CA2975298C - Label assemblies for adverse environments - Google Patents
Label assemblies for adverse environments Download PDFInfo
- Publication number
- CA2975298C CA2975298C CA2975298A CA2975298A CA2975298C CA 2975298 C CA2975298 C CA 2975298C CA 2975298 A CA2975298 A CA 2975298A CA 2975298 A CA2975298 A CA 2975298A CA 2975298 C CA2975298 C CA 2975298C
- Authority
- CA
- Canada
- Prior art keywords
- adhesive
- label assembly
- face
- stage
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000002411 adverse Effects 0.000 title abstract description 8
- 230000000712 assembly Effects 0.000 title description 19
- 238000000429 assembly Methods 0.000 title description 19
- 239000000853 adhesive Substances 0.000 claims abstract description 92
- 230000001070 adhesive effect Effects 0.000 claims abstract description 92
- 239000004820 Pressure-sensitive adhesive Substances 0.000 claims abstract description 28
- 238000010438 heat treatment Methods 0.000 claims abstract description 8
- -1 poly(vinyl chloride) Polymers 0.000 claims description 70
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 20
- 238000006243 chemical reaction Methods 0.000 claims description 18
- 229920000098 polyolefin Polymers 0.000 claims description 18
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 9
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 9
- 239000002033 PVDF binder Substances 0.000 claims description 6
- 239000004952 Polyamide Substances 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 229920002647 polyamide Polymers 0.000 claims description 6
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 6
- 239000004800 polyvinyl chloride Substances 0.000 claims description 6
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 6
- 239000000919 ceramic Substances 0.000 claims description 3
- 230000001747 exhibiting effect Effects 0.000 claims description 3
- 239000011152 fibreglass Substances 0.000 claims description 3
- 239000011888 foil Substances 0.000 claims description 3
- 238000002372 labelling Methods 0.000 claims description 3
- 239000010985 leather Substances 0.000 claims description 3
- 239000000123 paper Substances 0.000 claims description 3
- 229920002994 synthetic fiber Polymers 0.000 claims description 3
- 239000004758 synthetic textile Substances 0.000 claims description 3
- 229920005601 base polymer Polymers 0.000 claims 3
- 239000010410 layer Substances 0.000 description 84
- 239000000463 material Substances 0.000 description 41
- 239000000203 mixture Substances 0.000 description 40
- 239000000178 monomer Substances 0.000 description 37
- 239000003085 diluting agent Substances 0.000 description 35
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 30
- 239000004593 Epoxy Substances 0.000 description 23
- 229920000642 polymer Polymers 0.000 description 21
- 239000001993 wax Substances 0.000 description 20
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 19
- 238000007342 radical addition reaction Methods 0.000 description 13
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 12
- 239000012790 adhesive layer Substances 0.000 description 12
- 239000003054 catalyst Substances 0.000 description 12
- 239000003921 oil Substances 0.000 description 12
- 150000003254 radicals Chemical class 0.000 description 12
- 239000003795 chemical substances by application Substances 0.000 description 11
- 235000019198 oils Nutrition 0.000 description 11
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 10
- 229920003192 poly(bis maleimide) Polymers 0.000 description 10
- 238000007142 ring opening reaction Methods 0.000 description 10
- 239000003381 stabilizer Substances 0.000 description 10
- 239000004698 Polyethylene Substances 0.000 description 9
- 229920000573 polyethylene Polymers 0.000 description 9
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 8
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 8
- 239000000945 filler Substances 0.000 description 8
- 239000004014 plasticizer Substances 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 239000004743 Polypropylene Substances 0.000 description 7
- 150000001412 amines Chemical class 0.000 description 7
- 150000002989 phenols Chemical class 0.000 description 7
- 229920000728 polyester Polymers 0.000 description 7
- 229920001155 polypropylene Polymers 0.000 description 7
- KUBDPQJOLOUJRM-UHFFFAOYSA-N 2-(chloromethyl)oxirane;4-[2-(4-hydroxyphenyl)propan-2-yl]phenol Chemical compound ClCC1CO1.C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 KUBDPQJOLOUJRM-UHFFFAOYSA-N 0.000 description 6
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 6
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 229920006243 acrylic copolymer Polymers 0.000 description 6
- 239000003963 antioxidant agent Substances 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- 239000003999 initiator Substances 0.000 description 6
- 150000002596 lactones Chemical class 0.000 description 6
- 239000004611 light stabiliser Substances 0.000 description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 230000001681 protective effect Effects 0.000 description 6
- 229920001169 thermoplastic Polymers 0.000 description 6
- 239000004971 Cross linker Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 150000004292 cyclic ethers Chemical class 0.000 description 5
- 150000002118 epoxides Chemical class 0.000 description 5
- 150000003951 lactams Chemical class 0.000 description 5
- 238000003475 lamination Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000003504 photosensitizing agent Substances 0.000 description 5
- 229920000647 polyepoxide Polymers 0.000 description 5
- 239000011241 protective layer Substances 0.000 description 5
- 229920005604 random copolymer Polymers 0.000 description 5
- 239000006254 rheological additive Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 4
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical group N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 4
- OECTYKWYRCHAKR-UHFFFAOYSA-N 4-vinylcyclohexene dioxide Chemical compound C1OC1C1CC2OC2CC1 OECTYKWYRCHAKR-UHFFFAOYSA-N 0.000 description 4
- 229920002292 Nylon 6 Polymers 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 4
- 239000006096 absorbing agent Substances 0.000 description 4
- SOGAXMICEFXMKE-UHFFFAOYSA-N alpha-Methyl-n-butyl acrylate Natural products CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 125000005439 maleimidyl group Chemical group C1(C=CC(N1*)=O)=O 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 4
- 239000004753 textile Substances 0.000 description 4
- 239000004416 thermosoftening plastic Substances 0.000 description 4
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 3
- ZDQNWDNMNKSMHI-UHFFFAOYSA-N 1-[2-(2-prop-2-enoyloxypropoxy)propoxy]propan-2-yl prop-2-enoate Chemical compound C=CC(=O)OC(C)COC(C)COCC(C)OC(=O)C=C ZDQNWDNMNKSMHI-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- RZVINYQDSSQUKO-UHFFFAOYSA-N 2-phenoxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC1=CC=CC=C1 RZVINYQDSSQUKO-UHFFFAOYSA-N 0.000 description 3
- OZJPLYNZGCXSJM-UHFFFAOYSA-N 5-valerolactone Chemical compound O=C1CCCCO1 OZJPLYNZGCXSJM-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 3
- 101100259931 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) tba-1 gene Proteins 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- FHLPGTXWCFQMIU-UHFFFAOYSA-N [4-[2-(4-prop-2-enoyloxyphenyl)propan-2-yl]phenyl] prop-2-enoate Chemical compound C=1C=C(OC(=O)C=C)C=CC=1C(C)(C)C1=CC=C(OC(=O)C=C)C=C1 FHLPGTXWCFQMIU-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 229910021485 fumed silica Inorganic materials 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 3
- 150000002576 ketones Chemical class 0.000 description 3
- 239000004922 lacquer Substances 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 150000002918 oxazolines Chemical class 0.000 description 3
- AHHWIHXENZJRFG-UHFFFAOYSA-N oxetane Chemical compound C1COC1 AHHWIHXENZJRFG-UHFFFAOYSA-N 0.000 description 3
- 229920000058 polyacrylate Polymers 0.000 description 3
- 239000004848 polyfunctional curative Substances 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 235000013824 polyphenols Nutrition 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 150000003141 primary amines Chemical class 0.000 description 3
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 3
- 239000000454 talc Substances 0.000 description 3
- 229910052623 talc Inorganic materials 0.000 description 3
- YOIAWAIKYVEKMF-UHFFFAOYSA-N trifluoromethanesulfonic acid Chemical compound OS(=O)(=O)C(F)(F)F.OS(=O)(=O)C(F)(F)F YOIAWAIKYVEKMF-UHFFFAOYSA-N 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000004711 α-olefin Substances 0.000 description 3
- RKDVKSZUMVYZHH-UHFFFAOYSA-N 1,4-dioxane-2,5-dione Chemical compound O=C1COC(=O)CO1 RKDVKSZUMVYZHH-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- STFXXRRQKFUYEU-UHFFFAOYSA-N 16-methylheptadecyl prop-2-enoate Chemical compound CC(C)CCCCCCCCCCCCCCCOC(=O)C=C STFXXRRQKFUYEU-UHFFFAOYSA-N 0.000 description 2
- QBDAFARLDLCWAT-UHFFFAOYSA-N 2,3-dihydropyran-6-one Chemical compound O=C1OCCC=C1 QBDAFARLDLCWAT-UHFFFAOYSA-N 0.000 description 2
- SHKUUQIDMUMQQK-UHFFFAOYSA-N 2-[4-(oxiran-2-ylmethoxy)butoxymethyl]oxirane Chemical compound C1OC1COCCCCOCC1CO1 SHKUUQIDMUMQQK-UHFFFAOYSA-N 0.000 description 2
- UUODQIKUTGWMPT-UHFFFAOYSA-N 2-fluoro-5-(trifluoromethyl)pyridine Chemical compound FC1=CC=C(C(F)(F)F)C=N1 UUODQIKUTGWMPT-UHFFFAOYSA-N 0.000 description 2
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- XAYDWGMOPRHLEP-UHFFFAOYSA-N 6-ethenyl-7-oxabicyclo[4.1.0]heptane Chemical compound C1CCCC2OC21C=C XAYDWGMOPRHLEP-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229920001634 Copolyester Polymers 0.000 description 2
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- CTKINSOISVBQLD-UHFFFAOYSA-N Glycidol Chemical compound OCC1CO1 CTKINSOISVBQLD-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- 239000006057 Non-nutritive feed additive Substances 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 239000005062 Polybutadiene Substances 0.000 description 2
- 239000004614 Process Aid Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 2
- 244000028419 Styrax benzoin Species 0.000 description 2
- 235000000126 Styrax benzoin Nutrition 0.000 description 2
- AWMVMTVKBNGEAK-UHFFFAOYSA-N Styrene oxide Chemical compound C1OC1C1=CC=CC=C1 AWMVMTVKBNGEAK-UHFFFAOYSA-N 0.000 description 2
- 235000008411 Sumatra benzointree Nutrition 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 239000003377 acid catalyst Substances 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- 239000010775 animal oil Substances 0.000 description 2
- RQTDPDUUIOHBMB-UHFFFAOYSA-N antimony(3+) azane Chemical compound N.[Sb+3] RQTDPDUUIOHBMB-UHFFFAOYSA-N 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- WURBFLDFSFBTLW-UHFFFAOYSA-N benzil Chemical compound C=1C=CC=CC=1C(=O)C(=O)C1=CC=CC=C1 WURBFLDFSFBTLW-UHFFFAOYSA-N 0.000 description 2
- 229960002130 benzoin Drugs 0.000 description 2
- 239000012965 benzophenone Substances 0.000 description 2
- 150000008366 benzophenones Chemical class 0.000 description 2
- LMMDJMWIHPEQSJ-UHFFFAOYSA-N bis[(3-methyl-7-oxabicyclo[4.1.0]heptan-4-yl)methyl] hexanedioate Chemical compound C1C2OC2CC(C)C1COC(=O)CCCCC(=O)OCC1CC2OC2CC1C LMMDJMWIHPEQSJ-UHFFFAOYSA-N 0.000 description 2
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 2
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 2
- 239000000292 calcium oxide Substances 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 239000012459 cleaning agent Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- ZWAJLVLEBYIOTI-UHFFFAOYSA-N cyclohexene oxide Chemical compound C1CCCC2OC21 ZWAJLVLEBYIOTI-UHFFFAOYSA-N 0.000 description 2
- FWFSEYBSWVRWGL-UHFFFAOYSA-N cyclohexene oxide Natural products O=C1CCCC=C1 FWFSEYBSWVRWGL-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- ISAOCJYIOMOJEB-UHFFFAOYSA-N desyl alcohol Natural products C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 2
- 150000004985 diamines Chemical class 0.000 description 2
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical group NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- CJMZLCRLBNZJQR-UHFFFAOYSA-N ethyl 2-amino-4-(4-fluorophenyl)thiophene-3-carboxylate Chemical compound CCOC(=O)C1=C(N)SC=C1C1=CC=C(F)C=C1 CJMZLCRLBNZJQR-UHFFFAOYSA-N 0.000 description 2
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical compound O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 2
- 235000019382 gum benzoic Nutrition 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- KVILQFSLJDTWPU-UHFFFAOYSA-N heptadecyl prop-2-enoate Chemical compound CCCCCCCCCCCCCCCCCOC(=O)C=C KVILQFSLJDTWPU-UHFFFAOYSA-N 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229920000554 ionomer Polymers 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- 239000002655 kraft paper Substances 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 2
- 239000010445 mica Substances 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- 239000004200 microcrystalline wax Substances 0.000 description 2
- 235000019808 microcrystalline wax Nutrition 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 229920003986 novolac Polymers 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 150000002921 oxetanes Chemical class 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 235000019809 paraffin wax Nutrition 0.000 description 2
- 235000019271 petrolatum Nutrition 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 229920001083 polybutene Polymers 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920002959 polymer blend Polymers 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229920006216 polyvinyl aromatic Polymers 0.000 description 2
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229940116351 sebacate Drugs 0.000 description 2
- 230000001235 sensitizing effect Effects 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229960002317 succinimide Drugs 0.000 description 2
- 150000003512 tertiary amines Chemical class 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 238000004073 vulcanization Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000010456 wollastonite Substances 0.000 description 2
- 229910052882 wollastonite Inorganic materials 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 150000003751 zinc Chemical class 0.000 description 2
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 2
- FVQMJJQUGGVLEP-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy 2-ethylhexaneperoxoate Chemical compound CCCCC(CC)C(=O)OOOC(C)(C)C FVQMJJQUGGVLEP-UHFFFAOYSA-N 0.000 description 1
- PZWQOGNTADJZGH-SNAWJCMRSA-N (2e)-2-methylpenta-2,4-dienoic acid Chemical compound OC(=O)C(/C)=C/C=C PZWQOGNTADJZGH-SNAWJCMRSA-N 0.000 description 1
- URBLVRAVOIVZFJ-UHFFFAOYSA-N (3-methylphenyl)-phenylmethanone Chemical compound CC1=CC=CC(C(=O)C=2C=CC=CC=2)=C1 URBLVRAVOIVZFJ-UHFFFAOYSA-N 0.000 description 1
- JIHQDMXYYFUGFV-UHFFFAOYSA-N 1,3,5-triazine Chemical class C1=NC=NC=N1 JIHQDMXYYFUGFV-UHFFFAOYSA-N 0.000 description 1
- QKOWXXDOHMJOMQ-UHFFFAOYSA-N 1,3,5-tris(6-isocyanatohexyl)biuret Chemical compound O=C=NCCCCCCNC(=O)N(CCCCCCN=C=O)C(=O)NCCCCCCN=C=O QKOWXXDOHMJOMQ-UHFFFAOYSA-N 0.000 description 1
- VPVXHAANQNHFSF-UHFFFAOYSA-N 1,4-dioxan-2-one Chemical compound O=C1COCCO1 VPVXHAANQNHFSF-UHFFFAOYSA-N 0.000 description 1
- AOLNDUQWRUPYGE-UHFFFAOYSA-N 1,4-dioxepan-5-one Chemical compound O=C1CCOCCO1 AOLNDUQWRUPYGE-UHFFFAOYSA-N 0.000 description 1
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 1
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- KGRVJHAUYBGFFP-UHFFFAOYSA-N 2,2'-Methylenebis(4-methyl-6-tert-butylphenol) Chemical compound CC(C)(C)C1=CC(C)=CC(CC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O KGRVJHAUYBGFFP-UHFFFAOYSA-N 0.000 description 1
- JTSXFTWPBWFCPA-UHFFFAOYSA-N 2,2,5-trimethyl-4-oxido-4-aza-3-azoniabicyclo[3.2.2]nonane 3-oxide Chemical compound C1CC2CCC1(C)N([O-])[N+](=O)C2(C)C JTSXFTWPBWFCPA-UHFFFAOYSA-N 0.000 description 1
- CZNRFEXEPBITDS-UHFFFAOYSA-N 2,5-bis(2-methylbutan-2-yl)benzene-1,4-diol Chemical compound CCC(C)(C)C1=CC(O)=C(C(C)(C)CC)C=C1O CZNRFEXEPBITDS-UHFFFAOYSA-N 0.000 description 1
- DKCPKDPYUFEZCP-UHFFFAOYSA-N 2,6-di-tert-butylphenol Chemical compound CC(C)(C)C1=CC=CC(C(C)(C)C)=C1O DKCPKDPYUFEZCP-UHFFFAOYSA-N 0.000 description 1
- FTALTLPZDVFJSS-UHFFFAOYSA-N 2-(2-ethoxyethoxy)ethyl prop-2-enoate Chemical compound CCOCCOCCOC(=O)C=C FTALTLPZDVFJSS-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- IMSODMZESSGVBE-UHFFFAOYSA-N 2-Oxazoline Chemical compound C1CN=CO1 IMSODMZESSGVBE-UHFFFAOYSA-N 0.000 description 1
- RURPJGZXBHYNEM-UHFFFAOYSA-N 2-[2-[(2-hydroxyphenyl)methylideneamino]propyliminomethyl]phenol Chemical compound C=1C=CC=C(O)C=1C=NC(C)CN=CC1=CC=CC=C1O RURPJGZXBHYNEM-UHFFFAOYSA-N 0.000 description 1
- QBQSKYIIEGLPJT-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.OCCOC(=O)C=C QBQSKYIIEGLPJT-UHFFFAOYSA-N 0.000 description 1
- IFXDUNDBQDXPQZ-UHFFFAOYSA-N 2-methylbutan-2-yl 2-ethylhexaneperoxoate Chemical compound CCCCC(CC)C(=O)OOC(C)(C)CC IFXDUNDBQDXPQZ-UHFFFAOYSA-N 0.000 description 1
- RFSCGDQQLKVJEJ-UHFFFAOYSA-N 2-methylbutan-2-yl benzenecarboperoxoate Chemical compound CCC(C)(C)OOC(=O)C1=CC=CC=C1 RFSCGDQQLKVJEJ-UHFFFAOYSA-N 0.000 description 1
- YFHKLSPMRRWLKI-UHFFFAOYSA-N 2-tert-butyl-4-(3-tert-butyl-4-hydroxy-5-methylphenyl)sulfanyl-6-methylphenol Chemical compound CC(C)(C)C1=C(O)C(C)=CC(SC=2C=C(C(O)=C(C)C=2)C(C)(C)C)=C1 YFHKLSPMRRWLKI-UHFFFAOYSA-N 0.000 description 1
- IKEHOXWJQXIQAG-UHFFFAOYSA-N 2-tert-butyl-4-methylphenol Chemical compound CC1=CC=C(O)C(C(C)(C)C)=C1 IKEHOXWJQXIQAG-UHFFFAOYSA-N 0.000 description 1
- AHLWZBVXSWOPPL-RGYGYFBISA-N 20-deoxy-20-oxophorbol 12-myristate 13-acetate Chemical compound C([C@]1(O)C(=O)C(C)=C[C@H]1[C@@]1(O)[C@H](C)[C@H]2OC(=O)CCCCCCCCCCCCC)C(C=O)=C[C@H]1[C@H]1[C@]2(OC(C)=O)C1(C)C AHLWZBVXSWOPPL-RGYGYFBISA-N 0.000 description 1
- AGIJRRREJXSQJR-UHFFFAOYSA-N 2h-thiazine Chemical compound N1SC=CC=C1 AGIJRRREJXSQJR-UHFFFAOYSA-N 0.000 description 1
- CXURGFRDGROIKG-UHFFFAOYSA-N 3,3-bis(chloromethyl)oxetane Chemical group ClCC1(CCl)COC1 CXURGFRDGROIKG-UHFFFAOYSA-N 0.000 description 1
- ODJQKYXPKWQWNK-UHFFFAOYSA-L 3-(2-carboxylatoethylsulfanyl)propanoate Chemical class [O-]C(=O)CCSCCC([O-])=O ODJQKYXPKWQWNK-UHFFFAOYSA-L 0.000 description 1
- PYSRRFNXTXNWCD-UHFFFAOYSA-N 3-(2-phenylethenyl)furan-2,5-dione Chemical compound O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 PYSRRFNXTXNWCD-UHFFFAOYSA-N 0.000 description 1
- WCXGOVYROJJXHA-UHFFFAOYSA-N 3-[4-[4-(3-aminophenoxy)phenyl]sulfonylphenoxy]aniline Chemical compound NC1=CC=CC(OC=2C=CC(=CC=2)S(=O)(=O)C=2C=CC(OC=3C=C(N)C=CC=3)=CC=2)=C1 WCXGOVYROJJXHA-UHFFFAOYSA-N 0.000 description 1
- ZLPORNPZJNRGCO-UHFFFAOYSA-N 3-methylpyrrole-2,5-dione Chemical group CC1=CC(=O)NC1=O ZLPORNPZJNRGCO-UHFFFAOYSA-N 0.000 description 1
- MCXCGPGHTKBJCK-UHFFFAOYSA-N 4-[(4-aminophenyl)methyl]aniline;pyrrole-2,5-dione Chemical compound O=C1NC(=O)C=C1.O=C1NC(=O)C=C1.C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 MCXCGPGHTKBJCK-UHFFFAOYSA-N 0.000 description 1
- SWZOQAGVRGQLDV-UHFFFAOYSA-N 4-[2-(4-hydroxy-2,2,6,6-tetramethylpiperidin-1-yl)ethoxy]-4-oxobutanoic acid Chemical compound CC1(C)CC(O)CC(C)(C)N1CCOC(=O)CCC(O)=O SWZOQAGVRGQLDV-UHFFFAOYSA-N 0.000 description 1
- RSFMBVKVSSHYLS-UHFFFAOYSA-N 4-[[4,6-bis(3,5-ditert-butyl-4-hydroxyphenoxy)-1,3,5-triazin-2-yl]oxy]-2,6-ditert-butylphenol Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(OC=2N=C(OC=3C=C(C(O)=C(C=3)C(C)(C)C)C(C)(C)C)N=C(OC=3C=C(C(O)=C(C=3)C(C)(C)C)C(C)(C)C)N=2)=C1 RSFMBVKVSSHYLS-UHFFFAOYSA-N 0.000 description 1
- OKKDHVXHNDLRQV-UHFFFAOYSA-N 6-[3-(6-isocyanatohexyl)-2,4-dioxo-1,3-diazetidin-1-yl]hexyl n-(6-isocyanatohexyl)carbamate Chemical compound O=C=NCCCCCCNC(=O)OCCCCCCN1C(=O)N(CCCCCCN=C=O)C1=O OKKDHVXHNDLRQV-UHFFFAOYSA-N 0.000 description 1
- RBHIUNHSNSQJNG-UHFFFAOYSA-N 6-methyl-3-(2-methyloxiran-2-yl)-7-oxabicyclo[4.1.0]heptane Chemical compound C1CC2(C)OC2CC1C1(C)CO1 RBHIUNHSNSQJNG-UHFFFAOYSA-N 0.000 description 1
- VGNVYUTVJIIORC-UHFFFAOYSA-N 6-tert-butyl-4-[(3-tert-butyl-4-hydroxy-1-methylcyclohexa-2,4-dien-1-yl)methyl]-4-methylcyclohexa-1,5-dien-1-ol Chemical compound C1C=C(O)C(C(C)(C)C)=CC1(C)CC1(C)C=C(C(C)(C)C)C(O)=CC1 VGNVYUTVJIIORC-UHFFFAOYSA-N 0.000 description 1
- YXALYBMHAYZKAP-UHFFFAOYSA-N 7-oxabicyclo[4.1.0]heptan-4-ylmethyl 7-oxabicyclo[4.1.0]heptane-4-carboxylate Chemical compound C1CC2OC2CC1C(=O)OCC1CC2OC2CC1 YXALYBMHAYZKAP-UHFFFAOYSA-N 0.000 description 1
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 229920003319 Araldite® Polymers 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- LCFVJGUPQDGYKZ-UHFFFAOYSA-N Bisphenol A diglycidyl ether Chemical compound C=1C=C(OCC2OC2)C=CC=1C(C)(C)C(C=C1)=CC=C1OCC1CO1 LCFVJGUPQDGYKZ-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical class C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- SEVNPMKAEISHJM-UHFFFAOYSA-N C1(C=CC(N1)=O)=O.C1(C=CC(N1)=O)=O.CCC Chemical compound C1(C=CC(N1)=O)=O.C1(C=CC(N1)=O)=O.CCC SEVNPMKAEISHJM-UHFFFAOYSA-N 0.000 description 1
