WO2020143173A1 - 电池包、车辆和储能装置 - Google Patents

电池包、车辆和储能装置 Download PDF

Info

Publication number
WO2020143173A1
WO2020143173A1 PCT/CN2019/092389 CN2019092389W WO2020143173A1 WO 2020143173 A1 WO2020143173 A1 WO 2020143173A1 CN 2019092389 W CN2019092389 W CN 2019092389W WO 2020143173 A1 WO2020143173 A1 WO 2020143173A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery pack
unit
pack according
array
Prior art date
Application number
PCT/CN2019/092389
Other languages
English (en)
French (fr)
Inventor
何龙
孙华军
江文锋
鲁志佩
郑卫鑫
唐江龙
朱燕
王信月
何科峰
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to KR1020247010761A priority Critical patent/KR20240046642A/ko
Priority to JP2021540122A priority patent/JP7311611B2/ja
Priority to KR1020217024749A priority patent/KR102654288B1/ko
Priority to US17/422,124 priority patent/US20220126705A1/en
Priority to EP19909561.3A priority patent/EP3907778A4/en
Publication of WO2020143173A1 publication Critical patent/WO2020143173A1/zh
Priority to JP2023108900A priority patent/JP2023134546A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/103Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/131Primary casings, jackets or wrappings of a single cell or a single battery characterised by physical properties, e.g. gas-permeability or size
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/251Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for stationary devices, e.g. power plant buffering or backup power supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • H01M50/367Internal gas exhaust passages forming part of the battery cover or case; Double cover vent systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/383Flame arresting or ignition-preventing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • B60K2001/0405Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion characterised by their position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • B60K2001/0405Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion characterised by their position
    • B60K2001/0438Arrangement under the floor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application belongs to the technical field of vehicle manufacturing, and specifically relates to a battery pack, a vehicle having the battery pack, and an energy storage device having the battery pack.
  • a battery pack applied to an electric vehicle mainly includes a battery pack and a plurality of battery modules installed in the battery pack, wherein each battery module is assembled from a plurality of single batteries.
  • the battery pack includes a battery pack shell, and a plurality of beams 500 and a plurality of longitudinal beams 600 divide the battery pack shell into a plurality of battery module 400 installation areas.
  • the battery module 400 passes through It is fixed to the beam 500 or the stringer 600 by screws or the like.
  • the battery module 400 includes a plurality of single cells arranged in sequence, the multiple single cells are arranged to form a battery array, and an end plate and/or a side plate are provided outside the battery array; generally, the end plate and the side plate are simultaneously included.
  • the side plates are fixed and enclose a space for accommodating the battery array.
  • the end plate and the side plate are connected by screws, welding, or connected by other connecting members such as tie rods to achieve the fixation of the battery array.
  • the battery module 400 is fixed to the beam 500 and the longitudinal beam 600 by screws and other structures, which wastes space. At the same time, because of the addition of screws and other connectors, the weight is increased and the energy density is reduced. In addition, the battery module 400 passes through the end plate and With the design of the side panel, both the end panel and the side panel have a certain thickness and height, which wastes the space inside the battery pack and reduces the volume utilization rate of the battery pack. In general, in the battery pack in the above related art, the ratio of the sum of the volume of the single cells in the battery pack to the volume of the battery pack is about 50%, or even as low as 40%.
  • the use of the battery pack provided by the above-mentioned related technical embodiments, the end plates and side plates of the battery module 400, and the connection and installation methods inside the battery pack all reduce the utilization of the internal space of the battery pack;
  • the ratio of the sum of the volume and the volume of the battery pack is too low, and its energy density cannot meet the above-mentioned increase in demand, which has gradually become an important factor restricting the development of electric vehicles.
  • there is a cumbersome assembly process and the assembly process is complicated. It is necessary to assemble the battery module first, and then install the battery module in the battery pack, which increases the cost of manpower and material resources.
  • the battery pack During the assembly process, the probability of a defective rate is increased. Multiple assembly increases the possibility of the battery pack becoming loose and not firmly installed, which will adversely affect the quality of the battery pack, and the stability of the battery pack will decrease, and the reliability reduce.
  • an object of the present disclosure is to propose a battery pack that has the advantages of high space utilization, high energy density, strong endurance, high reliability, low cost, and high quality.
  • the present application provides a battery pack, including a battery array and a support member, the battery array includes a plurality of single cells, the single cells have a first size, the first size is a virtual clamping The maximum value of the distance between two parallel planes of the unit cell; at least one unit cell satisfies: 600 mm ⁇ first size ⁇ 2500 mm and is supported on the support; the two corresponding to the first size
  • the normal direction of the parallel plane is the Q direction
  • a battery placement area is formed in the battery pack, the battery array is located in the battery placement area, and the single cells extend from one side of the battery placement area along the Q direction To the other side of the battery placement area.
  • the present application provides a battery pack including a battery array and a support member.
  • the battery array includes a plurality of single cells, the single cells have a size A, and the size A is the smallest external rectangular body of the single cells Long, at least one single cell satisfies: 600 mm ⁇ size A ⁇ 2500 mm, and is supported on the support.
  • the present application provides a battery pack including a battery array and a support member.
  • the battery array includes a plurality of single cells. At least one single cell satisfies: including a battery body and a battery body extending out of the battery body for drawing current inside the battery body Electrode terminal, the battery body is a substantially rectangular parallelepiped, the length of the battery body is L, 600mm ⁇ L ⁇ 2500mm, and is supported on the support; a battery placement area is formed in the battery pack, and the battery array is located In the battery placement area, the at least one unit battery extends from one side of the battery placement area to the other side of the battery placement area along the length direction of the smallest circumscribed rectangular body of the unit battery.
  • the single batteries are soft pack batteries and can be supported on the support
  • the soft pack battery will blow apart without explosion, thereby improving the safety performance of the single battery.
  • the single battery placed directly in the battery pack shell is convenient for single
  • the body battery dissipates heat through the battery pack housing or other heat dissipation components.
  • more single cells can be arranged in the effective space.
  • the pole core combined with the soft pack battery accounts for a large proportion, which can greatly improve the volume utilization rate, and
  • the manufacturing process of the battery pack is simplified, the assembly complexity of the single battery is reduced, and the production cost is reduced, so that the weight of the battery pack and the entire battery pack is reduced, and the weight of the battery pack is realized.
