 3 mol%.
  • ⁇ -olefin polymer (C) examples include low density polyethylene, high density polyethylene, polypropylene, polybutene, ethylene / propylene random copolymer, ethylene / 1-butene random copolymer, ethylene / propylene 1-butene random copolymer, ethylene / 1-hexene random copolymer, ethylene / 1-octene random copolymer, ethylene / propylene / ethylidene norbornene random copolymer, ethylene / propylene / vinylidene norbornene random copolymer, Ethylene / 1-butene / ethylidene norbornene random copolymer, ethylene / 1-butene / 1-octene random copolymer, propylene / 1-butene random copolymer, propylene / 1-hexene random copolymer, propylene / 1 -Octe Random copoly
  • the ⁇ -olefin polymer (C) can be produced by a conventionally known method using a vanadium catalyst, a titanium catalyst or a metallocene catalyst.
  • a commercially available product may be used, or a trade name “Tuffmer TM ” manufactured by Mitsui Chemicals, Inc. may be used.
  • the 4-methyl-1-pentene (co) polymer composition of the present invention is mixed with a polar resin and laminated, or when laminated with a metal and bonded, preferably the above-mentioned (co) polymer (A), It is preferable that at least a part of components such as the copolymer (B) or the (co) polymer contained in the (co) polymer composition is graft-modified with a polar compound.
  • the modified product of the (co) polymer composition includes, in addition to those obtained by directly modifying the (co) polymer composition, the (co) polymer (A) and the copolymer (B). Is a concept including those having a polymer modified as a constituent of the polymer composition.
  • the (co) polymer composition includes a modified product.
  • Examples of polar compounds used for graft modification include hydroxyl group-containing ethylenically unsaturated compounds, amino group-containing ethylenically unsaturated compounds, epoxy group-containing ethylenically unsaturated compounds, aromatic vinyl compounds, unsaturated carboxylic acids or their derivatives, and vinyl esters.
  • Compounds, vinyl chloride, vinyl group-containing organosilicon compounds, carbodiimide compounds and the like can be mentioned. Of these, unsaturated carboxylic acids or derivatives thereof and vinyl group-containing organosilicon compounds are particularly preferred.
  • Examples of the unsaturated carboxylic acid or a derivative thereof include an unsaturated compound having one or more carboxylic acid groups, an ester of a compound having a carboxylic acid group and an alkyl alcohol, and an unsaturated compound having one or more carboxylic anhydride groups.
  • Examples of the unsaturated group include a vinyl group, a vinylene group, and an unsaturated cyclic hydrocarbon group.
  • Such derivatives include maleyl chloride, maleimide, maleic anhydride, citraconic anhydride, monomethyl maleate, dimethyl maleate, glycidyl maleate and the like.
  • unsaturated carboxylic acids and / or derivatives thereof can be used singly or in combination of two or more.
  • unsaturated dicarboxylic acids or acid anhydrides thereof are preferred, and maleic acid, nadic acid [trademark] or acid anhydrides thereof are particularly preferably used.
  • vinyl group-containing organosilicon compound conventionally known compounds can be used, and there is no particular limitation, but specific examples include vinyltriethoxysilane, vinyltrimethoxysilane, vinyltris ( ⁇ -methoxy-ethoxysilane), ⁇ -glycol.
  • the modified product of the 4-methyl-1-pentene (co) polymer composition is the (co) polymer (A), the copolymer (B) or the (co) polymer composition 100. It can be obtained by graft reaction of the polar compound in an amount of usually 1 to 100 parts by weight, preferably 5 to 80 parts by weight with respect to parts by weight. This grafting reaction is usually performed in the presence of a radical initiator.
  • radical initiator used for graft polymerization examples include organic peroxides and azo compounds.
  • the radical initiator can be used as it is by mixing it with the (co) polymer (A), the copolymer (B) or the (co) polymer composition, and the polar compound. It can also be used after being dissolved in a solvent. Any organic solvent that can dissolve the radical initiator can be used without particular limitation.
  • a reducing substance may be used. If a reducing substance is used, the graft amount of the polar compound may be improved.
  • the graft modification reaction of the (co) polymer (A), the copolymer (B) or the (co) polymer composition with a polar compound can be performed by a conventionally known method.
  • the (co) polymer (A), the copolymer (B) or the (co) polymer composition is dissolved in an organic solvent, and then a polar compound and a radical initiator are added to the solution.
  • a method of reacting at a temperature of 200 ° C., preferably 80 to 190 ° C., usually for 0.5 to 15 hours, preferably 1 to 10 hours can be mentioned.
  • the (co) polymer (A), the copolymer (B) or the (co) polymer composition can be reacted with the polar compound in the absence of a solvent using an extruder or the like. This reaction is usually carried out at a temperature not lower than the melting point of 4-methyl-1-pentene polymer, specifically at a temperature of 160 to 290 ° C., usually for 0.5 to 10 minutes.
  • the modified amount of the (co) polymer composition thus obtained (the graft amount of the polar compound) is usually 0.1 to 50% by weight, preferably 0.2 to 30% by weight, more preferably Is 0.2 to 10% by weight.
  • the molded product of the present invention can also be produced by appropriately combining the (co) polymer, copolymer composition and modified product according to the present invention.
  • the control of melt properties is easy and the moldability is improved. Also exhibits excellent properties.
  • the degree of freedom in controlling the crystallization rate mainly derived from the (co) polymer (A) is increased, which is advantageous for obtaining a wide film, a large blow molded article, a stretched film and the like.
  • the molded product of the present invention is preferably a molded product obtained by further processing a molded product obtained by primary molding such as extrusion molding, injection molding, or solution casting by a method such as blow molding or stretching.
  • a molded product obtained by primary molding such as extrusion molding, injection molding, or solution casting by a method such as blow molding or stretching.
  • the molded product is a film or a sheet
  • the molded product obtained by molding into a sheet by a T-die extrusion method or the like is obtained by further uniaxially stretching or biaxially stretching. Is also preferable.
  • a specific application of such a stretched film is a film for a capacitor. It has been known that 4-methyl-1-pentene (co) polymer has a high crystallization rate and tends to have a small degree of freedom in molding. By controlling the stretching conditions such as the molding temperature and the stretching ratio, the crystallization speed can be controlled and the surface can be roughened.
  • the molded product is an extrusion-molded product
  • a commercially available 4-methyl-1-pentene (co) polymer such as heat resistance and electrical properties, toughness and flexibility
  • it has excellent properties and moldability, as a tubular molded body, medical tubes, cooling water piping, hot water piping, cosmetic tubes, wire coating materials, millimeter wave signal cable coating, high frequency signal cable coating, eco wire coating, It can be preferably used in industrial materials, industrial members, building materials, medical parts, and electrical parts such as chemical liquid tubes, cosmetic tubes, in-vehicle cable covering materials, and signal cable covering materials.
  • the film of the present invention can be obtained by melt-extruding the above-mentioned 4-methyl-1-pentene (co) polymer composition usually in the range of 180 to 300 ° C. Since the film of the present invention has a critical surface tension equivalent to that of a conventionally known 4-methyl-pentene (co) polymer film, it has excellent releasability and excellent electrical characteristics such as dielectric breakdown voltage.
  • Such films include release films and packaging films.
  • the film of the present invention is preferably obtained by further uniaxially or biaxially stretching a molded product obtained by molding into a film or sheet by a T-die extrusion molding method or the like.
  • stretched films include capacitor films.
  • 4-methyl-1-pentene polymer has a high crystallization rate and tends to have a small degree of freedom in molding, but the (co) polymer composition in the present invention.
  • the stretching conditions such as the molding temperature and the stretching ratio
  • the crystallization speed can be controlled and the surface can be roughened
  • the stretched film also has physical properties such as dielectric breakdown voltage. Is also considered excellent.
  • the crystallization speed is high, it is difficult to adjust the crystallization at the time of molding, and the copolymer (B) is in phase with the (co) polymer (A), which is inferior in the stability of molding production.
  • the structure such as the interplanar spacing of crystals to be formed can be changed, so that the crystallization speed can be slowed down, and the degree of freedom in controlling the crystallization speed can be increased.
  • the (co) polymer (A) which is inferior in mechanical properties such as flexibility and elongation because of its high storage elastic modulus in the temperature region above the glass transition temperature (Tg), has a flexible characteristic.
  • the storage elastic modulus in the temperature region above the glass transition temperature (Tg) can be lowered as compared with the (co) polymer (A) alone. Become.
  • the (co) polymer (A) having high crystallinity and uneven distribution of the crystal component is mixed with the copolymer (B) having low crystallinity or non-crystallinity so that the crystal component is changed. It becomes possible to obtain a uniform composition by being dispersed throughout the composition.
  • the (co) polymer (A) having a high melting point (Tm) is combined with the copolymer (B) having a lower melting point or no melting point than the (co) polymer (A). Since the melting point in the composition can be distributed, the melt physical properties at the preheating temperature during stretching can be controlled.
  • the film when the film is formed using the (co) polymer composition according to the present invention, the film can be stretched uniformly during stretching. Therefore, the film of the present invention is particularly advantageous in obtaining a stretched film.
  • the film of the present invention exhibits excellent properties in terms of dimensional stability, particularly shrinkage during heating.
  • the reason for such excellent properties is considered to be that the physical properties of the (co) polymer (A) are modified by the presence of the copolymer (B) as shown below. .
  • an extruded film made of the copolymer (B) exhibits a behavior of expanding when heated to a glass transition temperature (Tg) or higher, contrary to a general polymer film. This is considered due to the high stress absorbability of the copolymer (B).
  • the copolymer (B) Even if the copolymer (B) is flow-oriented in the flow direction MD, the copolymer (B) absorbs heat energy generated by deformation of the polymer molecules involved in the alignment, and thus is thermally stabilized in the oriented state. Therefore, even when heated to the glass transition temperature (Tg) or higher, it is not necessary to relax the orientation, so that no shrinkage occurs.
  • Tg glass transition temperature
  • molecular motion is simply activated and the film expands.
  • the (co) polymer (A) can be imparted with appropriate thermal expansibility and shrinkable.
  • the film obtained from the (co) polymer composition according to the present invention is considered to have a small heat shrinkage.
  • the film of the present invention may be a laminated film in which the (co) polymer composition is contained in any one layer in addition to the single-layer film obtained from the (co) polymer composition described above.
  • a method for obtaining such a laminated film is not particularly limited, but a method of laminating by a known laminating method such as extrusion lamination or extrusion coating on a surface layer film obtained in advance by T-die molding or inflation molding. Or a method of laminating each film by dry lamination after independently molding a plurality of films, etc. From the viewpoint of productivity, coextrusion in which a plurality of components are subjected to a multilayer extruder for molding. Molding is preferred.
  • the present invention can be suitably used for a multilayer surface protective film including a film of the present invention in a film surface layer and a multilayer release film.
  • the film comprising the 4-methyl-1-pentene (co) polymer composition of the present invention has characteristics of the conventional 4-methyl-1-pentene copolymer such as heat resistance, mechanical properties, electrical characteristics, and releasability.
  • characteristics of the conventional 4-methyl-1-pentene copolymer such as heat resistance, mechanical properties, electrical characteristics, and releasability.
  • it is excellent in flexibility, glossiness, uniform stretchability, etc., it is suitably used for the following applications, for example.
  • Packaging film for example, food packaging film, stretch film, wrap film, breathable film, shrink film, easy peel film, Separators; for example, battery separators, lithium ion battery separators, fuel cell electrolyte membranes, adhesive / adhesive separators, Stretched film; for example, film for film capacitor, capacitor film, capacitor film for fuel cell, Semiconductor process film; for example, dicing tape, back grind tape, die bonding film, polarizing film, Surface protective films; for example, protective films for polarizing plates, protective films for liquid crystal panels, protective films for optical parts, protective films for lenses, protective films for electrical parts and electrical appliances, protective films for mobile phones, protective films for personal computers, masking Film, protective film for touch panel, film for electronic member; for example, diffusion film, reflection film, radiation resistant film, gamma ray resistant film, porous film, Building material films; for example, building material window films, laminated glass films, bulletproof materials, bulletproof glass films, heat shield sheets, and heat shield films.
  • the film comprising the (co) polymer composition of the present invention is excellent in releasability, heat resistance, low outgas, and low contamination to copper foil, and therefore has been a problem in printed wiring boards, particularly flexible. There is little contamination to the wiring board and copper foil due to the transfer of low molecular weight substances during the production of printed wiring boards. Therefore, it is particularly suitably used for the release film applications described below.
  • release films for flexible printed boards release films for ACM boards, release films for rigid flexible boards, release films for advanced composite materials, release films for curing carbon fiber composites Release film for curing glass fiber composites, Release film for curing aramid fiber composites, Release film for curing nanocomposites, Release film for curing filler filler, Release film for semiconductor encapsulation, For polarizing plate Release film, Release film for diffusion sheet, Release film for prism sheet, Release film for reflection sheet, Cushion film for release film, Release film for fuel cell, Release film for various rubber sheets, Urethane curing Release film, release film for epoxy curing (manufacturing process members such as metal bats and golf clubs) And the like.
  • the hollow molded article of the present invention can be obtained by melt-extruding the above-mentioned 4-methyl-1-pentene (co) polymer composition usually in the range of 180 to 300 ° C.
  • the control of melt properties is easy, and the moldability of the hollow molded body also exhibits excellent properties.
  • the degree of freedom in controlling the crystallization rate mainly derived from the (co) polymer (A) is increased, which is advantageous for obtaining a hollow molded article.
  • the blow molded article comprising the (co) polymer composition has a single layer of the (co) polymer composition or a multilayer structure containing at least one or more of the (co) polymer composition. May be provided.
  • the blow molded article according to the present invention preferably has a multilayer structure including at least one (co) polymer composition.
  • the blow molded article made of the (co) polymer composition has a multilayer configuration
  • the following configurations can be exemplified.
  • a conventionally known polyolefin resin excluding the polymer according to the present invention; the same shall apply hereinafter
  • a conventionally known polyolefin resin may be mentioned.
  • a blow molded article comprising a 4-methyl-1-pentene (co) polymer composition
  • a general known blow molding method examples include a direct blow molding method in which a parison is molded from a molten resin, the parison is sandwiched between molds, and then a pressurized gas is blown into the parison to mold a container, or once an injection molding
  • the injection blow molding method includes a hot parison method in which an injection molding machine and a blow molding machine are integrated, and a cold parison in which the injection molded preform is completely cooled and then reheated to perform blow molding.
  • the preform is formed by melting the (co) polymer composition and injection molding the resin in a mold. Subsequently, the preform is reheated to a predetermined temperature using an infrared heater or the like in a molten state, a softened state, or in a cooled and solidified state. Stretch to form the desired shape.
  • the melting and injection temperature of the (co) polymer composition is usually in the range of 180 to 320 ° C.
  • the blow stretching temperature is usually 100 to 250 ° C.
  • the longitudinal / lateral stretching ratio is usually 1.5 to 4.0 times.
  • the blow molded article made of the (co) polymer composition may be in at least one layer among the components constituting the formed molded article.
  • a blow molded product having at least one layer of the (co) polymer composition can be obtained by blow molding after preforming two colors during injection molding.
  • a general known apparatus can be used for the molding machine as described above.
  • the hollow molded body comprising the 4-methyl-1-pentene (co) polymer composition of the present invention is flexible in addition to the properties of conventional 4-methyl-1-pentene copolymer such as heat resistance and mechanical properties. Since it is excellent in blow moldability and the like, it is suitably used for hollow containers, bottles, cups and the like.
  • Bottles Cosmetic bottles, hair conditioners, drinking water bottles, carbonated drink bottles, alcohols, bottles, detergent bottles, softener bottles, bleach bottles, shampoo bottles, rinse bottles, drug bottles, adhesives Bottle, pesticide bottle, medical bottle, infusion bottle, baby bottle, medical bag, infusion bag, blood storage bag, Cups: food cups, packaging cups, Etc.
  • Intrinsic viscosity [ ⁇ ] It is a value measured at 135 ° C. using a decalin solvent. That is, about 20 mg of polymer powder, pellets or resin mass was dissolved in 15 ml of decalin, and the specific viscosity ⁇ sp was measured in an oil bath at 135 ° C. After diluting the decalin solution with 5 ml of decalin solvent, the specific viscosity ⁇ sp was measured in the same manner. This dilution operation was further repeated twice, and the value of ⁇ sp / C when the concentration (C) was extrapolated to 0 was obtained as the intrinsic viscosity (see the following formula).
  • [ ⁇ ] lim ( ⁇ sp / C) (C ⁇ 0) [MFR]
  • the MFR of 4-methyl-1-pentene (co) polymer (A) and 4-methyl-1-pentene copolymer (B) is a load of 5 kg at 260 ° C. or 230 ° C. according to JIS K7210. , And measured at a load of 2.16 kg.
  • the MFR of the ⁇ -olefin polymer (C) was measured under the conditions of 230 ° C. and 2.16 kg load.
  • the number average molecular weight (Mn), weight average molecular weight (Mw), and molecular weight distribution (Mw / Mn) were measured as follows using a gel permeation chromatograph Alliance GPC-2000 manufactured by Waters.
  • the separation columns are two TSKgel GNH6-HT and two TSKgel GNH6-HTL.
  • the column size is 7.5 mm in diameter and 300 mm in length, the column temperature is 140 ° C., and the mobile phase is o -Using dichlorobenzene (Wako Pure Chemical Industries) and 0.025 wt% BHT (Takeda Pharmaceutical) as an antioxidant, moving at 1.0 ml / min, sample concentration 15 mg / 10 mL, sample injection volume 500 micron A differential refractometer was used as a detector.
  • the standard polystyrene used was manufactured by Tosoh Corporation for molecular weights of Mw ⁇ 1000 and Mw> 4 ⁇ 10 6 , and used by Pressure Chemical Co. for 1000 ⁇ Mw ⁇ 4 ⁇ 10 6 .
  • Crystallization temperature (Tc) from the peak of the crystallization peak when the temperature is lowered to -100 ° C in min, and then the inflection point from the calorific curve when the temperature is raised from -100 ° C to 290 ° C at 10 ° C / min From the glass transition temperature (Tg), the melting point (Tm) was calculated from the peak apex of the crystal melting peak.
  • the 1 mm-thick press sheet obtained by the above method was cut into 30 mm squares and measured by an underwater substitution method using an electronic hydrometer in accordance with JIS K6268.
  • Thickness 200 ⁇ m (for stretching test): cylinder temperature 250 ° C., die temperature 250 ° C., roll temperature 80 ° C., take-up speed 1 m / min (film in Table 5)
  • Thickness 100 ⁇ m (for shrinkage ratio measurement): cylinder temperature, die temperature, roll temperature, and take-up speed are the conditions shown in Table 7.
  • Thickness 50 ⁇ m (for various physical property measurements): cylinder temperature 250 ° C., die temperature 250 ° C., roll temperature 80 ° C, take-up speed 1 m / min, film forming temperature: 250 ° C or 270 ° C (films in Tables 5 and 6) [Young's modulus (tensile modulus) (YM), tensile elongation at break (EL), tensile breaking stress (TS)] The evaluation of the Young's modulus (YM), tensile elongation at break (EL), and tensile stress at break (TS), which are tensile properties, was performed by testing a film having a thickness of 50 ⁇ m obtained by the above film forming method in accordance with JIS K6781. As a piece, using a universal tensile tester 3380 manufactured by Instron Co., Ltd., the tensile speed was 200 mm / min.
  • the gloss was measured at a room temperature with a gloss angle of 20 ° using a gloss meter using a film having a thickness of 50 ⁇ m obtained by the above film forming method in accordance with JIS K7105 as a test piece.
  • the dielectric breakdown voltage (kV) was measured using a dielectric breakdown tester manufactured by Yamayo Tester Co., Ltd. according to ASTM-D149. A breakdown voltage was measured by applying a voltage to the film having a thickness of 50 ⁇ m obtained by the above film forming method at a boosting speed of 500 V / sec to obtain a withstand voltage characteristic.
  • Uniform stretching
  • Non-uniform stretching
  • x Film break [Film outgas analysis]
  • the amount of film outgas generation was carried out with reference to test methods such as JP2011-88352A and JP2007-224311A.
  • the amount transferred to the copper foil (1 / ⁇ m 3 ) was referred to the test method described in JP-A-2008-94909.
  • the film having a thickness of 50 ⁇ m obtained by the film forming method was sandwiched between copper foils of the same size and hot-pressed, and then the copper foil was washed with chloroform.
  • the chloroform solution thus obtained was heated to distill off the chloroform to obtain a concentrated residue.
  • the concentration residue on this substrate was measured using a confocal laser microscope (OLS4000) manufactured by OLYMPUS, and measured by analyzing the three-dimensional data.
  • OLS4000 confocal laser microscope
  • a film having a thickness of 50 ⁇ m obtained by the above film forming method is cut into a size of 50 mm ⁇ 5 mm, and a temperature rising rate from a temperature of ⁇ 40 ° C. to 250 ° C. is 4 ° C. using a rheometer RSA3 manufactured by TA Instruments.
  • the temperature at which the storage elastic modulus E ′ was 1.0 ⁇ 10 6 Pa was measured.
  • the storage elastic modulus is the above-mentioned 4-methyl-1-pentene (co) polymer (A), 4-methyl-1-pentene copolymer (B) and ⁇ -olefin polymer (C), and Examples 1 to 7.
  • a 2 mm thick press sheet obtained by the press sheet preparation method described in the measurement of the compositions of Comparative Examples 1 and 2 was cut into 45 mm ⁇ 10 mm ⁇ 2 mm, and a rheometer Physica MCR-301 manufactured by Anton Paar was used. Measure the temperature dependence of dynamic viscoelasticity by loading the torsion mode at a rate of temperature rise of 2 ° C./min from -40 ° C.
  • Test tube-shaped preforms having an outer diameter of 30 mm, a height of 45 mm, and a weight of about 30 g are injection-molded under the conditions, and the resulting preform is put into a heating pot and heated to a predetermined temperature to become a hollow container of about 240 cc.
  • blow molding was performed at a blow primary pressure of 0.4 MPa and a secondary pressure of 0.9 MPa.
  • the autoclave was heated to an internal temperature of 60 ° C. and pressurized with propylene so that the total pressure became 0.15 MPa (gauge pressure). Subsequently, 1 mmol of methylaluminoxane prepared in advance, diphenylmethylene (1-ethyl-3-t-butyl-cyclopentadienyl) (2,7-di-t-butyl-fluorenyl) zirconium prepared in advance. Polymerization was initiated by injecting 0.34 ml of a toluene solution containing 0.005 mmol of dichloride into an autoclave with nitrogen. During the polymerization reaction, the temperature was adjusted so that the internal temperature of the autoclave was 60 ° C. Sixty minutes after the start of polymerization, 5 ml of methanol was pressed into the autoclave with nitrogen to stop the polymerization, and the autoclave was depressurized to atmospheric pressure. Acetone was poured into the reaction solution with stirring.
  • the obtained powdery polymer containing the solvent was dried at 130 ° C. under reduced pressure for 12 hours.
  • the obtained polymer was 45.9 g, and the 4-methyl-1-pentene content in the polymer was 92 mol% and the propylene content was 8 mol%.
  • the melting point (T m ) of the polymer was 180 ° C., and the intrinsic viscosity [ ⁇ ] was 1.7 dl / g. Table 1 shows the measurement results of various physical properties.
  • the autoclave was heated to an internal temperature of 60 ° C. and pressurized with propylene so that the total pressure was 0.19 MPa (gauge pressure).
  • methylaluminoxane prepared in advance, 1 mmol in terms of Al, diphenylmethylene (1-ethyl-3-t-butyl-cyclopentadienyl) (2,7-di-t-butyl-fluorenyl) zirconium Polymerization was initiated by injecting 0.34 ml of a toluene solution containing 0.01 mmol of dichloride into the autoclave with nitrogen. During the polymerization reaction, the temperature was adjusted so that the internal temperature of the autoclave was 60 ° C. Sixty minutes after the start of polymerization, 5 ml of methanol was injected into the autoclave with nitrogen to stop the polymerization, and the autoclave was depressurized to atmospheric pressure. Acetone was poured into the reaction solution with stirring.
  • the obtained powdered polymer containing the solvent was dried at 100 ° C. under reduced pressure for 12 hours.
  • the obtained polymer was 44.0 g, and the 4-methyl-1-pentene content in the polymer was 84 mol% and the propylene content was 16 mol%.
  • the melting point (T m ) of the polymer was 131 ° C., and the intrinsic viscosity [ ⁇ ] was 1.4 dl / g. Table 1 shows the measurement results of various physical properties.
  • the autoclave was heated to an internal temperature of 60 ° C. and pressurized with propylene so that the total pressure was 0.40 MPa (gauge pressure). Subsequently, 1 mmol of methylaluminoxane prepared in advance, diphenylmethylene (1-ethyl-3-t-butyl-cyclopentadienyl) (2,7-di-t-butyl-fluorenyl) zirconium prepared in advance. Polymerization was initiated by injecting 0.34 ml of a toluene solution containing 0.01 mmol of dichloride into an autoclave with nitrogen. During the polymerization reaction, the temperature was adjusted so that the internal temperature of the autoclave was 60 ° C. Sixty minutes after the start of polymerization, 5 ml of methanol was pressed into the autoclave with nitrogen to stop the polymerization, and the autoclave was depressurized to atmospheric pressure. Acetone was poured into the reaction solution with stirring.
  • the powdered polymer containing the obtained solvent was dried at 100 ° C. under reduced pressure for 12 hours.
  • the obtained polymer was 36.9 g, and the 4-methyl-1-pentene content in the polymer was 74 mol% and the propylene content was 26 mol%.
  • the intrinsic viscosity [ ⁇ ] was 1.6 dl / g and showed no melting point. Table 1 shows the measurement results of various physical properties.
  • Example 1 20 parts by weight of the copolymer (A-3) and 80 parts by weight of the copolymer (B1-2) obtained in Synthesis Example 2-2 were mixed, and 100 parts by weight of the composition was mixed. 0.1 parts by weight of tri (2,4-di-t-butylphenyl) phosphate as a secondary antioxidant and n-octadecyl-3- (4′-hydroxy-3 ′, 5 as a heat stabilizer 0.1 parts by weight of '-di-t-butylphenyl) propinate and 0.1 parts by weight of calcium stearate as a hydrochloric acid absorbent were blended.
  • Example 2 70 parts by weight of the copolymer (A-2) and 30 parts by weight of the copolymer (B1-2) obtained in Synthesis Example 2-2 were mixed, and 100 parts by weight of the composition was mixed. The same amount of secondary antioxidant, heat resistance stabilizer and hydrochloric acid absorbent as in Example 1 were blended and extrusion granulated under the same conditions to obtain pellets for evaluation. Various physical properties obtained by injection molding or press molding the pellets under the above conditions are shown in Table 3. It turns out that it is excellent in transparency, heat resistance, and elongation.
  • Example 3 40 parts by weight of the copolymer (A-1) and 60 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1 were mixed, and 100 parts by weight of the composition was mixed. The same amount of secondary antioxidant, heat resistance stabilizer and hydrochloric acid absorbent as in Example 1 were blended and extrusion granulated under the same conditions to obtain pellets for evaluation. Various physical properties obtained by injection molding or press molding the pellets under the above conditions are shown in Table 3. It turns out that it is excellent in transparency, heat resistance, and elongation.
  • Example 4 85 parts by weight of the copolymer (A-2) and 15 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1 were mixed, and with respect to 100 parts by weight of the composition, The same amount of secondary antioxidant, heat resistance stabilizer and hydrochloric acid absorbent as in Example 1 were blended and extrusion granulated under the same conditions to obtain pellets for evaluation.
  • Table 3 Various physical properties obtained by injection molding or press molding the pellets under the above conditions are shown in Table 3. It turns out that it is excellent in transparency, heat resistance, and elongation.
  • Example 5 60 parts by weight of the copolymer (A-1), 10 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1, and the copolymer polymerized in Synthesis Example 3 ( B2) 30 parts by weight are mixed, 100 parts by weight of the composition is blended with the same amount of secondary antioxidant, heat stabilizer and hydrochloric acid absorbent as in Example 1 and extruded under the same conditions.
  • the pellet for evaluation was obtained by granulation.
  • Table 3 Various physical properties obtained by injection molding or press molding the pellets under the above conditions are shown in Table 3. It turns out that it is excellent in transparency, heat resistance, and elongation.
  • Example 6 60 parts by weight of the copolymer (A-2), 10 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1, and the copolymer obtained in Synthesis Example 3 (B2) 30 parts by weight is mixed, and 100 parts by weight of the composition is blended with the same amount of secondary antioxidant, heat-resistant stabilizer, and hydrochloric acid absorbent as in Example 1, and under the same conditions.
  • the pellet for evaluation was obtained by extrusion granulation.
  • Table 3 Various physical properties obtained by injection molding or press molding the pellets under the above conditions are shown in Table 3. It turns out that it is excellent in transparency, heat resistance, and elongation.
  • Example 7 70 parts by weight of the copolymer (A-2), 15 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1, and 15 parts by weight of the ⁇ -olefin polymer (C-2) The same amount of secondary antioxidant, heat stabilizer and hydrochloric acid absorbent as in Example 1 are blended with 100 parts by weight of the composition, and extrusion granulation is performed under the same conditions. An evaluation pellet was obtained. Various physical properties obtained by injection molding or press molding the pellets under the above conditions are shown in Table 3. It turns out that it is excellent in heat resistance and elongation.
  • Table 3 shows various physical properties of the pellets obtained by injection molding or press molding of the ⁇ -olefin polymer (C-4) under the above conditions. It turns out that it is a result inferior to transparency and heat resistance compared with the result of the said Example.
  • Table 3 shows various physical properties obtained by injection-molding or press-molding the pellets under the above conditions using the copolymer (A-3). It turns out that it is a result inferior to elongation compared with the result of the said Example.
  • Example 8 80 parts by weight of the copolymer (A-2) and 20 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1 were mixed, and with respect to 100 parts by weight of the composition, 0.1 parts by weight of tri (2,4-di-t-butylphenyl) phosphate as a secondary antioxidant and n-octadecyl-3- (4′-hydroxy-3 ′, 5 as a heat stabilizer 0.1 parts by weight of '-di-t-butylphenyl) propinate and 0.1 parts by weight of calcium stearate as a hydrochloric acid absorbent were blended.
  • Example 9 40 parts by weight of the copolymer (A-2) and 60 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1 were mixed, and 100 parts by weight of the composition was mixed. The same amount of secondary antioxidant, heat resistance stabilizer and hydrochloric acid absorbent as in Example 8 were blended and extrusion granulated under the same conditions to obtain pellets for evaluation. Table 4 shows measurement results of various physical properties of the film obtained by molding the pellets under the above conditions. It turns out that it is excellent in transparency and heat resistance.
  • Example 10 80 parts by weight of the copolymer (A-2) and 20 parts by weight of the copolymer (B1-2) obtained in Synthesis Example 2-2 were mixed, and 100 parts by weight of the composition was mixed. The same amount of secondary antioxidant, heat resistance stabilizer and hydrochloric acid absorbent as in Example 8 were blended and extrusion granulated under the same conditions to obtain pellets for evaluation. Table 4 shows measurement results of various physical properties of the film obtained by molding the pellets under the above conditions. It turns out that it is excellent in transparency and heat resistance.
  • Example 11 80 parts by weight of the copolymer (A-1) and 20 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1 were mixed, and with respect to 100 parts by weight of the composition, The same amount of secondary antioxidant, heat resistance stabilizer and hydrochloric acid absorbent as in Example 8 were blended and extrusion granulated under the same conditions to obtain pellets for evaluation.
  • Table 4 shows measurement results of various physical properties of the film obtained by molding the pellets under the above conditions. It turns out that it is excellent in transparency and heat resistance.
  • Example 12 40 parts by weight of the copolymer (A-1) and 60 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1 were mixed, and 100 parts by weight of the composition was mixed. The same amount of secondary antioxidant, heat resistance stabilizer and hydrochloric acid absorbent as in Example 8 were blended and extrusion granulated under the same conditions to obtain pellets for evaluation. Table 4 shows measurement results of various physical properties of the film obtained by molding the pellets under the above conditions. It turns out that it is excellent in transparency and heat resistance.
  • Example 13 60 parts by weight of the copolymer (A-1), 10 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1, and the copolymer (B2) obtained in Synthesis Example 3 ) Mix 30 parts by weight, mix 100 parts by weight of the composition with the same amount of secondary antioxidant, heat stabilizer and hydrochloric acid absorbent as in Example 8 and extrude under the same conditions.
  • the pellet for evaluation was obtained by granulation.
  • Table 4 shows measurement results of various physical properties of the film obtained by molding the pellets under the above conditions. It turns out that it is excellent in heat resistance and stretchability.
  • Example 14 60 parts by weight of the copolymer (A-2), 10 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1, and the copolymer (B2) obtained in Synthesis Example 3 ) Mix 30 parts by weight, mix 100 parts by weight of the composition with the same amount of secondary antioxidant, heat stabilizer and hydrochloric acid absorbent as in Example 8 and extrude under the same conditions.
  • the pellet for evaluation was obtained by granulation.
  • Table 4 shows measurement results of various physical properties of the film obtained by molding the pellets under the above conditions. It turns out that it is excellent in heat resistance and stretchability.
  • Example 15 70 parts by weight of the copolymer (A-2), 15 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1 and 15 parts by weight of the ⁇ -olefin polymer (C-2) Mix, mix 100 parts by weight of the composition with the same amount of secondary antioxidant, heat stabilizer and hydrochloric acid absorbent as in Example 8, and extrude granulate under the same conditions for evaluation. Pellets were obtained. Table 4 shows measurement results of various physical properties of the film obtained by molding the pellets under the above conditions. It turns out that it is excellent in heat resistance and stretchability.
  • Example 16 60 parts by weight of the copolymer (A-1), 10 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1 and 30 parts by weight of an ⁇ -olefin polymer (C-3)
  • 100 parts by weight of the composition was mixed with the same amount of secondary antioxidant, heat resistance stabilizer and hydrochloric acid absorbent as in Example 8, and extruded and granulated under the same conditions for evaluation. Pellets were obtained.
  • Table 4 shows the measurement results of various physical properties of the film obtained by molding the pellets under the above conditions. It can be seen that it has excellent electrical properties and stretchability.
  • Table 5 shows measurement results of various physical properties of films obtained by molding the pellets under the above conditions using the ⁇ -olefin polymer (C-4). It turns out that it is a result inferior to transparency and heat resistance compared with the result of the said Example.
  • Table 5 shows the measurement results of various physical properties of films obtained by molding the pellets under the above conditions using the polymer (A-1). It turns out that it is a result inferior to film stretchability compared with the result of the said Example.
  • Table 5 shows the measurement results of various physical properties of films obtained by molding the pellets under the above conditions using the polymer (A-2). It turns out that it is a result inferior to film stretchability compared with the result of the said Example.
  • Example 17 70 parts by weight of the copolymer (A-3) and 30 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1 were mixed, and with respect to 100 parts by weight of the composition, The same amount of secondary antioxidant, heat resistance stabilizer and hydrochloric acid absorbent as in Example 8 were blended and extrusion granulated under the same conditions to obtain pellets for evaluation.
  • Table 6 shows the results of measuring various physical properties of films obtained by molding the pellets under the above conditions. It can be seen that the molding temperature can be lowered and the amount of transition to copper foil is small.
  • Example 18 50 parts by weight of the copolymer (A-3) and 50 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1 were mixed, and 100 parts by weight of the composition was mixed. The same amount of secondary antioxidant, heat resistance stabilizer and hydrochloric acid absorbent as in Example 8 were blended and extrusion granulated under the same conditions to obtain pellets for evaluation. Table 6 shows the results of measuring various physical properties of films obtained by molding the pellets under the above conditions. It can be seen that the molding temperature can be lowered and the amount of transition to copper foil is small.
  • Example 19 30 parts by weight of the copolymer (A-3) and 70 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1 were mixed, and with respect to 100 parts by weight of the composition, The same amount of secondary antioxidant, heat resistance stabilizer and hydrochloric acid absorbent as in Example 8 were blended and extrusion granulated under the same conditions to obtain pellets for evaluation.
  • Table 6 shows the results of measuring various physical properties of films obtained by molding the pellets under the above conditions. It can be seen that the molding temperature can be lowered and the amount of transition to copper foil is small.
  • Example 20 90 parts by weight of the copolymer (A-1) and 10 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1 were mixed, and with respect to 100 parts by weight of the composition, The same amount of secondary antioxidant, heat resistance stabilizer and hydrochloric acid absorbent as in Example 8 were blended and extrusion granulated under the same conditions to obtain pellets for evaluation.
  • Table 7 shows the measurement results of various physical properties of films obtained by molding the pellets by the film forming method.
  • Example 21 70 parts by weight of the copolymer (A-1) and 30 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1 were mixed, and with respect to 100 parts by weight of the composition, The same amount of secondary antioxidant, heat resistance stabilizer and hydrochloric acid absorbent as in Example 8 were blended and extrusion granulated under the same conditions to obtain pellets for evaluation.
  • Table 7 shows the measurement results of various physical properties of films obtained by molding the pellets by the film forming method.
  • Table 7 shows the measurement results of various physical properties of the film obtained in the same manner as in Example 21, except that the film forming conditions were changed to the conditions shown in Table 7.
  • Example 24 50 parts by weight of the copolymer (A-1) and 50 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1 were mixed, and 100 parts by weight of the composition was mixed. The same amount of secondary antioxidant, heat resistance stabilizer and hydrochloric acid absorbent as in Example 8 were blended and extrusion granulated under the same conditions to obtain pellets for evaluation. Table 7 shows the measurement results of various physical properties of films obtained by molding the pellets by the film forming method.
  • Table 7 shows measurement results of various physical properties of TPX (registered trademark) film “Opyran X44B” (film thickness: 100 ⁇ m) manufactured by Mitsui Chemicals, Inc. It can be seen that the shrinkage is larger than the films of the present invention shown in Examples 20-24.
  • Table 7 shows measurement results of various physical properties of Mitsui Chemicals Tosero Co., Ltd. TPX (registered trademark) film “Opylan X44B” after heating in an oven at 180 ° C. for 1 hour. Although it is excellent in that the shrinkage ratio is reduced as compared with Comparative Example 8, wrinkles and warpage were generated by heat treatment, and the appearance was remarkably deteriorated.
  • TPX registered trademark
  • Example 25 70 parts by weight of the copolymer (A-2) and 30 parts by weight of the copolymer (B1-2) obtained in Synthesis Example 2-2 were mixed, and 100 parts by weight of the composition was mixed. 0.1 parts by weight of tri (2,4-di-t-butylphenyl) phosphate as a secondary antioxidant and n-octadecyl-3- (4′-hydroxy-3 ′, 5 as a heat stabilizer 0.1 parts by weight of '-di-t-butylphenyl) propinate and 0.1 parts by weight of calcium stearate as a hydrochloric acid absorbent were blended.
  • Example 26 40 parts by weight of the copolymer (A-1) and 60 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1 were mixed, and 100 parts by weight of the composition was mixed. The same amount of secondary antioxidant, heat resistance stabilizer and hydrochloric acid absorbent as in Example 25 were blended and extruded and granulated under the same conditions to obtain pellets for evaluation.
  • Table 8 shows various physical properties obtained by injection molding, press molding, and injection blow molding of the pellets under the above conditions. It turns out that it is excellent in blow moldability, transparency, and heat resistance.
  • Example 27 85 parts by weight of the copolymer (A-2) and 15 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1 were mixed, and with respect to 100 parts by weight of the composition, The same amount of secondary antioxidant, heat resistance stabilizer and hydrochloric acid absorbent as in Example 25 were blended and extruded and granulated under the same conditions to obtain pellets for evaluation.
  • Table 8 shows various physical properties obtained by injection molding, press molding, and injection blow molding of the pellets under the above conditions. It turns out that it is excellent in blow moldability, transparency, and heat resistance.
  • Example 28 30 parts by weight of the copolymer (A-2) and 70 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1 were mixed, and with respect to 100 parts by weight of the composition, The same amount of secondary antioxidant, heat resistance stabilizer and hydrochloric acid absorbent as in Example 25 were blended and extruded and granulated under the same conditions to obtain pellets for evaluation.
  • Table 8 shows various physical properties obtained by injection molding, press molding, and injection blow molding of the pellets under the above conditions. It turns out that it is excellent in blow moldability, transparency, and heat resistance.
  • Example 29 70 parts by weight of the copolymer (A-2), 15 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1, and the copolymer obtained in Synthesis Example 3 ( B2) Mixing 15 parts by weight, mixing 100 parts by weight of the composition with the same amount of secondary antioxidant, heat stabilizer and hydrochloric acid absorbent as in Example 25 and extruding under the same conditions
  • the pellet for evaluation was obtained by granulation.
  • Table 8 shows various physical properties obtained by injection molding, press molding, and injection blow molding of the pellets under the above conditions. It turns out that it is excellent in blow moldability, transparency, and heat resistance.
  • Example 30 18 parts by weight of the copolymer (A-2), 42 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1, and the copolymer obtained in Synthesis Example 3 ( B2) 40 parts by weight was mixed, 100 parts by weight of the composition was blended with the same amount of secondary antioxidant, heat stabilizer and hydrochloric acid absorbent as in Example 25, and extruded under the same conditions.
  • the pellet for evaluation was obtained by granulation.
  • Table 8 shows various physical properties obtained by injection molding, press molding, and injection blow molding of the pellets under the above conditions. It turns out that it is excellent in blow moldability, transparency, and heat resistance.
  • Example 31 56 parts by weight of the copolymer (A-2), 24 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1, and the copolymer (B2) polymerized in Synthesis Example 3 ) 20 parts by weight was mixed, and 100 parts by weight of the composition was blended with the same amount of secondary antioxidant, heat stabilizer and hydrochloric acid absorbent as in Example 25, and extruded under the same conditions.
  • the pellet for evaluation was obtained by granulation.
  • Table 8 shows various physical properties obtained by injection molding, press molding, and injection blow molding of the pellets under the above conditions. It turns out that it is excellent in blow moldability, transparency, and heat resistance.
  • Example 32 42 parts by weight of the copolymer (A-2), 18 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1, and the copolymer obtained in Synthesis Example 3 ( B2) 40 parts by weight was mixed, 100 parts by weight of the composition was blended with the same amount of secondary antioxidant, heat stabilizer and hydrochloric acid absorbent as in Example 25, and extruded under the same conditions.
  • the pellet for evaluation was obtained by granulation.
  • Table 8 shows various physical properties obtained by injection molding, press molding, and injection blow molding of the pellets under the above conditions. It turns out that it is excellent in blow moldability, transparency, and heat resistance.
  • Example 33 24 parts by weight of the copolymer (A-2), 56 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1, and 20 parts by weight of an ⁇ -olefin copolymer (C-1) The same amount of secondary antioxidant, heat stabilizer and hydrochloric acid absorbent as in Example 25 are blended with 100 parts by weight of the composition, and extrusion granulation is performed under the same conditions. An evaluation pellet was obtained. Table 9 shows various physical properties obtained by injection molding, press molding, and injection blow molding of the pellets under the above conditions. It turns out that it is excellent in blow moldability, transparency, and heat resistance.
  • Example 34 24 parts by weight of the copolymer (A-2) and 57 parts by weight of the copolymer (B1-2) obtained in Synthesis Example 2-2 and the copolymer (B2) obtained in Synthesis Example 3 ) 14 parts by weight and 5 parts by weight of ⁇ -olefin polymer (C-2) are mixed, and 100 parts by weight of the composition is the same amount of the secondary antioxidant, heat resistance stabilizer as in Example 25, A hydrochloric acid absorbent was blended and extrusion granulated under the same conditions to obtain pellets for evaluation.
  • Table 9 shows various physical properties obtained by injection molding, press molding, and injection blow molding of the pellets under the above conditions. It turns out that it is excellent in blow moldability and heat resistance.
  • Example 35 60 parts by weight of the copolymer (A-2), 10 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1, and the copolymer (B2) obtained in Synthesis Example 3 ) 30 parts by weight, 100 parts by weight of the composition is blended with the same amount of secondary antioxidant, heat stabilizer and hydrochloric acid absorbent as in Example 25 and extruded under the same conditions.
  • the pellet for evaluation was obtained by granulation.
  • Table 9 shows various physical properties obtained by injection molding, press molding, and injection blow molding of the pellets under the above conditions. It turns out that it is excellent in blow moldability, transparency, and heat resistance.
  • Example 36 Synthesis with 15 parts by weight of the copolymer (A-3), 45 parts by weight of the copolymer (A-2) and 10 parts by weight of the copolymer (B1-1) obtained in Synthesis Example 2-1. 30 parts by weight of the copolymer (B2) obtained in Example 3 was mixed, and the same amount of secondary antioxidant, heat-resistant stabilizer as in Example 25 with respect to 100 parts by weight of the composition, A hydrochloric acid absorbent was blended and extrusion granulated under the same conditions to obtain pellets for evaluation.
  • Table 9 shows various physical properties obtained by injection molding, press molding, and injection blow molding of the pellets under the above conditions. It turns out that it is excellent in blow moldability, transparency, and heat resistance.
  • Table 9 shows various physical properties obtained by injection molding, press molding, and injection blow molding of the pellets using the ⁇ -olefin polymer (C-4) under the above conditions. It turns out that it is a result inferior to the result of the said Example in transparency and heat resistance.
  • Table 9 shows various physical properties obtained by injection molding, press molding, and injection blow molding of the pellets under the above conditions using the copolymer (A-3). It turns out that it is a result inferior to blow moldability compared with the result of the said Example.
  • Table 9 shows various physical properties obtained by injection molding, press molding, and injection blow molding of the pellets under the above conditions using the copolymer (B1-1) obtained in Synthesis Example 2-1. It turns out that it is a result inferior to blow moldability compared with the result of the said Example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