- FOQYEMKLNZCDEH-UHFFFAOYSA-N C1(C=CC(N1)=O)=O.C1(C=CC(N1)=O)=O.NC=1C=C(C=CC1)CC(C)=C1C=CC(C=C1)=C(CC1=CC(=CC=C1)N)C Chemical compound C1(C=CC(N1)=O)=O.C1(C=CC(N1)=O)=O.NC=1C=C(C=CC1)CC(C)=C1C=CC(C=C1)=C(CC1=CC(=CC=C1)N)C FOQYEMKLNZCDEH-UHFFFAOYSA-N 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical group C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 1
- MUXOBHXGJLMRAB-UHFFFAOYSA-N Dimethyl succinate Chemical compound COC(=O)CCC(=O)OC MUXOBHXGJLMRAB-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- GXBYFVGCMPJVJX-UHFFFAOYSA-N Epoxybutene Chemical compound C=CC1CO1 GXBYFVGCMPJVJX-UHFFFAOYSA-N 0.000 description 1
- 229920000103 Expandable microsphere Polymers 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- 229920010126 Linear Low Density Polyethylene (LLDPE) Polymers 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 description 1
- WYNCHZVNFNFDNH-UHFFFAOYSA-N Oxazolidine Chemical compound C1COCN1 WYNCHZVNFNFDNH-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241001602688 Pama Species 0.000 description 1
- FQYUMYWMJTYZTK-UHFFFAOYSA-N Phenyl glycidyl ether Chemical compound C1OC1COC1=CC=CC=C1 FQYUMYWMJTYZTK-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 239000004965 Silica aerogel Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- VZTQQYMRXDUHDO-UHFFFAOYSA-N [2-hydroxy-3-[4-[2-[4-(2-hydroxy-3-prop-2-enoyloxypropoxy)phenyl]propan-2-yl]phenoxy]propyl] prop-2-enoate Chemical compound C=1C=C(OCC(O)COC(=O)C=C)C=CC=1C(C)(C)C1=CC=C(OCC(O)COC(=O)C=C)C=C1 VZTQQYMRXDUHDO-UHFFFAOYSA-N 0.000 description 1
- BGYHLZZASRKEJE-UHFFFAOYSA-N [3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]-2,2-bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxymethyl]propyl] 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCC(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BGYHLZZASRKEJE-UHFFFAOYSA-N 0.000 description 1
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 description 1
- RQXVHGYMWFSWLY-UHFFFAOYSA-N acetic acid;2-methylprop-2-enoic acid;prop-2-enoic acid Chemical compound CC(O)=O.OC(=O)C=C.CC(=C)C(O)=O RQXVHGYMWFSWLY-UHFFFAOYSA-N 0.000 description 1
- WRVRNZNDLRUXSW-UHFFFAOYSA-N acetic acid;prop-2-enoic acid Chemical compound CC(O)=O.OC(=O)C=C WRVRNZNDLRUXSW-UHFFFAOYSA-N 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 239000002318 adhesion promoter Substances 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 239000012164 animal wax Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 150000004984 aromatic diamines Chemical class 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- BMWDUGHMODRTLU-UHFFFAOYSA-N azanium;trifluoromethanesulfonate Chemical compound [NH4+].[O-]S(=O)(=O)C(F)(F)F BMWDUGHMODRTLU-UHFFFAOYSA-N 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- XITRBUPOXXBIJN-UHFFFAOYSA-N bis(2,2,6,6-tetramethylpiperidin-4-yl) decanedioate Chemical compound C1C(C)(C)NC(C)(C)CC1OC(=O)CCCCCCCCC(=O)OC1CC(C)(C)NC(C)(C)C1 XITRBUPOXXBIJN-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000010504 bond cleavage reaction Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229930188620 butyrolactone Natural products 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- QXJJQWWVWRCVQT-UHFFFAOYSA-K calcium;sodium;phosphate Chemical compound [Na+].[Ca+2].[O-]P([O-])([O-])=O QXJJQWWVWRCVQT-UHFFFAOYSA-K 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 238000010538 cationic polymerization reaction Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- BFGKITSFLPAWGI-UHFFFAOYSA-N chromium(3+) Chemical compound [Cr+3] BFGKITSFLPAWGI-UHFFFAOYSA-N 0.000 description 1
- KSDIHKMNSYWRFB-UHFFFAOYSA-N chrysen-2-amine Chemical compound C1=CC=CC2=CC=C3C4=CC=C(N)C=C4C=CC3=C21 KSDIHKMNSYWRFB-UHFFFAOYSA-N 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000011280 coal tar Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003026 cod liver oil Substances 0.000 description 1
- 235000012716 cod liver oil Nutrition 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 239000004643 cyanate ester Substances 0.000 description 1
- 150000001913 cyanates Chemical class 0.000 description 1
- STZIXLPVKZUAMV-UHFFFAOYSA-N cyclopentane-1,1,2,2-tetracarboxylic acid Chemical compound OC(=O)C1(C(O)=O)CCCC1(C(O)=O)C(O)=O STZIXLPVKZUAMV-UHFFFAOYSA-N 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- BQQUFAMSJAKLNB-UHFFFAOYSA-N dicyclopentadiene diepoxide Chemical compound C12C(C3OC33)CC3C2CC2C1O2 BQQUFAMSJAKLNB-UHFFFAOYSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 125000001664 diethylamino group Chemical class [H]C([H])([H])C([H])([H])N(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- CZZYITDELCSZES-UHFFFAOYSA-N diphenylmethane Chemical compound C=1C=CC=CC=1CC1=CC=CC=C1 CZZYITDELCSZES-UHFFFAOYSA-N 0.000 description 1
- 239000012990 dithiocarbamate Substances 0.000 description 1
- 150000004659 dithiocarbamates Chemical class 0.000 description 1
- 238000005108 dry cleaning Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- JZMPIUODFXBXSC-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)C=C.CCOC(N)=O JZMPIUODFXBXSC-UHFFFAOYSA-N 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 235000019688 fish Nutrition 0.000 description 1
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N furo[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1=C2C(=O)OC(=O)C2=CC2=C1C(=O)OC2=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 1
- 229940083124 ganglion-blocking antiadrenergic secondary and tertiary amines Drugs 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 239000011086 glassine Substances 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 150000002314 glycerols Chemical class 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 150000004658 ketimines Chemical class 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- QDLAGTHXVHQKRE-UHFFFAOYSA-N lichenxanthone Natural products COC1=CC(O)=C2C(=O)C3=C(C)C=C(OC)C=C3OC2=C1 QDLAGTHXVHQKRE-UHFFFAOYSA-N 0.000 description 1
- 230000004298 light response Effects 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000004707 linear low-density polyethylene Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000006078 metal deactivator Substances 0.000 description 1
- RTWNYYOXLSILQN-UHFFFAOYSA-N methanediamine Chemical compound NCN RTWNYYOXLSILQN-UHFFFAOYSA-N 0.000 description 1
- 125000001434 methanylylidene group Chemical group [H]C#[*] 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- VYQNWZOUAUKGHI-UHFFFAOYSA-N monobenzone Chemical compound C1=CC(O)=CC=C1OCC1=CC=CC=C1 VYQNWZOUAUKGHI-UHFFFAOYSA-N 0.000 description 1
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid group Chemical group C(CCCCCCC\C=C/CCCCCCCC)(=O)O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 150000002917 oxazolidines Chemical class 0.000 description 1
- 238000010525 oxidative degradation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000012169 petroleum derived wax Substances 0.000 description 1
- 235000019381 petroleum wax Nutrition 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- XKJCHHZQLQNZHY-UHFFFAOYSA-N phthalimide Chemical compound C1=CC=C2C(=O)NC(=O)C2=C1 XKJCHHZQLQNZHY-UHFFFAOYSA-N 0.000 description 1
- 125000005543 phthalimide group Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- XUWHAWMETYGRKB-UHFFFAOYSA-N piperidin-2-one Chemical compound O=C1CCCCN1 XUWHAWMETYGRKB-UHFFFAOYSA-N 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002285 poly(styrene-co-acrylonitrile) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000151 polyglycol Polymers 0.000 description 1
- 239000010695 polyglycol Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229940090181 propyl acetate Drugs 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 150000004053 quinones Chemical class 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920003987 resole Polymers 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 1
- JIYNFFGKZCOPKN-UHFFFAOYSA-N sbb061129 Chemical compound O=C1OC(=O)C2C1C1C=C(C)C2C1 JIYNFFGKZCOPKN-UHFFFAOYSA-N 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- CXMXRPHRNRROMY-UHFFFAOYSA-L sebacate(2-) Chemical compound [O-]C(=O)CCCCCCCCC([O-])=O CXMXRPHRNRROMY-UHFFFAOYSA-L 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 229960002920 sorbitol Drugs 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- MUTNCGKQJGXKEM-UHFFFAOYSA-N tamibarotene Chemical compound C=1C=C2C(C)(C)CCC(C)(C)C2=CC=1NC(=O)C1=CC=C(C(O)=O)C=C1 MUTNCGKQJGXKEM-UHFFFAOYSA-N 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- OPQYOFWUFGEMRZ-UHFFFAOYSA-N tert-butyl 2,2-dimethylpropaneperoxoate Chemical compound CC(C)(C)OOC(=O)C(C)(C)C OPQYOFWUFGEMRZ-UHFFFAOYSA-N 0.000 description 1
- SWAXTRYEYUTSAP-UHFFFAOYSA-N tert-butyl ethaneperoxoate Chemical compound CC(=O)OOC(C)(C)C SWAXTRYEYUTSAP-UHFFFAOYSA-N 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- BSYVTEYKTMYBMK-UHFFFAOYSA-N tetrahydrofurfuryl alcohol Chemical compound OCC1CCCO1 BSYVTEYKTMYBMK-UHFFFAOYSA-N 0.000 description 1
- 230000009974 thixotropic effect Effects 0.000 description 1
- 210000002105 tongue Anatomy 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 235000019871 vegetable fat Nutrition 0.000 description 1
- 239000012178 vegetable wax Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/30—Adhesives in the form of films or foils characterised by the adhesive composition
- C09J7/38—Pressure-sensitive adhesives [PSA]
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09F—NATURAL RESINS; FRENCH POLISH; DRYING-OILS; OIL DRYING AGENTS, i.e. SICCATIVES; TURPENTINE
- C09F3/00—Obtaining spirits of turpentine
- C09F3/02—Obtaining spirits of turpentine as a by-product in the paper-pulping process
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F3/00—Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
- G09F3/08—Fastening or securing by means not forming part of the material of the label itself
- G09F3/10—Fastening or securing by means not forming part of the material of the label itself by an adhesive layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B31—MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
- B31D—MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER, NOT PROVIDED FOR IN SUBCLASSES B31B OR B31C
- B31D1/00—Multiple-step processes for making flat articles ; Making flat articles
- B31D1/02—Multiple-step processes for making flat articles ; Making flat articles the articles being labels or tags
- B31D1/027—Multiple-step processes for making flat articles ; Making flat articles the articles being labels or tags involving, marking, printing or coding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65C—LABELLING OR TAGGING MACHINES, APPARATUS, OR PROCESSES
- B65C1/00—Labelling flat essentially-rigid surfaces
- B65C1/02—Affixing labels to one flat surface of articles, e.g. of packages, of flat bands
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65C—LABELLING OR TAGGING MACHINES, APPARATUS, OR PROCESSES
- B65C3/00—Labelling other than flat surfaces
- B65C3/02—Affixing labels to elongated objects, e.g. wires, cables, bars, tubes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J5/00—Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/20—Adhesives in the form of films or foils characterised by their carriers
- C09J7/21—Paper; Textile fabrics
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/20—Adhesives in the form of films or foils characterised by their carriers
- C09J7/22—Plastics; Metallised plastics
- C09J7/24—Plastics; Metallised plastics based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
- C09J7/241—Polyolefin, e.g.rubber
- C09J7/243—Ethylene or propylene polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/20—Adhesives in the form of films or foils characterised by their carriers
- C09J7/22—Plastics; Metallised plastics
- C09J7/24—Plastics; Metallised plastics based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
- C09J7/245—Vinyl resins, e.g. polyvinyl chloride [PVC]
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/20—Adhesives in the form of films or foils characterised by their carriers
- C09J7/28—Metal sheet
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/30—Adhesives in the form of films or foils characterised by the adhesive composition
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/30—Adhesives in the form of films or foils characterised by the adhesive composition
- C09J7/35—Heat-activated
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J9/00—Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F3/00—Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
- G09F3/02—Forms or constructions
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2203/00—Applications of adhesives in processes or use of adhesives in the form of films or foils
- C09J2203/326—Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2203/00—Applications of adhesives in processes or use of adhesives in the form of films or foils
- C09J2203/334—Applications of adhesives in processes or use of adhesives in the form of films or foils as a label
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2301/00—Additional features of adhesives in the form of films or foils
- C09J2301/30—Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
- C09J2301/302—Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being pressure-sensitive, i.e. tacky at temperatures inferior to 30°C
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F3/00—Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
- G09F3/02—Forms or constructions
- G09F2003/023—Adhesive
- G09F2003/0232—Resistance to heat
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F3/00—Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
- G09F3/02—Forms or constructions
- G09F2003/023—Adhesive
- G09F2003/0233—Resistance to humidity
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F3/00—Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
- G09F3/02—Forms or constructions
- G09F2003/023—Adhesive
- G09F2003/0235—Resistance to chemicals
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Laminated Bodies (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Adhesive Tapes (AREA)
- Labeling Devices (AREA)
Abstract
Various labels for use in adverse environments are described. The labels are particularly well suited for applications in which a permanent label bond is required. The labels utilize a two stage adhesive which is initially in the form of a pressure sensitive adhesive (PSA) and then upon heating, converted to a permanent non-PSA.
Description
Atty. Reference No. 6133-WO
LABEL ASSEMBLIES FOR ADVERSE ENVIRONMENTS
FIELD
[0001] The present subject matter relates to label assemblies for use in adverse environments and particularly for applications in which a permanent bond is desired between a label and substrate.
BACKGROUND
LABEL ASSEMBLIES FOR ADVERSE ENVIRONMENTS
FIELD
[0001] The present subject matter relates to label assemblies for use in adverse environments and particularly for applications in which a permanent bond is desired between a label and substrate.
BACKGROUND
[0002] Labels are used in many applications such as for example to provide information about a product or component. The information may include instructions for use of the product, supplier or manufacturer information, and/or safety information. In certain applications, local or national laws may require that labels containing such information be secured to a product and visible.
[0003] Frequently, in these and other applications, the product or component and its accompanying label(s) are exposed to adverse environmental conditions. For example, harsh weather may result in label(s) being exposed to rain, moisture, and cold temperatures.
High temperatures are of particular concern as many labels degrade or detach from the surface to which they were previously adhered. High temperatures typically result from exposure to sunlight and/or heating from nearby sources such as machinery and vehicle engines for example.
High temperatures are of particular concern as many labels degrade or detach from the surface to which they were previously adhered. High temperatures typically result from exposure to sunlight and/or heating from nearby sources such as machinery and vehicle engines for example.
[0004] Although adhesives are known which can withstand high temperatures, in many instances such adhesives are relatively costly. In addition, such adhesives may be difficult to apply.
[0005] Furthermore, it may be difficult to adhere or achieve long term attachment of a label to certain surfaces. Although viscous and/or thick adhesive coatweights can be used to counter the difficulties of adhering a label to an irregular or roughened surface, such adhesives may be inadequate upon exposure to adverse environments and particularly high temperatures. For example, many adhesives tend to flow or "ooze" upon exposure to high temperatures.
[0006] Accordingly, a need exists for label assemblies that can be adhered to a wide array of surfaces and which also can withstand exposure to adverse environments and particularly high temperatures.
SUMMARY
SUMMARY
[0007] The difficulties and drawbacks associated with previous approaches are addressed in the present subject matter as follows.
[0008] In one aspect, the present subject matter provides a label assembly comprising a face layer defining a first face and an oppositely directed second face. The label assembly also comprises a two stage adhesive disposed on at least one of the first face and the second face.
The two stage adhesive exhibits a first stage in which the adhesive is initially in the form of a pressure sensitive adhesive (PSA) and upon conversion to a second stage, the adhesive is in the form of a permanent, non-PSA adhesive.
The two stage adhesive exhibits a first stage in which the adhesive is initially in the form of a pressure sensitive adhesive (PSA) and upon conversion to a second stage, the adhesive is in the form of a permanent, non-PSA adhesive.
[0009] In another aspect, the present subject matter provides a method of labeling an article. The method comprises providing an article having an outer surface. The method also comprises providing a label assembly including (i) a face layer defining a first face and an oppositely directed second face, and (ii) a two stage adhesive disposed on at least one of the first face and the second face. The two stage adhesive exhibits a first stage in which the adhesive is initially in the form of a pressure sensitive adhesive (PSA) and upon conversion to a second stage, the adhesive is in the form of a permanent, non-PSA adhesive. The method also comprises adhering the adhesive of the label assembly to the outer surface of the article.
[0010] In another aspect, the present subject matter provides a labeled article comprising an article having an outer surface, and a label assembly. The label assembly includes (i) a face layer defining a first face and an oppositely directed second face, and (ii) a two stage adhesive disposed on at least one of the first face and the second face. The two stage adhesive exhibits a first stage in which the adhesive is initially in the form of a pressure sensitive adhesive (PSA) and upon conversion to a second stage, the adhesive is in the form of a permanent, non-PSA adhesive.
[0011] As will be realized, the subject matter described herein is capable of other and different embodiments and its several details are capable of modifications in various respects, all without departing from the claimed subject matter. Accordingly, the drawings and description are to be regarded as illustrative and not restrictive.
BRIEF DESCRIPTION OF THE DRAWINGS
BRIEF DESCRIPTION OF THE DRAWINGS
[0012] Figure 1 is a schematic cross sectional illustration of a label assembly in accordance with an embodiment of the present subject matter.
[0013] Figure 2 is a schematic cross sectional illustration of a label assembly in accordance with another embodiment of the present subject matter.
[0014] Figure 3 is a schematic cross sectional illustration of a label assembly in accordance with another embodiment of the present subject matter.
[0015] Figure 4 is a schematic cross sectional illustration of a label assembly in accordance with another embodiment of the present subject matter.
[0016] Figure 5 is a schematic cross sectional illustration of a label assembly in accordance with another embodiment of the present subject matter.
[0017] Figure 6 is a schematic cross sectional illustration of a label assembly in accordance with another embodiment of the present subject matter.
[0018] Figure 7 is a schematic cross sectional illustration of a label assembly in accordance with another embodiment of the present subject matter.
[0019] Figure 8 is a schematic cross sectional illustration of a label assembly in accordance with another embodiment of the present subject matter.
[0020] Figure 9 is a schematic cross sectional illustration of a label assembly in accordance with another embodiment of the present subject matter.
[0021] Figure 10 is a schematic cross sectional illustration of a label assembly in accordance with another embodiment of the present subject matter.
