WO2010074135A1 - Resin composition for adhesive, adhesive comprising same, adhesive sheet, and printed wiring board including same as adhesive layer - Google Patents

Resin composition for adhesive, adhesive comprising same, adhesive sheet, and printed wiring board including same as adhesive layer Download PDF

Info

Publication number
WO2010074135A1
WO2010074135A1 PCT/JP2009/071415 JP2009071415W WO2010074135A1 WO 2010074135 A1 WO2010074135 A1 WO 2010074135A1 JP 2009071415 W JP2009071415 W JP 2009071415W WO 2010074135 A1 WO2010074135 A1 WO 2010074135A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
adhesive
mass
parts
resin composition
Prior art date
Application number
PCT/JP2009/071415
Other languages
French (fr)
Japanese (ja)
Inventor
慎太郎 南原
武 伊藤
秀樹 田中
達也 粟田
武久 家根
裕子 麻田
Original Assignee
東洋紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡績株式会社 filed Critical 東洋紡績株式会社
Priority to JP2010507738A priority Critical patent/JP5803105B2/en
Priority to CN200980153646.0A priority patent/CN102264855B/en
Publication of WO2010074135A1 publication Critical patent/WO2010074135A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • C09J163/08Epoxidised polymerised polyenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention includes a resin composition excellent in adhesion to various plastic films, adhesion to metals such as copper, aluminum, and stainless steel, adhesion to glass, heat resistance, moisture resistance, sheet life, and the like.
  • the present invention relates to an adhesive, an adhesive sheet, and a printed wiring board including the adhesive as an adhesive layer.
  • Patent Document 5 discloses a resin composition for an adhesive mainly composed of a specific polyester / polyurethane and an epoxy resin. Although the composition shown here can improve the sheet life, the adhesiveness under high temperature and high humidity, the adhesiveness under high temperature and high humidity is not sufficiently satisfied.
  • Patent Document 6 also discloses a resin composition for an adhesive mainly comprising a specific polyester / polyurethane and an epoxy resin.
  • the composition shown here can improve adhesion at high temperatures and high humidity, and resistance to humidification when plastic film is used as a reinforcing plate, but adhesion at high temperatures and high humidity. However, it did not fully satisfy the humidification solder resistance when metal was used for the reinforcing plate. Further, the resistance to humidification after storage at room temperature or 40 ° C. and the adhesiveness under high temperature and high humidity are remarkably lowered, and a stable sheet life cannot be secured.
  • the problem of the present invention is to improve each of the problems that these conventional adhesives have, while maintaining the adhesion to various plastic films, metals such as copper, aluminum, stainless steel, and glass epoxy, Providing an adhesive with high moisture and heat resistance that is compatible with lead-free solder under high humidity, and excellent adhesiveness under high temperature and high humidity.
  • An object of the present invention is to provide an adhesive sheet having a good sheet life capable of maintaining good adhesive properties even when used after being distributed under high temperature and high humidity. Moreover, it is providing the printed wiring board containing the contact bonding layer obtained from the said adhesive agent or the adhesive sheet.
  • thermoplastic resin (A) A resin composition for an adhesive containing a thermoplastic resin (A), an inorganic filler (B), a solvent (C), and an epoxy resin (D),
  • the acid value (unit: equivalent / 10 6 g) of the thermoplastic resin (A) is 100 or more and 1000 or less
  • the number average molecular weight of the thermoplastic resin (A) is 5.0 ⁇ 10 3 or more and 1.0 ⁇ 10 5 or less
  • the epoxy resin (D) is an epoxy resin having a dicyclopentadiene skeleton
  • a mixed solvent provided that the thermoplastic resin (A) and the inorganic filler (B) are contained in a total content of 25 parts by mass in the resin composition for an adhesive, consisting of 52 parts by mass of methyl ethyl ketone and 23 parts by mass of toluene (however, When the thermoplastic resin (A) is not dissolved in the mixed
  • the dispersion (TI value) of the dispersion ( ⁇ ) at a liquid temperature of 25 ° C. is 3 or more and 6 or less.
  • the resin composition ( ⁇ ) contains the thermoplastic resin (A), the inorganic filler (B), and the solvent (C) as essential components,
  • the acid value (unit: equivalent / 10 6 g) of the thermoplastic resin (A) is 100 or more and 1000 or less,
  • the number average molecular weight of the thermoplastic resin (A) is 5.0 ⁇ 10 3 or more and 1.0 ⁇ 10 5 or less,
  • a mixed solvent provided that the thermoplastic resin (A) and the inorganic filler (B) are contained in a total content of 25 parts by mass in the resin composition for an adhesive, consisting of 52 parts by mass of methyl ethyl ketone and 23 parts by mass of toluene (however, When the thermoplastic resin (A) is not dissolved in the mixed solvent at the above concentration at 25 ° C., a
  • the dispersion (TI value) of the dispersion ( ⁇ ) at a liquid temperature of 25 ° C. is 3 or more and 6 or less
  • the resin composition ( ⁇ ) contains an epoxy resin (D) having a dicyclopentadiene skeleton as an essential component, Acid value AV ( ⁇ ) (unit: equivalent / 10 6 g) and blending amount AW ( ⁇ ) (unit: parts by mass) of the thermoplastic resin (A) contained in the resin composition ( ⁇ ), the resin composition
  • the epoxy value EV ( ⁇ ) (unit: equivalent / 10 6 g) and compounding amount EW ( ⁇ ) (unit: parts by mass) of the epoxy resin contained in the product ( ⁇ ) are shown below (1), 0.7 ⁇ ⁇ EV ( ⁇ ) ⁇ EW ( ⁇ ) ⁇ / ⁇ AV ( ⁇ ) ⁇ AW ( ⁇ ) ⁇ ⁇ 4.0
  • the resin composition ( ⁇ ) and the resin composition ( ⁇ ) are blended at a blending ratio that satisfies Resin composition for two-component adhesives.
  • the epoxy resin (D) is 60% by mass or more and 99.9% by mass or less of the entire epoxy resin contained in the resin composition for an adhesive, described in (1) or (2) Resin composition for adhesives.
  • the amount of the inorganic filler (B) is 10 parts by weight or more and 50 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin (A).
  • the resin composition for adhesives described in 1. The amount of the solvent (C) is 60 parts by mass or more and 85 parts by mass or less when the resin composition for an adhesive is 100 parts by mass.
  • An adhesive comprising the adhesive resin composition according to any one of (1) to (7).
  • the thermoplastic resin (A), the inorganic filler (B), the epoxy resin (D) and the epoxy resin (D) contained in the adhesive resin composition according to any one of (1) to (7) An adhesive sheet containing the derived reaction product.
  • a printed wiring board comprising an adhesive layer using the adhesive according to (8) or the adhesive sheet according to (9).
  • An adhesive containing the same, an adhesive sheet, and a printed wiring board including the adhesive as an adhesive layer can be provided.
  • the resin composition having excellent adhesion to various plastic films, adhesion to metals such as copper, aluminum, and stainless steel, and adhesion to glass epoxy, It is possible to provide an adhesive, an adhesive sheet, and a printed wiring board including the adhesive as an adhesive layer. Furthermore, in a preferred embodiment of the present invention, particularly, it is excellent in adhesion to metals such as aluminum and stainless steel, and heat and moisture resistance, and maintains a high peel strength even after the adhesive is left in a high temperature and high humidity environment for a long period of time. In that respect, it exhibits even better properties.
  • the variation (TI value) of the dispersion liquid ( ⁇ ) is appropriate for the combination and blending ratio of the thermoplastic resin (A) and the inorganic filler (B) in the adhesive resin composition of the present invention. It becomes a guideline for judging whether there is.
  • the dispersion (TI value) of the dispersion ( ⁇ ) is 3 or more and 6 or less, more preferably 3.5 or more and 5 or less.
  • the degree of change is less than 3, the interaction between the inorganic filler (B) particles and the interaction between the inorganic filler (B) and the thermoplastic resin (A) tends to decrease, and the heat resistance tends to decrease. The material tends to settle and a stable pot life cannot be obtained.
  • the degree of change exceeds 6, the handling property is lowered and it tends to be difficult to coat uniformly.
  • the dispersion ( ⁇ ) is a total of 25 parts by mass of the thermoplastic resin (A) and the inorganic filler (B) in the content ratio in the resin composition for an adhesive of the present invention, 52 parts by mass of methyl ethyl ketone, and 23 parts by mass of toluene. Then add glass beads with a diameter of 0.5 to 2 mm to about 1/3 of the volume of the dispersion ( ⁇ ), and use a paint shaker to disperse in a room at 20 to 25 ° C. for 4 hours. And then by removing the glass beads.
  • thermoplastic resin (A) does not dissolve in the solvent at the above concentration at 25 ° C.
  • a solution prepared by using a mixed solvent consisting of 52 parts by mass of dimethylacetamide and 23 parts by mass of toluene is used instead of the solvent.
  • Dispersion liquid ( ⁇ ) Dispersion liquid ( ⁇ ).
  • the fluctuation degree (TI value) of the dispersion ( ⁇ ) is determined by the following method. Disperse the liquid ( ⁇ ) in a 225 mL glass wide-mouthed bottle (common name: mayonnaise bottle) and use a BL type viscometer (manufactured by Toki Sangyo Co., Ltd.) at a measurement temperature of 25 ⁇ 1 ° C. and at a rotation speed of 6 rpm and 60 rpm. Viscosity (hereinafter sometimes abbreviated as BL (6) and BL (60) respectively.
  • the resin composition ( ⁇ ) used in the present invention comprises a thermoplastic resin (A), an inorganic filler (B), a solvent (C), and, if necessary, other components in the above-described proportions, a roll mill, a mixer
  • the dispersion method is not particularly limited as long as it is obtained by uniform mixing with a paint shaker or the like and can obtain sufficient dispersion.
  • the solid content concentration of the resin composition ( ⁇ ) is preferably 15% by mass or more and 40% by mass or less. When the solid content concentration is less than 15% by mass, the thickness of the adhesive is reduced, the heat resistance and the adhesive strength are reduced, and when it exceeds 40% by mass, the viscosity of the solution becomes too high. Tend to be difficult to do.
  • the resin composition ( ⁇ ) used in the present invention may be composed only of the epoxy resin (D), but preferably further contains a solvent (C).
  • the solvent (C) contained in the resin composition ( ⁇ ) is not particularly limited as long as it can dissolve the components contained in the resin composition ( ⁇ ).
  • the solid content concentration of the resin composition ( ⁇ ) is preferably 15% by mass to 80% by mass, more preferably 25% by mass to 75% by mass, and further preferably 35% by mass to 70% by mass. .
  • the solid content concentration is less than 15% by mass, the thickness of the adhesive after solvent evaporation tends to be thin, and the heat resistance and adhesive strength tend to decrease.
  • the solid content concentration is larger than 80% by mass, the viscosity of the adhesive resin composition becomes too high, so that uniform coating tends to be difficult.
  • the resin composition for an adhesive of the present invention is a one-component adhesive resin composition containing a thermoplastic resin (A), an inorganic filler (B), a solvent (C), and an epoxy resin (D).
  • a thermoplastic resin A
  • B inorganic filler
  • C solvent
  • D epoxy resin
  • it may be a multiple agent mixed adhesive resin composition that is divided into a plurality of agents and mixed prior to use.
  • a mixed agent type There is an advantage that long-term storage becomes possible by using a mixed agent type.
  • a multi-agent mixed type it is necessary to uniformly mix a plurality of agents at an accurate blending ratio when used as an adhesive, and the difficulty of the process increases as the number of agents increases.
  • a resin composition ( ⁇ ) containing a thermoplastic resin (A), an inorganic filler (B), and a solvent (C) and a resin composition containing an epoxy resin (D) ( ⁇
  • the two-component mixed type is preferable, and the two-component mixed type is more preferable because of uniform mixing.
  • the resin composition ( ⁇ ) and the resin composition ( ⁇ ) are blended at a blending ratio that satisfies the above.
  • ⁇ EV ( ⁇ ) ⁇ EW ( ⁇ ) ⁇ / ⁇ AV ( ⁇ ) ⁇ AW ( ⁇ ) ⁇ is more preferably 0.8 or more and 3.5 or less, and further preferably 0.9 or more and 3.0 or less. is there. If it is less than 0.7, the crosslinking between the thermoplastic resin (A) and the epoxy resin tends to be inadequate and the heat resistance tends to decrease, and if it exceeds 4.0, a large amount of unreacted epoxy resin remains. However, heat resistance and moisture resistance tend to decrease.
  • the thermoplastic resin (A) used in the present invention includes a polyester resin, a polyurethane resin, a styrene resin, a polyamide resin, a polyamideimide resin, a polyesterimide resin, a polycarbonate resin, a polyphenylene oxide resin, and a vinyl resin. Resins, olefin resins, acrylic resins, and the like are preferable, and polyester resins, polyurethane resins, and polyamideimide resins are preferable. These thermoplastic resins may be used alone or in combination of two or more.
  • the number average molecular weight of the thermoplastic resin (A) used in the present invention is 5 ⁇ 10 3 or more and 1 ⁇ 10 5 or less. If the number average molecular weight is less than 5 ⁇ 10 3 , the adhesion immediately after coating is insufficient and workability is poor, and if the number average molecular weight exceeds 1 ⁇ 10 5 , the solution viscosity at the time of coating is too high and uniform. A coating film may not be obtained.
  • the lower limit molecular weight is preferably 8 ⁇ 10 3 , more preferably the lower limit molecular weight is 1 ⁇ 10 4 , preferably the upper limit molecular weight is 5 ⁇ 10 4 , and more preferably the upper limit molecular weight is 3 ⁇ 10 4 .
  • the acid value (unit: equivalent / 10 6 g) of the thermoplastic resin (A) used in the present invention is 100 or more and 1000 or less.
  • the acid value is less than 100 equivalents / 10 6 g, the adhesion to the metal-based substrate after curing becomes insufficient, and the degree of crosslinking tends to be low and the heat resistance tends to decrease.
  • the acid value exceeds 1000 equivalents / 10 6 g, the storage stability of the varnish when dissolved in a solvent is lowered, and the crosslinking reaction tends to proceed at room temperature, and a stable sheet life tends not to be obtained. . It is also expected to adversely affect durability such as ester bonds and urethane bonds.
  • the lower limit of the acid value is 250 equivalents / 10 6 g, more preferably the lower limit of the acid value is 300 equivalents / 10 6 g, and still more preferably the lower limit of the acid value is 350 equivalents / 10 6 g.
  • a preferred upper limit is 900 equivalents / 10 6 g, a more preferred upper limit is 800 equivalents / 10 6 g, and a more preferred upper limit is 700 equivalents / 10 6 g.
  • the glass transition temperature of the polyester resin used as the thermoplastic resin (A) of the present invention is preferably from ⁇ 10 ° C. to 60 ° C.
  • the glass transition temperature is less than ⁇ 10 ° C.
  • the adhesiveness at high temperature tends to be insufficient.
  • the glass transition temperature exceeds 60 ° C. the bonding with the substrate becomes insufficient, the elastic modulus at room temperature increases, and the adhesiveness at room temperature tends to be insufficient.
  • the lower limit of the glass transition temperature is ⁇ 5 ° C., more preferably the lower limit of the glass transition temperature is 0 ° C., and still more preferably the lower limit of the glass transition temperature is 5 ° C.
  • a preferred upper limit is 55 ° C, a more preferred upper limit is 50 ° C, and a more preferred upper limit is 45 ° C.
  • the polyester-based resin preferably has an aromatic carboxylic acid content of 60 mol% or more, more preferably 85 mol% or more, still more preferably 99 mol, when the total amount of all acid components in the composition is 100 mol%. % Or more.
  • Aromatic carboxylic acid may occupy 100 mol%. When the aromatic carboxylic acid is less than 60 mol%, the cohesive strength of the coating film is weak, and a decrease in adhesive strength to various substrates is observed.
  • aromatic carboxylic acid examples include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, diphenic acid, and 5-hydroxyisophthalic acid.
  • Aromatic dicarboxylic acids having a sulfonic acid group such as sulfoterephthalic acid, 5-sulfoisophthalic acid, 4-sulfophthalic acid, 4-sulfonaphthalene-2,7-dicarboxylic acid, and 5 (4-sulfophenoxy) isophthalic acid
  • Aromatic dicarboxylic acids having sulfonate groups such as metal salts and ammonium salts thereof, p-hydroxybenzoic acid, p-hydroxyphenylpropionic acid, p-hydroxyphenylacetic acid, 6-hydroxy-2-naphthoic acid, 4, Examples thereof include aromatic oxycarboxylic acids such as 4-bis (p-hydroxyphenyl) valeric acid.
  • terephthalic acid, isophthalic acid, and a mixture thereof are particularly preferable in terms of increasing the cohesive strength of the coating film.
  • acid components include 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid and its anhydride, alicyclic dicarboxylic acids, succinic acid, adipic acid, Mention may be made of aliphatic dicarboxylic acids such as azelaic acid, sebacic acid, dodecanedioic acid and dimer acid.
  • the glycol component is preferably composed of an aliphatic glycol, an alicyclic glycol, an aromatic-containing glycol, an ether bond-containing glycol, etc.
  • the aliphatic glycol include ethylene glycol, -Propylene glycol, 1,3-propanediol, 1,4-butanediol, 2-methyl-1,3, -propanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 3- Methyl-1,5-pentanediol, 1,9-nonanediol, 2-ethyl-2-butylpropanediol, hydroxypivalic acid neopentyl glycol ester, dimethylolheptane, 2,2,4-trimethyl-1,3- Pentanediol and the like can be mentioned, and examples of the alicyclic glycol include 1,4
  • glycols containing ether bonds include diethylene glycol, triethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, neopentyl glycol ethylene oxide adduct, neopentyl glycol propylene oxide addition Things can also be used if necessary.
  • aromatic-containing glycols include para-xylene glycol, meta-xylene glycol, ortho-xylene glycol, 1,4-phenylene glycol, ethylene oxide adducts of 1,4-phenylene glycol, bisphenol A, ethylene oxide addition of bisphenol A
  • examples thereof include glycols obtained by adding 1 to several moles of ethylene oxide or propylene oxide to two phenolic hydroxyl groups of bisphenols, such as products and propylene oxide adducts.
  • an oxycarboxylic acid compound having a hydroxyl group and a carboxyl group in the molecular structure can also be used as a raw material for polyester, such as 5-hydroxyisophthalic acid, p-hydroxybenzoic acid, p-hydroxyphenethyl alcohol, p- Examples thereof include hydroxyphenylpropionic acid, p-hydroxyphenylacetic acid, 6-hydroxy-2-naphthoic acid, 4,4-bis (p-hydroxyphenyl) valeric acid and the like.
  • polyester resin used in the present invention 0.1 mol% or more and 5 mol% or less of trifunctional or higher polycarboxylic acids and / or polyols are copolymerized for the purpose of introducing a branched skeleton if necessary. It doesn't matter.
  • a cured coating film is obtained by reacting with a curing agent, by introducing a branched skeleton, a terminal film concentration (reaction point) of the resin is increased, and a strong coating film having a high crosslinking density can be obtained.
  • tri- or higher functional polycarboxylic acids examples include trimellitic acid, trimesic acid, ethylene glycol bis (anhydro trimellitate), glycerol tris (anhydro trimellitate), trimellitic anhydride, pyromellitic anhydride Acid (PMDA), oxydiphthalic dianhydride (ODPA), 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride (BTDA), 3,3 ′, 4,4′-diphenyltetracarboxylic dianhydride Anhydride (BPDA), 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride (DSDA), 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA), 2, Compounds such as 2′-bis [(dicarboxyphenoxy) phenyl] propane dianhydride (BSAA) can be used.
  • PMDA oxydi
  • Trifunctional or higher polyol Examples Le glycerol, trimethylol ethane, trimethylol propane, pentaerythritol and the like can be used. When a tri- or higher functional polycarboxylic acid and / or polyol is used, it is 0.1 mol% or more and 5 mol% or less, preferably 0.1 mol% or more and 3 mol%, based on the total acid component or the total glycol component.
  • the copolymerization is preferably carried out in the following range, and if it exceeds 5 mol%, mechanical properties such as elongation at break of the coating film may be lowered, and gelation may occur during the polymerization.
  • Examples of a method for introducing an acid value into the polyester resin used in the present invention include a method of introducing a carboxylic acid into the resin by acid addition after polymerization.
  • a monocarboxylic acid, dicarboxylic acid, or polyfunctional carboxylic acid compound is used for acid addition, the molecular weight may be reduced by transesterification, and it is preferable to use a compound having at least one carboxylic acid anhydride.
  • Acid anhydrides include succinic anhydride, maleic anhydride, orthophthalic acid, 2,5-norbornene dicarboxylic acid anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride (PMDA), oxydiphthalic dianhydride (ODPA), 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride (BTDA), 3,3 ′, 4,4′-diphenyltetracarboxylic dianhydride (BPDA), 3,3 ′ , 4,4′-Diphenylsulfonetetracarboxylic dianhydride (DSDA), 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA), 2,2′-bis [(dicarboxyphenoxy) Compounds such as phenyl] propane dianhydride (BSAA) can be used.
  • PMDA oxydiphthal
  • the addition of 10 mol% or more of the acid may cause gelation, and the depolymerization of the polyester may occur. May reduce molecular weight.
  • the acid addition includes a method of directly performing in a bulk state after the polyester polycondensation and a method of adding the polyester in a solution.
  • the reaction in the bulk state is fast, but if it is added in a large amount, gelation may occur, and since the reaction is performed at a high temperature, care such as blocking oxygen gas and preventing oxidation is necessary.
  • the addition in the solution state is slow, but a large amount of carboxyl groups can be stably introduced.
  • the glass transition temperature of the polyurethane resin used in the present invention is preferably ⁇ 10 ° C. or more and 60 ° C. or less.
  • the glass transition temperature is less than ⁇ 10 ° C., the adhesiveness at high temperature tends to be insufficient.
  • the glass transition temperature exceeds 60 ° C. the bonding with the substrate becomes insufficient, the elastic modulus at room temperature increases, and the adhesiveness at room temperature tends to be insufficient.
  • the lower limit of the glass transition temperature is ⁇ 5 ° C., more preferably the lower limit of the glass transition temperature is 0 ° C., and still more preferably the lower limit of the glass transition temperature is 5 ° C.
  • a preferred upper limit is 55 ° C, a more preferred upper limit is 50 ° C, and a more preferred upper limit is 45 ° C.
  • the polyurethane resin used in the present invention preferably uses polyester polyol, polyisocyanate, and chain extender as its raw material.
  • a method of introducing an acid value there are a method of previously giving an acid value to a polyester polyol constituting a polyurethane resin, a method of using a diol containing a carboxylic acid as a chain extender, and the like.
  • the polyester polyol used as a raw material for the polyurethane resin used in the present invention is preferably the same as the polyester resin described above except for the number average molecular weight.
  • the number average molecular weight of the polyester polyol used in the present invention is 5 ⁇ 10 2 or more and 5 ⁇ 10 4 or less. If the number average molecular weight is less than 5 ⁇ 10 2 , the urethane group concentration tends to be high and the adhesiveness under high temperature and high humidity tends to decrease. If the number average molecular weight exceeds 5 ⁇ 10 4 , the polymerizability of polyurethane is decreased. And may cause poor polymerization.
  • the lower limit molecular weight is preferably 8 ⁇ 10 2 , more preferably the lower limit molecular weight is 1 ⁇ 10 3 , preferably the upper limit molecular weight is 3.5 ⁇ 10 4 , and more preferably the upper limit molecular weight is 2 ⁇ 10 4 .
  • the polyisocyanate used in the production of the polyurethane-based resin used in the present invention is one kind of diisocyanate, its dimer (uretdione), its trimer (isocyanurate, triol adduct, burette), or two or more kinds thereof. It may be a mixture of
  • the diisocyanate component includes 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, p-phenylene diisocyanate, diphenylmethane diisocyanate, m-phenylene diisocyanate, hexamethylene diisocyanate, tetramethylene diisocyanate, 3,3′-dimethoxy.
  • a chain extender may be used as necessary.
  • the chain extender include low molecular weight diols already described as components of polyester polyols, compounds having one carboxylic acid and two hydroxyl groups such as dimethylolpropionic acid and dimethylolbutanoic acid.
  • dimethylolbutanoic acid is preferable because of easy introduction of an acid value and solubility in a general-purpose solvent.
  • use of trimethylolpropane is also preferable.
  • the polyester polyol and the polyisocyanate and, if necessary, a chain extender may be charged all at once into the reaction vessel, or may be charged separately.
  • the total of the hydroxyl groups of the polyester polyol and chain extender in the system and the total of the isocyanate groups of the polyisocyanate are reacted at an isocyanate group / hydroxyl group functional group ratio of 1 or less.
  • This reaction can be carried out by reacting in the presence or absence of a solvent inert to isocyanate groups.
  • the solvents include ester solvents (ethyl acetate, butyl acetate, ethyl butyrate, etc.), ether solvents (dioxane, tetrahydrofuran, diethyl ether, etc.), ketone solvents (cyclohexanone, methyl ethyl ketone, methyl isobutyl ketone, etc.), aromatic carbonization.
  • ester solvents ethyl acetate, butyl acetate, ethyl butyrate, etc.
  • ether solvents dioxane, tetrahydrofuran, diethyl ether, etc.
  • ketone solvents cyclohexanone, methyl ethyl ketone, methyl isobutyl ketone, etc.
  • aromatic carbonization examples thereof include hydrogen-based solvents (benzene, toluene, xylene, etc.) and mixed solvents thereof, and ethy
  • Catalysts used in normal urethane reactions to promote urethane reactions such as tin-based catalysts (trimethyltin laurate, dimethyltin dilaurate, dibutyltin dilaurate, trimethyltin hydroxide, dimethyltin dihydroxide, stannous octoate, etc.)
  • Lead catalysts red oleate, red-2-ethylhexoate, etc.
  • amine catalysts triethylamine, tributylamine, morpholine, diazabicyclooctane, diazabicycloundecene, etc.
  • an amine-based catalyst is preferable.
  • the glass transition temperature of the polyamideimide resin used in the present invention is preferably 30 ° C. or higher and 160 ° C. or lower. When the glass transition temperature is less than 30 ° C., heat resistance tends to be insufficient. When the glass transition temperature exceeds 160 ° C., the resin is hard and brittle, so that the adhesive strength tends to be insufficient.
  • the lower limit of the glass transition temperature is 40 ° C, more preferably the lower limit of the glass transition temperature is 50 ° C, the preferred upper limit is 150 ° C, and the more preferred upper limit is 140 ° C.
  • the polyamideimide resin used in the present invention is a polyamideimide resin obtained by reacting an acid component with a diisocyanate or diamine as a raw material, and the acid component is an acid anhydride of a polycarboxylic acid having an aromatic ring, a carboxyl group It is preferred to use acrylonitrile-butadiene rubber having both at the ends.
  • the acid anhydride of the polycarboxylic acid having an aromatic ring plays a role of imide ring formation.
  • acid anhydrides of polycarboxylic acids having an aromatic ring include trimellitic anhydride, pyromellitic dianhydride, ethylene glycol bisanhydro trimellitate, propylene glycol bisan hydrotrimellitate, 1,4 -Alkylene glycol bisanhydro trimellitates such as butanediol bisanhydro trimellitate, hexamethylene glycol bis anhydro trimellitate, polyethylene glycol bis anhydro trimellitate, polypropylene glycol bis anhydro trimellitate, 3, 3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,
  • the acrylonitrile-butadiene rubber having carboxyl groups at both ends is used for imparting flexibility and adhesiveness to the polyamideimide resin, and when the total acid component is 100 mol%, it is 3 mol% or more and 15 mol%. The following is preferable, and more preferably 3 mol% or more and 10 mol% or less. If the copolymerization amount is less than 3 mol%, flexibility and adhesiveness cannot be expressed, and if it exceeds 15 mol%, the solvent solubility tends to decrease.
  • an aliphatic or alicyclic acid anhydride or dicarboxylic acid can be used as the other acid component to the extent that the effects of the present invention are not impaired.
  • butane-1,2,3,4-tetracarboxylic dianhydride pentane-1,2,4,5-tetracarboxylic dianhydride, cyclobutane tetracarboxylic dianhydride, hexahydropyromellitic acid 2 Anhydride, cyclohex-1-ene-2,3,5,6-tetracarboxylic dianhydride, 3-ethylcyclohex-1-ene-3- (1,2), 5,6-tetracarboxylic acid Anhydride, 1-methyl-3-ethylcyclohexane-3- (1,2), 5, 6-tetracarboxylic dianhydride, 1-methyl-3-ethylcyclohex-1-ene-3- (1,2), 5,6-tetracarboxylic dianhydride, 1-ethylcyclohexane-1- ( 1,2), 3,4-tetracarboxylic dianhydride, 1-propylcyclohexane
  • diisocyanate or diamine used in producing the polyamideimide resin used in the present invention examples include diisocyanates similar to those described for the polyurethane resin and diamines corresponding to these diisocyanates, and these are used alone. Alternatively, two or more types may be used in combination.
  • the polyamideimide resin used in the present invention can be copolymerized with a compound having three or more functional groups for the purpose of improving heat resistance.
  • polyfunctional carboxylic acids such as trimesic acid, dicarboxylic acids having a hydroxyl group such as 5-hydroxyisophthalic acid, dicarboxylic acids having an amino group such as 5-aminoisophthalic acid, glycerol, polyglycerol and the like having three or more hydroxyl groups
  • those having three or more amino groups such as tris (2-aminoethyl) amine.
  • dicarboxylic acids having a hydroxyl group such as 5-hydroxyisophthalic acid
  • tris Those having 3 or more amino groups such as 2-aminoethyl) amine are preferred.
  • the polyamideimide resin used in the present invention can be copolymerized with polyester, polyether, polycarbonate, dimer acid, polysiloxane and the like to such an extent that the effects of the present invention are not impaired. In that case, it is necessary to appropriately select the copolymerization amount so as not to impair the effects of the present invention such as heat resistance, solubility, and adhesiveness.
  • Solvents that can be used for polymerization of the polyamideimide resin of the present invention include, for example, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, dimethylimidazolidinone, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, cyclohexanone, cyclopentanone, Tetrahydrofuran and the like can be mentioned, and among them, dimethylacetamide is preferred because of its low boiling point and good polymerization efficiency. Further, after the polymerization, it can be diluted with a solvent used for the polymerization or other low-boiling solvent to adjust the concentration of non-volatile components and the solution viscosity.
  • Low boiling solvents include aromatic solvents such as toluene and xylene, aliphatic solvents such as hexane, heptane and octane, alcoholic solvents such as methanol, ethanol, propanol, butanol and isopropanol, acetone, methyl ethyl ketone and methyl isobutyl.
  • aromatic solvents such as toluene and xylene
  • aliphatic solvents such as hexane, heptane and octane
  • alcoholic solvents such as methanol, ethanol, propanol, butanol and isopropanol
  • acetone methyl ethyl ketone and methyl isobutyl
  • ketone solvents such as ketone, cyclohexanone and cyclopentanone
  • ether solvents such as diethyl ether and tetrahydrofuran
  • the inorganic filler (B) used in the present invention is not particularly limited as long as it can impart thixotropy to the dispersion ( ⁇ ).
  • examples of such inorganic fillers include alumina, silica, titania, tantalum oxide, zirconia, silicon nitride, barium titanate, barium carbonate, lead titanate, lead zirconate titanate, lead lanthanum zirconate titanate, oxidation Gallium, spinel, mullite, cordierite, talc, aluminum hydroxide, magnesium hydroxide, aluminum titanate, yttria-containing zirconia, barium silicate, boron nitride, calcium carbonate, calcium sulfate, zinc oxide, zinc borate, titanate
  • Magnesium, magnesium borate, barium sulfate, organic bentonite, carbon, and the like can be used, and these may be used alone or in combination of two or more.
  • Silica is preferable from the viewpoint of imparting transparency, mechanical properties, heat resistance, and thixotropy of the adhesive resin composition, and fumed silica having a three-dimensional network structure is particularly preferable.
  • hydrophobic silica treated with monomethyltrichlorosilane, dimethyldichlorosilane, hexamethyldisilazane, octylsilane, silicone oil or the like is more preferable for imparting hydrophobicity.
  • the average diameter of the primary particles is preferably 30 nm or less, more preferably 25 nm or less.
  • the average primary particle diameter referred to here is an average value of equivalent circle diameters of 100 particles randomly extracted from a primary particle image obtained using a scanning electron microscope.
  • the blending amount of the inorganic filler (B) is preferably 10 parts by mass or more and 50 parts by mass or less, more preferably 13 parts by mass or more and 45 parts by mass or less, and still more preferably 100 parts by mass of the thermoplastic resin (A). It is 15 to 40 mass parts. If the amount is less than 10 parts by mass, the effect of improving the heat resistance may not be exhibited. On the other hand, if the amount exceeds 50 parts by mass, poor dispersion of silica may occur or the solution viscosity may become too high, resulting in poor workability or adhesion. May decrease.
  • the solvent (C) used in the present invention may be composed of a single component or a mixed solvent composed of two or more components.
  • the solvent (C) is not particularly limited as long as it can dissolve the thermoplastic resin (A) and the epoxy resin (D).
  • examples of such solvents include amide solvents such as dimethylacetamide and N-methyl-2-pyrrolidone, alcohol solvents such as methanol, ethanol and isopropanol, aromatic solvents such as toluene and xylene, acetone, methyl ethyl ketone and cyclohexanone.
  • toluene, methyl ethyl ketone, and ethyl acetate are used. These solvents may be used alone or in combination of two or more.
  • the adhesive resin composition of the present invention contains an epoxy resin (D) having a dicyclopentadiene skeleton as an essential component.
  • a cured coating film made of an epoxy resin having a rigid dicyclopentadiene skeleton has a very low moisture absorption rate, and can reduce the cross-linking density of the cured coating film and relieve stress at the time of peeling. Improves.
  • the epoxy resin (D) DIC's HP7200 series can be cited.
  • the amount of the epoxy resin (D) having a dicyclopentadiene skeleton is preferably 60% by mass or more, more preferably 75% by mass or more, further preferably 90% by mass or more, based on the total epoxy resin contained in the adhesive resin composition. It is. By including 60% by mass or more of the epoxy resin (D) having a dicyclopentadiene skeleton, it is possible to express more excellent humidification solder resistance.
