EP3828171A1 - Heterocyclische verbindungen als immunmodulatoren - Google Patents

Heterocyclische verbindungen als immunmodulatoren Download PDF

Info

Publication number
EP3828171A1
EP3828171A1 EP20202254.7A EP20202254A EP3828171A1 EP 3828171 A1 EP3828171 A1 EP 3828171A1 EP 20202254 A EP20202254 A EP 20202254A EP 3828171 A1 EP3828171 A1 EP 3828171A1
Authority
EP
European Patent Office
Prior art keywords
alkyl
cycloalkyl
membered heterocycloalkyl
aryl
membered heteroaryl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20202254.7A
Other languages
English (en)
French (fr)
Inventor
Neil LAJKIEWICZ
Liangxing Wu
Wenqing Yao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Incyte Corp
Original Assignee
Incyte Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Incyte Corp filed Critical Incyte Corp
Priority to EP23189545.9A priority Critical patent/EP4292650A3/de
Publication of EP3828171A1 publication Critical patent/EP3828171A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4375Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a six-membered ring having nitrogen as a ring heteroatom, e.g. quinolizines, naphthyridines, berberine, vincamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4985Pyrazines or piperazines ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • A61P31/22Antivirals for DNA viruses for herpes viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
    • A61P33/06Antimalarials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/38Nitrogen atoms
    • C07D215/40Nitrogen atoms attached in position 8
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms

Definitions

  • the present application is concerned with pharmaceutically active compounds.
  • the disclosure provides compounds as well as their compositions and methods of use.
  • the compounds modulate PD-1/PD-L1 protein/protein interaction and are useful in the treatment of various diseases including infectious diseases and cancer.
  • the immune system plays an important role in controlling and eradicating diseases such as cancer.
  • cancer cells often develop strategies to evade or to suppress the immune system in order to favor their growth.
  • One such mechanism is altering the expression of co-stimulatory and co-inhibitory molecules expressed on immune cells ( Postow et al, J. Clinical Oncology 2015, 1-9 ).
  • Blocking the signaling of an inhibitory immune checkpoint, such as PD-1, has proven to be a promising and effective treatment modality.
  • PD-1 Programmed cell death-1
  • CD279 is a cell surface receptor expressed on activated T cells, natural killer T cells, B cells, and macrophages ( Greenwald et al, Annu. Rev. Immunol 2005, 23:515-548 ; Okazaki and Honjo, Trends Immunol 2006, (4): 195-201 ). It functions as an intrinsic negative feedback system to prevent the activation of T-cells, which in turn reduces autoimmunity and promotes self-tolerance.
  • PD-1 is also known to play a critical role in the suppression of antigen-specific T cell response in diseases like cancer and viral infection ( Sharpe et al, Nat Immunol 2007 8, 239-245 ; Postow et al, J. Clinical Oncol 2015, 1-9 ).
  • the structure of PD-1 consists of an extracellular immunoglobulin variable-like domain followed by a transmembrane region and an intracellular domain ( Parry et al, Mol Cell Biol 2005, 9543-9553 ).
  • the intracellular domain contains two phosphorylation sites located in an immunoreceptor tyrosine-based inhibitory motif and an immunoreceptor tyrosine-based switch motif, which suggests that PD-1 negatively regulates T cell receptor-mediated signals.
  • PD-1 has two ligands, PD-L1 and PD-L2 ( Parry et al, Mol Cell Biol 2005, 9543-9553 ; Latchman et al, Nat Immunol 2001, 2, 261-268 ), and they differ in their expression patterns.
  • PD-L1 protein is upregulated on macrophages and dendritic cells in response to lipopolysaccharide and GM-CSF treatment, and on T cells and B cells upon T cell receptor and B cell receptor signaling. PD-L1 is also highly expressed on almost all tumor cells, and the expression is further increased after IFN- ⁇ treatment ( Iwai et al, PNAS2002, 99(19):12293-7 ; Blank et al, Cancer Res 2004, 64(3):1140-5 ).
  • tumor PD-L1 expression status has been shown to be prognostic in multiple tumor types ( Wang et al, Eur J Surg Oncol 2015 ; Huang et al, Oncol Rep 2015 ; Sabatier et al, Oncotarget 2015, 6(7): 5449-5464 ).
  • PD-L2 expression in contrast, is more restricted and is expressed mainly by dendritic cells ( Nakae et al, J Immunol 2006, 177:566-73 ).
  • Ligation of PD-1 with its ligands PD-L1 and PD-L2 on T cells delivers a signal that inhibits IL-2 and IFN- ⁇ production, as well as cell proliferation induced upon T cell receptor activation ( Carter et al, Eur J Immunol 2002, 32(3):634-43 ; Freeman et al, J Exp Med 2000, 192(7):1027-34 ).
  • the mechanism involves recruitment of SHP-2 or SHP-1 phosphatases to inhibit T cell receptor signaling such as Syk and Lck phosphorylation ( Sharpe et al, Nat Immunol 2007, 8, 239-245 ).
  • Activation of the PD-1 signaling axis also attenuates PKC- ⁇ activation loop phosphorylation, which is necessary for the activation of NF- ⁇ B and API pathways, and for cytokine production such as IL-2, IFN- ⁇ and TNF ( Sharpe et al, Nat Immunol 2007, 8, 239-245 ; Carter et al, Eur J Immunol 2002, 32(3):634-43 ; Freeman et al, J Exp Med 2000, 192(7):1027-34 ).
  • PD-1-deficient mice have been shown to develop lupus-like glomerulonephritis and dilated cardiomyopathy ( Nishimura et al, Immunity 1999,11:141-151 ; Nishimura et al, Science 2001, 291:319-322 ).
  • LCMV model of chronic infection it has been shown that PD-1/PD-L1 interaction inhibits activation, expansion and acquisition of effector functions of virus-specific CD8 T cells ( Barber et al, Nature 2006, 439, 682-7 ).
  • the present disclosure provides, inter alia, a compound of Formula (I'): or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein constituent variables are defined herein.
  • the present disclosure further provides a compound of Fomrula (I): or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein constituent variables are defined herein.
  • the present disclosure further provides a pharmaceutical composition
  • a pharmaceutical composition comprising a compound of the disclosure, or a pharmaceutically acceptable salt or a stereoisomer thereof, and at least one pharmaceutically acceptable carrier or excipient.
  • the present disclosure further provides methods of modulating or inhibiting PD-1/PD-L1 protein/protein interaction, which comprises administering to an individual a compound of the disclosure, or a pharmaceutically acceptable salt or a stereoisomer thereof.
  • the present disclosure further provides methods of treating a disease or disorder in a patient comprising administering to the patient a therapeutically effective amount of a compound of the disclosure, or a pharmaceutically acceptable salt or a stereoisomer thereof.
  • Cy is other than 3-amino-1-fluoromethyl-2-oxa-4-azabicyclo[4.1.0]hept-3-en-1-yl.
  • R 8a , R 8b or R 8c is F
  • Cy is not 3-amino-1-fluoromethyl-2-oxa-4-azabicyclo[4.1.0]hept-3-en-1-yl.
  • Cy is not 3-amino-1-fluoromethyl-2-oxa-4-azabicyclo[4.1.0]hept-3-en-1-yl.
  • R 7 when R 7 is F, Cy is not 3-amino-1-fluoromethyl-2-oxa-4-azabicyclo[4.1.0]hept-3-en-1-yl. In certain instances, when R 7 is halo, Cy is not 3-amino-1-fluoromethyl-2-oxa-4-azabicyclo[4.1.0]hept-3-en-1-yl.
  • Cy is C 6-10 aryl, optionally substituted with 1 to 4 independently selected R 9 substituents.
  • Cy is phenyl or naphthyl, each of which is optionally substituted with 1 to 4 independently selected R 9 substituents.
  • Cy is phenyl optionally substituted with 1 to 4 independently selected R 9 substituents.
  • Cy is unsubstituted phenyl.
  • Cy is C 3-10 cycloalkyl, optionally substituted with 1 to 4 independently selected R 9 substituents.
  • Cy is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl, each of which is optionally substituted with 1 to 4 independently selected R 9 substituents.
  • Cy is 5- to 14-membered heteroaryl, optionally substituted with 1 to 4 independently selected R 9 substituents.
  • Cy is pyridy, primidinyl, pyrazinyl, pyridazinyl, triazinyl, pyrrolyl, pyrazolyl, azolyl, oxazolyl, thiazolyl, imidazolyl, furanyl, thiophenyl, quinolinyl, isoquinolinyl, naphthyridinyl, indolyl, benzothiophenyl, benzofuranyl, benzisoxazolyl, imidazo[1,2- b ]thiazolyl, purinyl, thienyl, furyl, pyrrolyl, imidazolyl, thiazolyl, oxazolyl, pyrazolyl, isothiazolyl, isoxazolyl, 1,
  • Cy is 4- to 10-membered heterocycloalkyl, optionally substituted with 1 to 4 independently selected R 9 substituents.
  • Cy is azetidinyl, azepanyl, dihydrobenzofuranyl, dihydrofuranyl, dihydropyranyl, morpholino, 3-oxa-9-azaspiro[5.5]undecanyl, 1-oxa-8-azaspiro[4.5]decanyl, piperidinyl, piperazinyl, oxopiperazinyl, pyranyl, pyrrolidinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydropyranyl, 1,2,3,4-tetrahydroquinolinyl, tropanyl, 2,3-dihydro-1,4-benzodioxin-6-yl and thiomorpholino, each of which is optionally substituted with 1 to 4
  • Cy is 2,3-dihydro-1,4-benzodioxin-6-yl optionally substituted with 1 to 4 independently selected R 9 substituents. In some embodiments, Cy is unsubstituted 2,3-dihydro-1,4-benzodioxin-6-yl.
  • X 7 is CR 8a
  • X 8 is CR 8b
  • X 9 is CR 8c .
  • R 8a , R 8b and R 8c are each H.
  • X 7 is CR 8a
  • X 8 is N
  • X 9 is N
  • R 8a is H.
  • X 7 is CR 8a
  • X 8 is N
  • X 9 is CR 8c .
  • R 8a and R 8c are each H.
  • X 7 is CR 8a
  • X 8 is CR 8b
  • X 9 is N.
  • R 8a and R 8c are each H.
  • X 7 is N
  • X 8 is CR 8b
  • X 9 is CR 8c .
  • R 8a and R 8c are each H.
  • X 7 is N
  • X 8 is N
  • X 9 is CR 8c .
  • R 8c is H.
  • X 7 is N
  • X 8 is CR 8b and X 9 is N.
  • R 8b is H.
  • X 7 , X 8 and X 9 are each N.
  • the present disclosure provides compounds of Formula (I): or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein:
  • the present disclosure provides compounds of Formula (I): or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein:
  • the compounds, or pharmaceutically acceptable salts or stereoisomers thereof, as described herein are useful as inhibitors of the PD-1/PD-L1 protein/protein interaction.
  • compounds or pharmaceutically acceptable salts or stereoisomers thereof as described herein can disrupt the PD-1/PD-L1 protein/protein interaction in the PD-1 pathway.
  • the present disclosure provides compounds having Formula (II): or a pharmaceutically acceptable salt or a stereoisomer thereof.
  • R 2 is halo, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 1-6 haloalkyl, C 1-6 haloalkoxy, C 6-10 aryl, C 3-10 cycloalkyl, 5-14 membered heteroaryl, 4-10 membered heterocycloalkyl, C 6-10 aryl-C 1-4 alkyl-, C 3-10 cycloalkyl-C 1-4 alkyl-, (5-14 membered heteroaryl)-C 1-4 alkyl-, (4-10 membered heterocycloalkyl)-C 1-4 alkyl-, CN, NO 2 , OR a , SR a , NHOR a , C(O)R a , C(O)NR a R a , C(O)
  • R 7 is CN or C 1-4 alkyl optionally substituted with R q .
  • R 7 is CH 3 or CN.
  • the present disclosure provides compounds having Formula (III): or a pharmaceutically acceptable salt or a stereoisomer thereof.
  • R 2 is halo, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 1-6 haloalkyl, C 1-6 haloalkoxy, C 6-10 aryl, C 3-10 cycloalkyl, 5-14 membered heteroaryl, 4-10 membered heterocycloalkyl, C 6-10 aryl-C 1-4 alkyl-, C 3-10 cycloalkyl-C 1-4 alkyl-, (5-14 membered heteroaryl)-C 1-4 alkyl-, (4-10 membered heterocycloalkyl)-C 1-4 alkyl-, CN, NO 2 , OR a , SR a , NHOR a , C(O)R a , C(O)NR a R a , C(O)OR
  • the present disclosure provides compounds having Formula (IV): or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein the variables of Formula (IV) are as defined in Formula (I) or any embodiment of compounds of Formula (I) as described herein.
  • R 2 is halo, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 1-6 haloalkyl, C 1-6 haloalkoxy, C 6-10 aryl, C 3-10 cycloalkyl, 5-14 membered heteroaryl, 4-10 membered heterocycloalkyl, C 6-10 aryl-C 1-4 alkyl-, C 3-10 cycloalkyl-C 1-4 alkyl-, (5-14 membered heteroaryl)-C 1-4 alkyl-, (4-10 membered heterocycloalkyl)-C 1-4 alkyl-, CN, NO2, OR a , SR a , NHOR a , C(O)R a , C(O)NR a R a , C(O)OR a , OC(O)R a , OC(O)NR a R a , NHR a ,
  • the present disclosure provides compounds having Formula (V): or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein the variables of Formula (V) are as defined in Formula (I) or any embodiment of compounds of Formula (I) as described herein.
  • R 2 is halo, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 1-6 haloalkyl, C 1-6 haloalkoxy, C 6-10 aryl, C 3-10 cycloalkyl, 5-14 membered heteroaryl, 4-10 membered heterocycloalkyl, C 6-10 aryl-C 1-4 alkyl-, C 3-10 cycloalkyl-C 1-4 alkyl-, (5-14 membered heteroaryl)-C 1-4 alkyl-, (4-10 membered heterocycloalkyl)-C 1-4 alkyl-, CN, NO 2 , OR a , SR a , NHOR a , C(O)R a , C(O)NR a R a , C(O)OR a , OC(O)R a , OC(O)NR a R a , NHR a
  • the present disclosure provides compounds having Formula (VI): or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein the variables of Formula (VI) are as defined in Formula (I) or any embodiment of compounds of Formula (I) as described herein.
  • R 2 is halo, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 1-6 haloalkyl, C 1-6 haloalkoxy, C 6-10 aryl, C 3-10 cycloalkyl, 5-14 membered heteroaryl, 4-10 membered heterocycloalkyl, C 6-10 aryl-C 1-4 alkyl-, C 3-10 cycloalkyl-C 1-4 alkyl-, (5-14 membered heteroaryl)-C 1-4 alkyl-, (4-10 membered heterocycloalkyl)-C 1-4 alkyl-, CN, NO 2 , OR a , SR a , NHOR a , C(O)R a , C(O)NR a R a , C(O)OR a , OC(O)R a , OC(O)NR a R a , NHR a
  • the present disclosure provides compounds having Formula (VII): or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein the variables of Formula (VII) are as defined in Formula (I') or (I) or any embodiment of compounds of Formula (I') or (I) as described herein.
  • compounds of Formula (VII) is halo, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 1-6 haloalkyl, C 1-6 haloalkoxy, C 6-10 aryl, C 3-10 cycloalkyl, 5-14 membered heteroaryl, 4-10 membered heterocycloalkyl, C 6-10 aryl-C 1-4 alkyl-, C 3-10 cycloalkyl-C 1-4 alkyl-, (5-14 membered heteroaryl)-C 1-4 alkyl-, (4-10 membered heterocycloalkyl)-C 1-4 alkyl-, CN, NO 2 , OR a , SR a , NHOR a , C(O)R a , C(O)NR a R a , C(O)OR a , OC(O)R a , OC(O)NR a R a , NHR a ,
  • the present disclosure provides compounds having Formula (VIII): or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein the variables of Formula (VIII) are as defined in Formula (I') or (I) or any embodiment of compounds of Formula (I') or (I) as described herein.
  • R 9 is H
  • n is 1
  • X 7 is CR 8a
  • X 8 is CR 8b
  • X 9 is CR 8c .
  • X 7 , X 8 and X 9 are each CH.
  • the present disclosure provides compounds having Formula (IX): or a pharmaceutically acceptable salt or a stereoisomer thereof, wherein the variables of Formula (IX) are as defined in Formula (I') or (I) or any embodiment of compounds of Formula (I') or (I) as described herein.
  • R 9 is H
  • n is 1
  • X 7 is CR 8a
  • X 8 is CR 8b
  • X 9 is CR 8c .
  • X 7 , X 8 and X 9 are each CH.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are as defined in Formula (I'), (I) or any embodiment of compounds of Formula (I') or (I) as described herein.
  • R 1 , R 3 , R 4 , R 5 and R 6 are each H.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are as defined in Formula (I'), (I) or any embodiment of compounds of Formula (I'), (I) as described herein.
  • R 1 , R 2 , R 4 , R 5 and R 6 are each H.
  • X 1 is CR 1
  • X 3 is CR 3
  • X 4 is CR 4
  • X 5 is CR 5
  • X 6 is CR 6
  • X 1 , X 3 , X 4 , X 5 and X 6 are each CH.
  • X 2 is CR 2 .
  • X 1 is CR 1
  • X 3 is CR 3
  • X 4 is CR 4
  • X 5 is CR 5
  • X 6 is N.
  • X 1 , X 3 , X 4 and X 5 are each CH.
  • X 2 is CR 2 .
  • X 1 is CR 1
  • X 3 is CR 3
  • X 4 is N
  • X 5 is CR 5
  • X 6 is N.
  • X 1 , X 3 and X 5 are each CH.
  • X 2 is CR 2 .
  • X 1 is CR 1
  • X 3 is N
  • X 4 is CR 4
  • X 5 is CR 5
  • X 6 is N.
  • X 1 , X 4 and X 5 are each CH.
  • X 2 is CR 2 .
  • X 1 is CR 1
  • X 2 is N
  • X 4 is CR 4
  • X 5 is CR 5
  • X 6 is CR 6 .
  • X 1 , X 4 , X 5 and X 6 are each CH.
  • X 2 is CR 2 .
  • X 1 is CR 1
  • X 2 is CR 2
  • X 4 is CR 4
  • X 5 is CR 5
  • X 6 is CR 6
  • X 1 , X 2 , X 4 , X 5 and X 6 are each CH.
  • X 3 is CR 3 .
  • X 1 is CR 1
  • X 2 is CR 2
  • X 4 is CR 4
  • X 5 is CR 5
  • X 6 is N.
  • X 1 , X 2 , X 4 and X 5 are each CH.
  • X 3 is CR 3 .
  • X 1 is CR 1
  • X 2 is CR 2
  • X 4 is N
  • X 5 is CR 5
  • X 6 is N.
  • X 1 , X 2 and X 5 are each CH.
  • X 3 is CR 3 .
  • X 1 is CR 1
  • X 2 is N
  • X 4 is CR 4
  • X 5 is CR 5
  • X 6 is N.
  • X 1 , X 4 and X 5 are each CH.
  • X 3 is CR 3 .
  • X 1 is CR 1
  • X 2 is N
  • X 4 is CR 4
  • X 5 is CR 5
  • X 6 is CR 6
  • X 1 , X 4 , X 5 and X 6 are each CH.
  • X 3 is CR 3 .
  • R 1 , R 3 , R 4 , R 5 and R 6 are each independently selected from H, C 1-6 alkyl, CN, -N(C 1-6 alkyl) 2 and halo.
  • R 1 , R 3 , R 4 , R 5 and R 6 are each independently selected from H, CN, C 1-6 alkyl and halo.
  • R 1 , R 2 , R 4 , R 5 and R 6 are each independently selected from H, C 1-6 alkyl, CN, -N(C 1-6 alkyl) 2 and halo.
  • R 1 , R 2 , R 4 , R 5 and R 6 are each independently selected from H, CN, C 1-6 alkyl and halo.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 8 and R 9 are each H.
  • R 1 , R 3 , R 4 , R 5 , R 6 , R 8 and R 9 are each H.
  • R 1 , R 2 , R 4 , R 5 , R 6 , R 8 and R 9 are each H.
  • R 2 is -CH 2 -R b .
  • R 3 is -CH 2 -R b .
  • R 3 is H, halo or C 1-6 alkyl.
  • R 3 is H, Cl or OCH 3 .
  • two adjacent R 9 substituents on the phenyl ring taken together with the carbon atoms to which they are attached form a 5-, 6- or 7-membered fused heterocycloalkyl optionally substituted by 1 or 2 R q substituents.
  • the fused heterocycloalkyl is fused dioxanyl optionally substituted with1 or 2 R q substituents.
  • the fused heterocycloalkyl has carbon and 1 or 2 heteroatoms as ring members selected from O, N or S, wherein the carbon ring atom is optionally oxidized to form carbonyl, the N ring atom is optionally oxidized to form NO and the S ring atom is optionally oxidized to form SO or SO 2 .
  • the subscript n is 2 and the subscript m is 1.
  • R 7 is C 1-4 alkyl or CN.
  • R 7 is CH 3 or CN.
  • R 8 and R 9 are each H.
  • R 2 is C 1-4 alkyl substituted with R b .
  • R b is NHR c or NR c R c .
  • R b is NR c R c .
  • R b is 2-hydroxyethylamino, 2-hydroxyethyl(methyl)amino, 2-carboxypiperidin-1-yl, (cyanomethyl)amino, (S)-2-carboxypiperidin-1-yl, (R)-2-carboxypiperidin-1-yl or 2-carboxypiperidin-1-yl, each of which is optionally substituted with 1, 2 or 3 R q substituents.
  • R b is 2-hydroxyethylamino, 2-hydroxyethyl(methyl)amino, 2-carboxypiperidin-1-yl, (cyanomethyl)amino, (S)-2-carboxypiperidin-1-yl, (R)-2-carboxypiperidin-1-yl or 2-carboxypiperidin-1-yl.
  • R b is 2-hydroxyethylamino.
  • R b is 2-carboxypiperidin-1-yl.
  • R 2 is C 1-4 alkyl substituted with R q .
  • R 2 is C 1-4 alkoxy substituted with R d .
  • R d is phenyl, 3-cyanophenyl, 3-pyridyl, 2-pyridyl, 4-pyridyl, each of which is optionally substituted with 1, 2 or 3 R q substituents.
  • R 2 is -OCH 2 R d .
  • R d is phenyl, 3-cyanophenyl, 3-pyridyl, 2-pyridyl, 4-pyridyl, each of which is optionally substituted with 1, 2 or 3 R q substituents.
  • R 3 is C 1-4 alkyl substituted with R b .
  • R b is NHR c or NR c R c .
  • R b is NR c R c .
  • R b is 2-hydroxyethylamino, 2-hydroxyethyl(methyl)amino, 2-carboxypiperidin-1-yl, (cyanomethyl)amino, (S)-2-carboxypiperidin-1-yl, (R)-2-carboxypiperidin-1-yl or 2-carboxypiperidin-1-yl, each of which is optionally substituted with 1, 2 or 3 R q substituents.
  • R b is 2-hydroxyethylamino, 2-hydroxyethyl(methyl)amino, 2-carboxypiperidin-1-yl, (cyanomethyl)amino, (S)-2-carboxypiperidin-1-yl, (R)-2-carboxypiperidin-1-yl or 2-carboxypiperidin-1-yl.
  • R b is 2-hydroxyethylamino.
  • R b is 2-carboxypiperidin-1-yl.
  • R 3 is C 1-4 alkyl substituted with R q .
  • R 3 is C 1-4 alkoxy substituted with R d .
  • R d is phenyl, 3-cyanophenyl, 3-pyridyl, 2-pyridyl, 4-pyridyl, each of which is optionally substituted with 1, 2 or 3 R q substituents.
  • R 3 is -OCH 2 R d .
  • R d is phenyl, 3-cyanophenyl, 3-pyridyl, 2-pyridyl, 4-pyridyl, each of which is optionally substituted with 1, 2 or 3 R q substituents.
  • R 3 is 2-hydroxyethylaminomethyl, 2-hydroxyethyl(methyl)aminomethyl, 2-carboxypiperidin-1-ylmethyl, (cyanomethyl)aminomethyl, (S)-2-carboxypiperidin-1-ylmethyl, (R)-2-carboxypiperidin-1-ylmethyl, 2-carboxypiperidin-1-ylmethyl, benzyloxy, 2-cyanobenzyloxy, 3-cyanobenzyloxy, 4-cyanobenzyloxy, 2-pyridylmethoxy, 3-pyridylmethoxy, or 4-pyridylmethoxy, each of which is optionally substituted with 1, 2 or 3 R q substituents.
  • R 3 is 2-hydroxyethylaminomethyl, 2-carboxypiperidin-1-ylmethyl, (S)-2-carboxypiperidin-1-ylmethyl, (R)-2-carboxypiperidin-1-ylmethyl or (3-cyanobenzyl)oxy, each of which is optionally substituted with 1, 2 or 3 R q substituents.
  • R 8 is H, halo, CN, N(C 1-6 alkyl) 2 , C 1-6 alkyl or C 1-6 alkoxy, wherein the C 1-6 alkyl and C 1-6 alkoxy are each optionally substituted with 1-3 R q substituents.
  • R 8a , R 8b and R 8c are each independently selected from H, halo, CN, N(C 1-6 alkyl) 2 , C 1-6 alkyl and C 1-6 alkoxy, wherein the C 1-6 alkyl and C 1-6 alkoxy are each optionally substituted with 1-3 R q substituents.
  • R 8 is H, halo, CN, N(CH 3 ) 2 or CH 3 .
  • R 8a , R 8b and R 8c are each independently selected from H, halo, CN, N(CH 3 ) 2 and CH 3 .
  • C 1-6 alkyl is specifically intended to individually disclose (without limitation) methyl, ethyl, C 3 alkyl, C 4 alkyl, C 5 alkyl and C 6 alkyl.
  • n-membered typically describes the number of ring-forming atoms in a moiety where the number of ring-forming atoms is n.
  • piperidinyl is an example of a 6-membered heterocycloalkyl ring
  • pyrazolyl is an example of a 5-membered heteroaryl ring
  • pyridyl is an example of a 6-membered heteroaryl ring
  • 1,2,3,4-tetrahydro-naphthalene is an example of a 10-membered cycloalkyl group.
  • each linking substituent include both the forward and backward forms of the linking substituent.
  • -NR(CR'R") n includes both -NR(CR'R") n - and -(CR'R") n NR- and is intended to disclose each of the forms individually.
  • the Markush variables listed for that group are understood to be linking groups. For example, if the structure requires a linking group and the Markush group definition for that variable lists “alkyl” or "aryl” then it is understood that the "alkyl” or “aryl” represents a linking alkylene group or arylene group, respectively.
  • substituted means that an atom or group of atoms formally replaces hydrogen as a "substituent" attached to another group.
  • substituted refers to any level of substitution, e.g. , mono-, di-, tri-, tetra- or penta-substitution, where such substitution is permitted.
  • the substituents are independently selected, and substitution may be at any chemically accessible position. It is to be understood that substitution at a given atom is limited by valency. It is to be understood that substitution at a given atom results in a chemically stable molecule.
  • optionally substituted means unsubstituted or substituted.
  • substituted means that a hydrogen atom is removed and replaced by a substituent.
  • a single divalent substituent e.g. , oxo, can replace two hydrogen atoms.
  • C n-m indicates a range which includes the endpoints, wherein n and m are integers and indicate the number of carbons. Examples include C 1-4 , C 1-6 and the like.
  • alkyl employed alone or in combination with other terms, refers to a saturated hydrocarbon group that may be straight-chained or branched.
  • C n-m alkyl refers to an alkyl group having n to m carbon atoms.
  • An alkyl group formally corresponds to an alkane with one C-H bond replaced by the point of attachment of the alkyl group to the remainder of the compound.
  • the alkyl group contains from 1 to 6 carbon atoms, from 1 to 4 carbon atoms, from 1 to 3 carbon atoms, or 1 to 2 carbon atoms.
  • alkyl moieties include, but are not limited to, chemical groups such as methyl, ethyl, n -propyl, isopropyl, n -butyl, tert -butyl, isobutyl, sec -butyl; higher homologs such as 2-methyl-1-butyl, n -pentyl, 3-pentyl, n -hexyl, 1,2,2-trimethylpropyl and the like.
  • alkenyl refers to a straight-chain or branched hydrocarbon group corresponding to an alkyl group having one or more double carbon-carbon bonds.
  • An alkenyl group formally corresponds to an alkene with one C-H bond replaced by the point of attachment of the alkenyl group to the remainder of the compound.
  • C n-m alkenyl refers to an alkenyl group having n to m carbons.
  • the alkenyl moiety contains 2 to 6, 2 to 4, or 2 to 3 carbon atoms.
  • Example alkenyl groups include, but are not limited to, ethenyl, n -propenyl, isopropenyl, n- butenyl, sec -butenyl and the like.
  • alkynyl refers to a straight-chain or branched hydrocarbon group corresponding to an alkyl group having one or more triple carbon-carbon bonds.
  • An alkynyl group formally corresponds to an alkyne with one C-H bond replaced by the point of attachment of the alkyl group to the remainder of the compound.
  • C n-m alkynyl refers to an alkynyl group having n to m carbons.
  • Example alkynyl groups include, but are not limited to, ethynyl, propyn-1-yl, propyn-2-yl and the like. In some embodiments, the alkynyl moiety contains 2 to 6, 2 to 4, or 2 to 3 carbon atoms.
  • alkylene employed alone or in combination with other terms, refers to a divalent alkyl linking group.
  • An alkylene group formally corresponds to an alkane with two C-H bond replaced by points of attachment of the alkylene group to the remainder of the compound.
  • C n-m alkylene refers to an alkylene group having n to m carbon atoms.
  • alkylene groups include, but are not limited to, ethan-1,2-diyl, propan-1,3-diyl, propan-1,2-diyl, butan-1,4-diyl, butan-1,3-diyl, butan-1,2-diyl, 2-methyl-propan-1,3-diyl and the like.
  • alkoxy refers to a group of formula -O-alkyl, wherein the alkyl group is as defined above.
  • C n-m alkoxy refers to an alkoxy group, the alkyl group of which has n to m carbons.
  • Example alkoxy groups include methoxy, ethoxy, propoxy ( e.g ., n -propoxy and isopropoxy), t -butoxy and the like.
  • the alkyl group has 1 to 6, 1 to 4, or 1 to 3 carbon atoms.
  • alkylthio employed alone or in combination with other terms, refers to a group of formula -S-alkyl, wherein the alkyl group is as defined above.
  • C n-m alkylthio refers to an alkylthio group, the alkyl group of which has n to m carbons.
  • Example alkylthio groups include methylthio, ethylthio, etc.
  • the alkyl group of the alkylthio group has 1 to 6, 1 to 4, or 1 to 3 carbon atoms.
  • amino employed alone or in combination with other terms, refers to a group of formula -NH 2 .
  • cyano or "nitrile” refers to a group of formula -C ⁇ N, which also may be written as -CN.
  • halo refers to fluoro, chloro, bromo and iodo.
  • halo refers to a halogen atom selected from F, Cl, or Br.
  • halo groups are F.
  • haloalkyl refers to an alkyl group in which one or more of the hydrogen atoms has been replaced by a halogen atom.
  • C n-m haloalkyl refers to a Cn-m alkyl group having n to m carbon atoms and from at least one up to ⁇ 2(n to m)+1 ⁇ halogen atoms, which may either be the same or different.
  • the halogen atoms are fluoro atoms.
  • the haloalkyl group has 1 to 6 or 1 to 4 carbon atoms.
  • Example haloalkyl groups include CF 3 , C 2 F 5 , CHF 2 , CCl 3 , CHCl 2 , C 2 Cl 5 and the like.
  • the haloalkyl group is a fluoroalkyl group.
  • haloalkoxy refers to a group of formula -O-haloalkyl, wherein the haloalkyl group is as defined above.
  • C n-m haloalkoxy refers to a haloalkoxy group, the haloalkyl group of which has n to m carbons.
  • Example haloalkoxy groups include trifluoromethoxy and the like. In some embodiments, the haloalkoxy group has 1 to 6, 1 to 4, or 1 to 3 carbon atoms.
  • oxo refers to an oxygen atom as a divalent substituent, forming a carbonyl group when attached to carbon, or attached to a heteroatom forming a sulfoxide or sulfone group, or an N -oxide group.
  • aromatic refers to a carbocycle or heterocycle having one or more polyunsaturated rings having aromatic character (i.e. , having (4n + 2) delocalized ⁇ (pi) electrons where n is an integer).
  • aryl employed alone or in combination with other terms, refers to an aromatic hydrocarbon group, which may be monocyclic or polycyclic (e.g., having 2 fused rings).
  • C n-m aryl refers to an aryl group having from n to m ring carbon atoms.
  • Aryl groups include, e.g ., phenyl, naphthyl, indanyl, indenyl and the like. In some embodiments, aryl groups have from 6 to about 10 carbon atoms. In some embodiments aryl groups have 6 carbon atoms. In some embodiments aryl groups have 10 carbon atoms. In some embodiments, the aryl group is phenyl. In some embodiments, the aryl group is naphthyl.
  • heteroaryl or “heteroaromatic,” employed alone or in combination with other terms, refers to a monocyclic or polycyclic aromatic heterocycle having at least one heteroatom ring member selected from sulfur, oxygen and nitrogen.
  • the heteroaryl ring has 1, 2, 3 or 4 heteroatom ring members independently selected from nitrogen, sulfur and oxygen.
  • any ring-forming N in a heteroaryl moiety can be an N-oxide.
  • the heteroaryl has 5-14 ring atoms including carbon atoms and 1, 2, 3 or 4 heteroatom ring members independently selected from nitrogen, sulfur and oxygen.
  • the heteroaryl has 5-10 ring atoms including carbon atoms and 1, 2, 3 or 4 heteroatom ring members independently selected from nitrogen, sulfur and oxygen. In some embodiments, the heteroaryl has 5-6 ring atoms and 1 or 2 heteroatom ring members independently selected from nitrogen, sulfur and oxygen. In some embodiments, the heteroaryl is a five-membered or six-membered heteroaryl ring. In other embodiments, the heteroaryl is an eight-membered, nine-membered or ten-membered fused bicyclic heteroaryl ring.
  • Example heteroaryl groups include, but are not limited to, pyridinyl (pyridyl), pyrimidinyl, pyrazinyl, pyridazinyl, pyrrolyl, pyrazolyl, azolyl, oxazolyl, thiazolyl, imidazolyl, furanyl, thiophenyl, quinolinyl, isoquinolinyl, naphthyridinyl (including 1,2-, 1,3-, 1,4-, 1,5-, 1,6-, 1,7-, 1,8-, 2,3- and 2,6-naphthyridine), indolyl, benzothiophenyl, benzofuranyl, benzisoxazolyl, imidazo[1,2- b ]thiazolyl, purinyl, and the like.
  • pyridinyl pyridyl
  • pyrimidinyl pyrazinyl
  • pyridazinyl
  • a five-membered heteroaryl ring is a heteroaryl group having five ring atoms wherein one or more ( e.g ., 1, 2 or 3) ring atoms are independently selected from N, O and S.
  • Exemplary five-membered ring heteroaryls include thienyl, furyl, pyrrolyl, imidazolyl, thiazolyl, oxazolyl, pyrazolyl, isothiazolyl, isoxazolyl, 1,2,3-triazolyl, tetrazolyl, 1,2,3-thiadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-triazolyl, 1,2,4-thiadiazolyl, 1,2,4-oxadiazolyl, 1,3,4-triazolyl, 1,3,4-thiadiazolyl and 1,3,4-oxadiazolyl.
  • a six-membered heteroaryl ring is a heteroaryl group having six ring atoms wherein one or more ( e.g ., 1, 2 or 3) ring atoms are independently selected from N, O and S.
  • Exemplary six-membered ring heteroaryls are pyridyl, pyrazinyl, pyrimidinyl, triazinyl and pyridazinyl.
  • cycloalkyl employed alone or in combination with other terms, refers to a non-aromatic hydrocarbon ring system (monocyclic, bicyclic or polycyclic), including cyclized alkyl and alkenyl groups.
  • C n-m cycloalkyl refers to a cycloalkyl that has n to m ring member carbon atoms.
  • Cycloalkyl groups can include mono- or polycyclic ( e.g ., having 2, 3 or 4 fused rings) groups and spirocycles. Cycloalkyl groups can have 3, 4, 5, 6 or 7 ring-forming carbons (C 3-7 ).
  • the cycloalkyl group has 3 to 6 ring members, 3 to 5 ring members, or 3 to 4 ring members. In some embodiments, the cycloalkyl group is monocyclic. In some embodiments, the cycloalkyl group is monocyclic or bicyclic. In some embodiments, the cycloalkyl group is a C 3-6 monocyclic cycloalkyl group. Ring-forming carbon atoms of a cycloalkyl group can be optionally oxidized to form an oxo or sulfido group. Cycloalkyl groups also include cycloalkylidenes.
  • cycloalkyl is cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl. Also included in the definition of cycloalkyl are moieties that have one or more aromatic rings fused ( i.e. , having a bond in common with) to the cycloalkyl ring, e.g ., benzo or thienyl derivatives of cyclopentane, cyclohexane and the like.
  • a cycloalkyl group containing a fused aromatic ring can be attached through any ring-forming atom including a ring-forming atom of the fused aromatic ring.
  • cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclopentenyl, cyclohexenyl, cyclohexadienyl, cycloheptatrienyl, norbornyl, norpinyl, norcarnyl, bicyclo[1.1.1]pentanyl, bicyclo[2.1.1]hexanyl, and the like.
  • the cycloalkyl group is cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl.
  • heterocycloalkyl refers to a non-aromatic ring or ring system, which may optionally contain one or more alkenylene groups as part of the ring structure, which has at least one heteroatom ring member independently selected from nitrogen, sulfur oxygen and phosphorus, and which has 4-10 ring members, 4-7 ring members, or 4-6 ring members. Included within the term “heterocycloalkyl” are monocyclic 4-, 5-, 6- and 7-membered heterocycloalkyl groups. Heterocycloalkyl groups can include mono- or bicyclic ( e.g ., having two fused or bridged rings) ring systems.
  • the heterocycloalkyl group is a monocyclic group having 1, 2 or 3 heteroatoms independently selected from nitrogen, sulfur and oxygen. Ring-forming carbon atoms and heteroatoms of a heterocycloalkyl group can be optionally oxidized to form an oxo or sulfido group or other oxidized linkage ( e.g. , C(O), S(O), C(S) or S(O) 2 , N -oxide etc. ) or a nitrogen atom can be quaternized.
  • the heterocycloalkyl group can be attached through a ring-forming carbon atom or a ring-forming heteroatom. In some embodiments, the heterocycloalkyl group contains 0 to 3 double bonds.
  • the heterocycloalkyl group contains 0 to 2 double bonds. Also included in the definition of heterocycloalkyl are moieties that have one or more aromatic rings fused ( i.e. , having a bond in common with) to the heterocycloalkyl ring, e.g., benzo or thienyl derivatives of piperidine, morpholine, azepine, etc.
  • a heterocycloalkyl group containing a fused aromatic ring can be attached through any ring-forming atom including a ring-forming atom of the fused aromatic ring.
  • heterocycloalkyl groups include azetidinyl, azepanyl, dihydrobenzofuranyl, dihydrofuranyl, dihydropyranyl, morpholino, 3-oxa-9-azaspiro[5.5]undecanyl, 1-oxa-8-azaspiro[4.5]decanyl, piperidinyl, piperazinyl, oxopiperazinyl, pyranyl, pyrrolidinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydropyranyl, 1,2,3,4-tetrahydroquinolinyl, tropanyl, and thiomorpholino.
  • arylalkyl employed alone or in combination with other terms, refers to an aryl-(alkylene)- group where aryl and alkylene are as defined herein.
  • An example arylalkyl group is benzyl.
  • heteroarylalkyl employed alone or in combination with other terms, refers to an heteroaryl-(alkylene)- group, where heteroaryl and alkylene are as defined herein.
  • An example heteroarylalkyl group is pyridylmethyl.
  • cycloalkylalkyl employed alone or in combination with other terms, refers to a cycloalkyl-(alkylene)- group, where cycloalkyl and alkylene are as defined herein.
  • An example cycloalkylalkyl group is cyclopropylmethyl.