透明性、耐熱性に優れ、さらに伸びや靭性に優れた4-メチル-1-ペンテン・オレフィン(共)重合体組成物を提供すること、該組成物からなる成形体、さらに、透明性、耐熱性、寸法安定性に優れ、均一に延伸がなされた、該組成物からなるフィルム、透明性、耐熱性、靭性に優れ、さらに寸法安定性に優れた、該組成物からなる中空成形体を提供することにある。本発明の4-メチル-1-ペンテン(共)重合体組成物は、特定の4-メチル-1-ペンテン(共)重合体(A)および特定の4-メチル-1-ペンテン・α-オレフィン共重合体(B)を特定の割合で含んでなる。

Description

4-メチル-1-ペンテン(共)重合体組成物、該組成物からなるフィルムおよび中空成形体
 本発明は、透明性と耐熱性に優れ、さらに伸び・靭性に優れた成形体を与える4-メチル-1-ペンテン(共)重合体組成物、およびこれから得られる成形体、具体的には、均一に延伸されたフィルムや、寸法安定性に優れた中空成形体に関する。
 4-メチル-1-ペンテン(共)重合体はポリエチレンやポリプロピレンに比べて、耐熱性、透明性、軽量性、耐スチーム性、離型性、ガス透過性、電気特性など優れた特徴有した樹脂として、食品容器、電子・情報部材用副資材、実験器具、文房具、架橋用工程部材、離型フィルム、電子・情報部材用フィルム、食品包材、合成紙など様々な分野で利用されている。
 しかし、該(共)重合体は一般的に、伸びや靭性、延伸性に乏しく、例えば同じポリオレフィンであるポリエチレンやポリプロピレンと比較して適用可能な用途に制約があるのが実状である。また、一般的に延伸性に乏しいため、例えば、延伸フィルムを製造したりブロー成形や真空成形を行なったりすることが、同じポリオレフィンであるポリエチレンやポリプロピレンと比較して困難であり、使用できる範囲が限られていた。
 これに対し、4-メチル-1-ペンテン(共)重合体の靭性や伸びを改良する目的で様々な検討を試みられている。
 例えば、特許文献1では4-メチル-1-ペンテンと1-ヘキセンとが特定の割合で共重合された重合体からなるラップフィルムを検討している。この場合、フィルムの透明性、伸びは向上するものの、4-メチル-1-ペンテン重合体の特徴である耐熱性が低下する傾向があった。
 また、特許文献2では耐熱性、伸びと柔軟性に優れる4-メチル-1-ペンテン系重合体を含む熱可塑性エラストマーからなるホースが開示されている。このホースは、組成物中に架橋ゴムが存在しているため、透明性が損なわれる傾向がある。
 また、特許文献3、特許文献4では靭性や伸びに富むポリエステルやポリアミドと4-メチル-1-ペンテン重合体を含む組成物とを積層化することでフィルムの伸びを付与している。無極性のポリオレフィンと、極性樹脂であるポリエステルやポリアミドを多層化しているため、層間剥離が起こることが予想される。それを抑制するために接着樹脂を併用すると、成形方法、成形装置が複雑になり、製造コスト高を招くと考えられ、透明性の低下も懸念される。
 上記の従来の技術は、4-メチル-1-ペンテンとオレフィンとの共重合において、オレフィンの種類や4-メチル-1-ペンテンとの比率を調整した共重合体や、種々の改質剤との組成物を得たり、他のシートやフィルムとの積層化で、靭性や伸びを付与したりするものであって、4-メチル-1-ペンテン重合体の特徴である耐熱性、透明性、機械特性のバランスが維持できない場合があった。
 また、従来、4-メチル-1-ペンテン(共)重合体の延伸性を改良する目的で様々な検討を試みられている。
 例えば、特許文献5では、4-メチル-1-ペンテン系重合体樹脂に、液体の炭化水素化合物を配合している。この場合、製造したシートがブロッキングしたり、加熱した場合に炭化水素化合物のブリードアウトが発生したりすることがある。
 特許文献6では高流動性の4-メチル-1-ペンテン系重合体樹脂と、低流動性の4-メチル-1-ペンテン系重合体樹脂を特定の条件で混合している。この場合、低流動性の該重合体樹脂の分散不良や混合物の流動性が低くなるため、成形時にメルトフラクチャーやサージングなどの流動不良が起こる。さらに流動性から使用される成形方法も限られる。
 特許文献7では延伸しやすいポリエチレンまたはポリプロピレンを多層化して4-メチル-1-ペンテン(共)重合体フィルムの1軸延伸性を付与している。この場合、延伸後の剥離が必要であり、均一で薄いフィルムを得ることは困難である。
 上記従来の技術では、4-メチル-1-ペンテン(共)重合体に延伸性を付与するために、該(共)重合体へ流動性改善を目的とした改質材として低分子量化合物や高流動性樹脂を最大30wt%の範囲で添加したり、多層化などの成形加工方法を工夫したりするというものであって、効果が添加量や成形条件によって制限されることや、樹脂そのものの延伸性を改善しようとするものではなかった。
 さらに、樹脂製容器の原材料としては、ポリエチレン、ポリプロピレンなどのポリオレフィン及びポリエチレンテレフタレートなどのポリエステルが主に使用されている。
 例えば、ポリエチレン、ポリプロピレンなどのポリオレフィンは、液体容器・ボトル、燃料タンクなどに広く使用されており、射出成型やブロー成形で成形されるのが一般的である。しかし、該成形体は透明性に劣ることがあった(特許文献8)。
 一方、ポリエチレンテレフタレートなどのポリエステルは、主に飲料水容器として広く使用されており、射出ブロー(以下、インジェクションブローと呼ぶ場合もある)成形で成形されている。この成形方法は、射出成形によりプリフォームと呼ばれる成形体を作製した後、プリフォームを再加熱後ブロー成形して成形体を作製する。しかし、該成形体は透明性に優れるものの、耐熱性に問題があった(特許文献9)。
 ここで、ポリエチレンテレフタレートに耐熱性を付与すべく、ポリカーボネート、ポリエーテルスルフィドなどのエンジニアリングプラスチックなどを添加した系での成形体製造の試みも行われているが、残存モノマーによる衛生性やコストの面から一部の用途にのみ使用が留められている。(特許文献10)
 近年、ポリエチレンテレフタレートの欠点である耐熱性を克服した成形体を得るために、ポリプロピレンを用いた射出ブロー成形体に関する種々の検討が行われている(特許文献11~13)。しかし、ポリプロピレンの場合、成形温度幅が狭いため成型時のハンドリングが困難であることが多いことに加えて、ホモポリプロピレンを使用した場合、透明性が発現し難く、また、ランダムポリプロピレンを使用した場合、耐熱性が低い等、使用可能なポリプロピレン(種類、物性等)が少ないという欠点が存在していた。
 上記の透明性や耐熱性にかかる問題点を解決するために、4-メチル-1-ペンテン系重合体を用いた成形体に関する検討が行われている。しかしながら、従来知られている通常市販されている4-メチル-1-ペンテン系重合体は、必ずしも成形性がよいとは言えない。例えば、ブロー成形により成形体を得る場合、同じポリオレフィンであるポリエチレンやポリプロピレンと比較して、4-メチル-1-ペンテン系重合体は機械的強度や溶融張力が低いことに起因し困難であるという問題があった。
特開2001-172408号公報 WO2002/081958号公報 特開2002-192673号公報 特許第3779471号 特開昭58-191734号公報 特許第3894822号 特許第4489699号 特開平5-245911号公報 特開平5-031792号公報 特開平5-070659号公報 特開平11-255982号公報 特開2003-268044号公報 特開2009-298139号公報
 前記背景技術から鑑みた、本発明が解決しようとする課題は、上記のような点を解決することであって、透明性、耐熱性に優れ、さらに伸びや靭性に優れた4-メチル-1-ペンテン・オレフィン(共)重合体組成物を提供することにある。さらに該組成物からなる成形体、具体的には、透明性、耐熱性、寸法安定性に優れ、均一に延伸がなされた、該組成物からなるフィルム、透明性、耐熱性、靭性に優れ、さらに寸法安定性に優れた、該組成物からなる中空成形体を提供することにある。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、特定の物性を有する、4-メチル-1-ペンテン(共)重合体および4-メチル-1-ペンテン・α-オレフィン共重合体を特定の割合で配合した4-メチル-1-ペンテン(共)重合体組成物が、伸びや靭性に優れ、さらに該組成物からなるフィルムが、透明性、耐熱性、電気特性、機械特性、均一延伸性、寸法安定性に優れ、該組成物からなる中空成形体が透明性、耐熱性、電気特性、機械特性、均一延伸性、寸法安定性に優れることを見出し、本発明を完成するに至った。
 本発明に係る4-メチル-1-ペンテン(共)重合体組成物(X1)は、特定の4-メチル-1-ペンテン(共)重合体(A)10~90重量部と、特定の4-メチル-1-ペンテン共重合体(B1)90~10重量部(ただし、(A)および(B1)の合計を100重量部とする)を含んでなる。
 本発明に係る4-メチル-1-ペンテン(共)重合体組成物(X3)は、特定の4-メチル-1-ペンテン(共)重合体(A)10~90重量部と、特定の4-メチル-1-ペンテン共重合体(B1)および特定の4-メチル-1-ペンテン共重合体(B2)の合計として90~10重量部(ただし、(A)、(B1)および(B2)の合計を100重量部とし、(B1)と(B2)の混合比((B1)/(B2))は、99/1~1/99である)とを含んでなる。
 本発明に係る4-メチル-1-ペンテン(共)重合体組成物(X4)は、特定の4-メチル-1-ペンテン(共)重合体(A)10~85重量部、特定の4-メチル-1-ペンテン共重合体(B1)および特定の4-メチル-1-ペンテン共重合体(B2)の合計として85~10重量部(ただし、(B1)と(B2)の混合比((B1)/(B2))は、99/1~1/99である)およびα-オレフィン重合体(C)(ただし、(A)、(B1)および(B2)とは異なる)3~30重量部(ただし、(A)、(B1)、(B2)および(C)の合計を100重量部とする)を含んでなる、
 本発明に係る4-メチル-1-ペンテン(共)重合体組成物(X5)は、特定の4-メチル-1-ペンテン(共)重合体(A)7~90重量部、特定の4-メチル-1-ペンテン共重合体(B1)90~7重量部およびα-オレフィン重合体(C)(ただし、(A)、(B1)および(B2)とは異なる)0.9~30重量部(ただし、(A)、(B1)および(C)の合計を100重量部とする)を含んでなる。
 本発明に係る4-メチル-1-ペンテン(共)重合体組成物(X6)は、特定の4-メチル-1-ペンテン(共)重合体(A)7~90重量部、特定の4-メチル-1-ペンテン共重合体(B2)90~7重量部およびα-オレフィン重合体(C)(ただし、(A)、(B1)および(B2)とは異なる)0.9~30重量部(ただし、(A)、(B2)および(C)の合計を100重量部とする)を含んでなる。
 本発明のフィルムは、本発明に係る4-メチル-1-ペンテン(共)重合体組成物を含む。該フィルムは、離形フィルムとして好適である。
 本発明の中空成形体は、本発明に係る4-メチル-1-ペンテン(共)重合体組成物を含む。該成形体は、射出ブロー成形法によって得られることが好ましい。
 本発明の4-メチル-1-ペンテン(共)重合体組成物は、透明性、耐熱性、電気特性に優れ、さらに従来市販されている4-メチル-1-ペンテン系重合体では困難であった伸びや靭性を有しているという顕著な効果を奏している。そのため、該組成物は各種成形体に好適に用いることができる。
 該組成物からなるフィルムは、透明性、耐熱性、電気特性、寸法安定性に優れ、さらに従来市販されている4-メチル-1-ペンテン系重合体からなるフィルムでは困難であった均一な延伸がなされているという顕著な効果を奏している。そのため、該組成物からなるフィルムは、産業材、エレクトロニクスの技術分野において好ましく用いることができる。また、本発明のフィルムは、離型性、耐熱性、低アウトガス、銅箔への低汚染性に優れるため、離型フィルム用途に好ましく用いることができる。さらに、該フィルムは離型性、耐熱性、寸法安定性にも優れるため、表面保護フィルム用途に好ましく用いることができる。
 該組成物からなる中空成形体は、透明性、耐熱性、靭性に優れ、さらに寸法安定性に優れるという顕著な効果を奏している。そのため、該組成物からなる中空成形体は、産業材の技術分野において好ましく用いることができる。
 本発明にかかる4-メチル-1-ペンテン(共)重合体組成物、該組成物を含んでなる成形体、特に、フィルム、中空成形体について詳細に説明する。
 尚、本願では共重合のことを重合と言う事があり、共重合体のことを重合体と記載する場合がある。
 [4-メチル-1-ペンテン(共)重合体組成物]
 本発明における4-メチル-1-ペンテン(共)重合体組成物は、異なる2種の4-メチル-1-ペンテン(共)重合体(A)および(B)を含み、必要に応じて、α-オレフィン重合体(C)を含む。該組成物は、下記(a)の要件を満たすことが好ましく、条件に応じて(b)~(h)の要件の一つ以上をさらに満たすことがより好ましい。
 (a)組成物中に含まれる全(共)重合体に由来する4-メチル-1-ペンテンから導かれる構成単位の総量(UX-1)が99モル%~65モル%であり、組成物中に含まれる全(共)重合体に由来する炭素原子数2~20のα-オレフィン(4-メチル-1-ペンテンを除く)から導かれる構成単位の総量(UX-2)が1モル%~35モル%である(ただし、UX-1とUX-2の合計を100モル%とする)。
 (b)厚み2mmの射出角板の内部ヘイズが、通常20.0以下である。
 (c)厚み50μmの試験用フィルムの内部ヘイズが、通常1.0以下にある。
 (d)厚み2mmの試験片を動的粘弾性測定でトーションモードにより測定した貯蔵弾性率(G’)=1.0×106(Pa)となる温度が、通常160℃~250℃の範囲にある。
 (e)厚み50μmフィルムを動的粘弾性測定で引張モードにより測定した貯蔵弾性率(E’)=1.0×106(Pa)となる温度が、通常160℃~250℃の範囲にある。
 (f)ヤング率(引張弾性率)が、通常200~2000MPaの範囲にある。
 (g)グロスが、通常5~150の範囲にある。
 (h)200%引張延伸時の標線間のびの標準偏差が、通常50%以下である。
 以下、(a)~(h)の各要件について説明する。
 <要件(a)>
 本発明における、4-メチル-1-ペンテン(共)重合体組成物は、UX-1を99モル%~65モル%含み、UX-2を1モル%~35モル%で含む。なお、炭素原子数2~20のα-オレフィンとしては、1種類に限定されることなく、2種以上を選択してもよく、複数選択した場合、その構成単位の総量として、上記範囲を満たせばよい。
 ここで、透明性と耐熱性の観点から、UX-1の上限として、好ましくは97モル%であり、より好ましくは95モル%であり、さらにより好ましくは93モル%であり、特に好ましくは91モル%、より特に好ましくは87モル%である。また、UX-1の下限として、好ましくは70モル%であり、より好ましくは72モル%であり、さらにより好ましくは75モル%、特に好ましくは80モル%であり、より特に好ましくは82モル%、最も好ましくは85モル%である。
 一方、UX-2の上限として、好ましくは30モル%であり、より好ましくは28モル%であり、さらにより好ましくは25モル%、特に好ましくは20モル%であり、より特に好ましくは18モル%、最も好ましくは15モル%である。また、UX-2の下限として、好ましくは3モル%、より好ましくは5モル%、さらにより好ましくは7モル%であり、特に好ましくは9モル%、より特に好ましくは13モル%である。
 ここで、UX-1とUX-2の合計は100モル%である。
 該(共)重合体組成物は、4-メチル-1-ペンテンと炭素原子数2~20のα-オレフィン(4-メチル-1-ペンテンを除く)から導かれる構成単位を含むランダム共重合体を含む組成物であっても、4-メチル-1-ペンテン構造単位連鎖と炭素原子数2~20のα-オレフィン(4-メチル-1-ペンテンを除く)から導かれる構成単位連鎖を含むブロック共重合体を含む組成物であってもよい。透明性と耐熱性の観点から、好ましくは4-メチル-1-ペンテンと炭素原子数2~20のα-オレフィンのランダム共重合体を含む組成物である。
 4-メチル-1-ペンテン以外の炭素原子数2~20のα-オレフィンとしては、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-エイコセンなどが好適な例として挙げられる。
 これらのうち、共重合性の観点から好ましくは、エチレン、プロピレン、1-ブテン、1-ヘキセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、1-オクテン、1-デセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン等のα―オレフィンを挙げることができる。さらに好ましくは、エチレン、プロピレン、1-ブテン、1-ヘキセン、1-デセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセンである。
 これらの炭素原子数2~20のα-オレフィンは、単独で、あるいは2種以上組み合わせて用いることができる。
 また、該(共)重合体組成物は、これらの単位の他に、本発明の目的を損なわない範囲で、他の重合性化合物から導かれる単位を含有していてもよい。
 このような他の化合物としては、例えばスチレン、ビニルシクロペンテン、ビニルシクロヘキサン、ビニルノルボルナン等の環状構造を有するビニル化合物;酢酸ビニル等のビニルエステル類;無水マレイン酸等の不飽和有機酸またはその誘導体;ブタジエン、イソプレン、ペンタジエン、2,3-ジメチルブタジエン等の共役ジエン類;1,4-ヘキサジエン、1,6-オクタジエン、2-メチル-1,5-ヘキサジエン、6-メチル-1,5-ヘプタジエン、7-メチル-1,6-オクタジエン、ジシクロペンタジエン、シクロヘキサジエン、ジシクロオクタジエン、メチレンノルボルネン、5-ビニルノルボルネン、5-エチリデン-2-ノルボルネン、5-メチレン-2-ノルボルネン、5-イソプロピリデン-2-ノルボルネン、6-クロロメチル-5-イソプロペンル-2-ノルボルネン、2,3-ジイソプロピリデン-5-ノルボルネン、2-エチリデン-3-イソプロピリデン-5-ノルボルネン、2-プロペニル-2,2-ノルボルナジエン等の非共役ポリエン類などが挙げられる。
 このような他の重合性化合物から導かれる単位は、UX-1とUX-2の合計を100モル%とした場合、好ましくは10モル%以下、より好ましくは5モル%以下、さらに好ましくは3モル%以下の量である。
 <要件(b)>
 本発明における4-メチル-1-ペンテン(共)重合体組成物の厚み2mm射出角板の内部ヘイズが、通常20.0以下であることが好ましい。ここで、内部ヘイズの上限は、19.0、18.0、15.0、12.5、10.0、7.0、5.0、3.0の順番でより好ましい態様となる。また、該(共)重合体組成物は透明性が高いことに優れた効果を見出しているところから、内部ヘイズの下限については、特に規定を要せず、具体的には、0であることが最も望ましい態様であるが、現実的な下限値としては、0.1である。上記内部ヘイズは、混合する組成物の成分より調整することが可能である。内部ヘイズの値が上記範囲にある該(共)重合体組成物は、それぞれの成分がよく相溶しており、透明性に優れる。
 <要件(c)>
 本発明における4-メチル-1-ペンテン(共)重合体組成物から得られる厚み50μmの試験用フィルムの内部ヘイズが、通常1.0以下である。好ましくは0.01~1.0、より好ましくは0.01~0.8である。上記内部ヘイズは混合する組成物の成分より調整することが可能である。内部ヘイズの値が上記範囲にある該(共)重合体組成物は、それぞれの成分がよく相溶しており透明性に優れる。
 <要件(d)>
 本発明における、4-メチル-1-ペンテン(共)重合体組成物から得られる厚み2mm試験片を、動的粘弾性測定でトーションモードにより測定したときの貯蔵弾性率(G’)=1.0×106(Pa)となる温度が、通常160℃~250℃の範囲にあり、好ましくは160℃~240℃、より好ましくは160℃~230℃、さらに好ましくは165℃~225℃である。
 上記温度の範囲は組成物の比率や種類により変化する値であり、耐熱性、伸び、靭性のバランスの指標と考えられる。前記温度の値が上記範囲にある該(共)重合体組成物は、耐熱性と伸びや靭性の観点から好ましい。
 <要件(e)>
 本発明における、4-メチル-1-ペンテン(共)重合体組成物から得られる厚み50μm試験用フィルムを、動的粘弾性測定で引張モードにより測定したときの貯蔵弾性率(E’)=1.0×106(Pa)となる温度は、通常160℃~250℃の範囲にあり、好ましくは160℃~240℃、より好ましくは160℃~230℃、さらに好ましくは165℃~225℃である。上記温度の範囲は組成物の比率や種類により変化する値であり、温度の値が上記範囲にある該(共)重合体組成物からなる成形体は、耐熱性と伸びや靭性の観点から好ましい。
 <要件(f)>
 本発明における、4-メチル-1-ペンテン(共)重合体組成物は、JIS K6781に準拠して、該組成物から得られる厚み50μm試験用フィルムを、引張速度=200mm/minで測定したときのヤング率(引張弾性率)が、通常200~2000MPa、好ましくは200~1800MPa、より好ましくは200~1600MPaである。
 上記範囲は組成物の比率や種類により変化する値であり延伸性の尺度となる。ヤング率が上記範囲にある該(共)重合体組成物は、均一延伸性に優れた成形体を得ることができることから好ましい。
 <要件(g)>
 本発明における、4-メチル-1-ペンテン(共)重合体組成物は、JIS K7105に準拠して、該組成物から得られる厚み50μm試験用フィルムで測定されるグロスが、通常5~150であり、好ましくは60~150であり、より好ましくは60~140であり、さらに好ましくは60~130である。
 上記範囲は組成物の比率や種類により変化する値であり、成形体の表面光沢性の尺度となる。その値が上記範囲にある該(共)重合体組成物は、表面光沢の良い意匠性に富んだ成形体を得ることができることから好ましい。
 <要件(h)>
 本発明における、4-メチル-1-ペンテン(共)重合体組成物から得られるスペシメン(ASTM D638-IV型試験片)を引張速度=200mm/minで200%引張延伸時の標線間のびの標準偏差が、通常50%以下であり、好ましくは1~45%であり、より好ましくは1~40%であり、さらに好ましくは1~35%である。上記範囲は組成物の比率や種類により変化する値であり、成形性の尺度となる。その値が上記範囲にある該(共)重合体組成物を用いると寸法安定性に優れた成形体を成形できることから好ましい。
 さらに、該(共)重合体組成物を用いて後述する射出条件で作製した、スペシメンASTM D638-IV型試験片を引張速度=30mm/minで引張試験を実施したときの引張破断点伸度(EL)が、好ましくは50%以上、より好ましくは70%以上、さらに好ましくは80%以上である。上記の場合、該(共)重合体組成物は、優れた耐熱性と透明性とを有し、さらに伸びに優れる。これは、異なる2種以上の4-メチル-1-ペンテン重合体が、極めて分散性が良いが完全相溶ではない状態にあることをしていると推測される。
 本発明の4-メチル-1-ペンテン(共)重合体組成物は、下記の特徴と有する4-メチル-1-ペンテン(共)重合体(A)1~99重量部と、4-メチル-1-ペンテン共重合体(B)99~1重量部とを含むことが好ましい。(ただし、該(共)重合体(A)と該共重合体(B)との合計が100重量部である。)
 該(共)重合体組成物における、該(共)重合体(A)の含有量の上限は、好ましくは95重量部であり、より好ましくは90重量部であり、さらに好ましくは85重量部、特に好ましくは80重量部である。また、該(共)重合体(A)の含有量の下限は、好ましくは5重量部であり、より好ましくは10重量部であり、さらに好ましくは15重量部、特に好ましくは20重量部である。また、該共重合体(B)の含有量の上限は、好ましくは95重量部であり、より好ましくは90重量部であり、さらに好ましくは85重量部、特に好ましくは80重量部である。また、該(共)重合体(A)の含有量の下限は、好ましくは5重量部であり、より好ましくは10重量部であり、さらに好ましくは15重量部、特に好ましくは20重量部である。このような割合で該(共)重合体(A)および該共重合体(B)を含む(共)重合体組成物は、耐熱性、成形性、機械特性、透明性と伸びや靭性のバランスに優れる点で好ましい。また、該組成物からなる中空成形体はこのような優れた効果を引き継ぎ、耐熱性や透明性に優れ、かつ寸法安定性に優れるため、好ましい。該組成物からなるフィルムはこのような優れた効果を引き継ぎ、耐熱性や透明性に優れ、かつ均一に延伸成形されるため、好ましい。
 <4-メチル-1-ペンテン(共)重合体(A)>
 本発明において、4-メチル-1-ペンテン(共)重合体(A)は、下記要件(A-a)~(A-e)を満たす。
 (A-a)4-メチル-1-ペンテンから導かれる構成単位(U1)が100~90モル%であり、炭素原子数2~20のα-オレフィン(4-メチル-1-ペンテンを除く)から導かれる構成単位の総量(U2)が0~10モル%(4-メチル-1-ペンテンから導かれる構成単位(U1)と炭素原子数2~20のα-オレフィンから導かれる構成単位(U2)との合計は100モル%である)である。
 (A-b)135℃デカリン中で測定した極限粘度[η]が、通常0.5~5.0dl/gである。
 (A-c)DSCで測定した融点(Tm)が、通常200~250℃の範囲にある。
 (A-d)DSCで測定した結晶化温度(Tc)が、通常150~225℃の範囲にある。
 (A-e)密度が、通常820~850kg/m3である。
 以下、(A-a)~(A-e)の各要件について説明する。
 ・要件(A-a)
 本発明において、4-メチル-1-ペンテン(共)重合体(A)の構成は、4-メチル-1-ペンテンから導かれる構成単位(U1)が100~90モル%であり、炭素原子数2~20のα-オレフィン(4-メチル-1-ペンテンを除く)から導かれる構成単位の総量(U2)が0~10モル%である。
 ここで、U1の上限は好ましくは99モル%、より好ましくは98モル%であり、下限は好ましくは91モル%、より好ましくは93モル%、さらに好ましくは94モル%である。U2の上限は好ましくは9モル%、より好ましくは7モル%、さらに好ましくは6モル%であり、下限は好ましくは1モル%、より好ましくは2モル%である(ただし、U1とU2の合計を100モル%とする)。ここで、U1が100モル%(U2が0モル%)とは、該(共)重合体(A)が、4-メチル-1-ペンテンの単独重合体であることを示すものである。
 各構成単位が上記範囲にあると、該(共)重合体(A)を含む重合体組成物の耐熱性と透明性が優れ、さらに伸びや靭性の観点から好ましい。該組成物から得られる中空成形体も、耐熱性と透明性に優れ、かつ寸法安定性に優れるため好ましい。該組成物から得られるフィルムも、耐熱性と透明性に優れ、かつフィルムの成形性に優れるため好ましい。
 該(共)重合体(A)が炭素原子数2~20のα-オレフィン(4-メチル-1-ペンテンを除く)を包含する場合、炭素原子数2~20のα-オレフィンとしては、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-エイコセンなどが好適な例として挙げられる。
 これらのうち、共重合性および得られる共重合体の物性の観点から好ましくは、エチレン、プロピレン、1-ブテン、1-ヘキセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、1-オクテン、1-デセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセンが挙げられ、より好ましくは、エチレン、プロピレン、1-ブテン、1-ヘキセン、1-オクテン、1-デセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセンであり、さらに好ましくは、1-オクテン、1-デセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセンである。
 これらの炭素原子数2~20のα-オレフィンは、単独で、あるいは2種以上組み合わせて用いることができる。
 なお、該(共)重合体(A)は、本発明の目的を損なわない範囲で、その他の重合性化合物由来の構造単位を含んでいてもよい。
 このような他の重合性化合物としては、例えばスチレン、ビニルシクロペンテン、ビニルシクロヘキサン、ビニルノルボルナン等の環状構造を有するビニル化合物;酢酸ビニル等のビニルエステル類;無水マレイン酸等の不飽和有機酸またはその誘導体;ブタジエン、イソプレン、ペンタジエン、2,3-ジメチルブタジエン等の共役ジエン類;1,4-ヘキサジエン、1,6-オクタジエン、2-メチル-1,5-ヘキサジエン、6-メチル-1,5-ヘプタジエン、7-メチル-1,6-オクタジエン、ジシクロペンタジエン、シクロヘキサジエン、ジシクロオクタジエン、メチレンノルボルネン、5-ビニルノルボルネン、5-エチリデン-2-ノルボルネン、5-メチレン-2-ノルボルネン、5-イソプロピリデン-2-ノルボルネン、6-クロロメチル-5-イソプロペンル-2-ノルボルネン、2,3-ジイソプロピリデン-5-ノルボルネン、2-エチリデン-3-イソプロピリデン-5-ノルボルネン、2-プロペニル-2,2-ノルボルナジエン等の非共役ポリエン類などが挙げられる。
 該(共)重合体(A)は、このような他の重合性化合物から導かれる単位を、該(共)重合体(A)に含まれる全ての重合性化合物に由来する構造単位100モル%に対して、10モル%以下、好ましくは5モル%以下、より好ましくは3モル%以下の量で含有していてもよい。
 ・要件(A-b)
 本発明における、4-メチル-1-ペンテン(共)重合体(A)の135℃デカリン中で測定した極限粘度[η]は、通常0.5~5.0dl/gであり、好ましくは1.0~4.0dl/gであり、さらに好ましくは1.2~3.5dl/gである。
 上記、極限粘度[η]の値は、該(共)重合体(A)を製造する際の、重合時の水素の添加量により調整することが可能である。
 極限粘度[η]の値が上記範囲にある該(共)重合体(A)は、樹脂組成物の混合時や各種成形時において良好な流動性を示し、さらに後述する4-メチル-1-ペンテン共重合体(B)と組み合わせた場合に特に靭性に寄与すると考えられる。また該(共)重合体(A)、該組成物から得られる中空成形体およびフィルムは透明性に優れる。
 ・要件(A-c)
 本発明における、4-メチル-1-ペンテン(共)重合体(A)のDSC(示差走査熱量計)で測定した融点(Tm)は、通常200℃~250℃であり、好ましくは210℃~240℃であり、さらに好ましくは215℃~240℃である。
 上記、融点(Tm)の値は、重合体の立体規則性ならびに炭素原子数2~20のα-オレフィン構造単位の含有率に依存する傾向があり、後述するオレフィン重合用立体特異性触媒を用い、さらには炭素原子数2~20のα-オレフィン構造単位の含有率を制御することにより得ることが出来る。
 融点(Tm)の値が上記範囲にある該重合体(A)は、耐熱性と成形性の観点から好ましい。また、中空成形体およびフィルムも耐熱性に優れ、かつ性状も均一で優れたものが得られるため好ましい。
 ・要件(A-d)
 本発明における、4-メチル-1-ペンテン(共)重合体(A)のDSCで測定した結晶化温度(Tc)は、通常150~225℃であり、好ましくは160~223℃であり、さらに好ましくは170~221℃である。
 上記、結晶化温度(Tc)の値は、重合体の立体規則性ならびに炭素原子数2~20のα-オレフィン構造単位の含有率に依存する傾向があり、後述するオレフィン重合用触媒を用い、さらには炭素原子数2~20のα-オレフィン構造単位の含有率を制御することにより得ることができる。
 結晶化温度(Tc)の値が上記範囲にある該(共)重合体(A)、中空成形体およびフィルムは、成形性の観点から好ましい。
 ・要件(A-e)
 本発明における、4-メチル-1-ペンテン(共)重合体(A)の密度は、通常820~850kg/m3であり、好ましくは825~850kg/m3であり、より好ましくは825~845kg/m3、さらに好ましくは825~840kg/m3である。
 上記、密度の値は、4-メチル-1-ペンテンと共に重合する他のα-オレフィンの種類や含有率を選択することにより、調整することが可能である。
 密度の値が上記範囲にある該(共)重合体(A)、中空成形体およびフィルムは、耐熱性の観点から好ましい。
 <4-メチル-1-ペンテン(共)重合体(A)の製造方法>
 本発明における4-メチル-1-ペンテン(共)重合体(A)は、従来公知のオレフィン重合用触媒、例えば、バナジウム系触媒、チタン系触媒、マグネシウム担持型チタン触媒、国際公開第01/53369号パンフレット、国際公開第01/27124号パンフレット、特開平3-193796号公報あるいは特開平02-41303号公報中に記載のメタロセン触媒などを用いて、4-メチル-1-ペンテンと、必要に応じて前記炭素原子数2~20のα-オレフィン(4-メチル-1-ペンテンを除く)や前記その他の重合性化合物を重合することにより得ることができる。
 また、該(共)重合体(A)は、一般的な市販の4-メチル-1-ペンテン系の重合体を用いることができ、例示としては、三井化学株式会社製のTPX(登録商標)を用いることができる。
 <4-メチル-1-ペンテン共重合体(B)>
 本発明において、4-メチル-1-ペンテン共重合体(B)は、下記4-メチル-1-ペンテン共重合体(B1)および4-メチル-1-ペンテン共重合体(B2)から選ばれる少なくとも1種からなることを特徴とする。該共重合体(B)は、該共重合体(B1)および該共重合体(B2)の両方を含むことが好ましい。
 該共重合体(B1)および(B2)について説明する。
 〔4-メチル-1-ペンテン共重合体(B1)〕
 本発明において、4-メチル-1-ペンテン共重合体(B1)は、下記要件(B1-a)~(B1-e)を満たし、好ましくは、さらに要件(B1-f)を満たす。
 (B1-a)4-メチル-1-ペンテンから導かれる構成単位(U3)が99~80モル%であり、炭素原子数2~20のα-オレフィンから導かれる構成単位(U4)の総量が1~20モル%(4-メチル-1-ペンテンから導かれる構成単位(U3)と炭素原子数2~20のα-オレフィン(4-メチル-1-ペンテンを除く)から導かれる構成単位(U4)との合計は100モル%である)である。
 (B1-b)135℃デカリン中で測定した極限粘度[η]が、通常0.5~5.0dl/gである。
 (B1-c)ゲルパーミエーションクロマトグラフィー(GPC)で測定する重量平均分子量(Mw)と数平均分子量(Mn)との比である分子量分布(Mw/Mn)が、通常1.0~3.5である。
 (B1-d)密度が、通常825~860kg/m3である。
 (B1-e)DSCで測定した融点(Tm)が、通常110℃~200℃未満の範囲にある。
 (B1-f)引張り弾性率(YM)が、通常200~2,000(MPa)である。
 以下、(B1-a)~(B1-f)の各要件について説明する。
 ・要件(B1-a)
 本発明において、4-メチル-1-ペンテン共重合体(B1)の構成は、4-メチル-1-ペンテンから導かれる構成単位(U3)が99~80モル%、炭素原子数2~20のα-オレフィン(4-メチル-1-ペンテンを除く)から導かれる構成単位の総量(U4)が1~20モル%である。
 ここで、U3の上限は好ましくは98モル%、より好ましくは97モル%、さらに好ましくは96モル%、さらにより好ましくは95モル%であり、下限は好ましくは82モル%、より好ましくは83モル%である。U4の上限は好ましくは18モル%、より好ましくは17モル%であり、下限は好ましくは2モル%、より好ましくは3モル%、さらに好ましくは4モル%、さらにより好ましくは5モル%である(ただし、U3とU4の合計を100モル%とする)。
 各構成単位が上記範囲にあると、該共重合体(B1)を含む重合体組成物は透明性さらに伸びや靭性や耐熱性の観点から好ましい。該組成物から得られる中空成形体およびフィルムは、透明性および成形性に優れるため好ましい。また、各構成単位が、より好ましい範囲にあると、該共重合体(B1)を含む組成物は、より透明性、伸びや靭性に優れ、特に耐熱性に優れるため、好ましい。
 該共重合体(B1)に含まれる炭素原子数2~20のα-オレフィンとしては、上述した該(共)重合体(A)の説明で挙げたものと同様のものが含まれる。これらのうち、炭素原子数2~4のα-オレフィンが好ましく、具体的には、エチレン、プロピレン、1-ブテンが好適な例として挙げられる。
 これらの炭素原子数2~20のα-オレフィンは、単独で、あるいは2種以上組み合わせて用いることができる。
