RU2385328C2 - Водопоглощающая смола на основе полиакриловой кислоты (соли), способ ее получения и акриловая кислота, используемая в полимеризации для получения водопоглощающей смолы - Google Patents

Водопоглощающая смола на основе полиакриловой кислоты (соли), способ ее получения и акриловая кислота, используемая в полимеризации для получения водопоглощающей смолы Download PDF

Info

Publication number
RU2385328C2
RU2385328C2 RU2007140959/04A RU2007140959A RU2385328C2 RU 2385328 C2 RU2385328 C2 RU 2385328C2 RU 2007140959/04 A RU2007140959/04 A RU 2007140959/04A RU 2007140959 A RU2007140959 A RU 2007140959A RU 2385328 C2 RU2385328 C2 RU 2385328C2
Authority
RU
Russia
Prior art keywords
water
acrylic acid
absorbing resin
weight
ppm
Prior art date
Application number
RU2007140959/04A
Other languages
English (en)
Other versions
RU2007140959A (ru
Inventor
Хиротама ФУДЖИМАРУ (JP)
Хиротама ФУДЖИМАРУ
Кунихико ИШИЗАКИ (JP)
Кунихико ИШИЗАКИ
Сей НАКАХАРА (JP)
Сей НАКАХАРА
Original Assignee
Ниппон Шокубаи Ко., Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37087107&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2385328(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ниппон Шокубаи Ко., Лтд. filed Critical Ниппон Шокубаи Ко., Лтд.
Publication of RU2007140959A publication Critical patent/RU2007140959A/ru
Application granted granted Critical
Publication of RU2385328C2 publication Critical patent/RU2385328C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • C08F20/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Hematology (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

По изобретению можно получить с высоким выходом водопоглощающую смолу, имеющую улучшенное соотношение между абсорбирующей способностью и водорастворимым полимером, учитывая, что указанные свойства водопоглощающей смолы находятся в обратной взаимосвязи, при этом реакцию полимеризации легче контролировать. Способ получения водопоглощающей смолы путем полимеризации композиции на основе акриловой кислоты, включающей акриловую кислоту и ее соль, включает (а) стадию проведения радикальной полимеризации с образованием гидрогеля поперечносшитого полимера и стадию (b) сушки гидрогеля поперечносшитого полимера при нагревании, при этом содержание неполимеризующегося органического соединения в композиции на основе акриловой кислоты составляет от 1 до 1000 м.д. по весу, а неполимеризующееся органическое соединение имеет параметр растворимости (1.0-2.5)×104 (Дж·м3)1/2, полученная водопоглощающая смола имеет конечное содержание неполимеризующегося органического соединения от 0,01 до 10 м.д. и конечное содержание железа от 0,01 до 1 м.д. Изобретение включает также водопоглощающую смолу, полученную путем полимеризации композиции на основе акриловой кислоты; гигиеническое изделие, композицию на основе акриловой смолы для получения водопоглощающей смолы и способ получения композиции на основе акриловой кислоты. Технический результат: получаемая смола не имеет запаха, не окрашена и имеет высокие поглощающие свойства (высокая абсорбирующая способность при нагрузке и высоком PPUP). 5 н. и 11 з.п. ф-лы, 1 табл.