  • the coating film of the adhesive composition can be B-staged by heating at a relatively low temperature. It is possible to improve the workability in the bonding operation by suppressing the fluidity of the B stage film, and the effect of suppressing the foaming of the B stage film can be expected, which is preferable.
  • Examples of the epoxy resin containing a nitrogen atom include glycidylamines such as tetraglycidyldiaminodiphenylmethane, triglycidylparaaminophenol, tetraglycidylbisaminomethylcyclohexanone, N, N, N ′, N′-tetraglycidyl-m-xylenediamine and the like.
  • glycidylamines such as tetraglycidyldiaminodiphenylmethane, triglycidylparaaminophenol, tetraglycidylbisaminomethylcyclohexanone, N, N, N ′, N′-tetraglycidyl-m-xylenediamine and the like.
  • the system etc. are mentioned. It is preferable that the compounding quantity of the epoxy resin containing these nitrogen atoms is 20 mass% or less of the whole epoxy resin.
  • the blending amount is more than 20% by mass, the rigidity becomes excessively high and the adhesiveness tends to be lowered, and the crosslinking reaction tends to proceed during storage of the adhesive sheet, and the sheet life tends to be lowered.
  • the upper limit of the more preferable amount is 10 mass%, More preferably, it is 5 mass%.
  • epoxy resins can be used in combination as the epoxy resin used in the present invention.
  • glycidyl ether type such as bisphenol A diglycidyl ether, bisphenol S diglycidyl ether, novolak glycidyl ether, brominated bisphenol A diglycidyl ether, glycidyl ester type such as hexahydrophthalic acid glycidyl ester, dimer acid glycidyl ester, triglycidyl
  • examples include isocyanurates, alicyclic or aliphatic epoxides such as 3,4-epoxycyclohexylmethyl carboxylate, epoxidized polybutadiene, and epoxidized soybean oil, which may be used alone or in combination of two or more. I do not care.
  • a curing catalyst can be used for the curing reaction of the epoxy resin used in the present invention.
  • imidazole compounds such as 2-methylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, and triethylamine , Triethylenediamine, N'-methyl-N- (2-dimethylaminoethyl) piperazine, 1,8-diazabicyclo (5,4,0) -undecene-7 and 1,5-diazabicyclo (4,3,0)- Tertiary amines such as nonene-5 and 6-dibutylamino-1,8-diazabicyclo (5,4,0) -undecene-7, and tertiary amines such as phenol, octylic acid and quaternized tetraphenylborate Compounds
  • the blending amount at that time is preferably 0.01 to 1.0 part by weight based on 100 parts by weight of the thermoplastic resin (A). If it is this range, the catalytic effect with respect to reaction of a thermoplastic resin (A) and an epoxy resin will increase further, and strong adhesive performance can be acquired.
  • the resin composition for an adhesive of the present invention can be used as it is or by further blending various curable resins and additives.
  • the curable resin include silicone resins, amino resins, phenolic resins, and isocyanate compounds.
  • phenolic resins include formaldehyde condensates of alkylated phenols and cresols. Specifically, alkylated (eg, methyl, ethyl, propyl, isopropyl, butyl) phenol, p-tert-amylphenol, 4,4′-sec-butylidenephenol, p-tert-butylphenol, o-cresol, m -Cresol, p-cresol, p-cyclohexylphenol, 4,4'-isopropylidenephenol, p-nonylphenol, p-octylphenol, 3-pentadecylphenol, phenol, phenyl-o-cresol, p-phenylphenol, xylenol, etc. Formaldehyde condensates.
  • alkylated eg, methyl, ethyl, propyl, isopropyl, butyl
  • phenol p-
  • amino resins include formaldehyde adducts such as urea, melamine, and benzoguanamine, and alkyl ether compounds of these alcohols having 1 to 6 carbon atoms.
  • Specific examples include methoxylated methylol urea, methoxylated methylol N, N-ethyleneurea, methoxylated methylol dicyandiamide, methoxylated methylol melamine, methoxylated methylol benzoguanamine, butoxylated methylol melamine, butoxylated methylol benzoguanamine, etc.
  • Isocyanate compounds include aromatic and aliphatic diisocyanates, and tri- or higher polyisocyanates, which may be either low molecular compounds or high molecular compounds.
  • Amount of low molecular active hydrogen compounds such as ethylene glycol, propylene glycol, trimethylolpropane, glycerin, sorbitol, ethylenediamine, monoethanolamine, diethanolamine, triethanolamine or various polyester polyols, polyether polyols, polyamides against high molecular active hydrogen compounds It includes terminal
  • the isocyanate compound may be a blocked isocyanate.
  • the isocyanate blocking agent include phenols such as phenol, thiophenol, methylthiophenol, cresol, xylenol, resorcinol, nitrophenol, and chlorophenol, oximes such as acetoxime, methylethyl ketoxime, and cyclohexanone oxime, methanol, ethanol, propanol, Alcohols such as butanol, halogen-substituted alcohols such as ethylene chlorohydrin and 1,3-dichloro-2-propanol, tertiary alcohols such as t-butanol and t-pentanol, ⁇ -caprolactam, ⁇ -valero Examples include lactams such as lactam, ⁇ -butyrolactam, ⁇ -propyllactam, and other aromatic amines, imides, acetylacetone, acetoacetate, and
  • the blocked isocyanate is obtained by subjecting the above isocyanate compound, isocyanate compound and isocyanate blocking agent to an addition reaction by a conventionally known appropriate method.
  • a silane coupling agent may be blended in the adhesive resin composition of the present invention as necessary. It is very preferable to add a silane coupling agent because adhesion to metal and heat resistance are improved. Although it does not specifically limit as a silane coupling agent, What has an unsaturated group, What has a glycidyl group, What has an amino group, etc. are mentioned. Examples of the silane coupling agent having an unsaturated group include vinyltris ( ⁇ -methoxyethoxy) silane, vinyltriethoxysilane, and vinyltrimethoxysilane.
  • silane coupling agents having a glycidyl group examples include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltriethoxysilane.
  • Examples of the silane coupling agent having an amino group include N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, N-phenyl- ⁇ .
  • glycidyl such as ⁇ -glycidoxypropyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and ⁇ - (3,4-epoxycyclohexyl) ethyltriethoxysilane from the viewpoint of heat resistance.
  • a silane coupling agent having a group is more preferable.
  • the amount of the silane coupling agent is preferably 0.5 to 20 parts by weight per 100 parts by weight of the thermoplastic resin (A). If the blending amount of the silane coupling agent is less than 0.5 parts by weight, the resulting adhesive may have poor heat resistance, and if it exceeds 20 parts by weight, it may cause poor heat resistance or poor adhesion.
  • the resin composition for adhesives of the present invention can be appropriately blended with flame retardants such as bromine, phosphorus, nitrogen, and metal hydroxide compounds, leveling agents, pigments, dyes, and the like as necessary. .
  • the adhesive sheet refers to the thermoplastic resin (A), the inorganic filler (B), the epoxy resin (D), and reactions derived from these contained in the resin composition for adhesives of the present invention. It contains the product.
  • the adhesive sheet in the present invention includes the thermoplastic resin (A), the inorganic filler (B), the epoxy resin (D), and reaction products derived from these contained in the resin composition for an adhesive of the present invention. It may be a sheet consisting of a layer containing only the thermoplastic resin (A), the inorganic filler (B), and the epoxy contained in the substrate and the resin composition for adhesives of the present invention.
  • It may be a sheet comprising a layer containing the resin (D) and a reaction product derived therefrom, or the thermoplastic resin (A) contained in the substrate and the resin composition for an adhesive of the present invention.
  • seat which consists of a layer containing the said inorganic filler (B), the said epoxy resin (D), and the reaction product derived from these, and a mold release base material may be sufficient.
  • the layer containing the thermoplastic resin (A), the inorganic filler (B), the epoxy resin (D), and the reaction product derived therefrom contained in the adhesive resin composition of the present invention is based on It may be formed on one side or both sides of the material.
  • the adhesive sheet may contain a trace amount or a small amount of the solvent (C).
  • the adhesive sheet has a function of bonding the substrate to the adherend with the adhesive composition.
  • the base material of the adhesive sheet functions as a protective layer for the adherend after adhesion.
  • the releasable base material can be released and the adhesive layer can be transferred to another material to be adhered.
  • the adhesive composition of the present invention can be obtained by applying the adhesive composition of the present invention to various substrates according to a conventional method, removing at least part of the solvent and drying. Also, after removing at least a part of the solvent and drying, pasting the release substrate to the adhesive layer makes it possible to wind up without causing the back to the substrate, and excellent operability, Since the adhesive layer is protected, it is excellent in storage stability and easy to use. Moreover, after applying and drying to a mold release base material, if another mold release base material is stuck as needed, it will also become possible to transfer the adhesive layer itself to another base material.
  • the substrate to which the composition of the present invention is applied is not particularly limited, and examples thereof include a film-like resin, a metal plate, a metal foil, and papers.
  • the film-like resin include polyester resin, polyamide resin, polyimide resin, polyamideimide resin, and olefin resin.
  • metal plate and metal foil materials include various metals such as SUS, copper, aluminum, iron, and zinc, and alloys and plated products thereof. Glassine paper etc. can be illustrated. Moreover, glass epoxy etc. can be illustrated as a composite material.
  • the base material to which the composition of the present invention is applied is polyester resin, polyamide resin, polyimide resin, polyamideimide resin, SUS steel plate, copper foil, aluminum foil, glass epoxy. Is preferred.
  • the release substrate to which the composition of the present invention is applied is not particularly limited.
  • clay, polyethylene, and polypropylene are provided on both surfaces of paper such as fine paper, kraft paper, roll paper, and glassine paper.
  • a coating layer of a sealing agent such as a silicone, fluorine-based, or alkyd-based release agent is coated on each coating layer, and polyethylene, polypropylene, ethylene- ⁇ -olefin copolymer Examples include various olefin films such as a polymer, propylene- ⁇ -olefin copolymer, and those obtained by applying the release agent on a film such as polyethylene terephthalate, but the release force with the applied adhesive layer, Due to reasons such as the adverse effect of silicone on electrical properties, polypropylene seals are treated on both sides of high-quality paper and alkyd release agents are used on top of that. Those using an alkyd release agent on polyethylene terephthalate are preferred.
  • the method of coating the adhesive composition on the substrate is not particularly limited, and examples thereof include a comma coater and a reverse roll coater.
  • an adhesive film layer can also be provided in the rolled copper foil which is a printed wiring board constituent material, or a polyimide film directly or by the transfer method.
  • the thickness of the adhesive film after drying is appropriately changed as necessary, but is preferably in the range of 5 to 200 ⁇ m. When the adhesive film thickness is less than 5 ⁇ m, the adhesive strength is insufficient. When the thickness is 200 ⁇ m or more, there is a problem that drying is insufficient, a residual solvent increases, and bulge is generated at the time of printed circuit board production.
  • the drying conditions are not particularly limited, but the residual solvent ratio after drying is preferably 4% by mass or less, and more preferably 1% by mass or less. If it exceeds 4% by mass, there may be a problem that the residual solvent is foamed when the printed wiring board is pressed to cause swelling.
  • the printed wiring board in the present invention includes a laminate formed from a metal foil and a resin layer forming a conductor circuit as constituent elements.
  • a printed wiring board is manufactured by conventionally well-known methods, such as a subtractive method, using a metal-clad laminated body, for example. If necessary, a so-called flexible circuit board (FPC), flat cable, tape automated bonding (covered by using a cover film or screen printing ink, etc., partially or entirely covered with a conductor circuit formed of metal foil (tape automated bonding) TAB) circuit board and the like.
  • FPC flexible circuit board
  • TAB tape automated bonding
  • the printed wiring board of the present invention can have any laminated structure that can be employed as a printed wiring board.
  • it can be set as the printed wiring board comprised from four layers, a base film layer, a metal foil layer, an adhesive bond layer, and a cover film layer.
  • it can be set as the printed wiring board comprised from five layers, a base film layer, an adhesive bond layer, a metal foil layer, an adhesive bond layer, and a cover film layer.
  • the printed wiring board may be reinforced with a reinforcing material as necessary. In that case, the reinforcing material and the adhesive layer are provided under the base film layer.
  • the resin composition of the present invention can be suitably used for each adhesive layer of a printed wiring board.
  • the resin composition of the present invention when used as an adhesive, it has high adhesiveness to the base material constituting the printed wiring board, has high heat resistance that can be used for lead-free solder, and has a high temperature. It is possible to maintain high adhesion even under high humidity.
  • the chemical cross-linking between the resin and the resin and the physical cross-linking between the resin and the inorganic filler are provided in a well-balanced manner.
  • any resin film conventionally used as a substrate for printed wiring boards can be used as the substrate film.
  • a resin containing halogen may be used, or a resin not containing halogen may be used. From the viewpoint of environmental problems, a resin containing no halogen is preferable. However, from the viewpoint of flame retardancy, a resin containing halogen can also be used.
  • the base film is preferably a polyimide film or a polyamideimide film.
  • any conventionally known conductive material that can be used for a circuit board can be used.
  • the material for example, copper foil, aluminum foil, steel foil, nickel foil and the like can be used, and composite metal foil obtained by combining these and metal foil treated with other metals such as zinc and chromium compounds are also used. be able to.
  • it is a copper foil.
  • the thickness of the metal foil is not particularly limited, but is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, and further preferably 10 ⁇ m or more. Moreover, it is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, and still more preferably 20 ⁇ m or less. If the thickness is too thin, it may be difficult to obtain sufficient electrical performance of the circuit. On the other hand, if the thickness is too thick, the processing efficiency at the time of circuit fabrication may be reduced.
  • Metal foil is usually provided in the form of a roll.
  • the form of the metal foil used when manufacturing the printed wiring board of this invention is not specifically limited.
  • its length is not particularly limited.
  • the width is not particularly limited, but is preferably about 250 to 1000 mm.
  • any conventionally known insulating film can be used as an insulating film for a printed wiring board.
  • films produced from various polymers such as polyimide, polyester, polyphenylene sulfide, polyethersulfone, polyetheretherketone, aramid, polycarbonate, polyarylate, polyimide, and polyamideimide can be used. More preferably, it is a polyimide film or a polyamidoimide film, More preferably, it is a polyimide film.
  • the polyimide film has a polyimide resin as a main component as its resin component.
  • a polyimide resin as a main component as its resin component.
  • 90% by weight or more is preferably polyimide, more preferably 95% by weight or more is polyimide, more preferably 98% by weight or more is polyimide, and 99% by weight or more is polyimide. It is particularly preferred. Any conventionally known resin can be used as the polyimide resin.
  • a resin containing halogen may be used, or a resin not containing halogen may be used. From the viewpoint of environmental problems, a resin containing no halogen is preferable. However, from the viewpoint of flame retardancy, a resin containing halogen can also be used.
  • the reinforcing material a metal plate such as a SUS plate or an aluminum plate, a polyimide film, a plate obtained by curing glass fiber with an epoxy resin (glass epoxy plate), or the like is used.
  • the resin composition of the present invention exhibits tremendous performance with respect to adhesion between a SUS plate or an aluminum plate and a polyimide film, and exhibits excellent performance in adhesion and heat resistance.
  • the printed wiring board of the present invention can be manufactured using any conventionally known process except that the material of each layer described above is used.
  • a semi-finished product in which an adhesive layer is laminated on a cover film layer (hereinafter referred to as “cover film-side semi-finished product”) is manufactured.
  • an adhesive layer is laminated on a semi-finished product (hereinafter referred to as “base film side two-layer semi-product”) or a base film layer in which a desired circuit pattern is formed by laminating a metal foil layer on the base film layer.
  • base film side three-layer semi-product having a desired circuit pattern formed by laminating a metal foil layer thereon
  • base film side two-layer semi-product The base film side three-layer semi-finished product is collectively referred to as “base film side semi-finished product”.
  • a four-layer or five-layer printed wiring board can be obtained by laminating the cover film side semi-finished product and the base film side semi-finished product thus obtained.
  • a semi-finished product in which an adhesive layer is laminated on a reinforcing material layer (hereinafter referred to as “reinforcing material-side semi-finished product”) can be manufactured and bonded to a substrate film layer of a printed wiring board and reinforced as necessary.
  • the adhesive agent used between a reinforcing material and a base film can be apply
  • the base film side semi-finished product is, for example, (A) Step of applying a resin solution as a base film to the metal foil and initial drying of the coating film (B) A laminate of the metal foil obtained in (A) and the initial drying coating film is heat treated Drying process (hereinafter referred to as “heat treatment / solvent removal process”) It is obtained by the manufacturing method containing.
  • a conventionally known method can be used to form a circuit in the metal foil layer.
  • An active method may be used and a subtractive method may be used.
  • the subtractive method is preferable.
  • the obtained base film side semi-finished product may be used as it is for pasting with the cover film side semi-finished product. May be used.
  • the cover film side semi-finished product is manufactured, for example, by applying an adhesive to the cover film. If necessary, a crosslinking reaction in the applied adhesive can be performed. In a preferred embodiment, the adhesive layer is semi-cured.
  • the obtained cover film-side semi-finished product may be used as it is for pasting with the base-side-side semi-finished product. May be used.
  • the base film side semi-finished product and the cover film side semi-finished product are each stored, for example, in the form of a roll, and then bonded together to produce a printed wiring board.
  • Arbitrary methods can be used as the method of bonding, for example, it can bond using a press or a roll. Further, the two can be bonded together while heating by a method such as using a heating press or a heating roll device.
  • the reinforcing material-side semi-finished product is preferably manufactured by applying an adhesive to the reinforcing material.
  • a reinforcing plate that cannot be rolled up hard such as a metal plate such as SUS or aluminum, or a plate in which glass fibers are cured with an epoxy resin, by transferring and applying an adhesive previously applied to a release substrate. It is preferred to be manufactured.
  • coated adhesive agent can be performed as needed.
  • the adhesive layer is semi-cured.
  • the obtained reinforcing material-side semi-finished product may be used as it is for pasting with the back side of the printed wiring board, and after being used for pasting with the base film-side semi-finished product after storing the release film. May be.
  • the base film side semi-finished product, the cover film side semi-finished product, and the reinforcing agent side semi-finished product are all laminated bodies for printed wiring boards in the present invention.
  • thermoplastic resin Composition of thermoplastic resin
  • the thermoplastic resin was dissolved in deuterated chloroform, and the molar ratio of each component was determined by 1 H-NMR analysis. However, when the thermoplastic resin was not dissolved in deuterated chloroform, it was dissolved in deuterated dimethyl sulfoxide and subjected to 1 H-NMR analysis.
  • solder resistance and peel strength evaluation sample 1 (for initial evaluation).
  • the adhesive film (B stage product) was allowed to stand for 14 days at 40 ° C. and 80% humidification, and then cured by pressing and heat treatment with a rolled copper foil under the above conditions to obtain Sample 1 for evaluation over time. It was.
  • the evaluation substrate is a single-sided copper-clad laminate (25 ⁇ m polyimide film, 18 ⁇ m rolled copper foil) in the usual circuit fabrication process (drilling, plating, dry film resist (hereinafter abbreviated as DFR)), exposure, development, and etching.
  • DFR dry film resist
  • the adhesive film (B stage product) was temporarily pressure-bonded on the evaluation substrate thus obtained, and then the polypropylene film was peeled off.
  • a 500 ⁇ m SUS304 plate was used as a reinforcing plate at 160 ° C. and 35 kgf / cm 2 . It was pressed for 30 seconds under pressure and adhered. Next, it was cured by heat treatment at 140 ° C. for 4 hours to obtain a solder resistance and peel strength evaluation sample 2 (for initial evaluation).
  • the adhesive film (B stage product) was allowed to stand for 14 days at 40 ° C. and 80% humidification, and then cured by pressing with a rolled copper foil and heat treatment under the above conditions to obtain Sample 2 for evaluation over time. It was.
  • Solder resistance humidity: The sample was allowed to stand at 40 ° C. and 80% humidification for 2 days, then floated in a heated solder bath for 1 minute, and the upper limit temperature at which swelling did not occur was measured at a pitch of 10 ° C. In this test, it shows that the higher the measured value has better heat resistance, but it is also necessary to suppress the impact due to evaporation of water vapor contained in each base material and adhesive layer, rather than the dry state, More severe heat resistance is required. In consideration of practical performance, 250 ° C. or higher is preferable, and 260 ° C. or higher is more preferable.
  • Peel strength At 25 ° C., a 90 ° peel test was conducted at a tensile speed of 50 mm / min, and the peel strength was measured. This test shows the adhesive strength at room temperature. In consideration of practical performance, it is preferably 10 N / cm or more, more preferably 15 N / cm or more.
  • Polyester Resin B In a reaction can equipped with a stirrer, thermometer, and cooling condenser, 99.6 parts of terephthalic acid, 229.1 parts of isophthalic acid, 3.8 parts of trimellitic anhydride, 2-methyl -1-, 3-propanediol 54.0 parts, 1,6-hexanediol 401.2 parts, tetrabutyl titanate 0.2 parts, gradually heated to 250 ° C. over 4 hours, distilled water The esterification reaction was carried out while removing from the system.
  • polyester resin B After cooling to 60 ° C., 112 parts of methyl ethyl ketone and 7 parts of 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride were added and reacted at 70 ° C. for 3 hours to obtain a solution of polyester resin B.
  • the composition and characteristic values of the polyester resin B thus obtained are shown in Table 1.
  • Polyester Polyols C to I used for Polyurethane resins were obtained using the raw materials shown in Table 1 in the same manner as the polymerization examples of polyester resin A. The composition and characteristic values of this resin are shown in Table 1.
  • Polyurethane resins b to i were obtained using the raw materials shown in Table 2 in the same manner as the polymerization example of the polyurethane resin a.
  • the characteristic values are shown in Table 2. Each measurement evaluation item followed the above-mentioned method.
  • Polymerization Examples of Polyamideimide Resins II to IV Synthesis Examples II to IV of polyamideimide resins were prepared in the same manner as in Synthesis Example 1. The composition and characteristic values of the polyamideimide resin thus obtained are shown in Table 3.
  • Example 1 100 parts of a polyester resin A as a thermoplastic resin (A) (mass only of solid content, the same applies hereinafter), 20 parts of R972 [hydrophobic fumed silica manufactured by Nippon Aerosil Co., Ltd.] as an inorganic filler (B), solvent (C) As a result, 248 parts of methyl ethyl ketone and 112 parts of toluene were blended to prepare a resin composition ( ⁇ ) having a solid content concentration of 25%.
  • an epoxy resin (D) an epoxy resin [Dainippon Ink Chemical Co., Ltd.
  • HP7200-H dicyclopentanediene type epoxy resin
  • epoxy value 3540 equivalent / 10 6 g] 11.9 parts
  • a solvent (C) 5.1 parts of methyl ethyl ketone was blended to prepare a resin composition ( ⁇ ) having a solid content concentration of 70%.
  • the intended resin composition for an adhesive was obtained by blending the obtained resin composition ( ⁇ ) and the resin composition ( ⁇ ).
  • the compounding amount of the epoxy resin was determined by calculating so as to contain 1.05 times the epoxy group of the total acid value of the polyester resin.
  • Table 4 shows the results of producing and evaluating an adhesion evaluation sample by the above-described method. Both the initial evaluation and the time evaluation showed good results.
  • Example 2 Similarly to Example 1, resin compositions were prepared with the components and blending amounts shown in Table 3, and properties were evaluated. In all Examples, the resin composition ( ⁇ ) was prepared with a solid content concentration of 25%, and the resin composition ( ⁇ ) was prepared with a solid content concentration of 70%.
  • Example 3 333.3 parts of polyurethane resin solution a as the thermoplastic resin (A), 20 parts of R972 as the inorganic filler (B), 94.7 parts of methyl ethyl ketone as the solvent (C), and 32 parts of toluene are blended in a solid concentration of 25. % Resin composition ( ⁇ ) was prepared. Next, 19.3 parts of epoxy resin A as epoxy resin (D) and 8.3 parts of methyl ethyl ketone as solvent (C) were blended to prepare a resin composition ( ⁇ ) having a solid content concentration of 70%. The intended resin composition for an adhesive was obtained by blending the obtained resin composition ( ⁇ ) and the resin composition ( ⁇ ).
  • the compounding amount of the epoxy resin was determined by calculating so as to contain 1.05 times the epoxy group of the total acid value of the polyester resin.
  • Table 4 shows the results of producing and evaluating an adhesion evaluation sample by the above-described method. Both the initial evaluation and the time evaluation showed good results.
  • Examples 4 to 11 Similarly to Example 3, adhesive resin compositions were prepared with the components and blending amounts shown in Table 3, and the characteristics were evaluated. In all Examples, the composition ( ⁇ ) was prepared at a solid concentration of 25%, and the composition ( ⁇ ) was prepared at a solid concentration of 70%.
  • Example 12 333.3 parts of polyamideimide resin solution I as thermoplastic resin (A), 20 parts of R972 as inorganic filler (B), 98.5 parts of dimethylacetamide and 28.2 parts of toluene as solvent (C) A resin composition ( ⁇ ) having a solid content concentration of 25% was prepared. Next, 13.3 parts of epoxy resin A as the epoxy resin (D) and 5.7 parts of methyl ethyl ketone as the solvent (C) were blended to prepare a resin composition ( ⁇ ) having a solid content concentration of 70%. The intended resin composition for an adhesive was obtained by blending the obtained resin composition ( ⁇ ) and the resin composition ( ⁇ ).
  • the compounding amount of the epoxy resin was determined by calculating so as to contain 1.05 times the epoxy group of the total acid value of the polyester resin.
  • Table 4 shows the results of producing and evaluating an adhesion evaluation sample by the above-described method. Both the initial evaluation and the time evaluation showed good results.
  • Examples 13 and 14 Similarly to Example 3, adhesive resin compositions were prepared with the components and blending amounts shown in Table 3, and the characteristics were evaluated. In all Examples, the composition ( ⁇ ) was prepared at a solid concentration of 25%, and the composition ( ⁇ ) was prepared at a solid concentration of 70%.
  • Aerosil R8200 Nippon Aerosil Co., Ltd.
  • Hydrophobic fumed silica Leorosil DM-10 Tokuyama Co., Ltd.
  • Hydrophobic fumed silica Leorosil HM-20L Tokuyama Co., Ltd.
  • Hydrophobic fumed silica SYLOPHOBIC 200 Fuji Silysia Chemical Hydrophobic silica Hydrite H-42M manufactured by Showa Denko Co., Ltd.
  • the compounding amount of the epoxy resin was determined by calculating so as to include an epoxy group 0.8 to 1.3 times the total acid value of the thermoplastic resin (A). Table 4 shows the evaluation results. Both the initial evaluation and the time evaluation showed good results.
  • Table 5 shows the evaluation results for the adhesive composition in which the compounding amount of the epoxy resin was further increased as in Example 3. Both the initial evaluation and the time evaluation showed good results, and it was found that the peel strength and the humidified solder resistance were excellent.
  • Table 6 shows the evaluation results for the high temperature and high humidity environment test. It can be seen that when the amount of the epoxy resin is 1.3 to 4, it is excellent in that the decrease in peel strength is suppressed even after the high temperature and high humidity environment test.
  • Comparative Examples 1-15 In the same manner as in Examples 1 to 19, adhesive resin compositions were prepared with the components and blending amounts shown in Tables 7 and 8, and the characteristics were evaluated.
  • Comparative Example 1 is out of the scope of the present invention because the polyester resin H corresponding to the thermoplastic resin (A) has a low acid value and a low number average molecular weight.
  • the peel strength at room temperature is also low, the creep characteristics that serve as an index of adhesion under high temperature and high humidity are poor, and the resistance to humidification soldering is also low. This is presumably because the cured product is insufficiently crosslinked and the cohesive force is reduced.
  • Comparative Example 2 has a low acid value of the polyester resin I corresponding to the thermoplastic resin (A) and is outside the scope of the present invention.
  • the peel strength at room temperature is also low, the creep characteristics that serve as an index of adhesion under high temperature and high humidity are poor, and the resistance to humidification soldering is also low. This is presumably because the cured product is insufficiently crosslinked and the cohesive force is reduced.
  • Comparative Example 3 has a low acid value of the polyurethane resin g corresponding to the thermoplastic resin (A), and is outside the scope of the present invention.
  • the peel strength at room temperature is also low, the creep characteristics that serve as an index of adhesion under high temperature and high humidity are poor, and the resistance to humidification soldering is also low. This is presumably because the cured product is insufficiently crosslinked and the cohesive force is reduced.
  • Comparative Example 4 has a high acid value of the polyurethane resin h, which is the thermoplastic resin (A), and is outside the scope of the present invention. Since the rigidity of the cured product becomes excessively high, the peel strength at room temperature is also low, and the creep characteristics that serve as an index of adhesiveness at high temperature and high humidity are considered to be poor.
  • Comparative Example 5 has a low number average molecular weight of the polyurethane resin i corresponding to the thermoplastic resin (A), which is outside the scope of the present invention. Since the cohesive force is small, the peel strength at room temperature is also low, and the creep characteristics that serve as an index of adhesiveness under high temperature and high humidity are considered to be poor.
  • Comparative Example 6 has a low degree of fluctuation (TI value) of the dispersion ( ⁇ ), which is outside the scope of the present invention. It is considered that the interaction between the resin and the inorganic filler is lowered, and the humidification solder resistance is lowered.
  • Comparative Example 7 has a high degree of fluctuation (TI value) of the dispersion ( ⁇ ), which is outside the scope of the present invention. It is considered that the bonding with the base material becomes insufficient and the peel strength decreases.
  • Comparative Example 8 has a low degree of variability (TI value) of the dispersion ( ⁇ ), which is outside the scope of the present invention. It is considered that the interaction between the resin and the inorganic filler is lowered, the resistance to humidification soldering is lowered, the sheet life is deteriorated, and the characteristics with time are lowered.
  • TI value degree of variability
  • Comparative Example 9 has a low dispersion (TI value) of the dispersion ( ⁇ ), which is outside the scope of the present invention. It is considered that the interaction between the resin and the inorganic filler is lowered, the resistance to humidification soldering is lowered, the sheet life is deteriorated, and the characteristics with time are lowered.
  • Comparative Example 10 has a low dispersion (TI value) of the dispersion ( ⁇ ), which is outside the scope of the present invention. It is considered that the interaction between the resin and the inorganic filler is lowered, and the humidification solder resistance is lowered.
  • Comparative Example 11 does not contain an epoxy resin having a dicyclopentadiene skeleton corresponding to the epoxy resin (D), and is outside the scope of the present invention. Stiffness and low hygroscopicity are reduced, and the creep characteristics that serve as an index of adhesiveness under high temperature and high humidity are considered to be reduced.
  • Comparative Example 13 has a large amount of the epoxy resin having a dicyclopentadiene skeleton corresponding to the epoxy resin (D), and is outside the scope of the present invention. It is considered that the curing becomes insufficient and the resistance to humidification soldering decreases.
  • Comparative Example 14 has a large amount of the epoxy resin having a dicyclopentadiene skeleton corresponding to the epoxy resin (D), and is outside the scope of the present invention. It is considered that the curing becomes insufficient and the resistance to humidification soldering decreases.
  • Comparative Example 15 has a large amount of the epoxy resin having a dicyclopentadiene skeleton corresponding to the epoxy resin (D), and is outside the scope of the present invention. It is considered that the curing becomes insufficient and the resistance to humidification soldering decreases.
  • An adhesive containing the same, an adhesive sheet, and a printed wiring board including the adhesive as an adhesive layer can be provided.