  • heterocycloalkylalkyl employed alone or in combination with other terms, refers to a heterocycloalkyl-(alkylene)- group, where heterocycloalkyl and alkylene are as defined herein.
  • An example heterocycloalkylalkyl group is azetidinylmethyl.
  • the definitions or embodiments refer to specific rings (e.g ., an azetidine ring, a pyridine ring, etc. ). Unless otherwise indicated, these rings can be attached to any ring member provided that the valency of the atom is not exceeded. For example, an azetidine ring may be attached at any position of the ring, whereas an azetidin-3-yl ring is attached at the 3-position.
  • the compounds described herein can be asymmetric ( e.g ., having one or more stereocenters). All stereoisomers, such as enantiomers and diastereomers, are intended unless otherwise indicated.
  • One method includes fractional recrystallization using a chiral resolving acid which is an optically active, salt-forming organic acid.
  • Suitable resolving agents for fractional recrystallization methods are, e.g ., optically active acids, such as the D and L forms of tartaric acid, diacetyltartaric acid, dibenzoyltartaric acid, mandelic acid, malic acid, lactic acid or the various optically active camphorsulfonic acids such as ⁇ -camphorsulfonic acid.
  • Other resolving agents suitable for fractional crystallization methods include stereoisomerically pure forms of ⁇ -methylbenzylamine (e.g.
  • Resolution of racemic mixtures can also be carried out by elution on a column packed with an optically active resolving agent (e.g ., dinitrobenzoylphenylglycine).
  • an optically active resolving agent e.g ., dinitrobenzoylphenylglycine
  • Suitable elution solvent composition can be determined by one skilled in the art.
  • the compounds of the invention have the ( R )-configuration. In other embodiments, the compounds have the ( S )-configuration. In compounds with more than one chiral centers, each of the chiral centers in the compound may be independently ( R ) or ( S ), unless otherwise indicated.
  • Tautomeric forms result from the swapping of a single bond with an adjacent double bond together with the concomitant migration of a proton.
  • Tautomeric forms include prototropic tautomers which are isomeric protonation states having the same empirical formula and total charge.
  • Example prototropic tautomers include ketone - enol pairs, amide - imidic acid pairs, lactam - lactim pairs, enamine - imine pairs, and annular forms where a proton can occupy two or more positions of a heterocyclic system, e.g.
  • Tautomeric forms can be in equilibrium or sterically locked into one form by appropriate substitution.
  • Compounds of the invention can also include all isotopes of atoms occurring in the intermediates or final compounds.
  • Isotopes include those atoms having the same atomic number but different mass numbers.
  • isotopes of hydrogen include tritium and deuterium.
  • One or more constituent atoms of the compounds of the invention can be replaced or substituted with isotopes of the atoms in natural or non-natural abundance.
  • the compound includes at least one deuterium atom.
  • one or more hydrogen atoms in a compound of the present disclosure can be replaced or substituted by deuterium.
  • the compound includes two or more deuterium atoms.
  • the compound includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 deuterium atoms. Synthetic methods for including isotopes into organic compounds are known in the art.
  • compound as used herein is meant to include all stereoisomers, geometric isomers, tautomers and isotopes of the structures depicted.
  • the term is also meant to refer to compounds of the inventions, regardless of how they are prepared, e.g., synthetically, through biological process (e.g., metabolism or enzyme conversion), or a combination thereof.
  • All compounds, and pharmaceutically acceptable salts thereof can be found together with other substances such as water and solvents (e.g ., hydrates and solvates) or can be isolated.
  • the compounds described herein and salts thereof may occur in various forms and may, e.g ., take the form of solvates, including hydrates.
  • the compounds may be in any solid state form, such as a polymorph or solvate, so unless clearly indicated otherwise, reference in the specification to compounds and salts thereof should be understood as encompassing any solid state form of the compound.
  • the compounds of the invention, or salts thereof are substantially isolated.
  • substantially isolated is meant that the compound is at least partially or substantially separated from the environment in which it was formed or detected.
  • Partial separation can include, e.g ., a composition enriched in the compounds of the invention.
  • Substantial separation can include compositions containing at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 97%, or at least about 99% by weight of the compounds of the invention, or salt thereof.
  • phrases "pharmaceutically acceptable” is employed herein to refer to those compounds, materials, compositions and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
  • ambient temperature and “room temperature,” as used herein, are understood in the art, and refer generally to a temperature, e.g ., a reaction temperature, that is about the temperature of the room in which the reaction is carried out, e.g. , a temperature from about 20 °C to about 30 °C.
  • the present invention also includes pharmaceutically acceptable salts of the compounds described herein.
  • pharmaceutically acceptable salts refers to derivatives of the disclosed compounds wherein the parent compound is modified by converting an existing acid or base moiety to its salt form.
  • examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like.
  • the pharmaceutically acceptable salts of the present invention include the non-toxic salts of the parent compound formed, e.g ., from non-toxic inorganic or organic acids.
  • the pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound which contains a basic or acidic moiety by conventional chemical methods.
  • such salts can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, non-aqueous media like ether, ethyl acetate, alcohols ( e.g ., methanol, ethanol, iso-propanol or butanol) or acetonitrile (MeCN) are preferred.
  • non-aqueous media like ether, ethyl acetate, alcohols (e.g ., methanol, ethanol, iso-propanol or butanol) or acetonitrile (MeCN) are preferred.
  • suitable salts are found in Remington's Pharmaceutical Sciences, 17th Ed., (Mack Publishing Company, Easton, 1985), p. 1418 , Berge et al., J. Pharm. Sci., 1977, 66(1), 1-19 and in Stahl et al.,
  • the reactions for preparing compounds of the invention can be carried out in suitable solvents which can be readily selected by one of skill in the art of organic synthesis.
  • suitable solvents can be substantially non-reactive with the starting materials (reactants), the intermediates or products at the temperatures at which the reactions are carried out, e.g ., temperatures which can range from the solvent's freezing temperature to the solvent's boiling temperature.
  • a given reaction can be carried out in one solvent or a mixture of more than one solvent.
  • suitable solvents for a particular reaction step can be selected by the skilled artisan.
  • Preparation of compounds of the invention can involve the protection and deprotection of various chemical groups.
  • the need for protection and deprotection, and the selection of appropriate protecting groups, can be readily determined by one skilled in the art.
  • the chemistry of protecting groups is described, e.g., in Kocienski, Protecting Groups, (Thieme, 2007 ); Robertson, Protecting Group Chemistry, (Oxford University Press, 2000 ); Smith et al., March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 6th Ed. (Wiley, 2007 ); Peturssion et al., "Protecting Groups in Carbohydrate Chemistry," J. Chem. Educ., 1997, 74(11), 1297 ; and Wuts et al., Protective Groups in Organic Synthesis, 4th Ed., (Wiley, 2006 ).
  • Reactions can be monitored according to any suitable method known in the art.
  • product formation can be monitored by spectroscopic means, such as nuclear magnetic resonance spectroscopy (e.g ., 1 H or 13 C), infrared spectroscopy, spectrophotometry (e.g ., UV-visible), mass spectrometry or by chromatographic methods such as high performance liquid chromatography (HPLC) or thin layer chromatography (TLC).
  • spectroscopic means such as nuclear magnetic resonance spectroscopy (e.g ., 1 H or 13 C), infrared spectroscopy, spectrophotometry (e.g ., UV-visible), mass spectrometry or by chromatographic methods such as high performance liquid chromatography (HPLC) or thin layer chromatography (TLC).
  • HPLC high performance liquid chromatography
  • TLC thin layer chromatography
  • a suitable halo (Hal 1 )-subsfituted aromatic amine 1 can react with a suitable coupling reagent 2 (where M is, e.g ., -B(OH) 2 ) to produce compound 3 under standard metal catalyzed cross-coupling reaction conditions (such as Suzuki coupling reaction, e.g., in the presence of a palladium catalyst (e.g ., 1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium(II)) and a base (e.g. , a bicarbonate or a carbonate base)).
  • a palladium catalyst e.g ., 1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium(II)
  • base e.g. , a bicarbonate or a carbonate base
  • the aromatic amine 3 can selectively react with the halo group (Hal 2 ) of compound 4 under suitable S N Ar conditions (such as acid catalyzed, e.g ., in the presence of HCl; or uncatalyzed) or standard coupling reaction conditions (such as Buchwald-Hartwig amination, e.g. , in the presence of a palladium catalyst (e.g.
  • the compound of formula 6 can be synthesized by coupling the halo group (Hal 3 ) of 5 with a vinyl reagent (e.g ., vinyl boronic acid pinacol ester) under standard coupling reaction conditions (such as Suzuki coupling reaction, e.g ., in the presence of a palladium catalyst (e.g. , 1,1'-bis(dicyclohexylphosphino)ferrocene]dichloropalladium(II)) and a base (e.g. , a bicarbonate or a carbonate base)).
  • a palladium catalyst e.g. , 1,1'-bis(dicyclohexylphosphino)ferrocene]dichloropalladium(II)
  • a base e.g. , a bicarbonate or a carbonate base
  • the vinyl group in compound 6 can be oxidatively cleaved to afford an aldehyde of formula 7 in the presence of suitable reagents such as, but not limited to, OsO 4 and NaIO 4 .
  • suitable reagents such as, but not limited to, OsO 4 and NaIO 4 .
  • the compounds of formula 8 can be obtained by a reductive amination between the compound of formula 7 and amine HN(R c ) 2 in an appropriate solvent such as THF or DCM using a reducing agent such as, but not limited to, sodium triacetoxyborohydride, optionally in the presence of a base such as DIPEA.
  • the compound of formula 14 can be synthesized by coupling the halo group (Hal 6 ) of 13 with a vinyl reagent (e.g ., vinyl boronic acid pinacol ester) under standard coupling reaction conditions (such as Suzuki coupling reaction, e.g ., in the presence of a palladium catalyst (e.g. , 1,1'-bis(dicyclohexylphosphino)ferrocene]dichloropalladium(II)) and a base (e.g. , a bicarbonate or a carbonate base)).
  • a palladium catalyst e.g. , 1,1'-bis(dicyclohexylphosphino)ferrocene]dichloropalladium(II)
  • a base e.g. , a bicarbonate or a carbonate base
  • the vinyl group in compound 14 can be oxidatively cleaved to afford an aldehyde of formula 15 in the presence of suitable reagents such as, but not limited to, OsO 4 and NaIO 4 .
  • suitable reagents such as, but not limited to, OsO 4 and NaIO 4 .
  • the compounds of formula 16 can be obtained by a reductive amination between the compound of formula 15 and amine HN(R c ) 2 in a proper solvent such as THF or DCM using a reducing agent such as, but not limited to, sodium triacetoxyborohydride, optionally in the presence of a base such as DIPEA.
  • Compounds of Formula 21 can be prepared using procedures as outlined in Scheme 4.
  • the aromatic amines of Formula 17 can selectively react with the halo group (Hal 7 ) of compound 18 under suitable S N Ar conditions (acid catalyzed, e.g ., in the presence of HCl; or uncatalyzed) or suitable selective coupling reaction conditions (such as Buchwald-Hartwig amination, e.g. , in the presence of a palladium catalyst (e.g.
  • the halide (Hal 8 ) in compounds Formula 19 can be coupled to compounds of Formula 20, in which M is a boronic acid, boronic ester or an appropriately substituted metal [e.g., M is B(OR) 2 , Sn(Alkyl) 4 , or Zn-Hal], under Suzuki coupling conditions (e.g., in the presence of a palladium catalyst and a suitable base) or Stille coupling conditions (e.g., in the presence of a palladium catalyst), or Negishi coupling conditions (e.g., in the presence of a palladium catalyst) to give derivatives of Formula 21.
  • M is a boronic acid, boronic ester or an appropriately substituted metal
  • Suzuki coupling conditions e.g., in the presence of a palladium catalyst and a suitable base
  • Stille coupling conditions e.g., in the presence of a palladium catalyst
  • Negishi coupling conditions e.g., in the presence of a palladium
  • compound Formula 20 can be a cyclic amine (where M is H and attached to an amine nitrogen in ring Cy) and the coupling of aryl halide of Formula 19 with the cyclic amine of Formula 18 can be performed under suitable Buchwald-Hartwig amination conditions (e.g., in the presence of a palladium catalyst and a base such as sodium tert-butoxide).
  • suitable Buchwald-Hartwig amination conditions e.g., in the presence of a palladium catalyst and a base such as sodium tert-butoxide.
  • compounds of Formula 21 can be prepared using reaction sequences as outlined in Scheme 5. Coupling of aromatic halides of Formula 17 with compounds of Formula 20 can be achieved using similar conditions as described in Scheme 4 (e.g. conditions used for coupling of compounds of Formula 19 with compounds of Formula 20 ) to give aromatic amines of Formula 22 , which can react with the halo group (Hal 7 ) of compounds of Formula 18 under suitable S N Ar conditions or suitable selective coupling reaction conditions as described in Scheme 4 to give compounds of Formula 21.
  • Compounds of the present disclosure can inhibit the activity of PD-1/PD-L1 protein/protein interaction and, thus, are useful in treating diseases and disorders associated with activity of PD-1 and the diseases and disorders associated with PD-L1 including its interaction with other proteins such as PD-1 and B7-1 (CD80).
  • the compounds of the present disclosure, or pharmaceutically acceptable salts or stereoisomers thereof are useful for therapeutic administration to enhance immunity in cancer or chronic infection, including enhancement of response to vaccination.
  • the present disclosure provides a method for inhibiting the PD-1/PD-L1 protein/protein interaction.
  • the method includes administering to an individual or a patient a compound of Formula (I') or (I) or of any of the formulas as described herein, or of a compound as recited in any of the claims and described herein, or a pharmaceutically acceptable salt or a stereoisomer thereof.
  • the compounds of the present disclosure can be used alone, in combination with other agents or therapies or as an adjuvant or neoadjuvant for the treatment of diseases or disorders, including cancer or infection diseases.
  • any of the compounds of the disclosure including any of the embodiments thereof, may be used.
  • the compounds of the present disclosure inhibit the PD-1/PD-L1 protein/protein interaction, resulting in a PD-1 pathway blockade.
  • the blockade of PD-1 can enhance the immune response to cancerous cells and infectious diseases in mammals, including humans.
  • the present disclosure provides treatment of an individual or a patient in vivo using a compound of Formula (I') or (I) or a salt or stereoisomer thereof such that growth of cancerous tumors is inhibited.
  • a compound of Formula (I') or (I) or of any of the formulas as described herein, or a compound as recited in any of the claims and described herein, or a salt or stereoisomer thereof, can be used to inhibit the growth of cancerous tumors.
  • a compound of Formula (I') or (I) or of any of the formulas as described herein, or a compound as recited in any of the claims and described herein, or a salt or stereoisomer thereof can be used in conjunction with other agents or standard cancer treatments, as described below.
  • the present disclosure provides a method for inhibiting growth of tumor cells in vitro. The method includes contacting the tumor cells in vitro with a compound of Formula (I') or (I) or of any of the formulas as described herein, or of a compound as recited in any of the claims and described herein, or of a salt or stereoisomer thereof.
  • the present disclosure provides a method for inhibiting growth of tumor cells in an individual or a patient.
  • the method includes administering to the individual or patient in need thereof a therapeutically effective amount of a compound of Formula (I') or (I) or of any of the formulas as described herein, or of a compound as recited in any of the claims and described herein, or a salt or a stereoisomer thereof.
  • a method for treating cancer includes administering to a patient in need thereof, a therapeutically effective amount of a compound of Formula (I') or (I) or any of the formulas as described herein, a compound as recited in any of the claims and described herein, or a salt thereof.
  • cancers include those whose growth may be inhibited using compounds of the disclosure and cancers typically responsive to immunotherapy.
  • cancers that are treatable using the compounds of the present disclosure include, but are not limited to, bone cancer, pancreatic cancer, skin cancer, cancer of the head or neck, cutaneous or intraocular malignant melanoma, uterine cancer, ovarian cancer, rectal cancer, cancer of the anal region, stomach cancer, testicular cancer, uterine cancer, carcinoma of the fallopian tubes, carcinoma of the endometrium, endometrial cancer, carcinoma of the cervix, carcinoma of the vagina, carcinoma of the vulva, Hodgkin's Disease, non-Hodgkin's lymphoma, cancer of the esophagus, cancer of the small intestine, cancer of the endocrine system, cancer of the thyroid gland, cancer of the parathyroid gland, cancer of the adrenal gland, sarcoma of soft tissue, cancer of the urethra, cancer of the penis, chronic or acute leukemias including acute myeloid leukemia, chronic myeloid leukemia, acute lymphoblastic leuk
  • cancers treatable with compounds of the present disclosure include melanoma (e.g., metastatic malignant melanoma), renal cancer (e.g. clear cell carcinoma), prostate cancer (e.g. hormone refractory prostate adenocarcinoma), breast cancer, colon cancer and lung cancer (e.g. non-small cell lung cancer). Additionally, the disclosure includes refractory or recurrent malignancies whose growth may be inhibited using the compounds of the disclosure.
  • melanoma e.g., metastatic malignant melanoma
  • renal cancer e.g. clear cell carcinoma
  • prostate cancer e.g. hormone refractory prostate adenocarcinoma
  • breast cancer e.g. hormone refractory prostate adenocarcinoma
  • colon cancer e.g. non-small cell lung cancer
  • lung cancer e.g. non-small cell lung cancer
  • cancers that are treatable using the compounds of the present disclosure include, but are not limited to, solid tumors (e.g., prostate cancer, colon cancer, esophageal cancer, endometrial cancer, ovarian cancer, uterine cancer, renal cancer, hepatic cancer, pancreatic cancer, gastric cancer, breast cancer, lung cancer, cancers of the head and neck, thyroid cancer, glioblastoma, sarcoma, bladder cancer, etc.), hematological cancers (e.g., lymphoma, leukemia such as acute lymphoblastic leukemia (ALL), acute myelogenous leukemia (AML), chronic lymphocytic leukemia (CLL), chronic myelogenous leukemia (CML), DLBCL, mantle cell lymphoma, Non-Hodgkin lymphoma (including relapsed or refractory NHL and recurrent follicular), Hodgkin lymphoma or multiple myeloma)
  • solid tumors
  • PD-1 pathway blockade with compounds of the present disclosure can also be used for treating infections such as viral, bacteria, fungus and parasite infections.
  • the present disclosure provides a method for treating infections such as viral infections. The method includes administering to a patient in need thereof, a therapeutically effective amount of a compound of Formula (I') or (I) or any of the formulas as described herein, a compound as recited in any of the claims and described herein, a salt thereof.
  • viruses causing infections treatable by methods of the present disclosure include, but are not limit to, human immunodeficiency virus, human papillomavirus, influenza, hepatitis A, B, C or D viruses, adenovirus, poxvirus, herpes simplex viruses, human cytomegalovirus, severe acute respiratory syndrome virus, ebola virus, and measles virus.
  • viruses causing infections treatable by methods of the present disclosure include, but are not limit to, hepatitis (A, B, or C), herpes virus (e.g., VZV, HSV-1, HAV-6, HSV-II, and CMV, Epstein Barr virus), adenovirus, influenza virus, flaviviruses, echovirus, rhinovirus, coxsackie virus, cornovirus, respiratory syncytial virus, mumpsvirus, rotavirus, measles virus, rubella virus, parvovirus, vaccinia virus, HTLV virus, dengue virus, papillomavirus, molluscum virus, poliovirus, rabies virus, JC virus and arboviral encephalitis virus.
  • herpes virus e.g., VZV, HSV-1, HAV-6, HSV-II, and CMV, Epstein Barr virus
  • adenovirus e.g., adenovirus
  • influenza virus flaviviruses
  • the present disclosure provides a method for treating bacterial infections.
  • the method includes administering to a patient in need thereof, a therapeutically effective amount of a compound of Formula (I') or (I) or any of the formulas as described herein, a compound as recited in any of the claims and described herein, or a salt thereof.
  • Non-limiting examples of pathogenic bacteria causing infections treatable by methods of the disclosure include chlamydia, rickettsial bacteria, mycobacteria, staphylococci, streptococci, pneumonococci, meningococci and conococci, klebsiella, proteus, serratia, pseudomonas, legionella, diphtheria, salmonella, bacilli, cholera, tetanus, botulism, anthrax, plague, leptospirosis, and Lyme's disease bacteria.
  • the present disclosure provides a method for treating fungus infections.
  • the method includes administering to a patient in need thereof, a therapeutically effective amount of a compound of Formula (I') or (I) or any of the formulas as described herein, a compound as recited in any of the claims and described herein, or a salt thereof.
  • Non-limiting examples of pathogenic fungi causing infections treatable by methods of the disclosure include Candida (albicans, krusei, glabrata, tropicalis, etc.), Cryptococcus neoformans, Aspergillus (fumigatus, niger, etc.), Genus Mucorales (mucor, absidia, rhizophus), Sporothrix schenkii, Blastomyces dermatitidis, Paracoccidioides brasiliensis, Coccidioides immitis and Histoplasma capsulatum.
  • Candida albicans, krusei, glabrata, tropicalis, etc.
  • Cryptococcus neoformans Aspergillus (fumigatus, niger, etc.)
  • Genus Mucorales micor, absidia, rhizophus
  • Sporothrix schenkii Blastomyces dermatitidis
  • Paracoccidioides brasiliensis Coccidio
  • the present disclosure provides a method for treating parasite infections.
  • the method includes administering to a patient in need thereof, a therapeutically effective amount of a compound of Formula (I') or (I) or any of the formulas as described herein, a compound as recited in any of the claims and described herein, or a salt thereof.
  • Non-limiting examples of pathogenic parasites causing infections treatable by methods of the disclosure include Entamoeba histolytica, Balantidium coli, Naegleriafowleri, Acanthamoeba sp., Giardia lambia, Cryptosporidium sp., Pneumocystis carinii, Plasmodium vivax, Babesia microti, Trypanosoma brucei, Trypanosoma cruzi, Leishmania donovani, Toxoplasma gondi, and Nippostrongylus brasiliensis.
  • mice preferably mice, rats, other rodents, rabbits, dogs, cats, swine, cattle, sheep, horses, or primates, and most preferably humans.
  • terapéuticaally effective amount refers to the amount of active compound or pharmaceutical agent that elicits the biological or medicinal response in a tissue, system, animal, individual or human that is being sought by a researcher, veterinarian, medical doctor or other clinician.
  • treating refers to one or more of (1) inhibiting the disease; e.g., inhibiting a disease, condition or disorder in an individual who is experiencing or displaying the pathology or symptomatology of the disease, condition or disorder (i.e., arresting further development of the pathology and/or symptomatology); and (2) ameliorating the disease; e.g., ameliorating a disease, condition or disorder in an individual who is experiencing or displaying the pathology or symptomatology of the disease, condition or disorder (i.e., reversing the pathology and/or symptomatology) such as decreasing the severity of disease.
  • the compounds of the invention are useful in preventing or reducing the risk of developing any of the diseases referred to herein; e.g., preventing or reducing the risk of developing a disease, condition or disorder in an individual who may be predisposed to the disease, condition or disorder but does not yet experience or display the pathology or symptomatology of the disease.
  • Cancer cell growth and survival can be impacted by multiple signaling pathways.
  • Targeting more than one signaling pathway (or more than one biological molecule involved in a given signaling pathway) may reduce the likelihood of drug-resistance arising in a cell population, and/or reduce the toxicity of treatment.
  • the compounds of the present disclosure can be used in combination with one or more other enzyme/protein/receptor inhibitors for the treatment of diseases, such as cancer or infections.
  • diseases such as cancer or infections.
  • cancers include solid tumors and liquid tumors, such as blood cancers.
  • infections include viral infections, bacterial infections, fungus infections or parasite infections.
  • the compounds of the present disclosure can be combined with one or more inhibitors of the following kinases for the treatment of cancer: Akt1, Akt2, Akt3, TGF- ⁇ P, PKA, PKG, PKC, CaM-kinase, phosphorylase kinase, MEKK, ERK, MAPK, mTOR, EGFR, HER2, HER3, HER4, INS-R, IGF-1R, IR-R, PDGF ⁇ R, PDGF ⁇ R, CSFIR, KIT, FLK-II, KDR/FLK-1, FLK-4, flt-1, FGFR1, FGFR2, FGFR3, FGFR4, c-Met, Ron, Sea, TRKA, TRKB, TRKC, FLT3, VEGFR/Flt2, Flt4, EphA1, EphA2, EphA3, EphB2, EphB4, Tie2, Src, Fyn, Lck, Fgr, Btk, Fak, SYK,
  • Non-limiting examples of inhibitors that can be combined with the compounds of the present disclosure for treatment of cancer and infections include an FGFR inhibitor (FGFR1, FGFR2, FGFR3 or FGFR4, e.g., INCB54828, INCB62079 and INCB63904), a JAK inhibitor (JAK1 and/or JAK2, e.g., ruxolitinib, baricitinib or INCB39110), an IDO inhibitor (e.g., epacadostat and NLG919), an LSD1 inhibitor (e.g., INCB59872 and INCB60003), a TDO inhibitor, a PI3K-delta inhibitor, a PI3K-gamma inhibitor such as PI3K-gamma selective inhibitor (e.g., INCB50797), a Pim inhibitor, a CSFIR inhibitor, a TAM receptor tyrosine kinases (Tyro-3, Axl, and Mer), an angiogenesis inhibitor,
  • immune checkpoint inhibitors include inhibitors against immune checkpoint molecules such as CD27, CD28, CD40, CD122, CD96, CD73, CD47, OX40, GITR, CSF1R, JAK, PI3K delta, PI3K gamma, TAM, arginase, CD137 (also known as 4-1BB), ICOS, A2AR, B7-H3, B7-H4, BTLA, CTLA-4, LAG3, TIM3, VISTA, PD-1, PD-L1 and PD-L2.
  • immune checkpoint inhibitors include inhibitors against immune checkpoint molecules such as CD27, CD28, CD40, CD122, CD96, CD73, CD47, OX40, GITR, CSF1R, JAK, PI3K delta, PI3K gamma, TAM, arginase, CD137 (also known as 4-1BB), ICOS, A2AR, B7-H3, B7-H4, BTLA, CTLA-4, LAG3, TIM
  • the immune checkpoint molecule is a stimulatory checkpoint molecule selected from CD27, CD28, CD40, ICOS, OX40, GITR and CD137.
  • the immune checkpoint molecule is an inhibitory checkpoint molecule selected from A2AR, B7-H3, B7-H4, BTLA, CTLA-4, IDO, KIR, LAG3, PD-1, TIM3, and VISTA.
  • the compounds provided herein can be used in combination with one or more agents selected from KIR inhibitors, TIGIT inhibitors, LAIR1 inhibitors, CD160 inhibitors, 2B4 inhibitors and TGFR beta inhibitors.
  • the inhibitor of an immune checkpoint molecule is anti-PDl antibody, anti-PD-Ll antibody, or anti-CTLA-4 antibody.
  • the inhibitor of an immune checkpoint molecule is an inhibitor of PD-1, e.g., an anti-PD-1 monoclonal antibody.
  • the anti-PD-1 monoclonal antibody is nivolumab, pembrolizumab (also known as MK-3475), pidilizumab, SHR-1210, PDR001, or AMP-224.
  • the anti-PD-1 monoclonal antibody is nivolumab or pembrolizumab.
  • the anti-PDl antibody is pembrolizumab.
  • the anti PD-1 antibody is SHR-1210.
  • the inhibitor of an immune checkpoint molecule is an inhibitor of PD-L1, e.g., an anti-PD-Ll monoclonal antibody.
  • the anti-PD-Ll monoclonal antibody is BMS-935559, MEDI4736, MPDL3280A (also known as RG7446), or MSB0010718C.
  • the anti-PD-Ll monoclonal antibody is MPDL3280A or MEDI4736.
  • the inhibitor of an immune checkpoint molecule is an inhibitor of CTLA-4, e.g., an anti-CTLA-4 antibody.
  • the anti-CTLA-4 antibody is ipilimumab.
  • the inhibitor of an immune checkpoint molecule is an inhibitor of LAG3, e.g., an anti-LAG3 antibody.
  • the anti-LAG3 antibody is BMS-986016 or LAG525.
  • the inhibitor of an immune checkpoint molecule is an inhibitor of GITR, e.g., an anti-GITR antibody.
  • the anti-GITR antibody is TRX518 or MK-4166.
  • the inhibitor of an immune checkpoint molecule is an inhibitor of OX40, e.g., an anti-OX40 antibody or OX40L fusion protein.
  • OX40 e.g., an anti-OX40 antibody or OX40L fusion protein.
  • the anti-OX40 antibody is MEDI0562.
  • the OX40L fusion protein is MEDI6383.
  • the agent is an alkylating agent, a proteasome inhibitor, a corticosteroid, or an immunomodulatory agent.
  • an alkylating agent include cyclophosphamide (CY), melphalan (MEL), and bendamustine.
  • the proteasome inhibitor is carfilzomib.
  • the corticosteroid is dexamethasone (DEX).
  • the immunomodulatory agent is lenalidomide (LEN) or pomalidomide (POM).
  • the compounds of the present disclosure can further be used in combination with other methods of treating cancers, for example by chemotherapy, irradiation therapy, tumor-targeted therapy, adjuvant therapy, immunotherapy or surgery.
  • immunotherapy include cytokine treatment (e.g., interferons, GM-CSF, G-CSF, IL-2), CRS-207 immunotherapy, cancer vaccine, monoclonal antibody, adoptive T cell transfer, oncolytic virotherapy and immunomodulating small molecules, including thalidomide or JAK1/2 inhibitor and the like.
  • the compounds can be administered in combination with one or more anti-cancer drugs, such as a chemotherapeutics.
  • Example chemotherapeutics include any of: abarelix, aldesleukin, alemtuzumab, alitretinoin, allopurinol, altretamine, anastrozole, arsenic trioxide, asparaginase, azacitidine, bevacizumab, bexarotene, baricitinib, bleomycin, bortezombi, bortezomib, busulfan intravenous, busulfan oral, calusterone, capecitabine, carboplatin, carmustine, cetuximab, chlorambucil, cisplatin, cladribine, clofarabine, cyclophosphamide, cytarabine, dacarbazine, dactinomycin, dalteparin sodium, dasatinib, daunorubicin, decitabine, denileukin, denileukin diftitox, dexrazox
  • anti-cancer agent(s) include antibody therapeutics such as trastuzumab (Herceptin), antibodies to costimulatory molecules such as CTLA-4 (e.g., ipilimumab), 4-1BB, antibodies to PD-1 and PD-L1, or antibodies to cytokines (IL-10, TGF- ⁇ , etc.).
  • Examples of antibodies to PD-1 and/or PD-L1 that can be combined with compounds of the present disclosure for the treatment of cancer or infections such as viral, bacteria, fungus and parasite infections include, but are not limited to, nivolumab, pembrolizumab, MPDL3280A, MEDI-4736 and SHR-1210.
  • the anti-cancer agent is an alkylating agent, a proteasome inhibitor, a corticosteroid, or an immunomodulatory agent.
  • an alkylating agent include cyclophosphamide (CY), melphalan (MEL), and bendamustine.
  • the proteasome inhibitor is carfilzomib.
  • the corticosteroid is dexamethasone (DEX).
  • the immunomodulatory agent is lenalidomide (LEN) or pomalidomide (POM).
  • immune checkpoint inhibitors include inhibitors against immune checkpoint molecules such as CD27, CD28, CD40, CD122, CD96, CD73, CD47, OX40, GITR, CSF1R, JAK, PI3K delta, PI3K gamma, TAM, arginase, CD137 (also known as 4-1BB), ICOS, A2AR, B7-H3, B7-H4, BTLA, CTLA-4, LAG3, TIM3, VISTA, PD-1, PD-L1 and PD-L2.
  • the immune checkpoint molecule is a stimulatory checkpoint molecule selected from CD27, CD28, CD40, ICOS, OX40, GITR and CD137.
  • the immune checkpoint molecule is an inhibitory checkpoint molecule selected from A2AR, B7-H3, B7-H4, BTLA, CTLA-4, IDO, KIR, LAG3, PD-1, TIM3, and VISTA.
  • the compounds provided herein can be used in combination with one or more agents selected from KIR inhibitors, TIGIT inhibitors, LAIR1 inhibitors, CD160 inhibitors, 2B4 inhibitors and TGFR beta inhibitors.
  • the inhibitor of an immune checkpoint molecule is anti-PDl antibody, anti-PD-Ll antibody, or anti-CTLA-4 antibody.
  • the inhibitor of an immune checkpoint molecule is an inhibitor of PD-1, e.g., an anti-PD-1 monoclonal antibody.
  • the anti-PD-1 monoclonal antibody is nivolumab, pembrolizumab (also known as MK-3475), pidilizumab, SHR-1210, PDR001, or AMP-224.
  • the anti-PD-1 monoclonal antibody is nivolumab or pembrolizumab.
  • the anti-PDl antibody is pembrolizumab.
  • the inhibitor of an immune checkpoint molecule is an inhibitor of PD-L1, e.g., an anti-PD-Ll monoclonal antibody.
  • the anti-PD-Ll monoclonal antibody is BMS-935559, MEDI4736, MPDL3280A (also known as RG7446), or MSB0010718C.
  • the anti-PD-Ll monoclonal antibody is MPDL3280A or MEDI4736.