Description

ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение относится к водопоглощающей смоле на основе полиакриловой кислоты (соли), способу ее получения и акриловой кислоте, применяемой в полимеризации для получения водопоглощающей смолы. Более конкретно, настоящее изобретение, в частности, относится к (i) водопоглощающей смоле, имеющей улучшенное соотношение между абсорбирующей способностью и содержанием водорастворимого полимера, учитывая, что указанные свойства водопоглощающей смолы находятся в обратной взаимосвязи друг с другом, (ii) способу получения водопоглощающей смолы и (iii) акриловой кислоте, применяемой в способе получения поглощающей смолы.
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
В последние годы были синтезированы водопоглощающие смолы, обладающие высокой абсорбирующей способностью по воде, которые получили широкое распространение в основном для одноразового применения, например, в абсорбирующих материалах (например, одноразовых подгузниках и гигиенических салфетках), а также в качестве влагоудерживающих агентов для сельского хозяйства и садоводства и для промышленных изолирующих материалов. В качестве исходных материалов для получения таких водопоглощающих смол предложено множество мономеров и гидрофильных полимеров. Из них акриловые водопоглощающие смолы, полученные из акриловой кислоты и/или ее солей в качестве мономеров, наиболее часто применяют в промышленности вследствие их высокой абсорбирующей способности.
Поскольку водопоглощающие смолы, как правило, применяют для одноразового использования (например, одноразовые подгузники), то необходимо, чтобы они были недорогими. Таким образом, жестким требованием является повышение их эффективности. Кроме того, к абсорбирующим изделиям предъявляют высокие требования с точки зрения безопасности их применения и используемых красителей. Например, водопоглощающая смола содержит непрореагировавший остаток акриловой кислоты. Хотя содержание непрореагировавшей акриловой кислоты составляет от нескольких сотен до приблизительно 1000 м.д. по весу, необходимо уменьшить содержание непрореагировавшей акриловой кислоты. Здесь и далее единицы «м.д.» означают «миллионные доли» или то же, что и единицы ppm (от англ. parts per million - «частей на миллион»). Кроме того, водопоглощающая смола комбинируется с белой целлюлозой в абсорбирующих изделиях. Вследствие этого также существует высокое требование к водопоглощающей смоле: она должна быть белого цвета, чтобы не вызвать чувство постороннего включения или появления, вызванного окрашиванием.
Кроме того, водопоглощающая смола способна к набуханию в воде, но нерастворима в воде. Однако, как описано в Патентном Документе 1, водопоглощающая смола также содержит от нескольких массовых процентов до нескольких десятков массовых процентов несшитого водорастворимого полимера (водорастворимый компонент). Требуется также уменьшить содержание этого водорастворимого компонента. Кроме того, как описано в Патентном Документе 2, абсорбирующие изделия, содержащие водопоглощающую смолу, должны обладать приемлемыми свойствами абсорбции воды под давлением, такими как абсорбирующая способность под давлением и проницаемость по отношению к жидкости под давлением.
Для решения вышеуказанной задачи был предложен способ получения водопоглощающей смолы, включающий стадию полимеризации мономера, содержащего малые количества примесей. Примеры такого способа включают: способ, включающий стадию очистки таким образом, чтобы содержание тяжелых металлов в мономере составляло не более 0.1 м.д., и стадию проведения полимеризации мономера (Патентный документ 3); способ, включающий стадию полимеризации при использовании акриловой кислоты, содержащей димер акриловой кислоты или ее олигомер в малом количестве (Патентные документы 4 и 5); способ, включающий стадию очистки акриловой кислоты для полимеризации для достижения содержания уксусной кислоты или пропионовой кислоты на уровне менее 400 м.д. (Патентный документ 6); способ, включающий стадию полимеризации при использовании акриловой кислоты, содержащей протоанемонин в малом количестве (Патентный документ 7); способ, включающий стадию полимеризации при использовании акриловой кислоты, содержащей фурфураль в малом количестве (Патентный документ 8); и способ, включающий стадию полимеризации при использовании акриловой кислоты, содержащей гидрохинон в малом количестве (Патентный документ 9). В качестве способа, включающего стадию снижения количества примесей в веществе для водопоглощающей смолы, были предложены следующие способы. В частности, способ, включающий стадию обработки акриловой кислоты с помощью агента для обработки альдегида (Патентный документ 10), и способ, включающий стадию обработки акрилата активированным углем (Патентный документ 11).
Как описано в Патентных документах 3-11, был предложен способ получения водопоглощающей смолы с превосходными свойствами, включающий стадию очистки акриловой кислоты или подобных веществ, применяемых в качестве исходного материала высокой чистоты. Однако возникает проблема стоимости и проблема снижения выхода.
Кроме того, был предложен способ полимеризации для получения водопоглощающей смолы, включающий стадию добавления микрокомпонентов в определенном количестве для улучшения свойств получаемой водопоглощающей смолы. Примеры этого включают: способ, в котором содержание метоксифенола в акриловой кислоте составляет 10-200 м.д. (Патентный документ 12); способ, в котором совместно присутствует 11-2000 м.д. фурфураля (Патентный документ 13); и способ, в котором используют металл (Патентные документы 14 и 15). Однако в способах согласно Патентным документам 12 и 13 возникает проблема окрашивания получаемой водопоглощающей смолы (становится желтой) вследствие окисления метоксифенола и фурфураля, которые содержатся в мономере, используемом в процессе получения водопоглощающей смолы.
[Патентный документ 1]
Патент США 4654039
[Патентный документ 2]
Патент США 5562646
[Патентный документ 3]
Публикация японской нерассмотренной заявки на патент 31306/1991
(Tokukaihei 3-31306)
[Патентный документ 4]
Публикация японской нерассмотренной заявки на патент 211934/1994
(Tokukaihei 6-211934)
[Патентный документ 5]
Международная публикация WO 04/52949
[Патентный документ 6]
Международная публикация WO 031/95510
[Патентный документ 7]
Европейский Патент 1302485
[Патентный документ 8]
Публикация заявки на патент США 2004/0110913
[Патентный документ 9]
Патент США 6444744
[Патентный документ 10]
Международная публикация WO 03/14172
[Патентный документ 11]
Международная публикация WO 04/52819
[Патентный документ 12]
Публикация заявки на патент США 2004/0110914
[Патентный документ 13]
Публикация заявки на патент США 2004/0110897
[Патентный документ 14]
Патент США 5439993
[Патентный документ 15]
Европейский патент 1457541
ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Задачей настоящего изобретения является обеспечение способа получения водопоглощающей смолы, обладающей улучшенным соотношением между абсорбирующей способностью и содержанием водорастворимого полимера, учитывая, что указанные свойства водопоглощающей смолы находятся в обратной взаимосвязи друг с другом, с умеренно контролируемой реакцией полимеризации, сохранением и улучшением высоких абсорбционных свойств, отсутствием запаха и окрашивания у водопоглощающей смолы и высоким выходом.
При решении поставленной задачи, в результате обширного исследования авторы настоящего изобретения обнаружили, что проблема может быть решена путем получения водопоглощающей смолы простым способом получения водопоглощающей смолы, включающим стадию полимеризации мономера, содержащего конкретное неполимеризующееся органическое соединение в заданном количестве, причем неполимеризующееся органическое соединение имеет параметр растворимости (1.0-2.5)×104 (Дж·м3)1/2; и стадию термической обработки в заданных условиях, что и легло в основу настоящего изобретения.
Более конкретно, предложен способ получения водопоглощающей смолы путем полимеризации композиции на основе акриловой кислоты, содержащей акриловую кислоту и/или ее соль, при этом способ включает: (а) стадию проведения радикальной полимеризации композиции на основе акриловой кислоты с получением гидрогеля поперечносшитого полимера; и (b) стадию сушки гидрогеля поперечносшитого полимера при воздействии нагревания, причем композиция на основе акриловой кислоты содержит неполимеризующееся органическое соединение в количестве 1-1000 м.д. по весу от массы композиции, при этом неполимеризующееся органическое соединение имеет параметр растворимости (1.0-2.5)×104 (Дж·м3)1/2.
В способе получения водопоглощающей смолы согласно настоящему изобретению неполимеризующееся органическое соединение предпочтительно включено или добавлено заранее в композицию на основе акриловой кислоты. Предпочтительно, композицию на основе акриловой кислоты очищают таким образом, чтобы содержание неполимеризующегося органического соединения, включенного в композицию на основе акриловой кислоты, составляло 1-1000 м.д. по весу.
Неполимеризующееся органическое соединение представляет собой по меньшей мере одно соединение, выбранное из группы, включающей гептан, диметилциклогексан, этилциклогексан, толуол, этилбензол, ксилол, дифенил. Неполимеризующеся органическое соединение представляет собой ароматическое соединение.
Способ получения водопоглощающей смолы согласно настоящему изобретению предпочтительно также включает после стадии (b) стадию (с) поверхностной сшивки гидрогеля поперечносшитого полимера при нагревании.
На стадиях (b) и (с) нагревание предпочтительно проводят при температуре не ниже температуры кипения неполимеризующегося органического соединения. На стадии (b) сушку предпочтительно осуществляют горячим воздухом с помощью газа с температурой конденсации 50-100°С.
В способе получения водопоглощающей смолы согласно настоящему изобретению композиция на основе акриловой кислоты предпочтительно содержит метоксифенол в количестве 10-200 м.д. по весу; по меньшей мере одно соединение в количестве 1-1000 м.д. по весу, соединение, выбранное из группы, включающей димер β-гидроксипропионовой кислоты и/или акриловой кислоты; и фенотиазин в количестве от 0 до 0.1 м.д. по весу. В способе получения водопоглощающей смолы согласно настоящему изобретению радикальная полимеризация предпочтительно представляет собой полимеризацию в водном растворе.
Способ получения водопоглощающей смолы согласно настоящему изобретению предпочтительно представляет собой способ, в котором стадия (а) является стадией нейтрализации композиции на основе акриловой кислоты основной композицией; после чего проводят радикальную полимеризацию полученного нейтрализованного продукта с получением таким образом гидрогеля поперечносшитого полимера, при этом основная композиция содержит основное соединение и железо, а содержание железа в основной композиции составляет от 0.2 до 5 м.д. по весу в пересчете на Fe2O3.
Водопоглощающая смола согласно настоящему изобретению представляет собой водопоглощающую смолу, полученную путем полимеризации композиции на основе акриловой кислоты, композиция на основе акриловой кислоты содержит неполимеризующееся органическое соединение в количестве не более 10 м.д. по весу и железо в количестве от 0.01 до 1 м.д. по весу, при этом неполимеризующееся органическое соединение имеет параметр растворимости (1.0-2.5)×104 (Дж·м3)1/2.
Водопоглощающая смола согласно настоящему изобретению предпочтительно является такой, что неполимеризующееся органическое соединение представляет собой по меньшей мере одно из соединений, выбранных из группы, включающей толуол, дифениловый эфир, дифенил, гептан, диметилциклогексан и этилциклогексан.
Гигиенический материал согласно настоящему изобретению включает водопоглощающую смолу согласно настоящему изобретению.
Композиция на основе акриловой кислоты согласно настоящему изобретению содержит неполимеризующееся органическое соединение в количестве 1-1000 м.д. по весу, при этом неполимеризующееся органическое соединение имеет параметр растворимости (1.0-2.5)×104 (Дж·м3)1/2.
Способ получения композиции на основе акриловой кислоты согласно настоящему изобретению включает: стадию очистки композиции на основе акриловой кислоты, которая содержит неполимеризующееся органическое соединение, имеющее параметр растворимости (1.0-2.5)×104 (Дж·м3)1/2, которое включено или добавлено заранее, при этом содержание неполимеризующегося органического соединения, включенного в композицию на основе акриловой кислоты, доводят до значения от 1 до 1000 м.д. по весу.
Дополнительные цели, особенности и эффективность настоящего изобретения будут понятны из описания, приведенного ниже.
НАИЛУЧШИЙ ВАРИАНТ РЕАЛИЗАЦИИ НАСТОЯЩЕГО ИЗОБРЕТЕНИЯ
Ниже приведено подробное описание настоящего изобретения.
(1) Водопоглощающая смола
В настоящем изобретении под термином "поперечносшитая водопоглощающая смола" понимают полимер, который способен набухать и нерастворим в воде в результате образования поперечносшитой структуры в полимере, при этом "способность к набуханию в воде" означает увеличение объема при абсорбции физиологического солевого раствора (GVs) в отсутствии давления по меньшей мере в 2 раза, предпочтительно в 5-200 раз, более предпочтительно 20-100 раз, и при этом "нерастворимость в воде" означает значительную нерастворимость в воде, а именно: содержание водорастворимого полимера в смоле по существу составляет 0-50% по весу, предпочтительно 0-25% по весу, более предпочтительно 0-15% по весу, еще более предпочтительно 0-10% по весу. Указанные количества измеряют с помощью методов, определенных в примере ниже.
В настоящем изобретении водопоглощающая смола на основе полиакриловой кислоты (соли) представляет собой полимер, полученный при полимеризации мономера, содержащего акриловую кислоту и/или ее соль в качестве основного компонента, при этом общее количество акриловой кислоты и/или ее соли по существу составляет 50-100 мол.%, более предпочтительно 70-100 мол.%, еще более предпочтительно 90-100 мол.%, особенно предпочтительно 100 мол.%, относительно всех мономеров (за исключением агентов для поперечной сшивки). Следует обратить внимание на то, что термин "мономер" в настоящем документе относится к мономеру, содержащему акриловую кислоту и/или ее соль в качестве основного компонента, и также использован как синоним для "компонента акриловой кислоты".
В отношении свойств акрилат, используемый в настоящем изобретении, представляет собой предпочтительно моновалентные соли акриловой кислоты, такие как соли щелочных металлов, соли аммония и соли аминов; более предпочтительно акрилаты щелочных металлов и еще более предпочтительно акрилаты щелочных металлов, выбранные из группы, включающей соль натрия, соль лития и соль калия. Кроме того, поливалентные соли металлов, такие как соли кальция и соли алюминия, могут быть использованы в комбинации при условии, что водопоглощающая смола, полученная согласно настоящему изобретению, обладает способностью к набуханию в воде.
Водопоглощающая смола, полученная согласно настоящему изобретению, представляет собой такой полимер, в котором 20-99 мол.%, предпочтительно 50-95 мол.%, более предпочтительно 60-90 мол.% при пересчете на степень нейтрализации кислотных групп полимера являются нейтрализоваными. Нейтрализацию можно проводить либо в отношении компонента мономера до полимеризации, либо в отношении гидрогеля поперечносшитого полимера в ходе полимеризации или после нее. Кроме этого можно сочетать нейтрализацию компонента мономера и нейтрализацию полимера. Однако, как ниже будет показано, предпочтительно подвергать щелочной обработке акриловую кислоту, используемую в качестве компонента мономера, т.е. акриловую кислоту, содержащуюся в композиции на основе акриловой кислоты.
(2) Неполимеризующееся органическое соединение
Неполимеризующееся органическое соединение представляет собой органическое соединение, не имеющее полимеризуемых ненасыщенных связей, образованных винильной группой, аллильной группой или подобной группой, причем в настоящем изобретении предпочтительно используют в качестве необходимого компонента мономер, содержащий неполимеризующееся органическое соединение в количестве 1-1000 м.д. по весу, при этом параметр растворимости неполимеризующегося органического соединения составляет (1.0-2.5)×104 (Дж·м3)1/2. Другими словами, композиция на основе акриловой кислоты, предложенная в настоящему изобретении, предпочтительно содержит неполимеризующееся органическое соединение в количестве 1-1000 м.д. по весу, при этом параметр растворимости неполимеризующегося органического соединения составляет (1.0-2.5)×104 (Дж·м3)1/2. Следует обратить внимание на то, что в настоящем изобретении неполимеризующееся органическое соединение представляет собой органическое соединение, не имеющее полимеризующихся ненасыщенных связей. Такое органическое соединение представляет собой (i) соединение, содержащее насыщенные связи и неполимеризующееся в процессе радикальной полимеризации в ходе УФ полимеризации или в ходе полимеризации при воздействии гамма-излучения, при термическом разложении или при воздействии окислителя/восстановителя (алифатическое соединение или алициклическое соединение), или (ii) органическое соединение, такое как ароматическое соединение.
Параметр растворимости (δ) здесь представляет собой плотность энергии когезии и может быть вычислен с помощью следующего уравнения:
Figure 00000001
где ρ представляет собой плотность (г/см3), G представляет собой константу энергии когезии Холли, ΣG представляет собой сумму констант энергии когезии составляющих групп атомов, значения ρ и G являются значениями при температуре 25±1°С, и М представляет собой молекулярную массу.
В настоящем изобретении, если параметр растворимости δ вычислен в единицах ((кал·м3)1/2), то параметр растворимости δ соответственно выражен в единицах (Дж·м3)1/2.
Например, под значением δ, параметром растворимости, понимают значение, определенное в таких публикациях, как The Polymer Handbook, 3rd Edition (стр.527-539; издания Wiley Interscience Publication) и Chemical Handbook, Basic Edition (издания Chemical Society of Japan). Кроме этого в качестве параметра растворимости растворителя, который не определен в публикациях, принято значение δ, которое получено путем замены константы энергии когезии Холли в уравнении Смолла, указанном на странице 524 The Polymer Handbook.
В настоящем изобретении используют мономер, содержащий вышеупомянутое специфическое соединение в заданном количестве, благодаря чему получают с высоким выходом водопоглощающую смолу, (i) имеющую улучшенное соотношение между абсорбирующей способностью и содержанием водорастворимого полимера, учитывая, что эти свойства водопоглощающей смолы находятся в обратной взаимосвязи, при этом (ii) реакцию полимеризации легче контролировать, a (iii) получаемая смола менее окрашена и (iv) обладает высокой абсорбирующей способностью. Следует отметить, что мономер, содержащий менее 1 м.д. по весу неполимеризующегося органического соединения, имеющего параметр растворимости (1.0-2.5)×104 (Дж·м3)1/2, не является предпочтительным вследствие сложностей при контроле реакции полимеризации, которые возникают из-за повышения температуры полимеризованного вещества вследствие высвобождения тепла в ходе полимеризации и ухудшения поглощающих свойств. Следует также отметить, что мономер, содержащий больше чем 1000 м.д. по весу неполимеризующегося органического соединения, имеющего параметр растворимости (1.0-2.5)×104 (Дж·м3)1/2, имеет слишком много неполимеризующегося органического соединения для достижения цели настоящего изобретения и может вызвать проблему, например появление запаха у получаемой водопоглощающей смолы.
Кроме того, специфическое соединение (неполимеризующееся органическое соединение) в конечном итоге удаляют на стадии специфического нагревания (например, сушки и обработки поверхности) таким образом, чтобы получаемая водопоглощающая смола не имела запаха и других недостатков.
Такое неполимеризующееся органическое соединение применяют в количестве 1-1000 м.д. по весу, предпочтительно 1-500 м.д. по весу, более предпочтительно 1-300 м.д. по весу, еще более предпочтительно 5-300 м.д. по весу, особенно предпочтительно 10-300 м.д. по весу, наиболее предпочтительно 10-100 м.д. по весу относительно мономера (композиции на основе акриловой кислоты).
Параметр растворимости неполимеризующегося органического соединения обычно составляет (1.0-2.5)×104 (Дж·м3)1/2, предпочтительно (1.0-2.2)×104 (Дж·м3)1/2, более предпочтительно (1.1-2.0)х104 (Дж·м3)1/2, еще более предпочтительно (1.3-2.0)×104 (Дж·м3)1/2 и наиболее предпочтительно (1.5-1.9)×104 (Дж·м3)1/2.
Термин «органическое соединение, имеющее параметр растворимости (1.0-2.5)×104 (Дж·м3)1/2» характеризует органическое соединение, имеющее превосходную совместимость с акриловой кислотой и не имеющее полимеризующихся ненасыщенных связей, и относится к липофильному органическому соединению. Из таких неполимеризующихся органических соединений предпочтительно, чтобы неполимеризующееся органическое соединение не содержало галогенов, причем более предпочтительно использовать углеводород, содержащий только углерод и водород, с точки зрения воздействия на окружающую среду. Кроме того, температура кипения неполимеризующегося органического соединения предпочтительно составляет 95-300°С, более предпочтительно 130-260°С. Органическое соединение, имеющее параметр растворимости больше чем 2.5×104 (Дж·м3)1/2, не является предпочтительным в отношении контроля за полимеризацией и реакции полимеризации.
Более конкретно, неполимеризующееся органическое соединение представляет собой по меньшей мере одно соединение, выбранное из группы, включающей гептан (температура кипения: 95°С), диметилциклогексан (температура кипения: 132°С), этилциклогексан, толуол (температура кипения: 110°С), этилбензол (температура кипения: 136°С), ксилол (температура кипения: 138-144°С), диэтилкетон (температура кипения: 101°С), диизопропилкетон (температура кипения: 124-125°С), метилпропилкетон (температура кипения: 102°С), метилизобутилкетон, метил(трет-бутил)кетон, н-пропилацетат (температура кипения: 101°С), н-бутилацетат (температура кипения: 124-125°С), дифениловый эфир (температура кипения: 259°С) и дифенил (температура кипения: 255°С). Из этих неполимеризующихся органических соединений предпочтительным является по меньшей мере одно соединение, выбранное из группы, включающей гептан, этилбензол, ксилол, метилизобутилкетон, метил(трет-бутил)кетон, дифениловый эфир и дифенил, более предпочтительны гидрофобные соединения, еще более предпочтительны ароматические соединения, особенно предпочтительны толуол, дифениловый эфир и дифенил, наиболее предпочтительным является толуол с точки зрения характеристик полимеризации и выхода и, кроме того, с точки зрения эффекта ингибирования окисления и уменьшения полимерной цепи после завершения стадии полимеризации.
Неполимеризующееся органическое соединение по существу включают в мономер (композицию на основе акриловой кислоты) перед полимеризацией. Мономер, содержащий неполимеризующееся органическое соединение, может быть получен таким образом, что неполимеризующееся органическое соединение добавляют к мономеру, т.е. композиции на основе акриловой кислоты после получения мономера, неполимеризующееся органическое соединение добавляют к мономеру, т.е. композиции акриловой кислоты, во время получения мономера, или неполимеризующееся органическое соединение включают заранее или добавляют к исходным материалам для мономера, т.е. компонентам для композиции на основе акриловой кислоты, содержащим акриловую кислоту, агенты для поперечной сшивки, воду и основные соединения. В таких способах получения неполимеризующееся органическое соединение является гидрофобным и, как правило, нерастворимым в воде и поэтому предпочтительно растворено или включено в акриловую кислоту заранее. В настоящем изобретении предпочтительно включать или добавлять неполимеризующееся органическое соединение к акриловой кислоте заранее при получении мономера. Таким образом, предпочтительно заранее растворять неполимеризующееся органическое соединение в ненейтрализованной акриловой кислоте таким образом, чтобы использовать ненейтрализованную акриловую кислоту для получения водного раствора мономера.
Ниже будет описана акриловая кислота и композиция на основе акриловой кислоты, применяемые в настоящем изобретении.
(3) Акриловая кислота и композиция на основе акриловой кислоты
Примеры известных промышленных способов получения акриловой кислоты включают способ каталитического окисления пропилена и/или акролеина в газовой фазе, этиленциангидриновый способ, процесс Реппе при высоком давлении, усовершенствованный процесс Реппе, кетонный способ и способ гидролиза акрилонитрила. Наиболее часто используют способ каталитического окисления пропилена и/или акролеина в газовой фазе. В настоящем изобретении предпочтительно используют акриловую кислоту, полученную способом каталитического окисления в газовой фазе, которая обычно содержит примеси в количестве не меньше чем приблизительно 2000 м.д. по весу. В настоящем описании такая акриловая кислота, содержащая примеси, может упоминаться как композиция на основе акриловой кислоты.
В одном из способов получения водопоглощающей смолы согласно настоящему изобретению в дополнение к акриловой кислоте используют композицию на основе акриловой кислоты, предпочтительно содержащую неполимеризующееся органическое соединение в количестве 1-1000 м.д. по весу. Предпочтительно, чтобы композиция на основе акриловой кислоты дополнительно содержала димер β-гидроксипропионовой кислоты и/или акриловой кислоты в количестве 1-1000 м.д. по весу (по весу при пересчете на ненейтрализованную акриловую кислоту; в дальнейшем опущено), предпочтительно 1-500 м.д. по весу, более предпочтительно 1-300 м.д. по весу, и также содержала метоксифенол в количестве 10-200 м.д. по весу.
Конкретные примеры вышеупомянутого метоксифенола включают о-, м-, п-метоксифенол и метоксифенол, который имеет по меньшей мере один заместитель, такой как метил, трет-бутил или гидроксил. В настоящем изобретении особенно предпочтительным является п-метоксифенол. Содержание метоксифенола составляет 10-200 м.д. по весу, предпочтительно в пределах от 10 до 100 м.д. по весу, более предпочтительно в пределах от 10 до 90 м.д. по весу, еще более предпочтительно в пределах от 10 до 80 м.д. по весу, наиболее предпочтительно в пределах от 10 до 70 м.д. по весу. В случае когда содержание п-метоксифенола превышает 200 м.д. по весу, возникает проблема окрашивания получаемой водопоглощающей смолы (окрашивание в желтоватый цвет/смола становится желтой). С другой стороны, в случае когда содержание п-метоксифенола менее 10 м.д. по весу, в частности менее 5 м.д. по весу, другими словами, в случае когда п-метоксифенол, который является ингибитором полимеризации, был удален путем очистки, такой как перегонка, кроме опасности того, что полимеризация будет происходить до того, как она была специально инициирована, неожиданно также оказалось, что скорость полимеризации замедляется.
(i) Неполимеризующееся органическое соединение и (ii) димер β-гидроксипропионовой кислоты и/или акриловой кислоты, в количестве меньше чем 1 м.д. по весу, затрудняют контроль реакции полимеризации, что вызвано чрезмерным повышением температуры полимеризуемого вещества вследствие высвобождения тепла в ходе полимеризации, и вызывает ухудшение поглощающих свойств. (i) Неполимеризующееся органическое соединение и (ii) димер β-гидроксипропионовой кислоты и/или акриловой кислоты, содержащиеся в слишком больших количествах, вызывают увеличение содержания остаточного мономера (остаточная акриловая кислота) в водопоглощающей смоле.
В способе получения, предложенном в настоящем изобретении, в композиции на основе акриловой кислоты помимо метоксифенола могут быть использованы другие ингибиторы полимеризации. Например, фенотиазин, гидрохинон, соли меди и метиленовый синий являются эффективными ингибиторами полимеризации. Однако, в отличие от метоксифенола, такие ингибиторы полимеризации ухудшают полимеризацию. Такие ингибиторы полимеризации предпочтительно применять в более малых количествах, и содержание таких ингибиторов полимеризации предпочтительно составляет 0-0.1 м.д. по весу, более предпочтительно 0 м.д. по весу (что ниже предела обнаружения).
Композиция на основе акриловой кислоты, применяемая в способе получения согласно настоящему изобретению, предпочтительно содержит фурфураль и/или протоанемонин в количестве от 0 до 20 м.д. по весу. Увеличение содержания протоанемонина и/или фурфураля не только увеличивает время полимеризации (время, затрачиваемое для достижения пика температуры полимеризации), приводя к увеличению содержания остаточного мономера, а также приводит к увеличению содержания водорастворимого компонента намного больше, чем небольшое увеличение абсорбирующей способности, приводящей к соответствующему ухудшению свойств. С точки зрения улучшения свойств и характеристик получаемой водопоглощающей смолы, содержание протоанемонина и/или фурфураля в композиции на основе акриловой кислоты предпочтительно составляет не больше чем 10 м.д. по весу, более предпочтительно находится в пределах от 0.01 до 5 м.д по весу, еще более предпочтительно 0.05-2 м.д. по весу, особенно предпочтительно 0.1-1 м.д. по весу.
Кроме того, композиция на основе акриловой кислоты, используемая в способе получения согласно настоящему изобретению, предпочтительно содержит меньшее количество альдегида, за исключением фурфураля, и/или малеиновой кислоты. Содержание альдегида и/или малеиновой кислоты предпочтительно составляет от 0 до 5 м.д. по весу, более предпочтительно от 0 до 3 м.д. по весу, еще более предпочтительно от 0 до 1 м.д. по весу, особенно предпочтительно 0 м.д. по весу (ниже предела обнаружения), относительно веса акриловой кислоты. Кроме фурфураля примеры альдегида включают бензальдегид, акролеин и ацетальдегид.
Более того, композиция на основе акриловой кислоты, используемая в способе получения согласно настоящему изобретению, включает насыщенную карбоновую кислоту, состоящую из уксусной и/или пропионовой кислоты. Содержание насыщенной карбоновой кислоты предпочтительно составляет не более чем 1000 м.д. по весу, более предпочтительно 10-800 м.д. по весу, особенно предпочтительно 100-500 м.д. по весу относительно веса акриловой кислоты. Насыщенная карбоновая кислота является неполимеризующейся и летучей. Также, при содержании насыщенной карбоновой кислоты больше чем 1000 м.д. по весу появляется запах. Однако предпочтительно низкое содержание насыщенной карбоновой кислоты, так как это приводит к появлению у получаемой водопоглощающей смолы антибактериальной активности.
В настоящем изобретении примеры способа получения вышеуказанной композиции на основе акриловой кислоты включают, но не ограничены ими, следующие способы (A)-(D). Количественный анализ компонентов, содержащихся в композиции на основе акриловой кислоты, может быть осуществлен с помощью метода жидкостной хроматографии или газовой хроматографии.
Способ (А): способ, включающий стадию перегонки коммерчески доступной акриловой кислоты, содержащей п-метоксифенол в качестве ингибитора полимеризации в количестве не менее 200 м.д. по весу, или водного раствора указанной акриловой кислоты, доводя при этом содержание (i) неполимеризующегося органического соединения, имеющего параметр растворимости (1.0-2.5)×104 (Дж·м3)1/2, в акриловую кислоту (температура кипения: 139°С), (ii) димера β-гидроксипропионовой кислоты и/или акриловой кислоты и (iii) метоксифенола, например п-метоксифенола (температура кипения: 113-115°С/5 мм рт. ст.) до вышеуказанных значений.
Способ (В): способ, включающий стадию добавления (i) неполимеризующегося органического соединения, имеющего параметр растворимости (1.0-2.5)×104 (Дж·м3)1/2, в акриловую кислоту в количестве, определенном в настоящем изобретении, (ii) димера β-гидроксипропионовой кислоты и/или акриловой кислоты и (iii) метоксифенола, такого как п-метоксифенол, в качестве ингибитора полимеризации.
Способ (С): способ, включающий стадию доведения содержания (i) неполимеризующегося органического соединения, имеющего параметр растворимости (1.0-2.5)×104 (Дж·м3)1/2, (ii) димера β-гидроксипропионовой кислоты и/или акриловой кислоты и (iii) метоксифенола (п-метоксифенола) до значений, указанных выше в настоящем изобретении, в способе получения акриловой кислоты.
Способ (D): способ, включающий стадию смешивания акриловых кислот, содержащих разное количество неполимеризующегося органического соединения, имеющего параметр растворимости (1.0-2.5)×104 (Дж·м3)1/2, димера β-гидроксипропионовой кислоты и/или акриловой кислоты и метоксифенола (например, п-метоксифенола), доводя таким образом содержание неполимеризующегося органического соединения, димера β-гидроксипропионовой кислоты и/или акриловой кислоты и метоксифенола до значений, определенных в настоящем изобретении.
Конкретные примеры способов получения композиции на основе акриловой кислоты (также именуемой акриловой кислотой, содержащей микрокомпоненты в качестве примесей) в способе (А) включают способы, включающие перегонку, кристаллизацию или адсорбцию ионообменными смолами. Ниже описаны примеры способа, включающего перегонку и кристаллизацию.
(1) Способ включает стадии: перегонки коммерчески доступной акриловой кислоты с помощью перегонной установки, включающей конденсатор, трубу для отвода дистиллята и дефлегматор в верхней части установки, дополнительно содержащей нагреватель и трубу для подвода исходного жидкого материала в нижней части установки и, кроме того, включающей трубу для подвода стабилизирующего агента в верхней части конденсатора; и получения композиции на основе акриловой кислоты, содержащей неполимеризующееся органическое соединение, имеющее параметр растворимости (1.0-2.5)×104 (Дж·м3)1/2, димер β-гидроксипропионовой кислоты и/или акриловой кислоты и метоксифенол в заданных количествах при добавлении неполимеризующегося органического соединения, имеющего параметр растворимости (1.0-2.5)×104 (Дж·м3)1/2, димера β-гидроксипропионовой кислоты и/или акриловой кислоты и метоксифенола через трубу для подвода стабилизирующего агента.
(2) Способ включает стадию введения коммерчески доступной акриловой кислоты в кристаллизатор для очистки, при этом получают композицию на основе акриловой кислоты, содержащую неполимеризующееся органическое соединение, имеющее параметр растворимости (1.0-2.5)×104 (Дж·м3)1/2, димер β-гидроксипропионовой кислоты и/или акриловой кислоты и метоксифенол в заданном количестве.