Abstract

An adhesive which has a high degree of moist-heat resistance that enables the adhesive layer to withstand soldering with a lead-free solder under high-humidity conditions and which has excellent adhesiveness under high-temperature high-humidity conditions, while retaining adhesion to various plastic films, metals, and glass-epoxies.  A B-stage adhesive sheet obtained from the adhesive is provided which has a satisfactory sheet life and can retain satisfactory adhesive properties even when used after having been transported under high-temperature high-humidity conditions. The resin composition for adhesives comprises a thermoplastic resin (A), an inorganic filler (B), a solvent (C), and an epoxy resin (D), wherein the thermoplastic resin (A) has an acid value and a number-average molecular weight which are in specific ranges, the epoxy resin (D) is an epoxy resin having a dicyclopentadiene skeleton, and a dispersion (α) having a specific makeup including the thermoplastic resin (A) and the inorganic filler (B) in a total amount of 25 parts by mass and in the same proportion as in the resin composition for adhesives has a thixotropic index (TI value) of 3-6 at 25ºC.

Description

接着剤用樹脂組成物、これを含有する接着剤、接着シート及びこれを接着層として含むプリント配線板RESIN COMPOSITION FOR ADHESIVE, ADHESIVE CONTAINING THE SAME, ADHESIVE SHEET AND A PRINTED WIRING BOARD CONTAINING THE SAME AS ADHESIVE LAYER
 本発明は各種プラスチックフィルムへの接着性や、銅、アルミ、ステンレスなどの金属への接着性、ガラスへの接着性、耐熱性、耐湿性、シートライフ等に優れた樹脂組成物、これを含有する接着剤、接着シートおよびこれを接着層として含むプリント配線板に関するものである。 The present invention includes a resin composition excellent in adhesion to various plastic films, adhesion to metals such as copper, aluminum, and stainless steel, adhesion to glass, heat resistance, moisture resistance, sheet life, and the like. The present invention relates to an adhesive, an adhesive sheet, and a printed wiring board including the adhesive as an adhesive layer.
 近年、様々な分野で接着剤は使用されているが使用目的の多様化により、従来使用されてきた接着剤よりも各種プラスチックフィルムへの接着性や、銅、アルミ、ステンレス鋼などの金属への接着性、ガラスエポキシへの接着性、耐熱性、耐湿性、シートライフ等、更なる高性能化が求められている。例えば、フレキシブルプリント配線板(以下FPCと略すことがある)をはじめとする回路基板用の接着剤としては、エポキシ/アクリルブタジエン系接着剤や、エポキシ/ポリビニルブチラール系接着剤等が使用されている。これらの回路基板用接着剤には、ハンダ耐熱性、接着性、加工性、電気特性、保存性が求められる。 In recent years, adhesives have been used in various fields, but due to the diversification of purpose of use, adhesiveness to various plastic films and adhesives to metals such as copper, aluminum, and stainless steel, compared to conventional adhesives. There are demands for higher performance such as adhesion, adhesion to glass epoxy, heat resistance, moisture resistance, and sheet life. For example, epoxy / acryl butadiene adhesive, epoxy / polyvinyl butyral adhesive, and the like are used as adhesives for circuit boards including flexible printed wiring boards (hereinafter sometimes abbreviated as FPC). . These circuit board adhesives are required to have solder heat resistance, adhesiveness, workability, electrical characteristics, and storage stability.
 特に最近の鉛フリーハンダへの対応、FPCの使用環境から、より高度な耐熱性を有する接着剤が求められている。また、配線の高密度化、FPC配線板の多層化、作業性から、高湿度下での耐ハンダ性、高温高湿度下での接着性が強く求められている。従来のエポキシ/アクリルブタジエン系接着剤や、エポキシ/ポリビニルブチラール系接着剤では、特に、高温高湿度下での接着性、加工性が不良で、また、金属やプラスチックフィルムの接着性も十分ではなかった。また常温でも流通できるような安定したシートライフの確保はできていなかった(特許文献1、2、3、4参照)。 Especially, adhesives with higher heat resistance are required from the recent lead-free solder compatibility and FPC usage environment. In addition, soldering resistance under high humidity and adhesiveness under high temperature and high humidity are strongly demanded from high density of wiring, multi-layered FPC wiring board, and workability. Conventional epoxy / acryl butadiene adhesives and epoxy / polyvinyl butyral adhesives have poor adhesion and workability especially under high temperature and high humidity, and the adhesion of metals and plastic films is not sufficient. It was. Moreover, the stable seat life which can be distribute | circulated even at normal temperature was not able to be ensured (refer patent document 1, 2, 3, 4).
 特許文献5においては、特定のポリエステル・ポリウレタンとエポキシ樹脂を主成分とする接着剤用樹脂組成物が開示されている。ここに示されている組成物によって、シートライフ、高温下及び高湿度下での接着性が向上可能であるが、高温且つ高湿度下での接着性を十分に満足するものでは無かった。 Patent Document 5 discloses a resin composition for an adhesive mainly composed of a specific polyester / polyurethane and an epoxy resin. Although the composition shown here can improve the sheet life, the adhesiveness under high temperature and high humidity, the adhesiveness under high temperature and high humidity is not sufficiently satisfied.
 特許文献6においても、特定のポリエステル・ポリウレタンとエポキシ樹脂を主成分とする接着剤用樹脂組成物が開示されている。ここに示されている組成物によって、高温下及び高湿度下での接着性、プラスチックフィルムを補強板に用いた際の耐加湿半田性は向上可能であるが、高温且つ高湿度下での接着性、金属を補強板に用いた際の耐加湿半田性を十分に満足するものではなかった。また、常温や40℃保管後の耐加湿半田性、高温且つ高湿度下での接着性が著しく低下するものであり、安定したシートライフが確保できていなかった。 Patent Document 6 also discloses a resin composition for an adhesive mainly comprising a specific polyester / polyurethane and an epoxy resin. The composition shown here can improve adhesion at high temperatures and high humidity, and resistance to humidification when plastic film is used as a reinforcing plate, but adhesion at high temperatures and high humidity. However, it did not fully satisfy the humidification solder resistance when metal was used for the reinforcing plate. Further, the resistance to humidification after storage at room temperature or 40 ° C. and the adhesiveness under high temperature and high humidity are remarkably lowered, and a stable sheet life cannot be secured.
特開2001-291964号公報JP 2001-291964 A 特開2003-313526号公報JP 2003-31526 A 特開2005-139387号公報JP 2005-139387 A 特開2005―139391号公報JP 2005-139391 A 特開平11―116930号公報Japanese Patent Laid-Open No. 11-116930 特開2008-205370号公報JP 2008-205370 A
 本発明の課題はこれら従来の接着剤が抱えている各問題点を改良することであり、各種プラスチックフィルムや、銅、アルミ、ステンレス鋼などの金属、ガラスエポキシへの接着性を維持しつつ、高湿度下での鉛フリーハンダにも対応できる高度の耐湿熱性、高温高湿度下での接着性に優れた接着剤を提供すること、さらには前記接着剤から得たBステージの接着シートがたとえ高温高湿下で流通された後に使用されても良好な接着特性の維持が可能なシートライフが良好な接着剤シートを提供すること、にある。また、前記接着剤または接着シートから得られた接着層を含むプリント配線板を提供することにある。 The problem of the present invention is to improve each of the problems that these conventional adhesives have, while maintaining the adhesion to various plastic films, metals such as copper, aluminum, stainless steel, and glass epoxy, Providing an adhesive with high moisture and heat resistance that is compatible with lead-free solder under high humidity, and excellent adhesiveness under high temperature and high humidity. An object of the present invention is to provide an adhesive sheet having a good sheet life capable of maintaining good adhesive properties even when used after being distributed under high temperature and high humidity. Moreover, it is providing the printed wiring board containing the contact bonding layer obtained from the said adhesive agent or the adhesive sheet.
 本発明者らは、上記課題を解決する為に、鋭意検討した結果、本発明を完成するに至った。すなわち本発明は、以下の構成からなる。
  (1) 熱可塑性樹脂(A)、無機充填材(B)、溶剤(C)、エポキシ樹脂(D)を含有する接着剤用樹脂組成物であって、
 該熱可塑性樹脂(A)の酸価(単位:当量/10g)が100以上1000以下であり、
 該熱可塑性樹脂(A)の数平均分子量が5.0×10以上1.0×10以下であり、
 該エポキシ樹脂(D)がジシクロペンタジエン骨格を有するエポキシ樹脂であり、
 該熱可塑性樹脂(A)と該無機充填材(B)を該接着剤用樹脂組成物における含有比率で合計25質量部含み、メチルエチルケトン52質量部とトルエン23質量部からなる混合溶剤(但し、該熱可塑性樹脂(A)が前記濃度で前記混合溶剤に25℃において溶解しない場合は、前記混合溶剤に変えてジメチルアセトアミド52質量部とトルエン23質量部からなる混合溶剤を用いる)を分散媒とする分散液(α)の液温25℃における揺変度(TI値)が3以上6以下である、
接着剤用樹脂組成物。
  (2) 樹脂組成物(β)が熱可塑性樹脂(A)、無機充填材(B)、溶剤(C)を必須成分として含有し、
 該熱可塑性樹脂(A)の酸価(単位:当量/10g)が100以上1000以下であり、
 該熱可塑性樹脂(A)の数平均分子量が5.0×10以上1.0×10以下であり、
 該熱可塑性樹脂(A)と該無機充填材(B)を該接着剤用樹脂組成物における含有比率で合計25質量部含み、メチルエチルケトン52質量部とトルエン23質量部からなる混合溶剤(但し、該熱可塑性樹脂(A)が前記濃度で前記混合溶剤に25℃において溶解しない場合は、前記混合溶剤に変えてジメチルアセトアミド52質量部とトルエン23質量部からなる混合溶剤を用いる)を分散媒とする分散液(α)の液温25℃における揺変度(TI値)が3以上6以下であり、
 樹脂組成物(γ)がジシクロペンタジエン骨格を有するエポキシ樹脂(D)を必須成分として含有し、
 該樹脂組成物(β)に含まれる該熱可塑性樹脂(A)の酸価AV(β)(単位:当量/10g)と配合量AW(β)(単位:質量部)、該樹脂組成物(γ)に含まれるエポキシ樹脂のエポキシ価EV(γ)(単位:当量/10g)と配合量EW(γ)(単位:質量部)が以下に示す式(1)、
  0.7≦{EV(γ)×EW(γ)}/{AV(β)×AW(β)}≦4.0  (1)
を満たす配合比で樹脂組成物(β)と樹脂組成物(γ)を配合する、
二液型接着剤用樹脂組成物。
  (3) 前記エポキシ樹脂(D)が、接着剤用樹脂組成物に含まれるエポキシ樹脂全体の60質量%以上99.9質量%以下であることを特徴とする(1)または(2)に記載の接着剤用樹脂組成物。
  (4) 前記無機充填材(B)の配合量が熱可塑性樹脂(A)100質量部に対し、10質量部以上50質量部以下であることを特徴とする(1)~(3)いずれかに記載の接着剤用樹脂組成物。
  (5) 前記溶剤(C)の配合量が接着剤用樹脂組成物を100質量部としたとき、60質量部以上85質量部以下であることを特徴とする請求(1)~(4)いずれかに記載の接着剤用樹脂組成物。
  (6) 窒素原子を含有するエポキシ樹脂を含むことを特徴とする(1)~(5)いずれかに記載の接着剤用樹脂組成物。
  (7) 前記窒素原子を含有するエポキシ樹脂がグリシジルジアミン構造を有することを特徴とする(1)~(6)いずれかに記載の接着剤用樹脂組成物。
  (8) (1)~(7)いずれかに記載の接着剤用樹脂組成物を含有する接着剤。
  (9) (1)~(7)いずれかに記載の接着剤用樹脂組成物に含有される前記熱可塑性樹脂(A)、前記無機充填材(B)、前記エポキシ樹脂(D)およびこれらに由来する反応生成物を含有する接着シート。
  (10) (8)に記載の接着剤または(9)に記載の接着剤シートを用いてなる接着層を含むプリント配線板。
As a result of intensive investigations to solve the above problems, the present inventors have completed the present invention. That is, this invention consists of the following structures.
(1) A resin composition for an adhesive containing a thermoplastic resin (A), an inorganic filler (B), a solvent (C), and an epoxy resin (D),
The acid value (unit: equivalent / 10 6 g) of the thermoplastic resin (A) is 100 or more and 1000 or less,
The number average molecular weight of the thermoplastic resin (A) is 5.0 × 10 3 or more and 1.0 × 10 5 or less,
The epoxy resin (D) is an epoxy resin having a dicyclopentadiene skeleton,
A mixed solvent (provided that the thermoplastic resin (A) and the inorganic filler (B) are contained in a total content of 25 parts by mass in the resin composition for an adhesive, consisting of 52 parts by mass of methyl ethyl ketone and 23 parts by mass of toluene (however, When the thermoplastic resin (A) is not dissolved in the mixed solvent at the above concentration at 25 ° C., a mixed solvent consisting of 52 parts by mass of dimethylacetamide and 23 parts by mass of toluene is used instead of the mixed solvent). The dispersion (TI value) of the dispersion (α) at a liquid temperature of 25 ° C. is 3 or more and 6 or less.
Resin composition for adhesives.
(2) The resin composition (β) contains the thermoplastic resin (A), the inorganic filler (B), and the solvent (C) as essential components,
The acid value (unit: equivalent / 10 6 g) of the thermoplastic resin (A) is 100 or more and 1000 or less,
The number average molecular weight of the thermoplastic resin (A) is 5.0 × 10 3 or more and 1.0 × 10 5 or less,
A mixed solvent (provided that the thermoplastic resin (A) and the inorganic filler (B) are contained in a total content of 25 parts by mass in the resin composition for an adhesive, consisting of 52 parts by mass of methyl ethyl ketone and 23 parts by mass of toluene (however, When the thermoplastic resin (A) is not dissolved in the mixed solvent at the above concentration at 25 ° C., a mixed solvent consisting of 52 parts by mass of dimethylacetamide and 23 parts by mass of toluene is used instead of the mixed solvent). The dispersion (TI value) of the dispersion (α) at a liquid temperature of 25 ° C. is 3 or more and 6 or less,
The resin composition (γ) contains an epoxy resin (D) having a dicyclopentadiene skeleton as an essential component,
Acid value AV (β) (unit: equivalent / 10 6 g) and blending amount AW (β) (unit: parts by mass) of the thermoplastic resin (A) contained in the resin composition (β), the resin composition The epoxy value EV (γ) (unit: equivalent / 10 6 g) and compounding amount EW (γ) (unit: parts by mass) of the epoxy resin contained in the product (γ) are shown below (1),
0.7 ≦ {EV (γ) × EW (γ)} / {AV (β) × AW (β)} ≦ 4.0 (1)
The resin composition (β) and the resin composition (γ) are blended at a blending ratio that satisfies
Resin composition for two-component adhesives.
(3) The epoxy resin (D) is 60% by mass or more and 99.9% by mass or less of the entire epoxy resin contained in the resin composition for an adhesive, described in (1) or (2) Resin composition for adhesives.
(4) The amount of the inorganic filler (B) is 10 parts by weight or more and 50 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin (A). The resin composition for adhesives described in 1.
(5) The amount of the solvent (C) is 60 parts by mass or more and 85 parts by mass or less when the resin composition for an adhesive is 100 parts by mass. A resin composition for an adhesive according to claim 1.
(6) The resin composition for adhesives according to any one of (1) to (5), comprising an epoxy resin containing a nitrogen atom.
(7) The resin composition for adhesives according to any one of (1) to (6), wherein the epoxy resin containing a nitrogen atom has a glycidyldiamine structure.
(8) An adhesive comprising the adhesive resin composition according to any one of (1) to (7).
(9) The thermoplastic resin (A), the inorganic filler (B), the epoxy resin (D) and the epoxy resin (D) contained in the adhesive resin composition according to any one of (1) to (7) An adhesive sheet containing the derived reaction product.
(10) A printed wiring board comprising an adhesive layer using the adhesive according to (8) or the adhesive sheet according to (9).
 本発明により、PETフィルム等の各種プラスチックフィルムおよび銅、アルミニウム、ステンレス鋼等の各種金属に対する高い接着性、高湿度下での鉛フリーハンダにも対応できる高度の耐湿熱性、高温高湿度下での接着性に優れた接着剤を得ることができ、かつBステージのシートがたとえ高温高湿下で流通された後に使用されても良好な接着特性の維持が可能なシートライフが良好な樹脂組成物、これを含有する接着剤、接着シートおよびこれを接着層として含むプリント配線板を提供することができる。また、本発明の好ましい実施態様においては、各種プラスチックフィルムへの接着性や、銅、アルミ、ステンレス鋼などの金属への接着性、ガラスエポキシへの接着性にも優れる樹脂組成物、これを含有する接着剤、接着シートおよびこれを接着層として含むプリント配線板を提供することができる。さらに、本発明の好ましい実施態様においては特にアルミ、ステンレス鋼などの金属への接着性、耐湿熱性に優れ、接着物を高温高湿環境下に長期間放置後も高い剥離強度を維持しているという点でさらに優れた特性を発揮する。 According to the present invention, high adhesion to various plastic films such as PET film and various metals such as copper, aluminum, stainless steel, etc., high humidity and heat resistance that can cope with lead-free solder under high humidity, high temperature and high humidity Resin composition having good sheet life that can obtain an adhesive having excellent adhesiveness and can maintain good adhesive properties even if a B-stage sheet is used after being distributed under high temperature and high humidity An adhesive containing the same, an adhesive sheet, and a printed wiring board including the adhesive as an adhesive layer can be provided. Further, in a preferred embodiment of the present invention, the resin composition having excellent adhesion to various plastic films, adhesion to metals such as copper, aluminum, and stainless steel, and adhesion to glass epoxy, It is possible to provide an adhesive, an adhesive sheet, and a printed wiring board including the adhesive as an adhesive layer. Furthermore, in a preferred embodiment of the present invention, particularly, it is excellent in adhesion to metals such as aluminum and stainless steel, and heat and moisture resistance, and maintains a high peel strength even after the adhesive is left in a high temperature and high humidity environment for a long period of time. In that respect, it exhibits even better properties.
 以下、本発明を詳しく説明する。 Hereinafter, the present invention will be described in detail.
<分散液(α)>
 本発明において、分散液(α)の揺変度(TI値)は、本発明の接着剤用樹脂組成物における熱可塑性樹脂(A)と無機充填材(B)の組み合わせおよび配合比が適切であるかを判定する指針となる。分散液(α)の揺変度(TI値)は3以上6以下であり、より好ましくは3.5以上5以下である。分散液(α)に含有される無機充填材(B)粒子間や熱可塑性樹脂(A)と無機充填剤(B)の相互作用が高いと分散液(α)の揺変度が高くなる傾向にある。揺変度が3未満であると無機充填材(B)粒子間や無機充填材(B)と熱可塑性樹脂(A)との相互作用が低下し耐熱性が低下する傾向にあり、また無機充填材が沈降しやすく安定したポットライフが得られない傾向にある。揺変度が6を超えるとハンドリング性が低下し均一に塗工することが困難になる傾向にある。
<Dispersion (α)>
In the present invention, the variation (TI value) of the dispersion liquid (α) is appropriate for the combination and blending ratio of the thermoplastic resin (A) and the inorganic filler (B) in the adhesive resin composition of the present invention. It becomes a guideline for judging whether there is. The dispersion (TI value) of the dispersion (α) is 3 or more and 6 or less, more preferably 3.5 or more and 5 or less. When the interaction between the inorganic filler (B) particles contained in the dispersion (α) and between the thermoplastic resin (A) and the inorganic filler (B) is high, the dispersion of the dispersion (α) tends to increase. It is in. If the degree of change is less than 3, the interaction between the inorganic filler (B) particles and the interaction between the inorganic filler (B) and the thermoplastic resin (A) tends to decrease, and the heat resistance tends to decrease. The material tends to settle and a stable pot life cannot be obtained. When the degree of change exceeds 6, the handling property is lowered and it tends to be difficult to coat uniformly.
 分散液(α)は、本発明の接着剤用樹脂組成物における含有比率で熱可塑樹脂(A)と無機充填材(B)を合計25質量部、メチルエチルケトンを52質量部、トルエンを23質量部の配合比で混合し、さらに直径0.5~2mmのガラスビーズを分散液(α)の体積の約1/3程度加え、ペイントシェイカーを用いて室温20~25℃の室内において4時間分散させた後、ガラスビーズを取り除くことにより調製する。但し、該熱可塑性樹脂(A)が前記濃度で前記溶剤に25℃において溶解しない場合は、前記溶剤に変えてジメチルアセトアミド52質量部、トルエン23質量部からなる混合溶媒を用いて調製したものを分散液(α)とする。 The dispersion (α) is a total of 25 parts by mass of the thermoplastic resin (A) and the inorganic filler (B) in the content ratio in the resin composition for an adhesive of the present invention, 52 parts by mass of methyl ethyl ketone, and 23 parts by mass of toluene. Then add glass beads with a diameter of 0.5 to 2 mm to about 1/3 of the volume of the dispersion (α), and use a paint shaker to disperse in a room at 20 to 25 ° C. for 4 hours. And then by removing the glass beads. However, when the thermoplastic resin (A) does not dissolve in the solvent at the above concentration at 25 ° C., a solution prepared by using a mixed solvent consisting of 52 parts by mass of dimethylacetamide and 23 parts by mass of toluene is used instead of the solvent. Dispersion liquid (α).
 分散液(α)の揺変度(TI値)は以下の方法により求める。分散液(α)を容量225mLのガラス製広口瓶(通称:マヨネーズ瓶)にとり、測定温度25±1℃でBL型粘度計(東機産業(株)製)を用いて回転数6rpmと60rpmにおける粘度(以下それぞれBL(6)、BL(60)と略記する場合がある。単位:dPa・s。)を測定し、BL(6)が100以下の場合は下記式(2)、
   揺変度(TI値)=BL(6)/BL(60)   (2)
により揺変度(TI値)を求める。また、BL(6)が100を超える場合には、BH型粘度計(東機産業(株)製)を用いて2rpmと20rpmで粘度(以下それぞれBH(2)、BH(20)と略記する場合がある。単位:dPa・s。)を測定し、下記式(3)、
   揺変度(TI値)=BH(2)/BH(20)   (3)
により揺変度(TI値)を求める。なお、BL型粘度計およびBH型粘度計による粘度測定の際に使用するローターは、各粘度計の取扱説明書の記載に従い、No.2~4のいすれかを選択する。
The fluctuation degree (TI value) of the dispersion (α) is determined by the following method. Disperse the liquid (α) in a 225 mL glass wide-mouthed bottle (common name: mayonnaise bottle) and use a BL type viscometer (manufactured by Toki Sangyo Co., Ltd.) at a measurement temperature of 25 ± 1 ° C. and at a rotation speed of 6 rpm and 60 rpm. Viscosity (hereinafter sometimes abbreviated as BL (6) and BL (60) respectively. Unit: dPa · s) is measured, and when BL (6) is 100 or less, the following formula (2),
Fluctuation degree (TI value) = BL (6) / BL (60) (2)
To determine the degree of fluctuation (TI value). In addition, when BL (6) exceeds 100, the viscosity (hereinafter referred to as BH (2) and BH (20) respectively) at 2 rpm and 20 rpm using a BH viscometer (manufactured by Toki Sangyo Co., Ltd.). (Unit: dPa · s.) Is measured, and the following formula (3):
Fluctuation degree (TI value) = BH (2) / BH (20) (3)
To determine the degree of fluctuation (TI value). In addition, the rotor used in the viscosity measurement by the BL type viscometer and the BH type viscometer is No. according to the description in the instruction manual of each viscometer. Select one of 2-4.
<樹脂組成物(β)>
 本発明に用いる樹脂組成物(β)は、熱可塑性樹脂(A)、無機充填材(B)、溶剤(C)、さらに必要に応じてその他の成分を前述した割合で配合し、ロールミル、ミキサー、ペイントシェイカー等で均一に混合することにより得られ、十分な分散が得られる方法であれば分散方法に特に制限はない。さらに、樹脂組成物(β)の固形分濃度は15質量%以上40質量%以下が好ましい。固形分濃度が15質量%未満であると、接着剤の厚みが薄くなり、耐熱性、接着強度が低下し、40質量%より大きくなると、溶液の粘度が高くなりすぎるために、均一に塗工することが困難になる傾向にある。
<Resin composition (β)>
The resin composition (β) used in the present invention comprises a thermoplastic resin (A), an inorganic filler (B), a solvent (C), and, if necessary, other components in the above-described proportions, a roll mill, a mixer The dispersion method is not particularly limited as long as it is obtained by uniform mixing with a paint shaker or the like and can obtain sufficient dispersion. Furthermore, the solid content concentration of the resin composition (β) is preferably 15% by mass or more and 40% by mass or less. When the solid content concentration is less than 15% by mass, the thickness of the adhesive is reduced, the heat resistance and the adhesive strength are reduced, and when it exceeds 40% by mass, the viscosity of the solution becomes too high. Tend to be difficult to do.
<樹脂組成物(γ)>
 本発明に用いる樹脂組成物(γ)はエポキシ樹脂(D)のみから構成されてもいいが、さらに溶剤(C)を含有することが好ましい。樹脂組成物(γ)に含有される溶剤(C)は、樹脂組成物(γ)に含有する成分を溶解できるものであれば良く、特に制限されない。また、樹脂組成物(γ)の固形分濃度は15質量%以上80質量%以下が好ましく、25質量%以上75質量%以下がより好ましく、35質量%以上70質量%以下であることが更に好ましい。固形分濃度が15質量%未満であると、溶剤揮散後の接着剤の厚みが薄くなり、耐熱性、接着強度が低下する傾向にある。固形分濃度が80質量%より大きくなると、接着剤用樹脂組成物の粘度が高くなりすぎるために、均一に塗工することが困難になる傾向にある。
<Resin composition (γ)>
The resin composition (γ) used in the present invention may be composed only of the epoxy resin (D), but preferably further contains a solvent (C). The solvent (C) contained in the resin composition (γ) is not particularly limited as long as it can dissolve the components contained in the resin composition (γ). The solid content concentration of the resin composition (γ) is preferably 15% by mass to 80% by mass, more preferably 25% by mass to 75% by mass, and further preferably 35% by mass to 70% by mass. . When the solid content concentration is less than 15% by mass, the thickness of the adhesive after solvent evaporation tends to be thin, and the heat resistance and adhesive strength tend to decrease. When the solid content concentration is larger than 80% by mass, the viscosity of the adhesive resin composition becomes too high, so that uniform coating tends to be difficult.
<接着剤用樹脂組成物>
 本発明の接着剤用樹脂組成物は、熱可塑性樹脂(A)、無機充填材(B)、溶剤(C)、エポキシ樹脂(D)を含有する一液型接着剤用樹脂組成物であっても、複数の剤に分け使用に先立ち混合する複数剤混合型接着剤用樹脂組成物であっても良い。複数剤混合型とすることにより、長期間の保存が可能になるとの利点ある。一方、複数剤混合型の場合、接着剤として用いる際に複数剤を正確な配合比でかつ均一に混合する必要があり、剤数が増すほどにその工程の困難度も大きくなる。従って、複数剤混合型の中でも、熱可塑性樹脂(A)、無機充填材(B)、溶剤(C)を含有する樹脂組成物(β)とエポキシ樹脂(D)を含有する樹脂組成物(γ)からなる二剤混合型が好ましく、均一混合の容易さから二液混合型が更に好ましい。
<Adhesive resin composition>
The resin composition for an adhesive of the present invention is a one-component adhesive resin composition containing a thermoplastic resin (A), an inorganic filler (B), a solvent (C), and an epoxy resin (D). Alternatively, it may be a multiple agent mixed adhesive resin composition that is divided into a plurality of agents and mixed prior to use. There is an advantage that long-term storage becomes possible by using a mixed agent type. On the other hand, in the case of a multi-agent mixed type, it is necessary to uniformly mix a plurality of agents at an accurate blending ratio when used as an adhesive, and the difficulty of the process increases as the number of agents increases. Accordingly, among the mixed agent type, a resin composition (β) containing a thermoplastic resin (A), an inorganic filler (B), and a solvent (C) and a resin composition containing an epoxy resin (D) (γ The two-component mixed type is preferable, and the two-component mixed type is more preferable because of uniform mixing.
 樹脂組成物(β)と樹脂組成物(γ)から接着剤用樹脂組成物を得る場合、該樹脂組成物(β)に含まれる該熱可塑性樹脂(A)の酸価AV(β)(単位:当量/10g)と配合量AW(β)(単位:質量部)、該樹脂組成物(γ)に含まれるエポキシ樹脂のエポキシ価EV(γ)(単位:当量/10g)と配合量EW(γ)(単位:質量部)が以下に示す式(1)、
  0.7≦{EV(γ)×EW(γ)}/{AV(β)×AW(β)}≦4.0  (1)
を満たす配合比で樹脂組成物(β)と樹脂組成物(γ)を配合する。{EV(γ)×EW(γ)}/{AV(β)×AW(β)}はより好ましくは0.8以上3.5以下であり、さらに好ましくは0.9以上3.0以下である。0.7未満であると、熱可塑性樹脂(A)とエポキシ樹脂との架橋が不十分になり耐熱性が低下する傾向にあり、4.0より大きくなると、未反応のエポキシ樹脂が多量に残存し、耐熱性や耐湿性が低下する傾向にある。
When a resin composition for an adhesive is obtained from the resin composition (β) and the resin composition (γ), the acid value AV (β) (unit) of the thermoplastic resin (A) contained in the resin composition (β) : Equivalent / 10 6 g), blending amount AW (β) (unit: parts by mass), epoxy value EV (γ) of the epoxy resin contained in the resin composition (γ) (unit: equivalent / 10 6 g) Formula (1) where the blending amount EW (γ) (unit: parts by mass) is shown below,
0.7 ≦ {EV (γ) × EW (γ)} / {AV (β) × AW (β)} ≦ 4.0 (1)
The resin composition (β) and the resin composition (γ) are blended at a blending ratio that satisfies the above. {EV (γ) × EW (γ)} / {AV (β) × AW (β)} is more preferably 0.8 or more and 3.5 or less, and further preferably 0.9 or more and 3.0 or less. is there. If it is less than 0.7, the crosslinking between the thermoplastic resin (A) and the epoxy resin tends to be inadequate and the heat resistance tends to decrease, and if it exceeds 4.0, a large amount of unreacted epoxy resin remains. However, heat resistance and moisture resistance tend to decrease.
<熱可塑性樹脂(A)>
 本発明に用いる熱可塑性樹脂(A)としては、ポリエステル系樹脂、ポリウレタン系樹脂、スチレン系樹脂、ポリアミド系樹脂、ポリアミドイミド系樹脂、ポリエステルイミド系樹脂、ポリカーボネート系樹脂、ポリフェニレンオキシド系樹脂、ビニル系樹脂、オレフィン系樹脂及びアクリル系樹脂等が挙げられ、好ましくは、ポリエステル系樹脂、ポリウレタン系樹脂、ポリアミドイミド系樹脂が挙げられる。これらの熱可塑性樹脂は一種単独で用いても、二種以上を併用してもかまわない。
<Thermoplastic resin (A)>
The thermoplastic resin (A) used in the present invention includes a polyester resin, a polyurethane resin, a styrene resin, a polyamide resin, a polyamideimide resin, a polyesterimide resin, a polycarbonate resin, a polyphenylene oxide resin, and a vinyl resin. Resins, olefin resins, acrylic resins, and the like are preferable, and polyester resins, polyurethane resins, and polyamideimide resins are preferable. These thermoplastic resins may be used alone or in combination of two or more.
 本発明に用いる熱可塑性樹脂(A)の数平均分子量は、5×10以上1×10以下である。数平均分子量が5×10未満だと塗布直後の密着性が不充分で作業性が悪くなり、数平均分子量が1×10を超えると、塗布時の溶液粘度が高すぎて、均一な塗膜が得られないことがある。好ましくは下限分子量8×10、さらに望ましくは下限分子量1×10、好ましくは上限分子量5×10、さらに望ましくは上限分子量3×10である。 The number average molecular weight of the thermoplastic resin (A) used in the present invention is 5 × 10 3 or more and 1 × 10 5 or less. If the number average molecular weight is less than 5 × 10 3 , the adhesion immediately after coating is insufficient and workability is poor, and if the number average molecular weight exceeds 1 × 10 5 , the solution viscosity at the time of coating is too high and uniform. A coating film may not be obtained. The lower limit molecular weight is preferably 8 × 10 3 , more preferably the lower limit molecular weight is 1 × 10 4 , preferably the upper limit molecular weight is 5 × 10 4 , and more preferably the upper limit molecular weight is 3 × 10 4 .