  • the endurance of the electric vehicle can also be improved, and the weight of the electric vehicle can be reduced. .
  • improve the capacity, voltage and endurance of the entire battery pack For example, in electric vehicles, this design can increase the space utilization from the original 40% to more than 60% or even higher, such as 80%.
  • the present application also proposes a vehicle including the above battery pack.
  • the present application also proposes an energy storage device including the above battery pack.
  • the vehicle and the energy storage device have the same advantages as the above-mentioned battery pack relative to the related art, and will not be repeated here.
  • FIG. 1 is an exploded schematic diagram of a battery pack provided by the related art
  • FIG. 2 is a schematic perspective view of a battery pack provided by an embodiment of the present application.
  • FIG. 3 is a three-dimensional structural schematic diagram of a single battery provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the arrangement of multiple single cells in a battery pack according to an embodiment of the present application.
  • FIG. 5 is a three-dimensional schematic diagram of a battery pack provided by an embodiment of the present application.
  • FIG. 6 is a three-dimensional schematic diagram of a battery pack provided by another embodiment of the present application.
  • FIG. 7 is a three-dimensional schematic diagram of a battery pack provided by another embodiment of the present application.
  • FIG. 8 is an enlarged view of part A in FIG. 7;
  • FIG. 9 is a cross-sectional perspective view of a battery pack provided by an embodiment of the present application.
  • FIG. 10 is an enlarged view of part B in FIG. 9;
  • FIG. 11 is a cross-sectional view of a battery pack provided by another embodiment of the present application, where the first side beam and the second side beam are not shown;
  • FIG. 12 is an exploded view of a battery pack provided by an embodiment of the present application.
  • FIG. 13 is a perspective structural schematic view of a first side plate or a second side plate provided by an embodiment of the present application.
  • FIG. 14 is a perspective structural schematic view of a first end plate or a second end plate provided by an embodiment of the present application.
  • 15 is a three-dimensional structural diagram of a battery pack provided by an embodiment of the present application, in which there are multiple battery modules;
  • 16 is a schematic view of a three-dimensional structure of a battery pack (cavity) formed on an electric vehicle according to an embodiment of the present application;
  • 17 is a cross-sectional view of a cavity provided by an embodiment of the present application.
  • FIG. 18 is a three-dimensional schematic diagram of a vehicle tray provided in an embodiment of the present application fixed to an electric vehicle;
  • FIG. 19 is an explosion schematic diagram illustrating that an embodiment of the present application provides a battery pack (vehicle tray) fixed on an electric vehicle;
  • FIG. 20 is a perspective view of a battery pack provided by an embodiment of the present application.
  • 21 is a perspective view of another embodiment of the present application provides a battery pack
  • FIG. 22 is a perspective view of another embodiment of the present application provides a battery pack
  • FIG. 23 is a perspective view of another embodiment of the present application provides a battery pack
  • FIG. 24 is a perspective view of another embodiment of the present application provides a battery pack
  • 25 is a perspective view of an embodiment of the present application provides a bottom beam
  • 26 is a schematic structural diagram of a vehicle provided by an embodiment of the present application.
  • FIG. 27 is a schematic structural diagram of an energy storage device according to an embodiment of the present application.
  • FIG. 28 is a measurement principle diagram of the first size and the second size of this application.
  • 29 is a perspective view of another embodiment of the present application provides a battery pack
  • FIG. 30 is a schematic structural diagram of a single battery provided by another embodiment of the present application.
  • FIG. 31 is a perspective view of another embodiment of the present application provides a battery pack
  • 32 is a schematic structural diagram of a unit battery provided by another embodiment of the present application.
  • Second support plate 215 First connection surface
  • a battery pack 200 is provided, including a battery array 3 and a support 4.
  • the battery array 3 includes a plurality of single cells 100, and the single cells 100 have a first size, and the first size is a maximum value of a distance between two parallel planes virtually sandwiching the single cells 100. At least one unit battery 100 satisfies: 600 mm ⁇ first size ⁇ 2500 mm.
  • each set of parallel planes includes two parallel planes, and the two parallel planes of each set can virtually hold the single cell 100, each set There is a distance between the two parallel planes, and the first dimension is the maximum of these distances.
  • the definition of the first size can refer to the feret diameter, which is a dimension measured by an object in a certain direction.
  • the measurement method is defined as the distance between two parallel planes. These two parallel planes need to catch the object and be perpendicular to the specified direction.
  • the shape of the unit battery 100 may be various, and may be a regular geometric shape or an irregular geometric shape, such as a square, a circle, a polygon, a triangle, or any shape, such as a shaped battery. It can be understood that the present application does not limit the shape of the unit battery.
  • the outer surface of the unit battery 100 is provided with a support area, and the support area may be provided at both ends of the unit battery 100 along the first size direction, so that the unit battery 100 may be provided along the first size Directional support on the support 4.
  • the first size of the unit battery 100 can be designed to be 600 mm-2500 mm. Since the unit battery 100 is sufficiently long, the unit battery 100 can be directly supported on the support 4, thereby reducing the battery pack The use of the beam 500 and/or the stringer 600 in 200, and even the beam 500 and/or the stringer 600 may not be used in the battery pack 200, thereby reducing the space occupied by the beam 500 and/or the stringer 600 in the battery pack 200, The space utilization rate of the battery pack 200 is improved, and as many unit cells 100 as possible can be arranged in the battery pack 200, thereby improving the capacity, voltage, and endurance of the entire battery pack. For example, in electric vehicles, this design can increase the space utilization from the original 40% to more than 60% or even higher, such as 80%.
  • the butting of the supporting member 4 and the supporting region may be that the supporting member 4 directly contacts the supporting region to support the unit battery, or the supporting member 4 may be indirectly contacted or connected to the supporting region through other components.
  • This application is not limited according to the corresponding settings of the usage situation.
  • the above-mentioned single battery 100 is a soft pack battery.
  • the soft pack battery When a safety hazard occurs, the soft pack battery will blow apart without explosion, thereby improving the safety performance of the single battery 100.
  • the polar core of the soft pack battery has a large proportion, which can improve the volume utilization rate, and the processing cost of the soft pack battery is low.
  • this design can increase the space utilization from the original 40% to more than 60% or even higher, such as 80%.