(3) Способ включает стадию очистки композиции на основе акриловой кислоты таким образом, чтобы довести содержание неполимеризующегося органического соединения, включенного в композицию на основе акриловой кислоты, до значений 1-1000 м.д. по весу. Таким образом, способ включает стадию получения композиции на основе акриловой кислоты путем очистки акриловой кислоты, содержащей неполимеризующееся органическое соединение, имеющее параметр растворимости (1.0-2.5)×104 (Дж·м3)1/2, таким образом, чтобы там осталось определенное количество неполимеризующегося органического соединения.
Способ добавления неполимеризующегося органического соединения, имеющего параметр растворимости (1.0-2.5)×104 (Дж·м3)1/2, димера β-гидроксипропионовой кислоты и/или акриловой кислоты и метоксифенола во время перегонки в вышеописанном способе (1) не ограничен конкретными вариантами. Указанные вещества могут быть добавлены непосредственно в виде порошка или в виде раствора в акриловой кислоте. Подходящие устройства, которые могут быть использованы в данном способе, описаны в японской рассмотренной патентной публикации 41637/1978 (Tokukousho 53-41637).
Стандартные методики очистки акриловой кислоты для получения водопоглощающей смолы известны из вышеуказанных патентных документов. Стандартную методику применяют к коммерчески доступной акриловой кислоте, содержащей п-метоксифенол в количестве приблизительно 200 м.д. по весу. Однако никогда не высказывались предположения, что неполимеризующееся органическое соединение, димер β-гидроксипропионовой кислоты и/или акриловой кислоты и метоксифенол необходимо доводить до определенного количества неполимеризующегося органического соединения, имеющего специфический параметр растворимости, определенного количества димера β-гидроксипропионовой кислоты и/или акриловой кислоты и определенного количества метоксифенола.
С помощью вышеуказанного способа получения композиции на основе акриловой кислоты можно получить новую композицию на основе акриловой кислоты, т.е. композицию на основе акриловой кислоты, содержащую неполимеризующееся органическое соединение в количестве от 1 до 1000 м.д. по весу, при этом неполимеризующееся органическое соединение имеет параметр растворимости (1.0-2.5)×104 (Дж·м3)1/2. Такую композицию на основе акриловой кислоты предпочтительно используют в качестве исходного материала, применяемого при полимеризации для получения водопоглощающей смолы.
Такая композиция на основе акриловой кислоты содержит небольшое количество воды (от 0 до 5 вес.%, также от 0 до 2 вес.%, в частности от 0 до 1 вес.%) и вышеупомянутых микрокомпонентов (например, метоксифенола). Удивительно, но при увеличении количества воды в композиции на основе акриловой кислоты может увеличиваться содержание остаточного мономера. Способ получения водопоглощающей смолы согласно настоящему изобретению позволяет получить водопоглощающую смолу, имеющую улучшенное соотношение между абсорбирующей способностью и водорастворимым полимером, что находится в обратной взаимосвязи со свойствами водопоглощающей смолы, при этом реакцию полимеризации можно легко контролировать, смола менее окрашена и обладает высокими поглощающими свойствами.
(4) Основная композиция
В настоящем описании "основная композиция" означает композицию, содержащую основное соединение. Как будет описано ниже, в настоящем изобретении основная композиция предпочтительно содержит железо, т.е. железосодержащее соединение, и основное соединение.
Примеры основного соединения, используемого в настоящем изобретении, включают карбонат (гидрокарбонат) щелочного металла, гидроксид щелочного металла, аммиак и органические амины. Однако для получения водопоглощающей смолы с улучшенными свойствами предпочтительными являются сильные основания, т.е. гидроксиды щелочных металлов, такие как гидроксид натрия, гидроксид калия и гидроксид лития. Среди вышеуказанных гидроксидов щелочных металлов особенно предпочтительным является гидроксид натрия. Гидроксид натрия обычно содержит карбонат натрия и/или хлорид натрия в количестве приблизительно от 0 до 5%. Такой гидроксид натрия также предпочтительно использовать в настоящем изобретении.
Как описано в Патентном документе 3, известно, что содержание тяжелого металла в количестве более 0.1 м.д. по весу в водном растворе мономера увеличивает содержание остаточного мономера в водопоглощающей смоле. В противоположность этому, в соответствии со способом согласно настоящему изобретению, т.е. способом, включающим стадию получения мономера при использовании (i) акриловой кислоты, содержащей специфические микрокомпоненты, и (ii) основной композиции, содержащей железо в определенном количестве (от 0.2 до 5 м.д. по весу) (по весу в пересчете на Fe2O3) (предпочтительно, чтобы основная композиция содержала железо и каустическую соду), было обнаружено, что при применении способа согласно настоящему изобретению сокращается время полимеризации, уменьшается содержание водорастворимого компонента и получается менее окрашенная водопоглощающая смола.
Кроме этого Патентный документ 3 раскрывает перегонку акриловой кислоты и обработку каустической соды активированным углем, способы уменьшения содержания тяжелых металлов до значения 0.1 м.д. по весу, предпочтительно не больше чем 0.02 м.д. по весу. Однако Патентный документ 3 не описывает применение метоксифенола, используемого в настоящем изобретении. Даже если акриловая кислота согласно Патентному документу 3 содержит метоксифенол в количестве не меньше чем 200 м.д. по весу, метоксифенол, имеющий высокую температуру кипения (температура кипения п-метоксифенола 113-115°С/5 мм рт. ст.), удаляют при перегонке и очистке акриловой кислоты (температура кипения: 139°С), как описано в Патентном документе 3. В результате, содержание метоксифенола в акриловой кислоте после перегонки становится 0 м.д. по весу (ниже предела обнаружения). Кроме того, в Патентном документе 3 ничего не сказано об эффективности тяжелых металлов при полимеризации в способе получения водопоглощающей смолы.
Более того, основная композиция, используемая в настоящем изобретении, содержит основное соединение и железо. Содержание железа в основной композиции предпочтительно находится (по весу при пересчете на Fe2O3) в пределах от 0.01 до 5.0 м.д. по весу, более предпочтительно в пределах от 0.01 до 4 м.д. по весу и еще более предпочтительно в пределах от 0.05 до 2 м.д., особенно предпочтительно от 0.1 до 1 м.д. по весу относительно сухого остатка основной композиции. Содержание железа ниже 0.01 м.д. по весу вызывает риск не только того, что полимеризация начнется до добавления инициатора полимеризации, но также и возможность медленной полимеризации даже в присутствии инициатора полимеризации. Железо, используемое в настоящем изобретении, может представлять собой ион Fe; однако с точки зрения эффективности предпочтительным является трехвалентное железо, особенно предпочтительно Fe2O3. В случае необходимости добавления железа, такого как Fe2O3, железо может быть добавлено либо к мономеру, т.е. композиции на основе акриловой кислоты, либо к основной композиции.
(5) Щелочная обработка акриловой кислоты
Способ получения водопоглощающей смолы, предложенной в настоящем изобретении, включает стадию получения мономера путем применения вышеуказанной композиции на основе акриловой кислоты, содержащей микрокомпоненты. На этой стадии акриловую кислоту предпочтительно подвергают щелочной обработке с помощью основной композиции.
Щелочная обработка, как указано в настоящем изобретении, означает обработку, в которой акриловую кислоту, которую нужно обработать, подвергают нейтрализации при температуре не ниже чем определенная температура (высокотемпературная нейтрализация) или нейтрализации при степени нейтрализации не ниже определенного значения (сильная нейтрализация). Такая щелочная обработка значительно способствует полимеризации акриловой кислоты. Конкретные примеры этого включают: способ, в котором композицию на основе акриловой кислоты постепенно добавляют к определенному количеству основной композиции для получения сильно щелочной области; и способ, в котором щелочную обработку осуществляют одновременно с нейтрализацией путем смешивания композиции на основе акриловой кислоты и сильно щелочной основной композиции.
При высокотемпературной нейтрализации температура при щелочной обработке более высокая, чем температура при нормальной нейтрализации. Более конкретно, температура при щелочной обработке находится предпочтительно в пределах от 30°С до температуры кипения, более предпочтительно в пределах от 40°С до температуры кипения, еще более предпочтительно в пределах от 50°С до температуры кипения, особенно предпочтительно в пределах от 60°С до температуры кипения. При щелочной обработке, в случаях если температура низкая и если не применяют сильную щелочь, а также если нейтрализация еще не завершена, полимеризуемость настолько низка, что приведенные ниже результаты в отношении свойств могут быть также получены, только если применяют очищенную акриловую кислоту.
При сильной нейтрализации указанные щелочные обработки предпочтительно проводить в присутствии избытка щелочи, чтобы степень нейтрализации акриловой кислоты составила 100 мол.%. Количество щелочи может быть больше, чем необходимо для нейтрализации 100 мол.% акриловой кислоты.
Примеры основного соединения, содержащегося в основной композиции, применяемой при нейтрализации, включают гидроксиды щелочных металлов, такие как гидроксид натрия, гидроксид калия и гидроксид лития. Среди вышеперечисленных гидроксидов щелочных металлов особенно предпочтительным является гидроксид натрия. При щелочной обработке, особенно при обработке сильной щелочью, акриловую кислоту обрабатывают таким образом, чтобы получился водный раствор или дисперсия, содержащая акрилат, концентрация которого после нейтрализации составляет предпочтительно 10-80 вес.%, более предпочтительно 20-60 вес.%, еще более предпочтительно 30-50 вес.%. Время такой щелочной обработки, в частности время обработки в случае проведения щелочной обработки в присутствии избытка щелочи, составляет соответственно предпочтительно в пределах от 1 с до 2 ч, более предпочтительно от 5 с до 1 ч.
Кроме того, для стабильности щелочную обработку проводят в присутствии кислорода. Щелочную обработку предпочтительно проводить, когда водный раствор акриловой кислоты (или соли), т.е. водный раствор композиции на основе акриловой кислоты содержит кислород предпочтительно в пределах от 0.5 до 20 м.д., более предпочтительно от 1 до 15 м.д., еще более предпочтительно от 1.5 до 10 м.д. В случае низкого содержания кислорода возникает проблема стабильности мономера при щелочной обработке. Щелочную обработку предпочтительно проводить в атмосфере кислорода или воздуха, более предпочтительно при барботировании кислородом или воздухом. Содержание кислорода можно определить с помощью измерителя растворенного кислорода (например, полярограф мембранного типа). Мутность (определенная с помощью JIS К-0101) мономера, полученного таким образом, предпочтительно составляет не больше чем 0.5.
(6) Другой мономер
Мономер содержит акриловую кислоту и/или ее соль в указанных выше пределах. Такой мономер можно использовать в комбинации с другим мономером. Другими словами, в настоящем изобретении композиция на основе акриловой кислоты может содержать акриловую кислоту и/или ее соль в вышеуказанных пределах и также содержать другой мономер.
Примеры этого мономера, который можно использовать в комбинации, включают мономеры, раскрытые в американских и европейских патентах, а также мономеры, описанные ниже. Конкретные примеры дополнительно включают сополимеры, полученные путем сополимеризации акриловой кислоты и/или ее соли с, например, водорастворимыми или гидрофобными ненасыщенными мономерами, такими как метакриловая кислота, (безводная) малеиновая кислота, фумаровая кислота, кротоновая кислота, итаконовая кислота, винилсульфоновая кислота, 2-(мет)акриламидо-2-метилпропансульфоновая кислота, (мет)акрилоксиалкан-сульфоновая кислота и их соли щелочных металлов и их соли аммония, а также N-винил-2-пирролидон, N-винилацетамид, (мет)акриламид, N-изопропил-(мет)акриламид, N,N-диметил(мет)акриламид, 2-гидроксиэтил(мет)акрилат, метоксиполиэтиленгликоль (мет)акрилат, полиэтиленгликоль (мет)акрилат, изобутилен и лаурил(мет)акрилат.
Способ сшивки, применяемый в настоящем изобретении, не ограничен частными случаями, но его примеры включают: (А) способ, включающий стадию добавления сшивающего агента во время и/или после полимеризации, последующая сшивка; (В) способ, включающий радикальную сшивку с помощью радикальных инициаторов полимеризации; и (С) способ, включающий сшивку под воздействием облучения, например пучком электронов. Однако предпочтительным является способ (D), включающий стадии предварительного добавления заданного количества внутреннего сшивающего агента к мономеру и затем проведение полимеризации одновременно с реакцией сшивки и/или после нее.
Примеры внутреннего сшивающего агента, применяемого в настоящем изобретении, включают N,N'-метилен-бис-акриламид, полиэтиленгликоль-ди(мет)акрилат, полипропиленгликольди(мет)акрилат, (полиоксиэтилен)-триметилолпропантри(мет)акрилат, триметилолпропанди(мет)акрилат, полиэтиленгликольди(β-акрилоилоксипропионат), триметилолпропан-(β-акрилоилоксипропионат), поли(мет)аллилоксиалканы, диглициловый эфир полиэтиленгликоля, этиленгликоль, полиэтиленгликоль и глицерин. Эти внутренние сшивающие агенты могут быть использованы либо по отдельности, либо в комбинации друг с другом. В частности, в случае когда применяют по меньшей мере один внутренний сшивающий агент, это благоприятно сказывается, например, на поглощающих свойствах получаемой водопоглощающей смолы, таким образом для полимеризации в качестве необходимого компонента применяют соединение, имеющее по меньшей мере две полимеризующиеся ненасыщенные группы.
Количество вышеуказанного внутреннего сшивающего агента находится предпочтительно в пределах от 0.005 до 2 мол.%, более предпочтительно от 0.01 до 1 мол.%, еще более предпочтительно от 0.05 до 0.2 мол.% относительно вышеупомянутого мономера. В случае когда количество вышеуказанного используемого сшивающего агента меньше 0.005 мол.% или больше 2 мол.%, желательные поглощающие свойства могут быть не получены.
Когда компонент мономера используют в виде его водного раствора в случае, когда на стадии полимеризации осуществляют обратнофазную суспензионную полимеризацию или полимеризацию водного раствора, концентрация мономера в указанном водном растворе (в дальнейшем именуемом "водный раствор мономера") предпочтительно находится в пределах 10-70 вес.%, более предпочтительно 15-65 вес.%, еще более предпочтительно 30-55 вес.%, с учетом получаемых свойств, хотя она не ограничена конкретными значениями. Кроме того, в случае когда осуществляют вышеуказанную полимеризацию водного раствора или обратнофазную суспензионную полимеризацию, при необходимости можно использовать не только воду, но и другой растворитель в комбинации с водой, и вид этого растворителя, используемого в комбинации, не ограничен.
При проведении полимеризации для улучшения свойств водопоглощающей смолы можно добавить водорастворимый полимер или водопоглощающий полимер в количестве от 0 до 50 вес.%, например, предпочтительно от 0 до 20 вес.%, а также различные пенообразователи (например, карбонат, азосоединения, газообразующий агент), поверхностно-активные вещества, хелатирующие агенты и агенты передачи цепи в количестве от 0 до 5 вес.%, например, предпочтительно от 0 до 1 вес.%.
(7) (а) Стадия образования гидрогеля поперечносшитого полимера (в дальнейшем именуемая стадией полимеризации (а))
На стадии полимеризации мономера, с точки зрения характеристик или легкости контролирования процесса полимеризации, полимеризацию водного раствора или суспензионную полимеризацию с обращением фаз проводят таким образом, чтобы вышеуказанный мономер применялся в виде его водного раствора. Эти способы полимеризации могут быть выполнены в атмосфере воздуха. Способы полимеризации предпочтительно осуществляют в атмосфере инертного газа, такого как азот или аргон (например, содержащие 1% кислорода или менее 1% кислорода). Кроме того, мономер предпочтительно используют для полимеризации после того, как растворенный кислород в достаточной степени вытеснен инертным газом (например, содержание кислорода ниже 1 м.д.). Настоящее изобретение особенно предпочтительно для полимеризации водного раствора, которая приводит к высоким выходам и позволяет получить хорошие свойства, но обычно связана с трудностью контроля реакции полимеризации. Примеры особенно предпочтительной полимеризации водного раствора включают непрерывную ленточную полимеризацию и непрерывную или периодическую полимеризацию в смесителе.
Суспензионная полимеризация с обращением фаз представляет собой способ полимеризации, в котором водный раствор мономера суспендируют в гидрофобном органическом растворителе. Примеры этого описаны в патентах США, например в патенте США 4,093,776, патенте США 4,367,323, патенте США 4,446,261, патенте США 4,683,274 и патенте США 5,244,735. Полимеризация водного раствора представляет собой способ полимеризации, в котором водный раствор мономера полимеризуют, в отсутствие дисперсионного растворителя. Примеры этого раскрыты в патентах США, например в патенте США 4,625,001, патенте США 4,873,299, патенте США 4,286,082, патенте США 4,973,632, патенте США 4,985,518, патенте США 5,124,416, патенте США 5,250,640, патенте США 5,264,495, патенте США 5,145,906 и патенте США 5,380,808, и в европейских патентах, в частности ЕР 0811636, ЕР 0955086 и ЕР 0922717. Мономеры, сшивающие агенты, инициаторы полимеризации и другие добавки, которые описаны в указанных выше патентных документах, применимы и к настоящему изобретению.
Кроме того, в настоящем изобретении, в случае если полимеризуется вышеуказанный мономер, полное время между завершением получения мономера и/или нейтрализацией акриловой кислоты и инициированием полимеризации предпочтительно является насколько возможно коротким, чтобы получить (i) улучшенные поглощающие свойства и (ii) менее окрашенную водопоглощающую смолу, что является целью настоящего изобретения. В частности, полимеризацию инициируют предпочтительно в течение 24 часов, более предпочтительно в течение 12 часов, еще более предпочтительно в течение 3 часов, особенно предпочтительно в течение 1 часа после получения мономера и/или нейтрализации акриловой кислоты. В промышленности нейтрализацию и/или получение мономера проводят в больших количествах в реакторах. Поэтому обычно время нахождения в аппарате превышает 24 часа. Однако авторами настоящего изобретения было обнаружено, что более длительное время после получения мономера и/или нейтрализации акриловой кислоты приводит к увеличению содержания остаточного мономера и ухудшает окрашивание. Таким образом, для сокращения времени нахождения в аппарате нейтрализацию и получение мономера непрерывно проводят при проведении полимеризации партиями или непрерывно. Предпочтительно, полимеризацию проводят непрерывно.
В случае когда полимеризуют вышеуказанный водный раствор мономера, можно использовать по меньшей мере один из следующих инициаторов полимеризации, например: персульфаты, такие как персульфат калия, персульфат аммония и персульфат натрия; и трет-бутилгидропероксид, пероксид водорода, 2,2'-азо-бис-(2-амидинопропан) дигидрохлорид, 2-гидрокси-1-фенилпропан-1-он и бензоинметиловый эфир. Кроме того, инициатор окислительно-восстановительного процесса применим при использовании вышеуказанного инициатора полимеризации совместно с восстановителем, который способствует разложению вышеупомянутого инициатора полимеризации, и их комбинации. Примеры вышеупомянутого восстановителя включают: сернистую кислоту (или бисульфит), такой как сульфит натрия и гидросульфит натрия; L-аскорбиновую кислоту (или ее соли); восстановимые металлы (или их соли), такие как соли железа; и амины; и предпочтительно использовать инициатор окислительно-восстановительной полимеризации, сочетающий в себе восстановитель с персульфатом и/или пероксидом, но конкретных ограничений нет. Количество вышеуказанного инициатора полимеризации или используемого восстановителя обычно предпочтительно находится в пределах от 0.001 до 2 мол.%, более предпочтительно от 0.01 до 0.5 мол.% относительно мономера.
Для достижения более низкой окрашиваемости и снижения желтизны водопоглощающей смолы согласно настоящему изобретению из инициаторов полимеризации предпочтительно использовать пероксид водорода и/или гидросульфит, более предпочтительно пероксид водорода. Другие инициаторы полимеризации, особенно персульфат или азосоединения, могут также использоваться в комбинации с пероксидом водорода и/или гидросульфитом. Количество используемого пероксида водорода и/или гидросульфита предпочтительно находится в пределах от 0.00001 до 0.1 г/(моль мономеров), более предпочтительно от 0.0001 до 0.01 г/(моль мономеров), и, кроме того, их содержание меньше, чем содержание других вышеуказанных инициаторов полимеризации, используемых вместе с ними. Кроме того, азосоединения оказывают хороший эффект на снижение окрашивания, но чрезмерное употребление персульфата приводит к ухудшению свойств и/или окрашивания. Поэтому персульфат предпочтительно используют в комбинации в вышеуказанных пределах.
Кроме того, реакция полимеризации может быть проведена либо при воздействии облучения на реакционную систему с помощью лучей высокой энергии, такого как излучения, пучки электронов и ультрафиолетовые лучи, вместо применения вышеуказанного инициатора полимеризации или при совместном применении этих лучей высокой энергии и вышеуказанного инициатора полимеризации.
Температура реакции и время в вышеупомянутой реакции полимеризации конкретно не ограничены и могут, соответственно, быть установлены с учетом факторов, таких как соответствующие виды гидрофильного мономера и инициатора полимеризации и температура реакции. Однако полимеризацию обычно проводят при температуре не выше температуры кипения предпочтительно в течение 3 часов, более предпочтительно в течение 1 часа, еще более предпочтительно в течение 0.5 часа, и максимальная температура предпочтительно не превышает 150°С, более предпочтительно находится в пределах 90-120°С. Кроме того, также предпочтительно в случае необходимости собирать воду и/или акриловую кислоту, которые испаряются во время полимеризации, и затем возвращать в процесс получения водопоглощающей смолы.
Кроме того, настоящее изобретение представляет собой установку для получения, в частности для непрерывного получения, в большом количестве, не меньше определенного количества на линию. Возможно, что эффекты настоящего изобретения могут в недостаточной степени проявляться при получении в лаборатории или при получении на экспериментальных установках или установках для производства малых серий. Однако при получении в большом масштабе, особенно предпочтительно не меньше чем 300 кг/ч, более предпочтительно не меньше чем 500 кг/ч, еще более предпочтительно не меньше, чем 700 кг/ч, в пересчете продукции на линию, авторами настоящего изобретения было обнаружено, что с точки зрения стабильности мономера и скорости полимеризации, если не применено настоящее изобретение, то невозможно получить заданную водопоглощающую смолу, имеющую удовлетворительные свойства.
(8) (b) Стадия сушки гидрогеля поперечносшитого полимера под воздействием нагревания (в дальнейшем именуемая стадией сушки (b))
В случае необходимости, гидрогель поперечносшитого полимера, полученный на стадии полимеризации, дробят на маленькие кусочки с помощью измельчителя геля или подобным образом, в случае необходимости. Измельченный продукт сушат при определенных температурных условиях. После того, в случае необходимости, высушенный продукт измельчают или сортируют и далее гранулируют и сшивают при определенных температурных условиях. Водопоглощающая смола, предложенная в настоящем изобретении, обладает превосходными свойствами. Проведение вышеописанных стадий приводит к получению водопоглощающей смолы, имеющей дополнительно улучшенные свойства и обладающей меньшим запахом.
Кроме того, чтобы достигнуть целей настоящего изобретения, т.е. снижения содержания остаточного мономера и уменьшения окрашивания водопоглощающей смолы, время от завершения полимеризации, при необходимости через стадию измельчения геля, до начала стадии сушки предпочтительно является настолько коротким, насколько это возможно. В частности, гидрогель поперечносшитого полимера начинают сушить (помещают в сушилку) предпочтительно в течение 1 часа, более предпочтительно в течение 0.5 часа, еще более предпочтительно в течение 0.1 часа после завершения полимеризации. Кроме того, чтобы снизить содержание остаточного мономера и уменьшить окрашивание водопоглощающей смолы, температуру гидрогеля поперечносшитого полимера устанавливают таким образом, чтобы она была предпочтительно в пределах 50-80°С, более предпочтительно 60-70°С в течение периода между завершением полимеризации и началом сушки. В промышленности полимеризацию осуществляют в больших количествах, поэтому также является обычным то, что время нахождения в аппарате после полимеризации превышает 3 часа. Однако авторами настоящего изобретения было обнаружено, что с увеличением времени до начала сушки и/или при отклонении температуры от вышеуказанных пределов увеличивается содержание остаточного мономера или становится заметным окрашивание полученной водопоглощающей смолы. Таким образом, предпочтительно осуществлять непрерывную полимеризацию и непрерывную сушку, чтобы сократить время нахождения в аппарате.
В настоящем изобретении сушка представляет собой прежде всего процесс удаления воды, а также удаления неполимеризующегося органического соединения, имеющего параметр растворимости, указанный выше.
Содержание сухой смолы, определяемое как потеря веса при высушивании (нагревание 1 г порошка или частиц при 180°С в течение 3 часов), предпочтительно составляет не меньше чем 80 вес.%, более предпочтительно в пределах 85-99 вес.%, еще более предпочтительно 90-98 вес.%, особенно предпочтительно 92-97 вес.%. Кроме того, температура сушки не ограничена конкретными значениями, но предпочтительно является такой, чтобы нагревание на стадии (b) осуществлялось при температуре не ниже температуры кипения неполимеризующегося органического соединения. А именно, температура сушки находится предпочтительно в пределах 100-300°С, более предпочтительно 150-250°С (определено на основании температуры нагреваемой среды).
Примеры применимых способов сушки включают различные способы, такие как термическая сушка; сушка горячим воздухом; вакуумная сушка; сушка инфракрасными лучами; СВЧ-сушка; сушка в барабанной сушилке; дегидратация путем азеотропной отгонки с гидрофобными органическими растворителями; удаление высокой влажности путем высокотемпературной обработки паром. Предпочтительным способом сушки в отношении свойств водопоглощающей смолы и эффективности удаления неполимеризующегося органического соединения является сушка горячим воздухом с газом, имеющим температуру конденсации предпочтительно 40-100°С, более предпочтительно 50-100°С, еще более предпочтительно 60-90°С.
(9) Стадия поверхностной сшивки (с)
Кроме этого, в настоящем изобретении далее дано объяснение поверхностной сшивки. "Поверхностная сшивка" водопоглощающей смолы означает дальнейшее образование области, имеющей высокую плотность сшивки в поверхностных слоях (близость поверхностей: близость обычно в пределах нескольких десятков мкм от поверхностей) водопоглощающей смолы, имеющей равномерную поперечносшитую структуру в полимере. Водопоглощающая смола, полученная согласно настоящему изобретению, имеет низкое содержание водорастворимого компонента и высокую абсорбирующую способность, таким образом, достигаются превосходные эффекты при сшивке поверхности, отличные свойства и характеристики, повышается абсорбирующая способность (ААР) под давлением (PPUP), проницаемость жидкости под давлением (PPUP) и уменьшается запах.
Для проведения вышеуказанной сшивки поверхности применимы различные агенты для поверхностной сшивки. Однако в отношении свойств обычно применяют сшивающие агенты, которые могут реагировать с карбоксильной группой. Примерами таких сшивающих агентов являются многоатомные спирты, эпоксисоединения; полиамины или продукты конденсации полиаминов и галоэпоксисоединений; оксазолины; моно-, ди- или полиоксазолидиноны; соли поливалентных металлов; и алкиленкарбонат.
Примеры агента для поверхностной сшивки, применяемого в настоящем изобретении, приведены в патентах США 6228930, 6071976 и 6254990. Примеры включают многоатомные спирты, такие как моно-, ди-, три-, тетра- или полиэтиленгликоль, монопропиленгликоль, 1,3-пропандиол, дипропиленгликоль, 2,3,4-триметил-1,3-пентадиол, полипропиленгликоль, глицерин, полиглицерин, 2-бутен-1,4-диол, 1,4-бутандиол, 1,3-бутандиол, 1,5-пентандиол, 1,6-гександиол и 1,2-циклогександиметанол; эпоксисоединения, такие как диглициновый эфир этиленгликоля и глицидол; полиамины, такие как этилендиамин, диэтилентриамин, триэтилентетрамин, тетраэтиленпентамин, пентаэтиленгексамин, полиэтиленимин и полиамидополиамины; галоэпоксисоединения, такие как эпихлоргидрин, эпибромгидрин и α-метилэпихлоргидрин; продукты конденсации вышеуказанных полиаминов и вышеуказанных галоэпоксисоединений; оксазолидиноны, такие как 2-оксазолидинон; и алкиленкарбонаты, такие как этиленкарбонат. Однако не существует никаких конкретных ограничений. Для того чтобы максимизировать эффекты настоящего изобретения из этих сшивающих агентов предпочтительно применять по меньшей мере многоатомные спирты и многоатомные спирты, имеющие 2-10 атомов углерода, предпочтительно 3-8 атомов углерода.
Количество используемого агента для поверхностной сшивки зависит от таких факторов, как типы используемых соединений и их комбинации, но находится предпочтительно в пределах от 0.001 до 10 вес. частей, более предпочтительно от 0.01 до 5 вес. частей относительно 100 вес. частей содержания сухой смолы. В настоящем изобретении для поверхностной сшивки предпочтительно применяют воду. Количество используемой для этого воды зависит от содержания воды в водопоглощающей смоле, но обычно предпочтительно находится в пределах от 0.5 до 20 вес. частей, более предпочтительно от 0.5 до 10 вес. частей относительно 100 вес. частей водопоглощающей смолы. Кроме того, в настоящем изобретении в качестве альтернативы воде можно использовать гидрофильный органический растворитель. Количество гидрофильного органического растворителя, используемого в этом случае, обычно предпочтительно находится в пределах от 0 до 10 вес. частей, более предпочтительно от 0 до 5 вес. частей, еще более предпочтительно от 0 до 3 вес. частей относительно 100 вес. частей водопоглощающей смолы. Температуру раствора сшивающего агента предпочтительно доводить до значений в пределах от 0°С до температуры кипения, более предпочтительно от 5 до 50°С, еще более предпочтительно от 10 до 30°С для достижения смешиваемости и стабильности. Кроме того, перед смешиванием с раствором сшивающего агента, температуру порошка водопоглощающей смолы предпочтительно доводят до значений в пределах от 0 до 80°С, более предпочтительно от 40 до 70°С, для достижения смешиваемости.
Кроме того, в настоящем изобретении один из предпочтительных способов смешивания представляет собой способ, включающий в случае необходимости стадии предварительного смешивания агента для поверхностной сшивки с водой и/или гидрофильным органическим растворителем и последующего распыления или добавления по каплям (предпочтительно, распыления) полученного водного раствора на водопоглощающую смолу для их смешивания. Размер распыляемых капель жидкости в среднем предпочтительно составляет от 1 до 300 мкм, более предпочтительно от 10 до 200 мкм. Кроме того, на стадии смешивания могут присутствовать нерастворимый в воде мелкодисперсный порошок и/или поверхностно-активные вещества, содержание которых находится в пределах значений, не оказывающих неблагоприятного воздействия на настоящее изобретение, например в пределах от 0 до 10 вес.%, предпочтительно от 0 до 5 вес.%, более предпочтительно от 0 до 1 вес.% относительно водопоглощающей смолы. Примеры используемых поверхностно-активных веществ и их количеств приведены в международной публикации WO 2005JP1689 (дата международной подачи 4 февраля 2005).
Необходимо, чтобы предпочтительный аппарат для смешивания, используемый на вышеуказанной стадии смешивания, был способен создать большую мощность смешивания для обеспечения однородного смешивания. В настоящем изобретении применяют различные смесители, но предпочтительно они представляют собой высокоскоростные мешалки, особенно предпочтительно, высокоскоростные мешалки непрерывного действия. Примерами таких мешалок являются турбулизатор (название продукта; производство Hosokawa Milkron Co., Ltd., Япония) и смеситель Lödige (название продукта; производство Gebruder Lodige Maschinenbau GmbH, Германия).
После смешивания с агентом для поверхностной сшивки получаемую водопоглощающую смолу предпочтительно подвергают термической обработке. Вышеуказанную термическую обработку предпочтительно осуществляют при условиях, когда температура при нагреве на стадии (с) не ниже температуры кипения неполимеризующегося органического соединения. Температура при нагревании находится предпочтительно в пределах 120-250°С, более предпочтительно 150-250°С. Время нагревания находится предпочтительно в пределах от 1 минуты до 2 часов. Тепловую обработку можно проводить при использовании обычных сушилок или нагревательных печей. Примеры сушилок включают сушилки-смесители канального типа, барабанные сушилки, дисковые сушилки, сушилки с псевдоожиженным слоем, сушилки с подачей газа (пневматического типа) и инфракрасные сушилки. Кроме того, после нагревания водопоглощающая смола в случае необходимости может быть охлаждена.
Эти способы сшивки поверхности также раскрыты в: различных европейских патентах, таких как Европейские патенты 0349240, 0605150, 0450923, 0812873, 0450924 и 0668080; различных японских патентах, таких как публикации японских нерассмотренных заявок на патент 242709/1995 и 2243041/1995; различных патентах США, таких как патенты США 5409771, 5597873, 5385983, 5610220, 5633316, 5674633 и 5462972; и различных международных публикациях патентов, таких как WO 99/42494, WO 99/43720 и WO 99/42496. Эти способы сшивки поверхности также применимы в настоящем изобретении.
(10) Свойства и форма водопоглощающей смолы