 本発明に用いる熱可塑性樹脂(A)の酸価(単位:当量/10g)は100以上1000以下である。酸価が100当量/10g未満だと、硬化後の金属系基材への密着性が不充分になり、また架橋度が低く耐熱性が低下する傾向にある。酸価が1000当量/10gを超えると溶剤に溶解した際のワニスの保存安定性が低下し、また架橋反応が常温下で進行し易く、安定したシートライフが得られないといった傾向にある。また、エステル結合やウレタン結合等の耐久性に悪影響を与えることも予想される。好ましくは酸価の下限は250当量/10g、より好ましくは酸価の下限は300当量/10g、さらに好ましくは酸価の下限は350当量/10gである。好ましい上限は900当量/10g、より好ましい上限は800当量/10g、さらに好ましい上限は700当量/10gである。 The acid value (unit: equivalent / 10 6 g) of the thermoplastic resin (A) used in the present invention is 100 or more and 1000 or less. When the acid value is less than 100 equivalents / 10 6 g, the adhesion to the metal-based substrate after curing becomes insufficient, and the degree of crosslinking tends to be low and the heat resistance tends to decrease. When the acid value exceeds 1000 equivalents / 10 6 g, the storage stability of the varnish when dissolved in a solvent is lowered, and the crosslinking reaction tends to proceed at room temperature, and a stable sheet life tends not to be obtained. . It is also expected to adversely affect durability such as ester bonds and urethane bonds. Preferably, the lower limit of the acid value is 250 equivalents / 10 6 g, more preferably the lower limit of the acid value is 300 equivalents / 10 6 g, and still more preferably the lower limit of the acid value is 350 equivalents / 10 6 g. A preferred upper limit is 900 equivalents / 10 6 g, a more preferred upper limit is 800 equivalents / 10 6 g, and a more preferred upper limit is 700 equivalents / 10 6 g.
(ポリエステル系樹脂)
 本発明の熱可塑性樹脂(A)として用いるポリエステル系樹脂のガラス転移温度は、-10℃以上60℃以下であることが好ましい。ガラス転移温度が-10℃未満だと、高温での接着性が不十分になる傾向がある。ガラス転移温度が60℃を超えると、基材との貼り合せが不十分になり、また常温での弾性率が高くなり、常温での接着性が不十分になる傾向がある。好ましくはガラス転移温度の下限は-5℃、より好ましくはガラス転移温度の下限は0℃、さらに好ましくはガラス転移温度の下限は5℃である。好ましい上限は55℃、より好ましい上限は50℃、さらに好ましい上限は45℃である。
(Polyester resin)
The glass transition temperature of the polyester resin used as the thermoplastic resin (A) of the present invention is preferably from −10 ° C. to 60 ° C. When the glass transition temperature is less than −10 ° C., the adhesiveness at high temperature tends to be insufficient. When the glass transition temperature exceeds 60 ° C., the bonding with the substrate becomes insufficient, the elastic modulus at room temperature increases, and the adhesiveness at room temperature tends to be insufficient. Preferably, the lower limit of the glass transition temperature is −5 ° C., more preferably the lower limit of the glass transition temperature is 0 ° C., and still more preferably the lower limit of the glass transition temperature is 5 ° C. A preferred upper limit is 55 ° C, a more preferred upper limit is 50 ° C, and a more preferred upper limit is 45 ° C.
 該ポリエステル系樹脂は、組成における全酸成分の合計量を100モル%としたとき、芳香族カルボン酸が60モル%以上であることが好ましく、より好ましくは85モル%以上、さらに好ましくは99モル%以上である。芳香族カルボン酸が100モル%を占めても良い。芳香族カルボン酸が60モル%未満の場合、塗膜の凝集力が弱く、各種基材への接着強度の低下が見られる。 The polyester-based resin preferably has an aromatic carboxylic acid content of 60 mol% or more, more preferably 85 mol% or more, still more preferably 99 mol, when the total amount of all acid components in the composition is 100 mol%. % Or more. Aromatic carboxylic acid may occupy 100 mol%. When the aromatic carboxylic acid is less than 60 mol%, the cohesive strength of the coating film is weak, and a decrease in adhesive strength to various substrates is observed.
 芳香族カルボン酸の例としてはテレフタル酸、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、ジフェン酸、5-ヒドロキシイソフタル酸等の芳香族ジカルボン酸が例示できる。また、スルホテレフタル酸、5-スルホイソフタル酸、4-スルホフタル酸、4-スルホナフタレン-2,7-ジカルボン酸、5(4-スルホフェノキシ)イソフタル酸、などのスルホン酸基を有する芳香族ジカルボン酸、それらの金属塩、アンモニウム塩などのスルホン酸塩基を有する芳香族ジカルボン酸、p-ヒドロキシ安息香酸、p-ヒドロキシフェニルプロピオン酸、p-ヒドロキシフェニル酢酸、6-ヒドロキシ-2-ナフトエ酸、4,4-ビス(p-ヒドロキシフェニル)バレリック酸などの芳香族オキシカルボン酸等を挙げることができる。これらのうちでもテレフタル酸、イソフタル酸、およびその混合物が塗膜の凝集力を上げる点で特に好ましい。 Examples of the aromatic carboxylic acid include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, diphenic acid, and 5-hydroxyisophthalic acid. Aromatic dicarboxylic acids having a sulfonic acid group such as sulfoterephthalic acid, 5-sulfoisophthalic acid, 4-sulfophthalic acid, 4-sulfonaphthalene-2,7-dicarboxylic acid, and 5 (4-sulfophenoxy) isophthalic acid Aromatic dicarboxylic acids having sulfonate groups such as metal salts and ammonium salts thereof, p-hydroxybenzoic acid, p-hydroxyphenylpropionic acid, p-hydroxyphenylacetic acid, 6-hydroxy-2-naphthoic acid, 4, Examples thereof include aromatic oxycarboxylic acids such as 4-bis (p-hydroxyphenyl) valeric acid. Among these, terephthalic acid, isophthalic acid, and a mixture thereof are particularly preferable in terms of increasing the cohesive strength of the coating film.
 なおその他の酸成分としては、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸とその酸無水物などの脂環族ジカルボン酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカン二酸、ダイマー酸などの脂肪族ジカルボン酸を挙げることができる。 Other acid components include 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid and its anhydride, alicyclic dicarboxylic acids, succinic acid, adipic acid, Mention may be made of aliphatic dicarboxylic acids such as azelaic acid, sebacic acid, dodecanedioic acid and dimer acid.
 一方、グリコール成分は脂肪族グリコール、脂環族グリコール、芳香族含有グリコール、エ-テル結合含有グリコ-ルなどよりなることが好ましく、脂肪族グリコ-ルの例としては、エチレングリコール、1,2-プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、2-メチル-1,3,-プロパンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,9-ノナンジオール、2-エチル-2-ブチルプロパンジオール、ヒドロキシピバリン酸ネオペンチルグリコールエステル、ジメチロールヘプタン、2,2,4-トリメチル-1,3-ペンタンジオール等を挙げることができ、脂環族グリコールの例としては、1,4-シクロヘキサンジオ-ル、1,4-シクロヘキサンジメタノール、トリシクロデカンジオール、トリシクロデカンジメチロール、スピログリコール、水素化ビスフェノールA、水素化ビスフェノールAのエチレンオキサイド付加物およびプロピレンオキサイド付加物、等を挙げることができる。エ-テル結合含有グリコ-ルの例としては、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、さらに、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ネオペンチルグリコールエチレンオキサイド付加物、ネオペンチルグリコールプロピレンオキサイド付加物も必要により使用しうる。芳香族含有グリコールの例としてはパラキシレングリコール、メタキシレングリコール、オルトキシレングリコール、1,4-フェニレングリコール、1,4-フェニレングリコ-ルのエチレンオキサイド付加物、ビスフェノールA、ビスフェノールAのエチレンオキサイド付加物およびプロピレンオキサイド付加物等の、ビスフェノール類の2つのフェノール性水酸基にエチレンオキサイド又はプロピレンオキサイドをそれぞれ1~数モル付加して得られるグリコール類等を例示できる。 On the other hand, the glycol component is preferably composed of an aliphatic glycol, an alicyclic glycol, an aromatic-containing glycol, an ether bond-containing glycol, etc. Examples of the aliphatic glycol include ethylene glycol, -Propylene glycol, 1,3-propanediol, 1,4-butanediol, 2-methyl-1,3, -propanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 3- Methyl-1,5-pentanediol, 1,9-nonanediol, 2-ethyl-2-butylpropanediol, hydroxypivalic acid neopentyl glycol ester, dimethylolheptane, 2,2,4-trimethyl-1,3- Pentanediol and the like can be mentioned, and examples of the alicyclic glycol include 1,4- Chlorohexanediol, 1,4-cyclohexanedimethanol, tricyclodecanediol, tricyclodecane dimethylol, spiroglycol, hydrogenated bisphenol A, ethylene oxide adduct and propylene oxide adduct of hydrogenated bisphenol A, etc. Can be mentioned. Examples of glycols containing ether bonds include diethylene glycol, triethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, neopentyl glycol ethylene oxide adduct, neopentyl glycol propylene oxide addition Things can also be used if necessary. Examples of aromatic-containing glycols include para-xylene glycol, meta-xylene glycol, ortho-xylene glycol, 1,4-phenylene glycol, ethylene oxide adducts of 1,4-phenylene glycol, bisphenol A, ethylene oxide addition of bisphenol A Examples thereof include glycols obtained by adding 1 to several moles of ethylene oxide or propylene oxide to two phenolic hydroxyl groups of bisphenols, such as products and propylene oxide adducts.
 また、分子構造の中に、水酸基とカルボキシル基を有する、オキシカルボン酸化合物もポリエステル原料として使用することができ、5-ヒドロキシイソフタル酸、p-ヒドロキシ安息香酸、p-ヒドロキシフェニチルアルコール、p-ヒドロキシフェニルプロピオン酸、p-ヒドロキシフェニル酢酸、6-ヒドロキシ-2-ナフトエ酸、4,4-ビス(p-ヒドロキシフェニル)バレリック酸等を例示できる。 In addition, an oxycarboxylic acid compound having a hydroxyl group and a carboxyl group in the molecular structure can also be used as a raw material for polyester, such as 5-hydroxyisophthalic acid, p-hydroxybenzoic acid, p-hydroxyphenethyl alcohol, p- Examples thereof include hydroxyphenylpropionic acid, p-hydroxyphenylacetic acid, 6-hydroxy-2-naphthoic acid, 4,4-bis (p-hydroxyphenyl) valeric acid and the like.
 本発明で使用されるポリエステル系樹脂中には、必要により分岐骨格を導入する目的で、0.1モル%以上5モル%以下の3官能以上のポリカルボン酸類および/又はポリオール類を共重合しても構わない。特に硬化剤と反応させて硬化塗膜を得る場合、分岐骨格を導入することにより、樹脂の末端基濃度(反応点)が増え、架橋密度が高い、強度な塗膜を得ることができる。その場合の3官能以上のポリカルボン酸の例としてはトリメリット酸、トリメシン酸、エチレングルコールビス(アンヒドロトリメリテート)、グリセロールトリス(アンヒドロトリメリテート)、無水トリメリット酸、無水ピロメリット酸(PMDA)、オキシジフタル酸二無水物(ODPA)、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、3,3’,4,4’-ジフェニルテトラカルボン酸二無水物(BPDA)、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物(DSDA)、4,4’-(ヘキサフロロイソプロピリデン)ジフタル酸二無水物(6FDA)、2,2’-ビス[(ジカルボキシフェノキシ)フェニル]プロパン二無水物(BSAA)などの化合物等、が使用でき、一方3官能以上のポリオ-ルの例としてはグリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール等が使用できる。3官能以上のポリカルボン酸および/またはポリオールを使用する場合は、全酸成分あるいは全グリコ-ル成分に対し0.1モル%以上5モル%以下、好ましくは0.1モル%以3モル%以下の範囲で共重合するのが好ましく、5モル%を越えると塗膜の破断点伸度などの力学物性の低下が生じることがあり、また重合中にゲル化を起こす可能性がある。 In the polyester resin used in the present invention, 0.1 mol% or more and 5 mol% or less of trifunctional or higher polycarboxylic acids and / or polyols are copolymerized for the purpose of introducing a branched skeleton if necessary. It doesn't matter. In particular, when a cured coating film is obtained by reacting with a curing agent, by introducing a branched skeleton, a terminal film concentration (reaction point) of the resin is increased, and a strong coating film having a high crosslinking density can be obtained. Examples of tri- or higher functional polycarboxylic acids are trimellitic acid, trimesic acid, ethylene glycol bis (anhydro trimellitate), glycerol tris (anhydro trimellitate), trimellitic anhydride, pyromellitic anhydride Acid (PMDA), oxydiphthalic dianhydride (ODPA), 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride (BTDA), 3,3 ′, 4,4′-diphenyltetracarboxylic dianhydride Anhydride (BPDA), 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride (DSDA), 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA), 2, Compounds such as 2′-bis [(dicarboxyphenoxy) phenyl] propane dianhydride (BSAA) can be used. Trifunctional or higher polyol - Examples Le glycerol, trimethylol ethane, trimethylol propane, pentaerythritol and the like can be used. When a tri- or higher functional polycarboxylic acid and / or polyol is used, it is 0.1 mol% or more and 5 mol% or less, preferably 0.1 mol% or more and 3 mol%, based on the total acid component or the total glycol component. The copolymerization is preferably carried out in the following range, and if it exceeds 5 mol%, mechanical properties such as elongation at break of the coating film may be lowered, and gelation may occur during the polymerization.
 本発明で使用されるポリエステル系樹脂に酸価を導入する方法としては、重合後に酸付加によってカルボン酸を樹脂に導入する方法が挙げられる。酸付加にモノカルボン酸、ジカルボン酸、多官能カルボン酸化合物を用いると、エステル交換により分子量の低下が起こる可能性があり、カルボン酸無水物を少なくとも一つもった化合物を用いることが好ましい。酸無水物としては、無水コハク酸、無水マレイン酸、オルソフタル酸、2,5-ノルボルネンジカルボン酸無水物、テトラヒドロ無水フタル酸、無水トリメリット酸、無水ピロメリット酸(PMDA)、オキシジフタル酸二無水物(ODPA)、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、3,3’,4,4’-ジフェニルテトラカルボン酸二無水物(BPDA)、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物(DSDA)、4,4’-(ヘキサフロロイソプロピリデン)ジフタル酸二無水物(6FDA)、2,2’-ビス[(ジカルボキシフェノキシ)フェニル]プロパン二無水物(BSAA)などの化合物等が使用できる。本発明で使用されるポリエステル系樹脂を構成する全酸成分を100モル%としたとき、10モル%以上の酸付加を行うと、ゲル化を起こすことがあり、またポリエステルの解重合を起こし樹脂分子量を下げてしまうことがある。酸付加はポリエステル重縮合後、バルク状態で直接行う方法と、ポリエステルを溶液化し付加する方法がある。バルク状態での反応は、速度が速いが、多量に付加するとゲル化が起こることがあり、かつ高温での反応になるので、酸素ガスを遮断し酸化を防ぐなどのケアが必要である。一方、溶液状態での付加は、反応は遅いが、多量のカルボキシル基を安定に導入することができる。 Examples of a method for introducing an acid value into the polyester resin used in the present invention include a method of introducing a carboxylic acid into the resin by acid addition after polymerization. When a monocarboxylic acid, dicarboxylic acid, or polyfunctional carboxylic acid compound is used for acid addition, the molecular weight may be reduced by transesterification, and it is preferable to use a compound having at least one carboxylic acid anhydride. Acid anhydrides include succinic anhydride, maleic anhydride, orthophthalic acid, 2,5-norbornene dicarboxylic acid anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride (PMDA), oxydiphthalic dianhydride (ODPA), 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride (BTDA), 3,3 ′, 4,4′-diphenyltetracarboxylic dianhydride (BPDA), 3,3 ′ , 4,4′-Diphenylsulfonetetracarboxylic dianhydride (DSDA), 4,4 ′-(hexafluoroisopropylidene) diphthalic dianhydride (6FDA), 2,2′-bis [(dicarboxyphenoxy) Compounds such as phenyl] propane dianhydride (BSAA) can be used. When the total acid component constituting the polyester-based resin used in the present invention is 100 mol%, the addition of 10 mol% or more of the acid may cause gelation, and the depolymerization of the polyester may occur. May reduce molecular weight. The acid addition includes a method of directly performing in a bulk state after the polyester polycondensation and a method of adding the polyester in a solution. The reaction in the bulk state is fast, but if it is added in a large amount, gelation may occur, and since the reaction is performed at a high temperature, care such as blocking oxygen gas and preventing oxidation is necessary. On the other hand, the addition in the solution state is slow, but a large amount of carboxyl groups can be stably introduced.
(ポリウレタン系樹脂)
 本発明に用いるポリウレタン系樹脂のガラス転移温度は、-10℃以上60℃以下であることが好ましい。ガラス転移温度が-10℃未満だと、高温での接着性が不十分になる傾向がある。ガラス転移温度が60℃を超えると、基材との貼り合せが不十分になり、また常温での弾性率が高くなり、常温での接着性が不十分になる傾向がある。好ましくはガラス転移温度の下限は-5℃、より好ましくはガラス転移温度の下限は0℃、さらに好ましくはガラス転移温度の下限は5℃である。好ましい上限は55℃、より好ましい上限は50℃、さらに好ましい上限は45℃である。
(Polyurethane resin)
The glass transition temperature of the polyurethane resin used in the present invention is preferably −10 ° C. or more and 60 ° C. or less. When the glass transition temperature is less than −10 ° C., the adhesiveness at high temperature tends to be insufficient. When the glass transition temperature exceeds 60 ° C., the bonding with the substrate becomes insufficient, the elastic modulus at room temperature increases, and the adhesiveness at room temperature tends to be insufficient. Preferably, the lower limit of the glass transition temperature is −5 ° C., more preferably the lower limit of the glass transition temperature is 0 ° C., and still more preferably the lower limit of the glass transition temperature is 5 ° C. A preferred upper limit is 55 ° C, a more preferred upper limit is 50 ° C, and a more preferred upper limit is 45 ° C.
 本発明に用いるポリウレタン系樹脂は、その原料としてポリエステルポリオール、ポリイソシアネート、及び鎖延長剤を使用することが好ましい。酸価を導入する方法としては、ポリウレタン系樹脂を構成するポリエステルポリオールに予め酸価を付与する方法や、鎖延長剤にカルボン酸を含有するジオールを使用する方法等がある The polyurethane resin used in the present invention preferably uses polyester polyol, polyisocyanate, and chain extender as its raw material. As a method of introducing an acid value, there are a method of previously giving an acid value to a polyester polyol constituting a polyurethane resin, a method of using a diol containing a carboxylic acid as a chain extender, and the like.
 本発明に用いるポリウレタン系樹脂の原料として用いる前記ポリエステルポリオールは、数平均分子量を除き、上述したポリエステル系樹脂と同様であることが好ましい。本発明に用いるポリエステルポリオールの数平均分子量は、5×10以上5×10以下である。数平均分子量が5×10未満だとウレタン基濃度が高くなり高温高湿下での接着性が低下する傾向にあり、数平均分子量が5×10を超えると、ポリウレタンの重合性が低下し、重合不良を起こすことがある。好ましくは下限分子量8×10、さらに望ましくは下限分子量1×10、好ましくは上限分子量3.5×10、さらに望ましくは上限分子量2×10である。 The polyester polyol used as a raw material for the polyurethane resin used in the present invention is preferably the same as the polyester resin described above except for the number average molecular weight. The number average molecular weight of the polyester polyol used in the present invention is 5 × 10 2 or more and 5 × 10 4 or less. If the number average molecular weight is less than 5 × 10 2 , the urethane group concentration tends to be high and the adhesiveness under high temperature and high humidity tends to decrease. If the number average molecular weight exceeds 5 × 10 4 , the polymerizability of polyurethane is decreased. And may cause poor polymerization. The lower limit molecular weight is preferably 8 × 10 2 , more preferably the lower limit molecular weight is 1 × 10 3 , preferably the upper limit molecular weight is 3.5 × 10 4 , and more preferably the upper limit molecular weight is 2 × 10 4 .
 本発明に用いるポリウレタン系樹脂の製造に使用するポリイソシアネートは、ジイソシアネート、その二量体(ウレトジオン)、その三量体(イソシアヌレート、トリオール付加物、ビューレット)等の一種、またはそれら二種以上の混合物であってもよい。例えば、ジイソシアネート成分としては、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、p-フェニレンジイソシアネート、ジフェニルメタンジイソシアネート、m-フェニレンジイソシアネート、ヘキサメチレンジイソシアネート、テトラメチレンジイソシアネート、3,3’-ジメトキシ-4,4’-ビフェニレンジイソシアネート、1,5-ナフタレンジイソシアネート、2,6-ナフタレンジイソシアネート、4,4’-ジイソシアネートジフェニルエーテル、1,5-キシリレンジイソシアネート、1,3-ジイソシアネートメチルシクロヘキサン、1,4-ジイソシアネ-トメチルシクロヘキサン、4,4’-ジイソシアネートシクロヘキサン、4,4’-ジイソシアネートシクロヘキシルメタン、イソホロンジイソシアネート、ダイマー酸ジイソシアネート、ノルボルネンジイソシアネート等が挙げられるが、黄変性の問題から、脂肪族・脂環族のジイソシアネートが好ましい。さらに入手の容易さと経済的な理由で、ヘキサメチレンジイソシアネート、イソホロンジイソシアネートが特に好ましい。 The polyisocyanate used in the production of the polyurethane-based resin used in the present invention is one kind of diisocyanate, its dimer (uretdione), its trimer (isocyanurate, triol adduct, burette), or two or more kinds thereof. It may be a mixture of For example, the diisocyanate component includes 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, p-phenylene diisocyanate, diphenylmethane diisocyanate, m-phenylene diisocyanate, hexamethylene diisocyanate, tetramethylene diisocyanate, 3,3′-dimethoxy. -4,4'-biphenylene diisocyanate, 1,5-naphthalene diisocyanate, 2,6-naphthalene diisocyanate, 4,4'-diisocyanate diphenyl ether, 1,5-xylylene diisocyanate, 1,3-diisocyanate methylcyclohexane, 1,4 -Diisocyanate methylcyclohexane, 4,4'-diisocyanate cyclohexane, 4,4'-diisocyanate cyclohexyl methane, Isophorone diisocyanate, dimer acid diisocyanate, although norbornene diisocyanate, and the like, from the yellowing problem, diisocyanates of an aliphatic-alicyclic is preferable. Furthermore, hexamethylene diisocyanate and isophorone diisocyanate are particularly preferred for easy availability and economical reasons.
 本発明に用いるポリウレタン系樹脂を製造する上で、必要により鎖延長剤を使用しても良い。鎖延長剤としては、ポリエステルポリオールの構成成分として既に記載した低分子量ジオールや、ジメチロールプロピオン酸、ジメチロールブタン酸等の一つのカルボン酸と二つの水酸基を有する化合物等が挙げられる。その中で、酸価導入の容易さと、汎用溶剤への溶解性からジメチロールブタン酸が好ましい。また、分岐を導入する方法として、トリメチロールプロパンの使用も好ましい。 In producing the polyurethane resin used in the present invention, a chain extender may be used as necessary. Examples of the chain extender include low molecular weight diols already described as components of polyester polyols, compounds having one carboxylic acid and two hydroxyl groups such as dimethylolpropionic acid and dimethylolbutanoic acid. Among them, dimethylolbutanoic acid is preferable because of easy introduction of an acid value and solubility in a general-purpose solvent. Further, as a method for introducing a branch, use of trimethylolpropane is also preferable.
 本発明に用いるポリウレタン系樹脂の製造方法としては、前記ポリエステルポリオール及び前記ポリイソシアネート、必要により鎖延長剤を一括して反応容器に仕込んでも良いし、分割して仕込んでも良い。いずれにしても、系内のポリエステルポリオール、鎖延長剤の水酸基価の合計と、ポリイソシアネートのイソシアネート基の合計について、イソシアネート基/水酸基の官能基の比率が1以下で反応させる。またこの反応は、イソシアネート基に対して不活性な溶媒の存在下または非存在下に反応させることにより行なうことができる。その溶媒としては、エステル系溶媒(酢酸エチル、酢酸ブチル、酪酸エチルなど)、エーテル系溶媒(ジオキサン、テトラヒドロフラン、ジエチルエーテルなど)、ケトン系溶媒(シクロヘキサノン、メチルエチルケトン、メチルイソブチルケトンなど)、芳香族炭化水素系溶媒(ベンゼン、トルエン、キシレンなど)およびこれらの混合溶媒が挙げられるが、環境負荷の低減の観点から、酢酸エチルやメチルエチルケトンが好ましい。反応装置としては、撹拌装置の具備した反応缶に限らず、ニーダー、二軸押出機のような混合混練装置も使用できる。 As a method for producing the polyurethane-based resin used in the present invention, the polyester polyol and the polyisocyanate and, if necessary, a chain extender may be charged all at once into the reaction vessel, or may be charged separately. In any case, the total of the hydroxyl groups of the polyester polyol and chain extender in the system and the total of the isocyanate groups of the polyisocyanate are reacted at an isocyanate group / hydroxyl group functional group ratio of 1 or less. This reaction can be carried out by reacting in the presence or absence of a solvent inert to isocyanate groups. The solvents include ester solvents (ethyl acetate, butyl acetate, ethyl butyrate, etc.), ether solvents (dioxane, tetrahydrofuran, diethyl ether, etc.), ketone solvents (cyclohexanone, methyl ethyl ketone, methyl isobutyl ketone, etc.), aromatic carbonization. Examples thereof include hydrogen-based solvents (benzene, toluene, xylene, etc.) and mixed solvents thereof, and ethyl acetate and methyl ethyl ketone are preferable from the viewpoint of reducing environmental burden. The reaction device is not limited to a reaction can equipped with a stirring device, and a mixing and kneading device such as a kneader or a twin screw extruder can also be used.
 ウレタン反応を促進させる為、通常のウレタン反応において用いられる触媒、たとえば錫系触媒(トリメチルチンラウレート、ジメチルチンジラウレート、ジブチルチンジラウレート、トリメチルチンヒドロキサイド、ジメチルチンジヒドロキサイド、スタナスオクトエートなど)、鉛系触媒(レッドオレート、レッド-2-エチルヘキソエートなど)、アミン系触媒(トリエチルアミン、トリブチルアミン、モルホリン、ジアザビシクロオクタン、ジアザビシクロウンデセンなど)等を使用することができるが、有害性の観点からアミン系触媒が好ましい。 Catalysts used in normal urethane reactions to promote urethane reactions, such as tin-based catalysts (trimethyltin laurate, dimethyltin dilaurate, dibutyltin dilaurate, trimethyltin hydroxide, dimethyltin dihydroxide, stannous octoate, etc.) Lead catalysts (red oleate, red-2-ethylhexoate, etc.), amine catalysts (triethylamine, tributylamine, morpholine, diazabicyclooctane, diazabicycloundecene, etc.) can be used. From the viewpoint of toxicity, an amine-based catalyst is preferable.
(ポリアミドイミド系樹脂)
 本発明に用いるポリアミドイミド系樹脂のガラス転移温度は、30℃以上160℃以下であることが好ましい。ガラス転移温度が30℃未満だと、耐熱性が不足する傾向がある。ガラス転移温度が160℃を超えると、樹脂が硬く脆い為、接着強度が不十分になる傾向がある。好ましくはガラス転移温度の下限は40℃、より好ましくはガラス転移温度の下限は50℃であり、好ましい上限は150℃、より好ましい上限は140℃である。
(Polyamideimide resin)
The glass transition temperature of the polyamideimide resin used in the present invention is preferably 30 ° C. or higher and 160 ° C. or lower. When the glass transition temperature is less than 30 ° C., heat resistance tends to be insufficient. When the glass transition temperature exceeds 160 ° C., the resin is hard and brittle, so that the adhesive strength tends to be insufficient. Preferably, the lower limit of the glass transition temperature is 40 ° C, more preferably the lower limit of the glass transition temperature is 50 ° C, the preferred upper limit is 150 ° C, and the more preferred upper limit is 140 ° C.
本発明に用いるポリアミドイミド系樹脂は、その原料として酸成分とジイソシアネートもしくはジアミンとを反応させて得られるポリアミドイミド系樹脂であり、酸成分は芳香環を有するポリカルボン酸の酸無水物、カルボキシル基を両末端に有するアクリロニトリル-ブタジエンゴムを使用することが好ましい。 The polyamideimide resin used in the present invention is a polyamideimide resin obtained by reacting an acid component with a diisocyanate or diamine as a raw material, and the acid component is an acid anhydride of a polycarboxylic acid having an aromatic ring, a carboxyl group It is preferred to use acrylonitrile-butadiene rubber having both at the ends.
 本発明に用いるポリアミドイミド系樹脂を製造する際、芳香環を有するポリカルボン酸の酸無水物はイミド環形成の役割をはたす。芳香環を有するポリカルボン酸の酸無水物としては、例えば、トリメリット酸無水物、ピロメリット酸二無水物、エチレングリコールビスアンヒドロトリメリテート、プロピレングリコールビスアンヒドロトリメリテート、1,4-ブタンジオールビスアンヒドロトリメリテート、ヘキサメチレングリコールビスアンヒドロトリメリテート、ポリエチレングリコールビスアンヒドロトリメリテート、ポリプロピレングリコールビスアンヒドロトリメリテート等のアルキレングリコールビスアンヒドロトリメリテート、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,
5,6-ピリジンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、m-ターフェニル-3,3’,4,4’-テトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物、
1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(2,3-又は3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-又は3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス[4-(2,3-又は3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス[4-(2,3-又は3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、1,3-ビス(3,4-ジカルボキシフェニル)-1,1,3,3-テトラメチルジシロキサン二無水物等が挙げられ、これらは単独で用いても、二種以上併用してもかまわない。
When producing the polyamide-imide resin used in the present invention, the acid anhydride of the polycarboxylic acid having an aromatic ring plays a role of imide ring formation. Examples of acid anhydrides of polycarboxylic acids having an aromatic ring include trimellitic anhydride, pyromellitic dianhydride, ethylene glycol bisanhydro trimellitate, propylene glycol bisan hydrotrimellitate, 1,4 -Alkylene glycol bisanhydro trimellitates such as butanediol bisanhydro trimellitate, hexamethylene glycol bis anhydro trimellitate, polyethylene glycol bis anhydro trimellitate, polypropylene glycol bis anhydro trimellitate, 3, 3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic Acid dianhydride, 2, 3,
5,6-pyridinetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, m-ter Phenyl-3,3 ′, 4,4′-tetracarboxylic dianhydride, 4,4′-oxydiphthalic dianhydride,
1,1,1,3,3,3-hexafluoro-2,2-bis (2,3- or 3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-or 3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis [4- (2,3- or 3,4-dicarboxyphenoxy) phenyl] propane dianhydride, 1,1,1,3 3,3-hexafluoro-2,2-bis [4- (2,3- or 3,4-dicarboxyphenoxy) phenyl] propane dianhydride, 1,3-bis (3,4-dicarboxyphenyl) -1,1,3,3-tetramethyldisiloxane dianhydride and the like, and these may be used alone or in combination of two or more.
 該カルボキシル基を両末端に有するアクリロニトリル-ブタジエンゴムは、ポリアミドイミド樹脂に可とう性や接着性を付与するために使用し、全酸成分を100モル%としたとき、3モル%以上15モル%以下が好ましく、より好ましくは3モル%以上10モル%以下である。共重合量が3モル%未満であると可とう性や接着性が発現できず、15モル%を超えると溶剤溶解性が低下する傾向がある。 The acrylonitrile-butadiene rubber having carboxyl groups at both ends is used for imparting flexibility and adhesiveness to the polyamideimide resin, and when the total acid component is 100 mol%, it is 3 mol% or more and 15 mol%. The following is preferable, and more preferably 3 mol% or more and 10 mol% or less. If the copolymerization amount is less than 3 mol%, flexibility and adhesiveness cannot be expressed, and if it exceeds 15 mol%, the solvent solubility tends to decrease.
 本発明に用いるポリアミドイミド系樹脂の製造に用いられる酸成分としては本発明の効果を損なわない程度にその他の酸成分として、脂肪族あるいは脂環族の酸無水物やジカルボン酸を用いることができる。例えば、ブタン-1,2,3,4-テトラカルボン酸二無水物、ペンタン-1,2,4,5-テトラカルボン酸二無水物、シクロブタンテトラカルボン酸二無水物、ヘキサヒドロピロメリット酸二無水物、シクロヘキサ-1-エン-2,3,5,6-テトラカルボン酸二無水物、3-エチルシクロヘキサ-1-エン-3-(1,2),5,6-テトラカルボン酸二無水物、1-メチル-3-エチルシクロヘキサン-3-(1,2),5,
6-テトラカルボン酸二無水物、1-メチル-3-エチルシクロヘキサ-1-エン-3-(1,2),5,6-テトラカルボン酸二無水物、1-エチルシクロヘキサン-1-(1,2),3,4-テトラカルボン酸二無水物、1-プロピルシクロヘキサン-1-(2,3),3,4-テトラカルボン酸二無水物、1,3-ジプロピルシクロヘキサン-1-(2,3),3-(2,3)-テトラカルボン酸二無水物、ジシクロヘキシル-3,4,3’,4’-テトラカルボン酸二無水物、ビシクロ[2.2.1]ヘプタン-2,3,5,6-テトラカルボン酸二無水物、1-プロピルシクロヘキサン-1-(2,3),3,4-テトラカルボン酸二無水物、1,3-ジプロピルシクロヘキサン-1-(2,3),3-(2,3)-テトラカルボン酸二無水物、ジシクロヘキシル-3,4,3’,4’-テトラカルボン酸二無水物、ビシクロ[2.2.1]ヘプタン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ヘキサヒドロトリメリット酸無水物等の酸無水物やポリエステル系樹脂で記載したものと同様のジカルボン酸等挙げられ、これらは単独で用いても、二種以上併用してもかまわない。
As the acid component used in the production of the polyamideimide resin used in the present invention, an aliphatic or alicyclic acid anhydride or dicarboxylic acid can be used as the other acid component to the extent that the effects of the present invention are not impaired. . For example, butane-1,2,3,4-tetracarboxylic dianhydride, pentane-1,2,4,5-tetracarboxylic dianhydride, cyclobutane tetracarboxylic dianhydride, hexahydropyromellitic acid 2 Anhydride, cyclohex-1-ene-2,3,5,6-tetracarboxylic dianhydride, 3-ethylcyclohex-1-ene-3- (1,2), 5,6-tetracarboxylic acid Anhydride, 1-methyl-3-ethylcyclohexane-3- (1,2), 5,