DETAILED DESCRIPTION OF THE EMBODIMENTS
DETAILED DESCRIPTION OF THE EMBODIMENTS
[0022] The present subject matter provides a variety of label assemblies that are adapted for use in adverse conditions. The labels comprise a face or "face stock" layer, and a layer or region of a two stage adhesive, and an optional liner covering the adhesive layer. An optional primer layer may be utilized between the face layer and the adhesive. The same or a different primer layer may be utilized on an opposite side of the face layer, such as for example to promote printing thereon. One or more optional topcoat(s) can also be used along an outer surface of the face layer. Each of these components of the label assemblies are described in greater detail herein. The present subject matter also provides various methods of labeling articles and labeled articles.
Label Assemblies Face Layers
Label Assemblies Face Layers
[0023] A wide array of materials and combinations of materials can be used for the face layer(s) of the label assemblies. Generally, any material that is suitable for use in a label and which can survive 10 minutes of heat at 90 C without any visible or mechanical degradation can potentially be used as a face layer material in the label assemblies of the present subject matter.
Nonlimiting examples of materials that may be used in the face layers include poly(vinyl chloride) (PVC), poly(ethylene terephthalate) (PET), various polyolefins including polyethylene and polypropylene, polyamides, synthetic textiles, synthetic leathers, paper, fiber glass, polyvinylidene fluoride (PVF), metal foils such as aluminum and stainless steel, ceramics, natural leather, and combinations thereof. In many applications, the label assemblies of the present subject matter are useful as protective "overlam"
films which are adhered over indicia or text-bearing surfaces to protect and preserve the underlying surface and/or text. In such applications, the face layer(s) are transparent or substantially so.
Nonlimiting examples of materials that may be used in the face layers include poly(vinyl chloride) (PVC), poly(ethylene terephthalate) (PET), various polyolefins including polyethylene and polypropylene, polyamides, synthetic textiles, synthetic leathers, paper, fiber glass, polyvinylidene fluoride (PVF), metal foils such as aluminum and stainless steel, ceramics, natural leather, and combinations thereof. In many applications, the label assemblies of the present subject matter are useful as protective "overlam"
films which are adhered over indicia or text-bearing surfaces to protect and preserve the underlying surface and/or text. In such applications, the face layer(s) are transparent or substantially so.
[0024] A representative, but non-exclusive, list of polyolefins suitable for use as the face layer includes polyethylene, polypropylene, polybutene (e.g., poly 1-butene), ethylene copolymers (such as linear low density polyethylene and other copolymers of ethylene and another monomer or monomers, e.g., hexene, butene, octene, etc.), propylene copolymers, butylene copolymers, and compatible blends thereof. For the purposes of this disclosure, two polymeric materials are considered to be "compatible"
if they are capable of existing in close and permanent physical association without exhibiting gross symptoms of polymer segregation. A polymer blend that is heterogenous on a macroscopic level is considered to be incompatible.
if they are capable of existing in close and permanent physical association without exhibiting gross symptoms of polymer segregation. A polymer blend that is heterogenous on a macroscopic level is considered to be incompatible.
[0025] In one embodiment, the face stock is a single extruded layer of crosslinked polyolefin or blend of polyolefins. For example, crosslinked linear low density polyethylene (LLDPE) face stocks can be used.
[0026] In another embodiment, the face stock comprises a unitary coextrudate: a plurality of coextruded layers of polymeric materials, typically thermoplastic polymers and/or polymer blends, adhered to each other in a substantially permanent state. An outer layer of the unitary coextrudate comprises a crosslinked polyolefin or polyolefin blend, as described above.
The other layer or layers of the coextrudate are polymers selected for one or more desirable properties, e.g., strength, modulus, cost, etc. A representative, but non-exclusive, list of polymeric materials suitable as the other layer or layers of the face stock includes polyolefins, polyesters, nylons, polystyrenes, acrylonitrile butadiene rubbers, other extrudable thermoplastics, and compatible blends thereof.
The other layer or layers of the coextrudate are polymers selected for one or more desirable properties, e.g., strength, modulus, cost, etc. A representative, but non-exclusive, list of polymeric materials suitable as the other layer or layers of the face stock includes polyolefins, polyesters, nylons, polystyrenes, acrylonitrile butadiene rubbers, other extrudable thermoplastics, and compatible blends thereof.
[0027] A multilayer face stock can be prepared by simultaneously extruding a plurality of thermoplastic charges, at least one of which is a crosslinkable polyolefin or polyolefin blend serves as an outer layer of the face stock. Any suitable known type of coextrusion die can be used.
[0028] Depending on the particular polymeric materials used to form the coextruded face stock, in some embodiments, it is advantageous to extrude, simultaneously, one or more charges of material which become "tie" layers between coextruded layers. In particular, where two layers of material would not otherwise sufficiently adhere or bond to each other when coextruded, a "tie" layer is coextruded with and between the two layers, to hold them together in a substantially permanent unitary state. For example, nylon 6 and polyethylene can be coextruded to form a substantially permanent, unitary coextrudate by simultaneously extruding nylon 6, polyethylene, and a polymer having good affinity for both materials, such as a modified polyethylene or an ethylene vinyl acetate copolymer. Such a polymer becomes a ''tie" layer between the nylon 6 and polyethylene layers. In general, the choice of "tie" layer material depends, at least in part, on various properties of the materials to be joined, or "tied,"
together, including, for example, the materials' polar vs. nonpolar nature, modulus, flow properties, etc.
together, including, for example, the materials' polar vs. nonpolar nature, modulus, flow properties, etc.
[0029] In both the single layer and multilayer embodiments described above, the face stock is typically crosslinked in a conventional manner, after being extruded. In many embodiments, crosslinking is accomplished by electron beam irradiation. A variety of other electron accelerators are known and can be employed to crosslink the polyolefin outer layer.
[0030] In another embodiment, the face stock comprises a plurality of coextruded layers of polymeric material, including an outer layer of a heat resistant polymer such as nylon 6, polymethylpentene, polyethylene terephthalate, polybutylene terephthalate, copolyesters (such as KODAR THERMX crystallizable copolyester 6761, sold by Eastman Chemical Co.), polyamides, polyimides, and other polymers having a sufficiently high melting point or glass transition point. The other extruded layers of polymeric material are selected for their physical properties (e.g., strength, modulus, etc.) and/or cost. Nonlimiting examples of such polymeric materials include polyolefins, polyesters, nylons, polystyrenes, acrylonitrile butadiene rubbers, other extrudable thermoplastics, and compatible blends thereof.
[0031] The coextruded polymeric film face stock is prepared in a conventional manner by simultaneously extruding two or more charges of polymeric material, at least one of which is heat resistant, through a suitable extrusion die. One or more "tie" layers can be included within the coextruded face stock, as necessary to ensure adherence between layers, as described above.
[0032] In some embodiments, it is advantageous to include one or more fillers to one or more layers of the face stock in order to improve or impart desirable properties to the face stock. For example, fillers such as calcium carbonate, mica, talc, titanium dioxide, aluminum oxide, and the like, can be included in the melt of the pre-extruded polymeric material to impart opacity, strength, and/or other properties to the film. The incorporation of various fillers in extruded polymeric films is described in US Patent 4,713,273.
[0033] It will also be appreciated that, in some embodiments of the present subject matter, it is advantageous to hot-stretch the extruded polymeric films, prior to crosslinking, in order to provide machine direction orientation (MDO) of the film. A useful example of such hot-stretching is found in US
Patent 4,713,273. In other applications, it is beneficial to biaxially orient the extruded films, prior to crosslinking. Biaxial orientation of thermoplastic films, like MDO, is known.
Stretching the extruded films can improve the mechanical properties of the face stock, including its modulus and strength.
Patent 4,713,273. In other applications, it is beneficial to biaxially orient the extruded films, prior to crosslinking. Biaxial orientation of thermoplastic films, like MDO, is known.
Stretching the extruded films can improve the mechanical properties of the face stock, including its modulus and strength.
[0034] In many embodiments of the present subject matter the face layer(s) of the present subject matter label assemblies should exhibit low shrink properties, good UV
stability, good UV flexo properties, good UV offset properties, good thermal transfer printability, relatively high resistance to chemical cleaning agents and in particular applications resistance to acidic agents, cooling agents, and the like. For applications in which the label(s) will be used in association with textiles, then the face layer(s) should exhibit resistance to detergents, dry cleaning agents, salt water, and resistance to scuffing.
stability, good UV flexo properties, good UV offset properties, good thermal transfer printability, relatively high resistance to chemical cleaning agents and in particular applications resistance to acidic agents, cooling agents, and the like. For applications in which the label(s) will be used in association with textiles, then the face layer(s) should exhibit resistance to detergents, dry cleaning agents, salt water, and resistance to scuffing.
[0035] The face layer(s) of the label assembly typically have a total thickness of from about 10 microns to about 400 microns, and particularly from 20 microns to 200 microns.
Generally, face layer(s) of labels for automotive and textile applications are from 50 microns to 250 microns in thickness, and labels for electronic applications are from 20 microns to 150 microns in thickness. However, it will be appreciated that the present subject matter includes the use of face layer thicknesses less than and/or greater than these representative thicknesses.
Two Stage Adhesives
Generally, face layer(s) of labels for automotive and textile applications are from 50 microns to 250 microns in thickness, and labels for electronic applications are from 20 microns to 150 microns in thickness. However, it will be appreciated that the present subject matter includes the use of face layer thicknesses less than and/or greater than these representative thicknesses.
Two Stage Adhesives
[0036] The various label assemblies of the present subject matter utilize one or more two stage adhesives. Typically, the adhesive(s) is disposed on the face layer(s) in the form of a layer or one or more regions. The two stage adhesives exhibit a first stage in which the adhesive is in the form of a pressure sensitive adhesive (PSA) and upon conversion to a second stage, the adhesive is in the form of a permanent, non-PSA adhesive.
[0037] In many embodiments, the two stage adhesives utilized in the present subject matter include (i) a bodying component, which may be acrylic based or non-acrylic based or include combinations of acrylates and non-acrylates, (ii) one or more structural diluents, (iii) one or more radical addition diluents, and (iv) one or more additives such as (a) crosslinkers, (b) catalysts such as thermal catalysts and base catalysts, (c) photoinitiators including radical photoinitiators, UV radical photoinitiators and type I and II photoinitiators, (d) photosensitizers including dyes, and (e) stabilizers or process aids. An overview of the selections for the three main components (i)-(iii) is found in the following Table 1.
Table 1: Representative Listing of Main Components of Adhesive Compositions Radical Addition Diluents Bodying Components Structural Diluents Isostearyl acrylate EB14-15 S-28 Heptadecyl acrylate EB14-16 Epon 828 Dicyciopentadiene acrylate EB14-04 Epon 834 THE acrylate EB14-02 A-186 OXE-30 M112, carbonate polyol EP-10 S-100 EB13-97 Desmolux D100 Phenoxy ethylacrylate EB-14-22 Desmolux D200 Urethane acrylate EB14-28 Desmodur N3200 (less than 2000 daltons) Acrylic macromere EB14-29 Desmodur N100 (less than 10,000 daltons) V2100 EB14-33 Desmodur N3300 Cycloalphatic V2100 EB14-40 PPO oligomer (less than 5,000 daltons) Alkoxylated THF acrylate Urethane Acrylate PEO oligomer (more 2,000 daltons) (less than 5,000 daltons) Hydroxyethyl acrylate Acrylate macromere 2EH oxetane (more than 10,000 daltons) PPO oligomer Difunctional oxetane (more than 5,000 daltons) AS-2549 Trimethylolpropane triacrylate (TM
PTA) JRL4-128A Tripropyleneglycol diacrylate (TPGDA) JRL4-1288 Ethoxylated (3 mol) bisphenol A
diacrylate JRL4-128C Ethoxylated (3 mol) trimethylolpropane triacrylate MJZ4-87-1 Bisphenol A digylcidyl ether diacrylate (EHA-VA-MA-S100) (EHA-MA-S100) (EHA-MA-E1020-S100) (E HA-VA-MA) Radical Addition Diluents Bodying Components Structural Diluents (EHA-VA-MA-GMA) ¨ best =
(Acrylated MW1-93)
Table 1: Representative Listing of Main Components of Adhesive Compositions Radical Addition Diluents Bodying Components Structural Diluents Isostearyl acrylate EB14-15 S-28 Heptadecyl acrylate EB14-16 Epon 828 Dicyciopentadiene acrylate EB14-04 Epon 834 THE acrylate EB14-02 A-186 OXE-30 M112, carbonate polyol EP-10 S-100 EB13-97 Desmolux D100 Phenoxy ethylacrylate EB-14-22 Desmolux D200 Urethane acrylate EB14-28 Desmodur N3200 (less than 2000 daltons) Acrylic macromere EB14-29 Desmodur N100 (less than 10,000 daltons) V2100 EB14-33 Desmodur N3300 Cycloalphatic V2100 EB14-40 PPO oligomer (less than 5,000 daltons) Alkoxylated THF acrylate Urethane Acrylate PEO oligomer (more 2,000 daltons) (less than 5,000 daltons) Hydroxyethyl acrylate Acrylate macromere 2EH oxetane (more than 10,000 daltons) PPO oligomer Difunctional oxetane (more than 5,000 daltons) AS-2549 Trimethylolpropane triacrylate (TM
PTA) JRL4-128A Tripropyleneglycol diacrylate (TPGDA) JRL4-1288 Ethoxylated (3 mol) bisphenol A
diacrylate JRL4-128C Ethoxylated (3 mol) trimethylolpropane triacrylate MJZ4-87-1 Bisphenol A digylcidyl ether diacrylate (EHA-VA-MA-S100) (EHA-MA-S100) (EHA-MA-E1020-S100) (E HA-VA-MA) Radical Addition Diluents Bodying Components Structural Diluents (EHA-VA-MA-GMA) ¨ best =
(Acrylated MW1-93)
[0038] Details of these various components are provided herein.
Bodying Components
Bodying Components
[0039] Bodying components are broadly defined herein as having a molecular weight (Mw) of at least 25,000 Daltons. The bodying component(s) may be present in the compositions of the present subject matter in an amount of 10-90 wt%, in certain embodiments 20-80 wt%, and in still other embodiments 30-70 wt%, alternately 5-70 wt%, alternately 40-60 wt%, alternately 30-50 wt%, alternately 5-15 wt%, alternately 10-15 wt%, or 80 wt%. The bodying components may be acrylic based bodying components or non-acrylic based bodying components. Combinations of these and potentially with other components can be used. The bodying components may have molecular weights (Mw) of 5,000 to 1,000,000, in certain embodiments 15,000-250,000, and in still other embodiments 15,000-100,000, alternately 1,000 to 500,000, in certain versions 1,000-100,000, and in still other versions 1,000-50,000, or alternately 18,000-70,000.
[0040] In certain embodiments of the present subject matter, particular acrylic based bodying components can be used as follows. It will be understood that the present subject matter includes the use of corresponding methacrylate monomers, oligomers, or components instead of, or in addition to, any of the noted acrylate monomers, oligomers, or components.
[0041] MJZ4-87-1: Bodying Component. This bodying component is a random acrylic copolymer with a number average molecular weight (Mn) of 50k, (polydispersity index (PDI) 3.5, random copolymer) consisting of 55 wt% 2-ethylhexyl acrylate, 25 wt% vinyl acetate, 18 wt% methyl acrylate, and 2 wt% Additol TM S-1.00.
[0042] MW1-65: Bodying Component. This bodying component is a random acrylic copolymer with Mn of 50k, (PDI 3.5, random copolymer) consisting of 50 wt% 2-ethylhexyl acrylate, 48 wt% methyl acrylate and 2 wt% Add itol TM S-100.
[0043] MW1-69: Bodying Component. This bodying component is a random acrylic copolymer with Mn of 50k, (PDI 3.5, random copolymer) consisting of 44.9 wt% 2-ethylhexyl acrylate, 43.1 wt% methyl acrylate 43.1%, 10.2 wt% Elvacite TM 1020 (pMMA) and 1.8 wt% Additol TM S-100.
[0044] MW1-91: Bodying Component. This bodying component is a random acrylic copolymer with Mn of 50k, PDI 3.5, random copolymer, consisting of 56.1 wt% 2-ethylhexyl acrylate, 25.5 wt% vinyl acetate, 18.4 wt% methyl acrylate.
[0045] MW1-93 (best example of synthesis is MW1-101). This bodying component is a random acrylic copolymer with Mn of 50k, PDI 3.5, random copolymer consisting of 55 wt% 2-ethylhexyl acrylate, 25 wt% vinyl acetate, 18 wt% methyl acrylate, 2 wt% glycidyl ethacrylate.
[0046] MW1-94: Bodying Component. This bodying component is an adduct of acrylic acid and MW1-93, containing 98 wt% of MW1-93 and 2 wt% glycidyl methacrylate and a chromium (3+) catalyst.
[0047] Detailed formulations for certain bodying components presented in Table 1 are set forth in the following Table 2.
o Table 2: Detailed Formulations of Bodying Components Used In Adhesive Compositions N) ko ,1 COMPOSITION
MOLECULAR WEIGHT
in N) Monomer ko co Component Backbone 1 Monomer 2 Monomer 3 Monomer 4 Functionality Structure Mw Mn PDI
N) AS-2549 Acrylic 51% 2EHA
45% BA 4% acid random 380961 61545 6.19 1-, co Kh4-67 Acrylic 25 % 2EHA 72%
E0E0EA 3 % epoxy P -telechelic 60441 20043 3.02 i i-, Kh4-46 Acrylic 25% 2EHA 72%
E0E0EA 3% alcohol random 36747 13301 2.76 o IQ1 Kh4-105 Acrylic 25% 2EHA 72%
E0E0EA 3% alcohol p-telechelic n/a U, Kh4-37 Acrylic 50% BA
50% E0E0EA none random 54424 17337 3.14 EB13-84 Acrylic 79% BA 20% tBA 1% alcohol tadpole 80987 53591 1.51 LRK3-33 Acrylic 79% BA _ 20% tBA 1% alcohol tadpole 83000 37700 2.20 LRK3-44 Acrylic 80% BA 20% tBA 0.4% alcohol random 81300 42960 1.89 PP81-56 Acrylic 79% BA 20% tBA 1% alcohol tadpole 71000 37400 1.90 PP81-67 Acrylic 80% BA 20% tBA 0.4% alcohol random 63500 35240 1.80 KH4-18 Acrylic 78% BA 19% tBA 1.1% alcohol random ii 83726 58704 1.43 alcohol Telechelic 4000 02000 PPO primary amine Telechelic 2000 I- 48.
r.) EB14-24 Acrylate 48.22 %BA 22% tBA
3.56% alcohol P -telechelic 54300 38100 1.43 EB14-15 Acrylate 90.1% Butyl Acrylate 9.1% epoxy P -telechelic 129800 48500 2.68 EB14-16 Acrylate 45.05% BA 45.05% tBA 9.1% epoxy P -telechelic 164400 48500 3.39 EB14-04 Acrylate 40% BA 40% tBA 20% epoxy random 44700 19700 2.27 EB14-02 Acrylate 80% BMA 20% epoxy random n/a EB14-03 Acrylate 80% BA 20% epoxy random n/a M112 carbonate alcohol Telechelic EB13-97 Acrylate 80% BA 20% epoxy random 40800 12300 3.32 EB14-22 Acrylate 96.44% BA
3.56% alcohol P -telechelic 60700 36000 1.69 EB14-28 Acrylate 48.22 %BA 48.22% tBA
3.56% alcohol P -telechelic 27300 18700 1.46 EB14-29 Acrylate 48.22 %BA 48.22% tBA
3.56% alcohol P -telechelic n/a EB14-33 Acrylate 90.9% BA 9.1% epoxy P -telechelic n/a EB14-40 Acrylate 48.22 %BA 48.22% tBA
3.56% alcohol P -telechelic n/a EB14-41 Acrylate 48.56 %BA 48.56% tBA
2.88% alcohol P -telechelic n/a o COMPOSITION MOLECULAR WEIGHT
N) Monomer ko ,1 Component Backbone 1 Monomer 2 Monomer 3 Monomer 4 Functionality Structure Mw Mn PDI
in N) Urethane ko co Acrylate N) (Mw > 2000) Urethane 1-, co Acrylate i 1-, macromer IQ1 (Mw>10000 cri ) Acrylate .