  • the unit battery 100 includes a case, a pole core located in the case, a reinforcing member for reinforcing the case, and the supporting member 4 is docked with the reinforcing member to support the unit battery 100 .
  • the supporting area may be provided on the outer surface of the reinforcing member.
  • the soft package unit 105 includes an outer shell and a pole core located in the outer shell. This can prevent the aluminum-plastic film of the soft pack monomer 105 from being worn due to the misalignment of the soft pack monomer 105, and the rigidity of the single battery 100 itself is large, which can enhance the rigidity of the battery pack 200.
  • the reinforcement member includes a reinforcement case 104, which is wrapped around the casing of at least one unit battery 100, and the support member 4 is docked with the reinforcement case 104 to support the unit battery 100.
  • the reinforced shell 104 can completely wrap the soft package monomer 105, or the area corresponding to the support 4 that wraps the soft package monomer 105.
  • the reinforced shell 104 is a hard shell, and the reinforced shell 104 can be a steel shell or a steel shell.
  • the reinforcing casing 104 is made of a metal material, the thermal conductivity of the metal casing of the unit battery 100 is better, so that the heat dissipation efficiency of the unit battery 100 can be improved and the heat dissipation effect can be optimized.
  • the reinforcing shell 104 may be partially opened for weight reduction.
  • each reinforced shell 104 package includes one soft package monomer 105; in the embodiment shown in FIGS. 31 and 32, each reinforced shell 104 package includes Multiple soft pack monomers 105.
  • the unit battery 100 has an electrode terminal that draws an internal current
  • the reinforcement member includes a bus bar
  • the bus bar is configured to electrically connect the electrode terminals of the plurality of unit cells 100
  • the support member 4 is docked with the bus bar to support Single cell 100. In this way, when the plurality of unit cells 100 are arranged on the support 4, the electrical connection of the plurality of unit cells 100 can also be achieved at the same time.
  • the manufacturing process of the battery pack 200 is simplified, the assembly complexity of the single cell 100 is reduced, and the production cost is reduced.
  • the weight of the battery pack 200 is reduced, and the weight of the battery pack is reduced.
  • the endurance of the electric vehicle can also be improved, and the weight of the electric vehicle can be reduced.
  • the length of the single cell 100 is long enough to be supported on the support 4, and the length of the single cell 100 is not too long.
  • the rigidity of the single cell 100 itself is also big enough.
  • the specific form of the battery pack is not particularly limited, but only needs to be limited to that the battery pack includes a support member 4, the battery array 3 is located on the support member 4, and the single battery 100 is supported on the support member 4.
  • the support member 4 The specific structure of is not limited, as long as the unit battery 100 can be supported on the supporting member 4, the specific structure of the supporting member 4 will be described below.
  • the unit battery 100 is supported on the supporting member 4, and the unit battery 100 may be directly supported by the supporting member 4, that is, placed on the supporting member 4, or may be fixed on the supporting member 4, the specific fixing method is described in detail below, For specific support and fixing methods, this application is not limited.
  • the support member 4 is used to support the battery array 3.
  • the support member 4 is usually a rigid structure.
  • the support member 4 can be an independently processed pallet or a rigid support structure formed on the chassis of the vehicle, and can be easily installed on the vehicle or other devices. on.
  • the single cell 100 has a second size, and the single cell has a second size, and the second size is a minimum value of the distance between two parallel planes that virtually sandwich the single cell, and the two corresponding to the second size
  • the normal direction of the parallel plane is the P direction, and several unit cells are arranged along the P direction of at least one unit cell.
  • each set of parallel planes includes two parallel planes, and the two parallel planes of each set can virtually hold the single cell 100, each set There is a distance between the two parallel planes, and the second dimension is the minimum of these distances.
  • the definition of the second dimension can refer to the feret diameter, which is a dimension measured by an object in a certain direction.
  • the measurement method is defined as the distance between two parallel planes. These two parallel planes need to catch the object and be perpendicular to the specified direction.
  • the second dimension can be understood as that there are multiple sets of two parallel planes tangent to the outline edge of the unit battery 100. If the distance is smaller than the distance between two parallel planes of other groups, the minimum distance can be defined as the second size.
  • the normal direction of the two parallel planes corresponding to the second dimension is the P direction, and several unit cells are arranged along the P direction of any one unit cell in the battery array 3.
  • At least one single cell satisfies: 23 ⁇ first size/second size ⁇ 208, and in some embodiments, 50 ⁇ first size/second size ⁇ 70.
  • the inventor has found through a lot of experiments that the unit battery 100 satisfying the above size requirements can make the unit battery 100 thinner in the direction of the second size on the basis of the stiffness satisfying the support requirements, thereby making the unit battery 100 itself Has a high heat dissipation capacity.
  • the volume of the unit battery 100 is V
  • the battery body of at least one unit battery 100 satisfies: 0.0005 mm -2 ⁇ first size/V ⁇ 0.002 mm -2 .
  • the volume V of the single battery can be obtained by the drainage method: the single battery is placed in a container filled with water, and the volume of water overflowing from the container is equal to the volume of the single battery. The inventor has found through a lot of experiments that when the unit battery 100 satisfies the above-mentioned limit, the cross section of the unit battery 100 is small, and the heat dissipation effect of the unit battery 100 is good, so that the temperature difference between the inside and the periphery of the unit battery 100 is small.
  • the ratio of the surface area S of the battery body of the unit cell 100 to the volume V satisfies 0.1 mm -1 ⁇ S/V ⁇ 0.35 mm -1 . . At this ratio, it can be achieved by the above-mentioned single battery 100 with a long length and a thin thickness, or by size adjustment.
  • the ratio of the surface area S of the single battery 100 to the volume V the single battery can be guaranteed While the length of 100 extends in the Y direction, it has a sufficient heat dissipation area to ensure the heat dissipation effect of the unit battery 100.
  • the surface area of the single cell refers to the sum of the areas of all the surfaces of the single cell.
  • At least one unit battery 100 has a first end and a second end along the first dimension direction, and at least one of the first end and the second end has a terminal for drawing current inside the unit battery 100
  • the electrode terminals and the electrode terminals between the unit cells 100 are electrically connected by a connector.
  • the "first end” and “second end” of the unit battery 100 are used to describe the orientation of the unit battery 100, and are not used to define and describe the specific structure of the unit battery 100, for example, the first end and The second end is not used to define and describe the positive electrode and the negative electrode of the unit battery 100.