 これらのうち、共重合性の観点から好ましくは、プロピレンが用いられる。
 なお、該共重合体(B1)は、本発明の目的を損なわない範囲で、その他の重合性化合物由来の構造単位を含んでいてもよい。このような他の重合性化合物としては、上述した該(共)重合体(A)の説明で挙げたものと同様のものが含まれていてもよく、その構造単位の割合も同様の範囲である。
 ・要件(B1-b)
 本発明における、4-メチル-1-ペンテン共重合体(B1)の135℃デカリン中で測定した極限粘度[η]は、通常0.5~5.0dL/gであり、好ましくは1.0~4.0dL/gであり、さらに好ましくは1.2~3.5dL/gである。
 上記極限粘度[η]の値は、該共重合体(B1)を製造する際の、重合時の水素の添加量により調整することが可能である。
 極限粘度[η]の値が上記範囲にある該共重合体(B1)は、樹脂組成物製造時や各種成形時において良好な流動性を示し、さらに前述の該(共)重合体(A)と組み合わせた場合に得られる重合体組成物は良好な伸びや靭性を示し、透明性に優れた成形品が得られる傾向にある。
 ・要件(B1-c)
 本発明における、4-メチル-1-ペンテン共重合体(B1)のゲルパーミエーションクロマトグラフィー(GPC)で測定する重量平均分子量(Mw)と数平均分子量(Mn)との比である分子量分布(Mw/Mn)は、通常1.0~3.5であり、好ましくは1.0~3.0、さらに好ましくは1.5~2.5である。
 上記、分子量分布(Mw/Mn)の値は、後述するオレフィン重合用触媒の種類によって制御調整することが可能である。
 分子量分布(Mw/Mn)の値が上記範囲にある該共重合体(B1)を含む重合体組成物は、相対的に低い分子量成分の含有率が少ない傾向があり、前記低分子量体のブリードアウトによる透明性の低下や、低分子量成分が結晶構造を弱めるような可能性が低下し、機械特性に好ましい影響があると考えられる観点から好ましい。透明性に優れた成形品が得られる傾向にあるため、好ましい。
 ・要件(B1-d)
 本発明における、4-メチル-1-ペンテン共重合体(B1)の密度は、825~860kg/m3であり、好ましくは830~855kg/m3であり、より好ましくは830~850kg/m3、さらに好ましくは830~845kg/m3である。
 上記、密度の値は、4-メチル-1-ペンテンと共に重合する他のα-オレフィンの種類や配合量を選択することにより、調整することが可能である。
 密度の値が上記範囲にある該共重合体(B1)を含む重合体組成物、該組成物から得られる中空成形体、フィルムは、透明性と耐熱性が優れるため、好ましい。
 ・要件(B1-e)
 本発明における、4-メチル-1-ペンテン共重合体(B1)のDSCで測定した融点(Tm)は、通常110~200℃未満であり、好ましくは115~199℃、より好ましく115~197℃であり、さらにより好ましくは120~195℃、特に好ましくは耐熱性と成形性の両立という点から、125~190℃である。
 上記、融点(Tm)の値は、重合体の立体規則性ならびに共に重合するα-オレフィン量に依存して変化する値であり、後述するオレフィン重合用触媒を用いて所望の組成に制御調整することが可能である。
 融点(Tm)の値が上記範囲にある該共重合体(B1)を含む重合体組成物は、透明性と成形性、耐熱性の観点から好ましい。中空成形体およびフィルムも耐熱性に優れ、かつ性状も均一で優れたものが得られるため好ましい。
 該(共)重合体(A)と該共重合体(B1)の融点の差は、(A)と(B1)の相溶性が向上することにより、成形性、機械強度、衝撃強度の向上効果が得られる点から、好ましくは5℃以上、より好ましくは10℃以上、さらに好ましくは20℃以上、特に好ましくは30℃以上、殊に好ましくは35℃以上である。また、該融点の差の上限は、(共)重合体(A)と共重合体(B1)が所望の融点を満たす限り限定されないが、120℃が好ましく、さらに好ましくは110℃である。この様に融点の異なる4-メチル-1-ペンテン重合体は、プロピレン系の重合体と異なり、適度な相溶性を有する傾向があると考えられる。
 ・要件(B1-f)
 本発明における、4-メチル-1-ペンテン共重合体(B)の引張り弾性率(YM)は、好ましくは、200~2,000(MPa)を満たし、好ましくは200MPa~1900MPa、より好ましくは300MPa~1900MPa、さらに好ましくは300MPa~1800MPaである。
 上記、引張り弾性率(YM)の値は、共に重合するオレフィン量に依存して変化する値であり、後述する重合用触媒を用いて、制御調整することが可能である。
 引張り弾性率(YM)の値が上記範囲を満たす該共重合体(B)を含む重合体組成物は、成形性、機械特性の観点から好ましい。また前記の融点の範囲と引張弾性率の範囲とを同時に満たすことは、オレフィンが比較的ランダムに導入された構造である傾向がある事を示唆していると考えられる。
 なお、YMの測定方法などは、実施例を参照できる。
 〔4-メチル-1-ペンテン共重合体(B2)〕
 本発明において、4-メチル-1-ペンテン共重合体(B2)は、下記要件(B2-a)~(B2-e)を満たす。
 (B2-a)4-メチル-1-ペンテンから導かれる構成単位(U5)が80モル%未満~60モル%であり、炭素原子数2~4のα-オレフィン(4-メチル-1-ペンテンを除く)から導かれる構成単位(U6)の総量が20モル%を超えて~40モル%(4-メチル-1-ペンテンから導かれる構成単位(U5)と炭素原子数2~4のα-オレフィンから導かれる構成単位(U6)との合計は100モル%である)である。
 (B2-b)135℃デカリン中で測定した極限粘度[η]が、通常0.5~5.0dl/gである。
 (B2-c)DSCで測定した融点(Tm)が、通常110℃未満または融点が観測されない。
 (B2-d)ゲルパーミエーションクロマトグラフィー(GPC)で測定する重量平均分子量(Mw)と数平均分子量(Mn)との比である分子量分布(Mw/Mn)が、通常1.0~3.5である。
 (B2-e)密度が、通常830~860kg/m3である。
 以下、(B2-a)~(B2-e)の各要件について説明する。
 ・要件(B2-a)
 本発明において、4-メチル-1-ペンテン共重合体(B2)の構成は、4-メチル-1-ペンテンから導かれる構成単位(U5)が80モル%未満~60モル%であり、炭素原子数2~4のα-オレフィン(4-メチル-1-ペンテンを除く)から導かれる構成単位の総量(U6)が20モル%を超えて~40モル%である。
 ここで、U5の上限は、好ましくは79モル%、より好ましく78モル%、さらにより好ましくは75モル%であり、下限は、好ましくは65モル%、より好ましくは68モル%である。U6の上限は、好ましくは35モル%、より好ましくは32モル%であり、下限は、好ましくは21モル%、より好ましくは22モル%、さらにより好ましくは25モル%である(ただし、U5とU6の合計を100モル%とする)。
 各構成単位が上記範囲にある該共重合体(B2)を含む重合体組成物は、より柔軟性に優れる。該組成物から得られる中空成形体は、柔軟性に優れることから耐衝撃性が上がる傾向にあり、例えば落下時に亀裂や破損が起こりにくい。該組成物から得られるフィルムも、柔軟性により優れるため、好ましい。
 該共重合体(B2)に含まれる炭素原子数2~4のα-オレフィンとしては、エチレン、プロピレン、1-ブテンが好適な例として挙げられる。
 これらのうち、共重合性の観点から好ましくは、プロピレンが用いられる。
 これらの炭素原子数2~4のα-オレフィンは、単独で、あるいは2種以上組み合わせて用いることができる。
 なお、該共重合体(B2)は、本発明の目的を損なわない範囲で、その他の重合性化合物由来の構造単位を含んでいてもよい。このような他の重合性化合物としては、上述した該(共)重合体(A)の説明で挙げたものと同様のものが含まれていてもよく、その構造単位の割合も同様の範囲である。
 ・要件(B2-b)
 本発明における、4-メチル-1-ペンテン共重合体(B2)の135℃デカリン中で測定した極限粘度[η]は、通常0.5~5.0dL/gであり、好ましくは1.0~4.0dL/gであり、さらに好ましくは1.2~3.5dL/gである。
 上記極限粘度[η]の値は、該共重合体(B2)を製造する際の、重合時の水素の添加量により調整することが可能である。
 極限粘度[η]の値が上記範囲にある該共重合体(B2)は、樹脂組成物製造時や各種成形時において良好な流動性を示し、さらに前述の該(共)重合体(A)と組み合わせた場合に得られる重合体組成物は、良好な伸びや靭性を示し、透明性に優れる傾向にある。また、中空成形体およびフィルムも透明性に優れ、かつ、成形性にも優れるため、好ましい。
 ・要件(B2-c)
 本発明における、4-メチル-1-ペンテン共重合体(B2)のDSCで測定した融点(Tm)は、通常110℃未満または融点が観測されない。該共重合体(B2)が融点(Tm)を有する場合、その上限は好ましくは100℃、より好ましくは99℃、さらにより好ましくは95℃であるが、特に好ましくは融点が観測されない態様である。なお、下限は特に限定されないが、通常80℃である。
 上記、融点(Tm)の値は、重合体の立体規則性ならびに共に重合するα-オレフィン量に依存して変化する値であり、後述するオレフィン重合用触媒を用いて所望の組成に制御調整することが可能である。
 融点(Tm)の値が上記範囲にある該共重合体(B2)は、透明性と成形性、柔軟性と耐衝撃性の観点から好ましいため、これを含む重合体組成物から得られる成形体も透明性に優れ、さらに成形性も優れる傾向にある。また、中空成形体に柔軟性を付与できる傾向にある。
 前述の該共重合体(B1)と組み合わせた場合、(B1)の耐熱性が高く、また相溶性が良いことから、成形性、機械物性を損ねることなく耐熱性が向上する傾向にあるため、好ましい。
 後述のα-オレフィン共重合体(C)と組み合わせた場合、耐熱性を大幅に低下させることなく、成形性、特に延伸性、ブロー成形性が向上し、また電気特性が良化する傾向にあるため、好ましい。
 ・要件(B2-d)
 本発明における、4-メチル-1-ペンテン共重合体(B2)のゲルパーミエーションクロマトグラフィー(GPC)で測定する重量平均分子量(Mw)と数平均分子量(Mn)との比である分子量分布(Mw/Mn)は、通常1.0~3.5であり、好ましくは1.0~3.0、さらに好ましくは1.5~2.5である。
 上記、分子量分布(Mw/Mn)の値は、後述するオレフィン重合用触媒の種類によって制御調整することが可能である。
 分子量分布(Mw/Mn)の値が上記範囲にある該共重合体(B2)は、透明性、機械特性の観点から好ましいため、これを含む重合体組成物から得られる成形体もより透明性に優れたものが得られる傾向にある。さらに前述の該(共)重合体(A)と組み合わせた場合、(A)の分子量分布が広いことから、成形性が向上する傾向にあり、生産性の向上にも繋がるため好ましい。
 ・要件(B2-e)
 本発明における、4-メチル-1-ペンテン共重合体(B2)の密度は、通常830~860kg/m3であり、好ましくは830~855kg/m3であり、より好ましくは830~850kg/m3、さらに好ましくは830~845kg/m3である。
 上記、密度の値は、4-メチル-1-ペンテンと共に重合する他のα-オレフィンの種類や配合量を選択することにより、調整することが可能である。
 密度の値が上記範囲にある該共重合体(B2)は、透明性と柔軟性の観点から好ましいため、これを含む重合体組成物から得られる成形体もより透明性および柔軟性に優れたものが得られる傾向にある。
 <4-メチル-1-ペンテン共重合体(B)の製造方法>
 本発明における4-メチル-1-ペンテン共重合体(B)は、上述の該(共)重合体(A)の製造方法の項で記載したものと同様のオレフィン重合用触媒の存在下、4-メチル-1-ペンテンと上述した特定のα-オレフィン、さらに必要に応じて前記その他の重合性化合物を重合することにより得ることができる。
 上述のオレフィン重合用触媒のうち、4-メチル-1-ペンテン共重合体(B)を製造するに当たり、好ましい触媒の態様として、メタロセン触媒を挙げることができる。
 好ましいメタロセン触媒としては、上記のとおり、国際公開第01/53369号パンフレット、国際公開第01/27124号パンフレット、特開平3-193796号公報、特開平02-41303号公報中あるいは国際公開第06/025540号パンフレット中に記載のメタロセン触媒が挙げられる。
 本発明において、4-メチル-1-ペンテン共重合体(B)を、メタロセン触媒の存在下、4-メチル-1-ペンテンと特定のα-オレフィンとを用いて製造すると、分子内に導入されるオレフィンが、比較的ランダムに導入される傾向がある。そのような場合、該共重合体(B)は少量のオレフィンで融点が下がる一方で、4-メチル-1-ペンテン単位の連鎖は長くなるため、該(共)重合体(A)との相溶性がよいと考えられる。さらには該(共)重合体(A)と組み合わせた場合に、良い相溶性に由来すると考えられる透明性に優れることに加えて、剛性と融点とのバランスに優れる。また、前記の相溶性の良さに由来すると考えられる伸びの向上もあり、剛性と伸びとのバランスも良好となる傾向があるので好ましい。この特性は、該(共)重合体(A)と該共重合体(B)とは相溶性に優れてはいるが、完全に相溶はしていないためと推測される。このような相溶状体を有する組成物は、各成分の特性をスポイルすることなく高いレベルで両立できると考えられる。
 以下、本発明における4-メチル-1-ペンテン共重合体(B)の製造に好ましく用いられるメタロセン触媒について説明する。
 該共重合体(B)の製造には、
 (α)下記一般式(1)または(2)で表されるメタロセン化合物と、
 (β)(β-1)有機金属化合物
   (β-2)有機アルミニウムオキシ化合物、および
   (β-3)メタロセン化合物(α)と反応してイオン対を形成する化合物、
から選ばれる少なくとも1種の化合物、
さらに必要に応じて、
 (γ)微粒子状担体
から構成されるメタロセン触媒が好適に用いられる。
 〔(α)メタロセン化合物〕
 本発明において、4-メチル-1-ペンテン共重合体(B)の製造に用いられ得るメタロセン化合物としては、下記一般式(1)または(2)で表される化合物が例示できる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 (上記一般式(1)または(2)中、R1~R14で表される置換基は水素原子、炭化水素基、ケイ素含有炭化水素基から選ばれ、それぞれ同一でも異なっていてもよく、R1からR4までの隣接した置換基は互いに結合して環を形成してもよく、R5からR12までの隣接した置換基は互いに結合して環を形成してもよく、Aは一部不飽和結合および/または芳香族環を含んでいてもよい炭素原子数2~20の2価の炭化水素基であり、AはYと共に形成する環を含めて2つ以上の環構造を含んでいてもよく、Mは周期表第4族から選ばれた金属であり、Yは炭素またはケイ素であり、Qはハロゲン、炭化水素基、アニオン配位子または孤立電子対で配位可能な中性配位子から同一または異なる組合せで選んでもよく、jは1~4の整数である。)
 上記一般式(1)または(2)のR1~R14中、炭化水素基としては、好ましくは炭素原子数1~20のアルキル基、炭素原子数7~20のアリールアルキル基、炭素原子数6~20のアリール基、または炭素原子数7~20のアルキルアリール基であり、1つ以上の環構造を含んでいてもよい。また、炭化水素基の一部または全部に水酸基、アミノ基、ハロゲン基、フッ素含有炭化水素基などの官能基で置換されていても良い。具体例としては、メチル、エチル、n-プロピル、イソプロピル、2-メチルプロピル、1,1-ジメチルプロピル、2,2-ジメチルプロピル、1,1-ジエチルプロピル、1-エチル-1-メチルプロピル、1,1,2,2-テトラメチルプロピル、sec-ブチル、tert-ブチル、1,1-ジメチルブチル、1,1,3-トリメチルブチル、ネオペンチル、シクロヘキシルメチル、シクロヘキシル、1-メチル-1-シクロヘキシル、1-アダマンチル、2-アダマンチル、2-メチル-2-アダマンチル、メンチル、ノルボルニル、ベンジル、2-フェニルエチル、1-テトラヒドロナフチル、1-メチル-1-テトラヒドロナフチル、フェニル、ビフェニル、ナフチル、トリル、クロロフェニル、クロロビフェニル、クロロナフチル等が挙げられる。
 上記一般式(1)または(2)のR1~R14中、ケイ素含有炭化水素基としては、好ましくはケイ素原子数1~4かつ炭素原子数3~20のアルキルシリル基またはアリールシリル基であり、その具体例としては、トリメチルシリル、tert-ブチルジメチルシリル、トリフェニルシリル等が挙げられる。
 フルオレン環上のR5からR12までの隣接した置換基は、互いに結合して環を形成してもよい。そのような置換フルオレニル基として、ベンゾフルオレニル、ジベンゾフルオレニル、オクタヒドロジベンゾフルオレニル、オクタメチルオクタヒドロジベンゾフルオレニル等を挙げることができる。
 また、フルオレン環上のR5からR12の置換基は、合成上の容易さから左右対称、すなわちR5=R12、R6=R11、R7=R10、R8=R9であることが好ましく、無置換フルオレン、3,6-二置換フルオレン、2,7-二置換フルオレンまたは2,3,6,7-四置換フルオレンであることがより好ましい。ここでフルオレン環上の3位、6位、2位、7位はそれぞれR7、R10、R6、R11に対応する。
 上記一般式(1)のR13とR14は、水素原子または炭化水素基から選ばれ、それぞれ同一でも異なっていてもよい。好ましい炭化水素基の具体例としては、上記R1~R14と同様のものを挙げることができる。
 Yは炭素原子またはケイ素原子である。一般式(1)の場合は、R13とR14はYと結合し、架橋部として置換メチレン基または置換シリレン基を構成する。好ましい具体例として、例えば、メチレン、ジメチルメチレン、ジイソプロピルメチレン、メチルtert-ブチルメチレン、ジシクロヘキシルメチレン、メチルシクロヘキシルメチレン、メチルフェニルメチレン、フルオロメチルフェニルメチレン、クロロメチルフェニルメチレン、ジフェニルメチレン、ジクロロフェニルメチレン、ジフルオロフェニルメチレン、メチルナフチルメチレン、ジビフェニルメチレン、ジp-メチルフェニルメチレン、メチル-p-メチルフェニルメチレン、エチル-p-メチルフェニルメチレン、ジナフチルメチレンまたはジメチルシリレン、ジイソプロピルシリレン、メチル-tert-ブチルシリレン、ジシクロヘキシルシリレン、メチルシクロヘキシルシリレン、メチルフェニルシリレン、フルオロメチルフェニルシリレン、クロロメチルフェニルシリレン、ジフェニルシリレン、ジp-メチルフェニルシリレン、メチル-p-メチルフェニルシリレン、エチル-p-メチルフェニルシリレン、メチルナフチルシリレン、ジナフチルシリレン等を挙げることができる。
 一般式(2)の場合は、Yは一部不飽和結合および/または芳香族環を含んでいてもよい炭素原子数2~20の2価の炭化水素基Aと結合し、シクロアルキリデン基またはシクロメチレンシリレン基等を構成する。好ましい具体例として、例えば、シクロプロピリデン、シクロブチリデン、シクロペンチリデン、シクロヘキシリデン、シクロヘプチリデン、ビシクロ[3.3.1]ノニリデン、ノルボルニリデン、アダマンチリデン、テトラヒドロナフチリデン、ジヒドロインダニリデン、シクロジメチレンシリレン、シクロトリメチレンシリレン、シクロテトラメチレンシリレン、シクロペンタメチレンシリレン、シクロヘキサメチレンシリレン、シクロヘプタメチレンシリレン等を挙げることができる。
 一般式(1)および(2)のMは、周期表第4族から選ばれる金属であり、Mとしてはチタニウム、ジルコニウム、ハフニウムが挙げられる。
 Qはハロゲン、炭素原子数1~20の炭化水素基、アニオン配位子、または孤立電子対で配位可能な中性配位子から同一または異なる組み合わせで選ばれる。ハロゲンの具体例としては、フッ素、塩素、臭素、ヨウ素であり、炭化水素基の具体例としては、上記と同様のものを挙げることができる。アニオン配位子の具体例としては、メトキシ、tert-ブトキシ、フェノキシ等のアルコキシ基、アセテート、ベンゾエート等のカルボキシレート基、メシレート、トシレート等のスルホネート基等が挙げられる。孤立電子対で配位可能な中性配位子の具体例としては、トリメチルホスフィン、トリエチルホスフィン、トリフェニルホスフィン、ジフェニルメチルホスフィンなどの有機リン化合物、またはテトラヒドロフラン、ジエチルエーテル、ジオキサン、1,2-ジメトキシエタン等のエーテル類が挙げられる。これらのうち、Qは同一でも異なった組み合わせでもよいが、少なくとも一つはハロゲンまたはアルキル基であるのが好ましい。
 本発明における上記メタロセン化合物の具体例として、例えば国際公開第01/27124号パンフレット、国際公開第2006/025540号パンフレットまたは国際公開第2007/308607号パンフレット中に例示される化合物が好適に挙げられるが、特にこれによって本発明の範囲が限定されるものではない。
 〔化合物(β)〕
 化合物(β)は、有機アルミニウム化合物(β-1)、有機アルミニウムオキシ化合物(β-2)、および前記メタロセン化合物(α)と反応してイオン対を形成する化合物(β-3)から選ばれる少なくとも1種の化合物から構成される。
 以下、各成分について具体的に説明する。
 ・(β-1)有機金属化合物
 本発明で必要に応じて用いられる(β-1)有機金属化合物として、具体的には下記のような周期律表第1、2族および第12、13族の有機金属化合物を挙げることができ、例えば以下に説明する(β-1a)、(β-1b)、(β-1c)等が挙げられる。なお、本発明においては、(β-1)有機金属化合物には後述する(β-2)有機アルミニウムオキシ化合物は含まれないものとする。
 (β-1a)一般式Ra mAl(ORbnpqで表される有機アルミニウム化合物。
(式中、RaおよびRbは、互いに同一でも異なっていてもよい炭素原子数が1~15、好ましくは1~4の炭化水素基を示し、Xはハロゲン原子を示し、mは0<m≦3、nは0≦n<3、pは0≦p<3、qは0≦q<3の数であり、かつm+n+p+q=3である)
 (β-1b)一般式M2AlRa 4で表される周期律表第1族金属とアルミニウムとの錯アルキル化物。
(式中、M2はLi、NaまたはKを示し、Raは炭素原子数が1~15、好ましくは1~4の炭化水素基を示す)
 (β-1c)一般式Rab3で表される周期律表第2族または12族金属のジアルキル化合物。
(式中、RaおよびRbは、互いに同一でも異なっていてもよい炭素原子数が1~15、好ましくは1~4の炭化水素基を示し、M3はMg、ZnまたはCdである)
 前記の(β-1a)に属する有機アルミニウム化合物としては、次のような化合物を例示できる。
 一般式Ra mAl(ORb3-m(式中、RaおよびRbは、互いに同一でも異なっていてもよい炭素原子数が1~15、好ましくは1~4の炭化水素基を示し、mは、好ましくは1.5≦m≦3の数である。)で表される有機アルミニウム化合物、一般式Ra mAlX3-m(式中、Raは炭素原子数が1~15、好ましくは1~4の炭化水素基を示し、Xはハロゲン原子を示し、mは好ましくは0<m<3である。)で表される有機アルミニウム化合物、一般式Ra mAlH3-m(式中、Raは炭素原子数が1~15、好ましくは1~4の炭化水素基を示し、mは好ましくは2≦m<3である)で表される有機アルミニウム化合物、一般式Ra mAl(ORbnq(式中、RaおよびRbは、互いに同一でも異なっていてもよい炭素原子数が1~15、好ましくは1~4の炭化水素基を示し、Xはハロゲン原子を示し、mは0<m≦3、nは0≦n<3、qは0≦q<3の数であり、かつm+n+q=3である)で表される有機アルミニウム化合物。
 (β-1a)に属する有機アルミニウム化合物として、より具体的には、トリメチルアルミニウム、トリエチルアルミニウム、トリ(n-ブチル)アルミニウム、トリプロピルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリオクチルアルミニウム、トリデシルアルミニウムなどのトリ(n-アルキル)アルミニウム; トリイソプロピルアルミニウム、トリイソブチルアルミニウム、トリ(sec-ブチル)アルミニウム、トリ(tert-ブチル)アルミニウム、トリ(2-メチルブチル)アルミニウム、トリ(3-メチルブチル)アルミニウム、トリ(2-メチルペンチル)アルミニウム、トリ(3-メチルペンチル)アルミニウム、トリ(4-メチルペンチル)アルミニウム、トリ(2-メチルヘキシル)アルミニウム、トリ(3-メチルヘキシル)アルミニウム、トリ(2-エチルヘキシル)アルミニウムなどのトリ分岐鎖アルキルアルミニウム; トリシクロヘキシルアルミニウム、トリシクロオクチルアルミニウムなどのトリシクロアルキルアルミニウム; トリフェニルアルミニウム、トリトリルアルミニウムなどのトリアリールアルミニウム; ジエチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライドなどのジアルキルアルミニウムハイドライド; (iC49xAly(C510z(式中、x、y、zは正の数であり、z≧2xである。iC49はイソブチル基を表す。)などで表されるイソプレニルアルミニウムなどのアルケニルアルミニウム; イソブチルアルミニウムメトキシド、イソブチルアルミニウムエトキシド、イソブチルアルミニウムイソプロポキシドなどのアルキルアルミニウムアルコキシド; ジメチルアルミニウムメトキシド、ジエチルアルミニウムエトキシド、ジブチルアルミニウムブトキシドなどのジアルキルアルミニウムアルコキシド; エチルアルミニウムセスキエトキシド、ブチルアルミニウムセスキブトキシドなどのアルキルアルミニウムセスキアルコキシド; Ra 2.5Al(ORb0.5(式中、RaおよびRbは、互いに同一でも異なっていてもよい炭素原子数が1~15、好ましくは1~4の炭化水素基を示す。)などで表される平均組成を有する部分的にアルコキシ化されたアルキルアルミニウム; ジエチルアルミニウムフェノキシド、ジエチルアルミニウム(2,6-ジ-tert-ブチル4-メチルフェノキシド)、エチルアルミニウムビス(2,6-ジ-tert-ブチル4-メチルフェノキシド)、ジイソブチルアルミニウム(2,6-ジ-tert-ブチル4-メチルフェノキシド)、イソブチルアルミニウムビス(2,6-ジ-tert-ブチル4-メチルフェノキシド)などのジアルキルアルミニウムアリーロキシド; ジメチルアルミニウムクロリド、ジエチルアルミニウムクロリド、ジブチルアルミニウムクロリド、ジエチルアルミニウムブロミド、ジイソブチルアルミニウムクロリドなどのジアルキルアルミニウムハライド;エチルアルミニウムセスキクロリド、ブチルアルミニウムセスキクロリド、エチルアルミニウムセスキブロミドなどのアルキルアルミニウムセスキハライド;エチルアルミニウムジクロリド、プロピルアルミニウムジクロリド、ブチルアルミニウムジブロミドなどのアルキルアルミニウムジハライドなどの部分的にハロゲン化されたアルキルアルミニウム; ジエチルアルミニウムヒドリド、ジブチルアルミニウムヒドリドなどのジアルキルアルミニウムヒドリド; エチルアルミニウムジヒドリド、プロピルアルミニウムジヒドリドなどのアルキルアルミニウムジヒドリドなどその他の部分的に水素化されたアルキルアルミニウム; エチルアルミニウムエトキシクロリド、ブチルアルミニウムブトキシクロリド、エチル アルミニウムエトキシブロミドなどの部分的にアルコキシ化およびハロゲン化されたアルキルアルミニウムなどが挙げられる。
 また(β-1a)に類似する化合物も使用することができ、例えば窒素原子を介して2以上のアルミニウム化合物が結合した有機アルミニウム化合物も挙げられる。このような化合物として、具体的には、(C252AlN(C25)Al(C252などが挙げられる。
 前記(β-1b)に属する化合物としては、LiAl(C254、LiAl(C7154などが挙げられる。
 また、前記(β-1c)に属する化合物としては、ジメチルマグネシウム、ジエチルマグネシウム、ジブチルマグネシウム、ブチルエチルマグネシウム等が挙げられる。
 上記(β-1a)~(β-1c)以外の(β-1)有機金属化合物としては、メチルリチウム、エチルリチウム、プロピルリチウム、ブチルリチウム、メチルマグネシウムブロミド、メチルマグネシウムクロリド、エチルマグネシウムブロミド、エチルマグネシウムクロリド、プロピルマグネシウムブロミド、プロピルマグネシウムクロリド、ブチルマグネシウムブロミド、ブチルマグネシウムクロリドなどを使用することもできる。
 また多量化反応系内で上記有機アルミニウム化合物が形成されるような化合物、例えばハロゲン化アルミニウムとアルキルリチウムとの組合せ、またはハロゲン化アルミニウムとアルキルマグネシウムとの組合せなどを使用することもできる。
 (β-1)有機金属化合物のなかでは、有機アルミニウム化合物が好ましい。上記のような(β-1)有機金属化合物は、1種単独でまたは2種以上組み合わせて用いられる。
 ・(β-2)有機アルミニウムオキシ化合物
 本発明で必要に応じて用いられる(β-2)有機アルミニウムオキシ化合物は、従来公知のアルミノキサンであってもよく、また特開平2-78687号公報に例示されているようなベンゼン不溶性の有機アルミニウムオキシ化合物であってもよい。
 従来公知のアルミノキサンは、例えば下記のような方法によって製造することができ、通常、炭化水素溶媒の溶液として得られる。(1)吸着水を含有する化合物または結晶水を含有する塩類、例えば塩化マグネシウム水和物、硫酸銅水和物、硫酸アルミニウム水和物、硫酸ニッケル水和物、塩化第1セリウム水和物などの炭化水素媒体懸濁液に、トリアルキルアルミニウムなどの有機アルミニウム化合物を添加して、吸着水または結晶水と有機アルミニウム化合物とを反応させる方法。(2)ベンゼン、トルエン、エチルエーテル、テトラヒドロフランなどの媒体中で、トリアルキルアルミニウムなどの有機アルミニウム化合物に直接水、氷または水蒸気を作用させる方法。(3)デカン、ベンゼン、トルエンなどの媒体中でトリアルキルアルミニウムなどの有機アルミニウム化合物に、ジメチルスズオキシド、ジブチルスズオキシドなどの有機スズ酸化物を反応させる方法。
 なお該アルミノキサンは、少量の有機金属成分を含有してもよい。また回収された上記のアルミノキサンの溶液から溶媒または未反応有機アルミニウム化合物を蒸留して除去した後、溶媒に再溶解またはアルミノキサンの貧溶媒に懸濁させてもよい。
 アルミノキサンを調製する際に用いられる有機アルミニウム化合物として具体的には、前記(β-1a)に属する有機アルミニウム化合物として例示したものと同様の有機アルミニウム化合物が挙げられる。
 これらのうち、トリアルキルアルミニウム、トリシクロアルキルアルミニウムが好ましく、トリメチルアルミニウムが特に好ましい。
 上記のような有機アルミニウム化合物は、1種単独でまたは2種以上組み合わせて用いられる。
 アルミノキサンの調製に用いられる溶媒としては、ベンゼン、トルエン、キシレン、クメン、シメンなどの芳香族炭化水素、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、ヘキサデカン、オクタデカンなどの脂肪族炭化水素、シクロペンタン、シクロヘキサン、シクロオクタン、メチルシクロペンタンなどの脂環族炭化水素、ガソリン、灯油、軽油などの石油留分または上記芳香族炭化水素、脂肪族炭化水素、脂環族炭化水素のハロゲン化物とりわけ、塩素化物、臭素化物などの炭化水素溶媒が挙げられる。さらに、エチルエーテル、テトラヒドロフランなどのエーテル類を用いることもできる。これらの溶媒のうち特に芳香族炭化水素または脂肪族炭化水素が好ましい。
 また本発明で用いられるベンゼン不溶性の有機アルミニウムオキシ化合物は、60℃のベンゼンに溶解するAl成分がAl原子換算で通常10%以下、好ましくは5%以下、特に好ましくは2%以下であるもの、すなわちベンゼンに対して不溶性または難溶性であるものが好ましい。
 本発明で用いられる有機アルミニウムオキシ化合物の例としては、下記一般式(i)で表されるボロンを含んだ有機アルミニウムオキシ化合物も挙げられる。
Figure JPOXMLDOC01-appb-C000003
 式(i)中、R15は炭素原子数が1~10の炭化水素基を示す。R16は、互いに同一でも異なっていてもよい水素原子、ハロゲン原子、炭素原子数が1~10の炭化水素基を示す。
 前記一般式(i)で表されるボロンを含んだ有機アルミニウムオキシ化合物は、下記一般式(ii)で表されるアルキルボロン酸と、有機アルミニウム化合物とを、不活性ガス雰囲気下に不活性溶媒中で、-80℃~室温の温度で1分~24時間反応させることにより製造できる。
 R15-B(OH)2        ・・・(ii)
(式(ii)中、R15は上記式(i)と同じ基から選ばれる。)
 前記一般式(ii)で表されるアルキルボロン酸の具体的なものとしては、メチルボロン酸、エチルボロン酸、イソプロピルボロン酸、n-プロピルボロン酸、n-ブチルボロン酸、イソブチルボロン酸、n-ヘキシルボロン酸、シクロヘキシルボロン酸、フェニルボロン酸、3,5-ジフルオロフェニルボロン酸、ペンタフルオロフェニルボロン酸、3,5-ビス(トリフルオロメチル)フェニルボロン酸等が挙げられる。これらの中では、メチルボロン酸、n-ブチルボロン酸、イソブチルボロン酸、3,5-ジフルオロフェニルボロン酸、ペンタフルオロフェニルボロン酸が好ましい。
 これらは1種単独でまたは2種以上組み合わせて用いられる。
 このようなアルキルボロン酸と反応させる有機アルミニウム化合物として具体的には、前記(β-1a)に属する有機アルミニウム化合物として例示したものと同様の有機アルミニウム化合物が挙げられる。これらのうち、トリアルキルアルミニウム、トリシクロアルキルアルミニウムが好ましく、特にトリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウムが好ましい。これらは1種単独でまたは2種以上組み合わせて用いられる。
 上記のような(β-2)有機アルミニウムオキシ化合物は、1種単独でまたは2種以上組み合わせて用いられる。
 ・(β-3)メタロセン化合物(α)と反応してイオン対を形成する化合物
 本発明で必要に応じて用いられる、(β-3)メタロセン化合物(α)と反応してイオン対を形成する化合物は、メタロセン化合物(α)と反応してイオン対を形成する化合物である。従って、少なくともメタロセン化合物(α)と接触させてイオン対を形成するものは、この化合物に含まれる。
 このような化合物としては、特開平1-501950号公報、特開平1-502036号公報、特開平3-179005号公報、特開平3-179006号公報、特開平3-207703号公報、特開平3-207704号公報、米国特許5321106号などに記載されたルイス酸、イオン性化合物、ボラン化合物およびカルボラン化合物などが挙げられる。さらに、ヘテロポリ化合物およびイソポリ化合物もあげることができる。
 具体的には、ルイス酸としては、BR3(Rは、フッ素、メチル基、トリフルオロメチル基などの置換基を有していてもよいフェニル基またはフッ素である)で示される化合物が挙げられ、例えば、トリフルオロボロン、トリフェニルボロン、トリス(4-フルオロフェニル)ボロン、トリス(3,5-ジフルオロフェニル)ボロン、トリス(4-フルオロメチルフェニル)ボロン、トリス(ペンタフルオロフェニル)ボロン、トリス(p-トリル)ボロン、トリス(o-トリル)ボロン、トリス(3,5-ジメチルフェニル)ボロンなどが挙げられる。
 イオン性化合物としては、例えば下記一般式(iii)で表される化合物が挙げられる
Figure JPOXMLDOC01-appb-C000004
 式(iii)中、R17+としては、H+、カルボニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプチルトリエニルカチオン、遷移金属を有するフェロセニウムカチオンなどが挙げられる。
 R18~R21は、互いに同一でも異なっていてもよい有機基、好ましくはアリール基または置換アリール基である。
 前記カルボニウムカチオンとして具体的には、トリフェニルカルボニウムカチオン、トリ(メチルフェニル)カルボニウムカチオン、トリ(ジメチルフェニル)カルボニウムカチオンなどの三置換カルボニウムカチオンなどが挙げられる。
 前記アンモニウムカチオンとして具体的には、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリ(n-プロピル)アンモニウムカチオン、トリ(n-ブチル)アンモニウムカチオンなどのトリアルキルアンモニウムカチオン; N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオン、N,N,2,4,6-ペンタメチルアニリニウムカチオンなどのN,N-ジアルキルアニリニウムカチオン; ジ(イソプロピル)アンモニウムカチオン、ジシクロヘキシルアンモニウムカチオンなどのジアルキルアンモニウムカチオンなどが挙げられる。