6-tetracarboxylic dianhydride, 1-methyl-3-ethylcyclohex-1-ene-3- (1,2), 5,6-tetracarboxylic dianhydride, 1-ethylcyclohexane-1- ( 1,2), 3,4-tetracarboxylic dianhydride, 1-propylcyclohexane-1- (2,3), 3,4-tetracarboxylic dianhydride, 1,3-dipropylcyclohexane-1- (2,3), 3- (2,3) -tetracarboxylic dianhydride, dicyclohexyl-3,4,3 ′, 4′-tetracarboxylic dianhydride, bicyclo [2.2.1] heptane- 2,3,5,6-tetracarboxylic dianhydride, 1-propylcyclohexane-1- (2,3), 3,4-tetracarboxylic dianhydride, 1,3-dipropylcyclohexane-1- ( 2,3), 3- (2,3) -tetracarboxylic Dianhydride, dicyclohexyl-3,4,3 ′, 4′-tetracarboxylic dianhydride, bicyclo [2.2.1] heptane-2,3,5,6-tetracarboxylic dianhydride, bicyclo [ 2.2.2] Octane-2,3,5,6-tetracarboxylic dianhydride, bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride Products, acid anhydrides such as hexahydrotrimellitic acid anhydride, and dicarboxylic acids similar to those described for polyester resins, and these may be used alone or in combination of two or more.
 本発明に用いるポリアミドイミド系樹脂を製造する際に使用するジイソシアネートもしくはジアミンとしては、ポリウレタン系樹脂で記載したものと同様のジイソシアネートやこれらのジイソシアネートに対応するジアミンが挙げられ、これらは単独で用いても、二種以上併用して用いてもかまわない。 Examples of the diisocyanate or diamine used in producing the polyamideimide resin used in the present invention include diisocyanates similar to those described for the polyurethane resin and diamines corresponding to these diisocyanates, and these are used alone. Alternatively, two or more types may be used in combination.
 本発明に用いるポリアミドイミド系樹脂には、耐熱性向上を目的として官能基を3個以上有する化合物を共重合することが可能である。例えばトリメシン酸等の多官能カルボン酸、5-ヒドロキシイソフタル酸等の水酸基を有するジカルボン酸、5-アミノイソフタル酸等のアミノ基を有するジカルボン酸、グリセリン、ポリグリセリン等の水酸基を3個以上有するもの、トリス(2-アミノエチル)アミン等のアミノ基を3個以上有するものが挙げられ、これらの中で反応性、溶解性の観点から5-ヒドロキシイソフタル酸等の水酸基を有するジカルボン酸、トリス(2-アミノエチル)アミン等のアミノ基を3個以上有するものが好ましい。 The polyamideimide resin used in the present invention can be copolymerized with a compound having three or more functional groups for the purpose of improving heat resistance. For example, polyfunctional carboxylic acids such as trimesic acid, dicarboxylic acids having a hydroxyl group such as 5-hydroxyisophthalic acid, dicarboxylic acids having an amino group such as 5-aminoisophthalic acid, glycerol, polyglycerol and the like having three or more hydroxyl groups And those having three or more amino groups such as tris (2-aminoethyl) amine. Among these, dicarboxylic acids having a hydroxyl group such as 5-hydroxyisophthalic acid, tris ( Those having 3 or more amino groups such as 2-aminoethyl) amine are preferred.
 本発明に用いるポリアミドイミド系樹脂には、本発明の効果を損なわない程度に、ポリエステル、ポリエーテル、ポリカーボネート、ダイマー酸、ポリシロキサンなどを共重合することができる。その場合、耐熱性や溶解性、接着性といった本発明の効果を損なわないよう共重合量を適宜選択する必要がある。 The polyamideimide resin used in the present invention can be copolymerized with polyester, polyether, polycarbonate, dimer acid, polysiloxane and the like to such an extent that the effects of the present invention are not impaired. In that case, it is necessary to appropriately select the copolymerization amount so as not to impair the effects of the present invention such as heat resistance, solubility, and adhesiveness.
 本発明のポリアミドイミド樹脂の重合に用いることのできる溶剤としては、例えばN-メチル-2-ピロリドン、γ-ブチロラクトン、ジメチルイミダゾリジノン、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、シクロヘキサノン、シクロペンタノン、テトラヒドロフランなどが挙げられ、この中では、沸点の低さと重合の効率の良さから、ジメチルアセトアミドが好ましい。また重合後は重合に用いた溶剤もしくは他の低沸点溶剤で希釈して不揮発分濃度や溶液粘度を調整することができる。 Solvents that can be used for polymerization of the polyamideimide resin of the present invention include, for example, N-methyl-2-pyrrolidone, γ-butyrolactone, dimethylimidazolidinone, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, cyclohexanone, cyclopentanone, Tetrahydrofuran and the like can be mentioned, and among them, dimethylacetamide is preferred because of its low boiling point and good polymerization efficiency. Further, after the polymerization, it can be diluted with a solvent used for the polymerization or other low-boiling solvent to adjust the concentration of non-volatile components and the solution viscosity.
 低沸点溶剤としては、トルエン、キシレン、などの芳香族系溶剤、ヘキサン、ヘプタン、オクタンなどの脂肪族系溶剤、メタノール、エタノール、プロパノール、ブタノール、イソプロパノールなどのアルコール系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、シクロペンタノンなどのケトン系溶剤、ジエチルエーテル、テトラヒドロフランなどのエーテル系溶剤、酢酸エチル、酢酸ブチル、酢酸イソブチルなどのエステル系溶剤などが挙げられる。 Low boiling solvents include aromatic solvents such as toluene and xylene, aliphatic solvents such as hexane, heptane and octane, alcoholic solvents such as methanol, ethanol, propanol, butanol and isopropanol, acetone, methyl ethyl ketone and methyl isobutyl. Examples thereof include ketone solvents such as ketone, cyclohexanone and cyclopentanone, ether solvents such as diethyl ether and tetrahydrofuran, and ester solvents such as ethyl acetate, butyl acetate and isobutyl acetate.
<無機充填材(B)>
 本発明に用いる無機充填材(B)としては、分散液(α)にチキソトロピー性を付与できるものであれば良く、特に制限はない。このような無機充填材としては、例えば、アルミナ、シリカ、チタニア、酸化タンタル、ジルコニア、窒化ケイ素、チタン酸バリウム、炭酸バリウム、チタン酸鉛、チタン酸ジルコン酸鉛、チタン酸ジルコン酸ランタン鉛、酸化ガリウム、スピネル、ムライト、コーディエライト、タルク、水酸化アルミニウム、水酸化マグネシウム、チタン酸アルミニウム、イットリア含有ジルコニア、ケイ酸バリウム、窒化ホウ素、炭酸カルシウム、硫酸カルシウム、酸化亜鉛、ホウ酸亜鉛、チタン酸マグネシウム、ホウ酸マグネシウム、硫酸バリウム、有機ベントナイト、カーボンなどを使用することができ、これらは単独で用いても、二種以上併用してもかまわない。接着剤用樹脂組成物の透明性、機械特性、耐熱性、チキソトロピー性付与の観点からシリカが好ましく、特に3次元網目構造をとる煙霧状シリカが好ましい。また、疎水性を付与する上でモノメチルトリクロロシラン、ジメチルジクロロシラン、ヘキサメチルジシラザン、オクチルシラン、シリコーンオイル等で処理を行った疎水性シリカの方が好ましい。無機充填材(B)として煙霧状シリカを用いる場合、一次粒子の平均径は30nm以下が好ましく、より好ましくは25nm以下である。一次粒子の平均径が30nmを超えると、粒子間や樹脂との相互作用が低下し耐熱性が低下する傾向にある。なおここで言う一次粒子の平均径とは走査型電子顕微鏡を用いて得た一次粒子像から無作為抽出した粒子100個の円相当直径の平均値である。
<Inorganic filler (B)>
The inorganic filler (B) used in the present invention is not particularly limited as long as it can impart thixotropy to the dispersion (α). Examples of such inorganic fillers include alumina, silica, titania, tantalum oxide, zirconia, silicon nitride, barium titanate, barium carbonate, lead titanate, lead zirconate titanate, lead lanthanum zirconate titanate, oxidation Gallium, spinel, mullite, cordierite, talc, aluminum hydroxide, magnesium hydroxide, aluminum titanate, yttria-containing zirconia, barium silicate, boron nitride, calcium carbonate, calcium sulfate, zinc oxide, zinc borate, titanate Magnesium, magnesium borate, barium sulfate, organic bentonite, carbon, and the like can be used, and these may be used alone or in combination of two or more. Silica is preferable from the viewpoint of imparting transparency, mechanical properties, heat resistance, and thixotropy of the adhesive resin composition, and fumed silica having a three-dimensional network structure is particularly preferable. In addition, hydrophobic silica treated with monomethyltrichlorosilane, dimethyldichlorosilane, hexamethyldisilazane, octylsilane, silicone oil or the like is more preferable for imparting hydrophobicity. When using fumed silica as the inorganic filler (B), the average diameter of the primary particles is preferably 30 nm or less, more preferably 25 nm or less. When the average diameter of the primary particles exceeds 30 nm, the interaction between the particles and the resin tends to decrease, and the heat resistance tends to decrease. The average primary particle diameter referred to here is an average value of equivalent circle diameters of 100 particles randomly extracted from a primary particle image obtained using a scanning electron microscope.
 無機充填材(B)の配合量は熱可塑性樹脂(A)100質量部に対して10質量部以上50質量部以下が好ましく、より好ましくは13質量部以上45質量部以下であり、さらに好ましくは15質量部以上40質量部以下である。10質量部未満であると耐熱性を向上させる効果が発揮しない場合があり、一方50質量部を越えるとシリカの分散不良が生じたり溶液粘度が高くなりすぎて作業性に不具合が生じたり或いは接着性が低下するおそれがある。 The blending amount of the inorganic filler (B) is preferably 10 parts by mass or more and 50 parts by mass or less, more preferably 13 parts by mass or more and 45 parts by mass or less, and still more preferably 100 parts by mass of the thermoplastic resin (A). It is 15 to 40 mass parts. If the amount is less than 10 parts by mass, the effect of improving the heat resistance may not be exhibited. On the other hand, if the amount exceeds 50 parts by mass, poor dispersion of silica may occur or the solution viscosity may become too high, resulting in poor workability or adhesion. May decrease.
<溶剤(C)>
 本発明に用いる溶剤(C)は、単一成分からなるものであっても2種以上の複数成分からなる混合溶剤であっても良い。溶剤(C)は熱可塑性樹脂(A)およびエポキシ樹脂(D)を溶解できるものであれば、特に制限されない。このような溶剤としては、ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド系溶剤、メタノール、エタノール、イソプロパノール等のアルコール系溶剤、トルエン、キシレン等の芳香族系溶剤、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン系溶剤、酢酸エチル等のエステル系溶剤、等が挙げられ、作業性の観点から好ましくは、ジメチルアセトアミド、エタノール、トルエン、キシレン、メチルエチルケトン、酢酸エチルが挙げられ、乾燥容易性の観点からさらに好ましくは、トルエン、メチルエチルケトン、酢酸エチルが挙げられる。これらの溶剤は、1種単独で用いても、2種以上を併用しても構わない。
<Solvent (C)>
The solvent (C) used in the present invention may be composed of a single component or a mixed solvent composed of two or more components. The solvent (C) is not particularly limited as long as it can dissolve the thermoplastic resin (A) and the epoxy resin (D). Examples of such solvents include amide solvents such as dimethylacetamide and N-methyl-2-pyrrolidone, alcohol solvents such as methanol, ethanol and isopropanol, aromatic solvents such as toluene and xylene, acetone, methyl ethyl ketone and cyclohexanone. From the viewpoint of workability, preferably dimethylacetamide, ethanol, toluene, xylene, methyl ethyl ketone, ethyl acetate, and further from the viewpoint of easy drying. Preferably, toluene, methyl ethyl ketone, and ethyl acetate are used. These solvents may be used alone or in combination of two or more.
<エポキシ樹脂(D)>
 本発明の接着剤樹脂組成物には、必須成分としてジシクロペンタジエン骨格を有するエポキシ樹脂(D)を含む。剛直なジシクロペンタジエン骨格を持つエポキシ樹脂からなる硬化塗膜は、極めて吸湿率が小さく、また、硬化塗膜の架橋密度を下げて、剥離時の応力を緩和させることができる為、耐加湿半田性が向上する。エポキシ樹脂(D)の具体例として、DIC製HP7200シリーズが挙げられる。
<Epoxy resin (D)>
The adhesive resin composition of the present invention contains an epoxy resin (D) having a dicyclopentadiene skeleton as an essential component. A cured coating film made of an epoxy resin having a rigid dicyclopentadiene skeleton has a very low moisture absorption rate, and can reduce the cross-linking density of the cured coating film and relieve stress at the time of peeling. Improves. As a specific example of the epoxy resin (D), DIC's HP7200 series can be cited.
 ジシクロペンタジエン骨格を有するエポキシ樹脂(D)の配合量は接着剤用樹脂組成物に含まれるエポキシ樹脂全体の60質量%以上が好ましく、より好ましくは75質量%以上、さらに好ましくは90質量%以上である。ジシクロペンタジエン骨格を有するエポキシ樹脂(D)を60質量%以上含むことで、より優れた耐加湿半田性を発現することができる。 The amount of the epoxy resin (D) having a dicyclopentadiene skeleton is preferably 60% by mass or more, more preferably 75% by mass or more, further preferably 90% by mass or more, based on the total epoxy resin contained in the adhesive resin composition. It is. By including 60% by mass or more of the epoxy resin (D) having a dicyclopentadiene skeleton, it is possible to express more excellent humidification solder resistance.
 本発明の接着剤用樹脂組成物には、エポキシ樹脂として、さらに窒素原子を含有するエポキシ樹脂を含有させると、比較的低い温度の加熱で接着剤組成物の塗膜をBステージ化することができ、かつBステージフィルムの流動性を抑えて接着操作における作業性を向上させることができる傾向にあり、またBステージフィルムの発泡を抑える効果が期待でき、好ましい。窒素原子を含有するエポキシ樹脂としては、例えば、テトラグリシジルジアミノジフェニルメタン、トリグリシジルパラアミノフェノール、テトラグリシジルビスアミノメチルシクロヘキサノン、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン等のグリシジルアミン系などが挙げられる。これら窒素原子を含有するエポキシ樹脂の配合量はエポキシ樹脂全体の20質量%以下であることが好ましい。配合量が20質量%より多くなると、過度に剛直性が高くなり、接着性が低下する傾向にあり、また、接着シート保存中に架橋反応が進み易く、シートライフが低下する傾向にある。より好ましい配合量の上限は10質量%、さらに好ましくは5質量%である。 When the resin composition for an adhesive of the present invention further contains an epoxy resin containing a nitrogen atom as an epoxy resin, the coating film of the adhesive composition can be B-staged by heating at a relatively low temperature. It is possible to improve the workability in the bonding operation by suppressing the fluidity of the B stage film, and the effect of suppressing the foaming of the B stage film can be expected, which is preferable. Examples of the epoxy resin containing a nitrogen atom include glycidylamines such as tetraglycidyldiaminodiphenylmethane, triglycidylparaaminophenol, tetraglycidylbisaminomethylcyclohexanone, N, N, N ′, N′-tetraglycidyl-m-xylenediamine and the like. The system etc. are mentioned. It is preferable that the compounding quantity of the epoxy resin containing these nitrogen atoms is 20 mass% or less of the whole epoxy resin. When the blending amount is more than 20% by mass, the rigidity becomes excessively high and the adhesiveness tends to be lowered, and the crosslinking reaction tends to proceed during storage of the adhesive sheet, and the sheet life tends to be lowered. The upper limit of the more preferable amount is 10 mass%, More preferably, it is 5 mass%.
 本発明に用いるエポキシ樹脂として、その他のエポキシ樹脂も併用することが出来る。例えば、ビスフェノールAジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、ノボラックグリシジルエーテル、ブロム化ビスフェノールAジグリシジルエーテル等のグリシジルエーテルタイプ、ヘキサヒドロフタル酸グリシジルエステル、ダイマー酸グリシジルエステル等のグリシジルエステルタイプ、トリグリシジルイソシアヌレート、あるいは3,4-エポキシシクロヘキシルメチルカルボキシレート、エポキシ化ポリブタジエン、エポキシ化大豆油等の脂環族あるいは脂肪族エポキサイド等が挙げられ、一種単独で用いても二種以上を併用しても構わない。 Other epoxy resins can be used in combination as the epoxy resin used in the present invention. For example, glycidyl ether type such as bisphenol A diglycidyl ether, bisphenol S diglycidyl ether, novolak glycidyl ether, brominated bisphenol A diglycidyl ether, glycidyl ester type such as hexahydrophthalic acid glycidyl ester, dimer acid glycidyl ester, triglycidyl Examples include isocyanurates, alicyclic or aliphatic epoxides such as 3,4-epoxycyclohexylmethyl carboxylate, epoxidized polybutadiene, and epoxidized soybean oil, which may be used alone or in combination of two or more. I do not care.
 本発明に用いるエポキシ樹脂の硬化反応に、硬化触媒を使用することができる。例えば2-メチルイミダゾールや1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾールや2-フェニル-4-メチルイミダゾールや1-シアノエチル-2-エチル-4-メチルイミダゾール等のイミダゾール系化合物やトリエチルアミンやトリエチレンジアミンやN’-メチル-N-(2-ジメチルアミノエチル)ピペラジンや1,8-ジアザビシクロ(5,4,0)-ウンデセン-7や1,5-ジアザビシクロ(4,3,0)-ノネン-5や6-ジブチルアミノ-1,8-ジアザビシクロ(5,4,0)-ウンデセン-7等の三級アミン類及びこれらの三級アミン類をフェノールやオクチル酸や四級化テトラフェニルボレート塩等でアミン塩にした化合物、トリアリルスルフォニウムヘキサフルオロアンチモネートやジアリルヨードニウムヘキサフルオロアンチモナート等のカチオン触媒、トリフェニルフォスフィン等が挙げられる。これらのうちが1,8-ジアザビシクロ(5,4,0)-ウンデセン-7や1,5-ジアザビシクロ(4,3,0)-ノネン-5や6-ジブチルアミノ-1,8-ジアザビシクロ(5,4,0)-ウンデセン-7等の三級アミン類及びこれらの三級アミン類をフェノールやオクチル酸等や四級化テトラフェニルボレート塩でアミン塩にした化合物が熱硬化性及び耐熱性、金属への接着性、配合後の保存安定性の点で好ましい。その際の配合量は熱可塑性樹脂(A)100重量部に対して0.01~1.0重量部の配合量であることが好ましい。この範囲であれば熱可塑性樹脂(A)とエポキシ樹脂の反応に対する触媒効果が一段と増し、強固な接着性能を得ることができる。 A curing catalyst can be used for the curing reaction of the epoxy resin used in the present invention. For example, imidazole compounds such as 2-methylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, and triethylamine , Triethylenediamine, N'-methyl-N- (2-dimethylaminoethyl) piperazine, 1,8-diazabicyclo (5,4,0) -undecene-7 and 1,5-diazabicyclo (4,3,0)- Tertiary amines such as nonene-5 and 6-dibutylamino-1,8-diazabicyclo (5,4,0) -undecene-7, and tertiary amines such as phenol, octylic acid and quaternized tetraphenylborate Compounds converted to amine salts with salts, triallylsulfonium hexafluoroantimonate and dia Le iodonium hexafluoroantimonate Mona bets and cationic catalysts include triphenylphosphine and the like. Among these, 1,8-diazabicyclo (5,4,0) -undecene-7, 1,5-diazabicyclo (4,3,0) -nonene-5 and 6-dibutylamino-1,8-diazabicyclo (5 , 4,0) -undecene-7 and the like, and compounds obtained by converting these tertiary amines into amine salts with phenol, octylic acid or the like or quaternized tetraphenylborate salts are thermosetting and heat resistant. It is preferable in terms of adhesion to metal and storage stability after blending. The blending amount at that time is preferably 0.01 to 1.0 part by weight based on 100 parts by weight of the thermoplastic resin (A). If it is this range, the catalytic effect with respect to reaction of a thermoplastic resin (A) and an epoxy resin will increase further, and strong adhesive performance can be acquired.
<その他の添加剤>
 本発明の接着剤用樹脂組成物は、そのままで、あるいは更に各種硬化性樹脂、添加剤を配合して接着剤組成物とすることができる。硬化性樹脂としてはシリコーン樹脂、アミノ樹脂、フェノール系樹脂、イソシアネート化合物などが挙げられる。
<Other additives>
The resin composition for an adhesive of the present invention can be used as it is or by further blending various curable resins and additives. Examples of the curable resin include silicone resins, amino resins, phenolic resins, and isocyanate compounds.
 フェノール系樹脂としてはたとえばアルキル化フェノール類、クレゾール類のホルムアルデヒド縮合物を挙げることが出来る。具体的にはアルキル化(例えば、メチル、エチル、プロピル、イソプロピル、ブチル)フェノール、p-tert-アミルフェノール、4,4’-sec-ブチリデンフェノール、p-tert-ブチルフェノール、o-クレゾール、m-クレゾール、p-クレゾール、p-シクロヘキシルフェノール、4,4’-イソプロピリデンフェノール、p-ノニルフェノール、p-オクチルフェノール、3-ペンタデシルフェノール、フェノール、フェニル-o-クレゾール、p-フェニルフェノール、キシレノールなどのホルムアルデヒド縮合物が挙げられる。 Examples of phenolic resins include formaldehyde condensates of alkylated phenols and cresols. Specifically, alkylated (eg, methyl, ethyl, propyl, isopropyl, butyl) phenol, p-tert-amylphenol, 4,4′-sec-butylidenephenol, p-tert-butylphenol, o-cresol, m -Cresol, p-cresol, p-cyclohexylphenol, 4,4'-isopropylidenephenol, p-nonylphenol, p-octylphenol, 3-pentadecylphenol, phenol, phenyl-o-cresol, p-phenylphenol, xylenol, etc. Formaldehyde condensates.
 アミノ樹脂としては、例えば尿素、メラミン、ベンゾグアナミンなどのホルムアルデヒド付加物、さらにこれらの炭素原子数が1~6のアルコールによるアルキルエーテル化合物を挙げることができる。具体的にはメトキシ化メチロール尿素、メトキシ化メチロールN,N-エチレン尿素、メトキシ化メチロールジシアンジアミド、メトキシ化メチロールメラミン、メトキシ化メチロールベンゾグアナミン、ブトキシ化メチロールメラミン、ブトキシ化メチロールベンゾグアナミンなどが挙げられるが好ましくはメトキシ化メチロールメラミン、ブトキシ化メチロールメラミン、およびメチロール化ベンゾグアナミンであり、それぞれ単独または併用して使用することができる。 Examples of amino resins include formaldehyde adducts such as urea, melamine, and benzoguanamine, and alkyl ether compounds of these alcohols having 1 to 6 carbon atoms. Specific examples include methoxylated methylol urea, methoxylated methylol N, N-ethyleneurea, methoxylated methylol dicyandiamide, methoxylated methylol melamine, methoxylated methylol benzoguanamine, butoxylated methylol melamine, butoxylated methylol benzoguanamine, etc. They are methoxylated methylol melamine, butoxylated methylol melamine, and methylolated benzoguanamine, each of which can be used alone or in combination.
 イソシアネート化合物としては芳香族、脂肪族のジイソシアネート、3価以上のポリイソシアネートがあり、低分子化合物、高分子化合物のいずれでもよい。たとえば、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、トルエンジイソシアネート、ジフェニルメタンジイソシアネート、水素化ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、水素化キシリレンジイソシアネート、イソホロンジイソシアネートあるいはこれらのイソシアネート化合物の3量体、およびこれらのイソシアネート化合物の過剰量と、たとえばエチレングリコール、プロピレングリコール、トリメチロールプロパン、グリセリン、ソルビトール、エチレンジアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどの低分子活性水素化合物または各種ポリエステルポリオール類、ポリエーテルポリオール類、ポリアミド類の高分子活性水素化合物などとを反応させて得られる末端イソシアネート基含有化合物が挙げられる。 Isocyanate compounds include aromatic and aliphatic diisocyanates, and tri- or higher polyisocyanates, which may be either low molecular compounds or high molecular compounds. For example, tetramethylene diisocyanate, hexamethylene diisocyanate, toluene diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate or trimers of these isocyanate compounds, and excess of these isocyanate compounds Amount of low molecular active hydrogen compounds such as ethylene glycol, propylene glycol, trimethylolpropane, glycerin, sorbitol, ethylenediamine, monoethanolamine, diethanolamine, triethanolamine or various polyester polyols, polyether polyols, polyamides Against high molecular active hydrogen compounds It includes terminal isocyanate group-containing compounds obtained by.
 イソシアネート化合物としてはブロック化イソシアネートであってもよい。イソシアネートブロック化剤としては、例えばフェノール、チオフェノール、メチルチオフェノール、クレゾール、キシレノール、レゾルシノール、ニトロフェノール、クロロフェノール等のフェノール類、アセトキシム、メチルエチルケトオキシム、シクロヘキサノンオキシムなどのオキシム類、メタノール、エタノール、プロパノール、ブタノールなどのアルコール類、エチレンクロルヒドリン、1,3-ジクロロ-2-プロパノールなどのハロゲン置換アルコール類、t-ブタノール、t-ペンタノールなどの第3級アルコール類、ε-カプロラクタム、δ-バレロラクタム、γ-ブチロラクタム、β-プロピルラクタムなどのラクタム類が挙げられ、その他にも芳香族アミン類、イミド類、アセチルアセトン、アセト酢酸エステル、マロン酸エチルエステルなどの活性メチレン化合物、メルカプタン類、イミン類、尿素類、ジアリール化合物類重亜硫酸ソーダなども挙げられる。ブロック化イソシアネートは上記イソシアネート化合物とイソシアネート化合物とイソシアネートブロック化剤とを従来公知の適宜の方法より付加反応させて得られる。 The isocyanate compound may be a blocked isocyanate. Examples of the isocyanate blocking agent include phenols such as phenol, thiophenol, methylthiophenol, cresol, xylenol, resorcinol, nitrophenol, and chlorophenol, oximes such as acetoxime, methylethyl ketoxime, and cyclohexanone oxime, methanol, ethanol, propanol, Alcohols such as butanol, halogen-substituted alcohols such as ethylene chlorohydrin and 1,3-dichloro-2-propanol, tertiary alcohols such as t-butanol and t-pentanol, ε-caprolactam, δ-valero Examples include lactams such as lactam, γ-butyrolactam, β-propyllactam, and other aromatic amines, imides, acetylacetone, acetoacetate, and malonic acid. Active methylene compounds such Chiruesuteru, mercaptans, imines, ureas, and also such as diaryl compounds sodium bisulfite. The blocked isocyanate is obtained by subjecting the above isocyanate compound, isocyanate compound and isocyanate blocking agent to an addition reaction by a conventionally known appropriate method.
 本発明の接着剤用樹脂組成物には必要に応じてシランカップリング剤を配合しても良い。シランカップリング剤を配合することにより金属への接着性や耐熱性の特性が向上するため非常に好ましい。シランカップリング剤としては特に限定されないが、不飽和基を有するもの、グリシジル基を有するもの、アミノ基を有するものなどが挙げられる。不飽和基を有するシランカップリング剤としては、ビニルトリス(β-メトキシエトキシ)シラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン等を挙げることができる。グリシジル基を有するシランカップリング剤としては、γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等を挙げることができる。アミノ基を有するシランカップリング剤としては、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン等を挙げることができる。これらのうち耐熱性の観点からγ-グリシドキシプロピルトリメトキシシランやβ-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランやβ-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等のグリシジル基を有したシランカップリング剤がさらに好ましい。シランカップリング剤の配合量は熱可塑性樹脂(A)100重量部に対して0.5~20重量部の配合量であることが好ましい。シランカップリング剤の配合量が0.5重量部未満であると得られる接着剤の耐熱性不良となる場合があり、20重量部を越えると耐熱性不良や接着性不良となる場合がある。 A silane coupling agent may be blended in the adhesive resin composition of the present invention as necessary. It is very preferable to add a silane coupling agent because adhesion to metal and heat resistance are improved. Although it does not specifically limit as a silane coupling agent, What has an unsaturated group, What has a glycidyl group, What has an amino group, etc. are mentioned. Examples of the silane coupling agent having an unsaturated group include vinyltris (β-methoxyethoxy) silane, vinyltriethoxysilane, and vinyltrimethoxysilane. Examples of silane coupling agents having a glycidyl group include γ-glycidoxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysilane. Etc. Examples of the silane coupling agent having an amino group include N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropylmethyldimethoxysilane, N-phenyl-γ. -Aminopropyltrimethoxysilane and the like. Of these, glycidyl such as γ-glycidoxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and β- (3,4-epoxycyclohexyl) ethyltriethoxysilane from the viewpoint of heat resistance. A silane coupling agent having a group is more preferable. The amount of the silane coupling agent is preferably 0.5 to 20 parts by weight per 100 parts by weight of the thermoplastic resin (A). If the blending amount of the silane coupling agent is less than 0.5 parts by weight, the resulting adhesive may have poor heat resistance, and if it exceeds 20 parts by weight, it may cause poor heat resistance or poor adhesion.
 本発明の接着剤用樹脂組成物には必要に応じ、臭素系、リン系、窒素系、水酸化金属化合物等の難燃剤、レベリング剤、顔料、染料等の添加剤を適宜配合することができる。 The resin composition for adhesives of the present invention can be appropriately blended with flame retardants such as bromine, phosphorus, nitrogen, and metal hydroxide compounds, leveling agents, pigments, dyes, and the like as necessary. .
<接着シート>
 本発明において、接着シートとは、本発明の接着剤用樹脂組成物に含有される前記熱可塑性樹脂(A)、前記無機充填材(B)、前記エポキシ樹脂(D)およびこれらに由来する反応生成物を含有するものである。本発明における接着シートは、本発明の接着剤用樹脂組成物に含有される前記熱可塑性樹脂(A)、前記無機充填材(B)、前記エポキシ樹脂(D)およびこれらに由来する反応生成物を含有する層単独からなるシートであってもよく、あるいは、基材と本発明の接着剤用樹脂組成物に含有される前記熱可塑性樹脂(A)、前記無機充填材(B)、前記エポキシ樹脂(D)およびこれらに由来する反応生成物を含有する層からなるシートであってもよく、あるいは、基材と本発明の接着剤用樹脂組成物に含有される前記熱可塑性樹脂(A)、前記無機充填材(B)、前記エポキシ樹脂(D)およびこれらに由来する反応生成物を含有する層と離型基材からなるシートであってもよい。本発明の接着剤用樹脂組成物に含有される前記熱可塑性樹脂(A)、前記無機充填材(B)、前記エポキシ樹脂(D)およびこれらに由来する反応生成物を含有する層は、基材の片面に形成されていても両面に形成されていてもよい。また、接着シートには、微量または少量の溶剤(C)が含有されていても良い。接着性シートは接着剤組成物によって基材を被接着材に接着させる機能を有する。接着性シートの基材は、接着後、被接着材の保護層として機能する。また接着性シートの基材として離型性基材を使用すると、離型性基材を離型して、さらに別の被接着材に接着剤層を転写することができる。
<Adhesive sheet>
In the present invention, the adhesive sheet refers to the thermoplastic resin (A), the inorganic filler (B), the epoxy resin (D), and reactions derived from these contained in the resin composition for adhesives of the present invention. It contains the product. The adhesive sheet in the present invention includes the thermoplastic resin (A), the inorganic filler (B), the epoxy resin (D), and reaction products derived from these contained in the resin composition for an adhesive of the present invention. It may be a sheet consisting of a layer containing only the thermoplastic resin (A), the inorganic filler (B), and the epoxy contained in the substrate and the resin composition for adhesives of the present invention. It may be a sheet comprising a layer containing the resin (D) and a reaction product derived therefrom, or the thermoplastic resin (A) contained in the substrate and the resin composition for an adhesive of the present invention. The sheet | seat which consists of a layer containing the said inorganic filler (B), the said epoxy resin (D), and the reaction product derived from these, and a mold release base material may be sufficient. The layer containing the thermoplastic resin (A), the inorganic filler (B), the epoxy resin (D), and the reaction product derived therefrom contained in the adhesive resin composition of the present invention is based on It may be formed on one side or both sides of the material. The adhesive sheet may contain a trace amount or a small amount of the solvent (C). The adhesive sheet has a function of bonding the substrate to the adherend with the adhesive composition. The base material of the adhesive sheet functions as a protective layer for the adherend after adhesion. Moreover, when a releasable base material is used as the base material of the adhesive sheet, the releasable base material can be released and the adhesive layer can be transferred to another material to be adhered.
 本発明の接着剤組成物を、常法に従い、各種基材に塗布し、溶剤の少なくとも一部を除去して乾燥させることにより、本発明の接着シートを得ることができる。また溶剤の少なくとも一部を除去して乾燥せしめた後、接着剤層に離型基材を貼付けると、基材への裏移りを起こすことなく巻き取りが可能になり操業性に優れるとともに、接着剤層が保護されることから保存性に優れ、使用も容易である。また離型基材に塗布、乾燥せしめた後、必要に応じて別の離型基材を貼付すれば、接着剤層そのものを他の基材に転写することも可能になる。 The adhesive composition of the present invention can be obtained by applying the adhesive composition of the present invention to various substrates according to a conventional method, removing at least part of the solvent and drying. Also, after removing at least a part of the solvent and drying, pasting the release substrate to the adhesive layer makes it possible to wind up without causing the back to the substrate, and excellent operability, Since the adhesive layer is protected, it is excellent in storage stability and easy to use. Moreover, after applying and drying to a mold release base material, if another mold release base material is stuck as needed, it will also become possible to transfer the adhesive layer itself to another base material.