Форма водопоглощающей смолы, полученной согласно настоящему изобретению, не ограничена конкретными вариантами, при этом ее примеры включают дисперсную или порошкообразную форму, такую как частицы неправильной формы или сферической формы; а также гелевую форму, листовую форму, форму палочек, волокнистую форму и пленочную форму. Кроме того, смола может быть скомбинирована с какими-нибудь материалами или прикреплена к материалам, таким как волокнистые материалы. Однако обычно водопоглощающая смола предпочтительно находится в форме частиц или в порошковой форме, учитывая, что водопоглощающую смолу используют в водопоглощающих изделиях, таких как впитывающие прокладки, в садоводстве и при посадке деревьев. В случае когда водопоглощающая смола находится в порошковой форме, она может представлять собой гранулированные частицы или первичные частицы, и средний диаметр частиц до или после сшивки поверхности обычно находится в пределах 10-2000 мкм. В настоящем изобретении гранулированные частицы также называют агломерированными частицами. В отношении свойств, средний диаметр частиц предпочтительно находится в пределах 100-1000 мкм, более предпочтительно 200-600 мкм, особенно предпочтительно 300-500 мкм. Количество частиц с диаметром в пределах от 850 до 150 мкм составляет от 90 до 100 вес.%, от 95 до 100 вес.%, особенно от 98 до 100 вес.%.
Водопоглощающая смола, получаемая согласно настоящему изобретению, имеет улучшенное соотношение между абсорбирующей способностью и водорастворимым полимером, учитывая, что указанные свойства водопоглощающей смолы находятся в обратной взаимосвязи. Таким образом, водопоглощающая смола согласно настоящему изобретению может обладать более превосходными свойствами, в результате поверхностной сшивки.
Более конкретно, абсорбирующая способность водопоглощающей смолы согласно настоящему изобретению предпочтительно составляет не менее 15 г/г, более предпочтительно не менее 20 г/г, еще более предпочтительно не менее 23 г/г, еще более предпочтительно 25 г/г для физиологического солевого раствора под давлением (4.8 кПа). Кроме того, абсорбирующая способность по физиологическому солевому раствору под давлением (1.9 кПа) также обычно составляет не менее 15 г/г, предпочтительно не менее 20 г/г, более предпочтительно не менее 25 г/г, еще более предпочтительно 28 г/г, особенно предпочтительно не менее 32 г/г. Абсорбирующая способность в отсутствие давления (GVs) составляет также не менее 25 г/г, более предпочтительно не менее 28 г/г, особенно предпочтительно не менее 32 г/г. Нет никаких определенных верхних пределов абсорбирующей способности под давлением и абсорбирующей способности в отсутствие давления.
Кроме того, проницаемость жидкости под давлением (PPUP) находится предпочтительно в пределах 20-100%, более предпочтительно 30-100%, еще более предпочтительно 40-100%, наиболее предпочтительно 50-100%.
Следует обратить внимание на то, что проницаемость жидкости под давлением, которая отличается от абсорбирующей способности под давлением (ААР: 0.9 г), является критерием стабильности абсорбирующей способности под давлением (ААР) (отклонение от снижения абсорбирующей способности под давлением) в случае, когда количество водопоглощающей смолы (при определении количества смолы на единицу площади) увеличивается с 0.90 г до 5.0 г. Проницаемость жидкости под давлением является новым параметром, определенным в настоящем изобретении. Например, количество водопоглощающей смолы (при определении количества смолы на единицу площади) может варьироваться на разных участках одного и того же впитывающего изделия. Различная абсорбирующая способность под давлением (ААР) связана с количеством водопоглощающей смолы, которое меняется в зависимости от участка в изделии, и является причиной ухудшения свойств изделия при конкретном применении. В случае когда проницаемость жидкости под давлением (PPUP), определенная в описанном ниже Примере, является очень высокой, изделие может стабильно проявлять высокие свойства независимо от количества (концентрации) водопоглощающей смолы в изделии и может также обладать высокой проницаемостью жидкости. Подробно проницаемость жидкости под давлением (PPUP) описана в публикации японского патента 109779/2005 (подан 6 апреля 2005), и описание японской заявки на патент 109779/2005 также применимо к настоящему изобретению.
Содержание водорастворимого компонента в водопоглощающей смоле, полученной способом согласно настоящему изобретению, составляет предпочтительно не более 25 вес.%, более предпочтительно не более 15 вес.%, еще более предпочтительно 10 вес.%. Кроме того, значение GEX (определенное в Примере), определенное на основании соотношения между абсорбирующей способностью (GVs) и содержанием растворимого компонента, предпочтительно составляет не менее 17, более предпочтительно не менее 18, особенно предпочтительно не менее 19.
Кроме того, как указано ниже в описании примеров некоторых предпочтительных вариантов реализации настоящего изобретения и в вышеуказанной цели настоящего изобретения, водопоглощающая смола согласно настоящему изобретению является менее окрашенной (небольшое окрашивание в желтый цвет или отсутствие желтого окрашивания) и имеет низкое содержание остаточного мономера. В частности, степень ее окрашивания показывает индекс желтизны (индекс желтизны, см. европейские патенты 0942014 и 1108745), который предпочтительно находится в пределах от 0 до 15, более предпочтительно от 0 до 13, еще более предпочтительно от 0 до 10, наиболее предпочтительно от 0 до 5, таким образом, желтый оттенок почти отсутствует. Кроме того, содержание остаточного мономера является низким и предпочтительно находится в пределах от 0 до 400 м.д. по весу, более предпочтительно от 0 до 300 м.д. по весу.
Чтобы водопоглощающая смола согласно настоящему изобретению обладала различными свойствами, количество веществ, таких как хелатирующие агенты, окислители, восстановители, такие как гидросульфит, хелатирующие агенты, такие как аминокарбоновая кислота, нерастворимый в воде неорганический порошок или нерастворимый в воде органический порошок, деодоранты, антибактериальные добавки и полимер полиамин, составляет 0-10 вес. частей, предпочтительно 0-1 вес. частей.
Водопоглощающую смолу, полученную при проведении стадии сушки (b) и стадии поверхностной сшивки (с) в конечном итоге контролируют на конечном этапе с тем, чтобы содержание неполимеризующегося органического соединения, имеющего вышеуказанный параметр растворимости, не превышало 10 м.д. по весу. С точки зрения производственных затрат и поглощающих свойств водопоглощающей смолы, указанная смола содержит неполимеризующееся органическое соединение в количестве менее 0.01 м.д. по весу, более предпочтительно не менее 0.01 м.д. по весу и не более 5 м.д. по весу, в частности, предпочтительно не менее 0,01 м.д. по весу и не более 1 м.д. по весу. В случае когда водопоглощающая смола содержит неполимеризующееся органическое соединение в количестве более 10 м.д. по весу, возникает проблема появления неприятного запаха у водопоглощающей смолы. С другой стороны, водопоглощающая смола, которая содержит менее 0.01 вес.% неполимеризующегося органического соединения, является менее предпочтительной вследствие того, что такая водопоглощающая смола может обладать более низкими поглощающими свойствами из-за избыточной термической обработки на стадии сушки и стадии поверхностной сшивки.
Кроме того, содержание железа в водопоглощающей смоле составляет не менее 0.01 м.д. по весу и не более 1 м.д. по весу, предпочтительно не менее 0.01 м.д. по весу и не более 0.5 м.д. по весу. Вследствие этого, когда такую водопоглощающую смолу применяют в абсорбирующих изделиях, например одноразовых подгузниках, абсорбирующие изделия имеют отличное соотношение между стабильными поглощающими свойствами при их применении и легким разложением после их применения в абсорбирующих изделиях.
Водопоглощающая смола с содержанием железа менее 0.01 м.д. по весу не является предпочтительной вследствие того, что абсорбирующие изделия, полученные из такой водопоглощающей смолы, сложнее разложить после их использования. Кроме того, водопоглощающая смола с содержанием железа более 1 м.д. по весу не является предпочтительной вследствие того, что такая водопоглощающая смола вызывает разложение абсорбирующих изделий, например одноразовых подгузников, при их использовании.
(11) Применение водопоглощающей смолы согласно настоящему изобретению
Способ, предложенный в настоящем изобретении, обеспечивает простое получение водопоглощающей смолы, обладающей хорошими поглощающими свойствами при превосходном балансе между абсорбирующей способностью в отсутствие давления (=GVs= объем геля в солевом растворе = емкость задерживания при центрифугировании), абсорбирующей способностью под давлением (ААР) и содержанием растворимого соединения. Полученную водопоглощающую смолу широко применяют для различных целей, например, как сельскохозяйственные и садоводческие водоудерживающие агенты, водоудерживающие агенты для промышленности, влагопоглотители, осушающие агенты и строительные материалы, но водопоглощающую смолу согласно настоящему изобретению особенно предпочтительно применять для гигиенических изделий, таких как одноразовые подгузники, прокладки при недержании мочи и кала, прокладки для груди для кормящих матерей и гигиенические салфетки.
Кроме этого водопоглощающая смола, предложенная в настоящем изобретении, обладает превосходным соотношением указанных выше свойств, которые отлично сбалансированы, что, таким образом, позволяет использовать водопоглощающую смолу в гигиенических изделиях (например, одноразовых подгузниках) в высоких концентрациях, при этом концентрация водопоглощающей смолы (весовое отношение водопоглощающей смолы к общему весу водопоглощающей смолы и волокнистых материалов) предпочтительно составляет 30-100 вес.%, более предпочтительно 40-100 вес.%, еще более предпочтительно 50-95 вес.%.
[Примеры]
Далее настоящее изобретение будет описано согласно Примерам, приведенным ниже. Однако настоящее изобретение не ограничено описаниями Примеров. Кроме того, свойства, раскрытые в формуле изобретения и в Примерах настоящего изобретения, были определены с помощью следующих методов измерения.
(1) Абсорбирующая способность в отсутствие давления (=GVs= объем геля в солевом растворе = емкость задерживания при центрифугировании)
0.2 г водопоглощающей смолы было равномерно распределено в пакете (60 мм×60 мм), сделанном из нетканого материала. Пакет герметизировали и затем погружали в 100 г 0.9 вес.% водного раствора хлорида натрия (физиологический солевой раствор), температуру которого довели до 25 (±3)°С. После 60 минут пакет вынули, затем с помощью центробежного сепаратора пакет обезвоживали в течение 3 минут при 250 g, и затем измерили массу пакета W1. Кроме того, процедуру, аналогичную вышеуказанной, проводили без водопоглощающей смолы и измеряли полученную массу W2. Затем на основании W1 и W2 вычисляли абсорбирующую способность согласно следующему уравнению (1):
Figure 00000002
.
(2) Содержание водорастворимого полимера (которое может также упоминаться "как содержание растворимого компонента")
Пластиковую емкость объемом 250 мл с крышкой, содержащую 184.3 г 0.90 вес.% водного раствора хлорида натрия, взвесили. После этого к данному водному раствору добавили 1.00 г водопоглощающей смолы и перемешивали в течение 16 часов, при этом растворимые компоненты экстрагировали из смолы. Полученную жидкость с экстрактом отфильтровали на фильтровальной бумаге (производства ADVANTEC Toyo Co., Ltd., торговая марка: (JIS Р 3801, № 2) толщиной 0.26 мм, диаметр отфильтрованных частиц 17 мкм, и после этого 50.0 г полученного фильтрата взвесили и использовали в качестве измеряемого раствора.
Сначала титровали только физиологический солевой раствор водным раствором 0.1 н. NaOH до тех пор, пока рН не достиг 10, а затем полученный раствор титровали водным раствором 0.1 н. HCl до тех пор, пока рН не достиг 2.7, таким образом, получали фоновое количество титранта ([bNaOH] мл и [bHCl] мл). Аналогичную процедуру титрования проводили также для измеряемого раствора, таким образом, получали количество титранта ([NaOH] мл и [HCl] мл). Например, в случае если водопоглощающая смола содержала акриловую кислоту и ее натриевую соль в известных количествах, то содержание растворимого компонента (содержание извлеченного водорастворимого полимера в качестве основного компонента) в водопоглощающей смоле вычисляли на основании средней молекулярной массы мономеров и количества титранта, полученного в ходе вышеупомянутых процедур, в соответствии со следующим уравнением (2). В случае если количества были неизвестны, то среднюю молекулярную массу мономеров вычисляли из степени нейтрализации, которую определяли титрованием.
Figure 00000003
.
Figure 00000004
(3) Значение GEX
Обычно, чем выше абсорбирующая способность (GVs), тем выше содержание водорастворимого компонента. Таким образом, существенным для водопоглощающей смолы является соотношение между значением GVs и содержанием водорастворимого компонента (х), которые находятся в обратной взаимосвязи со свойствами водопоглощающей смолы. Значение GEX является критерием оценки вышеуказанного соотношения в случае, когда х превышает 1 вес.%. Чем выше значение GEX, тем лучше характеристики.
В случае когда значение GVs и содержание растворимого компонента выражены через у (г/г) и х (вес.%) соответственно, значение GEX определяют с помощью следующего уравнения 4:
Figure 00000005
Следует обратить внимание на то, что в качестве значения GVs у (г/г) и содержания растворимого компонента (вес.%), необходимых для вычисления значения GEX, используют значения, полученные выше в разделах (1) и (2).
(4) Содержание остаточного мономера
Содержание остаточного мономера (остаточная акриловая кислота и ее соль) в порошке водопоглощающей смолы после сушки определяли следующим образом. В разделе (2) выше фильтрат, отдельно приготовленный после перемешивания в течение 2 часов, анализировали с помощью жидкостной хроматографии с детекцией в УФ, чтобы также проанализировать содержание остаточного мономера (м.д.) в водопоглощающей смоле (по отношению к водопоглощающей смоле). Кроме того, содержание остаточного мономера в гидрогеле полимера перед сушкой определяли следующим образом: перемешивали приблизительно 500 мг мелкоизмельченного гидрогеля поперечносшитого полимера в сухой смоле в течение 16 часов и затем аналогично проводили УФ-анализ его фильтрата с помощью жидкостной хроматографии; затем корректировали содержание сухого остатка.
(5) Абсорбирующая способность под давлением (ААР)
Абсорбирующая способность 0.9 вес.% водного раствора хлорида натрия под давлением 4.8 кПа (ААР: 0.90 г/абсорбция под давлением)
Нержавеющая металлическая сетка, которая представляла собой сито 400 меш (размер ячейки: 38 мкм), была приплавлена ко дну пластмассового поддерживающего цилиндра с внутренним диаметром 60 мм. После этого на вышеуказанную металлическую сетку равномерно нанесли 0.900 г водопоглощающей смолы (частицы водопоглощающего агента) и затем установили поршень (пластину), при этом внешний диаметр поршня был немного меньше 60 мм, и не было зазора между поршнем и внутренней поверхностью поддерживающего цилиндра, но при этом поршень не имел затруднений при перемещении вверх и вниз. После этого измеряли вес W3 (г), т.е. общий вес поддерживающего цилиндра, водопоглощающей смолы (или частиц водопоглощающего агента) и поршня. На указанный поршень помещали груз, при этом нагрузку доводили до 4.9 кПа, включая вес поршня, давление по возможности равномерно прикладывали к водопоглощающей смоле (или частицам водопоглощающего агента). Это составляло один комплект измерительного устройства. Стеклянный фильтр с диаметром 90 мм и толщиной 5 мм помещали в чашку Петри диаметром 150 мм, затем добавляли физиологический солевой раствор, температура которого была доведена до 25±2°С, до достижения поверхности стеклянного фильтра, на который поместили фильтровальную бумагу (производства Toyo Roshi Kaisha, Ltd.; №2) диаметром 9 см для смачивания всей ее поверхности, а после этого избыток жидкости удаляли.
Один из комплектов измерительного устройства поместили на вышеупомянутую влажную фильтровальную бумагу, таким образом, получая жидкость, абсорбированную под нагрузкой. Уровень жидкости доводили путем добавления жидкости с верхней стороны стеклянного фильтра, поддерживая постоянный уровень жидкости. Спустя 1 час измерительное устройство подняли, чтобы убрать нагрузку, и измерили массу W4 (г) (общий вес поддерживающего цилиндра, набухшей водопоглощающей смолы (или частиц водопоглощающего агента), и поршня). После этого на основании W3 и W4 рассчитали абсорбирующую способность под давлением (г/г) в соответствии со следующим уравнением:
Абсорбирующая способность под давлением (ААР: 0.90 г) (г/г)=(масса W4 (г) - масса W3 (г))/массу (г) водопоглощающей смолы (или частиц водопоглощающего агента).
Нагрузку 4.9 кПа (0.90 г водопоглощающей смолы) также обозначают как ААР 4.9 кПа. В случае изменения нагрузки до 1.9 кПа, нагрузку 1.9 кПа обозначают как ААР 1.9 кПа.
(6) Проницаемость жидкости под давлением (PPUP/возможная проницаемость под давлением)
При измерении (5) абсорбирующей способности под давлением (ААР: 0.90 г) при 4.9 кПа проводили процедуру, аналогичную вышеописанной, за исключением того, что количество водопоглощающей смолы изменили с 0.900 г до 5.000 г, чтобы получить значение абсорбирующей способности под давлением (ААР: 5.0 г). В этой процедуре высокая абсорбирующая способность под давлением (ААР: 5.0 г) может привести к чрезвычайно высокому верхнему слою набухшей водопоглощающей смолы (или частиц водопоглощающего агента). Ввиду этого необходимо, чтобы используемый поддерживающий цилиндр был достаточно высоким. Используя абсорбирующую способность под давлением (ААР: 0.90 г и ААР: 5.0 г), полученную по вышеописанной процедуре, рассчитывали проницаемость жидкости под давлением (PPUP) с помощью следующего уравнения:
Проницаемость жидкости под давлением (PPUP) (%)=(ААР: 5.0 г (г/г)/ААР: 0.90 г (г/г))×100.
(7) Пиковое время и индукционное время
Температуру мономера или получаемого геля полимера во время полимеризации измеряли с помощью термометра. Предполагали, что время (минуты) между добавлением инициатора и увеличением температуры мономера или получаемого геля полимера определено как индукционное время, а время между добавлением инициатора и достижением максимальной температуры (пиковой температуры) системы полимеризации определено как пиковое время.
(8) Средневзвешенный диаметр частиц (D50)
Порошок водопоглощающей смолы или водопоглощающего агента сортировали просеиванием через стандартные сита JIS (28801-I JIS (2000) или подобные сита) с размером ячейки 850 мкм, 710 мкм, 600 мкм, 500 мкм, 425 мкм, 300 мкм, 212 мкм, 150 мкм, 106 мкм и 75 мкм и затем процентное содержание остатков на этих ситах отображали на логарифмической вероятностной бумаге. Исходя из этого рассчитывали средневзвешенный диаметр частиц (D50). Сортировку осуществляли следующим образом. При комнатной температуре (20-25°С) и относительной влажности 50±5% 10 г порошка водопоглощающей смолы или водопоглощающего агента помещали на стандартные сита JIS (IIDA, АНАЛИТИЧЕСКОЕ СИТО: внутренний диаметр =80 мм) и затем сортировали с помощью встряхивателя сита (встряхиватель сита производства IIDA SEISAKUSHO; Тип: ES-65) в течение 10 минут. Средневзвешенный диаметр частиц (D50) представляет собой, как описано в патенте США 5051259 и других публикациях, размер специфического отверстия стандартного сита, способного пропустить 50 вес.% частиц относительно всех частиц.
(9) Оценка окрашенности водопоглощающей смолы (значение индекса желтизны)
Оценку проводили в соответствии с европейскими патентами 942014 и 1108745. В частности, оценку окрашенности порошка водопоглощающей смолы проводили следующим образом, используя спектральный измеритель разности цвета (СИСТЕМА ИЗМЕРЕНИЯ ЦВЕТА SZ-C80 производства Nippon Denshoku Kogyo Co., Ltd.). Приблизительно 6 г водопоглощающей смолы помещали в нижеуказанный держатель образца порошка-пасты (наполнение держателя образца приблизительно 60%) для измерения цвета на поверхности (значение индекса желтизны (Индекс желтизны)) водопоглощающей смолы, используя вышеупомянутый спектральный измеритель разности цвета при следующих условиях (измерение отражения/держатель образца порошка-пасты (внутренний диаметр: 30 мм)/стандартная круглая белая пластина №2/30 мм трубка проектора для порошка-пасты, используемого в качестве стандарта) при комнатной температуре (20-25°С) и относительной влажности 50%.
Кроме того, разность окрашивания (L, а, b) или WB (искомый цвет), который представлял собой другой эталон, также измеряли в то же самое время тем же самым методом тем же самым прибором, как описано выше. Большее соотношение L/WB и меньшее соотношение а/b указывали на то, что окрашивание низкое и что цвет близок к по существу белому цвету.
(10) Оценка запаха
Образец получали следующим образом: 2 г частиц водопоглощающей смолы распыляли в полипропиленовую чашку, имеющую внутренний диаметр 55 мм и высоту 70 мм, и 50 г воды, полученной ионным обменом, вливали в чашку таким образом, чтобы произошло образование геля из частиц водопоглощающей смолы. После образования геля частицы водопоглощающей смолы в гелеобразном состоянии герметично закрывали и нагревали при температуре 30°С в течение 1 часа. После этого запах частиц водопоглощающей смолы в гелеобразном состоянии оценивали 10 взрослых добровольцев. В отношении запаха геля полимера, гель полимера оценивали как гель полимера, непосредственно помещенный в полипропиленовую чашку, без смешения с водой, полученной ионным обменом.
Оценку проводили следующим образом: значения оценок, которые указывают степень запаха, присваивались по пятибалльной шкале от "запах отсутствует" (значение 0) до "сильный запах" (значение 5). Исходя из значений оценок, которые были даны 10 взрослыми добровольцами, было получено среднее значение оценки запаха. Низкое значение оценки запаха указывает на меньший запах.
[Пример получения 1]
Коммерчески доступную акриловую кислоту (специальная марка реактива, доступная в Wako Pure Chemical Industries, Ltd.; содержание п-метоксифенола = 200 м.д. по весу), полученную каталитическим окислением в газовой фазе, подавали в нижнюю часть колонки для разделения высококипящих примесей с пятьюдесятью перфорированными пластинками двойного потока, затем перегоняли при флегмовом числе 1 и далее повторно перегоняли, таким образом, получая композицию (А) на основе акриловой кислоты (также обозначенную как очищенная акриловая кислота), содержащей акриловую кислоту в концентрации не менее 99% и следовые количества примесей (главным образом, воду).
Указанная композиция (А) на основе акриловой кислоты содержала п-метоксифенол в концентрации ниже предела обнаружения (менее 1 м.д. по весу). Протоанемонин и фурфураль также присутствовали в концентрации ниже предела обнаружения (менее 1 м.д. по весу). В композиции (А) на основе акриловой кислоты содержание фенотиазина составляло 0 м.д. по весу, содержание альдегида составляло не более 1 м.д. по весу, содержание малеиновой кислоты составляло не более 1 м.д. по весу, содержание уксусной кислоты составляло 200 м.д. по весу и содержание пропионовой кислоты составляло 200 м.д. по весу.
[Примеры получения 2-5]
Композиции на основе акриловой кислоты (2)-(5), содержащие заранее заданное количество толуола, получали путем добавления толуола в количестве 10 м.д. по весу, 100 м.д. по весу, 1000 м.д. по весу и 10000 м.д. по весу соответственно (относительно содержания сухого остатка акриловой кислоты) к композиции на основе акриловой кислоты (1), полученной в примере получения 1.
[Примеры получения 6-8]
Композиции на основе акриловой кислоты (6)-(8), содержащие заранее заданное количество дифенилового эфира, получали путем добавления дифенилового эфира в количестве 10 м.д. по весу, 1000 м.д. по весу и 10000 м.д. по весу соответственно (относительно содержания сухого остатка акриловой кислоты) к композиции на основе акриловой кислоты (1), полученной в примере получения 1.
[Пример получения 9]
В пятигорлую колбу объемом 5 литров, оснащенную двумя капельными воронками, рН-метром, термометром и перемешивающими лопастями, добавили 1598 г воды, полученной ионным обменом. Кроме того, по отдельности в две капельные воронки поместили соответственно 1280 г композиции на основе акриловой кислоты (1), полученной в Примере получения 1, при комнатной температуре, и 1488 г 48 вес.% водного раствора гидроксида натрия (с содержанием железа 0.5 м.д. по весу при пересчете на Fe2O3) при комнатной температуре и 5-литровую колбу поместили на водоледяную баню. Затем температуру реакционной системы при реакции нейтрализации в 5-литровой колбе поддерживали на уровне не выше 35°С. Одновременно при перемешивании по каплям добавили в колбу 48 вес.% водного раствора гидроксида натрия и композиции на основе акриловой кислоты (1). Добавление по каплям композиции на основе акриловой кислоты (1) приблизительно продолжали в течение 35 мин, и добавление по каплям 48 вес.% водного раствора гидроксида натрия приблизительно продолжали в течение 45 мин. После завершения добавления по каплям композиции на основе акриловой кислоты (1) капельную воронку промыли 100 г воды, полученной ионным обменом, и всю использованную промывную воду затем добавили в колбу. Кроме того, после завершения добавления по каплям 48 вес.% водного раствора гидроксида натрия капельную воронку также промыли 100 г воды, полученной ионным обменом, и всю использованную промывную воду затем добавили в колбу.
После завершения всех добавлений по каплям температуру полученного раствора установили в пределах 20-35°С для выдерживания реакционной смеси в течение 20 минут. После этого выдерживания по каплям добавили очень малое количество композиции на основе акриловой кислоты (1), чтобы довести рН до 10 (±0.1), таким образом, получали водный раствор акрилата натрия (1) с концентрацией 37 вес.% и степенью нейтрализации 100 мол.%.
[Примеры получения 10-16]
Водные растворы акрилата натрия (2)-(8) получали таким же образом, как и водный раствор акрилата натрия (1), за исключением того, что композицию на основе акриловой кислоты (1), используемую для нейтрализации, заменили композициями на основе акриловой кислоты (2)-(8).
[Пример получения 17]
Композицию на основе акриловой кислоты (9) получали путем добавления дифенила в количестве 100 м.д. по весу к композиции на основе акриловой кислоты (1), полученной в Примере получения 1.
[Пример получения 18]
Композицию на основе акриловой кислоты (10) получали путем добавления этилового спирта в количестве 1000 м.д. по весу к композиции на основе акриловой кислоты (1), полученной в Примере получения 1.
[Пример получения 19]
Водные растворы акрилата натрия (9) и (10) получали таким же образом, как и водный раствор акрилата натрия (1), но вместо композиции на основе акриловой кислоты (1), используемой для нейтрализации, применяли композиции на основе акриловой кислоты (9) и (10).
[Пример получения 20]
Водный раствор акрилата натрия (11) получали таким же образом, как и в Примере получения 9, но при использовании 48% гидроксида натрия (с содержанием Fe 1000 м.д. по весу).
[Пример 1]
Двухплечевой смеситель с рубашкой объемом 10 литров, внутренняя поверхность которого покрыта Teflon®, подготовили в качестве емкости для полимеризации. Этот смеситель был оснащен двумя сигмообразными лопастями с диаметром вращения 120 мм и закрыт для герметизации системы изнутри. Водный раствор мономера (1), имеющий концентрацию мономера 37 вес.% и степень нейтрализации 75 мол.%, получили путем смешивания вместе 376.3 г композиции на основе акриловой кислоты (2), полученной в Примере получения 2, 3983 г водного раствора акрилата натрия (2), т.е. нейтрализованного продукта композиции на основе акриловой кислоты (2), 640.7 г воды, полученной ионным обменом и полиэтиленгликоли диакрилата (молярно-среднечисловая степень "n" аддитивной полимеризации этиленоксида = 8.2) в качестве агента для внутренней сшивки в количестве 0.10 мол.% (по отношению ко всем мономерам).
Кроме того, при поддержании температуры на уровне 22°С указанный водный раствор мономера (2) ввели в вышеуказанный сигмообразный двухплечевой смеситель, а затем в раствор ввели азот для удаления воздуха из раствора, чтобы снизить содержание растворенного кислорода в растворе до значения не более 1 м.д. Затем, в то время как теплую воду прогоняли по рубашке и в то время как водный раствор мономера (1) перемешивали, для инициирования полимеризации к водному раствору мономера (1) добавили инициатор полимеризации, включающий комбинацию водного раствора персульфата натрия (в количестве 0.09 г/моль) с водным раствором L-аскорбиновой кислоты (в количестве 0.005 г/моль). Спустя определенное время началась полимеризация, затем она продолжилась, в то время как получаемый гель полимера измельчали, затем после достижения пиковой температуры полимеризацию продолжали еще в течение 20 минут, таким образом, получали мелко измельченный гидрогель поперечносшитого полимера (1) с диаметром в пределах от приблизительно 1 до приблизительно 2 мм.
Полученный гидрогель полимера (1) распределяли по металлической сетке 850 мкм и затем высушивали в токе горячего газа при температуре 180°С (точка конденсации: 70°С) в течение 90 минут. Затем полученный высушенный продукт измельчали с помощью вибрационной мельницы и после этого его дополнительно сортировали с помощью стандартного сита JIS 850 мкм, таким образом, получая порошок водопоглощающей смолы (1).
[Примеры 2-5]
Порошок водопоглощающей смолы (2) получали таким же образом, как и в Примере 1, но вместо композиции на основе акриловой кислоты (2) и водного раствора акрилата натрия (2) применяли композицию на основе акриловой кислоты (3) и водный раствор акрилата натрия (3) соответственно. Аналогично, порошок водопоглощающей смолы (3) получали таким же образом, как и в Примере 1, но вместо композиции на основе акриловой кислоты (2) и водного раствора акрилата натрия (2) применяли композицию на основе акриловой кислоты (4) и водный раствор акрилата натрия (4) соответственно. Порошок водопоглощающей смолы (4) получали таким же образом, как и в Примере 1, но вместо композиции на основе акриловой кислоты (2) и водного раствора акрилата натрия (2) применяли композицию на основе акриловой кислоты (6) и водный раствор акрилата натрия (6) соответственно. Порошок водопоглощающей смолы (5) получали таким же образом, как и в Примере 1, но вместо композиции на основе акриловой кислоты (2) и водного раствора акрилата натрия (2) применяли композицию на основе акриловой кислоты (7) и водный раствор акрилата натрия (7) соответственно.
[Сравнительные Примеры 1-3]
Порошок сравнительной водопоглощающей смолы (1) получали аналогично Примеру 1, но при использовании композиции на основе акриловой кислоты (1) и водного раствора акрилата натрия (1). Порошок сравнительной водопоглощающей смолы (2) получали аналогично Примеру 1, но при использовании композиции на основе акриловой кислоты (5) и водного раствора акрилата натрия (5). Порошок сравнительной водопоглощающей смолы (3) получали аналогично Примеру 1, но при использовании композиции на основе акриловой кислоты (8) и водного раствора акрилата натрия (8).
[Пример 6]
100 вес. частей порошка водопоглощающей смолы (1) путем распыления смешивали с агентом для поверхностной сшивки, содержащим 0.4 вес. частей 1,4-бутандиола, 0.6 вес. частей пропиленгликоля, 3.0 вес. частей воды, полученной ионным обменом, и 0.5 вес. частей изопропанола, и полученную смесь термически обрабатывали при температуре 210°С в течение 40 минут, таким образом, получали порошок поверхностносшитой водопоглощающей смолы (6). Порошок водопоглощающей смолы (6) имел следующие свойства: GVs = 34 г/г; ААР 4.9 кПа = 25 г/г; PPUP = 50%.
[Пример 7]
Порошок водопоглощающей смолы (7) получали аналогично Примеру 1, но вместо композиции на основе акриловой кислоты (2) и водного раствора акрилата натрия (2) использовали композицию на основе акриловой кислоты (9) и водный раствор акрилата натрия (9) соответственно.
[Пример 8]
Порошок водопоглощающей смолы (8) получали аналогично Примеру 6, но вместо порошка водопоглощающей смолы (1) использовали порошок водопоглощающей смолы (2). Порошок водопоглощающей смолы (8) имел следующие свойства: GVs = 33 г/г; AAP 1.9 кПа = 29 г/г; ААР 4.9 кПа = 27 г/г; PPUP = 54%.
[Пример 9]
Порошок водопоглощающей смолы (9) получали аналогично Примеру 6, но вместо порошка водопоглощающей смолы (1) использовали порошок водопоглощающей смолы (7). Порошок водопоглощающей смолы (9) имел следующие свойства: GVs = 32 г/г; ААР 1.9 кПа = 28 г/г; ААР 4.9 кПа = 25 г/г; PPUP = 52%.
[Сравнительный Пример 4]
Порошок сравнительной водопоглощающей смолы (4) получали аналогично Примеру 1, но вместо композиции на основе акриловой кислоты (2) и водного раствора акрилата натрия (2) использовали композицию на основе акриловой кислоты (10) и водный раствор акрилата натрия (10) соответственно.
[Сравнительный Пример 5]
Порошок сравнительной водопоглощающей смолы (5) получали аналогично Примеру 1, но вместо водного раствора акрилата натрия (1) использовали водный раствор акрилата натрия (11).
[Сравнительный Пример 6]
Порошок водопоглощающей смолы (6) получали аналогично Примеру 6, но вместо порошка водопоглощающей смолы (1) использовали порошок сравнительной водопоглощающей смолы (4). Порошок сравнительной водопоглощающей смолы (6) имел следующие свойства: GVs = 38 г/г; ААР 1.9 кПа = 18 г/г; ААР 4.9 кПа = 9 г/г; PPUP = 33%.
(Результаты анализа водопоглощающих смол) Таблица 1
В Таблице 1 представлены результаты анализов порошков водопоглощающих смол (1)-(5) и порошков сравнительных водопоглощающих смол (1)-(5).
Как представлено в Таблице 1, по сравнению со Сравнительным Примером 1, в котором не применяли специфического неполимеризующегося органического соединения, в Примерах 1-5 и Примере 7, в которых использовали специфическое неполимеризующееся органическое соединение, достигли пиковой температуры полимеризации при легком контроле, сокращения индукционного времени, улучшения абсорбирующей способности (GVs), улучшения значения GEX, которое указывает на соотношение между абсорбирующей способностью (GVs) и водорастворимым полимером, и получили водопоглощающую смолу без запаха и с меньшей окрашенностью (индексом желтизны). Кроме этого в способе получения согласно настоящему изобретению (Примеры 1-5 и 7) отсутствует проблема появления запаха, в отличие от Сравнительных примеров 2 и 3.
Figure 00000006
Варианты реализации изобретения и конкретные примеры реализации, подробно рассмотренные выше, предназначены исключительно для пояснения технических деталей настоящего изобретения, которое не ограничено такими вариантами реализации и конкретными примерами, а может быть применено во многих вариантах в объеме настоящего изобретения, при условии, что такие варианты не выходят за рамки формулы настоящего изобретения, которая представлена ниже.
ПРОМЫШЛЕННАЯ ПРИМЕНИМОСТЬ
С помощью настоящего изобретения можно с высоким выходом получить водопоглощающую смолу, имеющую улучшенное соотношение между абсорбирующей способностью и водорастворимым полимером, учитывая, что данные свойства водопоглощающей смолы находятся в обратной взаимосвязи, при этом реакцию полимеризации легче контролировать для получения смолы, не имеющей запаха, неокрашенной и имеющей высокие поглощающие свойства.