PPO
oligomer (Mw> 5000) PPO
25% vinyl 18% methyl MJZ4-87-1 Acrylic 55% 2-EHA acetate acrylate 2%
S-100 2% epoxy Random 50000 175000 3.5
o Table 2: Detailed Formulations of Bodying Components Used In Adhesive Compositions N) ko ,1 COMPOSITION
MOLECULAR WEIGHT
in N) Monomer ko co Component Backbone 1 Monomer 2 Monomer 3 Monomer 4 Functionality Structure Mw Mn PDI
N) AS-2549 Acrylic 51% 2EHA
45% BA 4% acid random 380961 61545 6.19 1-, co Kh4-67 Acrylic 25 % 2EHA 72%
E0E0EA 3 % epoxy P -telechelic 60441 20043 3.02 i i-, Kh4-46 Acrylic 25% 2EHA 72%
E0E0EA 3% alcohol random 36747 13301 2.76 o IQ1 Kh4-105 Acrylic 25% 2EHA 72%
E0E0EA 3% alcohol p-telechelic n/a U, Kh4-37 Acrylic 50% BA
50% E0E0EA none random 54424 17337 3.14 EB13-84 Acrylic 79% BA 20% tBA 1% alcohol tadpole 80987 53591 1.51 LRK3-33 Acrylic 79% BA _ 20% tBA 1% alcohol tadpole 83000 37700 2.20 LRK3-44 Acrylic 80% BA 20% tBA 0.4% alcohol random 81300 42960 1.89 PP81-56 Acrylic 79% BA 20% tBA 1% alcohol tadpole 71000 37400 1.90 PP81-67 Acrylic 80% BA 20% tBA 0.4% alcohol random 63500 35240 1.80 KH4-18 Acrylic 78% BA 19% tBA 1.1% alcohol random ii 83726 58704 1.43 alcohol Telechelic 4000 02000 PPO primary amine Telechelic 2000 I- 48.
r.) EB14-24 Acrylate 48.22 %BA 22% tBA
3.56% alcohol P -telechelic 54300 38100 1.43 EB14-15 Acrylate 90.1% Butyl Acrylate 9.1% epoxy P -telechelic 129800 48500 2.68 EB14-16 Acrylate 45.05% BA 45.05% tBA 9.1% epoxy P -telechelic 164400 48500 3.39 EB14-04 Acrylate 40% BA 40% tBA 20% epoxy random 44700 19700 2.27 EB14-02 Acrylate 80% BMA 20% epoxy random n/a EB14-03 Acrylate 80% BA 20% epoxy random n/a M112 carbonate alcohol Telechelic EB13-97 Acrylate 80% BA 20% epoxy random 40800 12300 3.32 EB14-22 Acrylate 96.44% BA
3.56% alcohol P -telechelic 60700 36000 1.69 EB14-28 Acrylate 48.22 %BA 48.22% tBA
3.56% alcohol P -telechelic 27300 18700 1.46 EB14-29 Acrylate 48.22 %BA 48.22% tBA
3.56% alcohol P -telechelic n/a EB14-33 Acrylate 90.9% BA 9.1% epoxy P -telechelic n/a EB14-40 Acrylate 48.22 %BA 48.22% tBA
3.56% alcohol P -telechelic n/a EB14-41 Acrylate 48.56 %BA 48.56% tBA
2.88% alcohol P -telechelic n/a o COMPOSITION MOLECULAR WEIGHT
N) Monomer ko ,1 Component Backbone 1 Monomer 2 Monomer 3 Monomer 4 Functionality Structure Mw Mn PDI
in N) Urethane ko co Acrylate N) (Mw > 2000) Urethane 1-, co Acrylate i 1-, macromer IQ1 (Mw>10000 cri ) Acrylate .
PPO
oligomer (Mw> 5000) PPO
25% vinyl 18% methyl MJZ4-87-1 Acrylic 55% 2-EHA acetate acrylate 2%
S-100 2% epoxy Random 50000 175000 3.5
48% methyl , MW1-65 Acrylic 50% 2-EHA acrylate 2%
S-100 2% epoxy Random 50000 175000 3.5 ....
10.2%
44.9% 2- 43.1% methyl Elvacite 1.--, MW1-69 Acrylic EHA acrylate 1020 1.8%S-100 1.8% epoxy random 50000 175000 3.5 (J.) 18.4%
, 56.1% 2- 25.5% vinyl methyl MW1-91 Acrylic EHA acetate ____________________________ acrylate none random 50000 175000 3.5 25% vinyl 18% methyl 2% glycidyl MW1-93 Acrylic 55% 2-EHA acetate acrylate methacrylate 2% epoxy Random 50000 175000 3.5 98% MVV1- 2% Acrylic MW1-94 Acrylate 1 93 Acid 2%
acrylate random 50000 175000 3.5 [0048] Abbreviations in the preceding Table 2 include BA: butyl acrylate; 2-EHA: 2-ethylhexyl acrylate; tBA: tert-butyl acrylate; E0E0EA: ethoxyethoxyethylacrylate; PPO:
polypropylene oxide, BMA:
butyl methacrylate.
Radical Addition Diluents
S-100 2% epoxy Random 50000 175000 3.5 ....
10.2%
44.9% 2- 43.1% methyl Elvacite 1.--, MW1-69 Acrylic EHA acrylate 1020 1.8%S-100 1.8% epoxy random 50000 175000 3.5 (J.) 18.4%
, 56.1% 2- 25.5% vinyl methyl MW1-91 Acrylic EHA acetate ____________________________ acrylate none random 50000 175000 3.5 25% vinyl 18% methyl 2% glycidyl MW1-93 Acrylic 55% 2-EHA acetate acrylate methacrylate 2% epoxy Random 50000 175000 3.5 98% MVV1- 2% Acrylic MW1-94 Acrylate 1 93 Acid 2%
acrylate random 50000 175000 3.5 [0048] Abbreviations in the preceding Table 2 include BA: butyl acrylate; 2-EHA: 2-ethylhexyl acrylate; tBA: tert-butyl acrylate; E0E0EA: ethoxyethoxyethylacrylate; PPO:
polypropylene oxide, BMA:
butyl methacrylate.
Radical Addition Diluents
[0049] Radical addition diluents are acrylic based monomers having a molecular weight (Mw) of generally less than 25,000 and/or generally having a viscosity below 25,000 cps at 25 C. Radical addition diluents are periodically referred to herein as reactive diluents.
Radical addition diluents are present in the compositions of the present subject matter in an amount of 10-80 wt%, in certain embodiments 50-70 wt%, alternately 10-60 wt%, alternately 5-70 wt%, alternately 0-40 wt%, in still other embodiments 30-40 wt%, or alternately 7-25 wt%. Radical addition diluents can include a (meth)acrylate monomer and in certain versions have an overall Mw of less than 10,000 Da!tons.
Examples of useful radical addition diluents herein include ACE, isostearyl acrylate, heptadecyl acrylate, dicyclopentadiene acrylate, THF acrylate, alkoxylated THF acrylate, hydroxyethyl acrylate, phenoxy ethylacrylate, urethane acrylate (Mw <2000), OXE-10, OXE-30, 5-100, V2100, Cycloaliphatic V2100, and PAMA. Many of these components are described in greater detail herein in association with the Examples. Examples of several radical addition diluents are set forth in detail below.
Radical addition diluents are present in the compositions of the present subject matter in an amount of 10-80 wt%, in certain embodiments 50-70 wt%, alternately 10-60 wt%, alternately 5-70 wt%, alternately 0-40 wt%, in still other embodiments 30-40 wt%, or alternately 7-25 wt%. Radical addition diluents can include a (meth)acrylate monomer and in certain versions have an overall Mw of less than 10,000 Da!tons.
Examples of useful radical addition diluents herein include ACE, isostearyl acrylate, heptadecyl acrylate, dicyclopentadiene acrylate, THF acrylate, alkoxylated THF acrylate, hydroxyethyl acrylate, phenoxy ethylacrylate, urethane acrylate (Mw <2000), OXE-10, OXE-30, 5-100, V2100, Cycloaliphatic V2100, and PAMA. Many of these components are described in greater detail herein in association with the Examples. Examples of several radical addition diluents are set forth in detail below.
[0050] Alkoxylated THF acrylate, is a low viscosity monofunctional monomer available from Sartomer as CD-611, where n is not disclosed, and which is shown below as formula (1):
(1) 1049873.v1
(1) 1049873.v1
[0051] Hydroxyethyl acrylate: This radical addition diluent is shown below as formula (2):
(2)
(2)
[0052] Phenoxy ethyl acrylate: This radical addition diluent is shown below as formula (3):
(3) This low viscosity monofunctional monomer is available from Sartomer as SR339.
(3) This low viscosity monofunctional monomer is available from Sartomer as SR339.
[0053] Tetrahydrofurfuryl acrylate (THFA or THE acrylate): This radical addition diluent is shown below as formula (4). This low viscosity monofunctional monomer is available from Sartomer as SR285.
(4) Structural Diluents
(4) Structural Diluents
[0054] Structural diluents may be present in the compositions of the present subject matter in an amount of 5-80 wt%, alternately 5-50 wt%, in certain embodiments 10-50 wt%, alternately 5-40 wt%, alternately 10-30 wt%, alternately 20-40 wt%, alternately 65-95 wt%, alternately 75-85 wt%, alternately 75-95 wt%, alternately 7-25 wt%, alternately 45-65 wt%, alternately 45-60 wt%, alternately 75-85 wt%, and alternately 15-20 wt%. Structural diluents are periodically referred to herein as structural components. Various structural diluents and details are described in association with the Examples herein.
1 049873.v1
1 049873.v1
[0055] Various structural diluents include the following:
Trimethylolpropane triacrylate (TMPTA).
This monomer is available from Sartomer as 5R351 and shown below as formula (5):
0 , __ Z__0/
(5)
Trimethylolpropane triacrylate (TMPTA).
This monomer is available from Sartomer as 5R351 and shown below as formula (5):
0 , __ Z__0/
(5)
[0056] Tripropyleneglycol diacrylate, available from Sartomer as SR306 and shown below as formula (6):
(6)
(6)
[0057] Ethoxylated (3 mol) bisphenol A diacrylate. This monomer is available from Sartomer as SR349 where n+m=3, and is shown below as formula (7):
=
(7)
=
(7)
[0058] Ethoxylated (3 mol) trimethylolpropane triacrylate, and shown below as formula (8):
(8) 1049873.v1 This monomer is available from Sartomer as 5R454.
(8) 1049873.v1 This monomer is available from Sartomer as 5R454.
[0059] Bisphenol A diglycidyl ether diacrylate is shown below as formula (9):
(9) This monomer is available from Cytec as Ebecryl 600.
(9) This monomer is available from Cytec as Ebecryl 600.
[0060] Radical structural components include one or more curable materials including a homopolymer having a Tg > 0 C. Such suitable components include trimethylolpropane triacrylate (TMPTA), ethoxylated (x mol) bisphenol A diacrylate, ethoxylated (x mol) trimethylolpropane triacrylate, and bisphenol A digylcidyl ether diacrylate. The value x is from 1 to 10, in certain embodiments from 1 to 5, and in still other embodiments 3.
[0061] Ring opening structural components can also be used in certain embodiments. Suitable ring opening structural components include S-21, 5-28, Epon 828, Epon 834, Si!quest* A-186 and Silquest A-187. Also useful are epoxies, oxetanes, anhydrides, and lactams.
[0062] Cationically polymerizable monomers include epoxy-containing materials, alkyl vinyl ethers, cyclic ethers, styrene, divinyl benzene, vinyl toluene, N-vinyl compounds, 1-alkyl olefins (alpha-olefins), lactams and cyclic acetals.
[0063] Epoxy-containing materials that can be cured or polymerized by the catalyst system of this subject matter are those known to undergo cationic polymerization and include 1,2-, 1,3-, and 1,4-cyclic ethers (also designated as 1,2-, 1,3-, and 1,4-epoxides). The 1,2-cyclic ethers are useful in certain versions of the present subject matter.
[0064] Cyclic ethers that can be polymerized in accordance with this subject matter include those described in Frisch and Reegan, Ring-Opening Polymerizations, Vol. 2 (1969).
Suitable 1,2-cyclic ethers are the monomeric and polymeric types of epoxides. They can be aliphatic, cycloaliphatic, aromatic, or 1049873.v1 heterocyclic and will typically have an epoxy equivalence of from 1 to 6, and in certain embodiments 1 to 3. Particularly useful are the aliphatic, cycloaliphatic, and glycidyl ether type 1,2-epoxides such as propylene oxide, epichlorohydrin, styrene oxide, vinylcyclohexene oxide, vinylcyclohexene dioxide, glycidol, butadiene oxide, diglycidyl ether of bisphenol A, cyclohexene oxide, 3,4-epoxycyclohexylmethy1-3,4-epoxycyclohexanecarboxylate, 3,4-epoxy-6-methylcyclohexylmethy1-3,4-epoxy-6-methylcyclohexanecarboxylat e, bis(3,4-epoxy-6-methylcyclohexylmethyl)adipate, dicyclopentadiene dioxide, epoxidized polybutadiene, 1,4-butanediol diglycidyl ether, polyglycidyl ether of phenolformaldehyde resole or novolak resin, resorcinol diglycidyl ether, and epoxy silicones, e.g., dimethylsiloxanes having cycloaliphatic epoxide or glycidyl ether groups.
Suitable 1,2-cyclic ethers are the monomeric and polymeric types of epoxides. They can be aliphatic, cycloaliphatic, aromatic, or 1049873.v1 heterocyclic and will typically have an epoxy equivalence of from 1 to 6, and in certain embodiments 1 to 3. Particularly useful are the aliphatic, cycloaliphatic, and glycidyl ether type 1,2-epoxides such as propylene oxide, epichlorohydrin, styrene oxide, vinylcyclohexene oxide, vinylcyclohexene dioxide, glycidol, butadiene oxide, diglycidyl ether of bisphenol A, cyclohexene oxide, 3,4-epoxycyclohexylmethy1-3,4-epoxycyclohexanecarboxylate, 3,4-epoxy-6-methylcyclohexylmethy1-3,4-epoxy-6-methylcyclohexanecarboxylat e, bis(3,4-epoxy-6-methylcyclohexylmethyl)adipate, dicyclopentadiene dioxide, epoxidized polybutadiene, 1,4-butanediol diglycidyl ether, polyglycidyl ether of phenolformaldehyde resole or novolak resin, resorcinol diglycidyl ether, and epoxy silicones, e.g., dimethylsiloxanes having cycloaliphatic epoxide or glycidyl ether groups.
[0065] A wide variety of commercial epoxy resins are available and listed in Lee and Neville, Handbook of Epoxy Resins (1967) and in P. Bruins, Epoxy Resin Technology, (1968). Representative of the 1,3-and 1,4-cyclic ethers which can be polymerized in accordance with this subject matter are oxetane, 3,3-bis(chloromethyl)oxetane, and tetrahydrofuran.
[0066] In particular, cyclic ethers which are readily available include propylene oxide, oxetane, epichlorohydrin, tetrahydrofuran, styrene oxide, cyclohexene oxide, vinylcyclohexene oxide, glycidol, octylene oxide, phenyl glycidyl ether, 1,2-butane oxide, diglycidyl ether of bisphenol A (e.g., Epon 828 and DER 331), vinylcyclohexene dioxide (e.g., ERL-4206), 3,4-epoxycyclohexylmethy1-3,4-epoxycyclohexanecarboxylate (e.g., ERL-422 1), 3,4-epoxy-6-methylcyclohexylmethy1-3,4-epoxy-6-methylcyclohexanecarboxylat e (e.g. ERL-4201), bis(3,4-epoxy-6-methylcyclohexylmethyl)adipate (e.g., ERL-4299), aliphatic epoxy modified with polypropylene glycol (e.g., ERL-4050 and ERL-4052), dipentene dioxide (e.g., ERL-4269), epoxidized polybutadiene (e.g., Oxiron 2001), silicone epoxy (e.g., Syl-Kem 90), 1,4-butanediol diglycidyl ether (e.g., Araldite RD-2), polyglycidyl ether of phenolformaldehyde novolak (e.g., DER-431), Epi-Rez 521 and DER-438), resorcinol diglycidyl ether (e.g., Kopoxite), polyglycol diepoxide (e.g., DER-736), polyacrylate epoxide (e.g., Epocryl U-14), urethane modified epoxide (e.g., 1049873.v1 0X3599), polyfunctional flexible epoxides (e.g., Flexibilizer 151), and mixtures thereof as well as mixtures thereof with co-curatives, curing agents or hardeners which also are known (see Lee and Neville and Bruins, supra). Representative of the co-curatives of hardeners that can be used are acid anhydrides such as nadic methyl anhydride, cyclopentanetetracarboxylic dianhydride, pyromellitic anhydride, cis-1,2-cyclohexanedicarboxylic anhydride, and mixtures thereof.
[0067] Cationically-polymerizable monomers useful in the present subject matter include but are not limited to epoxy-containing materials, alkyl vinyl ethers, cyclic ethers, styrene, divinyl benzene, vinyl toluene, N-vinyl compounds, cyanate esters, 1-alkenes (alpha olefins), lactams and cyclic acetals.
[0068] Additional cationically-polymerizable monomers are described in U.S.
Patent No. 5,252,694 at col. 4, line 30 through col. 5, line 34. Particular monomers of this class include EPON. 828, and EPON
1001F and the ERL series of cycloaliphatic epoxy monomers such as ERL-4221' or ERL-4206". Particularly useful monomers are the ERL series because of their lower cure temperatures.
Patent No. 5,252,694 at col. 4, line 30 through col. 5, line 34. Particular monomers of this class include EPON. 828, and EPON
1001F and the ERL series of cycloaliphatic epoxy monomers such as ERL-4221' or ERL-4206". Particularly useful monomers are the ERL series because of their lower cure temperatures.
[0069] Certain lactones may be useful in the present subject matter. The lactones which can used as comonomers in the present subject matter include those shown below with formulas (10)-(12):
II II II
(R2C)n 0, (CR2)k 0 and (CR2)h 0 (CR2),n (10) (11) (12) wherein n is 4 or 5, h, i, k, and m are independently 1 or 2 and each R is independently chosen from H or hydrocarbyl containing up to 12 carbon atoms. Particular lactones are those in which R is hydrogen or 1049873.v1 methyl, and in certain embodiments particularly useful lactones are e-caprolactone, d-valerolactone, glycolide (1,4-dioxan-2,5-dione), 1,5-dioxepan-2-one and 1,4-dioxan-2-one.
II II II
(R2C)n 0, (CR2)k 0 and (CR2)h 0 (CR2),n (10) (11) (12) wherein n is 4 or 5, h, i, k, and m are independently 1 or 2 and each R is independently chosen from H or hydrocarbyl containing up to 12 carbon atoms. Particular lactones are those in which R is hydrogen or 1049873.v1 methyl, and in certain embodiments particularly useful lactones are e-caprolactone, d-valerolactone, glycolide (1,4-dioxan-2,5-dione), 1,5-dioxepan-2-one and 1,4-dioxan-2-one.
[0070] An additional class of diluent that may be employed in the present subject matter is a ring-opening monomer diluent. Such a diluent is also non-reactive with the other reactants under conditions of free radical polymerization employed and which is capable of undergoing ring opening subsequent to formation of the acrylate polymer during the curing step. Such ring-opening diluents comprise, without limitation, lactones, lactams, cyclic ethers and cyclic siloxanes represented by the following general formulas shown below as (13)-(16):
0(CH2)CO, HN(CH2)xCO (Cf12)x SiO
(CI-I3)x (13) (14) (15) - (16)
0(CH2)CO, HN(CH2)xCO (Cf12)x SiO
(CI-I3)x (13) (14) (15) - (16)
[0071] In formulas (13)-(16), x ranges from, for example, 3 to 11, and in certain versions 3-6 alkylene groups.
[0072] U.S. Patent No. 5,082,922 describes the use of ring-opening monomers as diluents in the solvent-free formation of polymers from ethylenically unsaturated monomers.
However, this patent describes a single step reaction of the monomers together with the ring-opened diluent. This differs from the two step strategy of certain methods of the present subject matter which provide for the initial formation of the polymer from ethylenically unsaturated monomers followed by curing of the diluent in the presence of the thus-formed polymer. The noted patent provides for use of reaction conditions such as temperatures of at least 150 C which support both reactions in a single step.
1049873.v1
However, this patent describes a single step reaction of the monomers together with the ring-opened diluent. This differs from the two step strategy of certain methods of the present subject matter which provide for the initial formation of the polymer from ethylenically unsaturated monomers followed by curing of the diluent in the presence of the thus-formed polymer. The noted patent provides for use of reaction conditions such as temperatures of at least 150 C which support both reactions in a single step.
1049873.v1
[0073] Useful ring-opening monomer diluents include but are not limited to butyrolactone, valerolactone, caprolactone, methy-butyrolactone, butyrolactam, valerolactam, caprolactam and siloxanes.
[0074] A siloxane ring opening monomer is Siloquese A-186, which acts as a ring opening cured structural component as well as a silane functional structural component through silane-silane condensation reaction. Siloquest. A-186 (beta (3,4-epoxycyclohexyl) ethyltrimethoxysilane) has the following formula (17):
Xr----) I
¨ cH2a-f1 ¨ si ¨ acH, I
Beta-(3,4-EpoxycyclabexyDethy1trimethoxysliane (17)
Xr----) I
¨ cH2a-f1 ¨ si ¨ acH, I
Beta-(3,4-EpoxycyclabexyDethy1trimethoxysliane (17)
[0075] While the polymerization reaction may be carried out in the presence of a non-reactive solvent, the reaction can advantageously occur in the substantial absence of a solvent. In certain embodiments, the solvent will be present in an amount of up to about 10 percent by weight, and preferably no more than 5 percent by weight, based on the total weight of the reactants. The solvent may be removed from the product of the diluent reaction step (such as by heating). Exemplary non-reactive solvents include ketones, alcohols, esters and hydrocarbon solvents, such as ethyl acetate, toluene and xylene.
i 049873.v1
i 049873.v1
[0076] Oxazolines, or oxazolidines, useful in the present subject matter include those having the following formulas (18)-(19):
(18) and =
cH2¨CH2 cH2¨cH2 I I I I
0 N¨(cH2)2-0¨co¨NH¨(CH6)2¨ ¨NH¨00-0¨(012)2¨N 0 / /
CH CH
(19) where R represents a branched, saturated, aliphatic hydrocarbon radical containing 5 to 8 carbons.
Another suitable oxazoline is shown below as (20):
CH2¨CH2 I
HO¨CH2¨CH2¨N 0 /
CH
(20) where R represents a branched, saturated, aliphatic hydrocarbon radical containing 5 to 8 carbons.
(18) and =
cH2¨CH2 cH2¨cH2 I I I I
0 N¨(cH2)2-0¨co¨NH¨(CH6)2¨ ¨NH¨00-0¨(012)2¨N 0 / /
CH CH
(19) where R represents a branched, saturated, aliphatic hydrocarbon radical containing 5 to 8 carbons.
Another suitable oxazoline is shown below as (20):
CH2¨CH2 I
HO¨CH2¨CH2¨N 0 /
CH
(20) where R represents a branched, saturated, aliphatic hydrocarbon radical containing 5 to 8 carbons.