  • the first electrode terminal 101 of the unit battery 100 is The first end of the body battery 100 is led out, and the second electrode terminal 102 of the unit battery 100 is led out from the second end of the unit battery 100.
  • the first dimension direction of the unit battery 100 may be the current direction inside the unit battery 100, that is, the current direction inside the unit battery 100 is the first dimension direction.
  • the first electrode terminal 101 may be the positive electrode of the unit battery 100, and the second electrode terminal 102 may be the negative electrode of the unit battery 100; or, the first electrode terminal 101 may be the negative electrode of the unit battery 100, and the second electrode terminal 102 may be The positive electrode of the unit cell 100.
  • the electrode terminals of the unit battery 100 are connected in series and parallel through a connector.
  • the battery pack further includes two side plate components that are oppositely arranged on both sides of the battery array 3 and used to clamp the battery array 3, and the side plate components clamp the battery array 3, which has a function of restricting expansion and deformation of a plurality of single cells 100, thereby ensuring explosion protection Activation of valve 103 and/or current interrupt device (CID).
  • the side plate components may be the third side beam 203 and the fourth side beam 204; in other embodiments, as shown in FIG. 12, the side plate components may be The first side plate 209 and the second side plate 210.
  • the normal direction of the two parallel planes corresponding to the first dimension is the Q direction
  • the battery pack includes a vehicle tray
  • the vehicle tray includes oppositely disposed along the Q direction
  • the support member 4 is the first side beam 201 and the second side beam 202
  • the two ends of the single cell 100 are supported on the first side beam 201 and the second side beam respectively 202.
  • the support member 4 is a plurality of bottom beams, and the bottom beams are located below the battery array 3.
  • the bottom beam is used to support the battery array 3.
  • the upper surface of the bottom beam may be flat to form a surface support with the battery array 3.
  • the bottom beam has a rectangular cross section.
  • the battery array 3 can be fixed to the bottom beam by means of glue, threaded connectors and the like.
  • the battery pack further includes a sealing cover, and the sealing cover and the bottom beam form a receiving cavity for receiving the battery array 3.
  • the sealing cover is used to prevent the intrusion of ash layer and water.
  • the normal direction of the two parallel planes corresponding to the first dimension is the Q direction.
  • the bottom beam includes a first beam 501 and a second beam 502 located on the first beam 501 and intersecting the first beam 501.
  • the angle between the extending direction of the beam 501 and the Q direction is 60-90 degrees, and the unit cell 100 is supported on the first beam 501.
  • the first beam 501 and the second beam 502 are vertically connected, and the connection manners of the first beam 501 and the second beam 502 include, but are not limited to, screw connection, welding, and the like.
  • the first beam 501 and the second beam 502 may both be linear beams.
  • the second beam 502 includes two.
  • the two second beams 502 are respectively located at two ends of the first beam 501 and are perpendicular to the first beam 501 respectively.
  • the unit cell 100 is supported on the first beam 501.
  • the second beam 502 projects upward (Z direction) relative to the first beam 501.
  • the lower surface of the second beam 502 may be connected to the upper surface of the first beam 501.
  • the two outermost The body battery 100 may be pressed against the sides of the two second beams 502 toward each other.
  • the center of the unit cell 100 is located on the first beam 501, and the length direction of the unit cell 100 is perpendicular to the length direction of the first beam 501.
  • Aligning the center of the unit cell 100 with the first beam 501 can realize the single beam support unit ⁇ 100 ⁇ The body battery 100.
  • the normal direction of the two parallel planes corresponding to the first dimension is the Q direction
  • the bottom beam may also be a number of parallel and spaced rectangular beams; the angle between the extension direction of the rectangular beam and the Q direction is 60- At 90 degrees, the single cell 100 is supported on a rectangular beam.
  • the rectangular beams may be evenly distributed along the Q direction, the extending direction of the rectangular beams is perpendicular to the Y direction, and the unit cells 100 are located on the uniformly distributed rectangular beams.
  • the shape of the bottom beam includes but is not limited to a linear type, a rectangular shape, and may also be a triangular shape, a trapezoidal shape, or other special shapes.
  • the support 4 is an automobile chassis
  • the battery array 3 is located on the automobile chassis
  • the battery pack 200 may be directly formed on the electric vehicle, that is, the battery pack 200 is A device for mounting the unit battery 100 formed at any appropriate position on the electric vehicle.
  • the battery pack 200 may be formed on the chassis of an electric vehicle.
  • the automobile chassis is provided with a cavity 300 recessed downward to facilitate the assembly of the single battery 100.
  • the cavity 300 may include a first side wall 301 and a second side wall 302 disposed oppositely, and the first side wall 301 may be obtained by extending the chassis of the electric vehicle downward
  • the extension of the first side wall 301, the first side wall 302 can be extended downward from the chassis of the electric vehicle to obtain the extension of the second side wall 302, so that, as an embodiment, the first end of the unit cell 100 can be Supported on the extension of the first side wall 301, the second end of the unit cell 100 may be supported on the extension of the second side wall 302.
  • the present application also provides an electric vehicle capable of arranging the single batteries 100 according to the above technical solution.
  • the electric vehicle is formed with a cavity 300 having the same characteristics as a separate vehicle tray, thereby constituting the battery pack 200 provided by the present application .
  • the normal direction of the two parallel planes corresponding to the first dimension is the Q direction
  • the battery pack 200 forms a battery placement area
  • the battery array 3 is located in the battery placement area
  • the battery pack 200 contains one battery In the array 3
  • the unit cells 100 extend from one side of the battery placement area to the other side of the battery placement area along the Q direction.
  • the battery pack accommodates only one single battery in the Q direction.
  • the single cell has a second size
  • the second size is a minimum value of the distance between two parallel planes virtually holding the single cell
  • the normal direction of the two parallel planes corresponding to the second size is the P direction
  • a battery placement area is formed in the battery pack 200
  • the battery array 3 is located in the battery placement area.
  • the battery placement area is provided with N battery arrays 3 along the P direction, M battery arrays 3 along the Q direction, and between the battery array 3 and the battery array 3
  • the electrical connection is achieved through the connection between the electrode terminals of the single cell, N is greater than or equal to 1, and M is greater than or equal to 1.