 前記ホスホニウムカチオンとして具体的には、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオンなどのトリアリールホスホニウムカチオンなどが挙げられる。
 R17+としては、カルボニウムカチオン、アンモニウムカチオンなどが好ましく、特にトリフェニルカルボニウムカチオン、N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオンが好ましい。
 またイオン性化合物として、トリアルキル置換アンモニウム塩、N,N-ジアルキルアニリニウム塩、ジアルキルアンモニウム塩、トリアリールホスフォニウム塩なども挙げられる。
 トリアルキル置換アンモニウム塩として具体的には、例えばトリエチルアンモニウムテトラフェニルボレート、トリ(n-プロピル)アンモニウムテトラフェニルボレート、トリ(n-ブチル)アンモニウムテトラフェニルボレート、トリメチルアンモニウムテトラ(p-トリル)ボレート、トリメチルアンモニウムテトラ(o-トリル)ボレート、トリ(n-ブチル)アンモニウムテトラ(ペンタフルオロフェニル)ボレート、トリ(n-プロピル)アンモニウムテトラ(o,p-ジメチルフェニル)ボレート、トリ(n-ブチル)アンモニウムテトラ(m,m-ジメチルフェニル)ボレート、トリ(n-ブチル)アンモニウムテトラ(p-トリフルオロメチルフェニル)ボレート、トリ(n-ブチル)アンモニウムテトラ(3,5-ジトリフルオロメチルフェニル)ボレート、トリ(n-ブチル)アンモニウムテトラ(o-トリル)ボレートなどが挙げられる。
 N,N-ジアルキルアニリニウム塩として具体的には、例えばN,N-ジメチルアニリニウムテトラフェニルボレート、N,N-ジエチルアニリニウムテトラフェニルボレート、N,N,2,4,6-ペンタメチルアニリニウムテトラフェニルボレートなどが挙げられる。
 ジアルキルアンモニウム塩として具体的には、例えばジ(n-プロピル)アンモニウムテトラ(ペンタフルオロフェニル)ボレート、ジシクロヘキシルアンモニウムテトラフェニルボレートなどが挙げられる。
 さらにイオン性化合物として、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、フェロセニウムテトラ(ペンタフルオロフェニル)ボレート、トリフェニルカルベニウムペンタフェニルシクロペンタジエニル錯体、N,N-ジエチルアニリニウムペンタフェニルシクロペンタジエニル錯体、下記式(iv)または(v)で表されるホウ素化合物なども挙げられる。
Figure JPOXMLDOC01-appb-C000005
 (式(iv)中、Etはエチル基を示す。)
Figure JPOXMLDOC01-appb-C000006
 ボラン化合物として具体的には、例えばデカボラン(14); ビス〔トリ(n-ブチル)アンモニウム〕ノナボレート、ビス〔トリ(n-ブチル)アンモニウム〕デカボレート、ビス〔トリ(n-ブチル)アンモニウム〕ウンデカボレート、ビス〔トリ(n-ブチル)アンモニウム〕ドデカボレート、ビス〔トリ(n-ブチル)アンモニウム〕デカクロロデカボレート、ビス〔トリ(n-ブチル)アンモニウム〕ドデカクロロドデカボレートなどのアニオンの塩; トリ(n-ブチル)アンモニウムビス(ドデカハイドライドドデカボレート)コバルト酸塩(III)、ビス〔トリ(n-ブチル)アンモニウム〕ビス(ドデカハイドライドドデカボレート)ニッケル酸塩(III)などの金属ボランアニオンの塩などが挙げられる。
 カルボラン化合物として具体的には、例えば、4-カルバノナボラン(14)、1,3-ジカルバノナボラン(13)、6,9-ジカルバデカボラン(14)、ドデカハイドライド-1-フェニル-1,3-ジカルバノナボラン、ドデカハイドライド-1-メチル-1,3-ジカルバノナボラン、ウンデカハイドライド-1,3-ジメチル-1,3-ジカルバノナボラン、7,8-ジカルバウンデカボラン(13)、2,7-ジカルバウンデカボラン(13)、ウンデカハイドライド-7,8-ジメチル-7,8-ジカルバウンデカボラン、ドデカハイドライド-11-メチル-2,7-ジカルバウンデカボラン、トリ(n-ブチル)アンモニウム1カルバデカボレート、トリ(n-ブチル)アンモニウム1-カルバウンデカボレート、トリ(n-ブチル)アンモニウム1-カルバドデカボレート、トリ(n-ブチル)アンモニウム1-トリメチルシリル-1-カルバデカボレート、トリ(n-ブチル)アンモニウムブロモ-1-カルバドデカボレート、トリ(n-ブチル)アンモニウム6-カルバデカボレート(14)、トリ(n-ブチル)アンモニウム6-カルバデカボレート(12)、トリ(n-ブチル)アンモニウム7カルバウンデカボレート(13)、トリ(n-ブチル)アンモニウム7,8-ジカルバウンデカボレート(12)、トリ(n-ブチル)アンモニウム2,9-ジカルバウンデカボレート(12)、トリ(n-ブチル)アンモニウムドデカハイドライド-8-メチル-7,9-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-8-エチル-7,9-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-8-ブチル-7,9-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-8-アリル-7,9-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-9-トリメチルシリル-7,8-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-4,6-ジブロモ-7-カルバウンデカボレートなどのアニオンの塩; トリ(n-ブチル)アンモニウムビス(ノナハイドライド-1,3-ジカルバノナボレート)コバルト酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8-ジカルバウンデカボレート)鉄酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8-ジカルバウンデカボレート)コバルト酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8-ジカルバウンデカボレート)ニッケル酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8-ジカルバウンデカボレート)銅酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8-ジカルバウンデカボレート)金酸塩(III)、トリ(n-ブチル)アンモニウムビス(ノナハイドライド-7,8-ジメチル-7,8-ジカルバウンデカボレート)鉄酸塩(III)、トリ(n-ブチル)アンモニウムビス(ノナハイドライド-7,8-ジメチル-7,8-ジカルバウンデカボレート)クロム酸塩(III)、トリ(n-ブチル)アンモニウムビス(トリブロモオクタハイドライド-7,8-ジカルバウンデカボレート)コバルト酸塩(III)、トリス〔トリ(n-ブチル)アンモニウム〕ビス(ウンデカハイドライド-7-カルバウンデカボレート)クロム酸塩(III)、ビス〔トリ(n-ブチル)アンモニウム〕ビス(ウンデカハイドライド-7-カルバウンデカボレート)マンガン酸塩(IV)、ビス〔トリ(n-ブチル)アンモニウム〕ビス(ウンデカハイドライド-7-カルバウンデカボレート)コバルト酸塩(III)、ビス〔トリ(n-ブチル)アンモニウム〕ビス(ウンデカハイドライド-7-カルバウンデカボレート)ニッケル酸塩(IV)などの金属カルボランアニオンの塩などが挙げられる。
 ヘテロポリ化合物は、ケイ素、リン、チタン、ゲルマニウム、ヒ素もしくは錫からなる原子と、バナジウム、ニオブ、モリブデンおよびタングステンから選ばれる1種または2種以上の原子からなっている。具体的には、リンバナジン酸、ゲルマノバナジン酸、ヒ素バナジン酸、リンニオブ酸、ゲルマノニオブ酸、シリコノモリブデン酸、リンモリブデン酸、チタンモリブデン酸、ゲルマノモリブデン酸、ヒ素モリブデン酸、錫モリブデン酸、リンタングステン酸、ゲルマノタングステン酸、錫タングステン酸、リンモリブドバナジン酸、リンタングストバナジンン酸、ゲルマノタングストバナジンン酸、リンモリブドタングストバナジン酸、ゲルマノモリブドタングストバナジン酸、リンモリブドタングステン酸、リンモリブドニオブ酸、これらの酸の塩、例えば周期律表第1族または2族の金属、具体的には、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等との塩、およびトリフェニルエチル塩等の有機塩、およびイソポリ化合物を使用できるが、この限りではない。
 ヘテロポリ化合物およびイソポリ化合物としては、上記の化合物の中の1種に限らず、2種以上用いることができる。
 上記のような(β-3)メタロセン化合物(α)と反応してイオン対を形成する化合物は、1種単独でまたは2種以上組み合わせて用いられる。
 〔(γ)微粒子状担体〕
 本発明において4-メチル-1-ペンテン共重合体(B)の製造に好ましく用いられるメタロセン触媒は、必要に応じて(γ)微粒子状担体を含んでいてもよい。
 該共重合体(B)の製造方法においては、上記したオレフィン重合触媒を、(γ)微粒子状担体に担持させて用いてもよい。特に、後述する担持触媒を用いた塊状重合においては、(γ)微粒子状担体に担持させた形態が好んで利用される。
 (γ)微粒子状担体は、無機又は有機の化合物であって顆粒状ないしは微粒子状の固体である。
 このうち無機化合物としては、多孔質酸化物、無機ハロゲン化物、粘土、粘土鉱物またはイオン交換性層状化合物が好ましい。多孔質酸化物として、具体的にはSiO2、Al23、MgO、ZrO、TiO2、B23、CaO、ZnO、BaO、ThO2等、又はこれらを含む複合物または混合物、例えば天然または合成ゼオライト、SiO2-MgO、SiO2-Al23、SiO2-TiO2、SiO2-V25、SiO2-Cr23、SiO2-TiO2-MgO等を使用することができる。これらのうち、SiO2および/またはAl23を主成分とするものが好ましい。
 なお、上記無機酸化物は、少量のNa2CO3、K2CO3、CaCO3、MgCO3、Na2SO4、Al2(SO43、BaSO4、KNO3、Mg(NO32、Al(NO33、Na2O、K2O、Li2Oなどの炭酸塩、硫酸塩、硝酸塩、酸化物成分を含有していても指し支えない。
 無機ハロゲン化物としては、MgCl2、MgBr2、MnCl2、MnBr2等が用いられる。無機ハロゲン化物は、そのまま用いてもよいし、ボールミル、振動ミルにより粉砕した後に用いてもよい。また、アルコールなどの溶媒に無機ハロゲン化物を溶解させた後、析出剤によってを微粒子状に析出させたものを用いることもできる。
 粘土は、通常粘土鉱物を主成分として構成される。また、イオン交換性層状化合物は、イオン結合などによって構成される面が互いに弱い結合力で平行に積み重なった結晶構造を有する化合物であり、含有するイオンが交換可能なものである。大部分の粘土鉱物はイオン交換性層状化合物である。また、これらの粘土、粘土鉱物、イオン交換性層状化合物としては、天然産のものに限らず、人工合成物を使用することもできる。
 また、粘土、粘土鉱物またはイオン交換性層状化合物として、粘土、粘土鉱物、また、六方細密パッキング型、アンチモン型、CdCl2型、CdI2型などの層状の結晶構造を有するイオン結晶性化合物などを例示することができる。
 このような粘土、粘土鉱物としては、カオリン、ベントナイト、木節粘土、ガイロメ粘土、アロフェン、ヒシンゲル石、パイロフィライト、ウンモ群、モンモリロナイト群、バーミキュライト、リョクデイ石群、パリゴルスカイト、カオリナイト、ナクライト、ディッカイト、ハロイサイトなどが挙げられ、イオン交換性層状化合物としては、α-Zr(HAsO42・H2O、α-Zr(HPO42、α-Zr(KPO42・3H2O、α-Ti(HPO42、α-Ti(HAsO42・H2O、α-Sn(HPO42・H2O、γ-Zr(HPO42、γ-Ti(HPO42、γ-Ti(NH4PO42・H2Oなどの多価金属の結晶性酸性塩などが挙げられる。
 このような粘土、粘土鉱物またはイオン交換性層状化合物は、水銀圧入法で測定した半径20Å以上の細孔容積が0.1cc/g以上のものが好ましく、0.3~5cc/gのものが特に好ましい。ここで、細孔容積は、水銀ポロシメーターを用いた水銀圧入法により、細孔半径20~3×104Åの範囲について測定される。
 半径20Å以上の細孔容積が0.1cc/gより小さいものを担体として用いた場合には、高い重合活性が得られにくい傾向がある。
 粘土、粘土鉱物には、化学処理を施すことも好ましい。
 化学処理としては、表面に付着している不純物を除去する表面処理、粘土の結晶構造に影響を与える処理など、何れも使用できる。化学処理として具体的には、酸処理、アルカリ処理、塩類処理、有機物処理などが挙げられる。酸処理は、表面の不純物を取り除くほか、結晶構造中のAl、Fe、Mgなどの陽イオンを溶出させることによって表面積を増大させる。アルカリ処理では粘土の結晶構造が破壊され、粘土の構造の変化をもたらす。
 また、塩類処理、有機物処理では、イオン複合体、分子複合体、有機誘導体などを形成し、表面積や層間距離を変えることができる。
 イオン交換性層状化合物は、イオン交換性を利用し、層間の交換性イオンを別の大きな嵩高いイオンと交換することにより、層間が拡大した状態の層状化合物であってもよい。
 このような嵩高いイオンは、層状構造を支える支柱的な役割を担っており、通常ピラーと呼ばれる。また、このように層状化合物の層間に別の物質を導入することをインターカレーションという。インターカレーションするゲスト化合物としては、TiCl4、ZrCl4などの陽イオン性無機化合物、Ti(OR)4、Zr(OR)4、PO(OR)3、B(OR)3などの金属アルコキシド(Rは炭化水素基など)、[Al134(OH)247+、[Zr4(OH)142+、[Fe3O(OCOCH36+などの金属水酸化物イオンなどが挙げられる。これらの化合物は単独でまたは2種以上組み合わせて用いられる。また、これらの化合物をインターカレーションする際に、Si(OR)4、Al(OR)3、Ge(OR)4などの金属アルコキシド(Rは炭化水素基など)などを加水分解して得た重合物、SiO2などのコロイド状無機化合物などを共存させることもできる。また、ピラ-としては、上記金属水酸化物イオンを層間にインターカレーションした後に加熱脱水することにより生成する酸化物などが挙げられる。
 粘土、粘土鉱物、イオン交換性層状化合物は、そのまま用いてもよく、またボールミル、ふるい分けなどの処理を行った後に用いてもよい。また、新たに水を添加吸着させ、あるいは加熱脱水処理した後に用いてもよい。さらに、単独で用いても、2種以上を組み合わせて用いてもよい。
 イオン交換性層状珪酸塩を用いた場合は、担体として機能に加えて、そのイオン交換性の性質及び層状構造を利用することにより、アルキルアルミノキサンのような有機アルミニウムオキシ化合物の使用量を減らすことも可能である。イオン交換性層状珪酸塩は、天然には主に粘土鉱物の主成分として産出されるが、特に天然産のものに限らず、人口合成物であってもよい。粘土、粘土鉱物、イオン交換性層状珪酸塩の具体例としては、カオリナイト、モンモリロナイト、ヘクトライト、ベントナイト、スメクタイト、バーミキュライト、テニオライト、合成雲母、合成ヘクトライト等を挙げることができる。
 有機化合物としては、粒径が5~300μmの範囲にある顆粒状ないしは微粒子状固体を挙げることができる。具体的には、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテンなどの炭素原子数が2~14のα-オレフィンを主成分として生成される(共)重合体またはビニルシクロヘキサン、スチレンを主成分として生成される(共)重合体、もしくは共重合体、またはこれら重合体にアクリル酸、アクリル酸エステル、無水マレイン酸等の極性モノマーを共重合またはグラフト重合させて得られる極性官能基を有する重合体または変成体を例示することができる。これらの粒子状担体は、単独でまたは2種以上組み合わせて用いることができる。
 〔重合条件〕
 本発明では、該共重合体(B)を得るための4-メチル-1-ペンテンと特定のα-オレフィンとの重合は溶解重合、懸濁重合などの液相重合法または気相重合法いずれにおいても実施できる。液相重合法においては、不活性炭化水素溶媒を用いてもよく、具体的には、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン、メチルシクロヘキサンなどの脂環族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;エチレンクロリド、クロロベンゼン、ジクロロメタン、リクロロメタン、テトラクロロメタンなどのハロゲン化炭化水素またはこれらの混合物などを挙げることができる。また4-メチル-1-ペンテンを含んだオレフィン類自身を溶媒とする塊状重合を実施することもできる。
 また、重合条件を段階的に変えて製造する所謂多段重合を行うこともできる。例えば、水素使用量、または4-メチル-1-ペンテンとオレフィンとの比率の異なる2種の条件で段階的に重合を実施することにより所望の広い分子量分布、または広い組成分布の該共重合体(B)を得ることも可能である。また、4-メチル-1-ペンテンの単独重合と4-メチル-1-ペンテンと他のオレフィンとの共重合を段階的に行うことにより、組成分布が制御された該共重合体(B)を得ることも可能である。
 重合を行うに際して、成分(α)は、反応容積1リットル当り、周期律表第4族金属原子換算で通常10-8~10-2モル、好ましくは10-7~10-3モルとなるような量で用いられる。
 また、成分(β)を用いる場合、成分(β-1)は、成分(β-1)と、成分(α)中の遷移金属原子(M)とのモル比〔(β-1)/M〕が、通常0.01~100000、好ましくは0.05~50000となるような量で用いられる。
 (β-2)は、(β-2)中のアルミニウム原子と、(α)中の遷移金属原子(M)とのモル比〔(β-2)/M〕が、通常10~500000、好ましくは20~100000となるような量で用いられる。
 (β-3)は、(β-3)と、(α)中の遷移金属原子(M)とのモル比〔(β-3)/M〕が、通常1~10、好ましくは1~5となるような量で用いられる。
 重合温度は、通常-50~200℃、好ましくは0~100℃、より好ましくは20~100℃の範囲である。重合温度が低すぎると単位触媒あたりの重合活性や熱回収効率などの面で、工業的には不利な傾向がある。
 重合圧力は、通常常圧~10MPaゲージ圧、好ましくは常圧~5MPaゲージ圧の条件下であり、重合反応は、回分式、半連続式、連続式のいずれの方法においても行うことができる。さらに重合を反応条件の異なる2段以上に分けて行うことも可能である。
重合に際して生成ポリマーの分子量や重合活性を制御する目的で水素を添加することができ、その量はオレフィン1kgあたり0.001~100NL程度が適当である。
 <4-メチル-1-ペンテン(共)重合体組成物の製造方法>
 本発明の4-メチル-1-ペンテン(共)重合体組成物の製造方法について説明する。
 該(共)重合体組成物は、上述の(A)、(B)の各成分を特定の量で配合し、さらに必要に応じて、後述する添加剤、α-オレフィン重合体(C)を配合・混合することにより得ることができる。
 各成分の混合方法については、種々公知の方法、例えば、多段重合法、プラストミル、ヘンシェルミキサー、V-ブレンダー、リボンブレンダー、タンブラー、ブレンダー、ニーダールーダー等で混合する方法、あるいは混合後、一軸押出機、二軸押出機、ニーダー、バンバリーミキサー等で溶融混練後、造粒あるいは粉砕する方法を採用することができる。該方法により、各成分および添加剤が均一に分散混合された高品質の該(共)重合体組成物を得ることができる。
 〔添加剤〕
 本発明における該(共)重合体組成物には、その成形性をさらに改善させる、すなわち結晶化温度を高め結晶化速度を速めるために、特定の任意成分である核剤が配合されていてもよい。この場合、例えば核剤はジベンジリデンソルビトール系核剤、リン酸エステル塩系核剤、ロジン系核剤、安息香酸金属塩系核剤、フッ素化ポリエチレン、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)リン酸ナトリウム、ピメリン酸やその塩、2,6-ナフタレン酸ジカルボン酸ジシクロヘキシルアミド等であり、配合量は特に制限されないが、該(共)重合体組成物100重量部に対して0.1~1重量部程度があることが好ましい。配合タイミングに特に制限は無く、重合中、重合後、あるいは成形加工時での添加が可能である。
 該(共)重合体組成物には、本発明の目的を損なわない範囲で、さらに必要に応じて、二次抗酸化剤、耐熱安定剤、耐候安定剤、帯電防止剤、スリップ剤、アンチブロッキング剤、防曇剤、滑剤、染料、顔料、天然油、合成油、ワックス、充填剤、塩酸吸収剤や、他のオレフィン重合体などを配合することができる。配合量は特に制限されないが、該(共)重合体組成物100重量部に対して、通常0~50重量部、好ましくは0~30重量部、さらに好ましくは0~10重量部、特に好ましくは0~1重量部である。
 酸化防止剤としては、公知の酸化防止剤が使用可能である。具体的には、ヒンダードフェノール化合物、イオウ系酸化防止剤、ラクトーン系酸化防止剤、有機ホスファイト化合物、有機ホスフォナイト化合物、あるいはこれらを数種類組み合わせたものが使用できる。
 滑剤としては、例えばラウリル酸、パルミチン酸、オレイン酸、ステアリン酸などの飽和または不飽和脂肪酸のナトリウム、カルシウム、マグネシウム塩などがあげられ、これらは単独でまたは2種以上を混合して用いることができる。またかかる滑剤の配合量は、該(共)重合体組成物100重量部に対して通常0.1~3重量部、好ましくは0.1~2重量部程度であることが望ましい。
 スリップ剤としては、ラウリル酸、パルミチン酸、オレイン酸、ステアリン酸、エルカ酸、ヘベニン酸などの飽和または不飽和脂肪酸のアミド、あるいはこれらの飽和または不飽和脂肪酸のビスアマイドを用いることが好ましい。これらのうちでは、エルカ酸アミドおよびエチレンビスステアロアマイドが特に好ましい。これらの脂肪酸アミドは本発明の該重合体組成物100重量部に対して、通常0.01~5重量部の範囲で配合することが好ましい。
 アンチブロッキング剤としては、微粉末シリカ、微粉末酸化アルミニウム、微粉末クレー、粉末状、もしくは液状のシリコン樹脂、テトラフロロエチレン樹脂、微粉末架橋樹脂、例えば架橋されたアクリル、メタクリル樹脂粉末等をあげることができる。これらのうちでは、微粉末シリカおよび架橋されたアクリル、メタクリル樹脂粉末が好ましい。
 他のオレフィン重合体としては、本発明にかかる(共)重合体(A)、共重合体(B)およびα-オレフィン重合体(C)とは異なる、公知のエチレン系重合体、プロピレン系重合体、プテン系重合体、環状オレフィン共重合体が挙げられる。エチレン系重合体とは、エチレン/プロピレン共重合体、エチレン/ブテン共重合体、エチレン/ヘキセン共重合体、エチレン/オクテン共重合体等の共重合体が、プロピレン系重合体としては、プロピレン/エチレン共重合体、プロピレン/ブテン共重合体、プロピレン/ブテン/エチレン共重合体などの共重合体が、ブテン系重合体とは、プテン/プロピレン共重合体、ブテン・エチレン共重合体などの共重合体が含まれる。
 [4-メチル-1-ペンテン(共)重合体組成物の好ましい態様]
 4-メチル-1-ペンテン(共)重合体組成物の好ましい態様としては、以下に記載する4-メチル-1-ペンテン(共)重合体組成物(X)、より好ましい態様としては、4-メチル-1-ペンテン(共)重合体組成物(X1)~(X6)が挙げられる。
 以下、それぞれの組成物について、その特徴を詳説する。なお、各々の組成物は、上述した4-メチル-1-ペンテン(共)重合体組成物の製造方法に準じて得ることができる。
 ・4-メチル-1-ペンテン(共)重合体組成物(X)
 本発明において4-メチル-1-ペンテン(共)重合体組成物(X)は、異なる2種以上の4-メチル-1-ペンテン(共)重合体を含み、より詳細には、4-メチル-1-ペンテン(共)重合体(A)1~99重量部、好ましくは5~90重量部、より好ましくは10~90重量部、さらにより好ましくは20~80重量部と、4-メチル-1-ペンテン共重合体(B)99~1重量部、好ましくは95~10重量部、より好ましくは90~10重量部、さらにより好ましくは80~20重量部(ただし、(A)と(B)との合計を100重量部とする)とを含んでなる。
 該組成物(X)は、UX-1が、好ましくは99モル%~65モル%、より好ましくは95~70モル%であり、UX-2が、好ましくは1モル%~35モル%、より好ましくは5~30モル%である。
 また、該(共)重合体組成物(X)には、4-メチル-1-ペンテン共重合体(B1)および/または4-メチル-1-ペンテン共重合体(B2)が含まれることが好ましく、B1とB2の混合比((B1)/(B2))は100/0~0/100であり、該混合比は所望の該(共)重合体組成物(X)の物性を得るために任意に変化させることができる。このような範囲で各成分が含まれる組成物は、耐熱性、成形性、機械特性、透明性と伸びや靭性のバランスに優れるため、該組成物からなる成形体は、このような優れた効果を引き継ぎ、耐熱性や透明性に優れ、かつ均一に延伸成形されたものが得られる傾向にある点で好ましい。
 ここで、透明性と耐熱性、さらに延伸性の観点から、該UX-1は、好ましくは95~72モル%、より好ましくは93~75モル%であり、UX-2は、好ましくは5~28モル%、より好ましくは7~25モル%である(ただし、UX-1とUX-2の合計を100モル%とする)。
 ・4-メチル-1-ペンテン(共)重合体組成物(X1)
 本発明において、4-メチル-1-ペンテン(共)重合体組成物(X1)は、
4-メチル-1-ペンテン(共)重合体(A)10~90重量部、好ましくは15~85重量部、より好ましくは20~80重量部と、4-メチル-1-ペンテン共重合体(B)として4-メチル-1-ペンテン共重合体(B1)90~10重量部、好ましくは85~15重量部、より好ましくは80~20重量部(ただし、(A)と(B1)との合計を100重量部とする)とを含んでなる。
 該組成物(X1)は、組成物中に含まれる全(共)重合体に由来する4-メチル-1-ペンテンから導かれる構成単位の総量(UX1-1)が95~70モル%、組成物中に含まれる全(共)重合体に由来する炭素原子数2~20のα-オレフィン(4-メチル-1-ペンテンを除く)から導かれる構成単位の総量(UX1-2)が5~30モル%(ただし、UX1-1およびUX1-2の合計を100モル%とする)であることが好ましい。
 さらに、要件(B1-a)として、U3が99~83モル%、U4が1~17モル%(ただし、U3とU4の合計を100モル%とする)を満たす該共重合体(B1)を含む組成物は、より透明性、伸びや靭性に優れ、特に耐熱性に優れるため、好ましい。
 該組成物(X1)は、特に透明性、耐熱性に優れるため、該組成物からなる成形体はこのような優れた効果を引き継ぎ、耐熱性に優れ、透明で均一延伸性に優れたものが得られる傾向にある点で好ましい。
 ここで、透明性と耐熱性の観点から、UX1-1は、好ましくは95~80モル%、より好ましくは95~82モル%、さらにより好ましくは95~85モル%であり、UX1-2は、好ましくは5~20モル%、より好ましくは5~18モル%、さらにより好ましくは5~15モル%である(ただし、UX1-1およびUX1-2の合計を100モル%とする)。
 ・4-メチル-1-ペンテン(共)重合体組成物(X2)
 4-メチル-1-ペンテン(共)重合体組成物(X2)は、4-メチル-1-ペンテン(共)重合体(A)10~90重量部、好ましくは50~90重量部、より好ましくは60~85重量部と、4-メチル-1-ペンテン共重合体(B)として4-メチル-1-ペンテン共重合体(B2)90~10重量部、好ましくは50~10重量部、より好ましくは40~15重量部(ただし(A)と(B2)との合計を100重量部とする)とを含んでなる。
 該組成物(X2)は、組成物中に含まれる全(共)重合体に由来する4-メチル-1-ペンテンから導かれる構成単位の総量(UX2-1)が95~70モル%、好ましくは95~75モル%、より好ましくは93~75モル%であり、組成物中に含まれる全(共)重合体に由来する炭素原子数2~20のα-オレフィン(4-メチル-1-ペンテンを除く)から導かれる構成単位の総量(UX1-2)が5~30モル%、好ましくは5~25モル%、より好ましくは7~25モル%(ただし、UX2-1およびUX2-2の合計を100モル%とする)であることが好ましい。
 該組成物(X2)は、特に柔軟な(B2)が、(A)中に透明性を損なうことなく分散するため、伸び、柔軟性および耐衝撃性に優れるため、該組成物からなる成形体はこのような優れた効果を引き継ぎ、柔軟性に優れ、耐衝撃性に優れたたものが得られる傾向にある点で好ましい。
 ・4-メチル-1-ペンテン(共)重合体組成物(X3)
 本発明において、4-メチル-1-ペンテン(共)重合体組成物(X3)は、4-メチル-1-ペンテン(共)重合体(A)10~90重量部と、4-メチル-1-ペンテン共重合体(B)として4-メチル-1-ペンテン共重合体(B1)および4-メチル-1-ペンテン共重合体(B2)の合計として90~10重量部(ただし、(A)と(B)の合計を100重量部とし、(B1)と(B2)の混合比((B1)/(B2))は、99/1~1/99である)を含んでなる。
 該組成物(X3)は、組成物中に含まれる全(共)重合体に由来する4-メチル-1-ペンテンから導かれる構成単位の総量(UX3-1)は好ましくは95~70モル%、組成物中に含まれる全(共)重合体に由来する炭素原子数2~20のα-オレフィン(4-メチル-1-ペンテンを除く)から導かれる構成単位の総量(UX3-2)が30~5モル%(ただし、UX3-1およびUX3-2の合計を100モル%とする)である。
 これらのうち、該(共)重合体(A)は、好ましくは15~90重量部、より好ましくは20~90重量部、さらにより好ましくは30~85重量部であり、該共重合体(B)は、好ましくは85~10重量部、より好ましくは80~10重量部、さらにより好ましくは70~15重量部である(ただし(A)と(B)の合計を100重量部とする)。
 該組成物(X3)の好ましい態様の一つは、該(共)重合体(A)が、50~90重量部、好ましくは55~85重量部であり、該共重合体(B)は50~10重量部、好ましくは45~15重量部である(ただし、(A)と(B)の合計を100重量部とする)。
 該共重合体(B1)と該共重合体(B2)の混合比((B1)/(B2))が、好ましくは90/10~10/90、より好ましくは70/30~15/85、さらに好ましくは60/40~15/85、特に好ましくは50/50~15/85であると、延伸性やブロー成形性に優れた成形体が得られる傾向にあるため、好ましい。
 また、該共重合体(B1)と該共重合体(B2)の混合比((B1)/(B2))が、好ましくは90/10~10/90、より好ましくは85/15~30/70、さらに好ましくは85/15~40/60、特に好ましくは85/15~50/50であると、耐熱性に優れた成形体が得られる傾向にあるため、好ましい。
 また、UX3-1は、好ましくは95~75モル%、より好ましくは93~75モル%であり、UX3-2は、好ましくは5~25モル%、より好ましくは7~25モル%である(ただし、UX3-1およびUX3-2の合計を100モル%とする)。
 該組成物(X3)は、(B1)の特性である透明性、耐熱性を付与され、さらに(B2)の特性である柔軟性、伸び、耐衝撃性が付与されるため、好ましい。該組成物からなる中空成形体は、このような優れた効果を引き継ぎ、耐熱性に優れ、透明性が高く寸法安定性に優れたものが得られるため、好ましい。また、フィルムは、このような優れた効果を引き継ぎ、耐熱性に優れ、透明性が高く、成形性に優れたものが得られるため、好ましい。
 ・4-メチル-1-ペンテン(共)重合体組成物(X4)~(X6)
 本発明において、4-メチル-1-ペンテン(共)重合体組成物(X4)~(X6)は、4-メチル-1-ペンテン(共)重合体(A)、4-メチル-1-ペンテン共重合体(B)と、後述するα-オレフィン重合体(C)を含んでなる。
 なお、該共重合体(B)としては、上記4-メチル-1-ペンテン共重合体(B)の説明の箇所で示した通り、該共重合体(B1)および該共重合体(B2)から選ばれる少なくとも1種からなり、その混合比は任意に変化させることができる。
 (組成物(X4))
 4-メチル-1-ペンテン(共)重合体組成物(X4)の好ましい態様は、該(共)重合体(A)を10~85重量部、好ましくは15~80重量部、該共重合体(B)を85~10重量部、好ましくは80~15重量部、α-オレフィン重合体(C)を3~30重量部、好ましくは3~25重量部(ただし(A)、(B)および(C)の合計を100重量部とする)含んでなる。該組成物(X4)は、該共重合体(B)として、該共重合体(B1)と該共重合体(B2)の両方を含み、該共重合体(B)は(B1)と(B2)の合計量であり、かつ、それらの混合比((B1)/(B2))は、前記組成物(X3)の記載を参照できる。
 該共重合体(X4)は、該共重合体(B1)および(B2)を含み、さらにα-オレフィン重合体(C)を含むため、(C)のもつ柔軟性、延展性を組成物に付与できるという理由から、良好な延伸性、強靭性を得られるため、好ましい。
 該組成物(X4)は、該組成物(X3)にα-オレフィン重合体(C)を含む態様であり、該組成物(X3)の効果も含まれる。
 該重合体組成物(X4)は、組成物中に含まれる全(共)重合体に由来する4-メチル-1-ペンテンから導かれる構成単位の総量(UX4-1)が95~65モル%、組成物中に含まれる全(共)重合体に由来する炭素原子数2~20のα-オレフィン(4-メチル-1-ペンテンを除く)から導かれる構成単位の総量(UX4-2)が5~35モル%である(ただし、UX4-1およびUX4-2の合計を100モル%とする)。
 (組成物(X5))
 4-メチル-1-ペンテン(共)重合体組成物(X5)の好ましい態様は、該(共)重合体(A)を7~90重量部、好ましくは10~85重量部、該共重合体(B)を90~7重量部、好ましくは85~10重量部、α-オレフィン重合体(C)を0.9~30重量部、好ましくは1~25重量部(ただし(A)、(B)および(C)の合計を100重量部とする)含んでなる。該組成物(X5)は、該共重合体(B)として該共重合体(B1)を含む。
 該共重合体(X5)は、α-オレフィン重合体(C)を含むことから、該共重合体(B2)を含まなくても、(C)のもつ柔軟性、延展性を組成物に付与できるという理由から、良好な延伸性、強靭性を得られるため、好ましい。
 該組成物(X5)は、該組成物(X1)にα-オレフィン重合体(C)を含む態様であり、該組成物(X1)の効果も含まれる。
 また、該組成物(X5)は、組成物中に含まれる全(共)重合体に由来する4-メチル-1-ペンテンから導かれる構成単位の総量(UX5-1)は好ましくは95~65モル%、組成物中に含まれる全(共)重合体に由来する炭素原子数2~20のα-オレフィン(4-メチル-1-ペンテンを除く)から導かれる構成単位の総量(UX5-2)が35~5モル%(ただし、UX5-1およびUX5-2の合計を100モル%とする)である。
 4-メチル-1-ペンテン(共)重合体組成物(X4)または(X5)の好ましい他の態様としては、該組成物(X1)もしくは該組成物(X3)100重量部に対して、α-オレフィン重合体(C)1~40重量部を含むものが挙げられる。該組成物(X1)にα-オレフィン重合体(C)が含有された態様とは、該(共)重合体(A)、該共重合体(B1)とα-オレフィン重合体(C)を含むものであり、該組成物(X3)にα-オレフィン重合体(C)が含有された態様とは、該(共)重合体(A)、該共重合体(B1)、該共重合体(B2)とα-オレフィン重合体(C)を含むものに相当する。なお、該態様においても、上述した4-メチル-1-ペンテンから導かれる構成単位の総量と炭素原子数2~20のα-オレフィン(4-メチル-1-ペンテンを除く)から導かれる構成単位の総量の範囲を満たす。
 (組成物(X6))
 4-メチル-1-ペンテン(共)重合体組成物(X6)の好ましい態様は、該(共)重合体(A)を7~90重量部、好ましくは10~85重量部、該共重合体(B)を90~7重量部、好ましくは85~10重量部、α-オレフィン重合体(C)を0.9~30重量部、好ましくは5~25重量部、より好ましくは10~25重量部(ただし(A)、(B)および(C)の合計を100重量部とする)含んでなる。該組成物(X5)は、該共重合体(B)として該共重合体(B2)を含む。