Claims (16)

1. Способ получения водопоглощающей смолы путем полимеризации композиции на основе акриловой кислоты, содержащей акриловую кислоту и ее соль, при этом композиция на основе акриловой кислоты содержит неполимеризующееся органическое соединение в количестве от 1 до 1000 м.д. по весу, имеющее параметр растворимости (1,0-2,5)·104 (Дж·м3)1/2, включающий:
(a) стадию проведения радикальной полимеризации композиции на основе акриловой кислоты для получения гидрогеля поперечно сшитого полимера; и
(b) стадию сушки гидрогеля поперечно сшитого полимера при нагревании;
полученная водопоглощающая смола имеет конечное содержание неполимеризующегося органического соединения от 0,01 до 10 м.д. и конечное содержание железа от 0,01 до 1 м.д.
2. Способ по п.1, отличающийся тем, что неполимеризующееся органическое соединение предварительно включают в композицию на основе акриловой кислоты или добавляют к указанной композиции.
3. Способ по п.2, отличающийся тем, что композицию на основе акриловой кислоты очищают таким образом, чтобы содержание неполимеризующегося органического соединения в композиции на основе акриловой кислоты составляло от 1 до 1000 м.д. по весу.
4. Способ по любому из пп.1-3, отличающийся тем, что неполимеризующееся органическое соединение представляет собой по меньшей мере одно соединение, выбранное из группы, включающей гептан, диметилциклогексан, этилциклогексан, толуол, этилбензол, ксилол, диэтилкетон, диизопропилметилкетон, метилпропилкетон, метилизобутилкетон, метил(трет-бутил)кетон, н-пропилацетат, н-бутилацетат, дифениловый эфир и дифенил.
5. Способ по любому из пп.1-3, отличающийся тем, что неполимеризующееся органическое соединение представляет собой ароматическое соединение.
6. Способ по любому из пп.1-3, отличающийся тем, что дополнительно включает после стадии (b) стадию (с) поверхностной сшивки гидрогеля поперечносшитого полимера при нагревании.
7. Способ по любому из пп.1-3, отличающийся тем, что на стадиях (b) и (с) нагревание проводят при температуре не ниже температуры кипения неполимеризующегося органического соединения.
8. Способ по любому из пп.1-3, отличающийся тем, что на стадии (b) сушка представляет собой сушку горячим воздухом в токе газа, имеющего температуру конденсации 50-100°С.
9. Способ по любому из пп.1-3, отличающийся тем, что композиция на основе акриловой кислоты содержит метоксифенол в количестве 10-200 м.д. по весу; по меньшей мере одно соединение, выбранное из группы, включающей димер β-гидроксипропионовой и акриловой кислоты; и фенотиазин в количестве 0-0,1 м.д. по весу.
10. Способ по любому из пп.1-3, отличающийся тем, что радикальная полимеризация представляет собой полимеризацию в водном растворе.
11. Способ по любому из пп.1-3, отличающийся тем, что стадия (а) является стадией нейтрализации акриловой кислоты основной композицией; после которой проводят радикальную полимеризацию полученного нейтрализованного продукта с образованием гидрогеля поперечно сшитого полимера.
12. Водопоглощающая смола, полученная путем полимеризации композиции на основе акриловой кислоты, содержащей неполимеризующееся органическое соединение, имеющее параметр растворимости (1,0-2,5)·104 (Дж·м3)1/2, при этом конечное содержание неполимеризующегося органического соединения в водопоглощающей смоле составляет от 0,01 до 10 м.д. по весу, и конечное содержание содержание железа - от 0,01 до 1 м.д. по весу.
13. Водопоглощающая смола по п.12, отличающаяся тем, что неполимеризующееся органическое соединение представляет собой по меньшей мере одно соединение, выбранное из группы, включающей толуол, дифениловый эфир, дифенил, гептан, диметилциклогексан и этилциклогексан.
14. Гигиеническое изделие, включающее водопоглощающую смолу по п.12 или 13.
15. Композиция на основе акриловой кислоты для получения водопоглощающей смолы по п.12, содержащая неполимеризующееся органическое соединение в количестве 1-1000 м.д. по весу.
16. Способ получения композиции на основе акриловой кислоты, содержащей акриловую кислоту и ее соль для получения водопоглощающей смолы на основе поперечно сшитого полимера, включающий стадию очистки композиции на основе акриловой кислоты, в которую предварительно включено или добавлено неполимеризующееся органическое соединение, имеющее параметр растворимости (1,0-2,5)·104 (Дж·м3)1/2, при этом содержание неполимеризующегося органического соединения, включенного в композицию на основе акриловой кислоты для полимеризации, составляет 1-1000 м.д. по весу, композиция имеет содержание железа от 0,01 до 1 м.д. по весу.
RU2007140959/04A 2005-04-07 2006-04-06 Водопоглощающая смола на основе полиакриловой кислоты (соли), способ ее получения и акриловая кислота, используемая в полимеризации для получения водопоглощающей смолы RU2385328C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005111204 2005-04-07
JP2005-110960 2005-04-07
JP2005110960 2005-04-07
JP2005-111204 2005-04-07

Publications (2)

Publication Number Publication Date
RU2007140959A RU2007140959A (ru) 2009-05-20
RU2385328C2 true RU2385328C2 (ru) 2010-03-27

Family

ID=37087107

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2007140959/04A RU2385328C2 (ru) 2005-04-07 2006-04-06 Водопоглощающая смола на основе полиакриловой кислоты (соли), способ ее получения и акриловая кислота, используемая в полимеризации для получения водопоглощающей смолы
RU2007141544/04A RU2355711C1 (ru) 2005-04-07 2006-04-06 Способ получения водопоглощающей смолы на основе полиакриловой кислоты (соли)

Family Applications After (1)

Application Number Title Priority Date Filing Date
RU2007141544/04A RU2355711C1 (ru) 2005-04-07 2006-04-06 Способ получения водопоглощающей смолы на основе полиакриловой кислоты (соли)

Country Status (8)

Country Link
US (2) US8729191B2 (ru)
EP (2) EP1879930B1 (ru)
JP (2) JP5269314B2 (ru)
KR (2) KR100914107B1 (ru)
RU (2) RU2385328C2 (ru)
SG (1) SG161231A1 (ru)
TW (2) TWI344469B (ru)
WO (2) WO2006109842A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2754099C2 (ru) * 2016-10-11 2021-08-26 ЛЕНКСЕСС Дойчланд ГмбХ Гранулированные полимеры на основе функционализированного кватернизированным диэтилентриамином полиакрилата, способ их получения, применение этих полимеров и способ удаления оксоанионов из водных и/или органических растворов

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI344469B (en) * 2005-04-07 2011-07-01 Nippon Catalytic Chem Ind Polyacrylic acid (salt) water-absorbent resin, production process thereof, and acrylic acid used in polymerization for production of water-absorbent resin
DE602006012640D1 (de) * 2005-04-12 2010-04-15 Nippon Catalytic Chem Ind Altend wasserabsorbierendes harz auf basis von polyacrylsäure (polyacrylat) als hauptkomponente, herstellungsverfahren dafür, wasserabsorbierender kerige wasserabsorbierende mittel verwendet wird
TWI363061B (en) 2005-05-13 2012-05-01 Asahi Kasei Chemicals Corp Absorbent composite material and method for manufacturing the same
DE102005042608A1 (de) 2005-09-07 2007-03-08 Basf Ag Polymerisationsverfahren
TWI394789B (zh) 2005-12-22 2013-05-01 Nippon Catalytic Chem Ind 吸水性樹脂組成物及其製造方法、吸收性物品
EP1837348B9 (en) 2006-03-24 2020-01-08 Nippon Shokubai Co.,Ltd. Water-absorbing resin and method for manufacturing the same
EP1840137B1 (en) 2006-03-29 2009-11-25 Nippon Shokubai Co., Ltd. Method of Producing Polyacrylic Acid (Salt) Water-Absorbent Resin
EP2074153B1 (de) 2006-09-19 2015-09-09 Basf Se Verfahren zur herstellung farbstabiler wasserabsorbierender polymerpartikel mit niedrigen neutralisationsgrad
EP2116571B1 (en) 2007-02-05 2019-05-01 Nippon Shokubai Co., Ltd. Granular water absorber and method of producing the same
DE102007045724B4 (de) 2007-09-24 2012-01-26 Evonik Stockhausen Gmbh Superabsorbierende Zusammensetzung mit Tanninen zur Geruchskontrolle, Verfahren zu deren Herstellung und Verwendung
EP2270057A4 (en) * 2008-04-25 2011-04-27 Nippon Catalytic Chem Ind POLYACRYLIC ACID RESIN (SEL) RESPONSIBLE FOR ABSORBING WATER AND METHOD FOR MANUFACTURING THE SAME
JP5380434B2 (ja) * 2008-04-27 2014-01-08 株式会社日本触媒 アクリル酸の製造方法ならびにその製造方法を用いた親水性樹脂の製造方法および吸水性樹脂の製造方法
TWI500636B (zh) * 2008-10-07 2015-09-21 Evonik Degussa Gmbh 用於製造超吸性聚合物的方法
KR101371932B1 (ko) * 2008-10-09 2014-03-14 주식회사 엘지화학 흡수성 수지의 흡수 속도를 조절하는 방법 및 그에 의해 흡수 속도가 조절된 흡수성 수지
JP5490130B2 (ja) * 2008-11-07 2014-05-14 ビーエーエスエフ ソシエタス・ヨーロピア 吸水ポリマー粒子の製造方法
JP5718060B2 (ja) * 2009-02-06 2015-05-13 株式会社日本触媒 ポリアクリル酸(塩)系親水性樹脂およびその製造方法
US8252857B2 (en) * 2009-05-15 2012-08-28 Basf Se Process for producing odor-inhibiting water-absorbing polymer particles
US8586787B2 (en) * 2009-05-15 2013-11-19 Nippon Shokubai Co., Ltd. Process for producing (meth)acrylic acid
WO2011024974A1 (ja) 2009-08-27 2011-03-03 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂およびその製造方法
CN102482435B (zh) 2009-08-28 2014-04-30 株式会社日本触媒 吸水性树脂的制造方法
WO2011040472A1 (ja) 2009-09-29 2011-04-07 株式会社日本触媒 粒子状吸水剤及びその製造方法
WO2011040575A1 (ja) 2009-09-30 2011-04-07 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂およびその製造方法
US9574019B2 (en) 2009-11-23 2017-02-21 Basf Se Methods for producing water-absorbent foamed polymer particles
JP2013511610A (ja) * 2009-11-23 2013-04-04 ビーエーエスエフ ソシエタス・ヨーロピア 吸水性ポリマー発泡体の製造方法
JP5514841B2 (ja) 2010-01-20 2014-06-04 株式会社日本触媒 吸水性樹脂の製造方法
WO2011090130A1 (ja) 2010-01-20 2011-07-28 株式会社日本触媒 吸水性樹脂の製造方法
JP5658229B2 (ja) * 2010-03-08 2015-01-21 株式会社日本触媒 粒子状含水ゲル状架橋重合体の乾燥方法
EP2371869A1 (en) 2010-03-30 2011-10-05 Evonik Stockhausen GmbH A process for the production of a superabsorbent polymer
US8791230B2 (en) 2010-06-08 2014-07-29 Nippon Shokubai Co., Ltd. Method for producing particulate water absorbent resin
US8571499B1 (en) * 2010-10-12 2013-10-29 Harold Kirkpatrick Wireless terrestrial communications systems using a line-of-sight frequency for inbound data and a non-line-of-sight frequency for outbound data
JP5654615B2 (ja) * 2010-12-28 2015-01-14 株式会社日本触媒 アクリル酸および/またはそのエステルおよびその重合体の製法
EP2700667B1 (en) 2011-04-20 2017-08-09 Nippon Shokubai Co., Ltd. Process and apparatus for producing water-absorbable resin of polyacrylic acid (salt) type
US20120296297A1 (en) * 2011-05-18 2012-11-22 Achille Di Cintio Feminine hygiene absorbent articles comprising water-absorbing polymeric foams
DE102011076931A1 (de) 2011-06-03 2012-12-06 Basf Se Wässrige Lösung, enthaltend Acrylsäure und deren konjugierte Base
CN102492088B (zh) * 2011-12-02 2013-08-21 南京大学 一种水凝胶及制备方法及其在重金属废水处理中的应用
US20130200305A1 (en) * 2012-02-06 2013-08-08 Basf Se Process for Producing Water-Absorbing Polymer Particles
EP2812365A1 (de) 2012-02-06 2014-12-17 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
JP5795813B2 (ja) 2012-02-17 2015-10-14 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂およびその製造方法
JPWO2013137277A1 (ja) * 2012-03-14 2015-08-03 株式会社日本触媒 3−ヒドロキシプロピオン酸の製造方法、遺伝子組換え微生物、並びに前記方法を利用したアクリル酸、吸水性樹脂、アクリル酸エステル、およびアクリル酸エステル樹脂の製造方法
IN2015DN03071A (ru) 2012-10-09 2015-10-02 Avery Dennison Corp
JP5883948B2 (ja) 2012-11-27 2016-03-15 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂の製造方法
CA2905602A1 (en) * 2013-03-15 2014-09-18 Sarah M. Hoyt Flash evaporation for product purification and recovery
EP2970086B1 (en) 2013-03-15 2018-11-07 Cargill, Incorporated Recovery of 3-hydroxypropionic acid
WO2014181859A1 (ja) * 2013-05-10 2014-11-13 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂の製造方法
EP3056268B1 (en) 2013-10-09 2023-03-22 Nippon Shokubai Co., Ltd. Particulate water absorber comprising water-absorbing resin as main component and process for manufacturing same
JP2017006808A (ja) 2013-11-14 2017-01-12 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂の製造方法
JP6521668B2 (ja) * 2014-02-28 2019-05-29 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂の製造方法
US20150322626A1 (en) * 2014-05-06 2015-11-12 Weyerhaeuser Nr Company Reduced furfural content in polyacrylic acid crosslinked cellulose fibers
US9205405B2 (en) 2014-05-06 2015-12-08 The Procter & Gamble Company Reduced furfural content in polyacrylic acid crosslinked cellulose fibers used in absorbent articles
KR101725950B1 (ko) * 2014-06-23 2017-04-12 주식회사 엘지화학 수용성 염을 포함하는 고흡수성 수지 및 그 제조 방법
US10696890B2 (en) 2014-09-30 2020-06-30 Nippon Shokubai Co., Ltd. Methods of liquefying and shrinking water-absorbable resins in a water-containing state
US10695746B2 (en) 2015-01-07 2020-06-30 Nippon Shokubai Co., Ltd. Water absorbent agent
CA2975298C (en) 2015-02-05 2020-03-10 Pavel Janko Label assemblies for adverse environments
KR101949996B1 (ko) * 2016-01-28 2019-02-19 주식회사 엘지화학 고흡수성 수지의 제조 방법
KR102056302B1 (ko) 2016-03-24 2019-12-16 주식회사 엘지화학 고흡수성 수지 섬유의 제조 방법
US11224857B2 (en) 2016-03-28 2022-01-18 Nippon Shokubai Co., Ltd. Method for manufacturing water absorbing agent
EP3437732B1 (en) 2016-03-28 2022-05-11 Nippon Shokubai Co., Ltd. Particulate water absorbing agent
KR102165459B1 (ko) 2016-03-28 2020-10-14 가부시키가이샤 닛폰 쇼쿠바이 흡수제 및 그의 제조 방법, 그리고 흡수제를 사용한 흡수성 물품
WO2018118767A1 (en) 2016-12-22 2018-06-28 Avery Dennison Corporation Convertible pressure sensitive adhesives comprising urethane (meth) acrylate oligomers
US20200023625A1 (en) 2017-02-22 2020-01-23 Nippon Shokubai Co., Ltd. Water absorbent sheet, elongated water absorbent sheet, and absorbent article
KR102487977B1 (ko) 2017-07-28 2023-01-11 주식회사 엘지화학 고흡수성 수지 및 그 제조 방법
CN111183347B (zh) 2017-10-12 2023-03-21 株式会社日本触媒 颗粒状吸水剂物性的测定方法及颗粒状吸水剂
CN111356426B (zh) 2017-11-16 2022-05-06 株式会社日本触媒 吸水剂及吸收性物品
KR102356629B1 (ko) 2017-11-24 2022-01-26 주식회사 엘지화학 고흡수성 수지 조성물
EP3878872A4 (en) 2018-11-07 2022-08-10 Nippon Shokubai Co., Ltd. PROCESS FOR THE PREPARATION OF A PARTICULATE WATER ABSORBENT AND PARTICULATE WATER ABSORBENT
US20220088568A1 (en) 2019-01-11 2022-03-24 Nippon Shokubai Co., Ltd. Water absorbent agent and method for producing water absorbent agent
EP3910004A4 (en) 2019-01-11 2022-10-12 Nippon Shokubai Co., Ltd. ABSORBENT AGENT HAVING AN ABSORBENT RESIN AS A MAIN COMPONENT, AND METHOD FOR MAKING THE SAME
EP3978552A4 (en) 2019-05-31 2023-06-14 Nippon Shokubai Co., Ltd. METHOD FOR PRODUCTION OF WATER-ABSORBENT AND POLY(ACRYLIC ACID) WATER-ABSORBENT RESIN
CN115348897A (zh) 2020-03-31 2022-11-15 株式会社日本触媒 颗粒状吸水剂
EP4299651A1 (en) 2021-02-26 2024-01-03 Nippon Shokubai Co., Ltd. Granular water absorbent, absorbent body containing said water absorbent, and absorbent article using said absorbent body
CN116554791A (zh) * 2023-05-04 2023-08-08 昆山石梅新材料科技有限公司 一种耐黄变高粘结oca光学胶及其制备方法