[0077] The oxazolidine mixtures useful herein generally have a viscosity of less than 8,000, and in certain versions, less than 6,500 mPa.s at 23 C and, thus, are suitable as solventless hardeners for polymer precursors containing isocyanate groups. In combination with polymer precursors containing isocyanate groups, they are suitable for the production of solventless or low solvent, one-component systems which, in turn, are suitable as binders for high quality paints, coating compositions or sealing 1049873.v1 compositions. These systems are generally cured after application by exposure to atmospheric moisture.
Polymer precursors containing isocyanate groups which are suitable for the production of these systems include the organic polyisocyanates or isocyanate prepolymers described, e.g., US Patent No. 4,002,601.
Generally the oxazolines useful herein are described in US Patent No.
5,189,176.
Polymer precursors containing isocyanate groups which are suitable for the production of these systems include the organic polyisocyanates or isocyanate prepolymers described, e.g., US Patent No. 4,002,601.
Generally the oxazolines useful herein are described in US Patent No.
5,189,176.
[0078] In certain embodiments, bismaleimides can be used. The bismaleimides that may be used in the present subject matter are organic compounds containing two maleimide groups and are prepared generally from maleic anhydride and diamines. Bismaleimides may be described by the general formula of (21) as follows:
II II
/.=\ /*%.
II
N¨R3¨N
(21) wherein R3 is a divalent aromatic or alicyclic organic group. In certain versions, useful bismaleimides are derived from aromatic diamines and particularly are those wherein R3 is a polynuclear aromatic radical.
Examples of such bismaleimides include 2,2-bis(4-aminophenoxy-4-phenyl) propane bismaleimide, 4,4'-bis(3-amino phenoxy) diphenyl sulfone bismaleimide, 1,4-bis(3-aminophenyl isopropylidene) benzene bismaleimide and bis(4-aminophenyl) methane bismaleimide. The bismaleimides may be used singly or as mixtures.
II II
/.=\ /*%.
II
N¨R3¨N
(21) wherein R3 is a divalent aromatic or alicyclic organic group. In certain versions, useful bismaleimides are derived from aromatic diamines and particularly are those wherein R3 is a polynuclear aromatic radical.
Examples of such bismaleimides include 2,2-bis(4-aminophenoxy-4-phenyl) propane bismaleimide, 4,4'-bis(3-amino phenoxy) diphenyl sulfone bismaleimide, 1,4-bis(3-aminophenyl isopropylidene) benzene bismaleimide and bis(4-aminophenyl) methane bismaleimide. The bismaleimides may be used singly or as mixtures.
[0079] It is also possible to use bismaleimides in which up to 50% of the maleimide groups have been replaced by substituted maleimide groups such as methyl maleimides or halomaleimides or by the nadimide, methyl nadimide, or isomaleimide groups. Portions of the maleimide groups may also be replaced by succinimide, phthalimide, or substituted succinimide and phthalimide groups.
1049873.0
1049873.0
[0080] The bismaleimide may be prepared by a number of well known methods from maleic anhydride and diamines, and a great many are readily available from commercial sources.
[0081] As previously noted, in certain aspects of the present subject matter, one or more components of the compositions such as the bodying components can be non-acrylic based bodying components. A wide array of non-acrylic based components can be used.
Nonlimiting examples include polyolefins, polyvinyl aromatics, polyurethanes, polycarbonates, polyesters, polyethers, and combinations of these and potentially with one or more other agents and/or components. A particular nonlimiting example of a polyvinyl aromatic is polystyrene.
Nonlimiting examples include polyolefins, polyvinyl aromatics, polyurethanes, polycarbonates, polyesters, polyethers, and combinations of these and potentially with one or more other agents and/or components. A particular nonlimiting example of a polyvinyl aromatic is polystyrene.
[0082] Various additives and initiators are useful with the adhesives and compositions of the present subject matter. Periodically, the term "curative" is used herein. That term refers to an agent(s) or stimulus that promotes or causes polymerization of the polymer(s) in the subject composition. Thus, the term curative includes a single agent, a single stimulus, multiple agents, multiple stimuli, combinations of agents, combinations of stimuli, and combinations of one or more agents with one or more stimuli. Generally, the curative(s) is activable, i.e., activatable, by at least one of radiation, heat, moisture, pressure, ultrasound, exposure to chemical agents, and combinations thereof. Typically, the term curative as used herein refers to catalysts and/or photoinitiators.
However, it will be appreciated that the term may include a wide array of other agents (and stimuli).
However, it will be appreciated that the term may include a wide array of other agents (and stimuli).
[0083] Thermal Catalysts. The catalysts herein may be external or internal.
Catalysts may be used in an amount of 0-10 wt%, 0.1-10 wt%, 0-5 wt%, 0.1-5 wt%, 0-4 wt%, 0.1-4 wt%, 0-2 wt%, 0.1-2 wt%, or 0.01-2 wt%. Suitable catalysts include blocked strong acid catalysts, which are based on acids consisting of, for example trifluoromethanesulfonic acid (triflic acid), dinonylnaphthalene sulfonic acid (DSA), dinonylnaphthalene disulfonic acid (DDSA), hexafluoro phosphate, and ammonium antimony hexafluoride (a Lewis acid), and are available from King Industries for example as K-Puree CXC 1615 (diethylamine salt of trifluoromethanesulfonic acid), Nacure* 155 (a blocked acid catalyst based on ONNDSA), K-Pure' CXC 1612 (ammonium antimony hexafluoride), Nacure. Super-A218 (zinc salt of trifluoromethanesulfonic acid), K-Pure CXC 1738 (ammonium hexafluorophosphate), and K-Pure' CXC
1614 (ammonium trifluoromethanesulfonic acid).
Catalysts may be used in an amount of 0-10 wt%, 0.1-10 wt%, 0-5 wt%, 0.1-5 wt%, 0-4 wt%, 0.1-4 wt%, 0-2 wt%, 0.1-2 wt%, or 0.01-2 wt%. Suitable catalysts include blocked strong acid catalysts, which are based on acids consisting of, for example trifluoromethanesulfonic acid (triflic acid), dinonylnaphthalene sulfonic acid (DSA), dinonylnaphthalene disulfonic acid (DDSA), hexafluoro phosphate, and ammonium antimony hexafluoride (a Lewis acid), and are available from King Industries for example as K-Puree CXC 1615 (diethylamine salt of trifluoromethanesulfonic acid), Nacure* 155 (a blocked acid catalyst based on ONNDSA), K-Pure' CXC 1612 (ammonium antimony hexafluoride), Nacure. Super-A218 (zinc salt of trifluoromethanesulfonic acid), K-Pure CXC 1738 (ammonium hexafluorophosphate), and K-Pure' CXC
1614 (ammonium trifluoromethanesulfonic acid).
[0084] Base catalysts can be primary, secondary or tertiary amines. A
suitable primary diamine is diamino diphenyl sulfone. Other bases include imidizoles and ketimines.
Suitable imidizoles include 2-methyl imidizole, 2-ethyl 4-methyl imidizole, 2-phenyl imidizole. A listing of imidizole curatives are found in US Patent Application Publication No. 2009/0194320, paragraph [00451.
A latent base curative is dicyandiamide [DICY].
suitable primary diamine is diamino diphenyl sulfone. Other bases include imidizoles and ketimines.
Suitable imidizoles include 2-methyl imidizole, 2-ethyl 4-methyl imidizole, 2-phenyl imidizole. A listing of imidizole curatives are found in US Patent Application Publication No. 2009/0194320, paragraph [00451.
A latent base curative is dicyandiamide [DICY].
[0085] Photoinitiators. Photoinitiators include radical photoinitiators and UV radical photoinitiators. Photoinitiators may be present in the compositions of the present subject matter in amounts of 0-10 wt%, 0.01-10 wt%, 2-5 wt%, or 1-3 wt%.
[0086] Radical Photoinitiators. Thermal initiators include t-butyl peroxy 2-ethylhexanoate, t-butyl peroxy pivalate, t-amylperoxy-2-ethyl hexanoate, Benzoyl Peroxide, t-amyl peroxybenzoate, t-butyl peroxy acetate, and Azo compounds sold under the trade name Vazo, such as for example Vazo 52, Vazo 67, and Vazo 88.
[0087] UV Radical Photoinitiators. The photoinitiators which are suitable in the present subject matter include both type I and type II photoinitiators.
[0088] Type I photoinitiators are defined to essentially undergo a unimolecular bond cleavage reaction upon irradiation thereby yielding free radicals. Suitable type I
photoinitiators are selected from a group consisting of benzoin ethers, benzil ketals, alpha-dialkoxy-acetophenones, a-hydroxyalkylphenones and acyl-phosphine oxides. Suitable type I
photoinitiators are commercially available, for example, as Esacure KIP 100 from Lamberti Spa, Gallarate, Italy, or as lrgacure 651 from Ciba-Geigy, Lautertal, Germany.
1049873.v1
photoinitiators are selected from a group consisting of benzoin ethers, benzil ketals, alpha-dialkoxy-acetophenones, a-hydroxyalkylphenones and acyl-phosphine oxides. Suitable type I
photoinitiators are commercially available, for example, as Esacure KIP 100 from Lamberti Spa, Gallarate, Italy, or as lrgacure 651 from Ciba-Geigy, Lautertal, Germany.
1049873.v1
[0089] In general, the type I photoinitiator compounds suitable herein are selected from a group consisting of benzoin ethers, benzil ketals, a-dialkoxy-acetophenones, a-hydroxyalkylphenones and acyl-phosphine oxides.
[0090] Type II photoinitiators are defined to essentially undergo a bimolecular reaction where the photoinitiators interact in an excited state with a second compound acting as co-initiator, to generate free radicals. Suitable type II photoinitiators are selected from a group comprising benzophenones, thioxanthones and titanocenes. Suitable co-initiators are preferably selected from a group consisting of amine functional monomers, oligomers or polymers whereby amino functional monomers and oligomers are used in certain embodiments. Both primary, secondary and tertiary amines can be used whereby tertiary amines are used in certain embodiments. Suitable type II
photoinitiators are commercially available, for example, as Esacure TZT from Lamberti Spa, Gallarate, Italy, or as 2-or 3-methylbenzophenone from Aldrich Co., Milwaukee, Wisconsin, USA. Suitable amine co-initiators are commercially available, for example, as GENOMER 5275 from Rahn AG, Zurich, Switzerland.
photoinitiators are commercially available, for example, as Esacure TZT from Lamberti Spa, Gallarate, Italy, or as 2-or 3-methylbenzophenone from Aldrich Co., Milwaukee, Wisconsin, USA. Suitable amine co-initiators are commercially available, for example, as GENOMER 5275 from Rahn AG, Zurich, Switzerland.
[0091] Specific examples of type II photoinitiator compounds include benzophenones and thioxanthones. In a particular embodiment, co-initiator compounds such as amines may be present and may interact with the type II photoinitiator compounds.
[0092] Crosslinkers. The crosslinkers useful herein include radiation activatable crosslinking agents, which are selected from the group consisting of aldehydes, ketones, quinones, thioxanthones, and s-triazines. Metal chelate crosslinker catalysts are also envisioned. The crosslinkers may be present in the compositions of the present subject matter in an amount of 2 to 95 wt%, 0-4 wt%, 0.01-4 wt%, 0.01-2 wt%, 0-2 wt%, 0.01-1 wt%, 0-1 wt%, 0.01-0.5 wt%, or 0-0.5 wt%.
[0093] Photosensitizers. Each sensitizer tends to have its own characteristic response in the visible and ultraviolet light spectrum, so they may be used in combination to broaden the light response and/or increase the speed of response to exposure to light.
1049873.v1
1049873.v1
[0094] Photosensitizers may be used in the compositions of the subject matter in amounts such as 0-15 wt%, 0-01-15 wt%, 0-10 wt%, 0.01-10 wt%, 0-5 wt%, 0.01-5 wt%, 0-2 wt%, 0.01-2 wt%, 0-1 wt, and 0.01-1 wt%. Photosensitizers may be sensitizing dyes.
[0095] Illustrative sensitizing dyes are those in the following categories:
diphenylmethane, xanthene, acridine, methine and polymethine, thiazole, thiazine, azine, aminoketone, porphyrin, colored aromatic polycyclic hydrocarbons, thioxanthenones p-substituted aminostyryl compounds and aminotriaryl methanes.
diphenylmethane, xanthene, acridine, methine and polymethine, thiazole, thiazine, azine, aminoketone, porphyrin, colored aromatic polycyclic hydrocarbons, thioxanthenones p-substituted aminostyryl compounds and aminotriaryl methanes.
[0096] Stabilizers and Processing Aids. Several categories of stabilizers and processing aids are envisioned, including oils/waxes, antioxidants, photosensitizers, rheology modifiers, fillers, radical structural components, ring opening structural components, epoxies, oxetanes, anhydrides, lactams, lactones, oxazolines, isocyanates, bismaleimides, and azodioxides. Stabilizers and process aids are used in the cornpositions of the subject matter in amounts such as 0-10 wt%, 0.1-10 wt%, 0-4 wt%, 0.1-4 wt%, 0-3 wt% and 0.1-3 wt%. In certain embodiments, it may be useful to utilize an azodioxide as a stabilizer.
An example of such is the stabilizer commercially available from Hampford Research, Inc. of Stratford, CT, under the designation UVTS-52. UVTS-52 is a thermally reversible azodioxide. UVTS-52 (CAS 34122-40-2) is believed to be 1,4,4-trimethy1-2,3-diazabicyclo-[3.2.2]-non-2-ene-2,3-dioxide.
An example of such is the stabilizer commercially available from Hampford Research, Inc. of Stratford, CT, under the designation UVTS-52. UVTS-52 is a thermally reversible azodioxide. UVTS-52 (CAS 34122-40-2) is believed to be 1,4,4-trimethy1-2,3-diazabicyclo-[3.2.2]-non-2-ene-2,3-dioxide.
[0097] Plasticizers- Oils and waxes. Suitable plasticizers include plasticizing oils, such as mineral oil, but also olefin oligomers and low molecular weight polymers, or glycol benzoates, as well as vegetable and animal oil and derivatives of such oils. The petroleum-derived oils that may be employed are relatively high boiling temperature materials containing only a minor proportion of aromatic hydrocarbons. In this regard, the aromatic hydrocarbons should in certain embodiments be less than 30%, and more particularly less than 15%, by weight, of the oil. Alternately, the oil may be fully non-aromatic. Suitable oligomers included as plasticizers may be polypropylenes, polybutenes, hydrogenated polyisoprene, hydrogenated butadiene, or the like having average molecular weights between about 1049873.v1 100 and about 10,000 g/mol. Suitable vegetable and animal oils include glycerol esters of the usual fatty acids (for example, stearic, oleic, linoleic, linolenic) and polymerization products thereof. Other plasticizers may be used provided they have suitable compatibility. Nyflex*
222B, a naphthenic mineral oil manufactured by Nynas Corporation, has also been found to be an appropriate plasticizer. As will be appreciated, plasticizers have typically been employed to reduce the viscosity of the overall adhesive composition without substantially decreasing the adhesive strength and/or the service temperature of the adhesive. The choice of plasticizer can be useful in formulation for specific end uses (such as wet strength core applications). Because of economics involved in production and in material cost, as plasticizers are usually of lower cost than other materials involved in the formulation like polymers and tackifying resins, the amount of plasticizer in the adhesive should be maximized for cost considerations.
222B, a naphthenic mineral oil manufactured by Nynas Corporation, has also been found to be an appropriate plasticizer. As will be appreciated, plasticizers have typically been employed to reduce the viscosity of the overall adhesive composition without substantially decreasing the adhesive strength and/or the service temperature of the adhesive. The choice of plasticizer can be useful in formulation for specific end uses (such as wet strength core applications). Because of economics involved in production and in material cost, as plasticizers are usually of lower cost than other materials involved in the formulation like polymers and tackifying resins, the amount of plasticizer in the adhesive should be maximized for cost considerations.
[0098] Waxes in amounts of 0% to 20% by weight or 0.1-20 wt%, or 0.1-15 wt%, can also be used in the adhesive compositions, and are used to reduce the melt viscosity of the adhesives without appreciably decreasing their adhesive bonding characteristics. These waxes also are used to reduce the open time of the composition without affecting the temperature performance.
[0099] Examples of useful wax materials include the following.
[00100] Low molecular weight (100-6000 g/mol) polyethylene having a hardness value, as determined by ASTM method D- 1321, of from about 0.1 to 120 and ASTM softening points of from about 66 C to 120 C can possibly be used.
[00101] Petroleum waxes such as paraffin wax having a melting point of from about 130 F to 170 F
and microcrystalline wax having a melting point of from about 135*F to 200 F, the latter melting points being determined by ASTM method D 127-60 can possibly be used.
and microcrystalline wax having a melting point of from about 135*F to 200 F, the latter melting points being determined by ASTM method D 127-60 can possibly be used.
[00102] Atactic polypropylene having a Ring and Ball softening point of from about 120 to 160 C
can potentially be used.
1049873.v1
can potentially be used.
1049873.v1
[00103] Metallocene catalyzed propylene-based wax under the name "Licocene"
commercialized by Clariant International, Ltd., Muttenz, Switzerland, can possibly be used.
commercialized by Clariant International, Ltd., Muttenz, Switzerland, can possibly be used.
[00104] Metallocene catalyzed wax or single-site catalyzed wax like for example those described in U.S. Patents 4,914,253 and 6,319,979, and WO 97/33921 and WO 98/03603 can potentially be used.
[00105] Paraffin waxes, microcrystalline waxes, polyethylene waxes, polypropylene waxes, by-product polyethylene waxes, synthetic waxes made by polymerizing carbon monoxide and hydrogen such as Fischer-Tropsch waxes, oxidized Fischer-Tropsch waxes, functionalized waxes, and mixtures thereof, can possibly be used.
[00106] Polyolefin waxes. As used herein, the term "polyolefin wax" refers to those polymeric or long-chain entities comprised of olefinic monomer units. These materials are commercially available from Westlake Chemical Co. under the trade name "Epolene."
[00107] The materials which are used in certain embodiments of the present subject matter have a Ring and Ball softening point of 200 F to 350 F. As should be understood, each of these waxes is solid at room temperature. Other useful substances include hydrogenated animal, fish and vegetable fats and oils such as hydrogenated tallow, lard, soy oil, cottonseed oil, castor oil, menhadin oil, cod liver oil, etc., and which are solid at ambient temperature by virtue of their being hydrogenated, have also been found to be useful with respect to functioning as a wax material equivalent.
These hydrogenated materials are often referred to in the adhesives industry as "animal or vegetable waxes."
These hydrogenated materials are often referred to in the adhesives industry as "animal or vegetable waxes."
[00108] Antioxidants. The adhesive also typically includes about 0.1% to about 5% of a stabilizer or antioxidant. The stabilizers which are useful in the adhesive compositions of the present subject matter are incorporated to help protect the polymers noted above, and thereby the total adhesive system, from the effects of thermal and oxidative degradation which normally occurs during the manufacture and application of the adhesive as well as in the ordinary exposure of the final product to the ambient environment. Such degradation is usually manifested by a deterioration in the appearance, physical 1049873.v1 properties and performance characteristics of the adhesive. In certain embodiments, a particularly useful antioxidant is lrganox 1010, a tetrakis(methylene(3,5-di-teri-buty1-4-hydroxyhydrocinnamate))methane manufactured by Ciba-Geigy. Among the applicable stabilizers are high molecular weight hindered phenols and multifunctional phenols, such as sulfur and phosphorus-containing phenols. Hindered phenols are well known to those skilled in the art and may be characterized as phenolic compounds which also contain sterically bulky radicals in close proximity to the phenolic hydroxyl group thereof. In particular, tertiary butyl groups generally are substituted onto the benzene ring in at least one of the ortho positions relative to the phenolic hydroxyl group. The presence of these sterically bulky substituted radicals in the vicinity of the hydroxyl group serves to retard its stretching frequency and correspondingly, its reactivity. This steric hindrance thus provides the phenolic compound with its stabilizing properties. Representative hindered phenols include:
1,3,5-trimemy1-2,4,6-tris(3-5-di-tert-butyl-4-hydroxybenzyl) benzene;
pentaerythritol tetrakis-3(3,5-di-tert-butyl-4-hydroxyphenyl) propionate;
n-octadecy1-3(3,5-ditert-butyl-4-hydroxyphenyl) propionate;
4,4'-methylenebis(4-methyl-6-tert butylphenol);
4,4'-thiobis(6-tert-butyl-o-cresol);
2,6-di-tert-butylphenol;
6- (4-hydroxyphenoxy)-2,4-bis(n-ocytIthio)-1,3,5-triazine;
2,4,6-tris(4-hydroxy-3,5-di-tert-butyl-phenoxy)-1,3,5-triazine;
di-n-octadecy1-3,5-di-tert-butyl-4-hydroxybenzylphosphonate;
2-(n-octylthio)ethy1-3,5-di-tert-butyl-4-hydroxybenzoate; and sorb itol hexa-(3,3,5-di-tert-butyl-4-hydroxy-phenyl) propionate.
1,3,5-trimemy1-2,4,6-tris(3-5-di-tert-butyl-4-hydroxybenzyl) benzene;
pentaerythritol tetrakis-3(3,5-di-tert-butyl-4-hydroxyphenyl) propionate;
n-octadecy1-3(3,5-ditert-butyl-4-hydroxyphenyl) propionate;
4,4'-methylenebis(4-methyl-6-tert butylphenol);
4,4'-thiobis(6-tert-butyl-o-cresol);
2,6-di-tert-butylphenol;
6- (4-hydroxyphenoxy)-2,4-bis(n-ocytIthio)-1,3,5-triazine;
2,4,6-tris(4-hydroxy-3,5-di-tert-butyl-phenoxy)-1,3,5-triazine;
di-n-octadecy1-3,5-di-tert-butyl-4-hydroxybenzylphosphonate;
2-(n-octylthio)ethy1-3,5-di-tert-butyl-4-hydroxybenzoate; and sorb itol hexa-(3,3,5-di-tert-butyl-4-hydroxy-phenyl) propionate.