 ここで、本発明の組成物を塗布する基材としては、特に限定されるものではないが、フィルム状樹脂、金属板、金属箔、紙類等を挙げることができる。フィルム状樹脂としては、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、オレフィン系樹脂等を例示することができる。金属板および金属箔の素材としては、SUS、銅、アルミ、鉄、亜鉛等の各種金属、及びそれぞれの合金、めっき品等を例示することができる、紙類として上質紙、クラフト紙、ロール紙、グラシン紙等を例示することができる。また複合素材として、ガラスエポキシ等を例示することができる。接着剤組成物との接着力、耐久性から、本発明の組成物を塗布する基材としては、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、SUS鋼板、銅箔、アルミ箔、ガラスエポキシが好ましい。 Here, the substrate to which the composition of the present invention is applied is not particularly limited, and examples thereof include a film-like resin, a metal plate, a metal foil, and papers. Examples of the film-like resin include polyester resin, polyamide resin, polyimide resin, polyamideimide resin, and olefin resin. Examples of metal plate and metal foil materials include various metals such as SUS, copper, aluminum, iron, and zinc, and alloys and plated products thereof. Glassine paper etc. can be illustrated. Moreover, glass epoxy etc. can be illustrated as a composite material. From the viewpoint of adhesive strength and durability with the adhesive composition, the base material to which the composition of the present invention is applied is polyester resin, polyamide resin, polyimide resin, polyamideimide resin, SUS steel plate, copper foil, aluminum foil, glass epoxy. Is preferred.
 また本発明の組成物を塗布する離型基材としては、特に限定されるものではないが、例えば、上質紙、クラフト紙、ロール紙、グラシン紙などの紙の両面に、クレー、ポリエチレン、ポリプロピレンなどの目止剤の塗布層を設け、さらにその各塗布層の上にシリコーン系、フッ素系、アルキド系の離型剤が塗布されたもの、及び、ポリエチレン、ポリプロピレン、エチレン-α-オレフィン共重合体、プロピレン-α-オレフィン共重合体等の各種オレフィンフィルム単独、及びポリエチレンテレフタレート等のフィルム上に上記離型剤を塗布したものが挙げられるが、塗布された接着剤層との離型力、シリコーンが電気特性に悪影響を与える等の理由から、上質紙の両面にポリプロピレン目止処理しその上にアルキド系離型剤を用いたもの、ポリエチレンテレフタレート上にアルキド系離型剤を用いたものが好ましい。 Further, the release substrate to which the composition of the present invention is applied is not particularly limited. For example, clay, polyethylene, and polypropylene are provided on both surfaces of paper such as fine paper, kraft paper, roll paper, and glassine paper. In addition, a coating layer of a sealing agent such as a silicone, fluorine-based, or alkyd-based release agent is coated on each coating layer, and polyethylene, polypropylene, ethylene-α-olefin copolymer Examples include various olefin films such as a polymer, propylene-α-olefin copolymer, and those obtained by applying the release agent on a film such as polyethylene terephthalate, but the release force with the applied adhesive layer, Due to reasons such as the adverse effect of silicone on electrical properties, polypropylene seals are treated on both sides of high-quality paper and alkyd release agents are used on top of that. Those using an alkyd release agent on polyethylene terephthalate are preferred.
 なお、本発明において接着剤組成物を基材上にコーティングする方法としては、特に限定されないが、コンマコーター、リバースロールコーター等が挙げられる。もしくは、必要に応じて、プリント配線板構成材料である圧延銅箔、またはポリイミドフィルムに直接もしくは転写法で接着剤フィルム層を設けることもできる。乾燥後の接着剤フィルム厚みは、必要に応じて、適宜変更されるが、好ましくは5~200μmの範囲である。接着フィルム厚が5μm未満では、接着強度が不十分である。200μm以上では乾燥が不十分で、残留溶剤が多くなり、プリント配線板製造のプレス時にフクレを生じるという問題点が挙げられる。乾燥条件は特に限定されないが、乾燥後の残留溶剤率は4質量%以下が好ましく、1質量%以下がより好ましい。4質量%より大きくなると、プリント配線板プレス時に残留溶剤が発泡して、フクレを生じるという問題が生じる場合がある。 In the present invention, the method of coating the adhesive composition on the substrate is not particularly limited, and examples thereof include a comma coater and a reverse roll coater. Or as needed, an adhesive film layer can also be provided in the rolled copper foil which is a printed wiring board constituent material, or a polyimide film directly or by the transfer method. The thickness of the adhesive film after drying is appropriately changed as necessary, but is preferably in the range of 5 to 200 μm. When the adhesive film thickness is less than 5 μm, the adhesive strength is insufficient. When the thickness is 200 μm or more, there is a problem that drying is insufficient, a residual solvent increases, and bulge is generated at the time of printed circuit board production. The drying conditions are not particularly limited, but the residual solvent ratio after drying is preferably 4% by mass or less, and more preferably 1% by mass or less. If it exceeds 4% by mass, there may be a problem that the residual solvent is foamed when the printed wiring board is pressed to cause swelling.
<プリント配線板>
 本発明におけるプリント配線板は、導体回路を形成する金属箔と樹脂層とから形成された積層体を構成要素として含むものである。プリント配線板は、例えば、金属張積層体を用いてサブトラクティブ法などの従来公知の方法により製造される。必要に応じて、金属箔によって形成された導体回路を部分的、或いは全面的にカバーフィルムやスクリーン印刷インキ等を用いて被覆した、いわゆるフレキシブル回路板(FPC)、フラットケーブル、テープオートメーティッドボンディング(TAB)用の回路板などを総称している。
<Printed wiring board>
The printed wiring board in the present invention includes a laminate formed from a metal foil and a resin layer forming a conductor circuit as constituent elements. A printed wiring board is manufactured by conventionally well-known methods, such as a subtractive method, using a metal-clad laminated body, for example. If necessary, a so-called flexible circuit board (FPC), flat cable, tape automated bonding (covered by using a cover film or screen printing ink, etc., partially or entirely covered with a conductor circuit formed of metal foil (tape automated bonding) TAB) circuit board and the like.
 本発明のプリント配線板は、プリント配線板として採用され得る任意の積層構成とすることができる。例えば、基材フィルム層、金属箔層、接着剤層、およびカバーフィルム層の4層から構成されるプリント配線板とすることができる。また例えば、基材フィルム層、接着剤層、金属箔層、接着剤層、およびカバーフィルム層の5層から構成されるプリント配線板とすることができる。プリント配線板は必要に応じて補強材で補強することがあり、その場合、補強材、接着剤層が基材フィルム層の下に設けられる。 The printed wiring board of the present invention can have any laminated structure that can be employed as a printed wiring board. For example, it can be set as the printed wiring board comprised from four layers, a base film layer, a metal foil layer, an adhesive bond layer, and a cover film layer. For example, it can be set as the printed wiring board comprised from five layers, a base film layer, an adhesive bond layer, a metal foil layer, an adhesive bond layer, and a cover film layer. The printed wiring board may be reinforced with a reinforcing material as necessary. In that case, the reinforcing material and the adhesive layer are provided under the base film layer.
 さらに、必要に応じて、上記のプリント配線板を2つもしくは3つ以上積層した構成とすることもできる。 Furthermore, if necessary, a configuration in which two or three or more of the above-described printed wiring boards are laminated may be employed.
 本発明の樹脂組成物はプリント配線板の各接着剤層に好適に使用することが可能である。特に本発明の樹脂組成物を接着剤として使用すると、プリント配線板を構成する基材に対して高い接着性を有し、かつ鉛フリーハンダにも対応できる高度の耐熱性を有し、さらに高温高湿度下においても高い接着性を維持することが可能である。特に耐ハンダ性を評価する高温領域において、樹脂と樹脂との化学架橋と共に樹脂と無機充填材との物理架橋をバランスよく付与することで、加湿状態での耐ハンダ性試験における水分の蒸発による衝撃で膨れや変形すること無しに、応力を緩和することが可能であり、金属箔層とカバーフィルム層間の接着剤、および基材フィルム層と補強材層間の接着に適している。特に、SUS板やアルミ板のような金属補強材を使用した場合、加湿状態でのハンダづけの際、補強材側から水分は蒸発できない為、基材フィルム層と補強材層間の接着剤層に及ぶ衝撃は特に強大であり、そのような場合の接着に用いる樹脂組成物として好適である。 The resin composition of the present invention can be suitably used for each adhesive layer of a printed wiring board. In particular, when the resin composition of the present invention is used as an adhesive, it has high adhesiveness to the base material constituting the printed wiring board, has high heat resistance that can be used for lead-free solder, and has a high temperature. It is possible to maintain high adhesion even under high humidity. In particular, in the high-temperature range where solder resistance is evaluated, the chemical cross-linking between the resin and the resin and the physical cross-linking between the resin and the inorganic filler are provided in a well-balanced manner. It is possible to relieve stress without swelling or deformation, and is suitable for bonding between the metal foil layer and the cover film layer and between the base film layer and the reinforcing material layer. In particular, when a metal reinforcing material such as a SUS plate or an aluminum plate is used, moisture cannot evaporate from the reinforcing material side when soldering in a humidified state, so the adhesive layer between the base film layer and the reinforcing material layer is used. The impact exerted is particularly strong and is suitable as a resin composition used for adhesion in such a case.
 本発明のプリント配線板において、基材フィルムとしては、従来からプリント配線板の基材として使用されている任意の樹脂フィルムが使用可能である。基材フィルムの樹脂としては、ハロゲンを含む樹脂を用いてもよく、ハロゲンを含まない樹脂を用いてもよい。環境問題の観点から、好ましくは、ハロゲンを含まない樹脂であるが、難燃性の観点からは、ハロゲンを含む樹脂を用いることもできる。基材フィルムは、ポリイミドフィルムまたはポリアミドイミドフィルムであることが好ましい。 In the printed wiring board of the present invention, any resin film conventionally used as a substrate for printed wiring boards can be used as the substrate film. As the resin for the base film, a resin containing halogen may be used, or a resin not containing halogen may be used. From the viewpoint of environmental problems, a resin containing no halogen is preferable. However, from the viewpoint of flame retardancy, a resin containing halogen can also be used. The base film is preferably a polyimide film or a polyamideimide film.
 本発明に用いる金属箔としては、回路基板に使用可能な任意の従来公知の導電性材料が使用可能である。材質としては、例えば、銅箔、アルミニウム箔、スチール箔、及びニッケル箔などを使用することができ、これらを複合した複合金属箔や亜鉛やクロム化合物など他の金属で処理した金属箔についても用いることができる。好ましくは、銅箔である。 As the metal foil used in the present invention, any conventionally known conductive material that can be used for a circuit board can be used. As the material, for example, copper foil, aluminum foil, steel foil, nickel foil and the like can be used, and composite metal foil obtained by combining these and metal foil treated with other metals such as zinc and chromium compounds are also used. be able to. Preferably, it is a copper foil.
 金属箔の厚みについては特に限定はないが、好ましくは1μm以上であり、より好ましくは、3μm以上であり、さらに好ましくは10μm以上である。また、好ましくは50μm以下であり、より好ましくは30μm以下であり、さらに好ましくは20μm以下である。厚さが薄すぎる場合には、回路の充分な電気的性能が得られにくい場合があり、一方、厚さが厚すぎる場合には回路作製時の加工能率等が低下する場合がある。 The thickness of the metal foil is not particularly limited, but is preferably 1 μm or more, more preferably 3 μm or more, and further preferably 10 μm or more. Moreover, it is preferably 50 μm or less, more preferably 30 μm or less, and still more preferably 20 μm or less. If the thickness is too thin, it may be difficult to obtain sufficient electrical performance of the circuit. On the other hand, if the thickness is too thick, the processing efficiency at the time of circuit fabrication may be reduced.
 金属箔は、通常、ロール状の形態で提供されている。本発明のプリント配線板を製造する際に使用される金属箔の形態は特に限定されない。ロール状の形態の金属箔を用いる場合、その長さは特に限定されない。また、その幅も特に限定されないが、250~1000mm程度であるのが好ましい。 Metal foil is usually provided in the form of a roll. The form of the metal foil used when manufacturing the printed wiring board of this invention is not specifically limited. When a roll-shaped metal foil is used, its length is not particularly limited. The width is not particularly limited, but is preferably about 250 to 1000 mm.
 カバーフィルムとしては、プリント配線板用の絶縁フィルムとして従来公知の任意の絶縁フィルムが使用可能である。例えば、ポリイミド、ポリエステル、ポリフェニレンスルフィド、ポリエーテルスルホン、ポリエーテルエーテルケトン、アラミド、ポリカーボネート、ポリアリレート、ポリイミド、ポリアミドイミドなどの各種ポリマーから製造されるフィルムが使用可能である。より好ましくは、ポリイミドフィルムまたはポリアミドイミドフィルムであり、さらに好ましくは、ポリイミドフィルムである。 As the cover film, any conventionally known insulating film can be used as an insulating film for a printed wiring board. For example, films produced from various polymers such as polyimide, polyester, polyphenylene sulfide, polyethersulfone, polyetheretherketone, aramid, polycarbonate, polyarylate, polyimide, and polyamideimide can be used. More preferably, it is a polyimide film or a polyamidoimide film, More preferably, it is a polyimide film.
 ポリイミドフィルムは、その樹脂成分としてポリイミド樹脂を主成分とする。樹脂成分のうち、90重量%以上がポリイミドであることが好ましく、95重量%以上がポリイミドであることがより好ましく、98重量%以上がポリイミドであることがさらに好ましく、99重量%以上がポリイミドであることが特に好ましい。ポリイミド樹脂としては、従来公知の任意の樹脂を使用することができる。 The polyimide film has a polyimide resin as a main component as its resin component. Of the resin components, 90% by weight or more is preferably polyimide, more preferably 95% by weight or more is polyimide, more preferably 98% by weight or more is polyimide, and 99% by weight or more is polyimide. It is particularly preferred. Any conventionally known resin can be used as the polyimide resin.
 カバーフィルムの素材樹脂としては、ハロゲンを含む樹脂を用いてもよく、ハロゲンを含まない樹脂を用いてもよい。環境問題の観点から、好ましくは、ハロゲンを含まない樹脂であるが、難燃性の観点からは、ハロゲンを含む樹脂を用いることもできる。 As the material resin for the cover film, a resin containing halogen may be used, or a resin not containing halogen may be used. From the viewpoint of environmental problems, a resin containing no halogen is preferable. However, from the viewpoint of flame retardancy, a resin containing halogen can also be used.
 補強材としては、SUS板、アルミニウム板等の金属板、ポリイミドフィルム、ガラス繊維をエポキシ樹脂で硬化した板(ガラスエポキシ板)等が使用される。特に本発明の樹脂組成物は、SUS板やアルミ板とポリイミドフィルムの接着に対して絶大な性能を発揮し、その接着性、耐熱性は極めて優れた性能を示す。 As the reinforcing material, a metal plate such as a SUS plate or an aluminum plate, a polyimide film, a plate obtained by curing glass fiber with an epoxy resin (glass epoxy plate), or the like is used. In particular, the resin composition of the present invention exhibits tremendous performance with respect to adhesion between a SUS plate or an aluminum plate and a polyimide film, and exhibits excellent performance in adhesion and heat resistance.
 本発明のプリント配線板は、上述した各層の材料を用いる以外は、従来公知の任意のプロセスを用いて製造することができる。 The printed wiring board of the present invention can be manufactured using any conventionally known process except that the material of each layer described above is used.
 好ましい実施態様では、カバーフィルム層に接着剤層を積層した半製品(以下、「カバーフィルム側半製品」という)を製造する。他方、基材フィルム層に金属箔層を積層して所望の回路パターンを形成した半製品(以下、「基材フィルム側2層半製品」という)または基材フィルム層に接着剤層を積層し、その上に金属箔層を積層して所望の回路パターンを形成した半製品(以下、「基材フィルム側3層半製品」という)を製造する(以下、基材フィルム側2層半製品と基材フィルム側3層半製品とを合わせて「基材フィルム側半製品」という)。このようにして得られたカバーフィルム側半製品と、基材フィルム側半製品とを貼り合わせることにより、4層または5層のプリント配線板を得ることができる。さらに補強材層に接着剤層を積層した半製品(以下、「補強材側半製品」という)を製造し、必要に応じて、プリント配線板の基材フィルム層に貼り合わせ補強することができる。また、補強材と基材フィルム間に用いる接着剤を離型基材に塗布し、プリント配線板の基材フィルム裏面に転写し、補強材と貼りあわせることもできる。 In a preferred embodiment, a semi-finished product in which an adhesive layer is laminated on a cover film layer (hereinafter referred to as “cover film-side semi-finished product”) is manufactured. On the other hand, an adhesive layer is laminated on a semi-finished product (hereinafter referred to as “base film side two-layer semi-product”) or a base film layer in which a desired circuit pattern is formed by laminating a metal foil layer on the base film layer. And a semi-finished product (hereinafter referred to as “base film side three-layer semi-product”) having a desired circuit pattern formed by laminating a metal foil layer thereon (hereinafter referred to as base film side two-layer semi-product) The base film side three-layer semi-finished product is collectively referred to as “base film side semi-finished product”). A four-layer or five-layer printed wiring board can be obtained by laminating the cover film side semi-finished product and the base film side semi-finished product thus obtained. Furthermore, a semi-finished product in which an adhesive layer is laminated on a reinforcing material layer (hereinafter referred to as “reinforcing material-side semi-finished product”) can be manufactured and bonded to a substrate film layer of a printed wiring board and reinforced as necessary. . Moreover, the adhesive agent used between a reinforcing material and a base film can be apply | coated to a mold release base material, it can transcribe | transfer to the base film back surface of a printed wiring board, and can also be bonded together with a reinforcing material.
 基材フィルム側半製品は、例えば、
(A)前記金属箔に基材フィルムとなる樹脂の溶液を塗布し、塗膜を初期乾燥する工程
(B)(A)で得られた金属箔と初期乾燥塗膜との積層物を熱処理・乾燥する工程(以下、「熱処理・脱溶剤工程」という)
を含む製造法により得られる。
The base film side semi-finished product is, for example,
(A) Step of applying a resin solution as a base film to the metal foil and initial drying of the coating film (B) A laminate of the metal foil obtained in (A) and the initial drying coating film is heat treated Drying process (hereinafter referred to as “heat treatment / solvent removal process”)
It is obtained by the manufacturing method containing.
 金属箔層における回路の形成は、従来公知の方法を用いることができる。アクティブ法を用いてもよく、サブトラクティブ法を用いてもよい。好ましくは、サブトラクティブ法である。 A conventionally known method can be used to form a circuit in the metal foil layer. An active method may be used and a subtractive method may be used. The subtractive method is preferable.
 得られた基材フィルム側半製品は、そのままカバーフィルム側半製品との貼り合わせに使用されてもよく、また、離型フィルムを貼り合わせて保管した後にカバーフィルム側半製品との貼り合わせに使用してもよい。 The obtained base film side semi-finished product may be used as it is for pasting with the cover film side semi-finished product. May be used.
 カバーフィルム側半製品は、例えば、カバーフィルムに接着剤を塗布して製造される。必要に応じて、塗布された接着剤における架橋反応を行うことができる。好ましい実施態様においては、接着剤層を半硬化させる。 The cover film side semi-finished product is manufactured, for example, by applying an adhesive to the cover film. If necessary, a crosslinking reaction in the applied adhesive can be performed. In a preferred embodiment, the adhesive layer is semi-cured.
 得られたカバーフィルム側半製品は、そのまま基材側半製品との貼り合わせに使用されてもよく、また、離型フィルムを貼り合わせて保管した後に基材フィルム側半製品との貼り合わせに使用してもよい。 The obtained cover film-side semi-finished product may be used as it is for pasting with the base-side-side semi-finished product. May be used.
 基材フィルム側半製品とカバーフィルム側半製品とは、それぞれ、例えば、ロールの形態で保管された後、貼り合わされて、プリント配線板が製造される。貼り合わせる方法としては、任意の方法が使用可能であり、例えば、プレスまたはロールなどを用いて貼り合わせることができる。また、加熱プレス、または加熱ロ-ル装置を使用するなどの方法により加熱を行いながら両者を貼り合わせることもできる。 The base film side semi-finished product and the cover film side semi-finished product are each stored, for example, in the form of a roll, and then bonded together to produce a printed wiring board. Arbitrary methods can be used as the method of bonding, for example, it can bond using a press or a roll. Further, the two can be bonded together while heating by a method such as using a heating press or a heating roll device.
 補強材側半製品は、例えば、ポリイミドフィルムのように柔らかく巻き取り可能な補強材の場合、補強材に接着剤を塗布して製造されることが好適である。また、例えばSUS、アルミ等の金属板、ガラス繊維をエポキシ樹脂で硬化させた板等のように硬く巻き取りできない補強板の場合、予め離型基材に塗布した接着剤を転写塗布することによって製造されることが好適である。また、必要に応じて、塗布された接着剤における架橋反応を行うことができる。好ましい実施態様においては、接着剤層を半硬化させる。 For example, in the case of a reinforcing material that can be rolled up softly, such as a polyimide film, the reinforcing material-side semi-finished product is preferably manufactured by applying an adhesive to the reinforcing material. Also, for example, in the case of a reinforcing plate that cannot be rolled up hard, such as a metal plate such as SUS or aluminum, or a plate in which glass fibers are cured with an epoxy resin, by transferring and applying an adhesive previously applied to a release substrate. It is preferred to be manufactured. Moreover, the crosslinking reaction in the apply | coated adhesive agent can be performed as needed. In a preferred embodiment, the adhesive layer is semi-cured.
 得られた補強材側半製品は、そのままプリント配線板裏面との貼り合わせに使用されてもよく、また、離型フィルムを貼り合わせて保管した後に基材フィルム側半製品との貼り合わせに使用してもよい。 The obtained reinforcing material-side semi-finished product may be used as it is for pasting with the back side of the printed wiring board, and after being used for pasting with the base film-side semi-finished product after storing the release film. May be.
 基材フィルム側半製品、カバーフィルム側半製品、補強剤側半製品はいずれも、本発明におけるプリント配線板用積層体である。 The base film side semi-finished product, the cover film side semi-finished product, and the reinforcing agent side semi-finished product are all laminated bodies for printed wiring boards in the present invention.
本発明をさらに詳細に説明するために以下に実施例を挙げるが、本発明は実施例になんら限定されるものではない。なお、実施例中に単に部とあるのは質量部を示す。また、特記なくエポキシ樹脂配合率と記した場合には、{EV(γ)×EW(γ)}/{AV(β)×AW(β)}の値を指すこととする。また、表中において、例えば「>40」とあれば40を超えることを、「<230」とあれば230未満であることを示す。 In order to describe the present invention in more detail, examples are given below, but the present invention is not limited to the examples. In the examples, “parts” simply means “parts by mass”. In addition, when it is described as an epoxy resin blending ratio unless otherwise specified, it refers to a value of {EV (γ) × EW (γ)} / {AV (β) × AW (β)}. In the table, for example, “> 40” indicates that it exceeds 40, and “<230” indicates that it is less than 230.
(物性評価方法)
(1)熱可塑性樹脂の組成
 熱可塑性樹脂を重クロロホルムに溶解し、1H-NMR分析により、各成分のモル比を求めた。但し、該熱可塑性樹脂が重クロロホルムに溶解しない場合には、重ジメチルスルホキシドに溶解して1H-NMR分析を行った。
(Physical property evaluation method)
(1) Composition of thermoplastic resin The thermoplastic resin was dissolved in deuterated chloroform, and the molar ratio of each component was determined by 1 H-NMR analysis. However, when the thermoplastic resin was not dissolved in deuterated chloroform, it was dissolved in deuterated dimethyl sulfoxide and subjected to 1 H-NMR analysis.
(2)数平均分子量Mn
試料を、樹脂濃度が0.5%程度となるようにテトラヒドロフランに溶解または希釈し、孔径0.5μmのポリ四フッ化エチレン製メンブランフィルターで濾過したものを測定用試料として、テトラヒドロフランを移動相とし示差屈折計を検出器とするゲル浸透クロマトグラフィーにより分子量を測定した。流速は1mL/分、カラム温度は30℃とした。カラムには昭和電工製KF-802、804L、806Lを用いた。分子量標準には単分散ポリスチレンを使用した。但し、試料がテトラヒドロフランに溶解しない場合は、テトラヒドロフランに変えてN,N-ジメチルホルムアミドを用いた。
(2) Number average molecular weight Mn
The sample was dissolved or diluted in tetrahydrofuran so that the resin concentration was about 0.5%, and filtered through a polytetrafluoroethylene membrane filter with a pore size of 0.5 μm, and tetrahydrofuran was used as the mobile phase. The molecular weight was measured by gel permeation chromatography using a differential refractometer as a detector. The flow rate was 1 mL / min and the column temperature was 30 ° C. KF-802, 804L and 806L manufactured by Showa Denko were used for the column. Monodisperse polystyrene was used as the molecular weight standard. However, when the sample did not dissolve in tetrahydrofuran, N, N-dimethylformamide was used instead of tetrahydrofuran.
(3)ガラス転移温度
 ポリエステル樹脂およびポリウレタン樹脂の場合は、示差走査熱量計(DSC)を用いて20℃/分の昇温速度で測定した。
 ポリアミドイミド樹脂の場合は、幅10mm、厚さ30μmの短冊状試料について、アイテイ計測制御社製動的粘弾性測定装置DVA-220を用いて、周波数110Hzで動的粘弾性の測定を行い、その貯蔵弾性率の変曲点をガラス転移点とした。なお、短冊状試料は、ポリアミドイミドの重合溶液をポリプロピレン製フィルムに塗布し、1~10mmHgの減圧状態で、120℃で10時間乾燥することにより溶剤を除いたフィルムから得た。
(3) Glass transition temperature In the case of a polyester resin and a polyurethane resin, it was measured at a rate of temperature increase of 20 ° C./min using a differential scanning calorimeter (DSC).
In the case of a polyamideimide resin, a dynamic viscoelasticity measurement is performed at a frequency of 110 Hz on a strip-shaped sample having a width of 10 mm and a thickness of 30 μm using a dynamic viscoelasticity measuring device DVA-220 manufactured by IT Measurement Control Co., Ltd. The inflection point of the storage modulus was taken as the glass transition point. The strip sample was obtained from a film from which the solvent was removed by applying a polyamideimide polymerization solution to a polypropylene film and drying it at 120 ° C. for 10 hours under reduced pressure of 1 to 10 mmHg.
(4)酸価
試料0.2gを20mlのクロロホルムに溶解し、指示薬としてフェノールフタレインを用い、0.1Nの水酸化カリウムエタノール溶液、ポリアミドイミド系樹脂の場合のみナトリウムメトキシドメタノール溶液で滴定し、樹脂10gあたりの当量(eq/10g)を算出した。
(4) Dissolve 0.2 g of acid value sample in 20 ml of chloroform, and titrate with sodium methoxide methanol solution only in the case of 0.1N potassium hydroxide ethanol solution and polyamideimide resin, using phenolphthalein as indicator. The equivalent (eq / 10 6 g) per 10 6 g of resin was calculated.
(5)エポキシ価
JIS K 7236に準拠し、過塩素酸滴定法を用いて得られたエポキシ当量(1当量のエポキシ基を含む樹脂の質量)から樹脂10gあたりの当量(eq/10g)を算出した。
(5) Epoxy value Based on JIS K 7236, the equivalent per 10 6 g of resin (eq / 10 6 ) from the epoxy equivalent (mass of resin containing 1 equivalent of epoxy group) obtained using the perchloric acid titration method g) was calculated.
(特性評価方法)
(1)耐ハンダ性、剥離強度
(1)-1 評価用サンプル1作成方法
 後述する接着剤組成物を厚さ25μmのポリイミドフィルム(株式会社カネカ製、アピカル)に、乾燥後の厚みが30μmとなるように塗布し、130℃で3分乾燥した。この様にして得られた接着性フィルム(Bステージ品)を30μmの圧延銅箔と貼り合わせる際、圧延銅箔の光沢面が接着剤と接する様にして、160℃で35kgf/cm2の加圧下に30秒間プレスし、接着した。次いで140℃で4時間熱処理して硬化させて、耐ハンダ性及び剥離強度評価用サンプル1を得た(初期評価用)。
 また、接着性フィルム(Bステージ品)を、40℃、80%加湿下にて14日間放置後、上記条件にて圧延銅箔とプレス、熱処理して硬化させ、経時評価用のサンプル1を得た。
(Characteristic evaluation method)
(1) Solder resistance, peel strength (1) -1 Method for preparing sample 1 for evaluation The adhesive composition described later was applied to a polyimide film (apical) having a thickness of 25 μm and the thickness after drying was 30 μm. It was applied so that it was dried at 130 ° C. for 3 minutes. When the adhesive film (B stage product) obtained in this way is bonded to a 30 μm rolled copper foil, 35 kgf / cm 2 is applied at 160 ° C. so that the glossy surface of the rolled copper foil is in contact with the adhesive. It was pressed and pressed for 30 seconds under pressure. Next, it was cured by heat treatment at 140 ° C. for 4 hours to obtain a solder resistance and peel strength evaluation sample 1 (for initial evaluation).
The adhesive film (B stage product) was allowed to stand for 14 days at 40 ° C. and 80% humidification, and then cured by pressing and heat treatment with a rolled copper foil under the above conditions to obtain Sample 1 for evaluation over time. It was.
(1)-2 評価用サンプル2作成方法
 後述する接着剤組成物を厚さ50μmのポリプロピレンフィルム(東洋紡績株式会社製、パイレン)に、乾燥後の厚みが30μmとなるように塗布し、130℃で3分乾燥し接着性フィルム(Bステージ品)を得た。評価用基板は、片面銅張積層版(25μmポリイミドフィルム、18μm圧延銅箔)を通常の回路作製工程(穴あけ、めっき、ドライフィルムレジスト(以下DFRと略すことがある)ラミネート、露光・現像・エッチング、DFR剥離)にて作製し、硬化することで評価用基板を得た。この様にして得られた評価用基板上に、前記接着性フィルム(Bステージ品)を仮圧着した後、ポリプロピレンフィルムを剥離し、補強板として500μmのSUS304板を160℃で35kgf/cm2の加圧下に30秒間プレスし、接着した。次いで140℃で4時間熱処理して硬化させて、耐ハンダ性および剥離強度評価用サンプル2を得た(初期評価用)。
 また、接着性フィルム(Bステージ品)を、40℃、80%加湿下にて14日間放置後、上記条件にて圧延銅箔とプレス、熱処理して硬化させ、経時評価用のサンプル2を得た。
(1) -2 Method for preparing sample 2 for evaluation An adhesive composition described later was applied to a polypropylene film having a thickness of 50 μm (made by Toyobo Co., Ltd., Pyrene) so that the thickness after drying was 30 μm, and 130 ° C. And dried for 3 minutes to obtain an adhesive film (B stage product). The evaluation substrate is a single-sided copper-clad laminate (25 μm polyimide film, 18 μm rolled copper foil) in the usual circuit fabrication process (drilling, plating, dry film resist (hereinafter abbreviated as DFR)), exposure, development, and etching. The substrate for evaluation was obtained by producing by DFR peeling and curing. The adhesive film (B stage product) was temporarily pressure-bonded on the evaluation substrate thus obtained, and then the polypropylene film was peeled off. A 500 μm SUS304 plate was used as a reinforcing plate at 160 ° C. and 35 kgf / cm 2 . It was pressed for 30 seconds under pressure and adhered. Next, it was cured by heat treatment at 140 ° C. for 4 hours to obtain a solder resistance and peel strength evaluation sample 2 (for initial evaluation).
The adhesive film (B stage product) was allowed to stand for 14 days at 40 ° C. and 80% humidification, and then cured by pressing with a rolled copper foil and heat treatment under the above conditions to obtain Sample 2 for evaluation over time. It was.
各特性の評価は以下の方法で行った;