Family Cites Families (462)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US625488A (en) 1899-05-23 auspitz
US632352A (en) 1899-06-23 1899-09-05 George W Jones Pan or lid lifter.
US670141A (en) 1900-11-20 1901-03-19 William Otis Shepard Policeman's club.
US922717A (en) 1909-03-05 1909-05-25 George H Parker Game.
US955086A (en) 1909-07-09 1910-04-12 Julius Laux Post-anchor.
CA797095A (en) 1962-02-09 1968-10-22 Doebl Hans Method of and machine for the continuous treatment of plastic paste
CH434208A (de) 1965-08-14 1967-04-30 List Heinz Misch- und Knetmaschine mit scheibenförmigen Knetelementen
AT279547B (de) 1967-04-14 1970-03-10 Buchs Metallwerk Ag Verfahren und Vorrichtung zur Trennung oder Reinigung schmelzflüssiger, flüssiger oder gelöster Stoffe durch fraktioniertes Kristallisieren
US3959569A (en) 1970-07-27 1976-05-25 The Dow Chemical Company Preparation of water-absorbent articles
JPS5437188B2 (ru) 1972-04-20 1979-11-13
JPS5538863B2 (ru) 1974-04-01 1980-10-07
US3935099A (en) 1974-04-03 1976-01-27 The United States Of America As Represented By The Secretary Of Agriculture Method of reducing water content of emulsions, suspensions, and dispersions with highly absorbent starch-containing polymeric compositions
JPS5166166A (ja) 1974-12-06 1976-06-08 Hitachi Ltd Sentakuki
US4090013A (en) 1975-03-07 1978-05-16 National Starch And Chemical Corp. Absorbent composition of matter
JPS51125468A (en) 1975-03-27 1976-11-01 Sanyo Chem Ind Ltd Method of preparing resins of high water absorbency
US4043952A (en) 1975-05-09 1977-08-23 National Starch And Chemical Corporation Surface treatment process for improving dispersibility of an absorbent composition, and product thereof
JPS5265597A (en) 1975-11-27 1977-05-31 Sumitomo Chem Co Ltd Preparation of high polimeric materials with improved water absorption
JPS5346389A (en) 1976-10-07 1978-04-25 Kao Corp Preparation of self-crosslinking polymer of acrylic alkali metal salt
NZ188633A (en) 1977-10-18 1980-10-24 Unilever Ltd Absorbent material surface-treated with polyether
JPS6055002B2 (ja) 1977-12-16 1985-12-03 エヌ・テ−・エヌ東洋ベアリング株式会社 曲率測定装置
JPS54142401A (en) 1978-04-28 1979-11-06 Iwane Fujii Heating unit conversion apparatus
US4224427A (en) 1978-06-01 1980-09-23 Ciba-Geigy Corporation Process for preparing hydrogels as spherical beads of large size
DE2935712A1 (de) 1978-09-07 1980-03-20 Sumitomo Chemical Co Verfahren zum herstellen von stark absorbierenden polymerisaten
JPS6024807B2 (ja) 1979-02-19 1985-06-14 昭和電工株式会社 高吸水性ヒドロゲルの製造方法
JPS55133413A (en) 1979-04-06 1980-10-17 Nippon Shokubai Kagaku Kogyo Co Ltd Preparation of crosslinked alkali metal acrylate polymer
US4286082A (en) 1979-04-06 1981-08-25 Nippon Shokubai Kagaku Kogyo & Co., Ltd. Absorbent resin composition and process for producing same
DE2937751C2 (de) 1979-09-19 1982-11-18 Wilhelm Hegenscheidt, Gmbh, 5140 Erkelenz Unterflurradsatzdrehmaschine
JPS56133028A (en) 1980-03-25 1981-10-17 Nippon Shokubai Kagaku Kogyo Co Ltd Composition of water absorbent
JPS56136808A (en) 1980-03-29 1981-10-26 Nichiden Kagaku Kk Water absorbing resin
JPS6056724B2 (ja) * 1980-10-22 1985-12-11 株式会社クラレ 吸水性樹脂の製造方法
GB2088392B (en) 1980-12-03 1984-05-02 Sumitomo Chemical Co Production of hydrogels
JPS5794011A (en) 1980-12-03 1982-06-11 Sumitomo Chem Co Ltd Productin of high-molecular material having excellent water absorbability
JPS57158209A (en) 1981-03-25 1982-09-30 Kao Corp Production of bead-form highly water-absorbing polymer
DE3128100C2 (de) 1981-07-16 1986-05-22 Chemische Fabrik Stockhausen GmbH, 4150 Krefeld Absorptionsmittel für Blut und seröse Körperflüssigkeiten
JPS5839156A (ja) 1981-08-31 1983-03-07 Fujitsu Ltd キヤンプオン制御方式
US4755562A (en) 1986-06-10 1988-07-05 American Colloid Company Surface treated absorbent polymers
US4985518A (en) 1981-10-26 1991-01-15 American Colloid Company Process for preparing water-absorbing resins
JPS58180233A (ja) 1982-04-19 1983-10-21 Nippon Shokubai Kagaku Kogyo Co Ltd 吸収剤
GB2126591B (en) * 1982-09-02 1986-07-30 Kao Corp Process for producing highly water absorptive polymer
JPS5962665A (ja) 1982-09-02 1984-04-10 Kao Corp 高吸水性ポリマ−の製造法
JPS5980459A (ja) 1982-10-29 1984-05-09 Arakawa Chem Ind Co Ltd 吸水性樹脂粉末組成物
JPS59103314A (ja) 1982-12-03 1984-06-14 Seiko Instr & Electronics Ltd 光磁気記録媒体
US4416711A (en) 1982-12-17 1983-11-22 Ireco Chemicals Perchlorate slurry explosive
JPS59129232A (ja) 1983-01-12 1984-07-25 Nippon Synthetic Chem Ind Co Ltd:The 高吸水性樹脂の製造法
US4455284A (en) 1983-01-18 1984-06-19 Vsesojuzny Nauchnoissledovatelsky I Proektny Institut Aljuminievoi, Magnievoi I Elektrodnoi Promyshlennosti Process for desilication of aluminate solution
US4558091A (en) 1983-05-13 1985-12-10 Grain Processing Corporation Method for preparing aluminum and polyhydric alcohol modified liquid absorbing composition
US4526937A (en) 1983-08-31 1985-07-02 The B. F. Goodrich Company Polycarbonates having plasticizers with fugitive activity
JPS6071623A (ja) 1983-08-31 1985-04-23 ザ ビ−.エフ.グツドリツチ カンパニ− カルボキシル含有ポリマ−の製造方法
JPS60158861A (ja) 1984-01-31 1985-08-20 株式会社日本触媒 吸水剤
JPS60163956A (ja) 1984-02-04 1985-08-26 Arakawa Chem Ind Co Ltd 吸水性樹脂の製法
JPS60245608A (ja) * 1984-05-22 1985-12-05 Nippon Kayaku Co Ltd ビニル重合体の製造法
JPS61314A (ja) 1984-06-14 1986-01-06 ト−ソ−株式会社 カ−テンモ−タ制御装置
JPS6197333A (ja) 1984-10-17 1986-05-15 Nippon Shokubai Kagaku Kogyo Co Ltd 高吸水性樹脂粉末の造粒方法
US4734478A (en) 1984-07-02 1988-03-29 Nippon Shokubai Kagaku Kogyo Co., Ltd. Water absorbing agent
JPS6120458A (ja) 1984-07-06 1986-01-29 Nec Corp 話中音信号変換回路
US4625001A (en) 1984-09-25 1986-11-25 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method for continuous production of cross-linked polymer
JPS6187702A (ja) 1984-10-05 1986-05-06 Seitetsu Kagaku Co Ltd 吸水性樹脂の製造方法
US4703486A (en) 1984-12-18 1987-10-27 Advanced Micro Devices, Inc. Communication data encoder/decoder component system architecture
JPS61153110A (ja) 1984-12-27 1986-07-11 Fuji Electric Co Ltd 瀘過濃縮装置の瀘過板の固定方法
US4748076A (en) 1985-02-16 1988-05-31 Hayashikane Shipbuilding & Engineering Co., Ltd. Water absorbent fibrous product and a method of producing the same
JPS61257235A (ja) 1985-05-08 1986-11-14 Sanyo Chem Ind Ltd 吸水性樹脂組成物
JPS61265371A (ja) 1985-05-17 1986-11-25 Shimadzu Corp 送液ポンプ
JPS61275355A (ja) 1985-05-29 1986-12-05 Kao Corp 吸収性物品
US4654039A (en) 1985-06-18 1987-03-31 The Proctor & Gamble Company Hydrogel-forming polymer compositions for use in absorbent structures
USRE32649E (en) 1985-06-18 1988-04-19 The Procter & Gamble Company Hydrogel-forming polymer compositions for use in absorbent structures
US4686479A (en) 1985-07-22 1987-08-11 Young Chung C Apparatus and control kit for analyzing blood sample values including hematocrit
US4690996A (en) 1985-08-28 1987-09-01 National Starch And Chemical Corporation Inverse emulsions
DE3537276A1 (de) 1985-10-19 1987-04-23 Basf Ag Verfahren zur kontinuierlichen herstellung von vernetzten feinteiligen gelfoermigen polymerisaten
JPS63270741A (ja) 1986-02-05 1988-11-08 Sekisui Plastics Co Ltd ポリアクリル酸系吸水性樹脂の製造方法
CA1280398C (en) 1986-02-05 1991-02-19 Hideharu Shirai Water-absorbent resin and process for producing the same
US4652001A (en) 1986-03-10 1987-03-24 Gordon Rathbun Chuck key assembly
DE3609545A1 (de) 1986-03-21 1987-09-24 Basf Ag Verfahren zur diskontinuierlichen herstellung von vernetzten, feinteiligen polymerisaten
JPH0629294B2 (ja) 1986-05-19 1994-04-20 日本合成化学工業株式会社 高吸水性樹脂の製造法
JPH078883B2 (ja) 1986-06-04 1995-02-01 大洋漁業株式会社 改質吸水性樹脂の製造方法
US4863989A (en) 1986-06-04 1989-09-05 Seitetsu Kagaku Co., Ltd. Water-absorbent resin composition
US4783510A (en) 1986-06-04 1988-11-08 Taiyo Fishery Co., Ltd. Process for improving a water absorbent polyacrylic acid polymer and an improved polymer produced by said process
JPH0647626B2 (ja) 1986-07-01 1994-06-22 三菱油化株式会社 吸水性複合材料の製造法
JPS63105064A (ja) 1986-10-22 1988-05-10 Nippon Synthetic Chem Ind Co Ltd:The 高吸水性樹脂組成物
IL81975A0 (en) 1987-03-24 1987-10-20 Haifa Chemicals Ltd Method for the manufacture of slow-release fertilizers
JPS63297408A (ja) 1987-05-29 1988-12-05 Toho Chem Ind Co Ltd 改良された高吸水性樹脂の製造方法
US5190815A (en) 1987-06-09 1993-03-02 Nippon Shokubai Kagaku Kogyo Co., Ltd. Waterproofing tape comprising ethylenic sulfonate polymers
DE3872978T2 (de) * 1987-08-10 1993-06-09 Nippon Catalytic Chem Ind Verfahren zur herstellung eines wasserabsorbierenden harzes.
KR0130652B1 (ko) 1987-08-14 1998-04-07 존 휴즈 수분 흡수성 수지의 제조 방법
US5061259A (en) 1987-08-19 1991-10-29 The Procter & Gamble Company Absorbent structures with gelling agent and absorbent articles containing such structures
IT1226741B (it) 1987-08-19 1991-02-05 Procter & Gamble Strutture assorbenti con agente gelificante e articoli assorbenti contenenti tali strutture.
JPH0615574B2 (ja) 1987-08-26 1994-03-02 積水化成品工業株式会社 吸水性樹脂の製造方法
DE3729259A1 (de) 1987-09-02 1989-03-23 Braun Ag Elektrisch angetriebener dosenoeffner
JP2530668B2 (ja) 1987-11-12 1996-09-04 株式会社日本触媒 改良された吸水性樹脂の製造法
DE3741158A1 (de) 1987-12-04 1989-06-15 Stockhausen Chem Fab Gmbh Polymerisate mit hoher aufnahmegeschwindigkeit fuer wasser und waessrige fluessigkeiten, verfahren zu ihrer herstellung und verwendung als absorptionsmittel
DK157899C (da) 1987-12-15 1990-09-03 Coloplast As Hudpladeprodukt
US5147343B1 (en) 1988-04-21 1998-03-17 Kimberly Clark Co Absorbent products containing hydrogels with ability to swell against pressure
ZA892846B (en) 1988-04-21 1989-12-27 Kimberly Clark Co Absorbent products containing hydrogels with ability to swell against pressure
CA1333439C (en) 1988-05-23 1994-12-06 Akito Yano Method for production of hydrophilic polymer
US5244735A (en) 1988-06-28 1993-09-14 Nippon Shokubai Kagaku Kabushiki Kaisha Water-absorbent resin and production process
TW201758B (ru) 1988-06-28 1993-03-11 Catalyst co ltd
US6087002A (en) 1988-06-28 2000-07-11 Nippon Shokubai Kagaku Kogyo Co. Ltd. Water absorbent resin
KR930007272B1 (ko) 1988-06-28 1993-08-04 닙본 쇼쿠바이 가브시기 가이샤 흡수성 수지 및 그 제법
JPH0625209B2 (ja) 1988-07-04 1994-04-06 株式会社日本触媒 吸水性樹脂およびその製造方法
JPH0826085B2 (ja) 1988-12-08 1996-03-13 株式会社日本触媒 耐久性の優れた吸水性樹脂の製造方法
RU2015141C1 (ru) 1988-12-08 1994-06-30 Ниппон Сокубаи Кагаку Когио Ко., Лтд. Способ получения абсорбирующей смолы
US4950692A (en) 1988-12-19 1990-08-21 Nalco Chemical Company Method for reconstituting superabsorbent polymer fines
US5002986A (en) 1989-02-28 1991-03-26 Hoechst Celanese Corporation Fluid absorbent compositions and process for their preparation
US4948818A (en) 1989-05-15 1990-08-14 Dow Corning Corporation Method of making porous hydrophilic-lipophilic copolymeric powders
US5185413A (en) 1989-05-16 1993-02-09 Mitsubishi Petrochemical Company Limited Process for producing highly water-absortive polymers
JP2922216B2 (ja) 1989-05-16 1999-07-19 三菱化学株式会社 高吸水性ポリマー製造法
JPH0639485B2 (ja) 1989-06-27 1994-05-25 東亞合成化学工業株式会社 吸水性樹脂の製造法
JPH07119246B2 (ja) 1989-06-29 1995-12-20 東亞合成株式会社 吸水性樹脂の製造方法
DE69030971T2 (de) 1989-09-04 1997-12-11 Nippon Catalytic Chem Ind Verfahren zur herstellung eines wasserabsorbierenden harzes
JPH03115313A (ja) 1989-09-28 1991-05-16 Kazuo Saotome 吸水性樹脂の製造方法
US5453323A (en) 1989-09-28 1995-09-26 Hoechst Celanese Corporation Superabsorbent polymer having improved absorbency properties
US5145906A (en) 1989-09-28 1992-09-08 Hoechst Celanese Corporation Super-absorbent polymer having improved absorbency properties
JPH0680818B2 (ja) 1989-10-02 1994-10-12 株式会社東芝 電力用圧接型半導体装置
JP2877255B2 (ja) 1989-12-08 1999-03-31 株式会社日本触媒 耐久性の優れた吸水性樹脂の製造方法
US5030205A (en) 1989-12-18 1991-07-09 Critikon, Inc. Catheter assemblies for prevention of blood leakage
JP2938920B2 (ja) * 1990-01-31 1999-08-25 住友精化株式会社 吸水性樹脂の製造方法
US5149335A (en) 1990-02-23 1992-09-22 Kimberly-Clark Corporation Absorbent structure
JPH03283570A (ja) 1990-03-30 1991-12-13 Fujitsu Ltd 半導体装置及びその製造方法
US5164459A (en) 1990-04-02 1992-11-17 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method for treating the surface of an absorbent resin
US5140076A (en) 1990-04-02 1992-08-18 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method of treating the surface of an absorbent resin
JP2901368B2 (ja) 1990-04-27 1999-06-07 株式会社日本触媒 耐塩性吸水性樹脂の製造方法
US5264495A (en) 1990-04-27 1993-11-23 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method for production of salt-resistant absorbent resin
WO1991017200A1 (fr) 1990-04-27 1991-11-14 Nippon Shokubai Co., Ltd. Procede et appareil de granulation en continu d'une resine pulverulante a pouvoir hydroabsorbant eleve
US5241009A (en) 1990-05-07 1993-08-31 Kimberly-Clark Corporation Polymeric composition containing carboxy nueutralized with lithium or potassium
JP2921044B2 (ja) 1990-06-14 1999-07-19 三菱化学ポリエステルフィルム株式会社 導電性フィルム
DE4020780C1 (ru) 1990-06-29 1991-08-29 Chemische Fabrik Stockhausen Gmbh, 4150 Krefeld, De
DE4021847C2 (de) 1990-07-09 1994-09-08 Stockhausen Chem Fab Gmbh Verfahren zur Herstellung wasserquellbarer Produkte unter Verwendung von Feinstanteilen wasserquellbarer Polymerer
EP0467073B1 (en) 1990-07-17 1995-04-12 Sanyo Chemical Industries Ltd. Process for producing water-absorbing resins
JPH04175319A (ja) 1990-07-17 1992-06-23 Sanyo Chem Ind Ltd 吸水性樹脂の製造法
IT1243745B (it) 1990-10-17 1994-06-21 Vectorpharma Int Composizioni terapeutiche transdermali contenenti farmaco e/o agente promotore dell'assorbimento cutaneo supportato su particelle microporose e microsfere polimeriche e loro preparazione.
EP0493011B1 (en) 1990-12-21 2009-07-29 Nippon Shokubai Co., Ltd. Water absorbent matter and method for producing it as well as water absorbent and method for producing it
US5478879A (en) 1991-01-22 1995-12-26 Nippon Shokubai Co., Ltd. Method for production of absorbent resin
TW241279B (ru) 1991-02-01 1995-02-21 Catalyst co ltd
ATE165751T1 (de) 1991-03-19 1998-05-15 Dow Chemical Co Runzelige absorbentpartikel mit grosser effektiver oberfläche und hoher aufnahmegeschwindigkeit
US5250640A (en) 1991-04-10 1993-10-05 Nippon Shokubai Co., Ltd. Method for production of particulate hydrogel polymer and absorbent resin
US5419956A (en) 1991-04-12 1995-05-30 The Procter & Gamble Company Absorbent structures containing specific particle size distributions of superabsorbent hydrogel-forming materials mixed with inorganic powders
GB9107952D0 (en) 1991-04-15 1991-05-29 Dow Rheinmuenster Surface crosslinked and surfactant coated absorbent resin particles and method of preparation
JP3155294B2 (ja) 1991-06-20 2001-04-09 三菱化学株式会社 高吸水性ポリマーの製造法
JP3256282B2 (ja) 1991-07-18 2002-02-12 三井化学株式会社 硬化性組成物、水性ゲル及びそれらの用途
JPH0540780A (ja) 1991-08-07 1993-02-19 Nec Software Ltd ベクトル化処理方式
CA2053733C (en) 1991-08-15 2002-04-30 Chuan-Ling Tsai Thermal treatment of superabsorbents to enhance their rate of absorbency under load
WO1993005080A1 (en) 1991-09-09 1993-03-18 The Dow Chemical Company Superabsorbent polymers and process for producing
DE69219705T2 (de) 1991-09-11 1997-11-27 Kimberly Clark Co Zusammengesetzte absorbierende Materialien und diese enthaltende absorbierende Gegenstände
CA2076945C (en) 1991-09-11 2002-10-08 Shannon Kathleen Byerly Absorbent composites and absorbent articles containing same
DE4131045C1 (ru) 1991-09-18 1992-11-19 Cassella Ag, 6000 Frankfurt, De
US5154713A (en) 1991-10-22 1992-10-13 Nalco Chemical Company Enhancing absorption rates of superabsorbents by incorporating a blowing agent
CA2086031A1 (en) 1992-01-28 1993-07-29 Shigeki Ueda Process for producing improved water absorbing resin and resin made by the same
JPH05220375A (ja) 1992-02-12 1993-08-31 Nara Kikai Seisakusho:Kk 固体粒子の表面改質方法と装置
DE69312126T2 (de) 1992-03-05 1997-11-06 Nippon Catalytic Chem Ind Verfahren zu Herstellung eines absorbierenden Harzes
GB9208449D0 (en) 1992-04-16 1992-06-03 Dow Deutschland Inc Crosslinked hydrophilic resins and method of preparation
MY110150A (en) 1992-04-17 1998-02-28 Kao Corp Highly absorbent polymer
EP0878488B2 (en) 1992-06-10 2010-10-27 Nippon Shokubai Co., Ltd. Method for production of hydrophilic resin
US5352480A (en) 1992-08-17 1994-10-04 Weyerhaeuser Company Method for binding particles to fibers using reactivatable binders
US5538783A (en) 1992-08-17 1996-07-23 Hansen; Michael R. Non-polymeric organic binders for binding particles to fibers
US5543215A (en) 1992-08-17 1996-08-06 Weyerhaeuser Company Polymeric binders for binding particles to fibers
US5300192A (en) 1992-08-17 1994-04-05 Weyerhaeuser Company Wet laid fiber sheet manufacturing with reactivatable binders for binding particles to fibers
US5308896A (en) 1992-08-17 1994-05-03 Weyerhaeuser Company Particle binders for high bulk fibers
US5589256A (en) 1992-08-17 1996-12-31 Weyerhaeuser Company Particle binders that enhance fiber densification
US5288814A (en) 1992-08-26 1994-02-22 The B. F. Goodrich Company Easy to disperse polycarboxylic acid thickeners
JP3121934B2 (ja) 1992-09-25 2001-01-09 株式会社日本触媒 吸水性樹脂組成物
JP3259143B2 (ja) 1992-10-12 2002-02-25 株式会社日本触媒 吸水性樹脂の製造方法
US5385983A (en) 1992-11-12 1995-01-31 The Dow Chemical Company Process for preparing a water-absorbent polymer
US5447727A (en) 1992-10-14 1995-09-05 The Dow Chemical Company Water-absorbent polymer having improved properties
JP2541086B2 (ja) 1992-11-20 1996-10-09 鹿島建設株式会社 超吸水性繊維を用いる固体の仮埋設・引抜き工法
JP2675729B2 (ja) 1992-12-16 1997-11-12 株式会社日本触媒 吸水性樹脂の製造方法
DE69317636T2 (de) 1992-12-25 1998-11-12 Nippon Catalytic Chem Ind Absorber und Methode zur Herstellung eines absorbierenden Harzes
DE4244548C2 (de) 1992-12-30 1997-10-02 Stockhausen Chem Fab Gmbh Pulverförmige, unter Belastung wäßrige Flüssigkeiten sowie Blut absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Verwendung in textilen Konstruktionen für die Körperhygiene
JP2995276B2 (ja) 1993-01-18 1999-12-27 三洋化成工業株式会社 吸水性樹脂の製造法
JP3414778B2 (ja) 1993-01-26 2003-06-09 株式会社日本触媒 吸水性樹脂の表面処理方法
MX213505B (ru) 1993-02-24 2003-04-03
JPH06262072A (ja) 1993-03-10 1994-09-20 Nippon Shokubai Co Ltd 粒状吸油剤の製造方法
US5328935A (en) 1993-03-26 1994-07-12 The Procter & Gamble Company Method of makig a superabsorbent polymer foam
US5338766A (en) 1993-03-26 1994-08-16 The Procter & Gamble Company Superabsorbent polymer foam
KR100256709B1 (ko) 1993-03-29 2000-05-15 그레이스 스티븐 에스. 분진화 경향이 저하된 흡수성 중합체의 제조방법 및 이를 포함하는 조성물을 포함하는 조성물 제조방법 및 이를 포함하는 조성물
DE69431321T2 (de) 1993-04-23 2003-05-22 Mitsubishi Chem Corp Stark wasserabsorbierende Polymere mit verbesserter Gelfestigkeit
JP3330716B2 (ja) 1994-02-16 2002-09-30 三菱化学株式会社 高吸水性ポリマー組成物
JPH07145326A (ja) 1993-11-11 1995-06-06 Mitsubishi Chem Corp 体液吸収後のゲルの安定性が改善された高吸水性ポリマー組成物
US5415908A (en) 1993-05-26 1995-05-16 Naesman; Jan H. Polymer supports comprising highly reactive grafted polyolefin inescapably enclosed within a mesh fabric bag
IL109785A0 (en) 1993-06-03 1994-08-26 Basf Ag Azine-substituted phenylacetic acid derivatives and fungicidal compositions containing them
DE69412547T2 (de) 1993-06-18 1999-04-22 Nippon Catalytic Chem Ind Verfahren zur Herstellung eines absorbierenden Harzes
EP0629411B1 (en) 1993-06-18 2001-10-31 SANYO CHEMICAL INDUSTRIES, Ltd. Absorbent composition and disposable diaper containing the same
US5371148A (en) 1993-06-23 1994-12-06 Union Carbide Chemicals & Plastics Technology Corporation Reactive polymers having pendant flexible side chains prepared from ethylenically unsaturated carbodiimides
IL110134A (en) 1993-07-09 1998-07-15 Stockhausen Chem Fab Gmbh Polymers capable of adsorbing aqueous liquids and body fluids, their preparation and use
GB9317867D0 (en) 1993-08-27 1993-10-13 Dow Deutschland Inc Aqueous fluid absorbent polymers having a superior balance of absorpitive properties
US5451613A (en) 1993-09-17 1995-09-19 Nalco Chemical Company Superabsorbent polymer having improved absorption rate and absorption under pressure
US5314420A (en) 1993-09-17 1994-05-24 Nalco Chemical Company Superabsorbent polymer having improved absorption rate and absorption under pressure
DE4333056C2 (de) 1993-09-29 1998-07-02 Stockhausen Chem Fab Gmbh Pulverförmige, wäßrige Flüssigkeiten absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Verwendung als Absorptionsmittel
JPH07224204A (ja) 1994-02-10 1995-08-22 Toagosei Co Ltd 吸水性樹脂の製造方法
KR100367450B1 (ko) 1994-02-17 2003-03-15 더 프록터 앤드 갬블 캄파니 개질된표면특징을갖는흡수물질및이를제조하는방법
US5843575A (en) 1994-02-17 1998-12-01 The Procter & Gamble Company Absorbent members comprising absorbent material having improved absorbent property
KR970701073A (ko) 1994-02-17 1997-03-17 레이서 제이코버스 코넬리스 개선된 흡수성을 갖는 흡수성 물질을 포함하는 흡수 부재(absorbent members comprising absorbent materials having improved absorbent property)
US5610208A (en) 1994-02-17 1997-03-11 Nippon Shokubai Co., Ltd. Water-absorbent agent, method for production thereof, and water-absorbent composition
AU1608195A (en) 1994-02-17 1995-09-04 Procter & Gamble Company, The Absorbent materials having improved absorbent property and methods for making the same
US5849405A (en) 1994-08-31 1998-12-15 The Procter & Gamble Company Absorbent materials having improved absorbent property and methods for making the same
JPH07242709A (ja) 1994-03-03 1995-09-19 Toagosei Co Ltd 吸水性樹脂の製造方法
US5599335A (en) 1994-03-29 1997-02-04 The Procter & Gamble Company Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer
CA2187633A1 (en) 1994-04-11 1995-10-19 Douglas R. Chambers Superabsorbent polymers and products therefrom
CN1048422C (zh) 1994-06-06 2000-01-19 三洋化成工业株式会社 改性的吸水性树脂颗粒
JP3597597B2 (ja) * 1994-06-08 2004-12-08 株式会社日本触媒 吸水性樹脂及びその製造方法
US5624967A (en) 1994-06-08 1997-04-29 Nippon Shokubai Co., Ltd. Water-absorbing resin and process for producing same
JP3591545B2 (ja) 1994-06-10 2004-11-24 花王株式会社 吸収性物品
USRE38444E1 (en) 1994-06-13 2004-02-24 Nippon Shokubai Co., Ltd. Absorbing agent, process of manufacturing same, and absorbent product containing same
WO1995034377A1 (fr) 1994-06-13 1995-12-21 Nippon Shokubai Co., Ltd. Produit absorbant l'eau, son procede de production, et article absorbant le renfermant
JP2918808B2 (ja) 1994-06-13 1999-07-12 株式会社日本触媒 吸収体および吸収性物品
GB9413619D0 (en) 1994-07-06 1994-08-24 American Colloid Co Method of increasing the size and/or absorption under load of super-absorbent polymers by surface cross-linking
JP2938775B2 (ja) 1994-12-27 1999-08-25 花王株式会社 改良された高吸水性樹脂の製造法
EP0775161B1 (en) 1994-08-12 1998-10-14 Kao Corporation Process for producing improved super absorbent polymer
JP3024914B2 (ja) 1994-09-09 2000-03-27 花王株式会社 高吸水性樹脂組成物
US5668078A (en) 1994-10-05 1997-09-16 Sanyo Chemical Industries, Ltd. Water-absorbent resin particles and the production thereof
JP3970818B2 (ja) 1994-10-26 2007-09-05 株式会社日本触媒 吸水性樹脂の造粒粒子およびこれを含む吸収性物品ならびに吸水性樹脂の造粒粒子の製造方法
TW387840B (en) 1994-10-26 2000-04-21 Nippon Catalytic Chem Ind Water absorptive resin composition and method of manufacturing the same
JP3603970B2 (ja) 1994-11-21 2004-12-22 株式会社日本触媒 粉末の吸水性樹脂組成物の製造方法
US5985944A (en) 1994-12-08 1999-11-16 Nippon Shokubai Co., Ltd. Water-absorbent resin, process for production thereof, and water-absorbent resin composition
EP0801650A4 (en) 1994-12-22 1998-05-06 Smithkline Beecham Corp FIBRINOGEN RECEPTOR ANTAGONISTS
US5684072A (en) 1995-03-22 1997-11-04 Ppg Industries, Inc. Waterborne coating compositions having improved smoothness
JP3294463B2 (ja) 1995-04-19 2002-06-24 花王株式会社 高吸水性ポリマーの製造方法
WO1996038296A1 (en) 1995-05-31 1996-12-05 Bell Packaging Corporation Corrugated board manufacturing system and method
JP3462217B2 (ja) 1995-07-07 2003-11-05 株式会社 日本触媒 吸水剤粉末およびその製造方法
US5745528A (en) 1995-07-13 1998-04-28 Zenith Electronics Corporation VSB mode selection system
DE19529348C2 (de) 1995-08-09 1997-11-20 Stockhausen Chem Fab Gmbh Absorptionsmittel für Wasser und wäßrige Flüssigkeiten auf Polyacrylatbasis sowie Verfahren zu ihrer Herstellung und Verwendung
TW522024B (en) 1995-09-01 2003-03-01 Nippon Catalytic Chem Ind Absorbing agent composite, absorbent material, and absorbent product containing absorbent material
JP3558756B2 (ja) 1995-09-13 2004-08-25 三洋化成工業株式会社 吸水剤
DE69629081T2 (de) 1995-09-14 2004-05-27 Nippon Shokubai Co. Ltd. Absorbierendes Verbundmaterial, absorbierender Artikel und Verfahren zu ihrer Herstellung
CZ288178B6 (en) 1995-09-29 2001-05-16 Sankyo Co Milbemycin-5-oxime derivatives substituted in position 13-, and their use
US5601452A (en) 1995-10-03 1997-02-11 The United States Of America As Represented By The Secretary Of The Navy Non-arcing clamp for automotive battery jumper cables
WO1997014498A1 (fr) 1995-10-20 1997-04-24 Nippon Shokubai Co., Ltd. Adsorbant et procede d'adsorption d'agent tensioactif et support pour agent tensioactif
JP3103754B2 (ja) 1995-10-31 2000-10-30 三洋化成工業株式会社 改質された吸水性樹脂粒子およびその製法
JP3606966B2 (ja) 1995-11-02 2005-01-05 株式会社日本触媒 吸水性樹脂およびその製造方法
JP2890022B2 (ja) 1995-11-13 1999-05-10 三洋化成工業株式会社 吸水性樹脂粒子およびその製法
DE19646484C2 (de) 1995-11-21 2000-10-19 Stockhausen Chem Fab Gmbh Flüssigkeitsabsorbierende Polymere, Verfahren zu deren Herstellung und deren Verwendung
DE19543366C2 (de) 1995-11-21 1998-09-10 Stockhausen Chem Fab Gmbh Mit ungesättigten Aminoalkoholen vernetzte, wasserquellbare Polymerisate, deren Herstellung und Verwendung
DE19543368C2 (de) 1995-11-21 1998-11-26 Stockhausen Chem Fab Gmbh Wasserabsorbierende Polymere mit verbesserten Eigenschaften, Verfahren zu deren Herstellung und deren Verwendung
JP3688418B2 (ja) 1995-12-27 2005-08-31 株式会社日本触媒 吸水剤並びに衛生材料
DE69630441T3 (de) 1995-12-27 2019-02-28 Nippon Shokubai Co. Ltd. Wasser-Absorbierungsmittel und Verfahren und Vorrichtung zu dessen Herstellung
JP3753828B2 (ja) 1996-02-13 2006-03-08 株式会社日本触媒 吸水剤組成物およびその製造方法並びに吸水剤
DE19607551A1 (de) 1996-02-28 1997-09-04 Basf Ag Wasserabsorbierende, schaumförmige, vernetzte Polymerisate, Verfahren zu ihrer Herstellung und ihre Verwendung