[00109] The performance of these stabilizers may be further enhanced by utilizing, in conjunction therewith; (1) synergists such as, for example, as thiodipropionate esters and phosphites; and (2) 1049873.v1 chelating agents and metal deactivators as, for example, ethylenediaminetetraacetic acid, salts thereof, and disalicylalpropylenediimine.
[00110] Ultraviolet Inhibitors. Antioxidants may be used to retard the oxidative attack on the adhesive composition, which can result in loss of the adhesive and cohesive strength of adhesive composition. Useful antioxidants include but are not limited to amines, such as N-N'-di-beta-naphthyl-1,4-phenylenediamine, available as AGERITE D, phenolics, such as 2,5-di-(t-amyl) hydroquinone, available as SANTOVAR A, from Monsanto Chemical Co., tetrakisiethylene 3-(3',5'-di-tert-butyl-4'-hydroxyphenyl)propianatelmethane, available as IRGANOX 1010 from Ciba-Geigy Corp., and 2-2'-methylenebis(4-methyl-6-tert butyl phenol), available as ANTIOXIDANT 2246, and dithiocarbamates, such as zinc dithiodibutyl carbamate.
[00111] Rheology Modifiers. Rheology modifiers can be added to change the thixotropic properties of the composition. Suitable rheology modifiers include polyamide waxes, fumed silica, flow control additives, reactive diluents, anti-settling agents, alpha-olefins, hydroxyl-terminated silicone-organic copolymers, including but not limited to hydroxyl-terminated polypropyleneoxide-dimethylsiloxane copolymers, and combinations thereof.
[00112] Fillers. Fillers can be used to impart strength or reduce overall cost. Useful fillers herein include aluminum trihydroxide, calcium hydroxide, expandable microspheres sold under the trade name Expancer, carbon black, titanium dioxide or nickel coated glass spheres.
[00113] In certain versions of the present subject matter, a filler, rheology modifier and/or pigment is present in the adhesive. These can perform several functions, such as modifying the rheology of the adhesive in a desirable way, absorbing moisture or oils from the adhesive or from a substrate to which it is applied, and/or promoting cohesive, rather than adhesive, failure. Other examples of such materials include calcium carbonate, calcium oxide, talc, coal tar, textile fibers, glass particles or fibers, aramid pulp, boron fibers, carbon fibers, mineral silicates, mica, powdered quartz, bentonite, wollastonite, 1049873.v1 kaolin, fumed silica, silica aerogel or metal powders such as aluminum powder or iron powder. Among these, calcium carbonate, talc, calcium oxide, fumed silica and wollastonite are particularly useful, either singly or in some combination, as these often promote the desired cohesive failure mode.
[00114] A description of useful pressure-sensitive adhesives and properties may be found in Encyclopedia of Polymer Science and Engineering, Vol. 13. Wiley-Interscience Publishers (New York, 1988). Additional description of useful pressure-sensitive adhesives and their characteristics may be found in Encyclopedia of Polymer Science and Technology, Vol. 1, pp. 476-546, Wiley-Interscience Publishers, 2nd Ed. (New York, 1985).
[00115] The adhesive layer is typically applied at a coatweight of from about 10 g/m2 to about 50 g/m2. For applications in which the labels are used as protective "overlam"
films, an adhesive coatweight of from 10 g/m2 to 20 g/m2 and particularly 15 g/m2 can be used.
For applications in which the labels are used as washing tags, an adhesive coatweight of from 20 g/m2 to 30 g/m2 can be used.
For applications in which the labels are used as vulcanization labels, a coatweight of from 20 g/m2 to 40 g/m2 can be used. It will be understood that the present subject matter includes the use of adhesive coatweights less than and/or greater than these representative values.
Topcoats
films, an adhesive coatweight of from 10 g/m2 to 20 g/m2 and particularly 15 g/m2 can be used.
For applications in which the labels are used as washing tags, an adhesive coatweight of from 20 g/m2 to 30 g/m2 can be used.
For applications in which the labels are used as vulcanization labels, a coatweight of from 20 g/m2 to 40 g/m2 can be used. It will be understood that the present subject matter includes the use of adhesive coatweights less than and/or greater than these representative values.
Topcoats
[00116] A transparent polymer protective topcoat or overcoat layer may be present in the labels of the present subject matter. The protective topcoat or overcoat layer provides desirable properties to the label before and after the label is affixed to a substrate. The presence of a transparent topcoat layer over a print layer may, in some embodiments provide additional properties such as antistatic properties stiffness and/or weatherability, and the topcoat may protect the print layer from, e.g., weather, sun, abrasion, moisture, water, etc. The transparent topcoat layer can enhance the properties of the underlying print layer to provide a glossier and richer image. The protective transparent protective layer 1049873 vi may also be designed to be abrasion resistant, radiation resistant (e.g, UV), chemically resistant, thermally resistant thereby protecting the label and, particularly the print layer from degradation from such causes. The protective overcoat may also contain antistatic agents, or anti-block agents to provide for easier handling when the labels are being applied to containers or other articles at high speeds. The protective layer may be applied to the print layer by techniques known to those skilled in the art. The polymer film may be deposited from a solution, applied as a preformed film (laminated to the print layer), etc.
[00117] When a transparent topcoat or overcoat layer is present, it may have a single layer or a multilayered structure. The thickness of the protective layer is generally in the range of about 12.5 to about 125 microns, and in one embodiment about 25 to about 75 microns.
Examples of the topcoat layers are described in U.S. Pat. No. 6,106,982.
Examples of the topcoat layers are described in U.S. Pat. No. 6,106,982.
[00118] The protective layer may comprise polyolefins, thermoplastic polymers of ethylene and propylene, polyesters, polyurethanes, polyacryls, polymethacryls, epoxy, vinyl acetate homopolymers, co- or terpolymers, ionomers, and mixtures thereof.
[00119] The transparent protective layer may contain UV light absorbers and/or other light stabilizers. Among the UV light absorbers that are useful are the hindered amine absorbers available from Ciba Specialty Chemical under the trade designations "Tinuvin". The light stabilizers that can be used include the hindered amine light stabilizers available from Ciba Specialty Chemical under the trade designations Tinuvin 111, Tinuvin 123, (bis-(1-octyloxy-2,2,6,6-tetramethy1-4-piperidinyl) sebacate;
Tinuvin 622, (a dimethyl succinate polymer with 4-hydroxy-2,2,6,6-tetramethy1-1-piperidniethanol);
Tinuvin 770 (bis-(2,2,6,6-tetramethy1-4-piperidiny1)-sebacate); and Tinuvin 783. Additional light stabilizers include the hindered amine light stabilizers available from Ciba Specialty Chemical under the trade designation "Chemassorb", especially Chemassorb 119 and Chemassorb 944.
The concentration of -1049873.0 the UV light absorber and/or light stabilizer is in the range of up to about 2.5% by weight, and in one embodiment about 0.05% to about 1% by weight.
Liners
Tinuvin 622, (a dimethyl succinate polymer with 4-hydroxy-2,2,6,6-tetramethy1-1-piperidniethanol);
Tinuvin 770 (bis-(2,2,6,6-tetramethy1-4-piperidiny1)-sebacate); and Tinuvin 783. Additional light stabilizers include the hindered amine light stabilizers available from Ciba Specialty Chemical under the trade designation "Chemassorb", especially Chemassorb 119 and Chemassorb 944.
The concentration of -1049873.0 the UV light absorber and/or light stabilizer is in the range of up to about 2.5% by weight, and in one embodiment about 0.05% to about 1% by weight.
Liners
[00120] The label assemblies of the present subject matter may optionally comprise one or more liners. The liner(s) typically cover the adhesive layer or region(s) and are removed to expose the adhesive prior to use or application of the label to a substrate or surface of interest.
[00121] A wide array of materials can be used for the liner such as but not limited to bleached glassine (BG), polyesters such as poly(ethylene terephthalate) (PET), polypropylene (PP), semi-calendered kraft (SCK) materials and particularly clay coated SCK materials, and wood-free kraft (HF) materials. Single component and multicomponent liners and liner assemblies can also be used.
[00122] It will be understood that the various label assemblies of the present subject matter can be provided in a linerless form in which a nontacky or partially tacky adhesive is used and which is rendered tacky prior to label application. A linerless construction can also be provided in the form of a self wound construction in which a face or printed side has a release layer on an outer surface.
Primers
Primers
[00123] The label assemblies of the present subject matter may optionally comprise one or more layers or region of primer materials. The primers are typically disposed between the face layer and the adhesive. However, primers can also be applied onto an opposite side of the face layer.
[00124] Nearly any suitable primer material can be utilized. In certain embodiments the primer is in the form of an adhesion promoter or barrier coating. ink primers can also be used.
[00125] Useful primers may be transparent or opaque and the primers may be solvent-based or water-based. In one embodiment, the primers are radiation curable (e.g., UV).
The primer may comprise 1049873.v1 a lacquer and a diluent. The lacquer may be comprised of one or more polyolefins, polyamides, polyesters, polyester copolymers, polyurethanes, polysulfones, polyvinylidine chloride, styrene-maleic anhydride copolymers, styrene-acrylonitrile copolymers, ionomers based on sodium or zinc salts or ethylene methacrylic acid, polymethyl methacrylates, acrylic polymers and copolymers, polycarbonates, polyacrylonitriles, ethylene-vinyl acetate copolymers, and mixtures of two or more thereof. Examples of the diluents that can be used include alcohols such as ethanol, isopropanol and butanol; esters such as ethyl acetate, propyl acetate and butyl acetate; aromatic hydrocarbons such as toluene and xylene;
ketones such as acetone and methyl ethyl ketone; aliphatic hydrocarbons such as heptane; and mixtures thereof. The ratio of lacquer to diluent is dependent on the viscosity required for application of the primer, the selection of such viscosity being within the skill of the art.
The primer may comprise 1049873.v1 a lacquer and a diluent. The lacquer may be comprised of one or more polyolefins, polyamides, polyesters, polyester copolymers, polyurethanes, polysulfones, polyvinylidine chloride, styrene-maleic anhydride copolymers, styrene-acrylonitrile copolymers, ionomers based on sodium or zinc salts or ethylene methacrylic acid, polymethyl methacrylates, acrylic polymers and copolymers, polycarbonates, polyacrylonitriles, ethylene-vinyl acetate copolymers, and mixtures of two or more thereof. Examples of the diluents that can be used include alcohols such as ethanol, isopropanol and butanol; esters such as ethyl acetate, propyl acetate and butyl acetate; aromatic hydrocarbons such as toluene and xylene;
ketones such as acetone and methyl ethyl ketone; aliphatic hydrocarbons such as heptane; and mixtures thereof. The ratio of lacquer to diluent is dependent on the viscosity required for application of the primer, the selection of such viscosity being within the skill of the art.
[00126] The primer layer(s) or region(s) if used, typically have a total thickness of from 0.5 microns to 3 microns. However, it will be appreciated that thicknesses outside of this range can be used in the label assemblies of the present subject matter.
[00127] The primer(s) if used, are typically applied to the face layer by conventional techniques such as co-extrusion or spraying.
[00128] Figure 1 is a schematic cross sectional illustration of a label assembly 100A in accordance with the present subject matter. The label 100A comprises a face layer 10, a primer layer 20, an adhesive layer 30, and a liner 40. The face layer 10 defines an outer face 12.
[00129] Figure 2 is a schematic cross sectional illustration of a label assembly 100B in accordance with the present subject matter. The label 100B comprises a face layer 10, a primer layer 20, an adhesive layer 30, and a liner 40. The label 100B also comprises a topcoat 50 disposed on the face layer 10. The topcoat 50 defines an outer face 52.
1049873.v1
1049873.v1
[00130] Figure 3 is a schematic cross sectional illustration of a label assembly 100C in accordance with the present subject matter. The label 100C comprises a face layer 10, a primer layer 20, and an adhesive layer 30. The face layer 10 defines an outer face 12.
[00131] Figure 4 is a schematic cross sectional illustration of a label assembly 100D in accordance with the present subject matter. The label 100D comprises a face layer 10, a primer layer 20, and an adhesive layer 30. The label 100D also comprises a topcoat 50 disposed on the face layer 10. The topcoat 50 defines an outer face 52.
[00132] Figure 5 is a schematic cross sectional illustration of a label assembly 100E in accordance with the present subject matter. The label 100E comprises a face layer 10, an adhesive layer 30, and a liner 40. The face layer 10 defines an outer face 12.
[00133] Figure 6 is a schematic cross sectional illustration of a label assembly 100F in accordance with the present subject matter. The label 100F comprises a face layer 10, an adhesive layer 30, and a liner 40. The label 100F also comprises a topcoat 50. The topcoat 50 defines an outer face 52.
[00134] Figure 7 is a schematic cross sectional illustration of a label assembly 100G in accordance with the present subject matter. The label 1000 comprises a face layer 10 and an adhesive layer 30.
The face layer 10 defines an outer face 12.
The face layer 10 defines an outer face 12.
[00135] Figure 8 is a schematic cross sectional illustration of a label assembly 100H in accordance with the present subject matter. The label 100H comprises a face layer 10 and an adhesive layer 30.
The label 100H also comprises a topcoat 50. The topcoat 50 defines an outer face 52.
The label 100H also comprises a topcoat 50. The topcoat 50 defines an outer face 52.
[00136] The present subject matter also includes the use of multiple arrays and/or combinations of label assemblies. For example, Figure 9 depicts a cross sectional illustration of a label assembly 200A
including two labels 100A as previously described which are positioned to encompass and/or enclose one or more electronic components (or any other component or part that needs to be protected such as for example a washing tag) 80 which for example can be an RFID component as known in the art. It will 1049873.v1 be appreciated that prior to enclosure of the component 80, the liners 40 of the labels 100A are removed to thereby expose adhesive layers 30.
including two labels 100A as previously described which are positioned to encompass and/or enclose one or more electronic components (or any other component or part that needs to be protected such as for example a washing tag) 80 which for example can be an RFID component as known in the art. It will 1049873.v1 be appreciated that prior to enclosure of the component 80, the liners 40 of the labels 100A are removed to thereby expose adhesive layers 30.
[00137] Figure 10 depicts another label assembly 200B including a label assembly 100A as previously described which is used in conjunction with a face layer 10 to enclose and/or encompass an electronic component 80, which may be for example an RFID component.
[00138] Details of RFID components, their operation, and their manufacture are provided in one or more of the following patents: US 7,298,266; 7,212,127; 7,225,992; 7,088,248;
8,289,165; 8,068,028;
8,593,256; and 7,786,868.
8,289,165; 8,068,028;
8,593,256; and 7,786,868.
[00139] It will be understood that the present subject matter includes a wide array of variations of label assemblies 200A, 200B and includes for example nearly any combination of labels 100A-100H and variations thereof.
Methods
Methods
[00140] The label assemblies of the present subject matter include one or more layer(s) or region(s) of the noted two stage adhesive which is initially in a PSA form. Typically, the labels are attached to a surface of interest by contacting the exposed PSA to the surface. The tacky adhesive surface adheres the label and maintains the label in a desired position or location on the surface. A contact force or application pressure may be applied to the label to promote adherence to the surface.
[00141] Upon appropriate placement of the label upon the surface of interest, heat is applied to thereby convert the two stage adhesive to a permanent, non-PSA adhesive.
Although the particular temperature(s) necessary to convert the adhesive depends upon the chemistry of the adhesive and other factors, for many adhesive systems a conversion temperature of at least 80 C, in particular embodiments at least 120 C, in certain embodiments at least 150 C, and in particular embodiments at 1049873.v1 least 180 C is used. In particular applications it is contemplated that the conversion temperature may be as high as about 240 C.
Although the particular temperature(s) necessary to convert the adhesive depends upon the chemistry of the adhesive and other factors, for many adhesive systems a conversion temperature of at least 80 C, in particular embodiments at least 120 C, in certain embodiments at least 150 C, and in particular embodiments at 1049873.v1 least 180 C is used. In particular applications it is contemplated that the conversion temperature may be as high as about 240 C.
[00142] In certain applications, heating is performed in combination with contacting the adhesive of a label assembly to an outer surface of an article or other surface of interest. The time period for such contact time while heating is from about 1 second up to about 200 seconds for example. Such time periods may be longer such as up to 10 minutes or more.
[00143] In many applications it is desirable to subject the applied label and surface to a lamination operation in which heat and pressure are simultaneously applied to the label and its adhesive.
Representative lamination time periods can be from about 0.5 seconds up to about 10 seconds with many applications utilizing a lamination time period of about 1 to 3 seconds.
Representative lamination pressures are typically from 1 psi to about 100 psi, with typical lamination pressures being from 5 psi to about 20 psi. It will be appreciated that the methods of the present subject matter include the use of temperatures, time periods, and pressures different than the representative values described herein.
Representative lamination time periods can be from about 0.5 seconds up to about 10 seconds with many applications utilizing a lamination time period of about 1 to 3 seconds.
Representative lamination pressures are typically from 1 psi to about 100 psi, with typical lamination pressures being from 5 psi to about 20 psi. It will be appreciated that the methods of the present subject matter include the use of temperatures, time periods, and pressures different than the representative values described herein.
[00144] The present subject matter labels can be used in a wide array of applications. For example, the labels can be attached to vehicular components, vehicle accessories, consumer goods, industrial goods, and electronic components. Nonlimiting examples of vehicular components include sun visors, seat belts, interior components such as plastic panels, and fabric covered components, exterior vehicle components such as body panels which may be painted, engine components and engine accessories such as oil filters and hoses, and tire labels and particularly for application to tires prior to vulcanization.
The various labels can also be attached to a wide array of other articles that are to be vulcanized.
Nonlimiting examples of vehicle accessories include infant and child seats and floor mats. Nonlimiting examples of consumer goods include shoes and particularly shoe tongs or tongues, textiles or clothing such as garments and fabric items, and household bedding and blankets.
Nonlimiting examples of industrial goods include drums and containers such as utilized for storage and/or transport of materials, 1049873.v1 electrical components such as transformers, converters, and motors, and piping and conduits such as plastic piping and steel or metal pipes. Nonlimiting examples of electronic components include power supplies, batteries, circuit boards, and frames and housings. It will be understood that the present subject matter includes other labeled articles.
The various labels can also be attached to a wide array of other articles that are to be vulcanized.
Nonlimiting examples of vehicle accessories include infant and child seats and floor mats. Nonlimiting examples of consumer goods include shoes and particularly shoe tongs or tongues, textiles or clothing such as garments and fabric items, and household bedding and blankets.
Nonlimiting examples of industrial goods include drums and containers such as utilized for storage and/or transport of materials, 1049873.v1 electrical components such as transformers, converters, and motors, and piping and conduits such as plastic piping and steel or metal pipes. Nonlimiting examples of electronic components include power supplies, batteries, circuit boards, and frames and housings. It will be understood that the present subject matter includes other labeled articles.
[00145] Many other benefits will no doubt become apparent from future application and development of this technology.
[00146] The present subject matter includes all operable combinations of features and aspects described herein. Thus, for example if one feature is described in association with an embodiment and another feature is described in association with another embodiment, it will be understood that the present subject matter includes embodiments having a combination of these features.
[00147] As described hereinabove, the present subject matter solves many problems associated with previous strategies, labels, systems and/or devices. However, it will be appreciated that various changes in the details, materials and arrangements of components, which have been herein described and illustrated in order to explain the nature of the present subject matter, may be made by those skilled in the art without departing from the principle and scope of the claimed subject matter, as expressed in the appended claims. The scope of the claims should not be limited by the embodiments, but should be given the broadest interpretation consistent with the wording of the claims and the specification as a whole.
1049873.v1
1049873.v1
Claims (24)
1 A label assembly comprising a face layer defining a first face and an oppositely directed second face, a two stage adhesive disposed on at least one of the first face and the second face, the two stage adhesive exhibiting a first stage in which the adhesive is initially in the form of a pressure sensitive adhesive (PSA) and upon heat conversion to a second stage, the adhesive is in the form of a permanent, non-PSA adhesive, wherein the pressure sensitive adhesive includes an acrylic backbone base polymer, wherein the two stage adhesive has a conversion temperature within a range of from 80° C to 240° C, wherein the face layer is selected from the group consisting of a polymeric film, synthetic textiles, synthetic leathers, paper, fiber glass, metal foils, ceramics, natural leather, and combinations thereof
2 The label assembly of claim 1 further comprising:
a primer layer disposed between the face layer and the two stage adhesive
a primer layer disposed between the face layer and the two stage adhesive
3. The label assembly of claim 1 further comprising a liner disposed on the two stage adhesive
4 The label assembly of claim 1 wherein the two stage adhesive is disposed on the second face of the face layer, the label assembly further comprising.
a topcoat disposed on the first face of the face layer
a topcoat disposed on the first face of the face layer
5. The label assembly of claim 1 wherein the face layer is a first face layer, the label assembly further comprising:
a second face layer defining a first face and an oppositely directed second face;
a component disposed between the first face layer and the second face layer.
a second face layer defining a first face and an oppositely directed second face;
a component disposed between the first face layer and the second face layer.
6. The label assembly of claim 5 further comprising:
a second two stage adhesive disposed on at least one of the first face and the second face of the second face layer, the second two stage adhesive exhibiting a first stage in which the adhesive is initially in the form of a pressure sensitive adhesive (PSA) and upon heat conversion to a second stage, the adhesive is in the form of a permanent, non-PSA adhesive.
a second two stage adhesive disposed on at least one of the first face and the second face of the second face layer, the second two stage adhesive exhibiting a first stage in which the adhesive is initially in the form of a pressure sensitive adhesive (PSA) and upon heat conversion to a second stage, the adhesive is in the form of a permanent, non-PSA adhesive.
7. The label assembly of claim 6 further comprising:
a primer layer disposed between the second face layer and the second two stage adhesive.
a primer layer disposed between the second face layer and the second two stage adhesive.