  耐ハンダ性(加湿):サンプルを40℃、80%加湿下にて2日間放置後、加熱したハンダ浴に1分間浮かべて、膨れが発生しない上限の温度を10℃ピッチで測定した。この試験において、測定値の高い方が良好な耐熱性を持つことを示すが、各基材、接着剤層に含まれた水蒸気の蒸発による衝撃をも抑制する必要があり、乾燥状態よりも、さらに厳しい耐熱性が要求される。実用的性能から考慮すると250℃以上が好ましく、より好ましくは260℃以上である。
  剥離強度:25℃において、引張速度50mm/minで90°剥離試験を行ない、剥離強度を測定した。この試験は常温での接着強度を示すものである。実用的性能から考慮すると10N/cm以上が好ましく、より好ましくは15N/cm以上である。
Each characteristic was evaluated by the following method;
Solder resistance (humidification): The sample was allowed to stand at 40 ° C. and 80% humidification for 2 days, then floated in a heated solder bath for 1 minute, and the upper limit temperature at which swelling did not occur was measured at a pitch of 10 ° C. In this test, it shows that the higher the measured value has better heat resistance, but it is also necessary to suppress the impact due to evaporation of water vapor contained in each base material and adhesive layer, rather than the dry state, More severe heat resistance is required. In consideration of practical performance, 250 ° C. or higher is preferable, and 260 ° C. or higher is more preferable.
Peel strength: At 25 ° C., a 90 ° peel test was conducted at a tensile speed of 50 mm / min, and the peel strength was measured. This test shows the adhesive strength at room temperature. In consideration of practical performance, it is preferably 10 N / cm or more, more preferably 15 N / cm or more.
(2)クリープ特性
 前述した評価サンプル2を用いて、60℃×90%雰囲気下、200gの錘をぶら下げ、30分間で剥がれた距離を測定した。なお錘のぶら下げ方は、剥離形態が180°剥離となるように行った。この試験は、高温高湿下での接着強度を示すもので、剥離のないものが好ましく、剥離距離が大きくなるほど、接着強度が低い。実用的性能から考慮すると10mm以下が好ましく、より好ましくは4mm以下である。
(2) Creep characteristics Using evaluation sample 2 described above, a 200 g weight was hung in an atmosphere of 60 ° C. × 90%, and the distance peeled off in 30 minutes was measured. Note that the weight was hung so that the peeling form was 180 ° peeling. This test shows the adhesive strength under high temperature and high humidity, and preferably has no peeling. The longer the peeling distance, the lower the adhesive strength. In consideration of practical performance, it is preferably 10 mm or less, more preferably 4 mm or less.
(3)高温高湿環境試験
 前述した耐ハンダ性および剥離強度評価用サンプル2(初期評価用)を85℃、85%加湿環境下に放置し、500時間経過後及び1000時間経過後の剥離強度を測定した。この試験は、実使用時の信頼性を確認する目的で高温且つ高湿環境下での耐久性を評価したものであり、実使用時の信頼性から5N/cm以上が好ましく、より好ましくは10N/cm以上である。
(3) High-temperature and high-humidity environment test The above-mentioned sample 2 for solder resistance and peel strength evaluation (for initial evaluation) is left in an 85 ° C., 85% humidified environment, and the peel strength after 500 hours and after 1000 hours. Was measured. This test evaluates the durability under high temperature and high humidity environment for the purpose of confirming the reliability in actual use, and is preferably 5 N / cm or more, more preferably 10 N from the reliability in actual use. / Cm or more.
ポリエステル樹脂Aの重合例
 撹拌器、温度計、流出用冷却器を装備した反応缶内に、テレフタル酸243部、イソフタル酸237部、アジピン酸107部、無水トリメリット酸7部、2-メチル-1,3-プロパンジオール455部、1,4-ブタンジオール205部、テトラブチルチタネート0.3部を仕込み、4時間かけて250℃まで徐々に昇温し、留出する水を系外に除きつつエステル化反応を行った。エステル化反応終了後30分かけて10mmHgまで減圧初期重合を行うと共に温度を250℃まで昇温し、更に1mmHg以下で1時間後期重合を行った。その後、窒素にて常圧に戻し、無水トリメリット酸28部を投入し、220℃で30分間反応させることによってポリエステル樹脂Aを得た。この様にして得られたポリエステル樹脂Aの組成、特性値を表1に示した。各測定評価項目は前述の方法に従った。
Polymerization Example of Polyester Resin A In a reaction vessel equipped with a stirrer, thermometer, and cooling condenser, 243 parts of terephthalic acid, 237 parts of isophthalic acid, 107 parts of adipic acid, 7 parts of trimellitic anhydride, 2-methyl- 455 parts of 1,3-propanediol, 205 parts of 1,4-butanediol, and 0.3 part of tetrabutyl titanate were added and the temperature was gradually raised to 250 ° C. over 4 hours, and the distilled water was removed from the system. The esterification reaction was carried out. After completion of the esterification reaction, initial polymerization under reduced pressure was carried out to 10 mmHg over 30 minutes, the temperature was raised to 250 ° C., and the latter polymerization was carried out at 1 mmHg or less for 1 hour. Thereafter, the pressure was returned to normal pressure with nitrogen, 28 parts of trimellitic anhydride was added, and the mixture was reacted at 220 ° C. for 30 minutes to obtain polyester resin A. The composition and characteristic values of the polyester resin A thus obtained are shown in Table 1. Each measurement evaluation item followed the above-mentioned method.
ポリエステル樹脂Bの重合例
 撹拌器、温度計、流出用冷却器を装備した反応缶内に、テレフタル酸99.6部、イソフタル酸229.1部、無水トリメリット酸3.8部、2-メチル-1,3-プロパンジオール54.0部、1,6-ヘキサンジオール401.2部、テトラブチルチタネート0.2部を仕込み、4時間かけて250℃まで徐々に昇温し、留出する水を系外に除きつつエステル化反応を行った。エステル化反応終了後30分かけて10mmHgまで減圧初期重合を行うと共に温度を250℃まで昇温し、更に1mmHg以下で1時間後期重合を行った。得られた樹脂を撹拌器、温度計、還流式冷却管及び蒸留管を具備した反応容器に100部仕込み、トルエン182部を加えて溶解後、トルエン70部を蒸留させ、トルエン/水の共沸により反応系を脱水した。60℃まで冷却後、メチルエチルケトン112部、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物を7部加え70℃で3時間反応させることによってポリエステル樹脂Bの溶液を得た。この様にして得られたポリエステル樹脂Bの組成、特性値を表1に示した。
Polymerization Example of Polyester Resin B In a reaction can equipped with a stirrer, thermometer, and cooling condenser, 99.6 parts of terephthalic acid, 229.1 parts of isophthalic acid, 3.8 parts of trimellitic anhydride, 2-methyl -1-, 3-propanediol 54.0 parts, 1,6-hexanediol 401.2 parts, tetrabutyl titanate 0.2 parts, gradually heated to 250 ° C. over 4 hours, distilled water The esterification reaction was carried out while removing from the system. After completion of the esterification reaction, initial polymerization under reduced pressure was carried out to 10 mmHg over 30 minutes, the temperature was raised to 250 ° C., and the latter polymerization was carried out at 1 mmHg or less for 1 hour. 100 parts of the resulting resin was charged into a reaction vessel equipped with a stirrer, thermometer, reflux condenser and distillation tube, dissolved after adding 182 parts of toluene, 70 parts of toluene was distilled off, and toluene / water azeotrope was added. The reaction system was dehydrated. After cooling to 60 ° C., 112 parts of methyl ethyl ketone and 7 parts of 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride were added and reacted at 70 ° C. for 3 hours to obtain a solution of polyester resin B. The composition and characteristic values of the polyester resin B thus obtained are shown in Table 1.
ポリウレタン樹脂に使用したポリエステルポリオールC~Iの重合例
 ポリエステル樹脂Aの重合例と同様にして、表1に示す原料を用いて、ポリウレタン樹脂に使用したポリエステルポリオールC~Iを得た。この樹脂の組成、特性値を表1に示した。
Polymerization Examples of Polyester Polyols C to I Used for Polyurethane Resins Polyester polyols C to I used for polyurethane resins were obtained using the raw materials shown in Table 1 in the same manner as the polymerization examples of polyester resin A. The composition and characteristic values of this resin are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
ポリウレタン樹脂aの重合例
 温度計、攪拌機、還流式冷却管および蒸留管を具備した反応容器に表1に記載したポリエステルポリオールC100部、トルエン70部を仕込み溶解後、トルエン20部を蒸留させ、トルエン/水の共沸により反応系を脱水した。60℃まで冷却後、2,2-ジメチロールブタン酸(DMBA)を9部、メチルエチルケトン50部を加えた。DMBAが溶解後、ヘキサメチレンジイソシアネートを8.5部、さらに反応触媒としてジブチルチンジラウレートを0.4部加え、80℃で4時間反応させてから、メチルエチルケトン130.2部、トルエン43.4部を投入して固形分濃度を30重量%に調整し、ポリウレタン樹脂a溶液を得た。ポリウレタン樹脂aの溶液を120℃で1時間乾燥することにより溶剤を除いたフィルムを用いて、前述した各測定評価項目に従い測定した。ポリウレタン樹脂の特性を表2に示した。
Polymerization Example of Polyurethane Resin a In a reaction vessel equipped with a thermometer, a stirrer, a reflux condenser tube and a distillation tube, 100 parts of polyester polyol C described in Table 1 and 70 parts of toluene were charged and dissolved, and then 20 parts of toluene were distilled to obtain toluene. / The reaction system was dehydrated by water azeotropy. After cooling to 60 ° C., 9 parts of 2,2-dimethylolbutanoic acid (DMBA) and 50 parts of methyl ethyl ketone were added. After DMBA is dissolved, 8.5 parts of hexamethylene diisocyanate and 0.4 parts of dibutyltin dilaurate as a reaction catalyst are added and reacted at 80 ° C. for 4 hours. Then, 130.2 parts of methyl ethyl ketone and 43.4 parts of toluene are added. The solid content concentration was adjusted to 30% by weight to obtain a polyurethane resin a solution. It measured according to each measurement evaluation item mentioned above using the film which removed the solvent by drying the solution of the polyurethane resin a at 120 degreeC for 1 hour. The properties of the polyurethane resin are shown in Table 2.
ポリウレタン樹脂b~iの重合例
 ポリウレタン樹脂aの重合例と同様にして、表2に示す原料を用いて、ポリウレタン樹脂b~iを得た。特性値を表2に示した。各測定評価項目は前述の方法に従った。
Polymerization Example of Polyurethane Resins b to i Polyurethane resins b to i were obtained using the raw materials shown in Table 2 in the same manner as the polymerization example of the polyurethane resin a. The characteristic values are shown in Table 2. Each measurement evaluation item followed the above-mentioned method.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
ポリアミドイミド樹脂Iの重合例
 撹拌機、冷却管、窒素導入管及び温度計を備えた4ツ口のセパラブルフラスコに、無水トリメリット酸105.67g(0.55mol)、セバシン酸80.09g(0.40mol)、両末端がカルボキシル基のアクリロニトリルブタジエンゴム(宇部興産(株)製CTBN1300×13)175g(0.05mol)、4,4’-ジフェニルメタンジイソシアネート252.75g(1.0mol)、ジメチルアセトアミド526gを仕込み、窒素気流下100℃まで昇温し、2時間反応させた。次いでジメチルアセトアミド117gを加えて、さらに150℃で5時間反応させた後、トルエン439gとジメチルアセトアミド146gを加えて希釈し、室温まで冷却することで、褐色であるが全く濁りがないポリアミドイミド樹脂溶液1を得た。このようにして得られたポリアミドイミド樹脂Iの組成、特性値を表3に示した。ポリアミドイミド樹脂Iの溶液は10mmHg以下の減圧状態で、120℃で10時間以上乾燥することにより溶剤を除いたフィルムを用いて、前述した各測定評価項目に従い測定した。
Polymerization Example of Polyamideimide Resin I In a four-necked separable flask equipped with a stirrer, a cooling tube, a nitrogen introduction tube and a thermometer, 105.67 g (0.55 mol) trimellitic anhydride, 80.09 g sebacic acid ( 0.40 mol), acrylonitrile butadiene rubber having carboxyl groups at both ends (CTBN 1300 × 13 manufactured by Ube Industries, Ltd.) 175 g (0.05 mol), 252.75 g (1.0 mol) of 4,4′-diphenylmethane diisocyanate, dimethylacetamide 526 g was charged, heated to 100 ° C. under a nitrogen stream, and reacted for 2 hours. Next, 117 g of dimethylacetamide was added and further reacted at 150 ° C. for 5 hours, and then diluted by adding 439 g of toluene and 146 g of dimethylacetamide and cooled to room temperature. 1 was obtained. The composition and characteristic values of the polyamideimide resin I thus obtained are shown in Table 3. The solution of polyamideimide resin I was measured according to each measurement evaluation item described above using a film from which the solvent was removed by drying at 120 ° C. for 10 hours or more in a reduced pressure state of 10 mmHg or less.
ポリアミドイミド樹脂II~IVの重合例
 合成例1と同様にして、ポリアミドイミド樹脂の合成例II~IVの作成を行った。このようにして得られたポリアミドイミド樹脂の組成、特性値を表3に示した。
Polymerization Examples of Polyamideimide Resins II to IV Synthesis Examples II to IV of polyamideimide resins were prepared in the same manner as in Synthesis Example 1. The composition and characteristic values of the polyamideimide resin thus obtained are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<実施例1>
 熱可塑性樹脂(A)としてポリエステル樹脂A100部(固形分のみの質量、以下同様)、無機充填材(B)としてR972[日本アエロジル(株)製 疎水性煙霧状シリカ]20部、溶剤(C)としてメチルエチルケトン248部、トルエン112部を配合し固形分濃度25%である樹脂組成物(β)を調整した。次に、エポキシ樹脂(D)としてエポキシ樹脂ア[大日本インキ化学工業(株)製 HP7200-H(ジシクロペンタンジエン型エポキシ樹脂)、エポキシ価=3540当量/10g]11.9部、溶剤(C)としてメチルエチルケトン5.1部を配合し固形分濃度70%である樹脂組成物(γ)を調整した。得られた樹脂組成物(β)と樹脂組成物(γ)を配合することで目的とする接着剤用樹脂組成物を得た。エポキシ樹脂の配合量は、ポリエステル樹脂の酸価の総量の1.05倍のエポキシ基を含むように算出して決定した。接着評価試料を上述の方法で作製し、評価した結果を表4に示す。初期評価、経時評価ともに良好な結果を示している。
<Example 1>
100 parts of a polyester resin A as a thermoplastic resin (A) (mass only of solid content, the same applies hereinafter), 20 parts of R972 [hydrophobic fumed silica manufactured by Nippon Aerosil Co., Ltd.] as an inorganic filler (B), solvent (C) As a result, 248 parts of methyl ethyl ketone and 112 parts of toluene were blended to prepare a resin composition (β) having a solid content concentration of 25%. Next, as an epoxy resin (D), an epoxy resin [Dainippon Ink Chemical Co., Ltd. HP7200-H (dicyclopentanediene type epoxy resin), epoxy value = 3540 equivalent / 10 6 g] 11.9 parts, As a solvent (C), 5.1 parts of methyl ethyl ketone was blended to prepare a resin composition (γ) having a solid content concentration of 70%. The intended resin composition for an adhesive was obtained by blending the obtained resin composition (β) and the resin composition (γ). The compounding amount of the epoxy resin was determined by calculating so as to contain 1.05 times the epoxy group of the total acid value of the polyester resin. Table 4 shows the results of producing and evaluating an adhesion evaluation sample by the above-described method. Both the initial evaluation and the time evaluation showed good results.
実施例2
 実施例1と同様に、表3に示される成分、配合量で樹脂組成物を作成し特性を評価した。また、全ての実施例において、樹脂組成物(β)は固形分濃度25%、樹脂組成物(γ)は固形分濃度70%で調製した。
Example 2
Similarly to Example 1, resin compositions were prepared with the components and blending amounts shown in Table 3, and properties were evaluated. In all Examples, the resin composition (β) was prepared with a solid content concentration of 25%, and the resin composition (γ) was prepared with a solid content concentration of 70%.
実施例3
 熱可塑性樹脂(A)としてポリウレタン樹脂溶液aを333.3部、無機充填材(B)としてR972を20部、溶剤(C)としてメチルエチルケトン94.7部、トルエン32部を配合し固形分濃度25%である樹脂組成物(β)を調整した。次に、エポキシ樹脂(D)としてエポキシ樹脂アを19.3部、溶剤(C)としてメチルエチルケトン8.3部を配合し固形分濃度70%である樹脂組成物(γ)を調整した。得られた樹脂組成物(β)と樹脂組成物(γ)を配合することで目的とする接着剤用樹脂組成物を得た。エポキシ樹脂の配合量は、ポリエステル樹脂の酸価の総量の1.05倍のエポキシ基を含むように算出して決定した。接着評価試料を上述の方法で作製し、評価した結果を表4に示す。初期評価、経時評価ともに良好な結果を示している。
Example 3
333.3 parts of polyurethane resin solution a as the thermoplastic resin (A), 20 parts of R972 as the inorganic filler (B), 94.7 parts of methyl ethyl ketone as the solvent (C), and 32 parts of toluene are blended in a solid concentration of 25. % Resin composition (β) was prepared. Next, 19.3 parts of epoxy resin A as epoxy resin (D) and 8.3 parts of methyl ethyl ketone as solvent (C) were blended to prepare a resin composition (γ) having a solid content concentration of 70%. The intended resin composition for an adhesive was obtained by blending the obtained resin composition (β) and the resin composition (γ). The compounding amount of the epoxy resin was determined by calculating so as to contain 1.05 times the epoxy group of the total acid value of the polyester resin. Table 4 shows the results of producing and evaluating an adhesion evaluation sample by the above-described method. Both the initial evaluation and the time evaluation showed good results.
実施例4~11
 実施例3と同様に、表3に示される成分、配合量で接着剤用樹脂組成物を作成し特性を評価した。また、全ての実施例において、組成物(β)は固形分濃度25%、組成物(γ)は固形分濃度70%で調製した。
Examples 4 to 11
Similarly to Example 3, adhesive resin compositions were prepared with the components and blending amounts shown in Table 3, and the characteristics were evaluated. In all Examples, the composition (β) was prepared at a solid concentration of 25%, and the composition (γ) was prepared at a solid concentration of 70%.
実施例12
 熱可塑性樹脂(A)としてポリアミドイミド樹脂溶液Iを333.3部、無機充填材(B)としてR972を20部、溶剤(C)としてジメチルアセトアミド98.5部、トルエン28.2部を配合し固形分濃度25%である樹脂組成物(β)を調整した。次に、エポキシ樹脂(D)としてエポキシ樹脂アを13.3部、溶剤(C)としてメチルエチルケトン5.7部を配合し固形分濃度70%である樹脂組成物(γ)を調整した。得られた樹脂組成物(β)と樹脂組成物(γ)を配合することで目的とする接着剤用樹脂組成物を得た。エポキシ樹脂の配合量は、ポリエステル樹脂の酸価の総量の1.05倍のエポキシ基を含むように算出して決定した。接着評価試料を上述の方法で作製し、評価した結果を表4に示す。初期評価、経時評価ともに良好な結果を示している。
Example 12
333.3 parts of polyamideimide resin solution I as thermoplastic resin (A), 20 parts of R972 as inorganic filler (B), 98.5 parts of dimethylacetamide and 28.2 parts of toluene as solvent (C) A resin composition (β) having a solid content concentration of 25% was prepared. Next, 13.3 parts of epoxy resin A as the epoxy resin (D) and 5.7 parts of methyl ethyl ketone as the solvent (C) were blended to prepare a resin composition (γ) having a solid content concentration of 70%. The intended resin composition for an adhesive was obtained by blending the obtained resin composition (β) and the resin composition (γ). The compounding amount of the epoxy resin was determined by calculating so as to contain 1.05 times the epoxy group of the total acid value of the polyester resin. Table 4 shows the results of producing and evaluating an adhesion evaluation sample by the above-described method. Both the initial evaluation and the time evaluation showed good results.
実施例13、14
 実施例3と同様に、表3に示される成分、配合量で接着剤用樹脂組成物を作成し特性を評価した。また、全ての実施例において、組成物(β)は固形分濃度25%、組成物(γ)は固形分濃度70%で調製した。
Examples 13 and 14
Similarly to Example 3, adhesive resin compositions were prepared with the components and blending amounts shown in Table 3, and the characteristics were evaluated. In all Examples, the composition (β) was prepared at a solid concentration of 25%, and the composition (γ) was prepared at a solid concentration of 70%.
以下に各成分の詳細を記す。
 アエロジル R8200:日本アエロジル(株)製 疎水性煙霧状シリカ
 レオロシール DM-10:(株)トクヤマ製 疎水性煙霧状シリカ
 レオロシール HM-20L:(株)トクヤマ製 疎水性煙霧状シリカ
 SYLOPHOBIC 200:富士シリシア化学(株)製 疎水性シリカ
 ハイジライト H-42M:昭和電工(株)製 水酸化アルミニウム
 エポキシ樹脂イ:三菱瓦斯化学(株)製 TETRAD-X(N,N,N’,N’-テトラグリシジル-m-キシレンジアミン)、エポキシ価=10000当量/10g。
 エポキシ樹脂ウ:東都化成社製 YDCN703(o-クレゾールノボラック型エポキシ樹脂)、エポキシ価=4550当量/10g。
Details of each component are described below.
Aerosil R8200: Nippon Aerosil Co., Ltd. Hydrophobic fumed silica Leorosil DM-10: Tokuyama Co., Ltd. Hydrophobic fumed silica Leorosil HM-20L: Tokuyama Co., Ltd. Hydrophobic fumed silica SYLOPHOBIC 200: Fuji Silysia Chemical Hydrophobic silica Hydrite H-42M manufactured by Showa Denko Co., Ltd. Aluminum hydroxide epoxy resin A: TETRAD-X (N, N, N ′, N′-tetraglycidyl- manufactured by Mitsubishi Gas Chemical Co., Ltd.) m-xylenediamine), epoxy value = 10000 equivalent / 10 6 g.
Epoxy resin C: YDCN703 (o-cresol novolac type epoxy resin) manufactured by Toto Kasei Co., Ltd., epoxy value = 4550 equivalent / 10 6 g.
 エポキシ樹脂の配合量は、熱可塑性樹脂(A)の酸価の総量の0.8~1.3倍のエポキシ基を含むように算出して決定した。評価した結果を表4に示す。初期評価、経時評価ともに良好な結果を示している。 The compounding amount of the epoxy resin was determined by calculating so as to include an epoxy group 0.8 to 1.3 times the total acid value of the thermoplastic resin (A). Table 4 shows the evaluation results. Both the initial evaluation and the time evaluation showed good results.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
実施例15~19
 実施例3と同様に、但し、エポキシ樹脂の配合量を更に高くした接着剤組成物についての評価結果を表5に示す。初期評価、経時評価ともに良好な結果を示し、さらに剥離強度、耐加湿半田性に優れていることがわかる。また、高温高湿環境試験についての評価結果を表6に示す。エポキシ樹脂配合量を1.3~4とした場合、さらに高温高湿環境試験後も剥離強度の低下が抑制されている点で優れることがわかる。
Examples 15-19
Table 5 shows the evaluation results for the adhesive composition in which the compounding amount of the epoxy resin was further increased as in Example 3. Both the initial evaluation and the time evaluation showed good results, and it was found that the peel strength and the humidified solder resistance were excellent. Table 6 shows the evaluation results for the high temperature and high humidity environment test. It can be seen that when the amount of the epoxy resin is 1.3 to 4, it is excellent in that the decrease in peel strength is suppressed even after the high temperature and high humidity environment test.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
比較例1~15
 実施例1~19と同様にして、表7、8に示される、成分、配合量で接着剤用樹脂組成物を作製し、特性を評価した。
Comparative Examples 1-15
In the same manner as in Examples 1 to 19, adhesive resin compositions were prepared with the components and blending amounts shown in Tables 7 and 8, and the characteristics were evaluated.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 比較例1は、熱可塑性樹脂(A)にあたるポリエステル樹脂Hの酸価が低く、また数平均分子量が低く、本発明の範囲外である。室温での剥離強度も低く、高温高湿度下での接着性の指標となるクリープ特性も不良であり、耐加湿半田性も低い。硬化物の架橋が不十分となり、凝集力が小さくなるためと考えられる。 Comparative Example 1 is out of the scope of the present invention because the polyester resin H corresponding to the thermoplastic resin (A) has a low acid value and a low number average molecular weight. The peel strength at room temperature is also low, the creep characteristics that serve as an index of adhesion under high temperature and high humidity are poor, and the resistance to humidification soldering is also low. This is presumably because the cured product is insufficiently crosslinked and the cohesive force is reduced.
 比較例2は、熱可塑性樹脂(A)にあたるポリエステル樹脂Iの酸価が低く、本発明の範囲外である。室温での剥離強度も低く、高温高湿度下での接着性の指標となるクリープ特性も不良であり、耐加湿半田性も低い。硬化物の架橋が不十分となり、凝集力が小さくなるためと考えられる。 Comparative Example 2 has a low acid value of the polyester resin I corresponding to the thermoplastic resin (A) and is outside the scope of the present invention. The peel strength at room temperature is also low, the creep characteristics that serve as an index of adhesion under high temperature and high humidity are poor, and the resistance to humidification soldering is also low. This is presumably because the cured product is insufficiently crosslinked and the cohesive force is reduced.
 比較例3は、熱可塑性樹脂(A)にあたるポリウレタン樹脂gの酸価が低く、本発明の範囲外である。室温での剥離強度も低く、高温高湿度下での接着性の指標となるクリープ特性も不良であり、耐加湿半田性も低い。硬化物の架橋が不十分となり、凝集力が小さくなるためと考えられる。 Comparative Example 3 has a low acid value of the polyurethane resin g corresponding to the thermoplastic resin (A), and is outside the scope of the present invention. The peel strength at room temperature is also low, the creep characteristics that serve as an index of adhesion under high temperature and high humidity are poor, and the resistance to humidification soldering is also low. This is presumably because the cured product is insufficiently crosslinked and the cohesive force is reduced.
 比較例4は、熱可塑性樹脂(A)にあたるポリウレタン樹脂hの酸価が高く、本発明の範囲外である。硬化物の剛直性が過度に高くなる為、室温での剥離強度も低く、高温高湿度下での接着性の指標となるクリープ特性も不良となるものと考えられる。 Comparative Example 4 has a high acid value of the polyurethane resin h, which is the thermoplastic resin (A), and is outside the scope of the present invention. Since the rigidity of the cured product becomes excessively high, the peel strength at room temperature is also low, and the creep characteristics that serve as an index of adhesiveness at high temperature and high humidity are considered to be poor.
 比較例5は、熱可塑性樹脂(A)にあたるポリウレタン樹脂iの数平均分子量が低く、本発明の範囲外である。凝集力が小さくなる為、室温の剥離強度も低く、高温高湿度下での接着性の指標となるクリープ特性も不良となるものと考えられる。 Comparative Example 5 has a low number average molecular weight of the polyurethane resin i corresponding to the thermoplastic resin (A), which is outside the scope of the present invention. Since the cohesive force is small, the peel strength at room temperature is also low, and the creep characteristics that serve as an index of adhesiveness under high temperature and high humidity are considered to be poor.
 比較例6は、分散液(α)の揺変度(TI値)が低く、本発明の範囲外である。樹脂と無機充填材との相互作用が低くなり、耐加湿半田性が低下するものと考えられる。 Comparative Example 6 has a low degree of fluctuation (TI value) of the dispersion (α), which is outside the scope of the present invention. It is considered that the interaction between the resin and the inorganic filler is lowered, and the humidification solder resistance is lowered.
 比較例7は、分散液(α)の揺変度(TI値)が高く、本発明の範囲外である。基材との貼り合せが不十分となり、剥離強度が低下するものと考えられる。 Comparative Example 7 has a high degree of fluctuation (TI value) of the dispersion (α), which is outside the scope of the present invention. It is considered that the bonding with the base material becomes insufficient and the peel strength decreases.
 比較例8は、分散液(α)の揺変度(TI値)が低く、本発明の範囲外である。樹脂と無機充填材との相互作用が低くなり、耐加湿半田性が低下し、シートライフが悪くなり経時での特性が低下するものと考えられる。 Comparative Example 8 has a low degree of variability (TI value) of the dispersion (α), which is outside the scope of the present invention. It is considered that the interaction between the resin and the inorganic filler is lowered, the resistance to humidification soldering is lowered, the sheet life is deteriorated, and the characteristics with time are lowered.
 比較例9は、分散液(α)の揺変度(TI値)が低く、本発明の範囲外である。樹脂と無機充填材との相互作用が低くなり、耐加湿半田性が低下し、シートライフが悪くなり経時での特性が低下するものと考えられる。 Comparative Example 9 has a low dispersion (TI value) of the dispersion (α), which is outside the scope of the present invention. It is considered that the interaction between the resin and the inorganic filler is lowered, the resistance to humidification soldering is lowered, the sheet life is deteriorated, and the characteristics with time are lowered.
 比較例10は、分散液(α)の揺変度(TI値)が低く、本発明の範囲外である。樹脂と無機充填材との相互作用が低くなり、耐加湿半田性が低下するものと考えられる。 Comparative Example 10 has a low dispersion (TI value) of the dispersion (α), which is outside the scope of the present invention. It is considered that the interaction between the resin and the inorganic filler is lowered, and the humidification solder resistance is lowered.
 比較例11は、エポキシ樹脂(D)にあたるジシクロペンタジエン骨格を有するエポキシ樹脂が配合されておらず、本発明の範囲外である。剛直性、低吸湿性が低下し高温高湿度下での接着性の指標となるクリープ特性が低下するものと考えられる。 Comparative Example 11 does not contain an epoxy resin having a dicyclopentadiene skeleton corresponding to the epoxy resin (D), and is outside the scope of the present invention. Stiffness and low hygroscopicity are reduced, and the creep characteristics that serve as an index of adhesiveness under high temperature and high humidity are considered to be reduced.
 比較例12は、熱可塑性樹脂(A)にあたるポリアミドイミド樹脂の分子量が小さく本発明の範囲外である。室温の剥離強度も低く、高温高湿度下での接着性の指標となるクリープ特性も不良である。これは、硬化物の凝集力が小さくなるためと考えられる。 In Comparative Example 12, the molecular weight of the polyamideimide resin corresponding to the thermoplastic resin (A) is small and out of the scope of the present invention. The peel strength at room temperature is also low, and the creep properties that serve as an index of adhesion under high temperature and high humidity are also poor. This is thought to be because the cohesive force of the cured product is reduced.
 比較例13は、エポキシ樹脂(D)にあたるジシクロペンタジエン骨格を有するエポキシ樹脂の配合量が多く、本発明の範囲外である。硬化が不十分となり、耐加湿半田性が低下するものと考えられる。 Comparative Example 13 has a large amount of the epoxy resin having a dicyclopentadiene skeleton corresponding to the epoxy resin (D), and is outside the scope of the present invention. It is considered that the curing becomes insufficient and the resistance to humidification soldering decreases.
 比較例14は、エポキシ樹脂(D)にあたるジシクロペンタジエン骨格を有するエポキシ樹脂の配合量が多く、本発明の範囲外である。硬化が不十分となり、耐加湿半田性が低下するものと考えられる。 Comparative Example 14 has a large amount of the epoxy resin having a dicyclopentadiene skeleton corresponding to the epoxy resin (D), and is outside the scope of the present invention. It is considered that the curing becomes insufficient and the resistance to humidification soldering decreases.
 比較例15は、エポキシ樹脂(D)にあたるジシクロペンタジエン骨格を有するエポキシ樹脂の配合量が多く、本発明の範囲外である。硬化が不十分となり、耐加湿半田性が低下するものと考えられる。 Comparative Example 15 has a large amount of the epoxy resin having a dicyclopentadiene skeleton corresponding to the epoxy resin (D), and is outside the scope of the present invention. It is considered that the curing becomes insufficient and the resistance to humidification soldering decreases.
 本発明により、PETフィルム等の各種プラスチックフィルムおよび銅、アルミニウム、ステンレス鋼等の各種金属に対する高い接着性、高湿度下での鉛フリーハンダにも対応できる高度の耐湿熱性、高温高湿度下での接着性に優れた接着剤を得ることができ、かつBステージのシートがたとえ高温高湿下で流通された後に使用されても良好な接着特性の維持が可能なシートライフが良好な樹脂組成物、これを含有する接着剤、接着シートおよびこれを接着層として含むプリント配線板を提供することができる。
 