  • the electrode terminals of the last unit cell of the N-1th battery array 3 and the first unit cell of the Nth battery array 3 are connected by a connector, and N is greater than or equal to 1.
  • a plurality of battery arrays 3 may be provided in the battery pack along the arrangement direction of the unit batteries 100, that is, a plurality of rows of battery arrays 3 are provided in the battery pack 200.
  • the first separator 700 divides the illustrated battery array 3 into two battery arrays 3 along the P direction of the battery pack 200.
  • the last unit cell 100 of the previous battery array 3 and the first unit cell of the following battery array 3 are connected by a connecting member.
  • a battery placement area is formed in the battery pack, and the battery array 3 is located in the battery placement area.
  • the battery placement area is provided with M battery arrays 3 along the Q direction.
  • the connection between the electrode terminals of the body battery is electrically connected, and M is greater than or equal to 1.
  • the electrode terminals of the last unit cell of the M-1th battery array 3 and the first unit cell of the Mth battery array 3 are connected by a connector, and M is greater than or equal to 1.
  • a plurality of unit batteries 100 can be accommodated, that is, a plurality of rows of battery arrays 3 are provided in the battery pack 200.
  • the second separator 800 divides the battery array 3 into two battery arrays 3 along the Q direction of the battery pack 2000.
  • the last unit cell 100 of the previous battery array 3 and the first unit cell of the following battery array 3 are connected by a connecting member.
  • a battery placement area is formed in the battery pack, and the battery array 3 is located in the battery placement area.
  • the battery placement area is provided with N battery arrays 3 along the P direction and M battery arrays 3 along the Q direction.
  • the battery array 3 and the battery array 3 are electrically connected by connecting members between the electrode terminals of the single cells, N is greater than or equal to 1, and M is greater than or equal to 1.
  • the battery placement area is divided into a plurality of sub-battery placement areas, and in the extension direction Q of the unit battery 100, a plurality of unit batteries 100 can be accommodated, that is, the battery pack 200 is provided with multiple rows Multi-row battery array 3.
  • the battery pack when the battery pack is provided with a plurality of battery arrays distributed along the Q direction, or a plurality of battery arrays distributed along the length direction of the smallest circumscribed rectangular body of the single battery Or, when a plurality of battery arrays distributed along the Y direction are provided, a plurality of battery placement areas are formed in the battery, and the plurality of battery arrays are located in the battery placement areas one-to-one.
  • the battery pack 200 is provided with a first separator 700 and a second separator 800.
  • the first separator 700 and the second separator 800 divide the plurality of unit cells into two rows and two columns Battery array 3. Any two battery arrays 3 are connected by connectors between electrode terminals.
  • first separator 700 and the second separator 800 may be reinforcing ribs, or other structural members such as thermal insulation cotton, which is not limited in this application.
  • This application does not specifically limit the number of battery cells 100 in the battery array 3, and different numbers of battery cells 100 can be arranged according to different vehicle models and different power requirements.
  • the battery array 3 The number of middle cells is 60-200. In some other specific examples of this application, the number of single cells in the battery array 3 is 80-150.
  • the number of single cells 100 in the battery array of the present application is not limited, and may be two, for example.
  • the battery pack of the present application may contain the above one battery array or a plurality of battery arrays, each battery array may be the same or different, and the battery pack may contain other types of single cells in addition to the above battery array, for example, according to
  • the battery with a smaller size provided in the internal space of the battery pack is not limited to the specific placement between the battery and the battery array of the present invention.
  • a battery pack 200 is provided, including a battery array 3 and a support 4.
  • the battery array 3 includes several single cells 100, and the single cells 100 have a dimension A, which is the length of the smallest external rectangular body of the single cell 100. At least one unit battery 100 satisfies: 600 mm ⁇ size A ⁇ 2500 mm, and the unit battery 100 is supported by the support 4.
  • the smallest circumscribed rectangular body can be understood as: for the unit battery 100, it is assumed that there is a rectangular parallelepiped-shaped case, and the inner walls of the six sides of the rectangular parallelepiped case are both simultaneously with the outside of the unit cell When the contours are in contact, the rectangular outer shell is the smallest circumscribed rectangular body.
  • Dimension A is the length of the smallest circumscribed rectangle.
  • length>height>width is the longest circumscribed rectangle.
  • the shape of the unit battery 100 may be various, and may be a regular geometric shape or an irregular geometric shape, such as a square, a circle, a polygon, a triangle, or any shape, such as a shaped battery. It can be understood that the present application does not limit the shape of the unit battery.
  • the outer surface of the unit battery 100 is provided with a support area, and the support area may be provided at both ends of the unit battery 100 in the direction of the dimension A, so that the unit battery 100 can be supported in the direction of the dimension A ⁇ Support4.
  • the size A of the single battery 100 can be designed to be 600 mm-2500 mm. Since the single battery 100 is sufficiently long, the single battery 100 can be directly supported on the support 4, thereby reducing the battery pack The use of the beam 500 and/or the stringer 600 in 200, and even the beam 500 and/or the stringer 600 may not be used in the battery pack 200, thereby reducing the space occupied by the beam 500 and/or the stringer 600 in the battery pack 200, The space utilization rate of the battery pack 200 is improved, and as many unit cells 100 as possible can be arranged in the battery pack 200, thereby improving the capacity, voltage, and endurance of the entire battery pack.
  • this design can increase the space utilization from the original 40% to more than 60% or even higher, such as 80%.
  • the butting of the supporting member 4 and the supporting region may be that the supporting member 4 directly contacts the supporting region to support the unit battery, or the supporting member 4 may be indirectly contacted or connected to the supporting region through other components. This application is not limited according to the corresponding settings of the usage situation.
  • the above-mentioned single battery 100 is a soft pack battery.
  • the soft pack battery When a safety hazard occurs, the soft pack battery will blow apart without explosion, thereby improving the safety performance of the single battery 100.
  • the polar core of the soft pack battery has a large proportion, which can improve the volume utilization rate, and the processing cost of the soft pack battery is low.
  • this design can increase the space utilization from the original 40% to more than 60% or even higher, such as 80%.
  • the unit battery 100 includes a case, a pole core located in the case, a reinforcing member for reinforcing the case, and the supporting member 4 is docked with the reinforcing member to support the unit battery 100 .
  • the supporting area may be provided on the outer surface of the reinforcing member.