 該共重合体(X6)は、α-オレフィン重合体(C)を含むことから、該共重合体(B1)を含まなくても、(C)のもつ柔軟性、延展性を組成物に付与できるという理由から、良好な延伸性、強靭性を得られるため、好ましい。
 該組成物(X6)は、該組成物(X2)にα-オレフィン重合体(C)を含む態様であり、好ましくは後述する特定の融点を有するα-オレフィン重合体(C)を含む態様であり、該組成物(X2)の効果も含まれる。
 また、該組成物(X6)は、組成物中に含まれる全(共)重合体に由来する4-メチル-1-ペンテンから導かれる構成単位の総量(UX6-1)は好ましくは95~65モル%、組成物中に含まれる全(共)重合体に由来する炭素原子数2~20のα-オレフィン(4-メチル-1-ペンテンを除く)から導かれる構成単位の総量(UX6-2)が5~35モル%(ただし、UX6-1およびUX6-2の合計を100モル%とする)である。
 また、該重合体組成物(X4)~(X6)中の、組成物中に含まれる全(共)重合体に由来する4-メチル-1-ペンテンから導かれる構成単位の総量(UX4-1、UX5-1またはUX6-1)が好ましくは90~68モル%、より好ましくは88~70モル%であり、組成物中に含まれる全(共)重合体に由来する炭素原子数2~20のα-オレフィン(4-メチル-1-ペンテンを除く)から導かれる構成単位の総量(UX4-2、UX5-2またはUX6-2)が好ましくは10~32モル%、より好ましくは12~30モル%である(ただし、UX4-1およびUX4-2の合計を100モル%とする。または、UX5-1およびUX5-2の合計を100モル%とする。UX6-1およびUX6-2の合計を100モル%とする)。
 本発明において、4-メチル-1-ペンテン(共)重合体組成物の他の態様は、4-メチル-1-ペンテン(共)重合体(A)5~90重量部重量部、4-メチル-1-ペンテン共重合体(B)90~10重量部と、後述するα-オレフィン重合体(C)1~40重量部(ただし(A)、(B)および(C)の合計を100重量部とする)とを含んでなる。
 (α-オレフィン重合体(C))
 α-オレフィン重合体(C)としては、本発明に係る(共)重合体(A)、共重合体(B1)および(B2)とは異なり、炭素原子数2~20のα-オレフィンから選ばれる1種類または2種類以上のオレフィンの重合体であり、例えばオレフィンの単独重合体や、二元以上の共重合体が挙げられる。例えば、二元共重合体の場合、各オレフィンの構成単位は、一方が50~99重量%、もう一方が1~50重量%(構成単位の全量を100重量%とする)であればよいが特に制限はない。また、三元以上の共重合体の場合には、各々のオレフィンの構成比率は任意に決定される。
 炭素原子数2~20の直鎖状のα-オレフィンとしては、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ウンデセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセンなどのα-オレフィンが挙げられ、好ましくは炭素原子数2~15、より好ましくは2~10の直鎖状のα-オレフィンが挙げられる。特に好ましいものとしては、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテンである。
 また、炭素原子数4~20の分岐状のα-オレフィンとしては、イソブテン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4,4-ジメチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセンなどのα-オレフィンが挙げられ、好ましくは炭素原子数4~15、より好ましくは4~10の分岐状のα-オレフィンが挙げられる。
 該重合体組成物(X4)で用いられるα-オレフィン重合体(C)を構成するオレフィンとして、好ましくは、エチレン、プロピレンおよび1-ブテンから選ばれる少なくとも1種類の構成単位50~100重量%、より好ましくは55~100重量%と、エチレンおよび炭素原子数3~20のα-オレフィンから選ばれる構成単位(ただし、前記オレフィンと同様のオレフィンを除く)0~50重量%、より好ましくは0~45重量%(構成単位の全量を100モル%とする)で含有する。ここで、構成単位100重量%とは、単独重合体を意味する。
 α-オレフィン重合体(C)は、好ましくはJIS K-6721に準拠して、190℃または230℃で2.16kgの荷重にて測定したMFRが0.01~100g/10分の範囲にあり、密度が830~930kg/m3の範囲である。
 α-オレフィン重合体(C)は、135℃デカリン中で測定した極限粘度[η]が通常0.1~10dL/g、より好ましくは0.5~5dL/gである。
 α-オレフィン重合体(C)の融点は、特に限定されないが、耐熱性、強度の理由から、100℃以上が好ましく、110~170℃がより好ましい。特に、該融点を有するα-オレフィン重合体(C)が、該組成物(X6)に含まれると、より耐熱性、強度が向上するため、好ましい。
 α-オレフィン重合体(C)は、上述した構成単位の他に、本発明の目的を損なわない範囲で、他の重合性モノマーから導かれる単位を含有していてもよい。
 このような他の重合性モノマーとしては、例えばスチレン、ビニルシクロペンテン、ビニルシクロヘキサン、ビニルノルボルナン等のビニル化合物類; 酢酸ビニル等のビニルエステル類; 無水マレイン酸等の不飽和有機酸またはその誘導体; ブタジエン、イソプレン、ペンタジエン、2,3-ジメチルブタジエン等の共役ジエン類; 1,4-ヘキサジエン、1,6-オクタジエン、2-メチル-1,5-ヘキサジエン、6-メチル-1,5-ヘプタジエン、7-メチル-1,6-オクタジエン、ジシクロペンタジエン、シクロヘキサジエン、ジシクロオクタジエン、メチレンノルボルネン、5-ビニルノルボルネン、5-エチリデン-2-ノルボルネン、5-メチレン-2-ノルボルネン、5-イソプロピリデン-2-ノルボルネン、6-クロロメチル-5-イソプロペンル-2-ノルボルネン、2,3-ジイソプロピリデン-5-ノルボルネン、2-エチリデン-3-イソプロピリデン-5-ノルボルネン、2-プロペニル-2,2-ノルボルナジエン等の非共役ポリエン類などが挙げられる。
 α-オレフィン重合体(C)は、このような他の重合性モノマーから導かれる単位を、重合体(C)を構成する全構成単位100モル%に対して、10モル%以下、好ましくは5モル%以下、より好ましくは3モル%以下の量で含有していてもよい。
 α-オレフィン重合体(C)としては、具体的には、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリブテン、エチレン・プロピレンランダム共重合体、エチレン・1-ブテンランダム共重合体、エチレン・プロピレン・1-ブテンランダム共重合体、エチレン・1-ヘキセンランダム共重合体、エチレン・1-オクテンランダム共重合体、エチレン・プロピレン・エチリデンノルボルネンランダム共重合体、エチレン・プロピレン・ビニリデンノルボルネンランダム共重合体、エチレン・1-ブテン・エチリデンノルボルネンランダム共重合体、エチレン・1-ブテン・1-オクテンランダム共重合体、プロピレン・1-ブテンランダム共重合体、プロピレン・1-ヘキセンランダム共重合体、プロピレン・1-オクテンランダム共重合体、ブテン・1-ヘキセンランダム共重合体、ブテン・1-オクテンランダム共重合体、4-メチル-1-ペンテン・ヘキセン共重合体などが挙げられる。これらのうちでも、ポリプロピレン、ポリブテン、エチレン・プロピレンランダム共重合体、エチレン・1-ブテンランダム共重合体、エチレン・プロピレン・1-ブテンランダム共重合体、エチレン・1-ブテン・1-オクテンランダム共重合体、エチレン・1-ヘキセンランダム共重合体、エチレン・1-オクテンランダム共重合体、プロピレン・1-ブテンランダム共重合体、プロピレン・1-オクテンランダム共重合体、4-メチル-1-ペンテン・ヘキセン共重合体などが特に好ましく用いられる。これらの共重合体は1種類のみではなく、2種以上併用してもよい。
 α-オレフィン重合体(C)を用いることで、特に耐衝撃性と耐寒性とのバランスが向上する。
 該α-オレフィン重合体(C)は、バナジウム系触媒、チタン系触媒またはメタロセン系触媒などを用いる従来公知の方法により製造することができる。α-オレフィン重合体(C)として、例えば市販品を用いてもよく、三井化学社製の商品名:「タフマーTM」などを用いてもよい。
 〔4-メチル-1-ペンテン(共)重合体組成物の変性体〕
 本発明の4-メチル-1-ペンテン(共)重合体組成物を極性樹脂と混合、積層する場合や金属と積層、接着する場合は、好ましくは上述の該(共)重合体(A)、該共重合体(B)または該(共)重合体組成物中に含まれる(共)重合体などの成分の少なくとも一部が極性化合物によりグラフト変性されていることが好ましい。この際、該(共)重合体組成物の変性体とは、該(共)重合体組成物が直接変性されたもののほか、該(共)重合体(A)や該共重合体(B)がグラフト変性されたものを該重合体組成物の構成要素として有するものも包含する概念である。また、以下においては、該(共)重合体組成物には、変性体も包含されるものとする。
 グラフト変性に用いる極性化合物としては、水酸基含有エチレン性不飽和化合物、アミノ基含有エチレン性不飽和化合物、エポキシ基含有エチレン性不飽和化合物、芳香族ビニル化合物、不飽和カルボン酸またはその誘導体、ビニルエステル化合物、塩化ビニル、ビニル基含有有機ケイ素化合物、カルボジイミド化合物などが挙げられる。これらのうち、不飽和カルボン酸またはその誘導体およびビニル基含有有機ケイ素化合物が特に好ましい。
 不飽和カルボン酸またはその誘導体としては、カルボン酸基を1以上有する不飽和化合物、カルボン酸基を有する化合物とアルキルアルコールとのエステル、無水カルボン酸基を1以上有する不飽和化合物等を挙げることができ、不飽和基としては、ビニル基、ビニレン基、不飽和環状炭化水素基などを挙げることができる。これらの化合物は従来公知のものが使用でき、特に制限はないが具体的な化合物としては、例えばアクリル酸、マレイン酸、フマル酸、テトラヒドロフタル酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸、ナジック酸〔商標〕(エンドシス-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボン酸)等の不飽和カルボン酸;またはその誘導体、例えば酸ハライド、アミド、イミド、無水物、エステル等が挙げられる。かかる誘導体の具体例としては、例えば塩化マレニル、マレイミド、無水マレイン酸、無水シトラコン酸、マレイン酸モノメチル、マレイン酸ジメチル、グリシジルマレエート等が挙げられる。これらの不飽和カルボン酸および/またはその誘導体は、1種単独で使用することもできるし、2種以上を組み合せて使用することもできる。これらの中では、不飽和ジカルボン酸またはその酸無水物が好適であり、特にマレイン酸、ナジック酸〔商標〕またはこれらの酸無水物が好ましく用いられる。
 ビニル基含有有機ケイ素化合物としては、従来公知のものが使用でき、特に制限はないが具体的には、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリス(β-メトキシーエトキシシラン)、γ-グリシドキシプロピルートリピルトリーメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルエトキシシラン、p-スチリルトリメトキシシラン、3-メタクロキシプロピルメチルジメメトキシシラン、3-メタクロキシプロピルメチルジエトキシシラン、3-メタクロキシプロピルトリエトキシシラン、3-アクロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシランなどが使用できる。好ましくは、γ-グリシドキシプロピルトリピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、3-アクロキシプロピルトリメトキシシラン、さらに好ましくは、立体障害が小さくグラフト変性効率の高いビニルトリエトキシシラン、ビニルトリメトキシシラン、3-アクロキシプロピルトリメトキシシランが挙げられる。
 本発明で4-メチル-1-ペンテン(共)重合体組成物の変性体は、前記該(共)重合体(A)、該共重合体(B)または該(共)重合体組成物100重量部に対して、極性化合物を通常1~100重量部、好ましくは5~80重量部の量でグラフト反応させることにより得ることができる。このグラフト反応は、通常ラジカル開始剤の存在下に行なわれる。
 グラフト重合に用いられるラジカル開始剤としては、有機過酸化物あるいはアゾ化合物などが挙げられる。ラジカル開始剤は、該(共)重合体(A)、該共重合体(B)または該(共)重合体組成物、および極性化合物にそのまま混合して使用することもできるが、少量の有機溶媒に溶解してから使用することもできる。この有機溶媒としては、ラジカル開始剤を溶解し得る有機溶媒であれば特に限定することなく用いることができる。
 また、該(共)重合体(A)、該共重合体(B)または該(共)重合体組成物に極性化合物をグラフト反応させる際には、還元性物質を用いてもよい。還元性物質を用いると、極性化合物のグラフト量を向上させることができる場合がある。
 該(共)重合体(A)、該共重合体(B)または該(共)重合体組成物の極性化合物によるグラフト変性反応は、従来公知の方法で行うことができる。例えば該(共)重合体(A)、該共重合体(B)または該(共)重合体組成物を有機溶媒に溶解し、次いで極性化合物およびラジカル開始剤などを溶液に加え、通常70~200℃、好ましくは80~190℃の温度で、通常0.5~15時間、好ましくは1~10時間反応させる方法を挙げることができる。
 また、押出機などを用いて、無溶媒で、該(共)重合体(A)、該共重合体(B)または該(共)重合体組成物と極性化合物とを反応させることもできる。この反応は、通常4-メチル-1-ペンテン重合体の融点以上、具体的には160~290℃の温度で、通常0.5~10分間行なわれることが望ましい。
 このようにして得られる該(共)重合体組成物の変性体の変性量(極性化合物のグラフト量)は、通常0.1~50重量%、好ましくは0.2~30重量%、さらに好ましくは0.2~10重量%である。
 [4-メチル-1-ペンテン(共)重合体組成物を含む成形体]
 本発明にかかる4-メチル-1-ペンテン(共)重合体組成物を含む成形体またはこれらのいずれかを用いて得られる変性体を含む成形体は、例えば押出成形、射出成形、インフレーション成形、ブロー成形、押出ブロー成形、射出ブロー成形、プレス成形、スタンピング成形、真空成形、カレンダー成形、フィラメント成形、発泡成形、パウダースラッシュ成形などの公知の熱成形方法により得られる。また、本発明の成形体は、本発明に係る(共)重合体、共重合体組成物および変性体を適宜組み合せても製造できる。
 本発明の該(共)重合体組成物は、2種以上の4-メチル-1-ペンテン(共)重合体が良好に相溶しているので、溶融物性の制御も容易で、成形性にも優れた性質を示す。例えば、主として前記の該(共)重合体(A)に由来する結晶化速度の制御の自由度が増し、広幅のフィルムや大型のブロー成形体、延伸フィルムなどをえるにも有利である。
 本発明の成形体は、押出成形、射出成形、溶液流延等の一次成形で得た成形品を、さらにブロー成形、延伸などの方法で加工した成形品であることも好ましい。例えば、成形品がフィルム状またはシート状である場合には、Tダイ押出成形法などによりシート状に成形して得た成形品を、さらに一軸延伸あるいは二軸延伸して得たものであることも好ましい。このような延伸フィルムの具体的な用途としては、キャパシター用フィルムを挙げることが出来る。4-メチル-1-ペンテン(共)重合体は、従来、結晶化速度が速い事が知られ、成形の自由度が狭い傾向が有ることが知られていたが、これの制御幅が広がることで、成形温度などの延伸条件と延伸倍率などを制御することで、結晶化速度も制御し、表面を粗面化させたりする事も可能になると考えられる。
 また、例えば、成形品が押出成形体である場合には、耐熱性、電気特性といった従来市販されている4-メチル-1-ペンテン系(共)重合体のもつ特徴に加えて、靭性、柔軟性、成形性にも優れることから、チューブ状の成形体として、医療用チューブ、冷却水配管、温水配管、化粧品チューブ、電線被覆材、ミリ波信号ケーブル被覆、高周波信号ケーブル被覆、エコ電線被覆、薬液用チューブ、化粧品チューブ、車載用ケーブル被覆材、信号ケーブル被覆材、など、産業材、工業部材、建材、医療部品、電気部品において好ましく用いることができる。
 以下、本発明の4-メチル-1-ペンテン(共)重合体組成物の用途として特に好ましく用いられ得る、フィルムおよび中空成形体について詳説する。
 [4-メチル-1-ペンテン(共)重合体組成物からなるフィルム]
 本発明のフィルムは、上述した4-メチル-1-ペンテン(共)重合体組成物を、通常180~300℃の範囲で溶融押出して得ることができる。本発明のフィルムは、従来公知である4-メチル-ペンテン(共)重合体フィルムと同等の臨界表面張力を有するため離型性に優れ、また、絶縁破壊電圧等の電気特性に優れている。
 このようなフィルムの具体的な用途としては、離型フィルム、包装用フィルムを挙げることができる。
 また、本発明のフィルムは、Tダイ押出成形法などによりフィルム、シート状に成形して得た成形品を、さらに一軸延伸あるいは二軸延伸して得たものであることも好ましい。このような延伸フィルムの具体的な用途としては、キャパシター用フィルムを挙げることができる。従来、4-メチル-1-ペンテン重合体は結晶化速度が速い事が知られ、成形の自由度が狭い傾向が有ることが知られていたが、本発明における該(共)重合体組成物では、成形温度などの延伸条件と延伸倍率などを制御することで、結晶化速度も制御し、表面を粗面化させたりする事も可能になり、延伸フィルムについても絶縁破壊電圧等の物性にも優れていると考えられる。
 該(共)重合体組成物は、2種以上の4-メチル-1-ペンテン(共)重合体が良好に相溶しているので、溶融物性の制御も容易で、フィルムの成形性、延伸性、表面光沢、ヒートシール性改質において優れた性質を示す。
 このような優れた性質を示す要因としては、以下に示すとおり、該(共)重合体(A)の物性を、該共重合体(B)の存在により改質していることに伴うと考えられる。
 例えば、結晶化速度が速いために成形時に結晶化の調整が難しく、成形体製造の安定性に劣っていた該(共)重合体(A)に対して、該共重合体(B)を相溶させることによって、形成する結晶の面間隔などの構造が変化することで結晶化速度を遅くすることができ、結晶化速度の制御の自由度を増すことが可能となる。
 また、ガラス転移温度(Tg)以上の温度領域での貯蔵弾性率が高いため柔軟性および伸びなどの機械物性の点で劣っていた該(共)重合体(A)に、柔軟な特徴を有する該共重合体(B)を相溶させることによって、ガラス転移温度(Tg)以上の温度領域での貯蔵弾性率が、該(共)重合体(A)単独と比べて低くすることが可能となる。
 また、結晶性が高く結晶成分が偏在していた該(共)重合体(A)に、結晶性の低いもしくは非晶性の該共重合体(B)を相溶させることによって、結晶成分が組成物中全体にわたって分散し、均一な組成物を得ることが可能となる。
 さらに、融点(Tm)が高い該(共)重合体(A)に、(共)重合体(A)に比べて低融点もしくは融点を持たない該共重合体(B)を相溶させることによって、組成物中の融点に分布ができるため、延伸時の予熱温度での溶融物性を制御することが可能となる。
 上記の理由等に基づき、本発明にかかる該(共)重合体組成物を用いてフィルム成形を行うと、延伸時に均一に延伸することが可能となる。そのため本発明のフィルムは延伸フィルムなどを得るに当たって、特に有利である。
 さらに、本発明のフィルムは、寸法安定性、特に加熱時の収縮率において優れた性質を示す。
 このような優れた性質を示す要因としては、以下に示すとおり、該(共)重合体(A)の物性を、該共重合体(B)の存在により改質していることによると考えられる。
 一般的に押出成形法で得られるポリマーフィルムは流れ方向(Machine Direction:MD)に流動配向した状態で固化するため、得られたフィルムをポリマーのガラス転移温度(Tg)以上に加熱すると流れ方向MDに収縮することが知られている。従来市販されている4-メチル-1-ペンテン系重合体(4-メチル-1-ペンテン(共)重合体(A)に相当)からなるフィルムも流れ方向MDに収縮するため寸法安定性に問題があった。
 これに対して該共重合体(B)からなる押出フィルムは、ガラス転移温度(Tg)以上に加熱すると一般的なポリマーフィルムとは逆に、膨張する挙動を示すことが明らかとなった。これは該共重合体(B)の応力吸収性の高さに起因していると考えられる。該共重合体(B)は、流れ方向MDに流動配向しても、その配向にかかるポリマー分子の変形によって生じる熱エネルギーを吸収するため、配向した状態で熱的に安定化してしまう。したがってガラス転移温度(Tg)以上に加熱しても、配向を緩和する必要がないので収縮は生じない。あたかも無配向状態のポリマーをガラス転移温度(Tg)以上の温度に加熱したときと同じように、単純に分子運動が活発化してフィルムが膨張することになる。
 これより、該(共)重合体(A)に該共重合体(B)を添加することで、該(共)重合体(A)に適度な熱膨張性を付与することができ、収縮性と膨張性が相殺する結果として、本発明における該(共)重合体組成物から得られるフィルムは熱収縮率が小さくなるものと考えられる。
 また、本発明のフィルムは、上述した該(共)重合体組成物から得られる単層フィルムのほか、いずれか一層に該(共)重合体組成物が含まれている積層フィルムであることも好ましい態様である。このような積層フィルムを得る方法については特に制限は無いが、あらかじめT-ダイ成形またはインフレーション成形にて得られた表面層フィルム上に、押出ラミネーション、押出コーティング等の公知の積層法により積層する方法や、複数のフィルムを独立して成形した後、各々のフィルムをドライラミネーションにより積層する方法等が挙げられるが、生産性の点から、複数の成分を多層の押出機に供して成形する共押出成形が好ましい。
 上記好ましい形態としてフィルム表面層に本発明のフィルムを含む多層型の表面保護フィルム、多層型の離型フィルムに対して好適に利用できる。
 [4-メチル-1-ペンテン(共)重合体組成物からなるフィルムの用途]
 本発明の4-メチル-1-ペンテン(共)重合体組成物からなるフィルムは、耐熱性、機械物性、電気特性、離型性といった従来からある4-メチル-1-ペンテン共重合体の特性に加え、柔軟性、光沢性、均一延伸性などに優れることから、例えば、以下のような用途に好適に用いられる。
 包装用フィルム;例えば、食品包装用フィルム、ストレッチフィルム、ラップフィルム、通気性フィルム、シュリンクフィルム、イージーピールフィルム、
 セパレーター;例えば、バッテリーセパレーター、リチウムイオン電池用セパレーター、燃料電池用電解質膜、粘着・接着材セパレーター、
 延伸フィルム;例えば、フィルムコンデンサ用フィルム、キャパシターフィルム、燃料電池用キャパシターフィルム、
 半導体工程フィルム;例えば、ダイシングテープ・バックグラインドテープ・ダイボンディングフィルム、偏光板用フィルム、
 表面保護フィルム;例えば、偏光板用保護フィルム、液晶パネル用保護フィルム、光学部品用保護フィルム、レンズ用保護フィルム、電気部品・電化製品用保護フィルム、携帯電話用保護フィルム、パソコン用保護フィルム、マスキングフィルム、タッチパネル用保護フィルム
 電子部材用フィルム;例えば、拡散フィルム、反射フィルム、耐放射線フィルム、耐γ線フィルム、多孔フィルム、
 建材フィルム;例えば、建材用ウインドウフィルム、合わせガラス用フィルム、防弾材、防弾ガラス用フィルム、遮熱シート、遮熱フィルム、などが挙げられる。
 本発明の該(共)重合体組成物からなるフィルムは、離型性、耐熱性、低アウトガス、銅箔への低汚染性に優れるため、従来より問題となっているプリント配線基板、特にフレキシブルプリント配線基板製造時の低分子量体移行による配線基板および銅箔への汚染が少ない。したがって、下記に挙げる離型フィルム用途に特に好適に用いられる。
 離型フィルムの用途としては、例えば、フレキシブルプリント基板用離型フィルム、ACM基板用離型フィルム、リジットフレキシブル基板用離型フィルム、先端複合材料用離型フィルム、炭素繊維複合材硬化用離型フィルム、ガラス繊維複合材硬化用離型フィルム、アラミド繊維複合材硬化用離型フィルム、ナノ複合材硬化用離型フィルム、フィラー充填材硬化用離型フィルム、半導体封止用離型フィルム、偏光板用離型フィルム、拡散シート用離型フィルム、プリズムシート用離型フィルム、反射シート用離型フィルム、離型フィルム用クッションフィルム、燃料電池用離型フィルム、各種ゴムシート用離型フィルム、ウレタン硬化用離型フィルム、エポキシ硬化用離型フィルム(金属バットやゴルフクラブなどの製造工程部材など)、などが挙げられる。
 [4-メチル-1-ペンテン(共)重合体組成物からなる中空成形体]
 本発明の中空成形体は、上述した4-メチル-1-ペンテン(共)重合体組成物を、通常180~300℃の範囲で溶融押出して得ることができる。
 該(共)重合体組成物は、2種以上の4-メチル-1-ペンテン(共)重合体が良好に相溶しているので、溶融物性の制御も容易で、中空成形体の成形性にも優れた性質を示す。例えば、主として前記の該(共)重合体(A)に由来する結晶化速度の制御の自由度が増し、中空成形体などを得るにも有利である。
 具体的には、該(共)重合体組成物からなるブロー成形体は、該(共)重合体組成物を単層、もしくは該(共)重合体組成物を少なくとも1層以上含む多層の構造を備えていても良い。これらのうち、本発明にかかるブロー成形体としては、該(共)重合体組成物を少なくとも1層以上含む多層の構造を備えているものが好ましい。
 ここで、該(共)重合体組成物からなるブロー成形体が多層構成の場合の具体的な構成としては、例えば、以下のような構成を挙げることができる。
 ・4-メチル-1-ペンテン(共)重合体組成物/機能付与樹脂/4-メチル-1-ペンテン(共)重合体組成物、の順で積層された多層成形体
 ・4-メチル-1-ペンテン(共)重合体組成物/接着層/機能付与樹脂/接着層/4-メチル-1-ペンテン(共)重合体組成物、の順で積層された多層成形体
 前記機能付与樹脂としては、例えば、従来公知のポリオレフィン樹脂(本発明にかかる重合体を除く。以下同じ。)が挙げられる。
 <ブロー成形体の製造方法>
 本発明において、4-メチル-1-ペンテン(共)重合体組成物からなるブロー成形体は、一般的な公知のブロー成形方法によって製造することができる。該成形方法の例示としては、溶融した樹脂からパリソンを成形し、そのパリソンを金型で挟んだ後、パリソン内部に加圧気体をブローして容器を成形するダイレクトブロー成形法や、一旦射出成形または押出成形でプリフォームを成形し、そのプリフォームをブロー成形する射出ブロー成形法等がある。
 さらに、射出ブロー成形法には射出成形機とブロー成形機が一体化した1ステージであるホットパリソン法、射出成形したプリフォームを完全に冷却した後、さらに再加熱してブロー成形を行なうコールドパリソン法がある。
 具体的には該(共)重合体組成物を溶融して、金型内にこの樹脂を射出成形することによりプリフォームを成形する。続いて、このプリフォームを溶融状態あるいは軟化状態で、または冷却固化した状態で赤外線ヒーター等を用いて所定の温度まで再加熱して、加熱後に特定の金型内で気体を圧入して2軸延伸して所望の形態に成形する。
 該(共)重合体組成物の溶融、射出温度は、通常180~320℃の範囲で行われる。ブロー延伸温度は100~250℃、縦・横延伸倍率は、1.5~4.0倍で通常行われる。
 本発明において、該(共)重合体組成物からなるブロー成形体は、形成された成形体を構成する成分のうち少なくとも1層にあれば良い。具体的には、例えばプリフォームを射出成形時に2色成形した後にブロー成形することで、少なくとも1層が該(共)重合体組成物であるブロー成形体を得ることができる。上記のような成形機は一般的な公知の装置を使うことができる。
 [4-メチル-1-ペンテン(共)重合体組成物からなる中空成形体の用途]
 本発明の4-メチル-1-ペンテン(共)重合体組成物からなる中空成形体は、耐熱性、機械物性など従来からある4-メチル-1-ペンテン共重合体の特性に加え、柔軟性、ブロー成形性などに優れることから、中空容器、ボトル、カップなどに好適に用いられる。
 具体的には以下の用途で好適に用いられるが、下記に限定されるわけではない。
 中空容器;食品容器、調味料容器、レトルト容器、冷凍保存容器、電子レンジ耐熱容器、医療用容器、トナー容器、粉末容器、ガソリンタンク用容器、灯油用容器、フラスコなど実験器具、
 ボトル;化粧品ボトル、整髪剤、飲料水用ボトル、炭酸飲料ボトル、アルコール類用、ボトル、洗剤用ボトル、柔軟剤用ボトル、漂白剤用ボトル、シャンプー用ボトル、リンス用ボトル、薬剤ボトル、接着剤用ボトル、農薬用ボトル、医療用ボトル、輸液ボトル、哺乳瓶、医療バック、輸液バック、血液保存バック、
 カップ;食品用カップ、包装用カップ、
等が挙げられる。
 以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、実施例において各物性は以下のように測定した。
 <4-メチル-1-ペンテン(共)重合体(A)、4-メチル-1-ペンテン共重合体(B)およびα-オレフィン重合体(C)、並びに各樹脂組成物>
 [極限粘度[η]]
 デカリン溶媒を用いて、135℃で測定した値である。すなわち重合パウダー、ペレットまたは樹脂塊約20mgをデカリン15mlに溶解し、135℃のオイルバス中で比粘度ηspを測定した。このデカリン溶液にデカリン溶媒を5ml追加して希釈後、同様にして比粘度ηspを測定した。この希釈操作をさらに2回繰り返し、濃度(C)を0に外挿した時のηsp/Cの値を極限粘度として求めた(下式参照)。
 [η]=lim(ηsp/C) (C→0)
 [MFR]
 4-メチル-1-ペンテン(共)重合体(A)、4-メチル-1-ペンテン共重合体(B)のMFRは、JIS K7210に準拠して、260℃で5kgの荷重、または230℃、2.16kgの荷重にて測定した。α-オレフィン重合体(C)のMFRは、230℃、2.16kg荷重の条件で測定した。
 [数平均分子量(Mn)、重量平均分子量(Mw)、分子量分布(Mw/Mn)]
 数平均分子量(Mn)、重量平均分子量(Mw)、分子量分布(Mw/Mn)は、Waters社製ゲル浸透クロマトグラフAlliance GPC-2000型を用い、以下のようにして測定した。分離カラムは、TSKgel GNH6-HTを2本およびTSKgel GNH6-HTLを2本であり、カラムサイズはいずれも直径7.5mm、長さ300mmであり、カラム温度は140℃とし、移動相にはo-ジクロロベンゼン(和光純薬工業)および酸化防止剤としてBHT(武田薬品)0.025重量%を用い、1.0ml/分で移動させ、試料濃度は15mg/10mLとし、試料注入量は500マイクロリットルとし、検出器として示差屈折計を用いた。標準ポリスチレンは、分子量がMw<1000およびMw>4×106については東ソー社製を用い、1000≦Mw≦4×106についてはプレッシャーケミカル社製を用いた。
 [ポリマー中の4-メチル-1-ペンテン、α-オレフィン含量]
 ポリマー中の4-メチル-1-ペンテンおよびα-オレフィン含量の定量化は、以下の装置および条件により13C-NMRにより測定した結果から行った。なお、本測定結果では、α-オレフィン含量には、4-メチル-1-ペンテンの含量は含まないものとする。
 日本電子(株)製ECP500型核磁気共鳴装置を用い、溶媒としてオルトジクロロベンゼン/重ベンゼン(80/20容量%)混合溶媒,試料濃度55mg/0.6mL、測定温度120℃、観測核は13C(125MHz)、シーケンスはシングルパルスプロトンデカップリング、パルス幅は4.7μ秒(45°パルス)、繰り返し時間は5.5秒、積算回数は1万回以上、27.50ppmをケミカルシフトの基準値として測定した。得られた13C-NMRスペクトルにより、4-メチル-1-ペンテン、α-オレフィンの組成を定量化した。
 [融点(Tm)、ガラス転移温度(Tg)、結晶化温度(Tc)]
 セイコーインスツルメンツ社製DSC測定装置(DSC220C)を用い、測定用アルミパンに約5mgの試料をつめて、100℃/minで290℃まで昇温し、290℃で5分間保持した後、10℃/minで-100℃まで降温させた時の結晶化ピークのピーク頂点から結晶化温度(Tc)、ついで-100℃から10℃/minで290℃まで昇温させた時の熱量曲線から変曲点からガラス転移温度(Tg)さらに結晶溶融ピークのピーク頂点から融点(Tm)を算出した。
 <4-メチル-1-ペンテン(共)重合体(A)、4-メチル-1-ペンテン共重合体(B)およびα-オレフィン重合体(C)、並びに実施例1~7、比較例1,2の組成物>
 [各種測定用プレスシートの作製法]
 [ペレット化]
 4-メチル-1-ペンテン(共)重合体(A)、4-メチル-1-ペンテン共重合体(B)およびα-オレフィン重合体(C)を所定の配合量で混合して得られた該組成物100重量部に対して、二次抗酸化剤としてトリ(2,4-ジ-t-ブチルフェニル)フォスフェートを0.1重量部、耐熱安定剤としてn-オクタデシル-3-(4’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)プロピネートを0.1重量部、塩酸吸収剤としてステアリン酸カルシウムを0.1重量部配合した。然る後に、(株)プラスチック工学研究所社製2軸押出機BT-30(スクリュー系30mmφ、L/D=46)を用い、設定温度270℃、樹脂押出量60g/minおよび200rpmの条件で造粒し各種測定用ペレットを得た。
 [プレス成形]
 上記方法で得られたペレットを、230~290℃に設定した神藤金属工業社製油圧式熱プレス機(NS-50)を用い、ゲージ圧10MPaでシート成形した。厚み1~2mmのシート(ペーサー形状;240×240×2mm厚の板に200×200×1~2mm)の場合、余熱を5~7分程度し、ゲージ圧10MPaで1~2分間加圧した後、20℃に設定した別の神藤金属工業社製油圧式熱プレス機を用い、ゲージ圧10MPaで圧縮し、5分程度冷却して測定用試料を作成した。熱板として5mm厚の真鍮板を用いた。上記方法により作製したサンプルを用いて各種物性評価試料に供した。
 [射出成形]
 上記で得られたペレットを、東芝機械株式会社製射出成形機IS-55にて、シリンダ温度=250~290℃、射出速度=30~40%、スクリュー回転数60rpm、金型温度40~60℃にて厚み2mm射出角板ならびにスペシメンを作製した。
 [ヤング率(引張弾性率)(YM)、引張破断伸び(EL)、引張破断点応力(TS)]
 引張特性であるヤング率(YM)、引張破断点伸度(EL)および引張破断点応力(TS)の評価は、上記射出成形の条件で作製したスペシメン(ASTM D638-IV型試験片)を評価用試料として、インストロン社製万能引張試験機3380を用いて、引張速度=30mm/minで実施した。
 [内部ヘイズ(%)〕
 厚み2mmの射出角板を試験片として用いて、ベンジルアルコール中で日本電色工業(株)製のデジタル濁度計(NDH-20D)にて測定した。
 [密度]
 密度測定は、上記の方法で得られた厚み1mmプレスシートを30mm角に切り取り、JIS K6268に準拠して、電子比重計を用いて水中置換方法で測定した。
 [動的粘弾性測定]
 上記プレス成形にて成形した厚み2mmシートを任意のサイズに切り出し、Anton Paar社製レオメーターPhysicaMCR-301を用いて、-40℃から250℃の温度まで昇温速度=2℃/minで、周波数=10rad/s、歪み量=0.1をトーションモード負荷して動的粘弾性の温度依存性を測定し、貯蔵弾性率G’が1.0×106Paとなる際の温度を測定した。
 <実施例8~24、比較例3~10、参考例1~3の組成物およびフィルム>
 [ペレット化]
 4-メチル-1-ペンテン(共)重合体(A)、4-メチル-1-ペンテン共重合体(B)およびα-オレフィン重合体(C)を所定の配合量で混合して得られた該組成物100重量部に対して、二次抗酸化剤としてトリ(2,4-ジ-t-ブチルフェニル)フォスフェートを0.1重量部、耐熱安定剤としてn-オクタデシル-3-(4’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)プロピネートを0.1重量部、塩酸吸収剤としてステアリン酸カルシウムを0.1重量部配合した。然る後に、(株)プラスチック工学研究所社製2軸押出機BT-30(スクリュー系30mmφ、L/D=46)を用い、設定温度270℃、樹脂押出量60g/minおよび200rpmの条件で造粒して評価用ペレットを得た。