  • the inhibitor of an immune checkpoint molecule is an inhibitor of CTLA-4, e.g., an anti-CTLA-4 antibody.
  • the anti-CTLA-4 antibody is ipilimumab.
  • the inhibitor of an immune checkpoint molecule is an inhibitor of LAG3, e.g., an anti-LAG3 antibody.
  • the anti-LAG3 antibody is BMS-986016 or LAG525.
  • the inhibitor of an immune checkpoint molecule is an inhibitor of GITR, e.g., an anti-GITR antibody.
  • the anti-GITR antibody is TRX518 or MK-4166.
  • the inhibitor of an immune checkpoint molecule is an inhibitor of OX40, e.g., an anti-OX40 antibody or OX40L fusion protein.
  • OX40 e.g., an anti-OX40 antibody or OX40L fusion protein.
  • the anti-OX40 antibody is MEDI0562.
  • the OX40L fusion protein is MEDI6383.
  • the compounds of the present disclosure can further be used in combination with one or more anti-inflammatory agents, steroids, immunosuppressants or therapeutic antibodies.
  • the compounds of Formula (I') or (I) or any of the formulas as described herein, a compound as recited in any of the claims and described herein, or salts thereof can be combined with another immunogenic agent, such as cancerous cells, purified tumor antigens (including recombinant proteins, peptides, and carbohydrate molecules), cells, and cells transfected with genes encoding immune stimulating cytokines.
  • tumor vaccines include peptides of melanoma antigens, such as peptides of gp100, MAGE antigens, Trp-2, MARTI and/or tyrosinase, or tumor cells transfected to express the cytokine GM-CSF.
  • tumor vaccines include the proteins from viruses implicated in human cancers such as Human Papilloma Viruses (HPV), Hepatitis Viruses (HBV and HCV) and Kaposi's Herpes Sarcoma Virus (KHSV).
  • HPV Human Papilloma Viruses
  • HBV and HCV Hepatitis Viruses
  • KHSV Kaposi's Herpes Sarcoma Virus
  • the compounds of the present disclosure can be used in combination with tumor specific antigen such as heat shock proteins isolated from tumor tissue itself.
  • the compounds of Formula (I') or (I) or any of the formulas as described herein, a compound as recited in any of the claims and described herein, or salts thereof can be combined with dendritic cells immunization to activate potent anti-tumor responses.
  • the compounds of the present disclosure can be used in combination with bispecific macrocyclic peptides that target Fe alpha or Fe gamma receptor-expressing effectors cells to tumor cells.
  • the compounds of the present disclosure can also be combined with macrocyclic peptides that activate host immune responsiveness.
  • the compounds of the present disclosure can be used in combination with bone marrow transplant for the treatment of a variety of tumors of hematopoietic origin.
  • the compounds of Formula (I') or (I) or any of the formulas as described herein, a compound as recited in any of the claims and described herein, or salts thereof can be used in combination with vaccines, to stimulate the immune response to pathogens, toxins, and self antigens.
  • pathogens for which this therapeutic approach may be particularly useful include pathogens for which there is currently no effective vaccine, or pathogens for which conventional vaccines are less than completely effective. These include, but are not limited to, HIV, Hepatitis (A, B, & C), Influenza, Herpes, Giardia, Malaria, Leishmania, Staphylococcus aureus, Pseudomonas Aeruginosa.
  • Viruses causing infections treatable by methods of the present disclosure include, but are not limit to human papillomavirus, influenza, hepatitis A, B, C or D viruses, adenovirus, poxvirus, herpes simplex viruses, human cytomegalovirus, severe acute respiratory syndrome virus, ebola virus, measles virus, herpes virus (e.g., VZV, HSV-1, HAV-6, HSV-II, and CMV, Epstein Barr virus), flaviviruses, echovirus, rhinovirus, coxsackie virus, cornovirus, respiratory syncytial virus, mumpsvirus, rotavirus, measles virus, rubella virus, parvovirus, vaccinia virus, HTLV virus, dengue virus, papillomavirus, molluscum virus, poliovirus, rabies virus, JC virus and arboviral encephalitis virus.
  • human papillomavirus influenza, hepatitis A,
  • Pathogenic bacteria causing infections treatable by methods of the disclosure include, but are not limited to, chlamydia, rickettsial bacteria, mycobacteria, staphylococci, streptococci, pneumonococci, meningococci and conococci, klebsiella, proteus, serratia, pseudomonas, legionella, diphtheria, salmonella, bacilli, cholera, tetanus, botulism, anthrax, plague, leptospirosis, and Lyme's disease bacteria.
  • Pathogenic fungi causing infections treatable by methods of the disclosure include, but are not limited to, Candida (albicans, krusei, glabrata, tropicalis, etc.), Cryptococcus neoformans, Aspergillus (fumigatus, niger, etc.), Genus Mucorales (mucor, absidia, rhizophus), Sporothrix schenkii, Blastomyces dermatitidis, Paracoccidioides brasiliensis, Coccidioides immitis and Histoplasma capsulatum.
  • Candida albicans, krusei, glabrata, tropicalis, etc.
  • Cryptococcus neoformans Aspergillus (fumigatus, niger, etc.)
  • Genus Mucorales micor, absidia, rhizophus
  • Sporothrix schenkii Blastomyces dermatitidis
  • Paracoccidioides brasiliensis C
  • Pathogenic parasites causing infections treatable by methods of the disclosure include, but are not limited to, Entamoeba histolytica, Balantidium coli, Naegleriafowleri, Acanthamoeba sp., Giardia lambia, Cryptosporidium sp., Pneumocystis carinii, Plasmodium vivax, Babesia microti, Trypanosoma brucei, Trypanosoma cruzi, Leishmania donovani, Toxoplasma gondi, and Nippostrongylus brasiliensis.
  • more than one pharmaceutical agent When more than one pharmaceutical agent is administered to a patient, they can be administered simultaneously, separately, sequentially, or in combination (e.g., for more than two agents).
  • the compounds of the present disclosure can be administered in the form of pharmaceutical compositions.
  • a composition comprising a compound of Formula (I') or (I) or any of the formulas as described herein, a compound as recited in any of the claims and described herein, or a pharmaceutically acceptable salt thereof, or any of the embodiments thereof, and at least one pharmaceutically acceptable carrier or excipient.
  • These compositions can be prepared in a manner well known in the pharmaceutical art, and can be administered by a variety of routes, depending upon whether local or systemic treatment is indicated and upon the area to be treated.
  • Administration may be topical (including transdermal, epidermal, ophthalmic and to mucous membranes including intranasal, vaginal and rectal delivery), pulmonary (e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal or intranasal), oral or parenteral.
  • Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal intramuscular or injection or infusion; or intracranial, e.g., intrathecal or intraventricular, administration.
  • Parenteral administration can be in the form of a single bolus dose, or may be, e.g., by a continuous perfusion pump.
  • compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders.
  • Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable.
  • compositions which contain, as the active ingredient, the compound of the present disclosure or a pharmaceutically acceptable salt thereof, in combination with one or more pharmaceutically acceptable carriers or excipients.
  • the composition is suitable for topical administration.
  • the active ingredient is typically mixed with an excipient, diluted by an excipient or enclosed within such a carrier in the form of, e.g., a capsule, sachet, paper, or other container.
  • the excipient serves as a diluent, it can be a solid, semi-solid, or liquid material, which acts as a vehicle, carrier or medium for the active ingredient.
  • compositions can be in the form of tablets, pills, powders, lozenges, sachets, cachets, elixirs, suspensions, emulsions, solutions, syrups, aerosols (as a solid or in a liquid medium), ointments containing, e.g., up to 10% by weight of the active compound, soft and hard gelatin capsules, suppositories, sterile injectable solutions and sterile packaged powders.
  • the active compound can be milled to provide the appropriate particle size prior to combining with the other ingredients. If the active compound is substantially insoluble, it can be milled to a particle size of less than 200 mesh. If the active compound is substantially water soluble, the particle size can be adjusted by milling to provide a substantially uniform distribution in the formulation, e.g., about 40 mesh.
  • the compounds of the invention may be milled using known milling procedures such as wet milling to obtain a particle size appropriate for tablet formation and for other formulation types.
  • Finely divided (nanoparticulate) preparations of the compounds of the invention can be prepared by processes known in the art see, e.g., WO 2002/000196 .
  • excipients include lactose, dextrose, sucrose, sorbitol, mannitol, starches, gum acacia, calcium phosphate, alginates, tragacanth, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup and methyl cellulose.
  • the formulations can additionally include: lubricating agents such as talc, magnesium stearate and mineral oil; wetting agents; emulsifying and suspending agents; preserving agents such as methyl- and propylhydroxy-benzoates; sweetening agents; and flavoring agents.
  • the compositions of the invention can be formulated so as to provide quick, sustained or delayed release of the active ingredient after administration to the patient by employing procedures known in the art.
  • the pharmaceutical composition comprises silicified microcrystalline cellulose (SMCC) and at least one compound described herein, or a pharmaceutically acceptable salt thereof.
  • SMCC silicified microcrystalline cellulose
  • the silicified microcrystalline cellulose comprises about 98% microcrystalline cellulose and about 2% silicon dioxide w/w.
  • the composition is a sustained release composition comprising at least one compound described herein, or a pharmaceutically acceptable salt thereof, and at least one pharmaceutically acceptable carrier or excipient.
  • the composition comprises at least one compound described herein, or a pharmaceutically acceptable salt thereof, and at least one component selected from microcrystalline cellulose, lactose monohydrate, hydroxypropyl methylcellulose and polyethylene oxide.
  • the composition comprises at least one compound described herein, or a pharmaceutically acceptable salt thereof, and microcrystalline cellulose, lactose monohydrate and hydroxypropyl methylcellulose.
  • the composition comprises at least one compound described herein, or a pharmaceutically acceptable salt thereof, and microcrystalline cellulose, lactose monohydrate and polyethylene oxide.
  • the composition further comprises magnesium stearate or silicon dioxide.
  • the microcrystalline cellulose is Avicel PH102TM.
  • the lactose monohydrate is Fast-flo 316TM.
  • the hydroxypropyl methylcellulose is hydroxypropyl methylcellulose 2208 K4M ( e.g., Methocel K4 M PremierTM) and/or hydroxypropyl methylcellulose 2208 K100LV ( e.g., Methocel K00LVTM).
  • the polyethylene oxide is polyethylene oxide WSR 1105 ( e.g., Polyox WSR 1105TM).
  • a wet granulation process is used to produce the composition. In some embodiments, a dry granulation process is used to produce the composition.
  • compositions can be formulated in a unit dosage form, each dosage containing from about 5 to about 1,000 mg (1 g), more usually about 100 mg to about 500 mg, of the active ingredient. In some embodiments, each dosage contains about 10 mg of the active ingredient. In some embodiments, each dosage contains about 50 mg of the active ingredient. In some embodiments, each dosage contains about 25 mg of the active ingredient.
  • unit dosage forms refers to physically discrete units suitable as unitary dosages for human subjects and other mammals, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect, in association with a suitable pharmaceutical excipient.
  • the components used to formulate the pharmaceutical compositions are of high purity and are substantially free of potentially harmful contaminants (e.g., at least National Food grade, generally at least analytical grade, and more typically at least pharmaceutical grade).
  • the composition is preferably manufactured or formulated under Good Manufacturing Practice standards as defined in the applicable regulations of the U.S. Food and Drug Administration.
  • suitable formulations may be sterile and/or substantially isotonic and/or in full compliance with all Good Manufacturing Practice regulations of the U.S. Food and Drug Administration.
  • the active compound may be effective over a wide dosage range and is generally administered in a therapeutically effective amount. It will be understood, however, that the amount of the compound actually administered will usually be determined by a physician, according to the relevant circumstances, including the condition to be treated, the chosen route of administration, the actual compound administered, the age, weight, and response of the individual patient, the severity of the patient's symptoms and the like.
  • the therapeutic dosage of a compound of the present invention can vary according to, e.g., the particular use for which the treatment is made, the manner of administration of the compound, the health and condition of the patient, and the judgment of the prescribing physician.
  • the proportion or concentration of a compound of the invention in a pharmaceutical composition can vary depending upon a number of factors including dosage, chemical characteristics (e.g., hydrophobicity), and the route of administration.
  • the compounds of the invention can be provided in an aqueous physiological buffer solution containing about 0.1 to about 10% w/v of the compound for parenteral administration. Some typical dose ranges are from about 1 ⁇ g/kg to about 1 g/kg of body weight per day.
  • the dose range is from about 0.01 mg/kg to about 100 mg/kg of body weight per day.
  • the dosage is likely to depend on such variables as the type and extent of progression of the disease or disorder, the overall health status of the particular patient, the relative biological efficacy of the compound selected, formulation of the excipient, and its route of administration. Effective doses can be extrapolated from dose-response curves derived from in vitro or animal model test systems.
  • the principal active ingredient is mixed with a pharmaceutical excipient to form a solid preformulation composition containing a homogeneous mixture of a compound of the present invention.
  • a solid preformulation composition containing a homogeneous mixture of a compound of the present invention.
  • the active ingredient is typically dispersed evenly throughout the composition so that the composition can be readily subdivided into equally effective unit dosage forms such as tablets, pills and capsules.
  • This solid preformulation is then subdivided into unit dosage forms of the type described above containing from, e.g., about 0.1 to about 1000 mg of the active ingredient of the present invention.
  • the tablets or pills of the present invention can be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action.
  • the tablet or pill can comprise an inner dosage and an outer dosage component, the latter being in the form of an envelope over the former.
  • the two components can be separated by an enteric layer which serves to resist disintegration in the stomach and permit the inner component to pass intact into the duodenum or to be delayed in release.
  • enteric layers or coatings such materials including a number of polymeric acids and mixtures of polymeric acids with such materials as shellac, cetyl alcohol and cellulose acetate.
  • liquid forms in which the compounds and compositions of the present invention can be incorporated for administration orally or by injection include aqueous solutions, suitably flavored syrups, aqueous or oil suspensions, and flavored emulsions with edible oils such as cottonseed oil, sesame oil, coconut oil, or peanut oil, as well as elixirs and similar pharmaceutical vehicles.
  • compositions for inhalation or insufflation include solutions and suspensions in pharmaceutically acceptable, aqueous or organic solvents, or mixtures thereof, and powders.
  • the liquid or solid compositions may contain suitable pharmaceutically acceptable excipients as described supra.
  • the compositions are administered by the oral or nasal respiratory route for local or systemic effect.
  • Compositions can be nebulized by use of inert gases. Nebulized solutions may be breathed directly from the nebulizing device or the nebulizing device can be attached to a face mask, tent, or intermittent positive pressure breathing machine. Solution, suspension, or powder compositions can be administered orally or nasally from devices which deliver the formulation in an appropriate manner.
  • Topical formulations can contain one or more conventional carriers.
  • ointments can contain water and one or more hydrophobic carriers selected from, e.g., liquid paraffin, polyoxyethylene alkyl ether, propylene glycol, white Vaseline, and the like.
  • Carrier compositions of creams can be based on water in combination with glycerol and one or more other components, e.g., glycerinemonostearate, PEG-glycerinemonostearate and cetylstearyl alcohol.
  • Gels can be formulated using isopropyl alcohol and water, suitably in combination with other components such as, e.g., glycerol, hydroxyethyl cellulose, and the like.
  • topical formulations contain at least about 0.1, at least about 0.25, at least about 0.5, at least about 1, at least about 2 or at least about 5 wt % of the compound of the invention.
  • the topical formulations can be suitably packaged in tubes of, e.g., 100 g which are optionally associated with instructions for the treatment of the select indication, e.g., psoriasis or other skin condition.
  • compositions can be administered to a patient already suffering from a disease in an amount sufficient to cure or at least partially arrest the symptoms of the disease and its complications. Effective doses will depend on the disease condition being treated as well as by the judgment of the attending clinician depending upon factors such as the severity of the disease, the age, weight and general condition of the patient and the like.
  • compositions administered to a patient can be in the form of pharmaceutical compositions described above. These compositions can be sterilized by conventional sterilization techniques, or may be sterile filtered. Aqueous solutions can be packaged for use as is, or lyophilized, the lyophilized preparation being combined with a sterile aqueous carrier prior to administration.
  • the pH of the compound preparations typically will be between 3 and 11, more preferably from 5 to 9 and most preferably from 7 to 8. It will be understood that use of certain of the foregoing excipients, carriers or stabilizers will result in the formation of pharmaceutical salts.
  • the therapeutic dosage of a compound of the present invention can vary according to, e.g., the particular use for which the treatment is made, the manner of administration of the compound, the health and condition of the patient, and the judgment of the prescribing physician.
  • the proportion or concentration of a compound of the invention in a pharmaceutical composition can vary depending upon a number of factors including dosage, chemical characteristics (e.g., hydrophobicity), and the route of administration.
  • the compounds of the invention can be provided in an aqueous physiological buffer solution containing about 0.1 to about 10% w/v of the compound for parenteral administration. Some typical dose ranges are from about 1 ⁇ g/kg to about 1 g/kg of body weight per day.
  • the dose range is from about 0.01 mg/kg to about 100 mg/kg of body weight per day.
  • the dosage is likely to depend on such variables as the type and extent of progression of the disease or disorder, the overall health status of the particular patient, the relative biological efficacy of the compound selected, formulation of the excipient, and its route of administration. Effective doses can be extrapolated from dose-response curves derived from in vitro or animal model test systems.
  • the compounds of the present disclosure can further be useful in investigations of biological processes in normal and abnormal tissues.
  • another aspect of the present invention relates to labeled compounds of the invention (radio-labeled, fluorescent-labeled, etc .) that would be useful not only in imaging techniques but also in assays, both in vitro and in vivo, for localizing and quantitating PD-1 or PD-L1 protein in tissue samples, including human, and for identifying PD-L1 ligands by inhibition binding of a labeled compound.
  • the present invention includes PD-1/PD-L1 binding assays that contain such labeled compounds.
  • the present invention further includes isotopically-substituted compounds of the disclosure.
  • An “isotopically-substituted” compound is a compound of the invention where one or more atoms are replaced or substituted by an atom having an atomic mass or mass number different from the atomic mass or mass number typically found in nature ( i.e., naturally occurring). It is to be understood that a "radio-labeled” compound is a compound that has incorporated at least one isotope that is radioactive (e.g., radionuclide).
  • Suitable radionuclides that may be incorporated in compounds of the present invention include but are not limited to 3 H (also written as T for tritium), 11 C, 13 C, 14 C, 13 N, 15 N, 15 O, 17 O, 18 O, 18 F, 35 S, 36 Cl, 82 Br, 75 Br, 76 Br, 77 Br, 123 I, 124 I, 125 I and 131 I.
  • the radionuclide that is incorporated in the instant radio-labeled compounds will depend on the specific application of that radio-labeled compound. For example, for in vitro PD-L1 protein labeling and competition assays, compounds that incorporate 3 H, 14 C, 82 Br, 125 I, 131 I, 35 S or will generally be most useful.
  • radionuclide is selected from the group consisting of 3 H, 14 C, 125 I, 35 S and 82 Br. Synthetic methods for incorporating radio-isotopes into organic compounds are known in the art.
  • a labeled compound of the invention can be used in a screening assay to identify and/or evaluate compounds.
  • a newly synthesized or identified compound i.e., test compound
  • a test compound which is labeled can be evaluated for its ability to bind a PD-L1 protein by monitoring its concentration variation when contacting with the PD-L1 protein, through tracking of the labeling.
  • a test compound (labeled) can be evaluated for its ability to reduce binding of another compound which is known to bind to a PD-L1 protein (i.e., standard compound). Accordingly, the ability of a test compound to compete with the standard compound for binding to the PD-L1 protein directly correlates to its binding affinity.
  • the standard compound is labeled and test compounds are unlabeled. Accordingly, the concentration of the labeled standard compound is monitored in order to evaluate the competition between the standard compound and the test compound, and the relative binding affinity of the test compound is thus ascertained.
  • kits useful useful, e.g., in the treatment or prevention of diseases or disorders associated with the activity of PD-L1 including its interaction with other proteins such as PD-1 and B7-1 (CD80), such as cancer or infections, which include one or more containers containing a pharmaceutical composition comprising a therapeutically effective amount of a compound of Formula (I') or (I), or any of the embodiments thereof.
  • kits can further include one or more of various conventional pharmaceutical kit components, such as, e.g., containers with one or more pharmaceutically acceptable carriers, additional containers, etc., as will be readily apparent to those skilled in the art.
  • Instructions, either as inserts or as labels, indicating quantities of the components to be administered, guidelines for administration, and/or guidelines for mixing the components, can also be included in the kit.
  • racemic 2,2'-bis(diphenylphosphino)-1,1'-binaphthalene (Aldrich, cat#481084: 30 mg, 0.05 mmol), 2-methylbiphenyl-3-amine (262 mg, 1.43 mmol), ethyl 8-bromoquinoline-3-carboxylate (Ark Pharm, cat#AK-47201: 0.200 g, 0.714 mmol), bis(dibenzylideneacetone)palladium(0) (Aldrich, cat#227994: 0.012 g, 0.021 mmol) and sodium tert-butoxide (Aldrich, cat#359270: 96.7 mg, 1.01 mmol).
  • Step 3 ⁇ 8-[(2-methylbiphenyl-3-yl)amino]quinolin-3-yl ⁇ methanol
  • Step 1 3-bromo-N-(2-methylbiphenyl-3-yl)-1,7-naphthyridin-8-amine
  • Step 2 N-(2-methylbiphenyl-3-yl)-3-vinyl-1,7-naphthyridin-8-amine
  • Step 3 8-[(2-methylbiphenyl-3-yl)amino]-1,7-naphthyridine-3-carbaldehyde
  • Step 4 2-[( ⁇ 8-[(2-methylbiphenyl-3-yl)amino]-1,7-naphthyridin-3-yl ⁇ methyl)amino]ethanol
  • This compound was prepared using a similar procedure as described for Example 1, Step 5, with 8-[(2-methylbiphenyl-3-yl)amino]-1,7-naphthyridine-3-carbaldehyde (Step 3) replacing 8-[(2-methylbiphenyl-3-yl)amino]quinoline-3-carbaldehyde.
  • LC-MS calculated for C 24 H 25 N 4 O (M+H) + : m/z 385.2; found 385.2.
  • Step 1 methyl 1-((8-(2-methylbiphenyl-3-ylamino)-1,7-naphthyridin-3-yl)methyl)piperidine-2-carboxylate
  • Step 2 1-( ⁇ 8-[(2-methylbiphenyl-3-yl)amino]-1,7-naphthyridin-3-yl ⁇ methyl)piperidine-2-carboxylic acid
  • Step 1 7-bromo-N-(2-methylbiphenyl-3-yl)pyrido[3,2-d]pyrimidin-4-amine
  • Step 3 4-[(2-methylbiphenyl-3-yl)amino]pyrido[3,2-d]pyrimidine-7-carbaldehyde
  • Step 4 methyl 1-((4-(2-methylbiphenyl-3-ylamino)pyrido[3,2-d]pyrimidin-7-yl)methyl)piperidine-2-carboxylate
  • Step 5 1-( ⁇ 4-[(2-methylbiphenyl-3-yl)amino]pyrido[3,2-d]pyrimidin-7-yl ⁇ methyl)piperidine-2-carboxylic acid
  • This compound was prepared using a similar procedure as described for Example 3, Step 2, with methyl 1-((4-(2-methylbiphenyl-3-ylamino)pyrido[3,2-d]pyrimidin-7-yl)methyl)piperidine-2-carboxylate (Step 4) replacing methyl 1-((8-(2-methylbiphenyl-3-ylamino)-1,7-naphthyridin-3-yl)methyl)piperidine-2-carboxylate.
  • LC-MS calculated for C 27 H 28 N 5 O 2 (M+H) + : m/z 454.2; found 454.3.
  • Step 1 4-chloro-N-(2-methylbiphenyl-3-yl)-1, 7-naphthyridin-8-amine
  • Step 2 N-(2-methylbiphenyl-3-yl)-4-vinyl-1,7-naphthyridin-8-amine
  • Step 3 8-[(2-methylbiphenyl-3-yl)amino]-1,7-naphthyridine-4-carbaldehyde
  • Step 2 N-(2-methylbiphenyl-3-yl)-4-vinyl-1,7-naphthyridin-8-amine (Step 2) replacing N-(2-methylbiphenyl-3-yl)-3-vinyl-1,7-naphthyridin-8-amine.
  • the reaction mixture was stirred at room temperature for 18 h, and then was diluted with ethyl acetate (10 mL). The organic layer was separated and the aqueous layer was further extracted with ethyl acetate (2 x 10 mL). The combined organic layers were washed with brine, dried over sodium sulfate, filtered, and concentrated in vacuo.
  • Step 4 methyl 1-((8-(2-methylbiphenyl-3-ylamino)-1,7-naphthyridin-4-yl)methyl)piperidine-2-carboxylate
  • Step 5 1-( ⁇ 8-[(2-methylbiphenyl-3-yl)amino]-1,7-naphthyridin-4-yl ⁇ methyl)piperidine-2-carboxylic acid
  • This compound was prepared using a similar procedure as described for Example 1, Step 5, with 8-[(2-methylbiphenyl-3-yl)amino]quinoline-4-carbaldehyde (Step 1) replacing 8-[(2-methylbiphenyl-3-yl)amino]quinoline-3-carbaldehyde.
  • Step 1 methyl 1-((8-(2-methylbiphenyl-3-ylamino)quinolin-4-yl)methyl)piperidine-2-carboxylate
  • Step 1 This compound was prepared using a similar procedure as described for Example 3, Step 2, with methyl 1-((8-(2-methylbiphenyl-3-ylamino)quinolin-4-yl)methyl)piperidine-2-carboxylate (Step 1) replacing methyl 1-((8-(2-methylbiphenyl-3-ylamino)-1,7-naphthyridin-3-yl)methyl)piperidine-2-carboxylate.
  • Step 1 diethyl ⁇ [(2-chloropyridin-3-yl)amino]methylene ⁇ malonate
  • Step 2 ethyl 8-chloro-4-oxo-1,4-dihydro-1,7-naphthyridine-3-carboxylate
  • Step 3 ethyl 8-(2-methylbiphenyl-3-ylamino)-4-oxo-1,4-dihydro-1,7-naphthyridine-3-carboxylate
  • Step 4 ethyl 4-chloro-8-[(2-methylbiphenyl-3-yl)amino]-1,7-naphthyridine-3-carboxylate
  • Step 5 ⁇ 4-chloro-8-[(2-methylbiphenyl-3-yl)amino]-1,7-naphthyridin-3-yl ⁇ methanol
  • Step 6 4-chloro-8-[(2-methylbiphenyl-3-yl)amino]-1,7-naphthyridine-3-carbaldehyde
  • Step 7 2-[( ⁇ 4-chloro-8-[(2-methylbiphenyl-3-yl)amino]-1,7-naphthyridin-3-yl ⁇ methyl)amino]ethanol
  • Step 1 4-methoxy-8-[(2-methylbiphenyl-3-yl)amino]-1,7-naphthyridine-3-carbaldehyde
  • Step 2 2-[( ⁇ 4-methoxy-8-[(2-methylbiphenyl-3-yl)amino]-1,7-naphthyridin-3-yl ⁇ methyl)amino]ethanol
  • This compound was prepared using a similar procedure as described for Example 9, Step 7 with 4-methoxy-8-[(2-methylbiphenyl-3-yl)amino]-1,7-naphthyridine-3-carbaldehyde replacing 4-chloro-8-[(2-methylbiphenyl-3-yl)amino]-1,7-naphthyridine-3-carbaldehyde.
  • Step 1 methyl 1-( ⁇ 4-chloro-8-[(2-methylbiphenyl-3-yl)amino]-1,7-naphthyridin-3-yl ⁇ methyl)piperidine-2-carboxylate
  • Step 2 1-( ⁇ 4-chloro-8-[(2-methylbiphenyl-3-yl)amino]-1,7-naphthyridin-3-yl ⁇ methyl)piperidine-2-carboxylic acid
  • Step 2 4-chloro-N-[3-(2,3-dihydro-1,4-benzodioxin-6-yl)-2-methylphenyl]-1,7-naphthyridin-8-amine
  • Step 3 N-[3-(2,3-dihydro-1,4-benzodioxin-6-yl)-2-methylphenyl]-4-vinyl-1,7-naphthyridin-8-amine
  • Step 4 8- ⁇ [3-(2,3-dihydro-1,4-benzodioxin-6-yl)-2-methylphenyl]amino ⁇ -1,7-naphthyridine-4-carbaldehyde
  • Step 5 2- ⁇ [(8- ⁇ [3-(2,3-dihydro-1,4-benzodioxin-6-yl)-2-methylphenyl]amino ⁇ -1,7-naphthyridin-4-yl)methyl]amino ⁇ ethanol
  • Step 1 methyl 1-((8-(3-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-2-methylphenylamino)-1,7-naphthyridin-4-yl)methyl)piperidine-2-carboxylate
  • Step 2 1-[(8- ⁇ [3-(2,3-dihydro-1,4-benzodioxin-6-yl)-2-methylphenyl]amino ⁇ -1,7-naphthyridin-4-yl)methyl]piperidine-2-carboxylic acid
  • Step 4 N-(2-methylbiphenyl-3-yl)-2-vinylpyrido[3,4-b]pyrazin-5-amine
  • Step 5 5-[(2-methylbiphenyl-3-yl)amino]pyrido[3,4-b]pyrazine-2-carbaldehyde
  • Step 6 2-[( ⁇ 5-[(2-methylbiphenyl-3-yl)amino]pyrido[3,4-b]pyrazin-2-yl ⁇ methyl)amino]ethanol
  • Step 2 8-chloro-3-vinyl-1,7-naphthyridine
  • Step 5 2-(2,3-dihydro-1,4-benzodioxin-6-yl)-6-[(3- ⁇ [(2-hydroxyethyl)amino]methyl ⁇ -1,7-naphthyridin-8-yl)amino]benzonitrile
  • Example 12 3-(2,3-dihydro-1,4-benzodioxin-6-yl)-2-methylaniline ( Example 12, Step 1: 0.0102 g, 0.0421 mmol), 2- ⁇ [(8-chloro-1,7-naphthyridin-3-yl)methyl]amino ⁇ ethanol ( Example 16, Step 4 : 10.00 mg, 0.04207 mmol), cesium carbonate (0.0274 g, 0.0841 mmol), 1,4-dioxane (1.00 mL), (9,9-dimethyl-9H-xanthene-4,5-diyl)bis(diphenylphosphine) ( Aldrich, cat#526460 : 4.9 mg, 0.0084 mmol), and tris(dibenzylideneacetone)dipalladium(0) ( Aldrich, cat#328774 : 4.4 mg, 0.0042 mmol).
  • Step 1 2-[( ⁇ 8-[(3-bromo-2-methylphenyl)amino]-1,7-naphthyridin-3-yl ⁇ methyl)amino]ethanol
  • Step 2 2-[( ⁇ 8-[(3-cyclohex-1-en-1-yl-2-methylphenyl)amino]-1,7-naphthyridin-3-yl ⁇ methyl)amino]ethanol
  • Step 2 3-[(3- ⁇ [(2-hydroxyethyl)amino]methyl ⁇ -1,7-naphthyridin-8-yl)amino]biphenyl-2-carbonitrile
  • This compound was prepared using a similar procedure as described for Example 16, Step 5 with 3-aminobiphenyl-2-carbonitrile replacing 2-amino-6-(2,3-dihydro-1,4-benzodioxin-6-yl)benzonitrile.
  • LC-MS calculated for C 24 H 22 N 5 O (M+H) + : m/z 396.2; found 396.3.
  • Step 2 2-cyclohex-1-en-1-yl-6-[(3- ⁇ [(2-hydroxyethyl)amino]methyl ⁇ -1,7-naphthyridin-8-yl)amino]benzonitrile
  • This compound was prepared using a similar procedure as described for Example 16, Step 5 with 2-amino-6-cyclohex-1-en-1-ylbenzonitrile replacing 2-amino-6-(2,3-dihydro-1,4-benzodioxin-6-yl)benzonitrile.
  • Step 2 2-cyclohexyl-6-[(3- ⁇ [(2-hydroxyethyl)amino]methyl ⁇ -1,7-naphthyridin-8-yl)amino]benzonitrile
  • This compound was prepared using a similar procedure as described for Example 16, Step 5 with 2-amino-6-cyclohexylbenzonitrile replacing 2-amino-6-(2,3-dihydro-1,4-benzodioxin-6-yl)benzonitrile.
  • Example A PD-1/PD-L1 Homogeneous Time-Resolved Fluorescence (HTRF) binding assay
  • the assays were conducted in a standard black 384-well polystyrene plate with a final volume of 20 ⁇ L. Inhibitors were first serially diluted in DMSO and then added to the plate wells before the addition of other reaction components. The final concentration of DMSO in the assay was 1%. The assays were carried out at 25° C in the PBS buffer (pH 7.4) with 0.05% Tween-20 and 0.1% BSA. Recombinant human PD-L1 protein (19-238) with a His-tag at the C-terminus was purchased from AcroBiosystems (PD1-H5229).
  • Recombinant human PD-1 protein (25-167) with Fc tag at the C-terminus was also purchased from AcroBiosystems (PD1-H5257).
  • PD-L1 and PD-1 proteins were diluted in the assay buffer and 10 ⁇ L was added to the plate well. Plates were centrifuged and proteins were preincubated with inhibitors for 40 minutes. The incubation was followed by the addition of 10 ⁇ L of HTRF detection buffer supplemented with Europium cryptate-labeled anti-human IgG (PerkinElmer-AD0212) specific for Fc and anti-His antibody conjugated to SureLight®-Allophycocyanin (APC, PerkinElmer-AD0059H).
  • IC 50 determination was performed by fitting the curve of percent control activity versus the log of the inhibitor concentration using the GraphPad Prism 5.0 software.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Virology (AREA)
  • Communicable Diseases (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pulmonology (AREA)
  • Molecular Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Hematology (AREA)
  • Cardiology (AREA)
  • Diabetes (AREA)
  • Obesity (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Biotechnology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • AIDS & HIV (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Quinoline Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
EP20202254.7A 2015-12-22 2016-12-21 Heterocyclische verbindungen als immunmodulatoren Withdrawn EP3828171A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP23189545.9A EP4292650A3 (de) 2015-12-22 2016-12-21 Heterocyclische verbindungen als immunmodulatoren