  • the soft package unit 105 includes an outer shell and a pole core located in the outer shell. This can prevent the aluminum-plastic film of the soft pack monomer 105 from being worn due to the misalignment of the soft pack monomer 105, and the rigidity of the single battery 100 itself is large, which can enhance the rigidity of the battery pack 200.
  • the reinforcement member includes a reinforcement case 104, which is wrapped around the casing of at least one unit battery 100, and the support member 4 is docked with the reinforcement case 104 to support the unit battery 100.
  • the reinforced shell 104 can completely wrap the soft package monomer 105, or the area corresponding to the support 4 that wraps the soft package monomer 105.
  • the reinforced shell 104 is a hard shell, and the reinforced shell 104 can be a steel shell or a steel shell.
  • the reinforcing case 104 is made of a metal material, the thermal conductivity of the metal casing of the unit battery 100 is better, so that the heat dissipation efficiency of the unit battery 100 can be improved and the heat dissipation effect can be optimized.
  • the reinforcing shell 104 may be partially opened for weight reduction.
  • each reinforced shell 104 package includes one soft package monomer 105; in the embodiment shown in FIGS. 31 and 32, each reinforced shell 104 package includes Multiple soft pack monomers 105.
  • the unit battery 100 has an electrode terminal that draws an internal current
  • the reinforcement member includes a bus bar
  • the bus bar is configured to electrically connect the electrode terminals of the plurality of unit cells 100
  • the support member 4 is docked with the bus bar to support Single cell 100. In this way, when the plurality of unit cells 100 are arranged on the support 4, the electrical connection of the plurality of unit cells 100 can also be achieved at the same time.
  • the manufacturing process of the battery pack 200 is simplified, the assembly complexity of the single cell 100 is reduced, and the production cost is reduced.
  • the weight of the battery pack 200 is reduced, and the weight of the battery pack is reduced.
  • the endurance of the electric vehicle can also be improved, and the weight of the electric vehicle can be reduced.
  • 600mm ⁇ size A ⁇ 1500mm for example: 600mm ⁇ size A ⁇ 1000mm.
  • the length of the single cell 100 is long enough to be supported on the support 4, and the length of the single cell 100 is not too long.
  • the rigidity of the single cell 100 itself is also big enough.
  • the specific form of the battery pack is not particularly limited, but only needs to be limited to that the battery pack includes a support member 4, the battery array 3 is located on the support member 4, and the single battery 100 is supported on the support member 4.
  • the support member 4 The specific structure of is not limited, as long as the unit battery 100 can be supported on the supporting member 4, the specific structure of the supporting member 4 will be described below.
  • the unit battery 100 is supported on the supporting member 4, and the unit battery 100 may be directly supported by the supporting member 4, that is, placed on the supporting member 4, or may be fixed on the supporting member 4, the specific fixing method is described in detail below, For specific support and fixing methods, this application is not limited.
  • the support member 4 is used to support the battery array 3.
  • the support member 4 is usually a rigid structure.
  • the support member 4 can be an independently processed pallet or a rigid support structure formed on the chassis of the vehicle, and can be easily installed on the vehicle or other devices. on.
  • several single cells are arranged along the K direction, which is the width direction of the smallest circumscribed rectangular body of at least one single cell in the battery array 3.
  • the single cell 100 has a size B, the single cell has a size B, the size B is the width of the smallest circumscribed rectangular body of the single cell, and the normal direction of the two parallel planes corresponding to the size B is the K direction , Several single cells are arranged along the K direction of at least one single cell.
  • At least one battery cell satisfies: 10 ⁇ size A/size B ⁇ 208, in some embodiments, at least one battery cell satisfies: 23 ⁇ size A/size B ⁇ 208. In some embodiments, 50 ⁇ dimension A/dimension B ⁇ 70.
  • the inventor found through extensive experiments that the unit battery 100 satisfying the above-mentioned size requirements can make the unit battery 100 thinner in the direction of the dimension B on the basis that the rigidity meets the support requirements, so that the unit battery 100 itself has Higher heat dissipation capacity.
  • each unit cell 100 is arranged along the K direction, which is the height direction of the smallest circumscribed rectangular body of at least one unit cell 100 in the battery array 3.
  • the unit cell 100 has a dimension C, which is the height of the smallest circumscribed rectangular body of the unit cell 100.
  • At least one single cell 100 satisfies: 10 ⁇ size A/size C ⁇ 208, such as: 23 ⁇ size A/size C ⁇ 208, such as: 50 ⁇ size A/size C ⁇ 70.
  • the inventor has found through a large number of tests that the unit battery 100 satisfying the above-mentioned size requirements can make the unit battery 100 thinner in the direction of the dimension C on the basis of the stiffness satisfying the support requirements, so that the unit battery 100 itself has Higher heat dissipation capacity.
  • the battery pack 200 further includes two side plate components that are oppositely disposed on both sides of the battery array 3 and used to clamp the battery array 3, and the side plate components clamp the battery array 3, which has a function of restricting expansion and deformation of a plurality of single cells 100, thereby ensuring Activation of explosion-proof valve 103 and/or current interrupt device (CID).
  • the side plate components may be the third side beam 203 and the fourth side beam 204; in other embodiments, as shown in FIG. 12, the side plate components may be The first side plate 209 and the second side plate 210.
  • the battery pack 200 includes a pallet for vehicles, and the pallet for vehicles includes oppositely disposed first side beams 201 along the length of the smallest circumscribed rectangular body of the unit battery 200
  • the supporting member 4 is a first side beam 201 and a second side beam 202, and both ends of the unit cell 100 are supported on the first side beam 201 and the second side beam 202, respectively.
  • the support member 4 is a plurality of bottom beams, and the bottom beams are located below the battery array 3.
  • the bottom beam is used to support the battery array 3.
  • the upper surface of the bottom beam may be flat to form a surface support with the battery array 3.
  • the bottom beam has a rectangular cross section.
  • the battery array 3 can be fixed to the bottom beam by means of glue, threaded connectors and the like.
  • the battery pack further includes a sealing cover, and the sealing cover and the bottom beam form a receiving cavity for receiving the battery array 3.
  • the sealing cover is used to prevent the intrusion of ash layer and water.
  • the bottom beam includes a first beam 501 and a second beam 502 located on the first beam 501 and intersecting the first beam 501.