8. The label assembly of claim 6 wherein the second two stage adhesive disposed on the second face layer has a conversion temperature within a range of from 80° C to 240° C.
9. The label assembly of claim 5 wherein the second face layer is selected from the group consisting of a polymeric film, synthetic textiles, synthetic leathers, paper, fiber glass, metal foils, ceramics, natural leather, and combinations thereof, wherein the polymeric film is selected from the group consisting poly(vinyl chloride) (PVC), poly(ethylene terephthalate) (PET), polyolefins, polyamides, and polyvinylidene fluoride (PVF).
10. The label assembly of claim 5 wherein the component is an electronic component.
11. A method of labeling an article, the method comprising:
providing an article having an outer surface;
providing a label assembly according to any one of claims 1 to 10;
adhering the adhesive of the label assembly to the outer surface of the article, wherein the adhering is performed by at least one of contacting the adhesive of the label assembly to the outer surface of the article and contacting the adhesive of the label assembly to the outer surface of the article followed by converting the adhesive to the second stage.
providing an article having an outer surface;
providing a label assembly according to any one of claims 1 to 10;
adhering the adhesive of the label assembly to the outer surface of the article, wherein the adhering is performed by at least one of contacting the adhesive of the label assembly to the outer surface of the article and contacting the adhesive of the label assembly to the outer surface of the article followed by converting the adhesive to the second stage.
12. The method of claim 11 wherein the converting is performed by heating the adhesive to a temperature within a range of from 80° C to 240° C.
13. The method of claim 12 wherein heating is performed in combination with contacting the adhesive of the label assembly to the outer surface of the article.
14. The method of claim 13 wherein the contacting is performed for a time period within a range of from 1 second to 10 minutes.
15. An article labeled by the method of any one of claims 11-14 wherein the article is selected from the group consisting of vehicular components, vehicle accessories, consumer goods, industrial goods, and electronic goods.
16. A labeled article comprising:
an article having an outer surface; and a label assembly according to any one of claims 1 to 10, wherein the article is selected from the group consisting of vehicular components, vehicle accessories, consumer goods, industrial goods, and electronic goods.
an article having an outer surface; and a label assembly according to any one of claims 1 to 10, wherein the article is selected from the group consisting of vehicular components, vehicle accessories, consumer goods, industrial goods, and electronic goods.
17. The label assembly of claim 1 wherein the polymeric film is selected from the group consisting of poly(vinyl chloride) (PVC), poly(ethylene terephthalate) (PET), polyolefins, polyamides, and polyvinylidene fluoride (PVF), and combinations thereof.
18. The label assembly of claim 1 wherein the pressure sensitive adhesive includes 10-90%
of a pre-polymerized acrylic backbone base polymer.
of a pre-polymerized acrylic backbone base polymer.
19. The label assembly of claim 18 wherein the pre-polymerized acrylic backbone base polymer has a molecular weight (Mw) of 5,000 to 1,000,000.
20. The label assembly of claim 1 wherein the conversion temperature is applied for a time period of about 1 second to about 10 minutes.
21. The label assembly of claim 1 wherein the conversion temperature is applied for a time period of about 1 second to about 200 seconds.
22. The method of claim 13 wherein the heating and a pressure are simultaneously applied to the label assembly for a time period of from about 0.5 seconds to about 10 seconds or from about 1 second to about 3 seconds.
23. The method of claim 22 wherein the pressure is from 1 psi to about 100 psi or from about 5 psi to about 20 psi.
24. The label assembly of claim 5 wherein the component is a RFID.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562112216P | 2015-02-05 | 2015-02-05 | |
US62/112,216 | 2015-02-05 | ||
PCT/US2016/016774 WO2016127056A1 (en) | 2015-02-05 | 2016-02-05 | Label assemblies for adverse environments |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2975298A1 CA2975298A1 (en) | 2016-08-11 |
CA2975298C true CA2975298C (en) | 2020-03-10 |
Family
ID=55524430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2975298A Active CA2975298C (en) | 2015-02-05 | 2016-02-05 | Label assemblies for adverse environments |
Country Status (11)
Country | Link |
---|---|
US (2) | US11049421B2 (en) |
EP (1) | EP3253837B1 (en) |
JP (2) | JP6537620B2 (en) |
KR (1) | KR101996828B1 (en) |
CN (1) | CN107207924B (en) |
AU (1) | AU2016215123B2 (en) |
BR (1) | BR112017016860A2 (en) |
CA (1) | CA2975298C (en) |
MX (1) | MX2017010047A (en) |
RU (1) | RU2677155C1 (en) |
WO (1) | WO2016127056A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2887304A1 (en) | 2012-10-09 | 2014-04-17 | Avery Dennison Corporation | Adhesives and related methods |
BR112016015973A2 (en) * | 2014-01-08 | 2017-08-08 | Avery Dennison Corp | ARTICLES, COMPOSITIONS, SYSTEMS AND METHODS SELECTIVELY USING UNADHESIVE ADHESIVES |
EP3253837B1 (en) * | 2015-02-05 | 2024-07-31 | Avery Dennison Corporation | Label assemblies for adverse environments |
WO2018118767A1 (en) | 2016-12-22 | 2018-06-28 | Avery Dennison Corporation | Convertible pressure sensitive adhesives comprising urethane (meth) acrylate oligomers |
EP3638744A4 (en) | 2017-05-08 | 2021-01-13 | Avery Dennison Corporation | Vulcanization tire label |
EP3879459A1 (en) | 2017-08-29 | 2021-09-15 | Hill-Rom Services, Inc. | Rfid tag inlay for incontinence detection pad |
CN114097014A (en) * | 2019-06-28 | 2022-02-25 | Upm拉弗拉塔克公司 | Density adjustable label |
BR112022005741A2 (en) * | 2019-10-04 | 2022-06-21 | Pirelli | Label for a vehicle wheel tire, and process for making a label and tire for vehicle wheels |
WO2021064517A1 (en) * | 2019-10-04 | 2021-04-08 | Pirelli Tyre S.P.A. | A label for a tyre of vehicle wheels, a process for manufacturing said label and a process for manufacturing a tyre including said label |
CN110746836B (en) * | 2019-11-06 | 2022-02-01 | 焦作卓立膜材料有限责任公司 | High-temperature steam resistant thermal transfer release agent and preparation method thereof |
Family Cites Families (216)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2884126A (en) * | 1955-11-18 | 1959-04-28 | Minnesota Mining & Mfg | Pressure-sensitive adhesive sheet material |
US3408008A (en) | 1966-12-02 | 1968-10-29 | Eric H. Cocks | Apparatus for applying hot melt adhesives |
CH481197A (en) | 1967-02-22 | 1969-11-15 | Breveteam Sa | Adhesive for the underside coating of floor coverings |
US3639500A (en) | 1968-05-09 | 1972-02-01 | Avery Products Corp | Curable pressure sensitive adhesive containing a polyepoxide a carboxylated diene polymer and an acrylic ester tackifier |
DE2446438C2 (en) | 1974-09-28 | 1985-04-11 | Bayer Ag, 5090 Leverkusen | Process for the preparation of urethanes containing oxazolidine groups and their use |
US4049483A (en) | 1976-11-18 | 1977-09-20 | Minnesota Mining And Manufacturing Company | Pressure sensitive hot-melt adhesive system |
US4135033A (en) | 1977-02-16 | 1979-01-16 | Lawton William R | Heat-activated adhesive coating |
US4143858A (en) | 1977-08-29 | 1979-03-13 | Eastman Kodak Company | Substantially amorphous polyolefins useful as pressure-sensitive adhesives |
US4185050A (en) * | 1978-12-26 | 1980-01-22 | Celanese Corporation | Pressure sensitive adhesive compositions comprising a mixture of terpolymers |
BR8001021A (en) | 1979-02-26 | 1980-10-29 | Du Pont | RESISTANT DRY FILM MATERIAL, ADJUSTED ROLLER, WELDING MASK AND PROCESS FOR SELECTIVE MODIFICATION OF A SURFACE |
US4288527A (en) | 1980-08-13 | 1981-09-08 | W. R. Grace & Co. | Dual UV/thermally curable acrylate compositions with pinacol |
JPS58152074A (en) | 1982-03-05 | 1983-09-09 | Mitsui Toatsu Chem Inc | Adhesive composition for ceramic tile |
US4507429A (en) * | 1984-01-12 | 1985-03-26 | Air Products And Chemicals, Inc. | Pressure sensitive adhesives with improved shear resistance |
WO1986004547A1 (en) | 1985-02-05 | 1986-08-14 | Avery International Corporation | Composite facestocks and liners |
US4914253A (en) | 1988-11-04 | 1990-04-03 | Exxon Chemical Patents Inc. | Method for preparing polyethylene wax by gas phase polymerization |
ATE142557T1 (en) | 1989-05-11 | 1996-09-15 | Landec Corp | TEMPERATURE ACTIVATED BINDER UNITS |
EP0400703A1 (en) | 1989-05-24 | 1990-12-05 | Akzo Nobel N.V. | Adhesive based on a thermoplastic polyester with an aluminium compound incorporated therein |
US5194486A (en) | 1989-06-09 | 1993-03-16 | H & N Chemical Company | Adhesive |
US5264532A (en) * | 1989-08-14 | 1993-11-23 | Avery Dennison Corporation | Emulsion pressure-sensitive adhesives |
US5024880A (en) | 1990-01-03 | 1991-06-18 | Minnesota Mining And Manufacturing Company | Cellular pressure-sensitive adhesive membrane |
DE4021659A1 (en) | 1990-07-07 | 1992-01-09 | Bayer Ag | BISOXAZOLANES, OXAZOLAN MIXTURES MOST OF THESE, A METHOD FOR THE PRODUCTION THEREOF AND THE USE THEREOF AS A HARDENER FOR PLASTIC PREPARATORS HAVING ISOCYANATE GROUPS |
CA2048232A1 (en) | 1990-09-05 | 1992-03-06 | Jerry W. Williams | Energy curable pressure-sensitive compositions |
US5264278A (en) | 1991-03-20 | 1993-11-23 | Minnesota Mining And Manufacturing Company | Radiation-curable acrylate/silicone pressure-sensitive adhesive coated tapes adherable to paint coated substrates |
CA2076278A1 (en) * | 1991-08-22 | 1993-02-23 | Joseph T. Braun | Curable silicone pressure sensitive adhesive tape |
JP3035565B2 (en) | 1991-12-27 | 2000-04-24 | 株式会社半導体エネルギー研究所 | Fabrication method of thin film solar cell |
US5252694A (en) | 1992-01-22 | 1993-10-12 | Minnesota Mining And Manufacturing Company | Energy-polymerization adhesive, coating, film and process for making the same |
NZ247073A (en) * | 1992-08-26 | 1994-12-22 | Lintec Corp | Pressure sensitive adhesive label sheet with label film being polyethylene resin of a density of .925-.95 g/cc |
CA2077103C (en) * | 1992-08-28 | 2003-06-10 | Moore U.S.A. Inc. | Multipurpose label construction |
WO1994008781A1 (en) * | 1992-10-20 | 1994-04-28 | Avery Dennison Corporation | Pressure-sensitive structural adhesive |
US5322731A (en) | 1993-03-09 | 1994-06-21 | Minnesota Mining And Manufacturing Company | Adhesive beads |
US7575653B2 (en) | 1993-04-15 | 2009-08-18 | 3M Innovative Properties Company | Melt-flowable materials and method of sealing surfaces |
US5468652A (en) | 1993-07-14 | 1995-11-21 | Sandia Corporation | Method of making a back contacted solar cell |
US5721289A (en) | 1994-11-04 | 1998-02-24 | Minnesota Mining And Manufacturing Company | Stable, low cure-temperature semi-structural pressure sensitive adhesive |
US5645764A (en) | 1995-01-19 | 1997-07-08 | International Business Machines Corporation | Electrically conductive pressure sensitive adhesives |
US5695837A (en) | 1995-04-20 | 1997-12-09 | Minnesota Mining And Manufacturing Company | Tackified acrylic adhesives |
US5905099A (en) | 1995-11-06 | 1999-05-18 | Minnesota Mining And Manufacturing Company | Heat-activatable adhesive composition |
US5800724A (en) | 1996-02-14 | 1998-09-01 | Fort James Corporation | Patterned metal foil laminate and method for making same |
ID17196A (en) | 1996-03-14 | 1997-12-11 | Dow Chemical Co | ADHESIVE INGREDIENTS THAT CONTAIN OLEFIN POLYMER |
CN1103358C (en) | 1996-07-22 | 2003-03-19 | 陶氏化学公司 | Hot melt adhesives |
ZA977909B (en) | 1996-09-04 | 1999-03-03 | Dow Chemical Co | Compositions comprising a substantially random interpolymer of at least one alpha-olefin and at least one vinylidene aromatic monomer or hindered aliphatic vinylidene monomer |
CA2266675A1 (en) * | 1996-09-27 | 1998-04-02 | Avery Dennison Corporation | Prelaminate pressure-sensitive adhesive constructions |
DE69815073T3 (en) | 1997-03-14 | 2008-07-03 | Minnesota Mining And Manufacturing Co., St. Paul | ON-REQUEST HARDENING OF MOISTURE-REPRODUCTIVE COMPOSITIONS WITH REACTIVE FUNCTIONAL SILANE GROUPS |
US6011307A (en) | 1997-08-12 | 2000-01-04 | Micron Technology, Inc. | Anisotropic conductive interconnect material for electronic devices, method of use and resulting product |
US6077527A (en) | 1997-10-28 | 2000-06-20 | National Starch And Chemical Investment Holding Corporation | Enhancer tolerant pressure sensitive adhesives for transdermal drug delivery |
US5951786A (en) | 1997-12-19 | 1999-09-14 | Sandia Corporation | Laminated photovoltaic modules using back-contact solar cells |
DE19800676A1 (en) | 1998-01-10 | 1999-07-15 | Henkel Kgaa | Use of selected adhesive mixtures for the overlap of all-round labels when applied to plastic bottles |
FI106470B (en) | 1998-03-09 | 2001-02-15 | Neste Chemicals Oy | Resin glue that has been foamed and its use in gluing boards with a wooden base |
US6106982A (en) | 1998-05-11 | 2000-08-22 | Avery Dennison Corporation | Imaged receptor laminate and process for making same |
US6391415B1 (en) * | 1998-08-31 | 2002-05-21 | Environmental Inks And Coatings Corporation | Label system |
US6362249B2 (en) | 1998-09-04 | 2002-03-26 | Dsm Desotech Inc. | Radiation-curable coating compositions, coated optical fiber, radiation-curable matrix forming material and ribbon assembly |
US6844391B1 (en) | 1998-09-23 | 2005-01-18 | Avery Dennison Corporation | Adhesives with improved rivet properties and laminates using the same |
US6228486B1 (en) | 1998-10-06 | 2001-05-08 | Avery Dennison Corporation | Thermal transfer laminate |
US6235850B1 (en) | 1998-12-11 | 2001-05-22 | 3M Immovative Properties Company | Epoxy/acrylic terpolymer self-fixturing adhesive |
JP2002532589A (en) | 1998-12-11 | 2002-10-02 | ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチエン | Silyl-terminated polymer dispersion with high solids content |
US6541872B1 (en) | 1999-01-11 | 2003-04-01 | Micron Technology, Inc. | Multi-layered adhesive for attaching a semiconductor die to a substrate |
US6503620B1 (en) * | 1999-10-29 | 2003-01-07 | Avery Dennison Corporation | Multilayer composite PSA constructions |
US6664318B1 (en) | 1999-12-20 | 2003-12-16 | 3M Innovative Properties Company | Encapsulant compositions with thermal shock resistance |
JP2001288438A (en) | 2000-04-06 | 2001-10-16 | Sekisui Chem Co Ltd | Pressure-sensitive adhesive composition |
EP1311559B1 (en) | 2000-06-01 | 2006-08-02 | Kraton Polymers Research B.V. | Compositions comprising a functionalized block copolymer crosslinked with aluminum acetylacetonate |
US6353037B1 (en) | 2000-07-12 | 2002-03-05 | 3M Innovative Properties Company | Foams containing functionalized metal oxide nanoparticles and methods of making same |
US6841234B2 (en) | 2000-08-04 | 2005-01-11 | Scapa Tapes North America Inc. | Heat-activated adhesive tape having an acrylic foam-like backing |
US6497949B1 (en) | 2000-08-11 | 2002-12-24 | 3M Innovative Properties Company | Adhesive blends comprising hydrophilic and hydrophobic pressure sensitive adhesives |
US6756095B2 (en) | 2001-01-10 | 2004-06-29 | Avery Dennison Corporation | Heat-sealable laminate |
US6951596B2 (en) * | 2002-01-18 | 2005-10-04 | Avery Dennison Corporation | RFID label technique |
JP2002285106A (en) | 2001-03-27 | 2002-10-03 | The Inctec Inc | Active energy ray-curable pressure-sensitive adhesive |
US6686425B2 (en) * | 2001-06-08 | 2004-02-03 | Adhesives Research, Inc. | High Tg acrylic polymer and epoxy-containing blend therefor as pressure sensitive adhesive |
US6602958B2 (en) | 2001-07-10 | 2003-08-05 | Ips Corporation | Adhesives for bonding composites |
US7247659B2 (en) | 2001-07-26 | 2007-07-24 | Ciba Specialty Chemicals Corporation | Photosensitive resin composition |
US20030095388A1 (en) | 2001-11-16 | 2003-05-22 | Jinbao Jiao | Method and apparatus for securing a circuit board to a rigid surface |
US6866919B2 (en) | 2002-02-21 | 2005-03-15 | Mitsubishi Gas Chemical Company, Inc. | Heat-resistant film base-material-inserted B-stage resin composition sheet for lamination and use thereof |
US20040058133A1 (en) * | 2002-07-19 | 2004-03-25 | Bilodeau Wayne L. | Labeling method employing two-part curable adhesives |
US6613857B1 (en) | 2002-07-26 | 2003-09-02 | Avery Dennison Corporation | UV-crosslinked, pressure-sensitive adhesives |
CA2493998A1 (en) | 2002-07-31 | 2004-02-12 | Xinya Lu | Acrylic pressure sensitive adhesives |
WO2004015019A1 (en) | 2002-07-31 | 2004-02-19 | Nexicor Llc | Induction bondable high-pressure laminate |
US6653408B1 (en) | 2002-11-21 | 2003-11-25 | Kraton Polymers U.S. Llc | Compositions comprising a functionalized block copolymer crosslinked with aluminum acetylacetonate |
US7225992B2 (en) | 2003-02-13 | 2007-06-05 | Avery Dennison Corporation | RFID device tester and method |
DE10322898A1 (en) | 2003-05-21 | 2004-12-16 | Tesa Ag | Flameproof and heat-activated PSAs |
KR101215728B1 (en) | 2003-06-06 | 2012-12-26 | 히다치 가세고교 가부시끼가이샤 | Semiconductor device producing method |
CN1784433A (en) | 2003-06-09 | 2006-06-07 | 三井化学株式会社 | Crosslinkable methacrylic resin composition and transparent member |
US7170001B2 (en) | 2003-06-26 | 2007-01-30 | Advent Solar, Inc. | Fabrication of back-contacted silicon solar cells using thermomigration to create conductive vias |
US7691437B2 (en) | 2003-10-31 | 2010-04-06 | 3M Innovative Properties Company | Method for preparing a pressure-sensitive adhesive |
US7270889B2 (en) | 2003-11-04 | 2007-09-18 | Kimberly-Clark Worldwide, Inc. | Tackified amorphous-poly-alpha-olefin-bonded structures |
JPWO2005042612A1 (en) | 2003-11-04 | 2007-04-05 | 綜研化学株式会社 | Polymerizable composition and (meth) acrylic thermal conductive sheet |
US7144751B2 (en) | 2004-02-05 | 2006-12-05 | Advent Solar, Inc. | Back-contact solar cells and methods for fabrication |
EA011898B1 (en) * | 2004-03-09 | 2009-06-30 | Спир Груп Холдингз Лимитед | Label for glass containers and method for removing thereof |
US7524911B2 (en) | 2004-03-17 | 2009-04-28 | Dow Global Technologies Inc. | Adhesive and marking compositions made from interpolymers of ethylene/α-olefins |
US7088248B2 (en) | 2004-03-24 | 2006-08-08 | Avery Dennison Corporation | System and method for selectively reading RFID devices |
WO2005103178A1 (en) * | 2004-03-29 | 2005-11-03 | Avery Dennison Corporation | Anaerobic pressure sensitive adhesive |
US7645829B2 (en) | 2004-04-15 | 2010-01-12 | Exxonmobil Chemical Patents Inc. | Plasticized functionalized propylene copolymer adhesive composition |
US20050266237A1 (en) | 2004-05-28 | 2005-12-01 | Siddhartha Asthana | Heat-activated sound and vibration damping sealant composition |