According to the present invention, high adhesion to various plastic films such as PET film and various metals such as copper, aluminum, stainless steel, etc., high humidity and heat resistance that can cope with lead-free solder under high humidity, high temperature and high humidity Resin composition having good sheet life that can obtain an adhesive having excellent adhesiveness and can maintain good adhesive properties even if a B-stage sheet is used after being distributed under high temperature and high humidity An adhesive containing the same, an adhesive sheet, and a printed wiring board including the adhesive as an adhesive layer can be provided.

Claims (10)

  1.  熱可塑性樹脂(A)、無機充填材(B)、溶剤(C)、エポキシ樹脂(D)を含有する接着剤用樹脂組成物であって、
     該熱可塑性樹脂(A)の酸価(単位:当量/10g)が100以上1000以下であり、
     該熱可塑性樹脂(A)の数平均分子量が5.0×10以上1.0×10以下であり、
     該エポキシ樹脂(D)がジシクロペンタジエン骨格を有するエポキシ樹脂であり、
     該熱可塑性樹脂(A)と該無機充填材(B)を該接着剤用樹脂組成物における含有比率で合計25質量部含み、メチルエチルケトン52質量部とトルエン23質量部からなる混合溶剤(但し、該熱可塑性樹脂(A)が前記濃度で前記混合溶剤に25℃において溶解しない場合は、前記混合溶剤に変えてジメチルアセトアミド52質量部とトルエン23質量部からなる混合溶剤を用いる)を分散媒とする分散液(α)の液温25℃における揺変度(TI値)が3以上6以下である、
    接着剤用樹脂組成物。
    A resin composition for an adhesive containing a thermoplastic resin (A), an inorganic filler (B), a solvent (C), and an epoxy resin (D),
    The acid value (unit: equivalent / 10 6 g) of the thermoplastic resin (A) is 100 or more and 1000 or less,
    The number average molecular weight of the thermoplastic resin (A) is 5.0 × 10 3 or more and 1.0 × 10 5 or less,
    The epoxy resin (D) is an epoxy resin having a dicyclopentadiene skeleton,
    A mixed solvent (provided that the thermoplastic resin (A) and the inorganic filler (B) are contained in a total content of 25 parts by mass in the resin composition for an adhesive, consisting of 52 parts by mass of methyl ethyl ketone and 23 parts by mass of toluene (however, When the thermoplastic resin (A) is not dissolved in the mixed solvent at the above concentration at 25 ° C., a mixed solvent consisting of 52 parts by mass of dimethylacetamide and 23 parts by mass of toluene is used instead of the mixed solvent). The dispersion (TI value) of the dispersion (α) at a liquid temperature of 25 ° C. is 3 or more and 6 or less.
    Resin composition for adhesives.
  2.  樹脂組成物(β)が熱可塑性樹脂(A)、無機充填材(B)、溶剤(C)を必須成分として含有し、
     該熱可塑性樹脂(A)の酸価(単位:当量/10g)が100以上1000以下であり、
     該熱可塑性樹脂(A)の数平均分子量が5.0×10以上1.0×10以下であり、
     該熱可塑性樹脂(A)と該無機充填材(B)を該接着剤用樹脂組成物における含有比率で合計25質量部含み、メチルエチルケトン52質量部とトルエン23質量部からなる混合溶剤(但し、該熱可塑性樹脂(A)が前記濃度で前記混合溶剤に25℃において溶解しない場合は、前記混合溶剤に変えてジメチルアセトアミド52質量部とトルエン23質量部からなる混合溶剤を用いる)を分散媒とする分散液(α)の液温25℃における揺変度(TI値)が3以上6以下であり、
     樹脂組成物(γ)がジシクロペンタジエン骨格を有するエポキシ樹脂(D)を必須成分として含有し、
     該樹脂組成物(β)に含まれる該熱可塑性樹脂(A)の酸価AV(β)(単位:当量/10g)と配合量AW(β)(単位:質量部)、該樹脂組成物(γ)に含まれるエポキシ樹脂のエポキシ価EV(γ)(単位:当量/10g)と配合量EW(γ)(単位:質量部)が以下に示す式(1)、
      0.7≦{EV(γ)×EW(γ)}/{AV(β)×AW(β)}≦4.0  (1)
    を満たす配合比で樹脂組成物(β)と樹脂組成物(γ)を配合する、
    複数剤混合型接着剤用樹脂組成物。
    The resin composition (β) contains the thermoplastic resin (A), the inorganic filler (B), and the solvent (C) as essential components,
    The acid value (unit: equivalent / 10 6 g) of the thermoplastic resin (A) is 100 or more and 1000 or less,
    The number average molecular weight of the thermoplastic resin (A) is 5.0 × 10 3 or more and 1.0 × 10 5 or less,
    A mixed solvent (provided that the thermoplastic resin (A) and the inorganic filler (B) are contained in a total content of 25 parts by mass in the resin composition for an adhesive, consisting of 52 parts by mass of methyl ethyl ketone and 23 parts by mass of toluene (however, When the thermoplastic resin (A) is not dissolved in the mixed solvent at the above concentration at 25 ° C., a mixed solvent consisting of 52 parts by mass of dimethylacetamide and 23 parts by mass of toluene is used instead of the mixed solvent). The dispersion (TI value) of the dispersion (α) at a liquid temperature of 25 ° C. is 3 or more and 6 or less,
    The resin composition (γ) contains an epoxy resin (D) having a dicyclopentadiene skeleton as an essential component,
    Acid value AV (β) (unit: equivalent / 10 6 g) and blending amount AW (β) (unit: parts by mass) of the thermoplastic resin (A) contained in the resin composition (β), the resin composition The epoxy value EV (γ) (unit: equivalent / 10 6 g) and compounding amount EW (γ) (unit: parts by mass) of the epoxy resin contained in the product (γ) are shown below (1),
    0.7 ≦ {EV (γ) × EW (γ)} / {AV (β) × AW (β)} ≦ 4.0 (1)
    The resin composition (β) and the resin composition (γ) are blended at a blending ratio that satisfies
    Resin composition for multi-agent mixed adhesives.
  3.  前記エポキシ樹脂(D)が、接着剤用樹脂組成物に含まれるエポキシ樹脂全体の60質量%以上99.9質量%以下であることを特徴とする請求項1または2に記載の接着剤用樹脂組成物。 The resin for adhesives according to claim 1 or 2, wherein the epoxy resin (D) is 60% by mass or more and 99.9% by mass or less of the whole epoxy resin contained in the resin composition for adhesives. Composition.
  4.  前記無機充填材(B)の配合量が熱可塑性樹脂(A)100質量部に対し、10質量部以上50質量部以下であることを特徴とする請求項1~3いずれかに記載の接着剤用樹脂組成物。 The adhesive according to any one of claims 1 to 3, wherein a blending amount of the inorganic filler (B) is 10 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin (A). Resin composition.
  5.  前記溶剤(C)の配合量が接着剤用樹脂組成物を100質量部としたとき、60質量部以上85質量部以下であることを特徴とする請求項1~4いずれかに記載の接着剤用樹脂組成物。 The adhesive according to any one of claims 1 to 4, wherein the amount of the solvent (C) is 60 parts by mass or more and 85 parts by mass or less when the resin composition for an adhesive is 100 parts by mass. Resin composition.
  6.  窒素原子を含有するエポキシ樹脂を含むことを特徴とする請求項1~5いずれかに記載の接着剤用樹脂組成物。 6. The resin composition for an adhesive according to claim 1, comprising an epoxy resin containing a nitrogen atom.
  7.  前記窒素原子を含有するエポキシ樹脂がグリシジルジアミン構造を有することを特徴とする請求項1~6いずれかに記載の接着剤用樹脂組成物。 The resin composition for an adhesive according to any one of claims 1 to 6, wherein the epoxy resin containing a nitrogen atom has a glycidyldiamine structure.
  8.  請求項1~7いずれかに記載の接着剤用樹脂組成物を含有する接着剤。 An adhesive containing the resin composition for adhesives according to any one of claims 1 to 7.
  9.  請求項1~7いずれかに記載の接着剤用樹脂組成物に含有される前記熱可塑性樹脂(A)、前記無機充填材(B)、前記エポキシ樹脂(D)およびこれらに由来する反応生成物を含有する接着シート。 The thermoplastic resin (A), the inorganic filler (B), the epoxy resin (D), and the reaction product derived therefrom contained in the adhesive resin composition according to any one of claims 1 to 7. An adhesive sheet containing
  10.  請求項8に記載の接着剤または請求項9に記載の接着剤シートを用いてなる接着層を含むプリント配線板。
     
    The printed wiring board containing the contact bonding layer which uses the adhesive agent of Claim 8, or the adhesive sheet of Claim 9.
PCT/JP2009/071415 2008-12-26 2009-12-24 Resin composition for adhesive, adhesive comprising same, adhesive sheet, and printed wiring board including same as adhesive layer WO2010074135A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010507738A JP5803105B2 (en) 2008-12-26 2009-12-24 RESIN COMPOSITION FOR ADHESIVE, ADHESIVE CONTAINING THE SAME, ADHESIVE SHEET AND A PRINTED WIRING BOARD CONTAINING THE SAME AS ADHESIVE LAYER
CN200980153646.0A CN102264855B (en) 2008-12-26 2009-12-24 Resin composition for adhesive, adhesive comprising same, adhesive sheet, and printed wiring board including same as adhesive layer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-332430 2008-12-26
JP2008332430 2008-12-26
JP2009155126 2009-06-30
JP2009-155126 2009-06-30

Publications (1)

Publication Number Publication Date
WO2010074135A1 true WO2010074135A1 (en) 2010-07-01

Family

ID=42287742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071415 WO2010074135A1 (en) 2008-12-26 2009-12-24 Resin composition for adhesive, adhesive comprising same, adhesive sheet, and printed wiring board including same as adhesive layer

Country Status (5)

Country Link
JP (2) JP5803105B2 (en)
KR (1) KR101605221B1 (en)
CN (1) CN102264855B (en)
TW (1) TWI458797B (en)
WO (1) WO2010074135A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014181268A (en) * 2013-03-18 2014-09-29 Unitika Ltd Adhesive composition and laminate
US9708509B2 (en) 2012-10-09 2017-07-18 Avery Dennison Corporation Adhesives and related methods
JP2019052303A (en) * 2017-09-12 2019-04-04 ションイー テクノロジー カンパニー リミテッド Halogen-free resin composition, and glue film, cover film, and copper-clad plates prepared from the same
US10526511B2 (en) 2016-12-22 2020-01-07 Avery Dennison Corporation Convertible pressure sensitive adhesives comprising urethane (meth)acrylate oligomers
US11049421B2 (en) 2015-02-05 2021-06-29 Avery Dennison Corporation Label assemblies for adverse environments

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042203A1 (en) * 2011-09-20 2013-03-28 日立化成株式会社 Adhesive composition, film adhesive, adhesive sheet, circuit connector and circuit member connection method
CN103890053B (en) * 2012-07-20 2015-06-10 三菱瓦斯化学株式会社 Method for producing resin composition containing active particles
KR102218936B1 (en) * 2014-05-28 2021-02-23 도요보 가부시키가이샤 Adhesive composition using polyamide-imide resin
CN106459703B (en) * 2014-06-11 2018-09-25 东洋纺株式会社 Polyolefins adhesive composition
KR102502362B1 (en) * 2016-12-06 2023-02-21 도요보 가부시키가이샤 High molecular compound containing carboxylic acid group and adhesive composition containing the same
CN108264882A (en) * 2017-01-03 2018-07-10 台虹科技股份有限公司 Adhesive composition and flexible laminate structure
CN110268030B (en) * 2017-03-28 2021-12-28 东洋纺株式会社 Polyester-based adhesive composition containing carboxylic acid group
CN112313302B (en) * 2018-06-21 2022-06-03 东洋纺株式会社 Adhesive composition comprising acrylonitrile butadiene rubber co-polyamideimide resin
JP6701506B1 (en) * 2018-11-27 2020-05-27 日清紡ホールディングス株式会社 Resin composition for acoustic matching layer
JP7329949B2 (en) * 2019-03-29 2023-08-21 東洋紡株式会社 Compositions, laminates and coated metal products
JP7211403B2 (en) * 2019-10-23 2023-01-24 三菱ケミカル株式会社 Adhesive composition and adhesive
JP7127674B2 (en) 2020-02-21 2022-08-30 三菱ケミカル株式会社 Adhesive composition and adhesive
WO2023013595A1 (en) * 2021-08-03 2023-02-09 東洋紡株式会社 Adhesive composition and method for producing adhesive composition
WO2023119595A1 (en) * 2021-12-23 2023-06-29 株式会社レゾナック Method for evaluating resin material, resin material, method for producing resin material, electronic component device, and method for producing electronic component device
WO2024038816A1 (en) * 2022-08-17 2024-02-22 東洋紡株式会社 Adhesive composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002302663A (en) * 2001-02-05 2002-10-18 Toyobo Co Ltd Polyester for adhesive and adhesive composition using the same
JP2003113320A (en) * 2001-07-06 2003-04-18 Toray Ind Inc Resin composition, adhesive-attached film for semiconductor device, metal foil-attached laminate film and semiconductor device using the same
JP2003277711A (en) * 2002-03-25 2003-10-02 Mitsui Chemicals Inc Adhesive composition
JP2007070481A (en) * 2005-09-07 2007-03-22 Toyobo Co Ltd Adhesive composition and flexible printed wiring board using the same
JP2007204715A (en) * 2006-02-06 2007-08-16 Toyobo Co Ltd Adhesive composition and flexible copper-clad laminate using the same
JP2008074928A (en) * 2006-09-20 2008-04-03 Hitachi Chem Co Ltd Adhesive film for semiconductor and semiconductor device by using the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240214A (en) * 1993-02-19 1994-08-30 Mitsui Mining & Smelting Co Ltd Copper foil coated with flame-retardant adhesive and copper-clad laminate made using the same
JPH10178037A (en) * 1996-10-15 1998-06-30 Toray Ind Inc Semiconductor device adhesive composition and semiconductor device adhesive sheet using the same
SG118142A1 (en) * 2001-07-06 2006-01-27 Toray Industries Resin composition adhesive film for semiconductor device and laminated film with metallic foil and semiconductor device using the same
CN100512605C (en) * 2003-07-10 2009-07-08 太阳油墨制造株式会社 Thermosetting resin composition for multilayer printed wiring board, thermosetting adhesive film and printed circuit substrate
JP2005191069A (en) * 2003-12-24 2005-07-14 Sumitomo Bakelite Co Ltd Adhesive film for semiconductor, and semiconductor device
JP2006083263A (en) * 2004-09-15 2006-03-30 Toyobo Co Ltd Thermoplastic adhesive composition and laminate using the same
JP5151003B2 (en) * 2004-11-10 2013-02-27 東洋紡株式会社 Adhesive and circuit board using the same
JP2007039668A (en) * 2005-06-28 2007-02-15 Hitachi Chem Co Ltd Adhesive resin composition, multilayer printed wiring board using the adhesive resin composition and method for producing the multilayer printed wiring board

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002302663A (en) * 2001-02-05 2002-10-18 Toyobo Co Ltd Polyester for adhesive and adhesive composition using the same
JP2003113320A (en) * 2001-07-06 2003-04-18 Toray Ind Inc Resin composition, adhesive-attached film for semiconductor device, metal foil-attached laminate film and semiconductor device using the same
JP2003277711A (en) * 2002-03-25 2003-10-02 Mitsui Chemicals Inc Adhesive composition
JP2007070481A (en) * 2005-09-07 2007-03-22 Toyobo Co Ltd Adhesive composition and flexible printed wiring board using the same
JP2007204715A (en) * 2006-02-06 2007-08-16 Toyobo Co Ltd Adhesive composition and flexible copper-clad laminate using the same
JP2008074928A (en) * 2006-09-20 2008-04-03 Hitachi Chem Co Ltd Adhesive film for semiconductor and semiconductor device by using the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10040974B2 (en) 2012-10-09 2018-08-07 Avery Dennison Corporation Adhesives and related methods
US9714365B2 (en) 2012-10-09 2017-07-25 Avery Dennison Corporation Adhesives and related methods
US11292942B2 (en) 2012-10-09 2022-04-05 Avery Dennison Corporation Adhesives and related methods
US10457838B2 (en) 2012-10-09 2019-10-29 Avery Dennison Corporation Adhesives and related methods
US9738817B2 (en) 2012-10-09 2017-08-22 Avery Dennison Corporation Adhesives and related methods
US10035930B2 (en) 2012-10-09 2018-07-31 Avery Dennison Corporation Adhesives and related methods
US10040978B2 (en) 2012-10-09 2018-08-07 Avery Dennison Corporation Adhesives and related methods
US10040973B2 (en) 2012-10-09 2018-08-07 Avery Dennison Corporation Adhesives and related methods
US11685841B2 (en) 2012-10-09 2023-06-27 Avery Dennison Corporation Adhesives and related methods
US9708509B2 (en) 2012-10-09 2017-07-18 Avery Dennison Corporation Adhesives and related methods
US9725623B2 (en) 2012-10-09 2017-08-08 Avery Dennison Corporation Adhesives and related methods
US11008483B2 (en) 2012-10-09 2021-05-18 Avery Dennison Corporation Adhesives and related methods
US10533117B2 (en) 2012-10-09 2020-01-14 Avery Dennison Corporation Adhesives and related methods
US10597560B2 (en) 2012-10-09 2020-03-24 Avery Dennison Corporation Adhesives and related methods
JP2014181268A (en) * 2013-03-18 2014-09-29 Unitika Ltd Adhesive composition and laminate
US11049421B2 (en) 2015-02-05 2021-06-29 Avery Dennison Corporation Label assemblies for adverse environments
US10526511B2 (en) 2016-12-22 2020-01-07 Avery Dennison Corporation Convertible pressure sensitive adhesives comprising urethane (meth)acrylate oligomers
JP2019052303A (en) * 2017-09-12 2019-04-04 ションイー テクノロジー カンパニー リミテッド Halogen-free resin composition, and glue film, cover film, and copper-clad plates prepared from the same

Also Published As

Publication number Publication date
JP6032318B2 (en) 2016-11-24
CN102264855B (en) 2014-03-12
KR101605221B1 (en) 2016-03-21
JPWO2010074135A1 (en) 2012-06-21
TW201033314A (en) 2010-09-16
JP5803105B2 (en) 2015-11-04
TWI458797B (en) 2014-11-01
CN102264855A (en) 2011-11-30
KR20110099763A (en) 2011-09-08
JP2015187271A (en) 2015-10-29

Similar Documents

Publication Publication Date Title
JP6032318B2 (en) RESIN COMPOSITION FOR ADHESIVE, ADHESIVE CONTAINING THE SAME, ADHESIVE SHEET AND A PRINTED WIRING BOARD CONTAINING THE SAME AS ADHESIVE LAYER
JP5688077B2 (en) RESIN COMPOSITION FOR ADHESIVE, ADHESIVE CONTAINING THE SAME, ADHESIVE SHEET AND A PRINTED WIRING BOARD CONTAINING THE SAME AS ADHESIVE LAYER
JP5304152B2 (en) RESIN COMPOSITION FOR ADHESIVE, ADHESIVE CONTAINING THE SAME, ADHESIVE SHEET AND PRINTED WIRING BOARD CONTAINING THE SAME AS ADHESIVE LAYER
JP7156267B2 (en) Carboxylic acid group-containing polyester adhesive composition
JP4978753B2 (en) RESIN COMPOSITION FOR ADHESIVE, ADHESIVE CONTAINING THE SAME, ADHESIVE SHEET AND A PRINTED WIRING BOARD CONTAINING THE SAME AS ADHESIVE LAYER
JP5743042B1 (en) Polyurethane resin composition, adhesive composition using the same, laminate and printed wiring board
JP5126239B2 (en) Resin composition for adhesive, adhesive containing the same, adhesive sheet, and laminate for printed wiring board bonded using the same
JP6380710B1 (en) Carboxylic acid group-containing polymer compound and adhesive composition containing the same
WO2021106960A1 (en) Resin composition, multilayer body with resin composition layer, multilayer body, flexible copper-clad laminate, flexible flat cable, and electromagnetic shielding film

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980153646.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010507738

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117017445

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09834933

Country of ref document: EP

Kind code of ref document: A1