  • the extension direction of the first beam 501 is the length of the smallest circumscribed rectangular body of the single cell The angle between the directions is 60-90 degrees, and the unit battery 100 is supported on the first beam 501.
  • the first beam 501 and the second beam 502 are vertically connected, and the connection manners of the first beam 501 and the second beam 502 include, but are not limited to, screw connection, welding, and the like.
  • the first beam 501 and the second beam 502 may both be linear beams.
  • the second beam 502 includes two.
  • the two second beams 502 are respectively located at two ends of the first beam 501 and are perpendicular to the first beam 501 respectively.
  • the unit cell 100 is supported on the first beam 501.
  • the second beam 502 projects upward (Z direction) relative to the first beam 501.
  • the lower surface of the second beam 502 may be connected to the upper surface of the first beam 501.
  • the two outermost The body battery 100 may be pressed against the sides of the two second beams 502 toward each other.
  • the center of the unit cell 100 is located on the first beam 501, and the length direction of the unit cell 100 is perpendicular to the length direction of the first beam 501.
  • Aligning the center of the unit cell 100 with the first beam 501 can realize the single beam support unit ⁇ 100 ⁇ The body battery 100.
  • the shape of the bottom beam includes but is not limited to a linear type, a rectangular shape, and may also be a triangular shape, a trapezoidal shape, or other special shapes.
  • the support 4 is an automobile chassis
  • the battery array 3 is located on the automobile chassis
  • the battery pack 200 may be directly formed on the electric vehicle, that is, the battery pack 200 is A device for mounting the unit battery 100 formed at any appropriate position on the electric vehicle.
  • the battery pack 200 may be formed on the chassis of an electric vehicle.
  • the automobile chassis is provided with a cavity 300 recessed downward to facilitate the assembly of the single battery 100.
  • the cavity 300 may include a first side wall 301 and a second side wall 302 disposed oppositely, and the first side wall 301 may be obtained by extending the chassis of the electric vehicle downward
  • the extension of the first side wall 301, the first side wall 302 can be extended downward from the chassis of the electric vehicle to obtain the extension of the second side wall 302, so that, as an embodiment, the first end of the unit cell 100 can be Supported on the extension of the first side wall 301, the second end of the unit cell 100 may be supported on the extension of the second side wall 302.
  • the present application also provides an electric vehicle capable of arranging the single batteries 100 according to the above technical solution.
  • the electric vehicle is formed with a cavity 300 having the same characteristics as a separate vehicle tray, thereby constituting the battery pack 200 provided by the present application .
  • the battery pack 200 forms a battery placement area
  • the battery array 3 is located in the battery placement area
  • the battery pack 200 contains a battery array 3
  • the single battery 100 is along the smallest external rectangle of the single battery 100
  • the length direction of the body extends from one side of the battery placement area to the other side of the battery placement area.
  • the battery pack 200 accommodates only one single battery in the length direction of the smallest circumscribed rectangular body of the single battery 100.
  • a battery placement area is formed in the battery pack 200, and the battery array 3 is located in the battery placement area.
  • the battery placement area is provided with N battery arrays 3 along the width direction of the smallest external rectangular body of the single battery.
  • the battery array 3 The connection between the battery array 3 and the electrode terminal of the single cell is achieved through the connection member, and N is greater than or equal to 1.
  • the battery placement area is provided with M battery arrays 3 along the length of the smallest external rectangular body of the single battery, and the battery array 3 and the battery array 3 are electrically connected by a connection between the electrode terminals of the single battery, M is greater than or equal to 1.
  • the first separator 700 divides the illustrated battery array 3 into two battery arrays 3 along the K direction of the battery pack 200.
  • the last unit cell 100 of the previous battery array 3 and the first unit cell of the following battery array 3 are connected by a connecting member.
  • a battery placement area is formed in the battery pack, and the battery array 3 is located in the battery placement area.
  • the battery placement area is provided with M battery arrays 3 along the Q direction.
  • the connection between the electrode terminals of the body battery is electrically connected, and M is greater than or equal to 1.
  • the electrode terminals of the last unit cell of the M-1th battery array 3 and the first unit cell of the Mth battery array 3 are connected by a connector, and M is greater than or equal to 1.
  • a plurality of unit batteries 100 can be accommodated, that is, a plurality of rows of battery arrays 3 are provided in the battery pack 200.
  • the second separator 800 divides the battery array 3 into two battery arrays 3 along the Q direction of the battery pack 2000.
  • the last unit cell 100 of the previous battery array 3 and the first unit cell of the following battery array 3 are connected by a connecting member.
  • a battery placement area is formed in the battery pack, and the battery array 3 is located in the battery placement area.
  • the battery placement area is provided with N battery arrays 3 along the K direction and M battery arrays 3 along the Q direction.
  • the battery array 3 and the battery array 3 are electrically connected by connecting members between the electrode terminals of the single cells, N is greater than or equal to 1, and M is greater than or equal to 1.
  • the battery placement area is divided into a plurality of sub-battery placement areas, and in the extension direction Q direction of the unit battery 100, a plurality of unit batteries 100 can be accommodated, that is, the battery pack 200 is provided with multiple rows Multi-row battery array 3.
  • the battery pack 200 is provided with a first separator 700 and a second separator 800.
  • the first separator 700 and the second separator 800 divide the plurality of unit cells into two rows and two columns Battery array 3. Any two battery arrays 3 are connected by connectors between electrode terminals.
  • first separator 700 and the second separator 800 may be reinforcing ribs, or other structural members such as thermal insulation cotton, which is not limited in this application.
  • a battery placement area is formed in the battery pack.
  • the battery array 3 is located in the battery placement area.
  • the battery placement area is provided with J battery arrays 3 along the height direction of the smallest external rectangular body of the single battery.
  • the battery array 3 and the battery array 3 are separated by a single battery.
  • the connection between the electrode terminals of the body battery is electrically connected, and J is greater than or equal to 1.
  • This application does not specifically limit the number of battery cells 100 in the battery array 3, and different numbers of battery cells 100 can be arranged according to different vehicle models and different power requirements.
  • the battery array 3 The number of middle cells is 60-200. In some other specific examples of this application, the number of single cells in the battery array 3 is 80-150.
  • a battery pack 200 is provided, including a battery array 3 and a support 4.