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562270931P 2015-12-22 2015-12-22
US201662324502P 2016-04-19 2016-04-19
US201662385341P 2016-09-09 2016-09-09
PCT/US2016/067925 WO2017112730A1 (en) 2015-12-22 2016-12-21 Heterocyclic compounds as immunomodulators
EP16826549.4A EP3394033B1 (de) 2015-12-22 2016-12-21 Heterocyclische verbindungen als immunmodulatoren

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP16826549.4A Division-Into EP3394033B1 (de) 2015-12-22 2016-12-21 Heterocyclische verbindungen als immunmodulatoren
EP16826549.4A Division EP3394033B1 (de) 2015-12-22 2016-12-21 Heterocyclische verbindungen als immunmodulatoren

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP23189545.9A Division EP4292650A3 (de) 2015-12-22 2016-12-21 Heterocyclische verbindungen als immunmodulatoren

Publications (1)

Publication Number Publication Date
EP3828171A1 true EP3828171A1 (de) 2021-06-02

Family

ID=57799827

Family Applications (3)

Application Number Title Priority Date Filing Date
EP23189545.9A Pending EP4292650A3 (de) 2015-12-22 2016-12-21 Heterocyclische verbindungen als immunmodulatoren
EP16826549.4A Active EP3394033B1 (de) 2015-12-22 2016-12-21 Heterocyclische verbindungen als immunmodulatoren
EP20202254.7A Withdrawn EP3828171A1 (de) 2015-12-22 2016-12-21 Heterocyclische verbindungen als immunmodulatoren

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP23189545.9A Pending EP4292650A3 (de) 2015-12-22 2016-12-21 Heterocyclische verbindungen als immunmodulatoren
EP16826549.4A Active EP3394033B1 (de) 2015-12-22 2016-12-21 Heterocyclische verbindungen als immunmodulatoren

Country Status (33)

Country Link
US (3) US20170174679A1 (de)
EP (3) EP4292650A3 (de)
JP (2) JP6911031B2 (de)
KR (1) KR20180100585A (de)
CN (2) CN108699001B (de)
AU (2) AU2016379372A1 (de)
BR (1) BR112018012756A2 (de)
CA (1) CA3009474A1 (de)
CL (1) CL2018001685A1 (de)
CO (1) CO2018007528A2 (de)
CR (1) CR20180374A (de)
CY (1) CY1124055T1 (de)
DK (1) DK3394033T3 (de)
EA (1) EA201891494A1 (de)
ES (1) ES2844374T3 (de)
HR (1) HRP20210190T1 (de)
HU (1) HUE052722T2 (de)
IL (2) IL260166B (de)
LT (1) LT3394033T (de)
MA (1) MA55194A (de)
MD (1) MD3394033T2 (de)
MX (2) MX2018007774A (de)
PE (1) PE20230731A1 (de)
PH (1) PH12018501340A1 (de)
PL (1) PL3394033T3 (de)
PT (1) PT3394033T (de)
RS (1) RS61350B1 (de)
SG (2) SG10202005790VA (de)
SI (1) SI3394033T1 (de)
TW (2) TWI767896B (de)
UA (1) UA126113C2 (de)
WO (1) WO2017112730A1 (de)
ZA (1) ZA201804909B (de)

Families Citing this family (153)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8754114B2 (en) 2010-12-22 2014-06-17 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
CA2876689C (en) 2012-06-13 2022-04-26 Incyte Corporation Substituted tricyclic compounds as fgfr inhibitors
RS56924B9 (sr) 2013-04-19 2019-09-30 Incyte Holdings Corp Biciklični heterocikli kao fgfr inhibitori
US10851105B2 (en) 2014-10-22 2020-12-01 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
MA41551A (fr) 2015-02-20 2017-12-26 Incyte Corp Hétérocycles bicycliques utilisés en tant qu'inhibiteurs de fgfr4
MX2017010673A (es) 2015-02-20 2018-03-21 Incyte Corp Heterociclos biciclicos como inhibidores de receptores del factor de crecimiento fibroblastico (fgfr).
TW201718581A (zh) 2015-10-19 2017-06-01 英塞特公司 作為免疫調節劑之雜環化合物
TWI763641B (zh) 2015-11-19 2022-05-11 美商英塞特公司 作為免疫調節劑之雜環化合物
MX2018007774A (es) 2015-12-22 2018-11-09 Incyte Corp Compuestos heterociclicos como inmunomoduladores.
AR108396A1 (es) 2016-05-06 2018-08-15 Incyte Corp Compuestos heterocíclicos como inmunomoduladores
US20170342060A1 (en) 2016-05-26 2017-11-30 Incyte Corporation Heterocyclic compounds as immunomodulators
LT3472167T (lt) 2016-06-20 2022-11-10 Incyte Corporation Heterocikliniai junginiai kaip imunomoduliatoriai
CN109803651B (zh) 2016-06-27 2022-05-31 凯莫森特里克斯股份有限公司 免疫调节剂化合物
US20180016260A1 (en) 2016-07-14 2018-01-18 Incyte Corporation Heterocyclic compounds as immunomodulators
MA46045A (fr) 2016-08-29 2021-04-28 Incyte Corp Composés hétérocycliques utilisés comme immunomodulateurs
CN117402852A (zh) 2016-10-14 2024-01-16 精密生物科学公司 对乙肝病毒基因组中的识别序列特异性的工程化大范围核酸酶
MA47099A (fr) * 2016-12-22 2021-05-12 Incyte Corp Composés hétéroaromatiques bicycliques utilisés en tant qu'immunomodulateurs
US20180177784A1 (en) * 2016-12-22 2018-06-28 Incyte Corporation Heterocyclic compounds as immunomodulators
WO2018119221A1 (en) 2016-12-22 2018-06-28 Incyte Corporation Pyridine derivatives as immunomodulators
KR102641030B1 (ko) 2016-12-22 2024-02-29 인사이트 코포레이션 Pd-l1 내재화 유도제로서의 테트라하이드로 이미다조[4,5-c]피리딘 유도체
EP3558989B1 (de) 2016-12-22 2021-04-14 Incyte Corporation Triazolo[1,5-a]pyridin-derivate als immunmodulatoren
ES2934230T3 (es) 2016-12-22 2023-02-20 Incyte Corp Derivados de benzooxazol como inmunomoduladores
JOP20180040A1 (ar) 2017-04-20 2019-01-30 Gilead Sciences Inc مثبطات pd-1/pd-l1
US11130740B2 (en) 2017-04-25 2021-09-28 Arbutus Biopharma Corporation Substituted 2,3-dihydro-1H-indene analogs and methods using same
AR111960A1 (es) 2017-05-26 2019-09-04 Incyte Corp Formas cristalinas de un inhibidor de fgfr y procesos para su preparación
CN111225896B (zh) 2017-07-28 2024-03-26 凯莫森特里克斯股份有限公司 免疫调节剂化合物
CN111225665B (zh) 2017-08-08 2023-12-08 凯莫森特里克斯股份有限公司 大环免疫调节剂
US11203610B2 (en) 2017-12-20 2021-12-21 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2′3′ cyclic dinucleotides with phosphonate bond activating the sting adaptor protein
CN111566120B (zh) 2017-12-20 2023-09-29 捷克共和国有机化学与生物化学研究所 活化sting转接蛋白的具有膦酸酯键的3’3’环状二核苷酸
BR112020016466A2 (pt) 2018-02-13 2020-12-15 Gilead Sciences, Inc. Composto, composição farmacêutica, métodos para inibir pd-1, pd-l1 e/ou a interação de pd-1/pd-l1, para tratar câncer e para aprimorar a função de células-t em pacientes com hepatite b crônica (chb), e, kit para tratar ou prevenir câncer ou uma doença ou condição.
WO2019165043A2 (en) 2018-02-22 2019-08-29 Chemocentryx, Inc. Indane-amines as pd-l1 antagonists
CA3091142C (en) 2018-02-26 2023-04-11 Gilead Sciences, Inc. Substituted pyrrolizine compounds and uses thereof
CN117903140A (zh) 2018-02-27 2024-04-19 因赛特公司 作为a2a/a2b抑制剂的咪唑并嘧啶和三唑并嘧啶
EP4212529A1 (de) 2018-03-30 2023-07-19 Incyte Corporation Heterocyclische verbindungen als immunmodulatoren
WO2019195181A1 (en) 2018-04-05 2019-10-10 Gilead Sciences, Inc. Antibodies and fragments thereof that bind hepatitis b virus protein x
TWI818007B (zh) 2018-04-06 2023-10-11 捷克科學院有機化學與生物化學研究所 2'3'-環二核苷酸
TW202005654A (zh) 2018-04-06 2020-02-01 捷克科學院有機化學與生物化學研究所 2,2,─環二核苷酸
KR20200140867A (ko) 2018-04-06 2020-12-16 인스티튜트 오브 오가닉 케미스트리 앤드 바이오케미스트리 에이에스 씨알 브이.브이.아이. 3'3'-사이클릭 다이뉴클레오티드
US11142750B2 (en) 2018-04-12 2021-10-12 Precision Biosciences, Inc. Optimized engineered meganucleases having specificity for a recognition sequence in the Hepatitis B virus genome
US10899735B2 (en) 2018-04-19 2021-01-26 Gilead Sciences, Inc. PD-1/PD-L1 inhibitors
WO2019211799A1 (en) 2018-05-03 2019-11-07 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2'3'-cyclic dinucleotide analogue comprising a cyclopentanyl modified nucleotide
EP3788047A2 (de) 2018-05-04 2021-03-10 Incyte Corporation Feste formen eines fgfr-inhibitors und verfahren zur herstellung davon
SG11202010882XA (en) 2018-05-04 2020-11-27 Incyte Corp Salts of an fgfr inhibitor
CN112752756A (zh) 2018-05-11 2021-05-04 因赛特公司 作为PD-L1免疫调节剂的四氢-咪唑并[4,5-c]吡啶衍生物
MA52940A (fr) 2018-05-18 2021-04-28 Incyte Corp Dérivés de pyrimidine fusionnés utilisés en tant qu'inhibiteurs de a2a/a2b
KR20210018253A (ko) 2018-05-31 2021-02-17 오노 야꾸힝 고교 가부시키가이샤 면역 체크포인트 저해약의 유효성 판정 바이오마커
US20210253614A1 (en) 2018-05-31 2021-08-19 Peloton Therapeutics, Inc. Compositions and methods for inhibiting cd73
CA3103286C (en) * 2018-07-13 2023-05-09 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
WO2020015716A1 (en) * 2018-07-19 2020-01-23 Betta Pharmaceuticals Co., Ltd Immunomodulators, compositions and methods thereof
WO2020025030A1 (zh) * 2018-08-01 2020-02-06 上海轶诺药业有限公司 一类具有免疫调节功能的芳香化合物的制备和应用
WO2020028097A1 (en) 2018-08-01 2020-02-06 Gilead Sciences, Inc. Solid forms of (r)-11-(methoxymethyl)-12-(3-methoxypropoxy)-3,3-dimethyl-8-0x0-2,3,8,13b-tetrahydro-1h-pyrido[2,1-a]pyrrolo[1,2-c] phthalazine-7-c arboxylic acid
EP3856348B1 (de) 2018-09-25 2024-01-03 Incyte Corporation Pyrazolo[4,3-d]pyrimidinverbindungen als alk2 und/oder fgfr-modulatoren
US11066404B2 (en) 2018-10-11 2021-07-20 Incyte Corporation Dihydropyrido[2,3-d]pyrimidinone compounds as CDK2 inhibitors
TW202028212A (zh) 2018-10-11 2020-08-01 日商小野藥品工業股份有限公司 Sting促效化合物
AU2019366355B2 (en) 2018-10-24 2022-10-13 Gilead Sciences, Inc. PD-1/PD-L1 inhibitors
PE20211655A1 (es) 2018-10-31 2021-08-24 Gilead Sciences Inc Compuestos de 6-azabencimidazol sustituidos como inhibidores de hpk1
TWI721624B (zh) 2018-10-31 2021-03-11 美商基利科學股份有限公司 經取代之6-氮雜苯并咪唑化合物
EP3875458A4 (de) 2018-11-02 2022-08-24 Shanghai Maxinovel Pharmaceuticals Co., Ltd. Diphenylähnliche verbindungen, zwischenprodukte davon, herstellungsverfahren dafür, pharmazeutische zusammensetzung davon und verwendungen davon
CA3124088A1 (en) 2018-12-20 2020-06-25 Incyte Corporation Imidazopyridazine and imidazopyridine compounds as inhibitors of activin receptor-like kinase-2
TWI829857B (zh) 2019-01-29 2024-01-21 美商英塞特公司 作為a2a / a2b抑制劑之吡唑并吡啶及三唑并吡啶
WO2020168178A1 (en) 2019-02-15 2020-08-20 Incyte Corporation Cyclin-dependent kinase 2 biomarkers and uses thereof
WO2020168197A1 (en) 2019-02-15 2020-08-20 Incyte Corporation Pyrrolo[2,3-d]pyrimidinone compounds as cdk2 inhibitors
US11472791B2 (en) 2019-03-05 2022-10-18 Incyte Corporation Pyrazolyl pyrimidinylamine compounds as CDK2 inhibitors
US11766447B2 (en) 2019-03-07 2023-09-26 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3′3′-cyclic dinucleotide analogue comprising a cyclopentanyl modified nucleotide as sting modulator
JP7350872B2 (ja) 2019-03-07 2023-09-26 インスティチュート オブ オーガニック ケミストリー アンド バイオケミストリー エーエスシーアール,ヴイ.ヴイ.アイ. 3’3’-環状ジヌクレオチドおよびそのプロドラッグ
US20220152078A1 (en) 2019-03-07 2022-05-19 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2'3'-cyclic dinucleotides and prodrugs thereof
US11628162B2 (en) 2019-03-08 2023-04-18 Incyte Corporation Methods of treating cancer with an FGFR inhibitor
EP3943083A4 (de) 2019-03-22 2023-06-07 Guangzhou Maxinovel Pharmaceuticals Co., Ltd. Kleinmoleküliger inhibitor von pd-1/pd-l1, pharmazeutische zusammensetzung daraus mit pd-l1-antikörper und anwendung davon
US11919904B2 (en) 2019-03-29 2024-03-05 Incyte Corporation Sulfonylamide compounds as CDK2 inhibitors
TWI751517B (zh) 2019-04-17 2022-01-01 美商基利科學股份有限公司 類鐸受體調節劑之固體形式
TWI751516B (zh) 2019-04-17 2022-01-01 美商基利科學股份有限公司 類鐸受體調節劑之固體形式
WO2020223558A1 (en) 2019-05-01 2020-11-05 Incyte Corporation Tricyclic amine compounds as cdk2 inhibitors
US11440914B2 (en) 2019-05-01 2022-09-13 Incyte Corporation Tricyclic amine compounds as CDK2 inhibitors
WO2020232256A1 (en) 2019-05-15 2020-11-19 Chemocentryx, Inc. Triaryl compounds for treatment of pd-l1 diseases
TWI826690B (zh) 2019-05-23 2023-12-21 美商基利科學股份有限公司 經取代之烯吲哚酮化物及其用途
SG11202112875UA (en) 2019-06-20 2021-12-30 Chemocentryx Inc Compounds for treatment of pd-l1 diseases
US11591329B2 (en) 2019-07-09 2023-02-28 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11872217B2 (en) 2019-07-10 2024-01-16 Chemocentryx, Inc. Indanes as PD-L1 inhibitors
WO2021011891A1 (en) 2019-07-18 2021-01-21 Gilead Sciences, Inc. Long-acting formulations of tenofovir alafenamide
WO2021025031A1 (ja) 2019-08-05 2021-02-11 小野薬品工業株式会社 免疫チェックポイント阻害薬の有効性判定バイオマーカー
US11753406B2 (en) 2019-08-09 2023-09-12 Incyte Corporation Salts of a PD-1/PD-L1 inhibitor
AR119765A1 (es) 2019-08-14 2022-01-12 Incyte Corp Compuestos de imidazolil pirimidinilamina como inhibidores de cdk2
WO2021034804A1 (en) 2019-08-19 2021-02-25 Gilead Sciences, Inc. Pharmaceutical formulations of tenofovir alafenamide
JP7398556B2 (ja) 2019-09-30 2023-12-14 ギリアード サイエンシーズ, インコーポレイテッド Hbvワクチン及びhbvを治療する方法
BR112022005826A2 (pt) 2019-09-30 2022-06-21 Incyte Corp Compostos de pirido[3,2-d]pirimidina como imunomoduladores
US20210094935A1 (en) 2019-10-01 2021-04-01 Incyte Corporation Bicyclic heterocycles as fgfr inhibitors
WO2021072232A1 (en) 2019-10-11 2021-04-15 Incyte Corporation Bicyclic amines as cdk2 inhibitors
MX2022004513A (es) 2019-10-14 2022-07-19 Incyte Corp Heterociclos biciclicos como inhibidores de los receptores del factor de crecimiento de fibroblastos (fgfr).
KR20220084119A (ko) 2019-10-16 2022-06-21 케모센트릭스, 인크. Pd-l1 질환의 치료를 위한 헤테로아릴-바이페닐 아미드
JP2022551972A (ja) 2019-10-16 2022-12-14 ケモセントリックス,インコーポレイティド Pd-l1疾患の治療のためのヘテロアリール-ビフェニルアミン
WO2021076728A1 (en) 2019-10-16 2021-04-22 Incyte Corporation Bicyclic heterocycles as fgfr inhibitors
BR112022009031A2 (pt) 2019-11-11 2022-10-11 Incyte Corp Sais e formas cristalinas de um inibidor de pd-1/pd-l1
CR20220285A (es) 2019-12-04 2022-10-27 Incyte Corp Derivados de un inhibidor de fgfr
US11897891B2 (en) 2019-12-04 2024-02-13 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors
CN116057068A (zh) 2019-12-06 2023-05-02 精密生物科学公司 对乙型肝炎病毒基因组中的识别序列具有特异性的优化的工程化大范围核酸酶
WO2021138512A1 (en) 2020-01-03 2021-07-08 Incyte Corporation Combination therapy comprising a2a/a2b and pd-1/pd-l1 inhibitors
CN113348170B (zh) 2020-01-03 2023-12-22 上海翰森生物医药科技有限公司 联苯类衍生物抑制剂、其制备方法和应用
US20210269434A1 (en) 2020-01-10 2021-09-02 Incyte Corporation Tricyclic compounds as inhibitors of kras
WO2021146424A1 (en) 2020-01-15 2021-07-22 Incyte Corporation Bicyclic heterocycles as fgfr inhibitors
US11530218B2 (en) 2020-01-20 2022-12-20 Incyte Corporation Spiro compounds as inhibitors of KRAS
TW202140487A (zh) 2020-02-06 2021-11-01 美商英塞特公司 Pi3k抑制劑之鹽及固體形式以及其製備方法
IL296065A (en) 2020-03-06 2022-10-01 Incyte Corp Combined treatment including axl/mer and pd-1/pd-l1 inhibitors
CN115605493A (zh) 2020-03-20 2023-01-13 吉利德科学公司(Us) 4′-c-取代的-2-卤代-2′-脱氧腺苷核苷的前药及其制备和使用方法
EP4134134A4 (de) 2020-04-10 2023-12-27 ONO Pharmaceutical Co., Ltd. Sting-agonistische verbindung
WO2021206158A1 (ja) 2020-04-10 2021-10-14 小野薬品工業株式会社 がん治療方法
BR112022020841A2 (pt) 2020-04-16 2023-05-02 Incyte Corp Inibidores de kras tricíclicos fundidos
MX2022013864A (es) 2020-05-05 2023-03-09 Teon Therapeutics Inc Moduladores del receptor cannabinoide tipo 2 (cb2) y usos de los mismos.
US11739102B2 (en) 2020-05-13 2023-08-29 Incyte Corporation Fused pyrimidine compounds as KRAS inhibitors
EP4165051A1 (de) 2020-06-12 2023-04-19 Incyte Corporation Imidazopyridazinverbindungen mit aktivität als alk2-inhibitoren
US11753413B2 (en) 2020-06-19 2023-09-12 Incyte Corporation Substituted pyrrolo[2,1-f][1,2,4]triazine compounds as JAK2 V617F inhibitors
WO2021257857A1 (en) 2020-06-19 2021-12-23 Incyte Corporation Naphthyridinone compounds as jak2 v617f inhibitors
EP4175719A1 (de) 2020-07-02 2023-05-10 Incyte Corporation Tricyclische harnstoffverbindungen als jak2-v617f-hemmer
US11767323B2 (en) 2020-07-02 2023-09-26 Incyte Corporation Tricyclic pyridone compounds as JAK2 V617F inhibitors
WO2022046989A1 (en) 2020-08-27 2022-03-03 Incyte Corporation Tricyclic urea compounds as jak2 v617f inhibitors
WO2022047093A1 (en) 2020-08-28 2022-03-03 Incyte Corporation Vinyl imidazole compounds as inhibitors of kras
JP2023540612A (ja) 2020-09-09 2023-09-25 グアンジョウ マキシノベル ファーマシューティカルズ カンパニー リミテッド 芳香族エチレン系化合物、その製造方法、中間体、医薬組成物及びその使用
US11767320B2 (en) 2020-10-02 2023-09-26 Incyte Corporation Bicyclic dione compounds as inhibitors of KRAS
AR124001A1 (es) 2020-11-06 2023-02-01 Incyte Corp Proceso para fabricar un inhibidor pd-1 / pd-l1 y sales y formas cristalinas del mismo
US11760756B2 (en) 2020-11-06 2023-09-19 Incyte Corporation Crystalline form of a PD-1/PD-L1 inhibitor
WO2022099018A1 (en) 2020-11-06 2022-05-12 Incyte Corporation Process of preparing a pd-1/pd-l1 inhibitor
US11919908B2 (en) 2020-12-21 2024-03-05 Incyte Corporation Substituted pyrrolo[2,3-d]pyrimidine compounds as JAK2 V617F inhibitors
JP2024502005A (ja) 2020-12-29 2024-01-17 インサイト・コーポレイション A2a/a2b阻害剤、pd-1/pd-l1阻害剤、及び抗cd73抗体を含む併用療法
AR125273A1 (es) 2021-02-25 2023-07-05 Incyte Corp Lactamas espirocíclicas como inhibidores de jak2 v617f
US20220306633A1 (en) 2021-03-22 2022-09-29 Incyte Corporation Imidazole and triazole kras inhibitors
TW202304459A (zh) 2021-04-12 2023-02-01 美商英塞特公司 包含fgfr抑制劑及nectin-4靶向劑之組合療法
KR20240006683A (ko) 2021-05-13 2024-01-15 길리애드 사이언시즈, 인코포레이티드 TLR8 조절 화합물과 항-HBV siRNA 치료제의 조합물
TW202313610A (zh) 2021-06-09 2023-04-01 美商英塞特公司 作為fgfr抑制劑之三環雜環
WO2022261160A1 (en) 2021-06-09 2022-12-15 Incyte Corporation Tricyclic heterocycles as fgfr inhibitors
AU2022291381A1 (en) 2021-06-11 2023-11-30 Gilead Sciences, Inc. Combination mcl-1 inhibitors with anti-cancer agents
US11931424B2 (en) 2021-06-11 2024-03-19 Gilead Sciences, Inc. Combination MCL-1 inhibitors with anti-body drug conjugates
US11981671B2 (en) 2021-06-21 2024-05-14 Incyte Corporation Bicyclic pyrazolyl amines as CDK2 inhibitors
EP4359389A1 (de) 2021-06-23 2024-05-01 Gilead Sciences, Inc. Diacylglyercolkinase modulierende verbindungen
CN117377671A (zh) 2021-06-23 2024-01-09 吉利德科学公司 二酰基甘油激酶调节化合物
CN117355531A (zh) 2021-06-23 2024-01-05 吉利德科学公司 二酰基甘油激酶调节化合物
KR20240005901A (ko) 2021-06-23 2024-01-12 길리애드 사이언시즈, 인코포레이티드 디아실글리세롤 키나제 조절 화합물
EP4367117A1 (de) 2021-07-07 2024-05-15 Incyte Corporation Tricyclische verbindungen als kras-hemmer
WO2023287896A1 (en) 2021-07-14 2023-01-19 Incyte Corporation Tricyclic compounds as inhibitors of kras
US20230174555A1 (en) 2021-08-31 2023-06-08 Incyte Corporation Naphthyridine compounds as inhibitors of kras
TW202325306A (zh) 2021-09-02 2023-07-01 美商天恩治療有限公司 改良免疫細胞之生長及功能的方法
US20230151005A1 (en) 2021-09-21 2023-05-18 Incyte Corporation Hetero-tricyclic compounds as inhibitors of kras
US20230143938A1 (en) 2021-10-01 2023-05-11 Incyte Corporation Pyrazoloquinoline kras inhibitors
WO2023064857A1 (en) 2021-10-14 2023-04-20 Incyte Corporation Quinoline compounds as inhibitors of kras
WO2023081730A1 (en) 2021-11-03 2023-05-11 Teon Therapeutics, Inc. 4-hydroxy-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamide derivatives as cannabinoid cb2 receptor modulators for the treatment of cancer
WO2023091746A1 (en) 2021-11-22 2023-05-25 Incyte Corporation Combination therapy comprising an fgfr inhibitor and a kras inhibitor
WO2023097211A1 (en) 2021-11-24 2023-06-01 The University Of Southern California Methods for enhancing immune checkpoint inhibitor therapy
US11976073B2 (en) 2021-12-10 2024-05-07 Incyte Corporation Bicyclic amines as CDK2 inhibitors
TW202340215A (zh) 2021-12-22 2023-10-16 美商英塞特公司 Fgfr抑制劑之鹽及固體形式以及其製備方法
TW202337453A (zh) 2022-03-17 2023-10-01 美商英塞特公司 作為jak2 v617f抑制劑之三環脲化合物
WO2023239768A1 (en) 2022-06-08 2023-12-14 Incyte Corporation Tricyclic triazolo compounds as dgk inhibitors
WO2024015731A1 (en) 2022-07-11 2024-01-18 Incyte Corporation Fused tricyclic compounds as inhibitors of kras g12v mutants
WO2024015372A1 (en) 2022-07-14 2024-01-18 Teon Therapeutics, Inc. Adenosine receptor antagonists and uses thereof
WO2024086273A1 (en) 2022-10-21 2024-04-25 Incyte Corporation Tricyclic urea compounds as jak2 v617f inhibitors
WO2024108100A1 (en) 2022-11-18 2024-05-23 Incyte Corporation Heteroaryl fluoroalkenes as dgk inhibitors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002000196A2 (en) 2000-06-28 2002-01-03 Smithkline Beecham P.L.C. Wet milling process
WO2014138484A1 (en) * 2013-03-08 2014-09-12 Amgen Inc. Perfluorinated cyclopropyl fused 1,3-oxazin-2-amine compounds as beta-secretase inhibitors and methods of use
WO2015034820A1 (en) * 2013-09-04 2015-03-12 Bristol-Myers Squibb Company Compounds useful as immunomodulators
WO2015160641A2 (en) * 2014-04-14 2015-10-22 Bristol-Myers Squibb Company Compounds useful as immunomodulators
WO2016118404A1 (en) * 2015-01-20 2016-07-28 Merck Sharp & Dohme Corp. Iminothiadiazine dioxides bearing an amine-linked substituent as bace inhibitors, compositions, and their use