 [フィルム成形]
 上記にて得られたペレットを、株式会社田中鉄工所社製単軸シート成形機を用い、溶融キャスト成形して、下記厚みのフィルムを得た。
 厚み200μm(延伸テスト用):シリンダ温度250℃、ダイス温度250℃、ロール温度80℃、引取速度1m/min(表5のフィルム)
 厚み100μm(収縮率測定用):シリンダ温度、ダイス温度、ロール温度、引取速度はそれぞれ、表7に示す条件
 厚み50μm(各種物性測定用):シリンダ温度250℃、ダイス温度250℃、ロール温度80℃、引取速度1m/min、フィルム成形温度:250℃または270℃(表5、6のフィルム)
 [ヤング率(引張弾性率)(YM)、引張破断伸び(EL)、引張破断点応力(TS)]
 引張特性であるヤング率(YM)、引張破断点伸度(EL)および引張破断点応力(TS)の評価は、JIS K6781に準拠して上記フィルム成形法で得られた厚み50μmのフィルムを試験片として、インストロン社製万能引張試験機3380を用いて、引張速度=200mm/minで実施した。
 [内部ヘイズ(%)〕
 内部ヘイズは、上記フィルム成形法で得られた厚み50μmのフィルムを試験片として用いて、ベンジルアルコール中で日本電色工業株式会社製のデジタル濁度計(NDH-20D)にて測定した。
 [グロス]
 グロスは、JIS K7105に準拠して上記フィルム成形法で得られた厚み50μmのフィルムを試験片として用いて、グロスメーターを用いて室温にてグロス角度20°で測定した。
 [絶縁破壊電圧(BDV)]
 絶縁破壊電圧(kV)測定は、ASTM-D149に準じ、ヤマヨ試験器有限会社製絶縁破壊試験機を用いた。上記のフィルム成形法で得られた厚み50μmのフィルムを昇圧速度500V/secにて電圧を印加して破壊耐電圧を測定し、耐電圧特性を求めた。
 [フィルム延伸性]
 上記フィルム成形法で得られた厚み200μmのフィルムを60mm×60mmにカットし、株式会社井元製作所社製バッチ式二軸延伸機を利用し、50~200℃にて1分間予熱後、延伸速度50mm/minにて同時二軸延伸し、二軸延伸フィルムを得た。延伸倍率は、2.9×2.9倍(流れ方向(Machine Direction:MD):3倍、垂直方向(Transverse Direction:TD):3倍)にて実施した。延伸後のフィルム状態から、以下のように延伸性の評価を行った。
 ○:均一延伸、△:不均一延伸、×:フィルム破断
 [フィルムアウトガス分析]
 フィルムアウトガス発生量は、特開2011-88352号公報、特開2007-224311号公報等の試験方法を参考にして実施した。上記フィルム成形法で得られた厚み50μmのフィルムを、20×2mmの短冊状にカットし、約10mg分を精秤後、ヘリウム気流下にて180℃で30分加熱した際に発生するガス成分を動的ヘッドスペース法で捕集し、熱脱着GC/MSスペクトル分析装置(アジレントテクノロジー社製HP6890/HP5975)にて測定した。MSスペクトル結果からデカンを標準試料とした換算定量値をアウトガス量として規定した。
 [銅箔への移行物量]
 銅箔への移行物量(1/μm3)は特開2008-94909号公報記載の試験方法を参考にした。上記フィルム成形法で得られた厚み50μmのフィルムを、同じ大きさの銅箔で挟んで熱プレスした後、銅箔をクロロホルムで洗浄した。こうして得られたクロロホルム溶液を加熱してクロロホルムを留去して濃縮残渣を得た。この基板上の濃縮残査を、OLYMPUS社製共焦点レーザー顕微鏡(OLS4000)を用いて測定し、3次元データを解析することにより計測した。
 [収縮率]
 上記フィルム成形法で得られた厚み100μmのフィルムを、流れ方向MD、垂直方向TDにそれぞれ幅2cm、長さ12cmの短冊状に切り出し、このフィルム面上に2つの標点を記した。この標点間の距離をデジタルノギスで測定しL0(cm)とした。この短冊状フィルムを160℃に設定したオーブン中に吊り下げて30分加熱した。加熱後、フィルムを取り出し室温で30分冷却した後、標点間距離を測定しこれをL(cm)とした。収縮率を下式で算出した。
 (収縮率)={(L0-L)/L0}x100(%)
 [フィルムの外観]
 フィルムの外観は以下の評価に基づく。
 ○・・・加熱によるシワ、ソリ、黄変などが見られない
 ×・・・加熱によりシワ、ソリ、黄変などの変化が見られる
 [動的粘弾性測定]
 上記フィルム成形法で得られた厚み50μmのフィルムを50mm×5mmに切り取り、ティー・エイ・インスツルメント社製レオメーターRSA3を用いて、-40℃から250℃の温度まで昇温速度=4℃/minで、周波数=1Hz、歪み量=0.1%の条件で、引張モードで貯蔵弾性率E’の温度依存性を測定した。貯蔵弾性率E’が1.0×106Paとなる際の温度を測定した。
 <実施例25~36、比較例11~13、参考例4の組成物および中空成形体>
 [ヤング率(引張弾性率)(YM)、引張破断伸び(EL)、引張破断点応力(TS)、標線間の標準偏差]
 引張特性であるヤング率(YM)、引張破断点伸度(EL)および引張破断点応力(TS)の評価は、上記4-メチル-1-ペンテン(共)重合体(A)、4-メチル-1-ペンテン共重合体(B)およびα-オレフィン重合体(C)、並びに実施例1~7、比較例1,2の組成物の測定において記載した射出成形の条件で作製したスペシメン(ASTM D638-IV型試験片)を評価用試料として、インストロン社製万能引張試験機3380を用いて、引張速度=200mm/minで実施した。また、上記の引張り試験にて測定した結果より標線間の引張破断伸び(EL)の標準偏差を求めた。
 [貯蔵弾性率]
 貯蔵弾性率は、上記4-メチル-1-ペンテン(共)重合体(A)、4-メチル-1-ペンテン共重合体(B)およびα-オレフィン重合体(C)、並びに実施例1~7、比較例1,2の組成物の測定において記載したプレスシート作成法にて得られた厚み2mmプレスシートを45mm×10mm×2mmに切り取り、Anton Paar社製レオメーターPhysicaMCR-301を用いて、-40℃から250℃の温度まで昇温速度=2℃/minで、周波数=10rad/s、歪み量=0.1をトーションモード負荷して動的粘弾性の温度依存性を測定し、貯蔵弾性率G’が1.0×106Paとなる際の温度を測定した。また、100℃における貯蔵弾性率G’(MPa)も併せて測定した。
 [ブロー成形性]
 4-メチル-1-ペンテン(共)重合体(A)、4-メチル-1-ペンテン共重合体(B)およびα-オレフィン重合体(C)を所定の配合量で混合して得られた該組成物100重量部に対して、二次抗酸化剤としてトリ(2,4-ジ-t-ブチルフェニル)フォスフェートを0.1重量部、耐熱安定剤としてn-オクタデシル-3-(4’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)プロピネートを0.1重量部、塩酸吸収剤としてステアリン酸カルシウムを0.1重量部配合した。然る後に、(株)プラスチック工学研究所社製2軸押出機BT-30(スクリュー系30mmφ、L/D=46)を用い、設定温度270℃、樹脂押出量60g/minおよび200rpmの条件で造粒し各種測定用ペレットを得た。得られたペレットを、日精エー・エス・ビー機械株式会社製ワンステップストレッチブロー成形機ASB-12N/10を用い、射出樹脂温度;240~290℃の範囲、金型冷却温度18~60℃の条件で外径30mm、高さ45mm、重量約30gの試験管形状のプリフォームを射出成形し、得られたプリフォームを加熱ポットに入れて所定の温度に加熱した後に約240ccの中空容器になるようにブロー1次圧力0.4MPa、2次圧力0.9MPaでブロー成形した。
 射出ブロー成形性は以下の観点で評価した。
  射出ブロー成形品に破れなく成形できた場合:○
  射出ブロー成形品がブロー時に延伸できずに破れた場合:×
 [ボトル透明性]
 ボトルの透明性は、上記で得られたブローボトルを試験片として用いて、日本電色工業株式会社製のデジタル濁度計(NDH-20D)にて測定した全ヘイズ値で示した。
 [合成例1]4-メチル-1-ペンテン(共)重合体(A)の製造
 国際公開2006/054613号パンフレットの比較例7や比較例9の方法に準じ、4-メチル-1-ペンテン、1-デセン、1-ヘキサデセン、1-オクタデセン、水素の割合を変更することによって、表1に示す物性を有する4-メチル-1-ペンテン重合体(A-1)~(A-3)を得た。
 [合成例2]4-メチル-1-ペンテン共重合体(B1)の製造
 [合成例2-1]4-メチル-1-ペンテン共重合体(B1-1)の製造
 充分窒素置換した容量1.5リットルの攪拌翼付SUS製オートクレーブに、23℃で4-メチル-1-ペンテンを750ml装入した。このオートクレーブに、トリイソブチルアルミニウム(TIBAL)の1.0mmol/mlトルエン溶液を0.75ml装入し攪拌機を回した。
 次に、オートクレーブを内温60℃まで加熱し、全圧が0.15MPa(ゲージ圧)となるようにプロピレンで加圧した。続いて、予め調製しておいた、メチルアルミノキサンをAl換算で1mmol、ジフェニルメチレン(1-エチル-3-t-ブチル-シクロペンタジエニル)(2,7-ジ-t-ブチル-フルオレニル)ジルコニウムジクロリドを0.005mmolを含むトルエン溶液0.34mlを窒素でオートクレーブに圧入し、重合を開始した。重合反応中、オートクレーブ内温が60℃になるように温度調整した。重合開始60分後、オートクレーブにメタノール5mlを窒素で圧入し重合を停止し、オートクレーブを大気圧まで脱圧した。反応溶液にアセトンを攪拌しながら注いだ。
 得られた溶媒を含むパウダー状の重合体を130℃、減圧下で12時間乾燥した。得られたポリマーは45.9gで、ポリマー中の4-メチル-1-ペンテン含量は、92mol%、プロピレン含量は、8mol%であった。ポリマーの融点(Tm)は180℃であり、極限粘度[η]は1.7dl/gであった。各種物性について測定した結果を表1に示す。
 [合成例2-2]4-メチル-1-ペンテン共重合体(B1-2)の製造
 充分窒素置換した容量1.5リットルの攪拌翼付SUS製オートクレーブに、23℃でノルマルヘキサン300ml(乾燥窒素雰囲気、活性アルミナ上で乾燥したもの)、4-メチル-1-ペンテンを450ml装入した。このオートクレーブに、トリイソブチルアルミニウム(TIBAL)の1.0mmol/mlトルエン溶液を0.75ml装入し攪拌機を回した。
 次に、オートクレーブを内温60℃まで加熱し、全圧が0.19MPa(ゲージ圧)となるようにプロピレンで加圧した。続いて、予め調製しておいた、メチルアルミノキサンをAl換算で1mmol、ジフェニルメチレン(1-エチル-3-t-ブチル-シクロペンタジエニル)(2,7-ジ-t-ブチル-フルオレニル)ジルコニウムジクロリドを0.01mmolを含むトルエン溶液0.34mlを窒素でオートクレーブに圧入し、重合を開始した。重合反応中、オートクレーブ内温が60℃になるように温度調整した。重合開始60分後、オートクレーブにメタノール5mlを窒素で圧入し重合を停止し、オートクレーブを大気圧まで脱圧した。反応溶液にアセトンを攪拌しながら注いだ。
 得られた溶媒を含むパウダー状の重合体を100℃、減圧下で12時間乾燥した。得られたポリマーは44.0gで、ポリマー中の4-メチル-1-ペンテン含量は、84mol%、プロピレン含量は、16mol%であった。ポリマーの融点(Tm)は131℃であり、極限粘度[η]は1.4dl/gであった。各種物性について測定した結果を表1に示す。
 [合成例3]4-メチル-1-ペンテン共重合体(B2)の製造
 充分窒素置換した容量1.5リットルの攪拌翼付SUS製オートクレーブに、23℃でノルマルヘキサン300ml(乾燥窒素雰囲気、活性アルミナ上で乾燥したもの)、4-メチル-1-ペンテンを450ml装入した。このオートクレーブに、トリイソブチルアルミニウム(TIBAL)の1.0mmol/mlトルエン溶液を0.75ml装入し攪拌機を回した。
 次に、オートクレーブを内温60℃まで加熱し、全圧が0.40MPa(ゲージ圧)となるようにプロピレンで加圧した。続いて、予め調製しておいた、メチルアルミノキサンをAl換算で1mmol、ジフェニルメチレン(1-エチル-3-t-ブチル-シクロペンタジエニル)(2,7-ジ-t-ブチル-フルオレニル)ジルコニウムジクロリドを0.01mmolを含むトルエン溶液0.34mlを窒素でオートクレーブに圧入し、重合を開始した。重合反応中、オートクレーブ内温が60℃になるように温度調整した。重合開始60分後、オートクレーブにメタノール5mlを窒素で圧入し重合を停止し、オートクレーブを大気圧まで脱圧した。反応溶液にアセトンを攪拌しながら注いだ。
 得られた溶媒を含むパウダー状の重合体を100℃、減圧下で12時間乾燥した。得られたポリマーは36.9gで、ポリマー中の4-メチル-1-ペンテン含量は74mol%、プロピレン含量は26mol%であった。極限粘度[η]は1.6dl/gであり、融点は示さなかった。各種物性について測定した結果を表1に示す。
 [合成例4]α-オレフィン重合体(C)の製造、準備
 [合成例4-1]α-オレフィン共重合体(C-1)の製造
 特開2008-144155号パンフレットの実施例8の方法に準じ、表2に示すα-オレフィン共重合体(C-1)を得た。
 [合成例4-2]α-オレフィン共重合体(C-2)の製造
 国際公開WO2002/002659号パンフレットの比較例1に記載の方法に準じ、表2に示すα-オレフィン共重合体(C-2)を得た。
 [合成例4-3]α-オレフィン共重合体(C-3)の準備
 α-オレフィン共重合体(C-3)として、ホモポリプロピレン(株式会社プライムポリマー製 品番:F123P、MFR=3g/10分(230℃、2.16kg荷重))を使用した。各種物性について測定した結果を表2に示す。
 [合成例4-4]α-オレフィン共重合体(C-4)の準備
 α-オレフィン共重合体(C-4)として、ホモポリプロピレン(株式会社プライムポリマー製 品番:F107、MFR=7g/10分(230℃、2.16kg荷重))を使用した。各種物性について測定した結果を表2に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 [実施例1]
 該共重合体(A-3)20重量部と合成例2-2にて得られた該共重合体(B1-2)80重量部を混合して、該組成物100重量部に対して、二次抗酸化剤としてのトリ(2,4-ジ-t-ブチルフェニル)フォスフェートを0.1重量部、耐熱安定剤としてのn-オクタデシル-3-(4’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)プロピネートを0.1重量部、塩酸吸収剤としてのステアリン酸カルシウムを0.1重量部配合した。然る後に、(株)プラスチック工学研究所社製2軸押出機BT-30(スクリュー系30mmφ、L/D=46)を用い、設定温度280℃、樹脂押出量60g/minおよび200rpmの条件で造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形またはプレス成形して得た各種物性を表3に示した。透明性と耐熱性、さらに伸びに優れることがわかる。
 [実施例2]
 該共重合体(A-2)70重量部と合成例2-2にて得られた該共重合体(B1-2)30重量部を混合して、該組成物100重量部に対して、実施例1と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形またはプレス成形して得た各種物性を表3に示した。透明性と耐熱性、さらに伸びに優れることがわかる。
 [実施例3]
 該共重合体(A-1)40重量部と合成例2-1にて得られた該共重合体(B1-1)60重量部を混合して、該組成物100重量部に対して、実施例1と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形またはプレス成形して得た各種物性を表3に示した。透明性と耐熱性、さらに伸びに優れることがわかる。
 [実施例4]
 該共重合体(A-2)85重量部と合成例2-1にて得られた該共重合体(B1-1)15重量部を混合して、該組成物100重量部に対して、実施例1と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形またはプレス成形して得た各種物性を表3に示した。透明性と耐熱性、さらに伸びに優れることがわかる。
 [実施例5]
 該共重合体(A-1)60重量部と、合成例2-1にて得られた該共重合体(B1-1)10重量部と、合成例3にて重合した該共重合体(B2)30重量部を混合して、該組成物100重量部に対して、実施例1と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形またはプレス成形して得た各種物性を表3に示した。透明性と耐熱性、さらに伸びに優れることがわかる。
 [実施例6]
 該共重合体(A-2)60重量部と、合成例2-1にて得られた該共重合体(B1-1)10重量部と、合成例3にて得られた該共重合体(B2)30重量部を混合して、該組成物100重量部に対して、実施例1と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形またはプレス成形して得た各種物性を表3に示した。透明性と耐熱性、さらに伸びに優れることがわかる。
 [実施例7]
 該共重合体(A-2)70重量部と、合成例2-1にて得られた該共重合体(B1-1)15重量部と、α-オレフィン重合体(C-2)15重量部を混合して、該組成物100重量部に対して、実施例1と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形またはプレス成形して得た各種物性を表3に示した。耐熱性と伸びに優れることがわかる。
 [比較例1]
 α-オレフィン重合体(C-4)を用いて、該ペレットを上記条件で射出成形またはプレス成形して得た各種物性を表3に示した。前記実施例の結果に比して、透明性と耐熱性に劣る結果であることがわかる。
 [比較例2]
 該共重合体(A-3)を用いて、該ペレットを上記条件で射出成形またはプレス成形して得た各種物性を表3に示した。前記実施例の結果に比して、伸びに劣る結果であることがわかる。
Figure JPOXMLDOC01-appb-T000009
 [実施例8]
 該共重合体(A-2)80重量部と合成例2-1にて得られた該共重合体(B1-1)20重量部を混合して、該組成物100重量部に対して、二次抗酸化剤としてのトリ(2,4-ジ-t-ブチルフェニル)フォスフェートを0.1重量部、耐熱安定剤としてのn-オクタデシル-3-(4’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)プロピネートを0.1重量部、塩酸吸収剤としてのステアリン酸カルシウムを0.1重量部配合した。然る後に、株式会社プラスチック工学研究所社製2軸押出機BT-30(スクリュー系30mmφ、L/D=46)を用い、設定温度280℃、樹脂押出量60g/minおよび200rpmの条件で造粒して評価用ペレットを得た。該ペレットを上記条件で成形して得たフィルムの各種物性測定結果を表4に示した。透明性と耐熱性に優れることがわかる。
 [実施例9]
 該共重合体(A-2)40重量部と合成例2-1にて得られた該共重合体(B1-1)60重量部を混合して、該組成物100重量部に対して、実施例8と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で成形して得たフィルムの各種物性測定結果を表4に示した。透明性と耐熱性に優れることがわかる。
 [実施例10]
 該共重合体(A-2)80重量部と合成例2-2にて得られた該共重合体(B1-2)20重量部を混合して、該組成物100重量部に対して、実施例8と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で成形して得たフィルムの各種物性測定結果を表4に示した。透明性と耐熱性に優れることがわかる。
 [実施例11]
 該共重合体(A-1)80重量部と合成例2-1にて得られた該共重合体(B1-1)20重量部を混合して、該組成物100重量部に対して、実施例8と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で成形して得たフィルムの各種物性測定結果を表4に示した。透明性と耐熱性に優れることがわかる。
 [実施例12]
 該共重合体(A-1)40重量部と合成例2-1にて得られた該共重合体(B1-1)60重量部を混合して、該組成物100重量部に対して、実施例8と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で成形して得たフィルムの各種物性測定結果を表4に示した。透明性と耐熱性に優れることがわかる。
 [実施例13]
 該共重合体(A-1)60重量部と合成例2-1にて得られた該共重合体(B1-1)10重量部と合成例3にて得られた該共重合体(B2)30重量部を混合して、該組成物100重量部に対して、実施例8と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で成形して得たフィルムの各種物性測定結果を表4に示した。耐熱性と延伸性に優れることがわかる。
 [実施例14]
 該共重合体(A-2)60重量部と合成例2-1にて得られた該共重合体(B1-1)10重量部と合成例3にて得られた該共重合体(B2)30重量部を混合して、該組成物100重量部に対して、実施例8と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で成形して得たフィルムの各種物性測定結果を表4に示した。耐熱性と延伸性に優れることがわかる。
 [実施例15]
 該共重合体(A-2)70重量部と合成例2-1にて得られた該共重合体(B1-1)15重量部とα-オレフィン重合体(C-2)15重量部を混合して、該組成物100重量部に対して、実施例8と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で成形して得たフィルムの各種物性測定結果を表4に示した。耐熱性と延伸性に優れることがわかる。
 [実施例16]
 該共重合体(A-1)60重量部と合成例2-1にて得られた該共重合体(B1-1)10重量部とα-オレフィン重合体(C-3)30重量部を混合して、該組成物100重量部に対して、実施例8と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で成形して得たフィルムの各種物性測定結果を表4に示した。電気特性と延伸性に優れることがわかる。
 [比較例3]
 α-オレフィン重合体(C-4)を用いて、該ペレットを上記条件で成形して得たフィルムの各種物性測定結果を表5に示した。前記実施例の結果に比して、透明性、耐熱性に劣る結果であることがわかる。
 [比較例4]
 該重合体(A-1)を用いて、該ペレットを上記条件で成形して得たフィルムの各種物性測定結果を表5に示した。前記実施例の結果に比して、フィルム延伸性に劣る結果であることがわかる。
 [比較例5]
 該重合体(A-2)を用いて、該ペレットを上記条件で成形して得たフィルムの各種物性測定結果を表5に示した。前記実施例の結果に比して、フィルム延伸性に劣る結果であることがわかる。
 [参考例1]
 該共重合体(A-2)80重量部と合成例3にて得られた該重合体(B2)20重量部を混合して、該組成物100重量部に対して、実施例8と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で成形して得たフィルムの各種物性測定結果を表5に示した。
 [参考例2]
 該共重合体(A-2)60重量部と合成例3にて得られた該重合体(B2)40重量部を混合して、該組成物100重量部に対して、実施例8と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で成形して得たフィルムの各種物性測定結果を表5に示した。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 [実施例17]
 該共重合体(A-3)70重量部と合成例2-1にて得られた該共重合体(B1-1)30重量部を混合して、該組成物100重量部に対して、実施例8と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で成形して得たフィルムの各種物性測定結果を表6に示した。成形温度を低くでき、銅箔への移行物量が少ないことが分かる。
 [実施例18]
 該共重合体(A-3)50重量部と合成例2-1にて得られた該共重合体(B1-1)50重量部を混合して、該組成物100重量部に対して、実施例8と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で成形して得たフィルムの各種物性測定結果を表6に示した。成形温度を低くでき、銅箔への移行物量が少ないことが分かる。
 [実施例19]
 該共重合体(A-3)30重量部と合成例2-1にて得られた該共重合体(B1-1)70重量部を混合して、該組成物100重量部に対して、実施例8と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で成形して得たフィルムの各種物性測定結果を表6に示した。成形温度を低くでき、銅箔への移行物量が少ないことが分かる。
 [比較例6]
 該共重合体(A-3)100重量部に対して、実施例8と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で成形して得たフィルムの各種物性測定結果を表6に示した。フィルムアウトガス量、銅箔への移行物量が多いことが分かる。
 [比較例7]
 特殊ポリエステルからなる厚み50μmの離型フィルム(積水化学工業株式会社製RP-50)を用いて銅箔への移行物量を測定した。銅箔への移行物の濃縮溶媒はクロロホルム/1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール混合溶媒を用いて同様に測定した。該材料からなるフィルムの銅箔への移行物量の測定結果は、690×104(1/μm3)となっており、本発明にかかるフィルムの実施例17~19と対比して大幅に多いことが分かる。
Figure JPOXMLDOC01-appb-T000012
 [実施例20]
 該共重合体(A-1)90重量部と合成例2-1にて得られた該共重合体(B1-1)10重量部を混合して、該組成物100重量部に対して、実施例8と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記フィルム成形法によって成形して得たフィルムの各種物性測定結果を表7に示した。
 [実施例21]
 該共重合体(A-1)70重量部と合成例2-1にて得られた該共重合体(B1-1)30重量部を混合して、該組成物100重量部に対して、実施例8と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記フィルム成形法によって成形して得たフィルムの各種物性測定結果を表7に示した。
 [実施例22、23]
 フィルム成形条件を表7に記載の条件に変えたこと以外は実施例21と同様にして得たフィルムの各種物性測定結果を表7に示した。
 [実施例24]
 該共重合体(A-1)50重量部と合成例2-1にて得られた該共重合体(B1-1)50重量部を混合して、該組成物100重量部に対して、実施例8と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記フィルム成形法によって成形して得たフィルムの各種物性測定結果を表7に示した。
 [比較例8]
 三井化学東セロ株式会社製TPX(登録商標)フィルム「オピュランX44B」(フィルム厚み100μm)の各種物性測定結果を表7に示した。収縮率が実施例20~24に示した本発明のフィルムに比べて大きいことが分かる。
 [比較例9]
 三井化学東セロ株式会社製TPX(登録商標)フィルム「オピュランX44B」を180℃のオーブン中で1時間加熱した後の各種物性測定結果を表7に示した。比較例8に比べて収縮率が低下している点で優れているが、加熱処理によりシワやソリが発生し外観が著しく悪化した。
 [比較例10]
 東レ株式会社製ポリエチレンテレフタレートフィルム「ルミラー」(フィルム厚み100μm)を用いて収縮率の測定および加熱後のフィルム外観を観察した。実施例20~24に示した本発明のフィルムと比べて収縮率が大きいことが分かる。
 [参考例3]
 該共重合体(A-1)70重量部と合成例3にて得られた該共重合体(B2)30重量部を混合して、該組成物100重量部に対して、実施例8と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記フィルム成形法によって成形して得たフィルムの各種物性測定結果を表7に示した。
Figure JPOXMLDOC01-appb-T000013
 [実施例25]
 該共重合体(A-2)70重量部と合成例2-2にて得られた該共重合体(B1-2)30重量部を混合して、該組成物100重量部に対して、二次抗酸化剤としてのトリ(2,4-ジ-t-ブチルフェニル)フォスフェートを0.1重量部、耐熱安定剤としてのn-オクタデシル-3-(4’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)プロピネートを0.1重量部、塩酸吸収剤としてのステアリン酸カルシウムを0.1重量部配合した。然る後に、株式会社プラスチック工学研究所社製2軸押出機BT-30(スクリュー系30mmφ、L/D=46)を用い、設定温度280℃、樹脂押出量60g/minおよび200rpmの条件で造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形、プレス成形、射出ブロー成形して得た各種物性を表8に示した。ブロー成形性、透明性、耐熱性に優れることがわかる。
 [実施例26]
 該共重合体(A-1)40重量部と合成例2-1にて得られた該共重合体(B1-1)60重量部を混合して、該組成物100重量部に対して、実施例25と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形、プレス成形、射出ブロー成形して得た各種物性を表8に示した。ブロー成形性、透明性、耐熱性に優れることがわかる。
 [実施例27]
 該共重合体(A-2)85重量部と合成例2-1にて得られた該共重合体(B1-1)15重量部を混合して、該組成物100重量部に対して、実施例25と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形、プレス成形、射出ブロー成形して得た各種物性を表8に示した。ブロー成形性、透明性、耐熱性に優れることがわかる。
 [実施例28]
 該共重合体(A-2)30重量部と合成例2-1にて得られた該共重合体(B1-1)70重量部を混合して、該組成物100重量部に対して、実施例25と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形、プレス成形、射出ブロー成形して得た各種物性を表8に示した。ブロー成形性、透明性、耐熱性に優れることがわかる。
 [実施例29]
 該共重合体(A-2)70重量部と合成例2-1にて得られた該共重合体(B1-1)15重量部と、合成例3にて得られた該共重合体(B2)15重量部を混合して、該組成物100重量部に対して、実施例25と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形、プレス成形、射出ブロー成形して得た各種物性を表8に示した。ブロー成形性、透明性、耐熱性に優れることがわかる。
 [実施例30]
 該共重合体(A-2)18重量部と合成例2-1にて得られた該共重合体(B1-1)42重量部と、合成例3にて得られた該共重合体(B2)40重量部を混合して、該組成物100重量部に対して、実施例25と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形、プレス成形、射出ブロー成形して得た各種物性を表8に示した。ブロー成形性、透明性、耐熱性に優れることがわかる。
 [実施例31]
 該共重合体(A-2)56重量部と合成例2-1にて得られた該共重合体(B1-1)24重量部と、合成例3にて重合した該共重合体(B2)20重量部を混合して、該組成物100重量部に対して、実施例25と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形、プレス成形、射出ブロー成形して得た各種物性を表8に示した。ブロー成形性、透明性、耐熱性に優れることがわかる。
 [実施例32]
 該共重合体(A-2)42重量部と合成例2-1にて得られた該共重合体(B1-1)18重量部と、合成例3にて得られた該共重合体(B2)40重量部を混合して、該組成物100重量部に対して、実施例25と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形、プレス成形、射出ブロー成形して得た各種物性を表8に示した。ブロー成形性、透明性、耐熱性に優れることがわかる。
 [実施例33]
 該共重合体(A-2)24重量部と合成例2-1にて得られた該共重合体(B1-1)56重量部と、α-オレフィン共重合体(C-1)20重量部を混合して、該組成物100重量部に対して、実施例25と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形、プレス成形、射出ブロー成形して得た各種物性を表9に示した。ブロー成形性、透明性、耐熱性に優れることがわかる。
 [実施例34]
 該共重合体(A-2)24重量部と合成例2-2にて得られた該共重合体(B1-2)57重量部と合成例3にて得られた該共重合体(B2)14重量部とα-オレフィン重合体(C-2)5重量部を混合して、該組成物100重量部に対して、実施例25と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形、プレス成形、射出ブロー成形して得た各種物性を表9に示した。ブロー成形性、耐熱性に優れることがわかる。
 [実施例35]
 該共重合体(A-2)60重量部と合成例2-1にて得られた該共重合体(B1-1)10重量部と合成例3にて得られた該共重合体(B2)30重量部とを混合して、該組成物100重量部に対して、実施例25と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形、プレス成形、射出ブロー成形して得た各種物性を表9に示した。ブロー成形性、透明性、耐熱性に優れることがわかる。
 [実施例36]
 該共重合体(A-3)15重量部と該共重合体(A-2)45重量部と合成例2-1にて得られた該共重合体(B1-1)10重量部と合成例3にて得られた該共重合体(B2)30重量部とを混合して、該組成物100重量部に対して、実施例25と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形、プレス成形、射出ブロー成形して得た各種物性を表9に示した。ブロー成形性、透明性、耐熱性に優れることがわかる。
 [比較例11]
 α-オレフィン重合体(C-4)を用いて、該ペレットを上記条件で射出成形、プレス成形、射出ブロー成形して得た各種物性を表9に示した。前記実施例の結果に比して、透明性、耐熱性に劣る結果であることがわかる。
 [比較例12]
 該共重合体(A-3)を用いて、該ペレットを上記条件で射出成形、プレス成形、射出ブロー成形して得た各種物性を表9に示した。前記実施例の結果に比して、ブロー成形性に劣る結果であることがわかる。
 [比較例13]
 合成例2-1で得られた該共重合体(B1-1)を用いて、該ペレットを上記条件で射出成形、プレス成形、射出ブロー成形して得た各種物性を表9に示した。前記実施例の結果に比して、ブロー成形性に劣る結果であることがわかる。
 [参考例4]
 該共重合体(A-2)60重量部と合成例3にて得られた該共重合体(B2)40重量部を混合して、該組成物100重量部に対して、実施例25と同量の二次抗酸化剤、耐熱安定剤、塩酸吸収剤を配合して、同条件にて押出造粒して評価用ペレットを得た。該ペレットを上記条件で射出成形、プレス成形、射出ブロー成形して得た各種物性を表9に示した。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015