US5728742A (en) 1996-04-04 1998-03-17 The Dow Chemical Company Absorbent polymers having a reduced caking tendency
US6730387B2 (en) 1996-04-24 2004-05-04 The Procter & Gamble Company Absorbent materials having improved structural stability in dry and wet states and making methods therefor
JP3720118B2 (ja) 1996-04-24 2005-11-24 ザ プロクター アンド ギャンブル カンパニー 乾燥状態および湿潤状態における改善された構造的安定性を有する吸収性材料およびその製法
US6194531B1 (en) 1996-06-05 2001-02-27 Nippon Shokubai Co., Ltd. Method for production of cross-linked polymer
JPH1045812A (ja) 1996-07-31 1998-02-17 Sekisui Plastics Co Ltd 繊維含有吸水性樹脂の製造方法
JPH10114801A (ja) 1996-08-23 1998-05-06 Nippon Shokubai Co Ltd 高吸水速度吸水性樹脂およびその製造方法
US6107358A (en) 1996-08-23 2000-08-22 Nippon Shokubai Co., Ltd. Water-absorbent resin and method for production thereof
JP3659746B2 (ja) 1996-09-05 2005-06-15 花王株式会社 吸収性物品
DE19639491C2 (de) 1996-09-26 1999-11-11 Fraunhofer Ges Forschung Verfahren zur Vergrößerung der Oberfläche von Partikeln
ID19116A (id) 1996-10-15 1998-06-18 Nippon Catalytic Chem Ind Bahan pengabsorpsi air dan proses produksinya
CN100345891C (zh) 1996-10-24 2007-10-31 株式会社日本触媒 吸水性树脂的制造方法
TW399062B (en) 1996-11-07 2000-07-21 Formosa Plastics Corp Process for producing superabsorbent polymer
JPH10147724A (ja) 1996-11-19 1998-06-02 Kao Corp 高吸水性樹脂組成物
DE69731597T2 (de) 1996-11-20 2005-12-01 Sanyo Chemical Industries, Ltd. Wasserabsorbierendes Mittel und Verfahren zu seiner Herstellung
US6951895B1 (en) 1996-12-02 2005-10-04 Kimberly-Clark Worldwide, Inc. Absorbent composition
JP3205529B2 (ja) 1997-01-31 2001-09-04 花王株式会社 高吸水性樹脂組成物
US6232520B1 (en) 1997-02-19 2001-05-15 The Procter & Gamble Company Absorbent polymer compositions having high sorption capacities under an applied pressure
US6258996B1 (en) 1997-02-19 2001-07-10 The Procter & Gamble Company Mixed-bed ion-exchange hydrogel-forming polymer compositions and absorbent members comprising relatively high concentrations of these compositions
TW425391B (en) 1997-03-04 2001-03-11 Nissan Chemical Ind Ltd Melamine-melam-melem salt of a polyphosphoric acid and process for its production
US6184433B1 (en) 1997-04-14 2001-02-06 Nippon Shokubai Co., Ltd. Pressure-resistant absorbent resin, disposable diaper using the resin, and absorbent resin, and method for production thereof
TW422866B (en) 1997-04-28 2001-02-21 Formosa Plastics Corp Method to produce a resin with high water absorption
JP4271736B2 (ja) 1997-04-29 2009-06-03 シュトックハウゼン ゲゼルシャフト ミット ベシュレンクテル ハフツング すぐれた加工性を有する高吸収性ポリマー
JP2001523289A (ja) 1997-04-29 2001-11-20 ザ・ダウ・ケミカル・カンパニー 弾力のある高吸収性組成物
US6033974A (en) 1997-05-12 2000-03-07 Silicon Genesis Corporation Method for controlled cleaving process
US5856410A (en) 1997-05-23 1999-01-05 Amcol International Corporation Polyacrylate superabsorbent post-polymerization neutralized with solid, non-hydroxyl neutralizing agent.
JP4087500B2 (ja) 1997-06-13 2008-05-21 株式会社日本触媒 吸収性物品の製造方法
JP3979724B2 (ja) 1997-06-18 2007-09-19 株式会社日本触媒 吸水性樹脂造粒物の乾燥体の製造方法
US6228930B1 (en) 1997-06-18 2001-05-08 Nippon Shokubai Co., Ltd. Water-absorbent resin granule-containing composition and production process for water-absorbent resin granule
SG86324A1 (en) 1997-07-03 2002-02-19 Kao Corp Superabsorbent resin composition
JPH1171529A (ja) 1997-07-03 1999-03-16 Nippon Shokubai Co Ltd 吸水性樹脂及びそれを用いた吸水性物品
JP2883330B1 (ja) 1997-07-03 1999-04-19 花王株式会社 高吸水性樹脂組成物
US5840979A (en) 1997-07-14 1998-11-24 University Of Saskatchewan Aliphatic propargylamines as cellular rescue agents
US6284362B1 (en) 1997-07-18 2001-09-04 Sanyo Chemical Industries, Ltd. Absorbent compositions, methods for producing thereof and absorbent products
JP3031306B2 (ja) 1997-07-31 2000-04-10 日本電気株式会社 移動無線装置
JPH1171425A (ja) 1997-08-28 1999-03-16 Nippon Shokubai Co Ltd 吸水剤の製造方法
TW473485B (en) 1997-12-10 2002-01-21 Nippon Catalytic Chem Ind The production process of a water-absorbent resin
JP3763376B2 (ja) 1997-12-25 2006-04-05 株式会社日本触媒 親水性樹脂の製造方法
JP4236745B2 (ja) 1998-01-09 2009-03-11 株式会社日本触媒 粉体の連続造粒方法
TW432092B (en) 1998-02-12 2001-05-01 Formosa Plastics Corp An antibacterial, antiodorant, water-absorption resin and method of production therefor
JP3389130B2 (ja) 1998-02-18 2003-03-24 株式会社日本触媒 吸水性樹脂の表面架橋方法
US6254990B1 (en) 1998-02-18 2001-07-03 Nippon Shokubai Co., Ltd. Surface-crosslinking process for water-absorbent resin
DE19807502B4 (de) 1998-02-21 2004-04-08 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit 2-Oxazolidinonen, daraus hergestellte Hydrogele und deren Verwendung
JPH11240959A (ja) 1998-02-24 1999-09-07 Nippon Shokubai Co Ltd 吸水性ポリマー組成物およびその製法
JP4162746B2 (ja) 1998-02-24 2008-10-08 株式会社日本触媒 吸水剤組成物及びそれを用いた吸収性物品
US6599989B2 (en) 1998-03-03 2003-07-29 Nippon Skokubai Co., Ltd. Water-absorbent agents containing polycarboxylic amine chelating agents
JP4903926B2 (ja) 1998-03-03 2012-03-28 株式会社日本触媒 吸水剤、その製造方法およびその用途
DE19809540A1 (de) 1998-03-05 1999-09-09 Basf Ag Wasserabsorbierende, schaumförmige, vernetzte Polymerisate, Verfahren zu ihrer Herstellung und ihre Verwendung
JP3398837B2 (ja) 1998-08-10 2003-04-21 株式会社日本触媒 アクリル酸(塩)−マレイン酸(塩)系共重合体、その製造方法および洗剤組成物
US6310156B1 (en) * 1998-03-06 2001-10-30 Nippon Shokubai Co., Ltd. (Meth) acrylic acid polymer and manufacturing method thereof
US6444744B1 (en) * 1998-03-11 2002-09-03 Nippon Shokubai Co., Ltd. Hydrophilic resin, absorbent article, and acrylic acid for polymerization
JPH11279287A (ja) 1998-03-31 1999-10-12 Nippon Shokubai Co Ltd 吸水剤組成物および吸水剤の製造方法
SE511857C2 (sv) 1998-04-28 1999-12-06 Sca Hygiene Prod Ab Absorberande struktur med förbättrade absorptionsegenskaper innehållande minst 50 vikts% superabsorberande material
KR100476170B1 (ko) 1998-04-28 2005-03-10 니폰 쇼쿠바이 컴파니 리미티드 흡수성수지 함수겔상물의 제조방법
US6241928B1 (en) 1998-04-28 2001-06-05 Nippon Shokubai Co., Ltd. Method for production of shaped hydrogel of absorbent resin
JP2002513059A (ja) 1998-04-28 2002-05-08 ビーエーエスエフ アクチェンゲゼルシャフト 機械的に安定なヒドロゲル
US6124391A (en) 1998-08-18 2000-09-26 Stockhausen Gmbh & Co. Kg Superabsorbent polymers having anti-caking characteristics
JP3494401B2 (ja) 1998-09-22 2004-02-09 株式会社日本触媒 吸水剤及び吸収性物品
JP2000095965A (ja) 1998-09-24 2000-04-04 Tokai Carbon Co Ltd カーボンブラックの改質方法
DE19846413A1 (de) 1998-10-08 2000-04-13 Basf Ag Verfahren zur Herstellung von hydrophilen wasserquellbaren Polymeren sowie deren Verwendung
US6620899B1 (en) 1998-10-15 2003-09-16 E. I. Du Pont De Nemours And Company Polymers, containing a fluorocyclobutyl ring and their preparation
TW396173B (en) 1998-10-22 2000-07-01 Formosa Plastics Corp Method of preparing superabsorbent polymer
DE69939048D1 (de) 1998-11-05 2008-08-21 Nippon Catalytic Chem Ind Wasserabsorbierendes Harz und Verfahren zu seiner Herstellung
DE19854574A1 (de) 1998-11-26 2000-05-31 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit N-Acyl-2-Oxazolidinonen
DE19854573A1 (de) 1998-11-26 2000-05-31 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit 2-Oxo-tetrahydro-1,3-oxazinen
JP3259074B2 (ja) 1998-12-04 2002-02-18 株式会社日本触媒 吸水性樹脂の耐尿性評価方法
US6562743B1 (en) 1998-12-24 2003-05-13 Bki Holding Corporation Absorbent structures of chemically treated cellulose fibers
US6297335B1 (en) 1999-02-05 2001-10-02 Basf Aktiengesellschaft Crosslinked, hydrophilic, highly swellable hydrogels, production thereof and use thereof
US6562879B1 (en) 1999-02-15 2003-05-13 Nippon Shokubai Co., Ltd. Water-absorbent resin powder and its production process and use
JP4380873B2 (ja) 1999-02-15 2009-12-09 株式会社日本触媒 吸水性樹脂粉末およびその用途
DE19909838A1 (de) 1999-03-05 2000-09-07 Stockhausen Chem Fab Gmbh Pulverförmige, vernetzte, wässrige Flüssigkeiten sowie Blut absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Verwendung
DE19909653A1 (de) 1999-03-05 2000-09-07 Stockhausen Chem Fab Gmbh Pulverförmige, vernetzte, wässrige Flüssigkeiten sowie Blut absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Verwendung
ATE277111T1 (de) 1999-03-12 2004-10-15 Basf Ag Farbstabile superabsorbierende polymerzusammensetzung
JP2000290381A (ja) 1999-04-08 2000-10-17 Dainippon Ink & Chem Inc 吸水性樹脂の製造方法
JP2000327926A (ja) 1999-05-25 2000-11-28 Sanyo Chem Ind Ltd 吸収剤組成物および吸収性物品
JP2002035580A (ja) 1999-06-24 2002-02-05 Sanyo Chem Ind Ltd 吸収剤組成物および吸収性物品
US6514615B1 (en) 1999-06-29 2003-02-04 Stockhausen Gmbh & Co. Kg Superabsorbent polymers having delayed water absorption characteristics
JP2001011341A (ja) 1999-07-02 2001-01-16 Kansai Research Institute 水系分散用顔料及び水性顔料分散液
DE60016326T2 (de) 1999-07-26 2005-11-24 Nippon Shokubai Co., Ltd. Wasser-absorbierende Zusammensetzung und ihre Verwendung
JP3889207B2 (ja) 1999-07-26 2007-03-07 株式会社日本触媒 吸水剤組成物およびその用途
JP2001040013A (ja) * 1999-08-04 2001-02-13 Mitsubishi Chemicals Corp 高吸水性樹脂の製造方法
JP2001040014A (ja) 1999-08-04 2001-02-13 Mitsubishi Chemicals Corp 高吸水性樹脂の製造方法
US6376618B1 (en) 1999-09-07 2002-04-23 Basf Aktiengesellschaft Surface-treated superabsorbent polymer particles
US6239230B1 (en) 1999-09-07 2001-05-29 Bask Aktiengesellschaft Surface-treated superabsorbent polymer particles
JP4308382B2 (ja) 1999-10-01 2009-08-05 株式会社日本触媒 吸水剤およびその製造方法
US6414214B1 (en) 1999-10-04 2002-07-02 Basf Aktiengesellschaft Mechanically stable hydrogel-forming polymers
US6835325B1 (en) 1999-10-21 2004-12-28 Daiso Co., Ltd. Crosslinking agent based on polyallyl ether compound
JP4679683B2 (ja) 1999-11-02 2011-04-27 株式会社日本触媒 吸水性重合体の製造方法、及び該重合体の製造装置
JP2001137704A (ja) 1999-11-18 2001-05-22 Toagosei Co Ltd 改質された高吸水性樹脂の製造方法
US6433058B1 (en) 1999-12-07 2002-08-13 Dow Global Technologies Inc. Superabsorbent polymers having a slow rate of absorption
US6579958B2 (en) 1999-12-07 2003-06-17 The Dow Chemical Company Superabsorbent polymers having a slow rate of absorption
US6469080B2 (en) 1999-12-15 2002-10-22 Nippon Shokubai Co., Ltd. Water-absorbent resin composition
EP1244474A1 (en) 1999-12-23 2002-10-02 The Dow Chemical Company High permeability, low absorption capacity polymers
US20010006267A1 (en) 1999-12-27 2001-07-05 Nobuyuki Harada Production processes for basic water-absorbent resin and water-absorbing agent, and use thereof
US6417425B1 (en) 2000-02-01 2002-07-09 Basf Corporation Absorbent article and process for preparing an absorbent article
JP2001226416A (ja) 2000-02-15 2001-08-21 Toagosei Co Ltd 吸水性樹脂の製造方法
JP2001224959A (ja) 2000-02-16 2001-08-21 Unitika Ltd 吸水剤の製造方法
EP1130045B2 (en) 2000-02-29 2015-10-28 Nippon Shokubai Co., Ltd. Process for producing a water-absorbent resin powder
JP4676625B2 (ja) 2000-02-29 2011-04-27 株式会社日本触媒 吸水性樹脂粉末の製造方法
AU2000233949A1 (en) 2000-03-06 2001-09-17 The Procter And Gamble Company Process of making absorbent structures comprising absorbent polymer compositionswith a permeability maintenance agent
US6569373B2 (en) 2000-03-13 2003-05-27 Object Geometries Ltd. Compositions and methods for use in three dimensional model printing
JP2001252307A (ja) 2000-03-13 2001-09-18 Oji Paper Co Ltd 吸収性物品
DE10013217A1 (de) 2000-03-17 2001-09-20 Basf Ag Hydrophile, quellfähige Hydrogel-bildende Polymere m it Alumosilikatanteil
CN100471526C (zh) 2000-03-31 2009-03-25 施托克赫森有限公司 包括在表面上交联的粉末聚合物的吸液吸收层
DE10016041A1 (de) 2000-03-31 2001-10-04 Stockhausen Chem Fab Gmbh Pulverförmige an der Oberfläche vernetzte Polymerisate
US6720073B2 (en) 2000-04-07 2004-04-13 Kimberly-Clark Worldwide, Inc. Material enhancement to maintain high absorbent capacity under high loads following rigorous process conditions
US6617489B2 (en) 2000-05-09 2003-09-09 Nippon Shokubai Co., Ltd. Absorbent, absorbing product based thereon, and water-absorbing resin
US6649137B2 (en) 2000-05-23 2003-11-18 Rohm And Haas Company Apparatus with improved safety features for high temperature industrial processes
WO2001089591A2 (en) 2000-05-25 2001-11-29 Basf Aktiengesellschaft Surface-treated superabsorbent polymer particles
US6927268B2 (en) 2000-06-21 2005-08-09 Nippon Shokubai Co., Ltd. Production process for water-absorbent resin
US7087669B2 (en) 2000-07-18 2006-08-08 Sanyo Chemical Industries, Ltd. Absorbents and process for producing the same, absorbable constructs and absorbable articles
US6906159B2 (en) 2000-08-03 2005-06-14 Nippon Shokubai Co., Ltd. Water-absorbent resin, hydropolymer, process for producing them, and uses of them
JP4805490B2 (ja) 2000-08-03 2011-11-02 株式会社日本触媒 吸水性樹脂の製造方法
DE10043710B4 (de) 2000-09-04 2015-01-15 Evonik Degussa Gmbh Verwendung pulverförmiger an der Oberfläche nachvernetzter Polymerisate und Hygieneartikel
DE10043706A1 (de) 2000-09-04 2002-04-25 Stockhausen Chem Fab Gmbh Pulverförmige, vernetzte, wässrige Flüssigkeiten sowie Blut absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Verwendung
US6809158B2 (en) 2000-10-20 2004-10-26 Nippon Shokubai Co., Ltd. Water-absorbing agent and process for producing the same
DE10052966A1 (de) 2000-10-25 2002-05-02 Stockhausen Chem Fab Gmbh Hochquellbare Absorptionsmittel mit einer verminderten Tendenz zum Verbacken
US20040213892A1 (en) 2003-04-25 2004-10-28 Gerd Jonas Highly swellable absorption medium with reduced caking tendency
DE10053858A1 (de) 2000-10-30 2002-05-08 Stockhausen Chem Fab Gmbh Absorbierendes Gebilde mit verbesserten Blockingeigenschaften
DE10064642A1 (de) * 2000-12-22 2002-06-27 Basf Ag Verfahren zur Herstellung von (Meth)acrylsäure
WO2002053198A1 (de) 2000-12-29 2002-07-11 Basf Aktiengesellschaft Aborbierende zusammensetzungen
CN1482924A (zh) 2000-12-29 2004-03-17 巴斯福股份公司 用位阻或静电间隔剂涂布的水凝胶
BR0203825A (pt) 2001-01-26 2002-12-17 Nippon Catalytic Chem Ind Agente absorvente de água e processo para produção do mesmo e estrutura absorvente de água
JP3987348B2 (ja) 2001-01-26 2007-10-10 株式会社日本触媒 吸水剤の製法
JP2002241627A (ja) 2001-02-20 2002-08-28 Kao Corp 高吸水性樹脂組成物の経時着色防止剤
US7507475B2 (en) 2001-03-07 2009-03-24 Evonik Stockhausen Gmbh Pulverulent polymers crosslinked on the surface
JP2002265528A (ja) 2001-03-14 2002-09-18 Toagosei Co Ltd 吸水性樹脂の製造方法
JP4759153B2 (ja) * 2001-03-21 2011-08-31 株式会社日本触媒 (メタ)アクリル酸溶液の蒸留方法
EP1291368B1 (en) 2001-04-16 2017-05-31 Sumitomo Seika Chemicals Co., Ltd. Water-absorbing resin suitable for absorbing viscous liquid containing high-molecular compound, and absorbent and absorbent article each comprising the same
DE10125599A1 (de) 2001-05-25 2002-11-28 Stockhausen Chem Fab Gmbh Superabsorber, Verfahren zu ihrer Herstellung und ihre Verwendung
EP1392371B1 (en) 2001-06-08 2006-12-20 Nippon Shokubai Co., Ltd. Water-absorbing agent, its production and sanitary material
JP4326752B2 (ja) 2001-06-08 2009-09-09 株式会社日本触媒 吸水剤の製造方法
JP2003082250A (ja) 2001-06-27 2003-03-19 San-Dia Polymer Ltd 吸水性樹脂組成物及びその製造法
US20040180189A1 (en) 2001-06-28 2004-09-16 Rudiger Funk Acidic superabsorbent hydrogels
US6727345B2 (en) 2001-07-03 2004-04-27 Nippon Shokubai Co., Ltd. Continuous production process for water-absorbent resin powder and powder surface detector used therefor
US6716894B2 (en) 2001-07-06 2004-04-06 Nippon Shokubai Co., Ltd. Water-absorbent resin powder and its production process and uses
DE10138150A1 (de) 2001-08-03 2003-02-13 Basf Ag Verfahren zur Herstellung wasserabsorbierender Harze
JP2003165883A (ja) 2001-09-18 2003-06-10 San-Dia Polymer Ltd 吸水性重合体とこれを用いてなる吸収性物品
JP2003088554A (ja) 2001-09-19 2003-03-25 Sumitomo Seika Chem Co Ltd 吸収体およびそれを用いた吸収性物品
JP4261853B2 (ja) 2001-09-19 2009-04-30 株式会社日本触媒 吸水性樹脂、吸水性樹脂粒子、およびその製造方法
US8426670B2 (en) 2001-09-19 2013-04-23 Nippon Shokubai Co., Ltd. Absorbent structure, absorbent article, water-absorbent resin, and its production process and evaluation method
JP2003088553A (ja) 2001-09-19 2003-03-25 Sumitomo Seika Chem Co Ltd 吸収体およびそれを用いた吸収性物品
JP4455790B2 (ja) * 2001-09-28 2010-04-21 株式会社日本触媒 (メタ)アクリル酸の製造方法
CN1129628C (zh) 2001-10-23 2003-12-03 清华大学 一种交联剂及其高吸水性树脂的制备方法
JP2003225565A (ja) 2001-11-20 2003-08-12 San-Dia Polymer Ltd 吸水剤、その製法、吸水剤を用いた吸収体並びに吸収性物品
US20030100830A1 (en) * 2001-11-27 2003-05-29 Sheng-Ping Zhong Implantable or insertable medical devices visible under magnetic resonance imaging
EP1456258B1 (en) * 2001-12-19 2009-04-01 Nippon Shokubai Co., Ltd. Water-absorbent resin and production process therefor
JP4084648B2 (ja) 2001-12-19 2008-04-30 株式会社日本触媒 吸水性樹脂の製造方法
DE60238439D1 (de) 2001-12-19 2011-01-05 Nippon Catalytic Chem Ind Wasserabsorbierende polymere und verfahren zu deren herstellung
CN1831019B (zh) 2001-12-19 2010-05-12 株式会社日本触媒 吸水性树脂及其制备方法
DE10163543A1 (de) 2001-12-21 2003-07-31 Basf Ag Tocopherol-haltige Superabsorber
JP2003206381A (ja) 2002-01-15 2003-07-22 Sumitomo Seika Chem Co Ltd 吸水性樹脂の着色防止方法
GB2400339B (en) 2002-03-13 2005-06-29 Honda Motor Co Ltd Fine particle generating apparatus, casting apparatus and casting method
DE10211686A1 (de) 2002-03-15 2003-10-02 Stockhausen Chem Fab Gmbh (Meth)Acrylsäurekristall und Verfahren zur Herstellung und Aufreinigung von wässriger (Meth)Acrylsäure
JP2003306609A (ja) 2002-04-18 2003-10-31 Taimei Chemicals Co Ltd 吸水性ポリマー組成物、およびその製造方法
DE10221176A1 (de) 2002-05-13 2003-11-27 Basf Ag Verfahren zur Herstellung geruchsarmer Hydrogelbildender Polymerisate
DE10221202A1 (de) 2002-05-13 2003-07-10 Basf Ag Verfahren zur Herstellung von wässrigen für die Herstellung von Acrylsäurepolymeren geeigneten Acrylsäure-Lösung II
DE10225943A1 (de) 2002-06-11 2004-01-08 Basf Ag Verfahren zur Herstellung von Estern von Polyalkoholen
CA2488226A1 (en) 2002-06-11 2003-12-18 Basf Aktiengesellschaft (meth)acrylic esters of polyalkoxylated trimethylolpropane
BR0311501A (pt) 2002-06-11 2005-02-22 Basf Ag éster f, processos para preparar o mesmo e um hidrogel reticulado, polìmero, hidrogel reticulado, uso de um polìmero, composição de matéria, e, uso de uma mistura da reação
AU2003245301A1 (en) 2002-06-26 2004-01-19 Dow Global Technologies Inc. Process for the preparation of iron ion containing water-absorbent polymers with low residual monomer content
WO2004018005A1 (en) 2002-08-23 2004-03-04 Basf Aktiengesellschaft Superabsorbent polymers and method of manufacturing the same
JP2004121400A (ja) 2002-09-30 2004-04-22 San-Dia Polymer Ltd 吸収剤とこれを用いてなる吸収性物品
US7193006B2 (en) 2002-12-06 2007-03-20 Nippon Shokubai Co., Ltd. Process for continuous production of water-absorbent resin product
DE10257397A1 (de) 2002-12-06 2004-06-24 Basf Ag Verfahren zur Reduktion des MEHQ Gehalts in Acrylsäure
DE10257449A1 (de) 2002-12-09 2003-11-06 Basf Ag Verfahren zur Herstellung geruchsarmer Hydrogel-bildender Polymerisate
JP4615853B2 (ja) 2002-12-26 2011-01-19 株式会社日本触媒 吸水性樹脂組成物
JP2004210924A (ja) 2002-12-27 2004-07-29 Sumitomo Seika Chem Co Ltd 吸水性樹脂組成物
JP4739682B2 (ja) 2003-02-10 2011-08-03 株式会社日本触媒 吸水剤
AU2004210275B2 (en) 2003-02-10 2006-03-09 Nippon Shokubai Co., Ltd. Particulate water absorbent containing water absorbent resin as a main component
DE602004005830T2 (de) 2003-02-10 2008-01-10 Nippon Shokubai Co. Ltd. Teilchenförmiges wasserabsorbierendes Material
WO2004069936A1 (en) 2003-02-10 2004-08-19 Nippon Shokubai Co., Ltd. Particulate water absorbent containing water absorbent resin as a main component
WO2004069293A1 (en) 2003-02-10 2004-08-19 Nippon Shokubai Co., Ltd. Water-absorbent resin composition and its production process
JP4364020B2 (ja) 2003-03-14 2009-11-11 株式会社日本触媒 吸水性樹脂粉末の表面架橋処理方法
US7378453B2 (en) 2003-03-14 2008-05-27 Nippon Shokubai Co., Ltd. Surface crosslinking treatment method of water-absorbing resin powder
US7118781B1 (en) 2003-04-16 2006-10-10 Cree, Inc. Methods for controlling formation of deposits in a deposition system and deposition methods including the same
CN1805975A (zh) 2003-04-24 2006-07-19 三菱化学株式会社 吸水性聚合物的复合物及其堆积物的制备方法
JP2004339678A (ja) 2003-04-24 2004-12-02 Mitsubishi Chemicals Corp 吸水性樹脂複合体およびその堆積物の製造方法
US7169843B2 (en) 2003-04-25 2007-01-30 Stockhausen, Inc. Superabsorbent polymer with high permeability
US20040214499A1 (en) 2003-04-25 2004-10-28 Kimberly-Clark Worldwide, Inc. Absorbent structure with superabsorbent material
JP4460851B2 (ja) 2003-05-27 2010-05-12 株式会社日本触媒 吸水性樹脂の整粒方法
JP4342213B2 (ja) 2003-05-30 2009-10-14 株式会社日本触媒 吸水性樹脂の製造法
MX285679B (es) 2003-06-24 2011-04-14 Nippon Catalytic Chem Ind Composicion de resina absorbente de agua y metodo de produccion de la misma.
JP2005054050A (ja) * 2003-08-04 2005-03-03 Mitsubishi Chemicals Corp 吸水性樹脂の製造方法
EP1510229B1 (en) 2003-08-27 2010-07-14 Nippon Shokubai Co., Ltd. Process for production of surface-treated particulate water-absorbent resin
JP4324055B2 (ja) 2003-08-27 2009-09-02 株式会社日本触媒 表面処理された粒子状吸水性樹脂の製造方法
EP1512417B1 (en) 2003-09-02 2013-06-19 Nippon Shokubai Co., Ltd. Particulate water-absorbent resin composition
JP2005081204A (ja) 2003-09-05 2005-03-31 Nippon Shokubai Co Ltd 吸水性樹脂組成物の製造方法
JP4640923B2 (ja) 2003-09-05 2011-03-02 株式会社日本触媒 粒子状吸水性樹脂組成物の製造方法
JP4746292B2 (ja) 2003-09-12 2011-08-10 株式会社日本触媒 吸水性樹脂組成物の製造方法
US7803880B2 (en) 2003-09-19 2010-09-28 Nippon Shokubai Co., Ltd. Water absorbent and producing method of same
EP1516884B2 (en) 2003-09-19 2023-02-22 Nippon Shokubai Co., Ltd. Water-absorbent resin having treated surface and process for producing the same
US7173086B2 (en) 2003-10-31 2007-02-06 Stockhausen, Inc. Superabsorbent polymer with high permeability
US7872076B2 (en) 2003-11-07 2011-01-18 Nippon Shokubai Co., Ltd. Particulate water-absorbent resin composition and its production process
EP1721663B1 (en) 2004-02-05 2016-12-14 Nippon Shokubai Co.,Ltd. Particulate water absorbing agent and method for production thereof, and water absorbing article
EP1589040B1 (en) 2004-03-24 2008-09-10 Nippon Shokubai Co., Ltd. Method for continuous production of water absorbent resin
EP1729881A4 (en) 2004-03-31 2012-07-04 Nippon Catalytic Chem Ind AQUEOUS LIQUID ABSORBENT MEDIUM AND METHOD OF MANUFACTURING THEREOF
JP2005288265A (ja) 2004-03-31 2005-10-20 Procter & Gamble Co 水性液吸収剤およびその製造方法
DE602005009367D1 (de) 2004-05-07 2008-10-09 Nippon Catalytic Chem Ind Wasser-absorbierendes mittel und verfahren zu seiner herstellung
US20050288182A1 (en) 2004-06-18 2005-12-29 Kazushi Torii Water absorbent resin composition and production method thereof
JP2006008963A (ja) 2004-06-21 2006-01-12 Inkuriizu:Kk コーティング材及び光触媒分散用液剤
IN2007CN00955A (ru) 2004-08-06 2007-08-24 Nippon Catalytic Chem Ind
AU2005285763A1 (en) 2004-09-24 2006-03-30 Nippon Shokubai Co., Ltd. Particulate water-absorbing agent containing water-absorbent resin as a main component
DE102004051242A1 (de) 2004-10-20 2006-05-04 Basf Ag Feinteilige wasserabsorbierende Polymerpartikel mit hoher Flüssigkeitstransport- und Absorptionsleistung
KR20070092707A (ko) 2004-12-10 2007-09-13 니폰 쇼쿠바이 컴파니 리미티드 개질된 흡수성 수지의 제조 방법
US20060128827A1 (en) 2004-12-10 2006-06-15 The Procter & Gamble Company Absorbent members comprising modified water absorbent resin for use in diapers
US7879923B2 (en) 2004-12-10 2011-02-01 Nippon Shokubai Co., Ltd. Method for surface-treatment of water absorbent resin
JP2006233008A (ja) 2005-02-24 2006-09-07 Nippon Shokubai Co Ltd 吸水性樹脂組成物の製造方法および吸水性樹脂組成物
EP1878761B1 (en) 2005-03-14 2018-10-17 Nippon Shokubai Co.,Ltd. Water absorbent and process for producing the same
TW200635969A (en) 2005-04-06 2006-10-16 Nippon Catalytic Chem Ind Particulate water absorbing agent, water-absorbent core and absorbing article
TWI344469B (en) 2005-04-07 2011-07-01 Nippon Catalytic Chem Ind Polyacrylic acid (salt) water-absorbent resin, production process thereof, and acrylic acid used in polymerization for production of water-absorbent resin
DE602006012640D1 (de) 2005-04-12 2010-04-15 Nippon Catalytic Chem Ind Altend wasserabsorbierendes harz auf basis von polyacrylsäure (polyacrylat) als hauptkomponente, herstellungsverfahren dafür, wasserabsorbierender kerige wasserabsorbierende mittel verwendet wird
JP5270921B2 (ja) 2005-09-16 2013-08-21 株式会社日本触媒 吸水剤の製造方法
TW200720347A (en) 2005-09-30 2007-06-01 Nippon Catalytic Chem Ind Water-absorbent agent composition and method for manufacturing the same
TW200712114A (en) 2005-09-30 2007-04-01 Nippon Catalytic Chem Ind Method for manufacturing particulate water-absorbing agent and particulate water-absorbing agent
TW200728324A (en) 2005-12-22 2007-08-01 Nippon Catalytic Chem Ind Production method of hydrophilic polymer
TWI377222B (en) 2005-12-22 2012-11-21 Nippon Catalytic Chem Ind Method for surface crosslinking water-absorbing resin and method for manufacturing water-absorbing resin
TWI394789B (zh) 2005-12-22 2013-05-01 Nippon Catalytic Chem Ind 吸水性樹脂組成物及其製造方法、吸收性物品
EP1837348B9 (en) 2006-03-24 2020-01-08 Nippon Shokubai Co.,Ltd. Water-absorbing resin and method for manufacturing the same
EP3932541A1 (en) 2006-03-27 2022-01-05 Nippon Shokubai Co., Ltd. Water absorbing agent, and water absorbent core using the agent
EP1840137B1 (en) 2006-03-29 2009-11-25 Nippon Shokubai Co., Ltd. Method of Producing Polyacrylic Acid (Salt) Water-Absorbent Resin
US20090186542A1 (en) 2006-08-04 2009-07-23 Sumitomo Seika Chemical Co., Ltd. Water-absorbent resin particle, method for production thereof, and absorbent material using the same
EP2135669B1 (en) 2007-03-29 2019-10-30 Nippon Shokubai Co., Ltd. Particulate water absorbent and process for producing the same
CN101821323B (zh) 2007-10-09 2013-03-27 株式会社日本触媒 吸水性树脂的表面处理方法
JP2010065107A (ja) 2008-09-10 2010-03-25 San-Dia Polymer Ltd 吸収性樹脂粒子及び吸収性物品
EP2326684A2 (en) 2008-09-12 2011-06-01 Basf Se Water-absorbing material
KR101511820B1 (ko) 2008-12-26 2015-04-13 산다이야 폴리마 가부시키가이샤 흡수성 수지 입자, 이 제조 방법, 이것을 함유하는 흡수체 및 흡수성 물품
WO2011040472A1 (ja) 2009-09-29 2011-04-07 株式会社日本触媒 粒子状吸水剤及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2754099C2 (ru) * 2016-10-11 2021-08-26 ЛЕНКСЕСС Дойчланд ГмбХ Гранулированные полимеры на основе функционализированного кватернизированным диэтилентриамином полиакрилата, способ их получения, применение этих полимеров и способ удаления оксоанионов из водных и/или органических растворов