Family Cites Families (354)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1080768A (en) * 1913-12-09 Frank E Marcy Ball-mile.
US3272781A (en) 1963-08-07 1966-09-13 American Potash & Chem Corp Boroureas of phosphinoborine polymers
FR1425700A (fr) 1965-02-22 1966-01-24 Basf Ag Composés formant des complexes métalliques et procédé pour les préparer et les utiliser
US4208328A (en) 1978-04-27 1980-06-17 General Electric Company Alkyl 3,5-dihydroxy-4-(2-benzothiazolyl)benzoates
US4789711A (en) 1986-12-02 1988-12-06 Ciba-Geigy Corporation Multifunctional epoxide resins
DE3828535A1 (de) 1988-08-23 1990-03-08 Basf Ag Benzimidazol-2-carbonsaeureanilide, ihre verwendung als lichtschutzmittel fuer organisches material und mit diesen aniliden stabilisiertes organisches material
US5077164A (en) 1989-06-21 1991-12-31 Minolta Camera Kabushiki Kaisha Photosensitive member containing an azo dye
DE69421982T2 (de) 1993-09-20 2000-03-30 Fuji Photo Film Co Ltd Positiv arbeitende Photoresistzusammensetzung
JP3461397B2 (ja) 1995-01-11 2003-10-27 富士写真フイルム株式会社 ポジ型フオトレジスト組成物
EP0946587A2 (de) 1996-12-16 1999-10-06 Fujisawa Pharmaceutical Co., Ltd. Amindverbindungen und ihre verwendung als inhibitoren der bitric-oxid-synthase
JPH10316853A (ja) 1997-05-15 1998-12-02 Sumitomo Bakelite Co Ltd 半導体多層配線用層間絶縁膜樹脂組成物及び該絶縁膜の製造方法
EP1019391A1 (de) 1997-10-02 2000-07-19 Merck & Co. Inc. Inhibitoren der prenyl-protein transferase
WO1999044992A1 (fr) 1998-03-05 1999-09-10 Nissan Chemical Industries, Ltd. Composes d'anilide et herbicide
JP2000128987A (ja) 1998-10-28 2000-05-09 Sumitomo Bakelite Co Ltd ポリベンゾオキサゾール前駆体及びポリベンゾオキサゾール
JP2000128984A (ja) 1998-10-28 2000-05-09 Sumitomo Bakelite Co Ltd ポリベンゾオキサゾール前駆体及び樹脂
JP2000128986A (ja) 1998-10-28 2000-05-09 Sumitomo Bakelite Co Ltd ポリベンゾオキサゾール前駆体及びポリベンゾオキサゾール
US6297351B1 (en) 1998-12-17 2001-10-02 Sumitomo Bakelite Company Limited Polybenzoxazole resin and precursor thereof
PL349192A1 (en) 1998-12-18 2002-07-01 Axys Pharmaceuticals Protease inhibitors
JP2000212281A (ja) 1999-01-27 2000-08-02 Sumitomo Bakelite Co Ltd ポリベンゾオキサゾ―ル前駆体及びポリベンゾオキサゾ―ル樹脂
AU6000900A (en) 1999-07-23 2001-02-13 Astrazeneca Uk Limited Carbazole derivatives and their use as neuropeptide y5 receptor ligands
JP2001114893A (ja) 1999-10-15 2001-04-24 Sumitomo Bakelite Co Ltd ポリベンゾオキサゾール樹脂およびその前駆体
US6372907B1 (en) 1999-11-03 2002-04-16 Apptera Corporation Water-soluble rhodamine dye peptide conjugates
JP2001163975A (ja) 1999-12-03 2001-06-19 Sumitomo Bakelite Co Ltd ポリベンゾオキサゾール樹脂及びその前駆体
AU763356C (en) 1999-12-27 2004-08-26 Japan Tobacco Inc. Fused-ring compounds and use thereof as drugs
AU2001240542A1 (en) 2000-02-01 2001-08-14 Basf Aktiengesellschaft Heterocyclic compounds and their use as parp inhibitors
US6521618B2 (en) 2000-03-28 2003-02-18 Wyeth 3-cyanoquinolines, 3-cyano-1,6-naphthyridines, and 3-cyano-1,7-naphthyridines as protein kinase inhibitors
EP1268478B1 (de) 2000-03-31 2007-05-02 Ortho-McNeil Pharmaceutical, Inc. Phenyl-substituierte imidazopyridine
CA2405170A1 (en) 2000-04-24 2001-11-01 Merck Frosst Canada & Co. Method of treatment using phenyl and biaryl derivatives as prostaglandin e inhibitors and compounds useful therefore
AU2001294515A1 (en) 2000-08-11 2002-02-25 The Regents Of The University Of California Use of stat-6 inhibitors as therapeutic agents
AU2002224927A1 (en) 2000-12-13 2002-06-24 Basf Aktiengesellschaft Use of substituted imidazoazines, novel imidazoazines, methods for the production thereof, and agents containing these compounds
US6919352B2 (en) 2000-12-15 2005-07-19 Smithkline Beecham Corporation Pyrazolopyridinyl pyridine and pyrimidine therapeutic compounds
SE0100567D0 (sv) 2001-02-20 2001-02-20 Astrazeneca Ab Compounds
CA2438586A1 (en) 2001-03-14 2002-09-19 Eli Lilly And Company Retinoid x receptor modulators
EP1372643A1 (de) 2001-03-30 2004-01-02 Smithkline Beecham Corporation Pyrazolopyridine, verfahren zu ihrer herstellung und verwendung als therapeutika
DE60212949T2 (de) 2001-04-10 2007-01-04 Smithkline Beecham Corp. Antivirale pyrazolopyridin verbindungen
JP2002316966A (ja) 2001-04-19 2002-10-31 Ueno Seiyaku Oyo Kenkyusho:Kk ビナフトール誘導体およびその製法
ATE296826T1 (de) 2001-04-27 2005-06-15 Smithkline Beecham Corp Pyrazolo(1,5)pyridinderivate
AR035543A1 (es) 2001-06-26 2004-06-16 Japan Tobacco Inc Agente terapeutico para la hepatitis c que comprende un compuesto de anillo condensado, compuesto de anillo condensado, composicion farmaceutica que lo comprende, compuestos de benzimidazol, tiazol y bifenilo utiles como intermediarios para producir dichos compuestos, uso del compuesto de anillo con
EP1423389B1 (de) 2001-09-07 2007-06-06 SmithKline Beecham Corporation Pyrazolo-pyridine für die behandlung von herpes-ansteckungen
TWI320039B (en) 2001-09-21 2010-02-01 Lactam-containing compounds and derivatives thereof as factor xa inhibitors
WO2003030901A1 (en) 2001-10-09 2003-04-17 Pharmacia & Upjohn Company Arylsulphonyl-substituted tetrahydro- and hexahydro-carbazoles as 5-ht-6 receptor ligands
AU2002334969A1 (en) 2001-10-09 2003-04-22 Sylvie Barchechath Use of stat-6 inhibitors as therapeutic agents
CA2466279A1 (en) 2001-11-13 2003-05-22 Dana-Farber Cancer Institute, Inc. Agents that modulate immune cell activation and methods of use thereof
JP4024579B2 (ja) 2002-01-22 2007-12-19 住友ベークライト株式会社 プラスチック光導波路用材料及び光導波路
NZ561851A (en) 2002-04-11 2009-05-31 Vertex Pharma Inhibitors of serine proteases, particularly hepatitis C virus NS3 - NS4 protease
KR20040097375A (ko) 2002-04-23 2004-11-17 시오노기 앤드 컴파니, 리미티드 피라졸로[1, 5-에이]피리미딘 유도체 및 이를 함유한엔에이디(피)에이취 산화효소 저해제
AU2003252478A1 (en) 2002-07-10 2004-02-02 Ono Pharmaceutical Co., Ltd. Ccr4 antagonist and medicinal use thereof
AU2003249244A1 (en) 2002-07-15 2004-02-02 Combinatorx, Incorporated Methods for the treatment of neoplasms
JP2004059761A (ja) 2002-07-30 2004-02-26 Sumitomo Bakelite Co Ltd ポリベンゾオキサゾール樹脂、その前駆体及びこれらを用いた光導波路材料並びに光導波路
JP2004091369A (ja) 2002-08-30 2004-03-25 Sumitomo Pharmaceut Co Ltd 新規ビフェニル化合物
US20050260126A1 (en) 2002-08-30 2005-11-24 Yukitsuka Kudo Diagnostic probes and remedies for diseases with accumulation of prion protein, and stains for prion protein
WO2004033454A1 (en) 2002-10-03 2004-04-22 Smithkline Beecham Corporation Therapeutic compounds based on pyrazolopyridine derivatives
EP1551842A1 (de) 2002-10-15 2005-07-13 Smithkline Beecham Corporation Pyridazinverbindungen als gsk-3-inhibitoren
ES2367430T3 (es) 2002-12-23 2011-11-03 Wyeth Llc Anticuerpos contra pd-1 y sus usos.
KR100624406B1 (ko) 2002-12-30 2006-09-18 삼성에스디아이 주식회사 비페닐 유도체 및 이를 채용한 유기 전계 발광 소자
US7320989B2 (en) 2003-02-28 2008-01-22 Encysive Pharmaceuticals, Inc. Pyridine, pyrimidine, quinoline, quinazoline, and naphthalene urotensin-II receptor antagonists
US7078419B2 (en) 2003-03-10 2006-07-18 Boehringer Ingelheim Pharmaceuticals, Inc. Cytokine inhibitors
AR043633A1 (es) 2003-03-20 2005-08-03 Schering Corp Ligandos de receptores de canabinoides
JP4595288B2 (ja) 2003-03-25 2010-12-08 住友ベークライト株式会社 ポリベンゾオキサゾール樹脂、その前駆体及びこれらを用いた光導波路材料並びに光導波路
EA010634B1 (ru) 2003-04-11 2008-10-30 Гленмарк Фармасьютикалс С.А. Новые гетероциклические соединения, применяемые для лечения нарушений аллергической или воспалительной природы: способы синтеза и содержащие их фармацевтические составы
CA2524048C (en) 2003-05-19 2013-06-25 Irm Llc Immunosuppressant compounds and compositions
JP2005002330A (ja) 2003-05-19 2005-01-06 Sumitomo Electric Ind Ltd 光学樹脂材料、光学素子、光モジュール、フッ素化ポリマー前駆体及びフッ素化ポリマー
US7405295B2 (en) 2003-06-04 2008-07-29 Cgi Pharmaceuticals, Inc. Certain imidazo[1,2-a]pyrazin-8-ylamines and method of inhibition of Bruton's tyrosine kinase by such compounds
US20060183746A1 (en) 2003-06-04 2006-08-17 Currie Kevin S Certain imidazo[1,2-a]pyrazin-8-ylamines and method of inhibition of Bruton's tyrosine kinase by such compounds
US20070010573A1 (en) 2003-06-23 2007-01-11 Xianqi Kong Methods and compositions for treating amyloid-related diseases
WO2005005429A1 (en) 2003-06-30 2005-01-20 Cellular Genomics, Inc. Certain heterocyclic substituted imidazo[1,2-a]pyrazin-8-ylamines and methods of inhibition of bruton’s tyrosine kinase by such compounds
EP1643991B1 (de) 2003-07-11 2014-03-12 Merck Patent GmbH Benzimidazol-carbonsäureamide als raf-kinase-hemmer
WO2005007628A1 (en) 2003-07-11 2005-01-27 Bristol-Myers Squibb Company Tetrahydroquinoline derivatives as cannabinoid receptor modulators
EP1661879A4 (de) 2003-08-04 2006-11-29 Ono Pharmaceutical Co Diphenyletherverbindung, verfahren zu deren herstellung und verwendung
WO2005014543A1 (ja) 2003-08-06 2005-02-17 Japan Tobacco Inc. 縮合環化合物及びそのhcvポリメラーゼ阻害剤としての利用
US7504401B2 (en) 2003-08-29 2009-03-17 Locus Pharmaceuticals, Inc. Anti-cancer agents and uses thereof
BRPI0414313A (pt) 2003-09-11 2006-11-07 Kemia Inc inibidores de citocinas
WO2005034869A2 (en) 2003-10-08 2005-04-21 Irm Llc Compounds and compositions as protein kinase inhibitors
US20070099938A1 (en) 2003-10-24 2007-05-03 Ono Pharmaceutical Co., Ltd. Antistress drug and medical use thereof
WO2005047290A2 (en) 2003-11-11 2005-05-26 Cellular Genomics Inc. Imidazo[1,2-a] pyrazin-8-ylamines as kinase inhibitors
JP2007534652A (ja) 2003-12-23 2007-11-29 ビーエーエスエフ アクチェンゲゼルシャフト 3−トリフルオロメチルピコリン酸アニリドおよび殺菌剤としてのその使用
EP1715867A4 (de) 2004-02-12 2009-04-15 Merck & Co Inc Bipyridylamide als modulatoren von metabotropem glutamatrezeptor-5
WO2005077948A1 (ja) 2004-02-16 2005-08-25 Daiichi Pharmaceutical Co., Ltd. 抗真菌作用複素環化合物
GB0403864D0 (en) 2004-02-20 2004-03-24 Ucl Ventures Modulator
JP2005248082A (ja) 2004-03-05 2005-09-15 Sumitomo Electric Ind Ltd ポリベンゾオキサゾール樹脂前駆体の製造方法およびポリベンゾオキサゾール樹脂の製造方法
JP2007527908A (ja) 2004-03-08 2007-10-04 ザ ユニバーシティ オブ ノース カロライナ アット チャペル ヒル 抗原虫薬としての新規ジカチオン性イミダゾ[1,2−a]ピリジン、及び5,6,7,8−テトラヒドロ−イミダゾ[1,2−a]ピリジン
JP2007527918A (ja) 2004-03-08 2007-10-04 アムジェン インコーポレイテッド Pparガンマ活性の治療的調節
AU2005230902A1 (en) 2004-03-31 2005-10-20 Janssen Pharmaceutica, N.V. Non-imidazole heterocyclic compounds as histamine H3-receptor ligands
JP2005290301A (ja) 2004-04-02 2005-10-20 Sumitomo Electric Ind Ltd ポリベンゾオキサゾール樹脂前駆体の製造方法およびポリベンゾオキサゾール樹脂の製造方法
EP1735059A2 (de) 2004-04-06 2006-12-27 The Procter and Gamble Company Keratin-färbeverbindungen, diese enthaltende keratin-färbezusammensetzungen und ihre verwendung
MXPA06012130A (es) 2004-04-20 2007-01-31 Transtech Pharma Inc Derivados de tiazol y pirimidina substituidos como moduladores del receptor de melanocortina.
DE102004021716A1 (de) 2004-04-30 2005-12-01 Grünenthal GmbH Substituierte Imidazo[1,2-a]pyridin-Verbindungen und Arzneimittel enthaltend substituierte Imidazo[1,2-a]pyridin-Verbindungen
WO2005108387A2 (en) 2004-05-03 2005-11-17 Boehringer Ingelheim Pharmaceuticals, Inc. Cytokine inhibitors
TW200626142A (en) 2004-09-21 2006-08-01 Glaxo Group Ltd Chemical compounds
JP2008514611A (ja) 2004-09-23 2008-05-08 ワイス C型肝炎ウイルスによる感染を処置するためのカルバゾールおよびシクロペンタインドールの誘導体
DE602005023333D1 (de) 2004-10-15 2010-10-14 Takeda Pharmaceutical Kinaseinhibitoren
WO2006053121A2 (en) 2004-11-10 2006-05-18 Cgi Pharmaceuticals, Inc. Imidazo[1 , 2-a] pyrazin-8-ylamines useful as modulators of kinase activity
DE102004054665A1 (de) 2004-11-12 2006-05-18 Bayer Cropscience Gmbh Substituierte bi- und tricyclische Pyrazol-Derivate Verfahren zur Herstellung und Verwendung als Herbizide und Pflanzenwachstumsregulatoren
CA2599987A1 (en) 2005-03-03 2006-09-08 Sirtris Pharmaceuticals, Inc. Fused heterocyclic compounds and their use as sirtuin modulators
ES2543607T3 (es) 2005-03-10 2015-08-20 Gilead Connecticut, Inc. Ciertas amidas sustituidas, método de obtención, y método de su uso
JP2006290883A (ja) 2005-03-17 2006-10-26 Nippon Nohyaku Co Ltd 置換ヘテロ環カルボン酸アニリド誘導体、その中間体及び農園芸用薬剤並びにその使用方法
RU2406760C3 (ru) 2005-05-09 2017-11-28 Оно Фармасьютикал Ко., Лтд. Моноклональные антитела человека к белку программируемой смерти 1 (pd-1) и способы лечения рака с использованием анти-pd-1-антител самостоятельно или в комбинации с другими иммунотерапевтическими средствами
RU2007147382A (ru) 2005-05-20 2009-06-27 Эррэй Биофарма Инк. (Us) Соединения, являющиеся ингибиторами raf, и способы их применения
CN101248089A (zh) 2005-07-01 2008-08-20 米德列斯公司 抗程序性死亡配体1(pd-l1)的人单克隆抗体
US20080220968A1 (en) 2005-07-05 2008-09-11 Ge Healthcare Bio-Sciences Ab [1, 2, 4] Triazolo [1, 5-A] Pyrimidine Derivatives as Chromatographic Adsorbent for the Selective Adsorption of Igg
WO2007034282A2 (en) 2005-09-19 2007-03-29 Pfizer Products Inc. Diaryl-imidazole compounds condensed with a heterocycle as c3a receptor antagonists
US20070078136A1 (en) 2005-09-22 2007-04-05 Bristol-Myers Squibb Company Fused heterocyclic compounds useful as kinase modulators
US7723336B2 (en) 2005-09-22 2010-05-25 Bristol-Myers Squibb Company Fused heterocyclic compounds useful as kinase modulators
RU2416603C9 (ru) 2005-10-25 2012-06-20 Сионоги Энд Ко., Лтд. Производные аминодигидротиазина
EP1954290B1 (de) 2005-11-22 2012-07-25 Merck Sharp & Dohme Corp. Als kinase-hemmer verwendbare trizyklische verbindungen
WO2007067711A2 (en) 2005-12-08 2007-06-14 Amphora Discovery Corporation Certain chemical entities, compositions, and methods for modulating trpv1
EP1961745A1 (de) 2005-12-12 2008-08-27 Ono Pharmaceutical Co., Ltd. Bicyclische heterocyclische verbindung
US20090281075A1 (en) 2006-02-17 2009-11-12 Pharmacopeia, Inc. Isomeric purinones and 1h-imidazopyridinones as pkc-theta inhibitors
WO2007096764A2 (en) 2006-02-27 2007-08-30 Glenmark Pharmaceuticals S.A. Bicyclic heteroaryl derivatives as cannabinoid receptor modulators
WO2007102531A1 (ja) 2006-03-08 2007-09-13 Takeda Pharmaceutical Company Limited 併用薬
CN101410397A (zh) 2006-03-31 2009-04-15 诺瓦提斯公司 有机化合物
WO2008118122A2 (en) 2006-05-08 2008-10-02 Molecular Neuroimaging, Llc Compounds and amyloid probes thereof for therapeutic and imaging uses
CA2691214A1 (en) 2006-06-09 2007-12-21 Kemia, Inc. Therapy using cytokine inhibitors
US20080280891A1 (en) 2006-06-27 2008-11-13 Locus Pharmaceuticals, Inc. Anti-cancer agents and uses thereof
BRPI0713187A2 (pt) 2006-07-20 2012-10-16 Mehmet Kahraman método de inibir rho-quinase, método de tratamento de doença mediada por rho-quinase, composto e composição farmacêutica
DE102006035018B4 (de) 2006-07-28 2009-07-23 Novaled Ag Oxazol-Triplett-Emitter für OLED-Anwendungen
WO2008021745A2 (en) 2006-08-16 2008-02-21 Itherx Pharmaceuticals, Inc. Hepatitis c virus entry inhibitors
TWI389895B (zh) 2006-08-21 2013-03-21 Infinity Discovery Inc 抑制bcl蛋白質與結合夥伴間之交互作用的化合物及方法
WO2008027812A2 (en) 2006-08-28 2008-03-06 Forest Laboratories Holdings Limited Imidazopyridine and imidazopyrimidine derivatives
NZ575389A (en) 2006-09-11 2012-03-30 Mylan Lab Ltd Dibenzofuran derivatives as inhibitors of pde-4 and pde-10
US20100160292A1 (en) 2006-09-11 2010-06-24 Cgi Pharmaceuticals, Inc Kinase Inhibitors, and Methods of Using and Identifying Kinase Inhibitors
PE20081370A1 (es) 2006-09-11 2008-11-28 Cgi Pharmaceuticals Inc Determinadas amidas sustituidas, metodo de elaboracion y metodo de uso de las mismas
PE20080839A1 (es) 2006-09-11 2008-08-23 Cgi Pharmaceuticals Inc Determinadas amidas sustituidas, metodo de elaboracion y metodo de uso de las mismas
US7838523B2 (en) 2006-09-11 2010-11-23 Cgi Pharmaceuticals, Inc. Certain substituted amides, method of making, and method of use thereof
FR2906250B1 (fr) 2006-09-22 2008-10-31 Sanofi Aventis Sa Derives de 2-aryl-6phenyl-imidazo(1,2-a) pyridines, leur preparation et leur application en therapeutique
CA2667644A1 (en) 2006-10-27 2008-05-15 Wyeth Tricyclic compounds as matrix metalloproteinase inhibitors
AR063628A1 (es) 2006-11-08 2009-02-04 Bristol Myers Squibb Co Compuestos de piridinona utiles para el tratamiento de cancer
GB0623209D0 (en) 2006-11-21 2007-01-03 F2G Ltd Antifungal agents
WO2008064317A1 (en) 2006-11-22 2008-05-29 University Of Medicine And Dentistry Of New Jersey Lipophilic opioid receptor active compounds
WO2008064318A2 (en) 2006-11-22 2008-05-29 University Of Medicine And Dentistry Of New Jersey Peripheral opioid receptor active compounds
JP2010513253A (ja) 2006-12-14 2010-04-30 ベーリンガー インゲルハイム インテルナショナール ゲーエムベーハー 炎症の治療に有用なベンゾオキサゾール類
US8513270B2 (en) 2006-12-22 2013-08-20 Incyte Corporation Substituted heterocycles as Janus kinase inhibitors
EP1964841A1 (de) 2007-02-28 2008-09-03 sanofi-aventis Imidazo[1,2-a]azine und deren pharmazeutische Verwendung
EP1964840A1 (de) 2007-02-28 2008-09-03 sanofi-aventis Imidazo[1,2-a]pyridine und deren pharmazeutische Verwendung
WO2008104077A1 (en) 2007-02-28 2008-09-04 Methylgene Inc. Small molecule inhibitors of protein arginine methyltransferases (prmts)
JP2008218327A (ja) 2007-03-07 2008-09-18 Hitachi Ltd 電解質、電解質膜、それを用いた膜電極接合体、燃料電池電源及び燃料電池電源システム
JP2010120852A (ja) 2007-03-09 2010-06-03 Daiichi Sankyo Co Ltd 新規なジアミド誘導体
AR065806A1 (es) 2007-03-22 2009-07-01 Astrazeneca Ab Derivados de quinolina, procesos para su preparacion, composiciones farmaceuticas que los contienen y usos para el tratamiento de la artritis reumatoidea.
ES2476605T3 (es) 2007-04-24 2014-07-15 Shionogi & Co., Ltd. Derivados de aminohidrotiazina sustituidos con grupos cíclicos
EP2151435A4 (de) 2007-04-24 2011-09-14 Shionogi & Co Pharmazeutische zusammensetzung zur behandlung von morbus alzheimer
WO2008134553A1 (en) 2007-04-26 2008-11-06 Xenon Pharmaceuticals Inc. Methods of using bicyclic compounds in treating sodium channel-mediated diseases
CN101855222A (zh) 2007-05-10 2010-10-06 通用电气健康护理有限公司 对大麻素cb2受体具有活性的咪唑并(1,2-a)吡啶和相关化合物
SI2170959T1 (sl) 2007-06-18 2014-04-30 Merck Sharp & Dohme B.V. Protitelesa proti receptorjem pd-1 za humano programirano smrt
WO2009027733A1 (en) 2007-08-24 2009-03-05 Astrazeneca Ab (2-pyridin-3-ylimidazo[1,2-b]pyridazin-6-yl) urea derivatives as antibacterial agents
CL2008002793A1 (es) 2007-09-20 2009-09-04 Cgi Pharmaceuticals Inc Compuestos derivados de amidas sustituidas, inhibidores de la actividad de btk; composicion farmaceutica que los comprende; utiles en el tratamiento del cancer, trastornos oseos, enfermedades autoinmunes, entre otras
ES2360929T3 (es) 2007-09-20 2011-06-10 Amgen Inc. Derivados del ácido 1-(4-(4-bencilbenzamido)-bencil)azetidin-3-carboxílico y compuestos relacionados como moduladores del receptor s1p para el tratamiento de trastornos inmunitarios.
DE102007048716A1 (de) 2007-10-11 2009-04-23 Merck Patent Gmbh Imidazo[1,2-a]pyrimidinderivate
TW200932219A (en) 2007-10-24 2009-08-01 Astellas Pharma Inc Oxadiazolidinedione compound
JP2011500778A (ja) 2007-10-25 2011-01-06 アストラゼネカ・アクチエボラーグ ピリジン及びピラジン誘導体−083
US7868001B2 (en) 2007-11-02 2011-01-11 Hutchison Medipharma Enterprises Limited Cytokine inhibitors
WO2009062059A2 (en) 2007-11-08 2009-05-14 Pharmacopeia, Inc. Isomeric purinones and 1h-imidazopyridinones as pkc-theta inhibitors
US8431569B2 (en) 2007-12-13 2013-04-30 Merck Sharp & Dohme Corp. Inhibitors of janus kinases
RU2364597C1 (ru) 2007-12-14 2009-08-20 Андрей Александрович Иващенко ГЕТЕРОЦИКЛИЧЕСКИЕ ИНГИБИТОРЫ Hh-СИГНАЛЬНОГО КАСКАДА, ЛЕКАРСТВЕННЫЕ КОМПОЗИЦИИ НА ИХ ОСНОВЕ И СПОСОБ ЛЕЧЕНИЯ ЗАБОЛЕВАНИЙ, СВЯЗАННЫХ С АББЕРАНТНОЙ АКТИВНОСТЬЮ Hh СИГНАЛЬНОЙ СИСТЕМЫ
AU2008337876A1 (en) 2007-12-19 2009-06-25 Syngenta Participations Ag Insecticidal compounds
AU2008345225A1 (en) 2007-12-21 2009-07-09 University Of Rochester Method for altering the lifespan of eukaryotic organisms
EP2231659A4 (de) 2007-12-21 2011-10-26 Univ Sydney Translokatorproteinliganden
JP4520533B2 (ja) 2008-01-18 2010-08-04 エーザイ・アール・アンド・ディー・マネジメント株式会社 縮合アミノジヒドロチアジン誘導体
JP5381718B2 (ja) 2008-01-31 2014-01-08 コニカミノルタ株式会社 ハロ多環芳香族化合物及びその製造方法
BRPI0908529A2 (pt) 2008-02-26 2015-09-29 Novartis Ag composto orgânicos
EP2095818A1 (de) 2008-02-29 2009-09-02 AEterna Zentaris GmbH Verwendung von LHRH-Antagonisten in nicht-kastrierenden Dosen
EP2262837A4 (de) 2008-03-12 2011-04-06 Merck Sharp & Dohme Pd-1-bindende proteine
FR2928924B1 (fr) 2008-03-21 2010-04-23 Sanofi Aventis Derives polysubstitues de 6-heteroaryle-imidazo°1,2-a! pyridines, leur preparation et leur application en therapeutique
FR2928922B1 (fr) 2008-03-21 2010-04-23 Sanofi Aventis Derives de 2-aryl-6-phenyl-imidazo°1,2-a!pyridines polysubstitues, leur preparation et leur application en therapeutique
FR2928921B1 (fr) 2008-03-21 2010-04-23 Sanofi Aventis Derives polysubstitues de 2-aryl-6-phenyl-imidazo°1,2-a!pyridines, leur preparation et leur application en therapeutique
WO2009123986A1 (en) 2008-03-31 2009-10-08 Takeda Pharmaceutical Company Limited Apoptosis signal-regulating kinase 1 inhibitors
KR101034351B1 (ko) 2008-05-14 2011-05-16 한국화학연구원 신규 벤즈옥사졸로 치환된 피리딘 유도체 또는 이의약학적으로 허용가능한 염, 이의 제조방법 및 이를유효성분으로 함유하는 이상세포 성장 질환의 예방 및치료용 약학적 조성물
CA2724842A1 (en) 2008-05-19 2009-11-26 Sunovion Pharmaceuticals Inc. Imidazo[1,2-a]pyridine compounds
CN102112475A (zh) 2008-05-29 2011-06-29 西特里斯药业公司 作为沉默调节蛋白调节剂的咪唑并吡啶和相关的类似物
WO2009147187A1 (en) 2008-06-05 2009-12-10 Glaxo Group Limited 4-carboxamide indazole derivatives useful as inhibitors of p13-kinases
CN102164604A (zh) 2008-07-24 2011-08-24 百时美施贵宝公司 用作激酶调节剂的稠合杂环化合物
US9540322B2 (en) 2008-08-18 2017-01-10 Yale University MIF modulators
US9643922B2 (en) 2008-08-18 2017-05-09 Yale University MIF modulators
JP2011231017A (ja) 2008-09-09 2011-11-17 Nissan Chem Ind Ltd 光学活性エポキシ化合物及び光学活性スルホキシド化合物の製造方法、並びに該方法に用いる配位子、錯体及び該錯体の製造方法