Claims (11)

  1.  (X1)下記要件(A-a)~(A-e)を満たす4-メチル-1-ペンテン(共)重合体(A)10~90重量部と、下記要件(B1-a)~(B1-e)を満たす4-メチル-1-ペンテン共重合体(B1)90~10重量部(ただし、(A)および(B1)の合計を100重量部とする)を含んでなる組成物か、または
     (X3)該4-メチル-1-ペンテン(共)重合体(A)10~90重量部と、該4-メチル-1-ペンテン共重合体(B1)および下記要件(B2-a)~(B2-e)を満たす4-メチル-1-ペンテン共重合体(B2)の合計として90~10重量部(ただし、(A)、(B1)および(B2)の合計を100重量部とし、(B1)と(B2)の混合比((B1)/(B2))は、99/1~1/99である)とを含んでなる組成物である、
    4-メチル-1-ペンテン(共)重合体組成物。
     ・4-メチル-1-ペンテン(共)重合体(A)
     (A-a)4-メチル-1-ペンテンから導かれる構成単位(U1)が100~90モル%であり、炭素原子数2~20のα-オレフィン(4-メチル-1-ペンテンを除く)から導かれる構成単位の総量(U2)が0~10モル%(ただし、U1とU2との合計は100モル%である)である、
     (A-b)135℃デカリン中で測定した極限粘度[η]が0.5~5.0dl/gである、
     (A-c)DSCで測定した融点(Tm)が200~250℃の範囲にある、
     (A-d)DSCで測定した結晶化温度(Tc)が150~225℃の範囲にある、
     (A-e)密度が820~850kg/m3である。
     ・4-メチル-1-ペンテン共重合体(B1)
     (B1-a)4-メチル-1-ペンテンから導かれる構成単位(U3)が99~80モル%であり、炭素原子数2~20のα-オレフィン(4-メチル-1-ペンテンを除く)から導かれる構成単位の総量(U4)が1~20モル%(U3とU4との合計は100モル%である)である、
     (B1-b)135℃デカリン中で測定した極限粘度[η]が0.5~5.0dl/gである、
     (B1-c)ゲルパーミエーションクロマトグラフィー(GPC)で測定する重量平均分子量(Mw)と数平均分子量(Mn)との比である分子量分布(Mw/Mn)が1.0~3.5である、
     (B1-d)密度が825~860kg/m3である、
     (B1-e)DSCで測定した融点(Tm)が110℃~200℃未満の範囲にある、
     ・4-メチル-1-ペンテン共重合体(B2)
     (B2-a)4-メチル-1-ペンテンから導かれる構成単位(U5)が80モル%未満~60モル%であり、炭素原子数2~4のα-オレフィン(4-メチル-1-ペンテンを除く)から導かれる構成単位の総量(U6)が20モル%を超えて~40モル%(U5とU6との合計は100モル%である)である、
     (B2-b)135℃デカリン中で測定した極限粘度[η]が0.5~5.0dl/gである、
     (B2-c)DSCで測定した融点(Tm)110℃未満または融点が観測されない、
     (B2-d)ゲルパーミエーションクロマトグラフィー(GPC)で測定する重量平均分子量(Mw)と数平均分子量(Mn)との比である分子量分布(Mw/Mn)が1.0~3.5である、
     (B2-e)密度が830~860kg/m3である。
  2.  前記(X1)に記載の4-メチル-1-ペンテン(共)重合体組成物において、
     前記(B1-a)U3が99~83モル%であり、U4が1~17モル%(U3とU4との合計は100モル%である)である、請求項1に記載の4-メチル-1-ペンテン(共)重合体組成物。
  3.  前記(共)重合体(A)10~85重量部、前記共重合体(B1)および前記共重合体(B2)を合計として85~10重量部(ただし、(B1)と(B2)の混合比((B1)/(B2))は、99/1~1/99である)およびα-オレフィン重合体(C)(ただし、(共)重合体(A)、共重合体(B1)および(B2)とは異なる)3~30重量部(ただし、(A)、(B1)、(B2)および(C)の合計を100重量部とする)を含んでなる、請求項1または2に記載の4-メチル-1-ペンテン(共)重合体組成物(X4)。
  4.  前記(共)重合体(A)7~90重量部、前記共重合体(B1)90~7重量部およびα-オレフィン重合体(C)(ただし、(共)重合体(A)、共重合体(B1)および(B2)とは異なる)0.9~30重量部(ただし、(A)、(B1)および(C)の合計を100重量部とする)を含んでなる、請求項1または2に記載の4-メチル-1-ペンテン(共)重合体組成物(X5)。
  5.  前記(B1-e)DSCで測定した融点(Tm)が125~190℃の範囲にある、請求項1~4のいずれか1項に記載の4-メチル-1-ペンテン(共)重合体組成物。
  6.  下記要件(A-a)~(A-e)を満たす4-メチル-1-ペンテン(共)重合体(A)7~90重量部と、下記要件(B2-a)~(B2-e)を満たす4-メチル-1-ペンテン共重合体(B2)90~7重量部と、α-オレフィン重合体(C)(ただし、該(共)重合体(A)、下記要件(B1-a)~(B1-e)を満たす4-メチル-1-ペンテン共重合体(B1)および該共重合体(B2)とは異なる)0.9~30重量部(ただし、(A)、(B2)および(C)の合計を100重量部とする)を含んでなる、4-メチル-1-ペンテン(共)重合体組成物(X6)。
     ・4-メチル-1-ペンテン(共)重合体(A)
     (A-a)4-メチル-1-ペンテンから導かれる構成単位(U1)が100~90モル%であり、炭素原子数2~20のα-オレフィン(4-メチル-1-ペンテンを除く)から導かれる構成単位の総量(U2)が0~10モル%(ただし、U1とU2との合計は100モル%である)である、
     (A-b)135℃デカリン中で測定した極限粘度[η]が0.5~5.0dl/gである、
     (A-c)DSCで測定した融点(Tm)が200~250℃の範囲にある、
     (A-d)DSCで測定した結晶化温度(Tc)が150~225℃の範囲にある、
     (A-e)密度が820~850kg/m3である。
     ・4-メチル-1-ペンテン共重合体(B1)
     (B1-a)4-メチル-1-ペンテンから導かれる構成単位(U3)が99~80モル%であり、炭素原子数2~20のα-オレフィン(4-メチル-1-ペンテンを除く)から導かれる構成単位の総量(U4)が1~20モル%(U3とU4との合計は100モル%である)である、
     (B1-b)135℃デカリン中で測定した極限粘度[η]が0.5~5.0dl/gである、
     (B1-c)ゲルパーミエーションクロマトグラフィー(GPC)で測定する重量平均分子量(Mw)と数平均分子量(Mn)との比である分子量分布(Mw/Mn)が1.0~3.5である、
     (B1-d)密度が825~860kg/m3である、
     (B1-e)DSCで測定した融点(Tm)が110℃~200℃未満の範囲にある、
     ・4-メチル-1-ペンテン共重合体(B2)
     (B2-a)4-メチル-1-ペンテンから導かれる構成単位(U5)が80モル%未満~60モル%であり、炭素原子数2~4のα-オレフィン(4-メチル-1-ペンテンを除く)から導かれる構成単位の総量(U6)が20モル%を超えて~40モル%(U5とU6との合計は100モル%である)である、
     (B2-b)135℃デカリン中で測定した極限粘度[η]が0.5~5.0dl/gである、
     (B2-c)DSCで測定した融点(Tm)110℃未満または融点が観測されない、
     (B2-d)ゲルパーミエーションクロマトグラフィー(GPC)で測定する重量平均分子量(Mw)と数平均分子量(Mn)との比である分子量分布(Mw/Mn)が1.0~3.5である、
     (B2-e)密度が830~860kg/m3である。
  7.  請求項1~6のいずれか1項に記載の4-メチル-1-ペンテン(共)重合体組成物からなる、フィルム。
  8.  請求項7に記載のフィルムからなる、離形フィルム。
  9.  請求項1~6のいずれか1項に記載の4-メチル-1-ペンテン(共)重合体組成物からなる、中空成形体。
  10.  請求項1~6のいずれか1項に記載の4-メチル-1-ペンテン(共)重合体組成物を少なくとも1層として含んでなる、中空成形体。
  11.  射出ブロー成形法によって得られる、請求項9または10に記載の中空成形体。
PCT/JP2012/083499 2011-12-27 2012-12-25 4-メチル-1-ペンテン(共)重合体組成物、該組成物からなるフィルムおよび中空成形体 WO2013099876A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013551707A JP5769821B2 (ja) 2011-12-27 2012-12-25 4−メチル−1−ペンテン(共)重合体組成物、該組成物からなるフィルムおよび中空成形体
KR1020147019295A KR101567269B1 (ko) 2011-12-27 2012-12-25 4-메틸-1-펜텐 (공)중합체 조성물, 해당 조성물로 이루어지는 필름 및 중공 성형체
CN201280061026.6A CN103987779B (zh) 2011-12-27 2012-12-25 4-甲基-1-戊烯(共)聚合物组合物、包含该组合物的膜和中空成型体
US14/364,211 US9902847B2 (en) 2011-12-27 2012-12-25 4-methyl-1-pentene (co)polymer composition, and film and hollow molded product composed of the composition
EP12862805.4A EP2799488B1 (en) 2011-12-27 2012-12-25 4-methyl-1-pentene (co)polymer composition, and film and hollow molded body, each of which is formed from 4-methyl-1-pentene (co)polymer composition