EP1640388B1 (en) | 2004-09-24 | 2015-02-25 | Rohm and Haas Company | Biomass based Michael addition composition |
NZ549868A (en) * | 2004-10-22 | 2007-12-21 | Sato Kk | A method for applying a rfid tag carrying label on an object |
AU2005304335B2 (en) | 2004-11-10 | 2009-09-17 | Avery Dennison Corporation | In-mold labels and uses thereof |
US7212127B2 (en) | 2004-12-20 | 2007-05-01 | Avery Dennison Corp. | RFID tag and label |
US7786216B2 (en) | 2005-03-17 | 2010-08-31 | Dow Global Technologies Inc. | Oil based blends of interpolymers of ethylene/α-olefins |
EP1858937B1 (en) | 2005-03-17 | 2019-09-25 | Dow Global Technologies LLC | Functionalized ethylene/(alpha) -olefin interpolymer compositions |
JP5231987B2 (en) | 2005-03-17 | 2013-07-10 | ダウ グローバル テクノロジーズ エルエルシー | Adhesive and marking composition produced from ethylene / α-olefin copolymer |
US7756154B2 (en) | 2005-03-22 | 2010-07-13 | Netapp, Inc. | Shared implementation for multiple system interfaces |
TWI353360B (en) | 2005-04-07 | 2011-12-01 | Nippon Catalytic Chem Ind | Production process of polyacrylic acid (salt) wate |
US7298266B2 (en) | 2005-05-09 | 2007-11-20 | Avery Dennison | RFID communication systems and methods |
JP4634856B2 (en) | 2005-05-12 | 2011-02-16 | 利昌工業株式会社 | White prepreg, white laminate, and metal foil-clad white laminate |
US8287949B2 (en) | 2005-07-07 | 2012-10-16 | Dow Global Technologies Inc. | Aqueous dispersions |
WO2007011538A2 (en) | 2005-07-19 | 2007-01-25 | Dow Corning Corporation | Pressure sensitive adhesives and methods for their preparation |
JP4711777B2 (en) | 2005-08-11 | 2011-06-29 | 日東電工株式会社 | Adhesive sheet, manufacturing method thereof, and product processing method |
US20100311920A1 (en) | 2005-08-26 | 2010-12-09 | Cid Centro De Investigacion Y Desarrollo Tecnologico Sa De Cv | Using Reactive Block Copolymers as Chain Extenders and Surface Modifiers |
US20070088145A1 (en) | 2005-10-19 | 2007-04-19 | Mgaya Alexander P | Adhesive useful for film laminating applications |
US20070092733A1 (en) | 2005-10-26 | 2007-04-26 | 3M Innovative Properties Company | Concurrently curable hybrid adhesive composition |
ES2557155T3 (en) | 2005-12-01 | 2016-01-22 | Henkel Ag & Co. Kgaa | New material forming supramolecular structures, process and uses |
CN101000899A (en) | 2006-01-11 | 2007-07-18 | 南茂科技股份有限公司 | Chip package structure |
US20070231571A1 (en) | 2006-04-04 | 2007-10-04 | Richard Lane | Pressure sensitive adhesive (PSA) laminates |
JP2007286193A (en) * | 2006-04-13 | 2007-11-01 | Brother Ind Ltd | Tag tape and wireless tag label |
US8785531B2 (en) | 2006-07-06 | 2014-07-22 | Dow Global Technologies Llc | Dispersions of olefin block copolymers |
JP5433416B2 (en) | 2006-08-08 | 2014-03-05 | ワールド プラパティーズ、 インコーポレイテッド | Circuit materials, circuits and multilayer circuit laminates |
JP2008060151A (en) | 2006-08-29 | 2008-03-13 | Nitto Denko Corp | Method of semiconductor wafer back processing, method of substrate back processing, and radiation-curable pressure-sensitive adhesive sheet |
US7776969B2 (en) | 2006-12-04 | 2010-08-17 | Bayer Materialscience Llc | Allophanate-modified stabilizers and the polymer polyols prepared from these stabilizers |
CA2671033C (en) | 2006-12-07 | 2016-04-19 | 3M Innovative Properties Company | Block copolymer blend adhesives with multiple tackifiers |
TW200842174A (en) | 2006-12-27 | 2008-11-01 | Cheil Ind Inc | Composition for pressure sensitive adhesive film, pressure sensitive adhesive film, and dicing die bonding film including the same |
KR100907982B1 (en) | 2006-12-27 | 2009-07-16 | 제일모직주식회사 | Dicing Die Bonding Film comprising the Adhesive Film for Semi-Conductor Packaging formed composition for Preparing Adhesive Film |
WO2008093398A1 (en) | 2007-01-30 | 2008-08-07 | Asics Corporation | Process for production of shoes and shoes |
JP5089201B2 (en) | 2007-03-12 | 2012-12-05 | 日東電工株式会社 | Acrylic adhesive tape or sheet and method for producing the same |
EP2139967B1 (en) | 2007-03-21 | 2014-12-10 | Avery Dennison Corporation | Pressure sensitive adhesives |
JP5419376B2 (en) | 2007-04-20 | 2014-02-19 | 日東電工株式会社 | Adhesive sheet adhesion to automobile coating surface |
JP5038770B2 (en) | 2007-05-01 | 2012-10-03 | 日東電工株式会社 | Adhesive sheet adhesion method for vehicle paint film surface |
JP5118880B2 (en) | 2007-05-08 | 2013-01-16 | 日東電工株式会社 | Adhesive composition, and adhesive product and display using the same |
US8334037B2 (en) | 2007-05-11 | 2012-12-18 | 3M Innovative Properties Company | Multi-layer assembly, multi-layer stretch releasing pressure-sensitive adhesive assembly, and methods of making and using the same |
JP2010537002A (en) | 2007-08-24 | 2010-12-02 | ダウ グローバル テクノロジーズ インコーポレイティド | Adhesives made from ethylene / α-olefin interpolymers |
KR100922684B1 (en) | 2007-08-31 | 2009-10-19 | 제일모직주식회사 | Photocuring Composition for Adhesive Layer and Dicing Die Bonding Film Comprising the Same |
CN101802062B (en) | 2007-09-19 | 2012-07-04 | 汉高两合股份公司 | Highly damping expandable material and devices |
US20090142506A1 (en) | 2007-11-29 | 2009-06-04 | Bayer Material Science Llc | Ethylenically unsaturated polyisocyanate addition compounds based on lysine triisocyanate, their use in coating compositions and processes for their preparation |
US7786868B2 (en) | 2007-12-11 | 2010-08-31 | Avery Dennison Corporation | RFID device with multiple passive operation modes |
JP2009256607A (en) | 2008-03-17 | 2009-11-05 | Nitto Denko Corp | Acrylic adhesive, acrylic adhesive layer, and acrylic adhesive tape or sheet |
EP2274390B1 (en) | 2008-04-30 | 2014-07-30 | Tesa Se | Adhesive tape |
US8289165B2 (en) | 2008-06-11 | 2012-10-16 | Avery Dennison Corporation | RFID device with conductive loop shield |
US20110122343A1 (en) | 2008-07-16 | 2011-05-26 | Min Soo Park | Pressure-sensitive adhesive composition, polarization plate, and liquid crystal display |
US8080177B2 (en) | 2008-08-19 | 2011-12-20 | The Boeing Company | Low RF loss static dissipative adhesive |
JP5397378B2 (en) | 2008-08-27 | 2014-01-22 | 日立化成株式会社 | Photosensitive adhesive composition, film-like photosensitive adhesive, adhesive pattern, semiconductor wafer with adhesive, semiconductor device, and electronic component |
DE102008045802A1 (en) | 2008-09-05 | 2010-03-11 | Henkel Ag & Co. Kgaa | Hot melt adhesive based on metallocene-catalyzed olefin-α-olefin copolymers |
US8068028B2 (en) | 2008-09-26 | 2011-11-29 | Avery Dennison Corporation | Encapsulated RFID device for flexible, non-planar or curvilinear surfaces |
EP2334721A4 (en) | 2008-09-30 | 2013-09-25 | Henkel Corp | Shear-and/or pressure-resistant microspheres |
WO2010074135A1 (en) | 2008-12-26 | 2010-07-01 | 東洋紡績株式会社 | Resin composition for adhesive, adhesive comprising same, adhesive sheet, and printed wiring board including same as adhesive layer |
AT12321U1 (en) | 2009-01-09 | 2012-03-15 | Austria Tech & System Tech | MULTILAYER PCB LAYER ELEMENT WITH AT LEAST ONE LASER BEAM STOPPING ELEMENT AND METHOD FOR ATTACHING SUCH A LASER BEAM STOPPER IN A MULTILAYER PCB ELEMENT |
US20100200063A1 (en) | 2009-02-12 | 2010-08-12 | Derek Djeu | Thin film solar cell |
JP5294931B2 (en) | 2009-03-11 | 2013-09-18 | 日東電工株式会社 | Acrylic adhesive sheet |
EP2236534A1 (en) | 2009-03-31 | 2010-10-06 | Sika Technology AG | Composition curable in two stages comprising a surface deactivated polyisocyanate |
JP5404174B2 (en) | 2009-05-14 | 2014-01-29 | 日東電工株式会社 | Thermally peelable pressure sensitive adhesive tape or sheet |
ES2539184T3 (en) | 2009-06-11 | 2015-06-26 | Henkel IP & Holding GmbH | Thermally reversible hot melt adhesive composition containing diene compounds and multifunctional dienophiles |
US8593256B2 (en) | 2009-06-23 | 2013-11-26 | Avery Dennison Corporation | Washable RFID device for apparel tracking |
MX345234B (en) | 2009-07-24 | 2017-01-04 | Bostik Inc | Hot melt adhesive based on olefin block copolymers. |
RU2551070C2 (en) * | 2009-07-27 | 2015-05-20 | Авери Деннисон Корпорейшн | Systems and process for application of heat-transferred labels |
US8242185B2 (en) | 2009-08-03 | 2012-08-14 | Morgan Adhesives Company | Adhesive compositions for easy application and improved durability |
KR20120055583A (en) | 2009-08-04 | 2012-05-31 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Non-halogenated polyisobutylene - thermoplastic elastomer blend pressure sensitive adhesive |
CN102498183A (en) | 2009-09-16 | 2012-06-13 | 日东电工株式会社 | Acrylic adhesive tape |
ES2453978T3 (en) | 2009-09-24 | 2014-04-09 | Avery Dennison Corporation | Acrylic compositions to adhere to substrates with low surface energy |
JP2011096988A (en) | 2009-11-02 | 2011-05-12 | Keiwa Inc | Adhesive sheet for protecting back of solar cell module, and solar cell module using the same |
EP2513220B1 (en) | 2009-12-16 | 2013-11-06 | Avery Dennison Corporation | Photovoltaic backsheet |
US8759664B2 (en) | 2009-12-28 | 2014-06-24 | Hanergy Hi-Tech Power (Hk) Limited | Thin film solar cell strings |
CN102792218B (en) | 2010-03-09 | 2016-02-03 | 3M创新有限公司 | For bonding the thermal activation optically clear adhesive of display panel |
WO2011119393A2 (en) | 2010-03-26 | 2011-09-29 | 3M Innovative Properties Company | Method of sterilization of wound dressings |
JP2011231319A (en) | 2010-04-09 | 2011-11-17 | Nitto Denko Corp | Pressure-sensitive adhesive composition and acrylic pressure-sensitive adhesive tape |
JP5749052B2 (en) | 2010-04-12 | 2015-07-15 | 日東電工株式会社 | Method for producing cured multilayer sheet and cured multilayer sheet |
JP5621039B2 (en) | 2010-05-11 | 2014-11-05 | スリーエム イノベイティブプロパティズカンパニー | Curable composition, pressure-sensitive adhesive, method for producing the same, and adhesive article |
BR122020013215B8 (en) | 2010-06-14 | 2023-01-24 | Avery Dennison Corp | SUBSTRATE HAVING A CONDUCTIVE STRUCTURE |
JP5432853B2 (en) | 2010-07-30 | 2014-03-05 | 日東電工株式会社 | Dicing tape-integrated film for semiconductor back surface, manufacturing method thereof, and manufacturing method of semiconductor device |
JP2013542455A (en) | 2010-08-18 | 2013-11-21 | スリーエム イノベイティブ プロパティズ カンパニー | Optical assembly including stress relaxation optical adhesive and method of making the same |
CA2807966C (en) | 2010-08-26 | 2019-10-29 | Henkel Corporation | Low application temperature amorphous poly-.alpha.-olefin adhesive |
EP2610319A4 (en) | 2010-08-27 | 2015-12-02 | Nitto Denko Corp | Acrylic adhesive composition, acrylic adhesive layer, and acrylic adhesive tape |
DE102010035889B4 (en) | 2010-08-30 | 2021-11-11 | Bundesdruckerei Gmbh | Value and / or security document and process for its production |
JP5854404B2 (en) | 2010-09-17 | 2016-02-09 | 昭和電工株式会社 | Composition for photocurable transparent adhesive sheet |
JP6144868B2 (en) | 2010-11-18 | 2017-06-07 | 日東電工株式会社 | Flip chip type semiconductor back film, dicing tape integrated semiconductor back film, and flip chip semiconductor back film manufacturing method |
KR20130129222A (en) | 2010-11-23 | 2013-11-27 | 어드헤시브즈 리서치, 인코포레이티드 | Reactive conductive pressure-sensitive adhesive tape |
WO2012071483A2 (en) | 2010-11-23 | 2012-05-31 | Westinghouse Electric Company Llc | Full spectrum loca evaluation model and analysis methodology |
WO2012082448A1 (en) | 2010-12-13 | 2012-06-21 | 3M Innovative Properties Company | Pressure sensitive adhesives for low surface energy substrates |
US20120165455A1 (en) | 2010-12-22 | 2012-06-28 | Bostik, Inc. | OBC Based Packaging Adhesive |
JP5689336B2 (en) | 2011-03-03 | 2015-03-25 | 日東電工株式会社 | Heat release type adhesive sheet |
JP2012193317A (en) | 2011-03-17 | 2012-10-11 | Nitto Denko Corp | Pressure-sensitive adhesive tape for temporary fixing of electronic part |
RU2620390C2 (en) | 2011-03-24 | 2017-05-25 | ХЕНКЕЛЬ АйПи ЭНД ХОЛДИНГ ГМБХ | Stretch film lamination adhesive |
MX352280B (en) | 2011-04-08 | 2017-11-16 | Bostik Inc | Polyolefin based hot melt adhesive containing a solid plasticizer. |
JP2012229375A (en) | 2011-04-27 | 2012-11-22 | Nitto Denko Corp | Pressure-sensitive adhesive sheet |
US9000659B2 (en) | 2011-05-09 | 2015-04-07 | Kenneth S. Chin | Lamp socket |
EP2708585B1 (en) | 2011-05-10 | 2018-01-03 | Dexerials Corporation | Method for producing a double-sided adhesive tape |
PL2545798T3 (en) | 2011-07-13 | 2018-07-31 | 3M Innovative Properties Company | Sanitary product system |
EP2546053B1 (en) | 2011-07-15 | 2013-12-11 | Nitto Denko Corporation | Double-sided pressure-sensitive adhesive sheet |
EP2551102B1 (en) | 2011-07-29 | 2014-12-03 | 3M Innovative Properties Company | Self-stick foam adhesive |
EP2581423A1 (en) | 2011-10-14 | 2013-04-17 | 3M Innovative Properties Company | Primerless multilayer adhesive film for bonding glass substrates |
CN103814095B (en) | 2011-11-08 | 2016-08-17 | Lg化学株式会社 | For contact adhesive composition of protecting film with antistatic behaviour and preparation method thereof |
DE102011088170A1 (en) | 2011-12-09 | 2013-06-13 | Bayer Materialscience Aktiengesellschaft | Reactive pressure-sensitive adhesives |
CN104144997A (en) | 2011-12-22 | 2014-11-12 | 3M创新有限公司 | Olefin block copolymer based pressure sensitive adhesives |
DE102012200854A1 (en) | 2012-01-20 | 2013-07-25 | Tesa Se | Crosslinking accelerator system for polyacrylates |
EP2810539B1 (en) | 2012-02-03 | 2018-03-28 | Avery Dennison Corporation | Laser patterning of photovoltaic backsheet |
CN104169386B (en) | 2012-03-12 | 2016-10-26 | Lg化学株式会社 | Pressure-sensitive adhesive compositions |
JP5900091B2 (en) | 2012-03-27 | 2016-04-06 | 大日本印刷株式会社 | Decorative sheet and decorative plate having the same |
EP2831125B1 (en) | 2012-03-30 | 2016-10-05 | Sirrus, Inc. | Methods for activating polymerizable compositions, polymerizable systems, and products formed thereby |
US9243173B2 (en) | 2012-03-30 | 2016-01-26 | Dow Global Technologies Llc | Polyolefin adhesive composition |
CN102634286B (en) | 2012-05-17 | 2013-08-14 | 深圳市飞世尔实业有限公司 | Method for preparing photo-thermal dual curable type anisotropic conductive film |
EP2857474A4 (en) | 2012-05-29 | 2016-02-17 | Nitto Denko Corp | Adhesive, and transparent substrate using same |
DE102012209116A1 (en) | 2012-05-30 | 2013-12-05 | Tesa Se | Heat sealable tape |
DE102013209827A1 (en) | 2012-06-21 | 2013-12-24 | Tesa Se | Heat resistant tape |
KR102055869B1 (en) | 2012-07-05 | 2019-12-13 | 쓰리본드 화인 케미칼 가부시키가이샤 | Sheet adhesive and organic el panel using same |
JP5961055B2 (en) | 2012-07-05 | 2016-08-02 | 日東電工株式会社 | Sealing resin sheet, electronic component package manufacturing method, and electronic component package |
WO2014018312A1 (en) | 2012-07-26 | 2014-01-30 | 3M Innovative Properties Company | Heat de-bondable adhesive articles |
KR102058512B1 (en) | 2012-07-26 | 2019-12-23 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Heat de-bondable optical articles |
CA2887304A1 (en) | 2012-10-09 | 2014-04-17 | Avery Dennison Corporation | Adhesives and related methods |
US20140162082A1 (en) | 2012-12-07 | 2014-06-12 | H.B. Fuller Company | Composition, an article and a method for the bonding of non-woven substrates |
US9023954B1 (en) | 2012-12-26 | 2015-05-05 | The United States Of America As Represented By The Secretary Of The Navy | Side-chain and end-group modified poly-p-phenylene oligomers |
EP2759578B1 (en) | 2013-01-24 | 2018-05-02 | Basf Se | Reactive pressure-sensitive adhesive products |
EP2948512B1 (en) | 2013-01-24 | 2023-07-05 | Henkel AG & Co. KGaA | Foamed hot melt adhesive and use thereof |
WO2014138166A2 (en) * | 2013-03-05 | 2014-09-12 | Avery Dennison Corporation | Differential dual functional foam tapes |
CN107779091B (en) | 2013-03-28 | 2020-05-19 | 美国陶氏有机硅公司 | Organosiloxane compositions and coatings, articles, methods and uses |
CN103275656B (en) | 2013-05-29 | 2015-07-08 | 北京化工大学 | Reactive pressure-sensitive adhesive having performance of structural adhesive after being cured, and preparation method thereof |
CA2924202A1 (en) | 2013-09-23 | 2015-03-26 | Lubrizol Advanced Materials, Inc. | A combined hot-melt adhesive and pressure sensitive adhesive system and composite materials made from the same |
BR112016006114A2 (en) | 2013-09-25 | 2020-05-19 | Bostik, Inc. | hot melt adhesive composition |
CN104870590A (en) | 2013-10-10 | 2015-08-26 | 艾利丹尼森公司 | Adhesives and related methods |
WO2015195854A1 (en) | 2014-06-18 | 2015-12-23 | Avery Dennison Corporation | Transposable pressure sensitive adhesives, articles, and related methods |
EP3201841A1 (en) | 2014-09-29 | 2017-08-09 | Avery Dennison Corporation | Tire tracking rfid label |
EP3253837B1 (en) * | 2015-02-05 | 2024-07-31 | Avery Dennison Corporation | Label assemblies for adverse environments |
WO2018118767A1 (en) | 2016-12-22 | 2018-06-28 | Avery Dennison Corporation | Convertible pressure sensitive adhesives comprising urethane (meth) acrylate oligomers |
-
2016
- 2016-02-05 EP EP16709614.8A patent/EP3253837B1/en active Active
- 2016-02-05 CA CA2975298A patent/CA2975298C/en active Active
- 2016-02-05 BR BR112017016860A patent/BR112017016860A2/en not_active Application Discontinuation
- 2016-02-05 CN CN201680009007.7A patent/CN107207924B/en active Active
- 2016-02-05 US US15/016,919 patent/US11049421B2/en active Active
- 2016-02-05 KR KR1020177024792A patent/KR101996828B1/en active IP Right Grant
- 2016-02-05 MX MX2017010047A patent/MX2017010047A/en unknown
- 2016-02-05 JP JP2017541384A patent/JP6537620B2/en active Active
- 2016-02-05 AU AU2016215123A patent/AU2016215123B2/en not_active Ceased
- 2016-02-05 WO PCT/US2016/016774 patent/WO2016127056A1/en active Application Filing
- 2016-02-05 RU RU2017131055A patent/RU2677155C1/en not_active IP Right Cessation
-
2019
- 2019-04-04 JP JP2019072211A patent/JP6789343B2/en active Active
-
2021
- 2021-05-27 US US17/331,766 patent/US20210287575A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US11049421B2 (en) | 2021-06-29 |
JP2019135106A (en) | 2019-08-15 |
MX2017010047A (en) | 2017-12-18 |
AU2016215123B2 (en) | 2018-08-09 |
JP6537620B2 (en) | 2019-07-03 |
WO2016127056A1 (en) | 2016-08-11 |
CN107207924A (en) | 2017-09-26 |
EP3253837B1 (en) | 2024-07-31 |
JP2018508030A (en) | 2018-03-22 |
US20210287575A1 (en) | 2021-09-16 |
EP3253837A1 (en) | 2017-12-13 |
CN107207924B (en) | 2020-03-13 |
CA2975298A1 (en) | 2016-08-11 |
BR112017016860A2 (en) | 2018-03-27 |
KR20170115571A (en) | 2017-10-17 |
US20160232821A1 (en) | 2016-08-11 |
RU2677155C1 (en) | 2019-01-15 |
AU2016215123A1 (en) | 2017-09-14 |
KR101996828B1 (en) | 2019-07-05 |
JP6789343B2 (en) | 2020-11-25 |
WO2016127056A8 (en) | 2017-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210287575A1 (en) | Label assemblies for adverse environments | |
AU2019201055B2 (en) | Adhesives and related methods | |
CA2927081C (en) | Convertible adhesive articles and related methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request |
Effective date: 20170727 |