EP3133086B1 (de) 2008-09-26 2018-08-01 Dana-Farber Cancer Institute, Inc. Menschliche anti-pd1-, pd-l1- und pd-l2-antikörper und verwendungen davon
WO2010056875A1 (en) 2008-11-12 2010-05-20 Cgi Pharmaceuticals, Inc. Pyridazinones and their use as btk inhibitors
US20120010188A1 (en) 2008-12-04 2012-01-12 Promimagen Ltd. Imidazopyridine Compounds
CN104479018B (zh) 2008-12-09 2018-09-21 霍夫曼-拉罗奇有限公司 抗-pd-l1抗体及它们用于增强t细胞功能的用途
ES2539620T3 (es) 2008-12-19 2015-07-02 Cephalon, Inc. Pirrolotriazina como inhibidor de ALK y de JAK2
ES2490867T3 (es) 2008-12-19 2014-09-04 Bristol-Myers Squibb Company Inhibidores de carbazol y carbolina quinasas
US8084620B2 (en) 2008-12-19 2011-12-27 Bristol-Myers Squibb Company Carbazole carboxamide compounds useful as kinase inhibitors
JP5624275B2 (ja) 2008-12-22 2014-11-12 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子
JP2012513409A (ja) 2008-12-23 2012-06-14 アボット・ラボラトリーズ 抗ウイルス化合物
JP5578490B2 (ja) 2008-12-26 2014-08-27 味の素株式会社 ピラゾロピリミジン化合物
JP5844159B2 (ja) 2009-02-09 2016-01-13 ユニヴェルシテ デクス−マルセイユUniversite D’Aix−Marseille Pd−1抗体およびpd−l1抗体ならびにその使用
JP2010202530A (ja) 2009-02-27 2010-09-16 Tokyo Institute Of Technology 含ヘテロ芳香族化合物および光学材料
WO2010104306A2 (ko) 2009-03-07 2010-09-16 주식회사 메디젠텍 세포핵에서 세포질로의 gsk3의 이동을 억제하는 화합물을 함유하는 세포핵에서 세포질로의 gsk3 이동에 의해 발생되는 질환의 치료 또는 예방용 약학적 조성물
SG174125A1 (en) 2009-04-02 2011-10-28 Merck Serono Sa Dihydroorotate dehydrogenase inhibitors
KR101792837B1 (ko) 2009-04-16 2017-11-02 푼다시온 센트로 나시오날 드 인베스티가시오네스 온콜로기카스 카를로스Ⅲ 키나아제 억제제로서 사용을 위한 이미다조피라진
US8338441B2 (en) 2009-05-15 2012-12-25 Gilead Sciences, Inc. Inhibitors of human immunodeficiency virus replication
US8993604B2 (en) 2009-06-30 2015-03-31 Siga Technologies, Inc. Treatment and prevention of dengue virus infections
WO2011002635A1 (en) 2009-06-30 2011-01-06 Siga Technologies, Inc. Treatment and prevention of dengue virus infections
TWI625121B (zh) 2009-07-13 2018-06-01 基利科學股份有限公司 調節細胞凋亡信號之激酶的抑制劑
JP2011057661A (ja) 2009-08-14 2011-03-24 Bayer Cropscience Ag 殺虫性カルボキサミド類
UA108363C2 (uk) 2009-10-08 2015-04-27 Похідні імінотіадіазиндіоксиду як інгібітори bace, композиція на їх основі і їх застосування
US9095596B2 (en) 2009-10-15 2015-08-04 Southern Research Institute Treatment of neurodegenerative diseases, causation of memory enhancement, and assay for screening compounds for such
US9193731B2 (en) 2009-10-16 2015-11-24 Melinta Therapeutics, Inc. Antimicrobial compounds and methods of making and using the same
WO2011050245A1 (en) 2009-10-23 2011-04-28 Yangbo Feng Bicyclic heteroaryls as kinase inhibitors
JP2013512251A (ja) 2009-11-24 2013-04-11 アンプリミューン、インコーポレーテッド Pd−l1/pd−l2の同時阻害
WO2011078221A1 (ja) 2009-12-24 2011-06-30 味の素株式会社 イミダゾピリダジン化合物
US20130022629A1 (en) 2010-01-04 2013-01-24 Sharpe Arlene H Modulators of Immunoinhibitory Receptor PD-1, and Methods of Use Thereof
US20130085133A1 (en) 2010-02-08 2013-04-04 Sourthern Research Institute Office of Commercialization and Intellectual Prop. Anti-viral treatment and assay to screenfor anti-viral agent
AR080433A1 (es) 2010-03-02 2012-04-11 Merck Sharp & Dohme Derivados de benzofurancarboxamidas utiles para tratar o prevenir infecciones por vhc y composiciones farmaceuticas que los contienen.
EP2542076B1 (de) 2010-03-04 2021-01-13 Merck Sharp & Dohme Corp. Hemmer der catechol-o-methyl-transferase und ihre verwendung bei der behandlung psychotischer störungen
MX345762B (es) 2010-03-18 2017-02-15 Pasteur Institut Korea Compuestos antiinfecciosos.
US8410117B2 (en) 2010-03-26 2013-04-02 Hoffmann-La Roche Inc. Imidazopyrimidine derivatives
EP2582668B1 (de) 2010-06-16 2016-01-13 Bristol-Myers Squibb Company Carboline carboxamide verbindungen als kinase inhibitoren
JP2013532153A (ja) 2010-06-18 2013-08-15 ザ ブリガム アンド ウィメンズ ホスピタル インコーポレイテッド 慢性免疫病に対する免疫治療のためのtim−3およびpd−1に対する二重特異性抗体
CN102295642B (zh) 2010-06-25 2016-04-06 中国人民解放军军事医学科学院毒物药物研究所 2-芳基咪唑并[1,2-a]吡啶-3-乙酰胺衍生物、其制备方法及用途
US8907053B2 (en) 2010-06-25 2014-12-09 Aurigene Discovery Technologies Limited Immunosuppression modulating compounds
EP2402345A1 (de) 2010-06-29 2012-01-04 Basf Se Pyrazole kondensierte bizyclische Verbindungen
CN101891895B (zh) 2010-07-28 2011-11-30 南京航空航天大学 基于桥联双水杨醛结构的苯并噻唑类金属配位聚合物及其制法及应用
WO2012016133A2 (en) 2010-07-29 2012-02-02 President And Fellows Of Harvard College Ros1 kinase inhibitors for the treatment of glioblastoma and other p53-deficient cancers
US8633200B2 (en) 2010-09-08 2014-01-21 Bristol-Myers Squibb Company Inhibitors of human immunodeficiency virus replication
CN101993415B (zh) 2010-09-15 2013-08-14 北京韩美药品有限公司 作为Hedgehog通路抑制剂的化合物以及包含该化合物的药物组合物及其应用
CN103889428A (zh) 2010-10-04 2014-06-25 肝炎与病毒研究所 乙型肝炎病毒抗原分泌的新型抑制剂
EP2444084A1 (de) 2010-10-21 2012-04-25 Centro Nacional de Investigaciones Oncológicas (CNIO) Verwendung von PI3K Inhibitoren zur Behandlung der Fettleibigkeit
WO2012052745A1 (en) 2010-10-21 2012-04-26 Centro Nacional De Investigaciones Oncológicas (Cnio) Combinations of pi3k inhibitors with a second anti -tumor agent
EP2642994A2 (de) 2010-11-18 2013-10-02 Ligand Pharmaceuticals Incorporated Verwendung von hämatopoetischen wachstumsfaktormimetika
CN103261188A (zh) 2010-12-17 2013-08-21 先正达参股股份有限公司 杀虫化合物
TWI617559B (zh) 2010-12-22 2018-03-11 江蘇恆瑞醫藥股份有限公司 2-芳基咪唑并[1,2-b]嗒.2-苯基咪唑并[1,2-a]吡啶,和2-苯基咪唑并[1,2-a]吡衍生物
EA023259B1 (ru) 2011-01-04 2016-05-31 Новартис Аг Индольные соединения или их аналоги, полезные для лечения возрастной макулярной дегенерации (amd)
WO2012100342A1 (en) 2011-01-27 2012-08-02 Université de Montréal Pyrazolopyridine and pyrazolopyrimidine derivatives as melanocortin-4 receptor modulators
EP2685981B1 (de) 2011-03-17 2016-08-24 Bristol-Myers Squibb Company Pyrrolopyridazin-jak3-inhibitoren und ihre verwendung zur behandlung von entzündungserkrankungen und autoimmunerkrankungen
WO2012129562A2 (en) 2011-03-24 2012-09-27 The Scripps Research Institute Compounds and methods for inducing chondrogenesis
AU2012243329B2 (en) 2011-04-13 2015-09-17 Merck Sharp & Dohme Corp. 5-substituted iminothiazines and their mono-and dioxides as BACE inhibitors,compositions,and their use
CN102796103A (zh) 2011-05-23 2012-11-28 南京英派药业有限公司 6-(芳基甲酰)咪唑并[1,2-a]嘧啶和6-(芳基甲酰)[1,2,4]三唑并[4,3-a]嘧啶作为Hedgehog抑制剂及其应用
PT2713722T (pt) 2011-05-31 2017-06-27 Receptos Llc Novos estabilizadores e moduladores do receptor glp-1
GB201109763D0 (en) 2011-06-10 2011-07-27 Ucl Business Plc Compounds
WO2012175991A1 (en) 2011-06-24 2012-12-27 Pharminox Limited Fused pentacyclic anti - proliferative compounds
WO2013008095A1 (en) 2011-07-08 2013-01-17 Novartis Ag Novel pyrrolo pyrimidine derivatives
EP2548877A1 (de) 2011-07-19 2013-01-23 MSD Oss B.V. 4-(5-Gliedrige kondensierte Pyridinyl)benzamide als BTK-Inhibitoren
WO2013033901A1 (en) 2011-09-08 2013-03-14 Merck Sharp & Dohme Corp. Heterocyclic-substituted benzofuran derivatives and methods of use thereof for the treatment of viral diseases
WO2013040528A1 (en) 2011-09-16 2013-03-21 Microbiotix, Inc. Antimicrobial compounds
WO2013043521A1 (en) 2011-09-22 2013-03-28 Merck Sharp & Dohme Corp. Pyrazolopyridyl compounds as aldosterone synthase inhibitors
JP6040677B2 (ja) 2011-09-29 2016-12-07 東洋インキScホールディングス株式会社 太陽電池封止材用樹脂組成物
KR20140084146A (ko) 2011-10-13 2014-07-04 노파르티스 아게 신규 옥사진 유도체 및 질환의 치료에서의 그의 용도
RU2014120180A (ru) 2011-10-20 2015-11-27 ГЛЭКСОСМИТКЛАЙН ЭлЭлСи Замещенные бициклические аза-гетероциклы и аналоги в качестве модуляторов сиртуина
JP2014530850A (ja) 2011-10-21 2014-11-20 トレント・ファーマシューティカルズ・リミテッドTorrent Pharmaceuticals Limited Gpbar1受容体調節剤としての新規置換イミダゾピリミジン
WO2013120040A1 (en) 2012-02-10 2013-08-15 Children's Medical Center Corporation Targeted pathway inhibition to improve muscle structure, function and activity in muscular dystrophy
US9034882B2 (en) 2012-03-05 2015-05-19 Bristol-Myers Squibb Company Inhibitors of human immunodeficiency virus replication
US20150011751A1 (en) 2012-03-09 2015-01-08 Carna Biosciences, Inc. Novel triazine derivative
TWI480271B (zh) 2012-04-20 2015-04-11 Gilead Sciences Inc 醫療性化合物
WO2013157021A1 (en) 2012-04-20 2013-10-24 Advinus Therapeutics Limited Bicyclic compounds, compositions and medicinal applications thereof
WO2013163404A1 (en) 2012-04-27 2013-10-31 The Uab Research Foundation TREATING VIRAL INFECTIONS HAVING VIRAL RNAs TRANSLATED BY A NON-IRES MEDIATED MECHANISM
US9271500B2 (en) 2012-06-18 2016-03-01 Sumitomo Chemical Company, Limited Fused heterocyclic compound
EP2871179A4 (de) 2012-07-03 2016-03-16 Ono Pharmaceutical Co Verbindung mit agonistischer wirkung auf den somatostatinrezeptor und ihre verwendung für medizinische zwecke
GB201212513D0 (en) 2012-07-13 2012-08-29 Ucb Pharma Sa Therapeutic agents
JP6259823B2 (ja) 2012-07-13 2018-01-10 ユーシービー バイオファルマ エスピーアールエル Tnf活性の調節物質としてのイミダゾピリジン誘導体
JP2015178457A (ja) 2012-07-25 2015-10-08 杏林製薬株式会社 ピラゾロピリジン誘導体、またはその薬理学的に許容される塩
US9428511B2 (en) 2012-09-06 2016-08-30 Bristol-Myers Squibb Company Imidazopyridazine JAK3 inhibitors and their use for the treatment of inflammatory and autoimmune diseases
US9328106B2 (en) 2012-09-26 2016-05-03 Genentech, Inc. Cyclic ether pyrazol-4-yl-heterocyclyl-carboxamide compounds and methods of use
WO2014061693A1 (ja) 2012-10-17 2014-04-24 塩野義製薬株式会社 新規非芳香族炭素環又は非芳香族複素環誘導体
WO2014081878A2 (en) 2012-11-21 2014-05-30 Stategics, Inc. Substituted triazolo-pyrimidine compounds for modulating cell proliferation, differentiation and survival
JP6037804B2 (ja) 2012-12-03 2016-12-07 富士フイルム株式会社 ガス分離膜
AR094664A1 (es) 2013-01-15 2015-08-19 Incyte Corp Compuestos de tiazolcarboxamidas y piridinacarboxamida utiles como inhibidores de quinasa pim
JP2016505055A (ja) 2013-01-22 2016-02-18 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Bace1阻害剤としてのフルオロ−[1,3]オキサジン
CN103933036B (zh) 2013-01-23 2017-10-13 中国人民解放军军事医学科学院毒物药物研究所 2‑芳基咪唑并[1,2‑α]吡啶‑3‑乙酰胺衍生物在制备防治PTSD的药物中的用途
WO2014121085A1 (en) 2013-01-31 2014-08-07 Thomas Jefferson University Pd-l1 and pd-l2-based fusion proteins and uses thereof
MX2015010971A (es) 2013-02-27 2015-10-26 Mochida Pharm Co Ltd Derivado novedoso de pirazol.
CN103143948A (zh) 2013-03-07 2013-06-12 江苏汤臣汽车零部件有限公司 一种轻量化平衡轴支座的车架连接钻孔工装
CN104045552B (zh) 2013-03-13 2019-06-11 江苏先声药业有限公司 作为神经保护剂的药用化合物
WO2014138791A1 (en) 2013-03-13 2014-09-18 Australian Nuclear Science And Technology Organisation Transgenic non-human organisms with non-functional tspo genes
EA201591610A1 (ru) 2013-03-14 2015-12-30 Курадев Фарма Прайвит Лтд. Ингибиторы кинуренинового пути
WO2014152013A1 (en) 2013-03-14 2014-09-25 The Trustees Of Columbia University In The City Of New York 4-phenylpiperidines, their preparation and use
BR112015022227A2 (pt) 2013-03-14 2017-07-18 Celtaxsys Inc inibidores de leucotrieno a4 hidrolase
EP2970274B1 (de) 2013-03-14 2017-03-01 VIIV Healthcare UK (No.5) Limited Hemmer der neubildung menschlicher immundefektviren
US9308236B2 (en) 2013-03-15 2016-04-12 Bristol-Myers Squibb Company Macrocyclic inhibitors of the PD-1/PD-L1 and CD80(B7-1)/PD-L1 protein/protein interactions
WO2014181287A1 (en) 2013-05-09 2014-11-13 Piramal Enterprises Limited Heterocyclyl compounds and uses thereof
SI3013337T1 (sl) 2013-06-26 2019-02-28 Abbvie Inc. Primarni karboksamidi kot inhibitorji BTK
CA2917262A1 (en) 2013-07-02 2015-01-08 Syngenta Participations Ag Pesticidally active bi- or tricyclic heterocycles with sulfur containing substituents
SG10201800325PA (en) 2013-07-17 2018-02-27 Otsuka Pharma Co Ltd Cyanotriazole compounds
BR112016001457A2 (pt) 2013-07-25 2017-08-29 Dana Farber Cancer Inst Inc Inibidores de fatores de transcrição e usos dos mesmos
EP2835375A1 (de) 2013-08-09 2015-02-11 Fundació Institut Català d'Investigació Química Bis-salphen-Verbindungen und kohlenstoffhaltige Verbundstoffe damit
KR101715090B1 (ko) 2013-08-28 2017-03-13 한국화학연구원 신규한 화합물 또는 이의 약학적으로 허용가능한 염, 및 이를 유효성분으로 함유하는 인플루엔자 바이러스 감염으로 인한 질환의 예방 또는 치료용 약학적 조성물
SG10201800508SA (en) 2013-09-06 2018-02-27 Aurigene Discovery Tech Ltd 1,3,4-oxadiazole and 1,3,4-thiadiazole derivatives as immunomodulators
JP6521977B2 (ja) 2013-09-06 2019-05-29 オーリジーン ディスカバリー テクノロジーズ リミテッドAurigene Discovery Technologies Limited 免疫調節剤としての1,2,4−オキサジアゾール誘導体
WO2015036927A1 (en) 2013-09-10 2015-03-19 Aurigene Discovery Technologies Limited Immunomodulating peptidomimetic derivatives
JP6336870B2 (ja) 2013-09-30 2018-06-06 日本ポリプロ株式会社 ビフェノール化合物及びそれを用いるオレフィン重合用触媒並びにオレフィン重合体の製造方法
FR3012140B1 (fr) 2013-10-18 2016-08-26 Arkema France Unite et procede pour la purification de methacrylate de methyle brut
GB201321736D0 (en) 2013-12-09 2014-01-22 Ucb Pharma Sa Therapeutic agents
GB201321733D0 (en) 2013-12-09 2014-01-22 Ucb Pharma Sa Therapeutic agents
GB201321743D0 (en) 2013-12-09 2014-01-22 Ucb Pharma Sa Therapeutic agents
GB201321746D0 (en) 2013-12-09 2014-01-22 Ucb Pharma Sa Therapeutic agents
WO2015095337A2 (en) 2013-12-18 2015-06-25 The Rockefeller University PYRAZOLO[1,5-a]PYRIMIDINECARBOXAMIDE DERIVATIVES FOR TREATING COGNITIVE IMPAIRMENT
RU2016131792A (ru) 2014-01-03 2018-02-06 Байер Энимэл Хельс ГмбХ Новые пиразолил-гетероариламиды в качестве средств для борьбы с вредителями
US20160356794A1 (en) 2014-02-10 2016-12-08 Merck Sharp & Dohme Corp. Antibodies that bind to human tau and assay for quantifying human tau using the antibodies
AU2015223075A1 (en) 2014-02-25 2016-09-01 Achillion Pharmaceuticals, Inc. Phosphonate compounds for treatment of complement mediated disorders
JP6490464B2 (ja) 2014-03-26 2019-03-27 三井化学株式会社 遷移金属化合物、オレフィン重合用触媒およびオレフィン系重合体の製造方法
JP6554117B2 (ja) 2014-04-04 2019-07-31 イオメット ファーマ リミテッド 医療で使用されるインドール誘導体
JP2017518281A (ja) 2014-05-14 2017-07-06 プレジデント アンド フェローズ オブ ハーバード カレッジ 有機発光ダイオード材料
CN106065009B (zh) 2014-06-28 2019-03-01 广东东阳光药业有限公司 作为丙型肝炎抑制剂的化合物及其在药物中的应用
CN104211726B (zh) 2014-08-11 2017-06-16 中南民族大学 非茂类三齿双核钛配合物、制备方法及用途
JP2017530959A (ja) 2014-09-17 2017-10-19 エピザイム,インコーポレイティド Carm1阻害剤およびその使用
WO2016041511A1 (en) 2014-09-19 2016-03-24 Yen-Ta Lu Benzo-heterocyclic compounds and their applications
CA2960401C (en) 2014-10-06 2022-07-26 Merck Patent Gmbh Heteroaryl compounds as btk inhibitors and uses thereof
WO2016094688A1 (en) 2014-12-10 2016-06-16 Massachusetts Institute Of Technology Fused 1,3-azole derivatives useful for the treatment of proliferative diseases
JP6853619B2 (ja) 2015-01-16 2021-03-31 大塚製薬株式会社 シアノトリアゾール化合物の医薬用途
WO2016116525A1 (de) 2015-01-20 2016-07-28 Cynora Gmbh Organische moleküle, insbesondere zur verwendung in optoelektronischen bauelementen
WO2016156282A1 (en) 2015-04-02 2016-10-06 Bayer Cropscience Aktiengesellschaft Novel triazole compounds for controlling phytopathogenic harmful fungi
WO2017035405A1 (en) 2015-08-26 2017-03-02 Achillion Pharmaceuticals, Inc. Amino compounds for treatment of immune and inflammatory disorders
US10745382B2 (en) 2015-10-15 2020-08-18 Bristol-Myers Squibb Company Compounds useful as immunomodulators
TW201718581A (zh) 2015-10-19 2017-06-01 英塞特公司 作為免疫調節劑之雜環化合物
WO2017070320A1 (en) 2015-10-21 2017-04-27 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Phenyl indole allosteric inhibitors of p97 atpase
KR101717601B1 (ko) 2015-11-10 2017-03-20 한국화학연구원 신규한 화합물 또는 이의 약학적으로 허용가능한 염, 및 이를 유효성분으로 함유하는 인플루엔자 바이러스 감염으로 인한 질환의 예방 또는 치료용 약학적 조성물
TWI763641B (zh) 2015-11-19 2022-05-11 美商英塞特公司 作為免疫調節劑之雜環化合物
MA44075A (fr) 2015-12-17 2021-05-19 Incyte Corp Dérivés de n-phényl-pyridine-2-carboxamide et leur utilisation en tant que modulateurs des interactions protéine/protéine pd-1/pd-l1
CA3006911A1 (en) 2015-12-22 2017-06-29 Syngenta Participations Ag Pesticidally active pyrazole derivatives
AU2016378482A1 (en) 2015-12-22 2018-07-12 Synthon B.V. Pharmaceutical composition comprising amorphous lenalidomide and an antioxidant
WO2017107052A1 (en) 2015-12-22 2017-06-29 Merck Sharp & Dohme Corp. Soluble guanylate cyclase stimulators
MX2018007774A (es) 2015-12-22 2018-11-09 Incyte Corp Compuestos heterociclicos como inmunomoduladores.
SG10202111399YA (en) 2015-12-22 2021-11-29 Immatics Biotechnologies Gmbh Peptides and combination of peptides for use in immunotherapy against breast cancer and other cancers
KR101653560B1 (ko) 2016-02-02 2016-09-12 한국화학연구원 신규한 화합물 또는 이의 약학적으로 허용가능한 염, 및 이를 유효성분으로 함유하는 인플루엔자 바이러스 감염으로 인한 질환의 예방 또는 치료용 약학적 조성물
CR20180553A (es) 2016-04-22 2019-02-01 Incyte Corp Formulaciones de un inhibidor de lsd1
AR108396A1 (es) 2016-05-06 2018-08-15 Incyte Corp Compuestos heterocíclicos como inmunomoduladores
US20170342060A1 (en) 2016-05-26 2017-11-30 Incyte Corporation Heterocyclic compounds as immunomodulators
LT3472167T (lt) 2016-06-20 2022-11-10 Incyte Corporation Heterocikliniai junginiai kaip imunomoduliatoriai
EA036509B1 (ru) 2016-06-20 2020-11-18 Эланко Юэс Инк. Пегилированный свиной интерферон и способы его применения
US11091489B2 (en) 2016-06-20 2021-08-17 Novartis Ag Crystalline forms of a triazolopyrimidine compound
CA3027498A1 (en) 2016-06-21 2017-12-28 X4 Pharmaceuticals, Inc. Cxcr4 inhibitors and uses thereof
US20180016260A1 (en) 2016-07-14 2018-01-18 Incyte Corporation Heterocyclic compounds as immunomodulators
CN109195602B (zh) 2016-08-03 2022-01-07 上海齐鲁制药研究中心有限公司 用作免疫调节剂的对称或半对称化合物
MA46045A (fr) 2016-08-29 2021-04-28 Incyte Corp Composés hétérocycliques utilisés comme immunomodulateurs
BR112019003885A2 (pt) 2016-08-30 2019-05-28 Tetraphase Pharmaceuticals Inc compostos de tetraciclina e métodos de tratamento
CA3046578A1 (en) 2016-12-21 2018-06-28 Acerta Pharma B.V. Imidazopyrazine inhibitors of bruton's tyrosine kinase
TWI795381B (zh) 2016-12-21 2023-03-11 比利時商健生藥品公司 作為malt1抑制劑之吡唑衍生物
ES2934230T3 (es) 2016-12-22 2023-02-20 Incyte Corp Derivados de benzooxazol como inmunomoduladores
EP3558989B1 (de) 2016-12-22 2021-04-14 Incyte Corporation Triazolo[1,5-a]pyridin-derivate als immunmodulatoren
WO2018119221A1 (en) 2016-12-22 2018-06-28 Incyte Corporation Pyridine derivatives as immunomodulators
US20180177784A1 (en) 2016-12-22 2018-06-28 Incyte Corporation Heterocyclic compounds as immunomodulators
TWI818902B (zh) 2016-12-22 2023-10-21 美商卡利泰拉生物科技公司 用於抑制精胺酸酶活性的組合物及方法
KR102641030B1 (ko) 2016-12-22 2024-02-29 인사이트 코포레이션 Pd-l1 내재화 유도제로서의 테트라하이드로 이미다조[4,5-c]피리딘 유도체
MA47099A (fr) 2016-12-22 2021-05-12 Incyte Corp Composés hétéroaromatiques bicycliques utilisés en tant qu'immunomodulateurs
JOP20180040A1 (ar) 2017-04-20 2019-01-30 Gilead Sciences Inc مثبطات pd-1/pd-l1
CN111225896B (zh) 2017-07-28 2024-03-26 凯莫森特里克斯股份有限公司 免疫调节剂化合物
CN111225665B (zh) 2017-08-08 2023-12-08 凯莫森特里克斯股份有限公司 大环免疫调节剂
CN109400522B (zh) 2017-08-18 2023-04-28 上海轶诺药业有限公司 一种具有pd-l1抑制活性的化合物、其制备方法及用途
EP4212529A1 (de) 2018-03-30 2023-07-19 Incyte Corporation Heterocyclische verbindungen als immunmodulatoren
JP2021520342A (ja) 2018-04-03 2021-08-19 ベータ ファーマシューティカルズ カンパニー リミテッド 免疫調節物質、組成物及びそれらの方法
US10899735B2 (en) 2018-04-19 2021-01-26 Gilead Sciences, Inc. PD-1/PD-L1 inhibitors
CN112752756A (zh) 2018-05-11 2021-05-04 因赛特公司 作为PD-L1免疫调节剂的四氢-咪唑并[4,5-c]吡啶衍生物
AU2019366355B2 (en) 2018-10-24 2022-10-13 Gilead Sciences, Inc. PD-1/PD-L1 inhibitors
EP3875458A4 (de) 2018-11-02 2022-08-24 Shanghai Maxinovel Pharmaceuticals Co., Ltd. Diphenylähnliche verbindungen, zwischenprodukte davon, herstellungsverfahren dafür, pharmazeutische zusammensetzung davon und verwendungen davon
US11596692B1 (en) 2018-11-21 2023-03-07 Incyte Corporation PD-L1/STING conjugates and methods of use
BR112021015131A2 (pt) 2019-01-31 2021-09-28 Betta Pharmaceuticals Co., Ltd Imunomoduladores, composições e métodos dos mesmos
GB201911210D0 (en) 2019-08-06 2019-09-18 Amlo Biosciences Ltd Clinical management of oropharyngeal squamous cell carcinoma
US11753406B2 (en) 2019-08-09 2023-09-12 Incyte Corporation Salts of a PD-1/PD-L1 inhibitor
BR112022005826A2 (pt) 2019-09-30 2022-06-21 Incyte Corp Compostos de pirido[3,2-d]pirimidina como imunomoduladores
BR112022009031A2 (pt) 2019-11-11 2022-10-11 Incyte Corp Sais e formas cristalinas de um inibidor de pd-1/pd-l1
WO2021225908A1 (en) 2020-05-04 2021-11-11 Beyondspring Pharmaceuticals, Inc. Triple combination therapy for enhancing cancer cell killing in cancers with low immunogenicity
WO2022099018A1 (en) 2020-11-06 2022-05-12 Incyte Corporation Process of preparing a pd-1/pd-l1 inhibitor
AR124001A1 (es) 2020-11-06 2023-02-01 Incyte Corp Proceso para fabricar un inhibidor pd-1 / pd-l1 y sales y formas cristalinas del mismo
US11760756B2 (en) 2020-11-06 2023-09-19 Incyte Corporation Crystalline form of a PD-1/PD-L1 inhibitor
WO2022133176A1 (en) 2020-12-18 2022-06-23 Incyte Corporation Oral formulation for a pd-l1 inhibitor
US20230149409A1 (en) 2021-09-24 2023-05-18 Incyte Corporation Treatment of human papillomavirus-associated cancers by pd-l1 inhibitors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002000196A2 (en) 2000-06-28 2002-01-03 Smithkline Beecham P.L.C. Wet milling process
WO2014138484A1 (en) * 2013-03-08 2014-09-12 Amgen Inc. Perfluorinated cyclopropyl fused 1,3-oxazin-2-amine compounds as beta-secretase inhibitors and methods of use
WO2015034820A1 (en) * 2013-09-04 2015-03-12 Bristol-Myers Squibb Company Compounds useful as immunomodulators
WO2015160641A2 (en) * 2014-04-14 2015-10-22 Bristol-Myers Squibb Company Compounds useful as immunomodulators
WO2016118404A1 (en) * 2015-01-20 2016-07-28 Merck Sharp & Dohme Corp. Iminothiadiazine dioxides bearing an amine-linked substituent as bace inhibitors, compositions, and their use