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2011-285679 2011-12-27
JP2011285679 2011-12-27
JP2012-017761 2012-01-31
JP2012017761 2012-01-31
JP2012044990 2012-03-01
JP2012-044990 2012-03-01
JP2012066877 2012-03-23
JP2012-066877 2012-03-23
JP2012-231666 2012-10-19
JP2012231666 2012-10-19

Publications (1)

Publication Number Publication Date
WO2013099876A1 true WO2013099876A1 (ja) 2013-07-04

Family

ID=48697361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083499 WO2013099876A1 (ja) 2011-12-27 2012-12-25 4-メチル-1-ペンテン(共)重合体組成物、該組成物からなるフィルムおよび中空成形体

Country Status (7)

Country Link
US (1) US9902847B2 (ja)
EP (1) EP2799488B1 (ja)
JP (1) JP5769821B2 (ja)
KR (1) KR101567269B1 (ja)
CN (1) CN103987779B (ja)
TW (1) TWI550007B (ja)
WO (1) WO2013099876A1 (ja)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208564A1 (ja) * 2013-06-28 2014-12-31 三井化学株式会社 応力緩和性フィルム及び半導体用表面保護フィルム
JP2015034258A (ja) * 2013-08-09 2015-02-19 三井化学株式会社 組成物、フィルム、前記フィルムの製造方法
JP2015063079A (ja) * 2013-09-25 2015-04-09 三井化学株式会社 積層体
JP2015214658A (ja) * 2014-05-12 2015-12-03 三井化学株式会社 拡張性基材フィルム、拡張性粘着フィルム、ダイシングフィルム、拡張性基材フィルムの製造方法、及び半導体装置の製造方法
JP2016014129A (ja) * 2014-03-14 2016-01-28 三井化学株式会社 樹脂組成物、フィルム、積層フィルム、積層体、イージーピール用材料およびカバーテープ
JP2016126995A (ja) * 2014-12-26 2016-07-11 三井化学株式会社 電池部材用フィルム
JP2016183207A (ja) * 2015-03-25 2016-10-20 三井化学株式会社 4−メチル−1−ペンテン系共重合体を含む樹脂組成物およびその成形体
JP2017074775A (ja) * 2015-10-16 2017-04-20 三井化学株式会社 積層体および離型紙
JP2017165928A (ja) * 2016-03-18 2017-09-21 三井化学株式会社 熱可塑性樹脂組成物およびこれから得られる成形体
JP2018145350A (ja) * 2017-03-08 2018-09-20 三井化学株式会社 熱可塑性エラストマー組成物、その成形体及びそれらの製造方法
JP2018158451A (ja) * 2017-03-22 2018-10-11 三井化学株式会社 3次元プリンター造形用フィラメント
JP2018162408A (ja) * 2017-03-27 2018-10-18 三井化学株式会社 4−メチル−1−ペンテン共重合体組成物
JP2019001139A (ja) * 2017-06-20 2019-01-10 三井化学株式会社 多層二軸延伸フィルムおよび転写フィルム
JP2019204897A (ja) * 2018-05-24 2019-11-28 三井化学株式会社 冷却ジャケット
JPWO2018155179A1 (ja) * 2017-02-23 2020-01-16 三井化学株式会社 成形体およびその製造方法
WO2020116368A1 (ja) 2018-12-04 2020-06-11 三井化学株式会社 4-メチル-1-ペンテン共重合体を含有する樹脂組成物、およびキャパシタ用フィルム
JP2020105446A (ja) * 2018-12-28 2020-07-09 三井化学株式会社 成形体およびその製造方法
JP2020142474A (ja) * 2019-03-08 2020-09-10 三井化学株式会社 多層離型フィルム
JP2020158681A (ja) * 2019-03-27 2020-10-01 三井化学株式会社 4−メチル−1−ペンテン系重合体を含む重合体組成物および成形体
JP2020186413A (ja) * 2020-08-24 2020-11-19 三井化学株式会社 熱可塑性樹脂組成物およびこれから得られる成形体
JP2020186412A (ja) * 2020-08-24 2020-11-19 三井化学株式会社 熱可塑性樹脂組成物およびこれから得られる成形体
JP2021014531A (ja) * 2019-07-12 2021-02-12 三井化学株式会社 表面保護フィルム
WO2022050208A1 (ja) 2020-09-01 2022-03-10 三井化学株式会社 樹脂組成物および成形体
WO2022107578A1 (ja) * 2020-11-17 2022-05-27 三井化学株式会社 樹脂組成物、粘着剤、積層体、表面保護フィルム、表面保護フィルムの製造方法および面を保護する方法
WO2023162335A1 (ja) * 2022-02-22 2023-08-31 三井化学株式会社 4-メチル-1-ペンテン共重合体組成物、成形体、マンドレルおよびゴムホースの製造方法
JP7433108B2 (ja) 2020-03-27 2024-02-19 三井化学株式会社 フィルム
EP4450253A1 (en) * 2023-04-21 2024-10-23 Canon Kabushiki Kaisha Stretch blow-molded article, toner bottle, and method for manufacturing stretch blow-molded article, molded article, and pellet

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9725540B2 (en) * 2009-11-06 2017-08-08 Mitsui Chemicals, Inc. 4-methyl-1-pentene/α-olefin copolymer, composition comprising the copolymer and 4-methyl-1-pentene copolymer composition
WO2018008563A1 (ja) * 2016-07-04 2018-01-11 旭硝子株式会社 フィルムおよびその製造方法

Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191734A (ja) 1982-05-01 1983-11-09 Fujikura Ltd 延伸フイルム
JPH01501950A (ja) 1987-01-30 1989-07-06 エクソン・ケミカル・パテンツ・インク 触媒、これらの触媒の製法およびこれらの触媒を使用する重合プロセス
JPH01502036A (ja) 1987-01-30 1989-07-13 エクソン・ケミカル・パテンツ・インク 触媒、これら触媒の製法、およびこれら触媒の使用法
JPH0241303A (ja) 1988-07-15 1990-02-09 Fina Technol Inc シンジオタクチツクポリオレフインの製造方法及び触媒
JPH0278687A (ja) 1988-09-14 1990-03-19 Mitsui Petrochem Ind Ltd ベンゼン不溶性の有機アルミニウムオキシ化合物の製造方法
JPH03179006A (ja) 1989-10-10 1991-08-05 Fina Technol Inc シンジオタクチツク重合体の製造方法および製造用触媒
JPH03179005A (ja) 1989-10-10 1991-08-05 Fina Technol Inc メタロセン触媒
JPH03193796A (ja) 1989-10-10 1991-08-23 Fina Technol Inc メタロセン化合物
JPH03207704A (ja) 1989-10-30 1991-09-11 Fina Technol Inc オレフイン重合触媒
JPH03207703A (ja) 1989-10-30 1991-09-11 Fina Technol Inc オレフイン重合触媒の製造法
JPH0531792A (ja) 1990-12-04 1993-02-09 Dainippon Printing Co Ltd 耐熱性容器の製造方法
JPH0570659A (ja) 1991-09-17 1993-03-23 Asahi Chem Ind Co Ltd ポリカーボネート樹脂組成物
JPH05245911A (ja) 1991-03-01 1993-09-24 Chisso Corp ポリオレフィン系樹脂製中空容器
US5321106A (en) 1990-07-03 1994-06-14 The Dow Chemical Company Addition polymerization catalyst with oxidative activation
JPH0753804A (ja) * 1993-08-20 1995-02-28 Mitsui Petrochem Ind Ltd 4−メチル−1−ペンテン系重合体組成物
JPH11255982A (ja) 1997-07-24 1999-09-21 Sumitomo Chem Co Ltd 2軸延伸ブロー成形用プロピレン系樹脂組成物および容器
WO2001027124A1 (fr) 1999-10-08 2001-04-19 Mitsui Chemicals, Inc. Compose metallocene, son procede de fabrication, catalyseur de polymerisation d'olefine, procede de production de polyolefine et polyolefine
JP2001172408A (ja) 1999-12-20 2001-06-26 Mitsui Chemicals Inc ラップフィルム
WO2001053369A1 (fr) 2000-01-21 2001-07-26 Mitsui Chemicals, Inc. Copolymeres blocs d'olefine, procedes de fabrication et utilisation
WO2002002659A1 (fr) 2000-07-03 2002-01-10 Mitsui Chemicals, Inc. Copolymere de butene, composition de resine renfermant ce copolymere et produits moules de cette composition, et catalyseur solide au titane pour la production du copolymere, ainsi que procede de preparation du catalyseur
JP2002192673A (ja) 2000-12-27 2002-07-10 Mitsui Chemicals Inc 多層延伸フィルム
WO2002081958A1 (fr) 2001-03-30 2002-10-17 Mitsui Chemicals, Inc. Tuyau fabrique en elastomere thermoplastique
JP2003268044A (ja) 2002-03-15 2003-09-25 Mitsui Chemicals Inc ポリプロピレン樹脂組成物および延伸ブロー容器
JP2003292704A (ja) * 2002-03-29 2003-10-15 Mitsui Chemicals Inc 樹脂組成物及び延伸成形体
JP2004027071A (ja) * 2002-06-27 2004-01-29 Mitsui Chemicals Inc 4−メチル−1−ペンテン系重合体樹脂組成物および成形品
JP2004035625A (ja) * 2002-06-28 2004-02-05 Mitsui Chemicals Inc 4−メチル−1−ペンテン系重合体の樹脂組成物
WO2006025540A1 (ja) 2004-08-30 2006-03-09 Mitsui Chemicals, Inc. プロピレン系重合体の製造方法
WO2006054613A1 (ja) 2004-11-17 2006-05-26 Mitsui Chemicals, Inc. 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィン系重合体の製造方法
JP3779471B2 (ja) 1998-05-22 2006-05-31 三井化学株式会社 4−メチル−1−ペンテン系重合体の延伸方法
JP2007224311A (ja) 2001-06-29 2007-09-06 Sekisui Chem Co Ltd 離型フィルム
JP2007321102A (ja) * 2006-01-20 2007-12-13 Mitsui Chemicals Inc プロピレン系重合体組成物、該組成物からなる成形体
JP2008094909A (ja) 2006-10-10 2008-04-24 Mitsui Chemicals Inc 4−メチル−1−ペンテン系重合体離型フィルム
JP2008144155A (ja) 2006-11-14 2008-06-26 Mitsui Chemicals Inc 4−メチル−1−ペンテン系ランダム共重合体およびその製造方法ならびに該共重合体を含む組成物
JP2009298139A (ja) 2008-05-15 2009-12-24 Japan Polypropylene Corp ポリプロピレン系射出ブロー成形体
JP4489699B2 (ja) 2003-03-28 2010-06-23 三井化学株式会社 延伸フィルムおよびその製造方法
JP2011088352A (ja) 2009-10-22 2011-05-06 Unitika Ltd 離型フィルム
WO2011055803A1 (ja) * 2009-11-06 2011-05-12 三井化学株式会社 4-メチル-1-ペンテン・α-オレフィン共重合体、該共重合体を含む組成物および4-メチル-1-ペンテン共重合体組成物

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729405B2 (ja) 1987-05-28 1995-04-05 三井石油化学工業株式会社 積層フイルム
US5162278A (en) 1988-07-15 1992-11-10 Fina Technology, Inc. Non-bridged syndiospecific metallocene catalysts and polymerization process
KR930002411B1 (ko) 1988-09-14 1993-03-30 미쓰이세끼유 가가꾸고오교오 가부시끼가이샤 벤젠불용성 유기알루미늄 옥시화합물 및 그 제조방법
US5387568A (en) 1989-10-30 1995-02-07 Fina Technology, Inc. Preparation of metallocene catalysts for polymerization of olefins
CN1392835A (zh) 2000-09-20 2003-01-22 三井化学株式会社 4-甲基-1-戊烯共聚物多层膜及其制备方法
US7485186B2 (en) 2002-06-17 2009-02-03 American Clay Enterprises, Llc Clay plaster
JP2006070252A (ja) 2004-08-03 2006-03-16 Mitsui Chemicals Inc ポリ4−メチル−1−ペンテン樹脂組成物、フィルムおよび電子部品封止体製造用型枠
SG162743A1 (en) 2005-05-18 2010-07-29 Mitsui Chemicals Inc Catalyst for olefin polymerization, method for producing olefin polymer, method for producing propylene copolymer, propylene polymer, propylene polymer composition, and use of those
JP5423968B2 (ja) 2010-01-08 2014-02-19 三井化学株式会社 熱可塑性樹脂組成物およびその成形品
CN102083914B (zh) * 2008-07-10 2015-02-04 三井化学株式会社 4-甲基-1-戊烯类聚合物以及含有4-甲基-1-戊烯类聚合物的树脂组合物及其母料以及它们的成型品
US8211981B2 (en) * 2008-08-01 2012-07-03 Mitsui Chemicals, Inc. Poly(4-methyl-1-pentene) resin composition, film containing same, microporous film, battery separator and lithium ion battery
JP5684986B2 (ja) 2010-01-08 2015-03-18 三井化学株式会社 樹脂組成物、およびその成形フィルム

Patent Citations (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191734A (ja) 1982-05-01 1983-11-09 Fujikura Ltd 延伸フイルム
JPH01501950A (ja) 1987-01-30 1989-07-06 エクソン・ケミカル・パテンツ・インク 触媒、これらの触媒の製法およびこれらの触媒を使用する重合プロセス
JPH01502036A (ja) 1987-01-30 1989-07-13 エクソン・ケミカル・パテンツ・インク 触媒、これら触媒の製法、およびこれら触媒の使用法
JPH0241303A (ja) 1988-07-15 1990-02-09 Fina Technol Inc シンジオタクチツクポリオレフインの製造方法及び触媒
JPH0278687A (ja) 1988-09-14 1990-03-19 Mitsui Petrochem Ind Ltd ベンゼン不溶性の有機アルミニウムオキシ化合物の製造方法
JPH03179006A (ja) 1989-10-10 1991-08-05 Fina Technol Inc シンジオタクチツク重合体の製造方法および製造用触媒
JPH03179005A (ja) 1989-10-10 1991-08-05 Fina Technol Inc メタロセン触媒
JPH03193796A (ja) 1989-10-10 1991-08-23 Fina Technol Inc メタロセン化合物
JPH03207704A (ja) 1989-10-30 1991-09-11 Fina Technol Inc オレフイン重合触媒
JPH03207703A (ja) 1989-10-30 1991-09-11 Fina Technol Inc オレフイン重合触媒の製造法
US5321106A (en) 1990-07-03 1994-06-14 The Dow Chemical Company Addition polymerization catalyst with oxidative activation
JPH0531792A (ja) 1990-12-04 1993-02-09 Dainippon Printing Co Ltd 耐熱性容器の製造方法
JPH05245911A (ja) 1991-03-01 1993-09-24 Chisso Corp ポリオレフィン系樹脂製中空容器
JPH0570659A (ja) 1991-09-17 1993-03-23 Asahi Chem Ind Co Ltd ポリカーボネート樹脂組成物
JPH0753804A (ja) * 1993-08-20 1995-02-28 Mitsui Petrochem Ind Ltd 4−メチル−1−ペンテン系重合体組成物
JPH11255982A (ja) 1997-07-24 1999-09-21 Sumitomo Chem Co Ltd 2軸延伸ブロー成形用プロピレン系樹脂組成物および容器
JP3779471B2 (ja) 1998-05-22 2006-05-31 三井化学株式会社 4−メチル−1−ペンテン系重合体の延伸方法
WO2001027124A1 (fr) 1999-10-08 2001-04-19 Mitsui Chemicals, Inc. Compose metallocene, son procede de fabrication, catalyseur de polymerisation d'olefine, procede de production de polyolefine et polyolefine
JP2001172408A (ja) 1999-12-20 2001-06-26 Mitsui Chemicals Inc ラップフィルム
WO2001053369A1 (fr) 2000-01-21 2001-07-26 Mitsui Chemicals, Inc. Copolymeres blocs d'olefine, procedes de fabrication et utilisation
WO2002002659A1 (fr) 2000-07-03 2002-01-10 Mitsui Chemicals, Inc. Copolymere de butene, composition de resine renfermant ce copolymere et produits moules de cette composition, et catalyseur solide au titane pour la production du copolymere, ainsi que procede de preparation du catalyseur
JP2002192673A (ja) 2000-12-27 2002-07-10 Mitsui Chemicals Inc 多層延伸フィルム
WO2002081958A1 (fr) 2001-03-30 2002-10-17 Mitsui Chemicals, Inc. Tuyau fabrique en elastomere thermoplastique
JP2007224311A (ja) 2001-06-29 2007-09-06 Sekisui Chem Co Ltd 離型フィルム
JP2003268044A (ja) 2002-03-15 2003-09-25 Mitsui Chemicals Inc ポリプロピレン樹脂組成物および延伸ブロー容器
JP2003292704A (ja) * 2002-03-29 2003-10-15 Mitsui Chemicals Inc 樹脂組成物及び延伸成形体
JP3894822B2 (ja) 2002-03-29 2007-03-22 三井化学株式会社 樹脂組成物及び延伸成形体
JP2004027071A (ja) * 2002-06-27 2004-01-29 Mitsui Chemicals Inc 4−メチル−1−ペンテン系重合体樹脂組成物および成形品
JP2004035625A (ja) * 2002-06-28 2004-02-05 Mitsui Chemicals Inc 4−メチル−1−ペンテン系重合体の樹脂組成物
JP4489699B2 (ja) 2003-03-28 2010-06-23 三井化学株式会社 延伸フィルムおよびその製造方法
WO2006025540A1 (ja) 2004-08-30 2006-03-09 Mitsui Chemicals, Inc. プロピレン系重合体の製造方法
WO2006054613A1 (ja) 2004-11-17 2006-05-26 Mitsui Chemicals, Inc. 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィン系重合体の製造方法
JP2007321102A (ja) * 2006-01-20 2007-12-13 Mitsui Chemicals Inc プロピレン系重合体組成物、該組成物からなる成形体
JP2008094909A (ja) 2006-10-10 2008-04-24 Mitsui Chemicals Inc 4−メチル−1−ペンテン系重合体離型フィルム
JP2008144155A (ja) 2006-11-14 2008-06-26 Mitsui Chemicals Inc 4−メチル−1−ペンテン系ランダム共重合体およびその製造方法ならびに該共重合体を含む組成物
JP2009298139A (ja) 2008-05-15 2009-12-24 Japan Polypropylene Corp ポリプロピレン系射出ブロー成形体
JP2011088352A (ja) 2009-10-22 2011-05-06 Unitika Ltd 離型フィルム
WO2011055803A1 (ja) * 2009-11-06 2011-05-12 三井化学株式会社 4-メチル-1-ペンテン・α-オレフィン共重合体、該共重合体を含む組成物および4-メチル-1-ペンテン共重合体組成物

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5965070B2 (ja) * 2013-06-28 2016-08-03 三井化学株式会社 応力緩和性フィルム及び半導体用表面保護フィルム
WO2014208564A1 (ja) * 2013-06-28 2014-12-31 三井化学株式会社 応力緩和性フィルム及び半導体用表面保護フィルム
JPWO2014208564A1 (ja) * 2013-06-28 2017-02-23 三井化学株式会社 応力緩和性フィルム及び半導体用表面保護フィルム
JP2015034258A (ja) * 2013-08-09 2015-02-19 三井化学株式会社 組成物、フィルム、前記フィルムの製造方法
JP2015063079A (ja) * 2013-09-25 2015-04-09 三井化学株式会社 積層体
JP2016014129A (ja) * 2014-03-14 2016-01-28 三井化学株式会社 樹脂組成物、フィルム、積層フィルム、積層体、イージーピール用材料およびカバーテープ
JP2015214658A (ja) * 2014-05-12 2015-12-03 三井化学株式会社 拡張性基材フィルム、拡張性粘着フィルム、ダイシングフィルム、拡張性基材フィルムの製造方法、及び半導体装置の製造方法
JP2016126995A (ja) * 2014-12-26 2016-07-11 三井化学株式会社 電池部材用フィルム
JP2016183207A (ja) * 2015-03-25 2016-10-20 三井化学株式会社 4−メチル−1−ペンテン系共重合体を含む樹脂組成物およびその成形体
JP2017074775A (ja) * 2015-10-16 2017-04-20 三井化学株式会社 積層体および離型紙
JP2017165928A (ja) * 2016-03-18 2017-09-21 三井化学株式会社 熱可塑性樹脂組成物およびこれから得られる成形体
JPWO2018155179A1 (ja) * 2017-02-23 2020-01-16 三井化学株式会社 成形体およびその製造方法
JP2018145350A (ja) * 2017-03-08 2018-09-20 三井化学株式会社 熱可塑性エラストマー組成物、その成形体及びそれらの製造方法
JP2018158451A (ja) * 2017-03-22 2018-10-11 三井化学株式会社 3次元プリンター造形用フィラメント
JP2018162408A (ja) * 2017-03-27 2018-10-18 三井化学株式会社 4−メチル−1−ペンテン共重合体組成物
JP2019001139A (ja) * 2017-06-20 2019-01-10 三井化学株式会社 多層二軸延伸フィルムおよび転写フィルム
JP7130434B2 (ja) 2018-05-24 2022-09-05 三井化学株式会社 冷却ジャケット
JP2019204897A (ja) * 2018-05-24 2019-11-28 三井化学株式会社 冷却ジャケット
US12091536B2 (en) 2018-12-04 2024-09-17 Mitsui Chemicals, Inc. Resin composition containing 4-methyl-1-pentene copolymer, and film for capacitors
WO2020116368A1 (ja) 2018-12-04 2020-06-11 三井化学株式会社 4-メチル-1-ペンテン共重合体を含有する樹脂組成物、およびキャパシタ用フィルム
CN112969726A (zh) * 2018-12-04 2021-06-15 三井化学株式会社 含有4-甲基-1-戊烯共聚物的树脂组合物及电容器用膜
JPWO2020116368A1 (ja) * 2018-12-04 2021-10-14 三井化学株式会社 4−メチル−1−ペンテン共重合体を含有する樹脂組成物、およびキャパシタ用フィルム
JP7182644B2 (ja) 2018-12-04 2022-12-02 三井化学株式会社 4-メチル-1-ペンテン共重合体を含有する樹脂組成物、およびキャパシタ用フィルム
JP2020105446A (ja) * 2018-12-28 2020-07-09 三井化学株式会社 成形体およびその製造方法
JP7228383B2 (ja) 2018-12-28 2023-02-24 三井化学株式会社 成形体およびその製造方法
JP2020142474A (ja) * 2019-03-08 2020-09-10 三井化学株式会社 多層離型フィルム
JP7267784B2 (ja) 2019-03-08 2023-05-02 三井化学株式会社 多層離型フィルム
JP2020158681A (ja) * 2019-03-27 2020-10-01 三井化学株式会社 4−メチル−1−ペンテン系重合体を含む重合体組成物および成形体
JP7288325B2 (ja) 2019-03-27 2023-06-07 三井化学株式会社 4-メチル-1-ペンテン系重合体を含む重合体組成物および成形体
JP2021014531A (ja) * 2019-07-12 2021-02-12 三井化学株式会社 表面保護フィルム
JP7389576B2 (ja) 2019-07-12 2023-11-30 三井化学株式会社 表面保護フィルム
JP7433108B2 (ja) 2020-03-27 2024-02-19 三井化学株式会社 フィルム
JP7110286B2 (ja) 2020-08-24 2022-08-01 三井化学株式会社 熱可塑性樹脂組成物およびこれから得られる成形体
JP7029500B2 (ja) 2020-08-24 2022-03-03 三井化学株式会社 熱可塑性樹脂組成物およびこれから得られる成形体
JP2020186412A (ja) * 2020-08-24 2020-11-19 三井化学株式会社 熱可塑性樹脂組成物およびこれから得られる成形体
JP2020186413A (ja) * 2020-08-24 2020-11-19 三井化学株式会社 熱可塑性樹脂組成物およびこれから得られる成形体
WO2022050208A1 (ja) 2020-09-01 2022-03-10 三井化学株式会社 樹脂組成物および成形体
KR20230043957A (ko) 2020-09-01 2023-03-31 미쓰이 가가쿠 가부시키가이샤 수지 조성물 및 성형체
WO2022107578A1 (ja) * 2020-11-17 2022-05-27 三井化学株式会社 樹脂組成物、粘着剤、積層体、表面保護フィルム、表面保護フィルムの製造方法および面を保護する方法
WO2023162335A1 (ja) * 2022-02-22 2023-08-31 三井化学株式会社 4-メチル-1-ペンテン共重合体組成物、成形体、マンドレルおよびゴムホースの製造方法
EP4450253A1 (en) * 2023-04-21 2024-10-23 Canon Kabushiki Kaisha Stretch blow-molded article, toner bottle, and method for manufacturing stretch blow-molded article, molded article, and pellet

Also Published As

Publication number Publication date
CN103987779A (zh) 2014-08-13
US20140342111A1 (en) 2014-11-20
TWI550007B (zh) 2016-09-21
KR101567269B1 (ko) 2015-11-06
EP2799488B1 (en) 2016-07-20
EP2799488A4 (en) 2015-04-01
JP5769821B2 (ja) 2015-08-26
TW201335264A (zh) 2013-09-01
EP2799488A1 (en) 2014-11-05
KR20140101430A (ko) 2014-08-19
JPWO2013099876A1 (ja) 2015-05-07
CN103987779B (zh) 2016-04-06
US9902847B2 (en) 2018-02-27

Similar Documents

Publication Publication Date Title
JP5769821B2 (ja) 4−メチル−1−ペンテン(共)重合体組成物、該組成物からなるフィルムおよび中空成形体
JP5020524B2 (ja) プロピレン系重合体組成物、該組成物からなる成形体、プロピレン系重合体組成物からなるペレット、熱可塑性重合体用改質剤、熱可塑性重合体組成物の製造方法
JP2002053615A (ja) エチレン(共)重合体およびその用途
WO2006123759A1 (ja) オレフィン重合用触媒、オレフィン重合体の製造方法、プロピレン系共重合体の製造方法、プロピレン重合体、プロピレン系重合体組成物およびこれらの用途
AU2006223826A1 (en) Propylene polymer composition, use thereof, and process for production of thermoplastic polymer composition
JPWO2006068308A1 (ja) プロピレン系重合体、該重合体を含む組成物及びこれらから得られる成形体
JP5330637B2 (ja) プロピレン系重合体組成物、該組成物からなる成形体、プロピレン系重合体組成物の製造方法
JP2014125496A (ja) 熱可塑性樹脂組成物およびそのフィルム
JP5511685B2 (ja) プロピレン系樹脂組成物、成形体および容器
JP6282504B2 (ja) 4−メチル−1−ペンテン共重合体組成物
WO2015147186A1 (ja) オレフィン系樹脂およびその製造方法
KR101130921B1 (ko) 폴리프로필렌계 수지 필름 및 그의 용도
WO2020116368A1 (ja) 4-メチル-1-ペンテン共重合体を含有する樹脂組成物、およびキャパシタ用フィルム
JP2014011181A (ja) コンデンサ用フィルム、金属化フィルムおよびフィルムコンデンサ
JP5506985B2 (ja) プロピレン系重合体組成物、該組成物からなる成形体、プロピレン系重合体組成物の製造方法
JP5374606B2 (ja) プロピレン系重合体組成物およびその用途
WO2010023906A1 (ja) シンジオタクティック構造を有する4-メチルペンテン-1系重合体
JP2008231266A (ja) ポリプロピレン組成物およびその成形体
JP5550615B2 (ja) プロピレン系重合体組成物の製造方法
JP6666089B2 (ja) プロピレン系樹脂組成物および成形体
JP7014819B2 (ja) プロピレン系樹脂組成物、成形体および容器
JP2019178254A (ja) 1−ブテン共重合体、当該1−ブテン共重合体を含む重合体組成物および当該1−ブテン共重合体からなる成形体
JP7544825B2 (ja) 樹脂組成物および成形体
JP2022152304A (ja) プロピレン・α-オレフィン共重合体およびその用途
JP2023030416A (ja) 重合体組成物、成形体および食品用容器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280061026.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862805

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14364211

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012862805

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012862805

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013551707

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147019295

Country of ref document: KR

Kind code of ref document: A