Also Published As

Publication number Publication date
US20080161512A1 (en) 2008-07-03
KR100902218B1 (ko) 2009-06-11
RU2355711C1 (ru) 2009-05-20
KR20070112833A (ko) 2007-11-27
US9062140B2 (en) 2015-06-23
TW200702340A (en) 2007-01-16
EP1879930B1 (en) 2013-01-16
TW200708522A (en) 2007-03-01
US8729191B2 (en) 2014-05-20
KR20070119040A (ko) 2007-12-18
EP1866349A1 (en) 2007-12-19
EP1879930A1 (en) 2008-01-23
JP2008537553A (ja) 2008-09-18
EP1866349B1 (en) 2012-12-26
EP1866349A4 (en) 2009-12-30
KR100914107B1 (ko) 2009-08-27
TWI344469B (en) 2011-07-01
RU2007140959A (ru) 2009-05-20
WO2006109842A1 (en) 2006-10-19
US20080119626A1 (en) 2008-05-22
SG161231A1 (en) 2010-05-27
JP4647607B2 (ja) 2011-03-09
EP1879930A4 (en) 2009-12-30
TWI353360B (en) 2011-12-01
JP2008534695A (ja) 2008-08-28
JP5269314B2 (ja) 2013-08-21
WO2006109845A1 (en) 2006-10-19

Similar Documents

Publication Publication Date Title
RU2385328C2 (ru) Водопоглощающая смола на основе полиакриловой кислоты (соли), способ ее получения и акриловая кислота, используемая в полимеризации для получения водопоглощающей смолы
KR100549717B1 (ko) 아크릴산 조성물 및 그의 제조방법, 및 그 아크릴산조성물을 사용하는 수흡수성 수지의 제조방법, 및수흡수성 수지
JP5349723B2 (ja) 吸水性樹脂の製造方法
JP5091477B2 (ja) ポリアクリル酸(塩)系吸水性樹脂を主成分とする粒子状吸水剤、その製造方法、この粒子状吸水剤を用いた吸収体及び吸収性物品
US8552134B2 (en) Method of producing polyacrylic acid (salt) water-absorbent resin
JP4334655B2 (ja) アクリル酸系吸水性樹脂の製造方法
JP5415256B2 (ja) 粒子状吸水剤およびその製造方法
JP5042674B2 (ja) ポリアクリル酸(塩)系吸水性樹脂の製造方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140407