Non-Patent Citations (28)

* Cited by examiner, † Cited by third party
Title
"Remington's Pharmaceutical Sciences", 1985, MACK PUBLISHING COMPANY, pages: 1418
BARBER ET AL., NATURE, vol. 439, 2006, pages 682 - 7
BERGE ET AL., J. PHARM. SCI., vol. 66, no. 1, 1977, pages 1 - 19
BLANK ET AL., CANCER RES, vol. 64, no. 3, 2004, pages 1140 - 5
BLOM ET AL.: "Optimizing Preparative LC-MS Configurations and Methods for Parallel Synthesis Purification", J. COMBI. CHEM., vol. 5, 2003, pages 670 - 83
BLOM ET AL.: "Preparative LC-MS Purification: Improved Compound Specific Method Optimization", J. COMBI. CHEM., vol. 6, 2004, pages 874 - 883
BLOM: "Two-Pump At Column Dilution Configuration for Preparative LC-MS", J. COMBI. CHEM., vol. 4, 2002, pages 295 - 301
CARTER ET AL., EUR J IMMUNOL, vol. 32, no. 3, 2002, pages 634 - 43
FREEMAN ET AL., J EXP MED, vol. 192, no. 7, 2000, pages 1027 - 34
GREENWALD ET AL., ANNU. REV. IMMUNOL, vol. 23, 2005, pages 515 - 548
HUANG ET AL., ONCOL REP, 2015
IWAI ET AL., PNAS2002, vol. 99, no. 19, pages 12293 - 7
KOCIENSKI: "Protecting Groups", THIEME, 2007
LATCHMAN ET AL., NAT IMMUNOL, vol. 2, 2001, pages 261 - 268
NAKAE ET AL., J IMMUNOL, vol. 177, 2006, pages 566 - 73
NISHIMURA ET AL., IMMUNITY, vol. 11, 1999, pages 141 - 151
NISHIMURA ET AL., SCIENCE, vol. 291, 2001, pages 319 - 322
OKAZAKIHONJO, TRENDS IMMUNOL, vol. 4, 2006, pages 195 - 201
PARRY ET AL., MOL CELL BIOL, 2005, pages 9543 - 9553
PETURSSION ET AL.: "Protecting Groups in Carbohydrate Chemistry", J. CHEM. EDUC., vol. 74, no. 11, 1997, pages 1297
POSTOW ET AL., J. CLINICAL ONCOL, 2015, pages 1 - 9
POSTOW ET AL., J. CLINICAL ONCOLOGY, 2015, pages 1 - 9
ROBERTSON: "Protecting Group Chemistry", 2000, OXFORD UNIVERSITY PRESS
SABATIER ET AL., ONCOTARGET, vol. 6, no. 7, 2015, pages 5449 - 5464
SHARPE ET AL., NAT IMMUNOL, vol. 8, 2007, pages 239 - 245
SMITH ET AL.: "March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure", 2007, WILEY
WANG ET AL., EUR J SURG ONCOL, 2015
WUTS ET AL.: "Protective Groups in Organic Synthesis", 2006, WILEY

Also Published As

Publication number Publication date
PH12018501340A1 (en) 2019-02-18
TW202219037A (zh) 2022-05-16
UA126113C2 (uk) 2022-08-17
EP3394033B1 (de) 2020-11-25
US20200407357A1 (en) 2020-12-31
KR20180100585A (ko) 2018-09-11
CR20180374A (es) 2018-10-16
WO2017112730A1 (en) 2017-06-29
EA201891494A1 (ru) 2019-01-31
JP7262524B2 (ja) 2023-04-21
TWI767896B (zh) 2022-06-21
US11866435B2 (en) 2024-01-09
IL260166A (en) 2018-07-31
JP2019505501A (ja) 2019-02-28
MX2018007774A (es) 2018-11-09
CY1124055T1 (el) 2022-05-27
SI3394033T1 (sl) 2021-03-31
CN108699001B (zh) 2023-04-14
MD3394033T2 (ro) 2021-04-30
US20230100875A1 (en) 2023-03-30
MX2022005290A (es) 2022-05-24
CO2018007528A2 (es) 2018-10-10
AU2023200344A1 (en) 2023-02-23
US20170174679A1 (en) 2017-06-22
JP2021176859A (ja) 2021-11-11
HUE052722T2 (hu) 2021-05-28
IL288232A (en) 2022-01-01
PT3394033T (pt) 2021-01-29
IL260166B (en) 2021-12-01
DK3394033T3 (da) 2021-01-04
JP6911031B2 (ja) 2021-07-28
BR112018012756A2 (pt) 2018-12-04
CL2018001685A1 (es) 2018-10-12
SG10202005790VA (en) 2020-07-29
CN108699001A (zh) 2018-10-23
MA55194A (fr) 2022-05-04
ES2844374T3 (es) 2021-07-22
EP4292650A2 (de) 2023-12-20
HRP20210190T1 (hr) 2021-03-19
EP4292650A3 (de) 2024-02-28
US11535615B2 (en) 2022-12-27
TW201726626A (zh) 2017-08-01
LT3394033T (lt) 2021-03-10
ZA201804909B (en) 2023-02-22
RS61350B1 (sr) 2021-02-26
SG11201805300QA (en) 2018-07-30
AU2021203438A1 (en) 2021-06-24
CN116514715A (zh) 2023-08-01
PE20230731A1 (es) 2023-05-03
CA3009474A1 (en) 2017-06-29
EP3394033A1 (de) 2018-10-31
PL3394033T3 (pl) 2021-05-31
AU2016379372A1 (en) 2018-08-02

Similar Documents

Publication Publication Date Title
US11866435B2 (en) Heterocyclic compounds as immunomodulators
EP3558973B1 (de) Pyridinderivate als immunmodulatoren
AU2021250978B2 (en) Heterocyclic compounds as immunomodulators
EP3558989B1 (de) Triazolo[1,5-a]pyridin-derivate als immunmodulatoren
EP3365340B1 (de) Heterocyclische verbindungen als immunmodulatoren
EP3390361B1 (de) N-phenyl-pyridin-2-carboxamid- derivate und ihre verwendung als pd-1/pd-l1 protein/protein-interaktions- modulatoren
EP3452476B1 (de) Heterocyclische verbindungen als immunmodulatoren
EP3377488B1 (de) Heterocyclische verbindungen als immunmodulatoren
EP3464279B1 (de) Heterocyclische verbindungen als immunmodulatoren
AU2023200344B2 (en) Heterocyclic compounds as immunomodulators

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 3394033

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211202

RAV Requested validation state of the european patent: fee paid

Extension state: MD

Effective date: 20211202

Extension state: MA

Effective date: 20211202

RAX Requested extension states of the european patent have changed

Extension state: ME

Payment date: 20211202

Extension state: BA

Payment date: 20211202

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40053556

Country of ref document: HK

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220401

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230324

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230804