  • the battery array 3 includes a plurality of single cells 100, at least one of the single cells 100 satisfies: including a battery body and an electrode terminal extending out of the battery body for drawing current inside the battery body, the battery body is a substantially rectangular parallelepiped, and the length of the battery body is L, 600mm ⁇ L ⁇ 2500mm.
  • the unit battery 100 is supported by the support 4.
  • the battery body is generally rectangular parallelepiped. It can be understood that the battery body may be rectangular parallelepiped, rectangular parallelepiped, or partially shaped, but roughly rectangular parallelepiped, rectangular parallelepiped; or partially have gaps, protrusions, Chamfer, radian, curved but the overall shape is similar to cuboid, cube.
  • the battery pack 200 The cross beam 500 and/or the longitudinal beam 600 (as shown in FIG. 1) need to be provided to facilitate the assembly of the unit battery 100. After the unit battery 100 is installed in the battery pack 200 through the battery module 400, the battery module is fixed to the adjacent crossbeam 500 and/or longitudinal beam 600 by fasteners.
  • the battery pack in the related art is provided with a beam 500 and/or a stringer 600
  • the beam 500 and/or the stringer 600 occupies a large amount of installation space for accommodating a single battery in the battery pack 200, resulting in a volume of the battery pack
  • the utilization rate is low.
  • the volume utilization rate of the battery pack 200 is about 40%, or even lower. That is to say, only about 40% of the space in the battery pack 200 in the related art can be used to install a single battery.
  • the number of single cells 100 that can be accommodated in the battery pack 200 is limited, the capacity and voltage of the entire battery pack are limited, and the battery pack has poor battery life.
  • the length L of the battery body of the unit battery 100 can be designed to be 600 mm-2500 mm. Since the battery body of the unit battery 100 is sufficiently long, the outer surface of the unit battery 100 is provided with The support area can directly support the single cell 100 to the support area, thereby reducing the use of the beam 500 and/or the stringer 600 in the battery pack 200, and even the beam 500 and/or the stringer 600 may not be used in the battery pack 200, thereby The space occupied by the beam 500 and/or the stringer 600 in the battery pack 200 is reduced, the space utilization of the battery pack 200 is improved, and as many unit cells 100 as possible can be arranged in the battery pack 200, thereby improving The capacity, voltage and endurance of the entire battery pack.
  • this design can increase the space utilization from the original 40% to more than 60% or even higher, such as 80%.
  • the butting of the supporting member 4 and the supporting region may be that the supporting member 4 directly contacts the supporting region to support the unit battery, or the supporting member 4 may be indirectly contacted or connected to the supporting region through other components. This application is not limited according to the corresponding settings of the usage situation.
  • the manufacturing process of the battery pack 200 is simplified, the assembly complexity of the single cell 100 is reduced, and the production cost is reduced.
  • the weight of the battery pack 200 is reduced, and the weight of the battery pack is reduced.
  • the endurance of the electric vehicle can also be improved, and the weight of the electric vehicle can be reduced.
  • the above-mentioned single battery 100 is a soft pack battery.
  • the soft pack battery When a safety hazard occurs, the soft pack battery will blow apart without explosion, thereby improving the safety performance of the single battery 100.
  • the polar core of the soft pack battery has a large proportion, which can improve the volume utilization rate, and the processing cost of the soft pack battery is low.
  • this design can increase the space utilization from the original 40% to more than 60% or even higher, such as 80%.
  • the unit battery 100 includes a case, a pole core located in the case, a reinforcing member for reinforcing the case, and the supporting member 4 is docked with the reinforcing member to support the unit battery 100 .
  • the supporting area may be provided on the outer surface of the reinforcing member.
  • the soft package unit 105 includes an outer shell and a pole core located in the outer shell. This can prevent the aluminum-plastic film of the soft pack monomer 105 from being worn due to the misalignment of the soft pack monomer 105, and the rigidity of the single battery 100 itself is large, which can enhance the rigidity of the battery pack 200.
  • the reinforcement member includes a reinforcement case 104 which is wrapped around the casing of at least one unit battery 100, and the support member 4 is docked with the reinforcement case 104 to support the unit battery 100.
  • the reinforced shell 104 can completely wrap the soft package monomer 105, or the area corresponding to the support 4 that wraps the soft package monomer 105.
  • the reinforced shell 104 is a hard shell, and the reinforced shell 104 can be a steel shell or a steel shell.
  • the reinforcing casing 104 is made of a metal material, the thermal conductivity of the metal casing of the unit battery 100 is better, so that the heat dissipation efficiency of the unit battery 100 can be improved and the heat dissipation effect can be optimized.
  • the reinforcing shell 104 may be partially opened for weight reduction.
  • each reinforced shell 104 package includes one soft package monomer 105; in the embodiment shown in FIGS. 31 and 32, each reinforced shell 104 package includes Multiple soft pack monomers 105.
  • the unit battery 100 has an electrode terminal that draws an internal current
  • the reinforcement member includes a bus bar
  • the bus bar is configured to electrically connect the electrode terminals of the plurality of unit cells 100
  • the support member 4 is docked with the bus bar to support Single cell 100. In this way, when the plurality of unit cells 100 are arranged on the support 4, the electrical connection of the plurality of unit cells 100 can also be achieved at the same time.
  • the specific form of the battery pack is not particularly limited, but only needs to be limited to that the battery pack includes a support member 4, the battery array 3 is located on the support member 4, and the single battery 100 is supported on the support member 4.
  • the support member 4 The specific structure of is not limited, as long as the unit battery 100 can be supported on the supporting member 4, the specific structure of the supporting member 4 will be described below.
  • the unit battery 100 is supported on the supporting member 4, and the unit battery 100 may be directly supported by the supporting member 4, that is, placed on the supporting member 4, or may be fixed on the supporting member 4, the specific fixing method is described in detail below, For specific support and fixing methods, this application is not limited.
  • the support member 4 is used to support the battery array 3.
  • the support member 4 is usually a rigid structure.
  • the support member 4 may be an independently processed tray or a rigid support structure formed on the chassis of the vehicle.
  • the support 4 is used to maintain the complete shape of the battery pack and to facilitate installation on the vehicle or other devices.
  • the length L of the battery body of the single battery 100 is longer, and the battery body itself can play a supporting role, reducing the reinforcement of the beam and the longitudinal beam in the battery pack, and the space utilization of the battery pack becomes higher. More single cells can be arranged.
  • the battery main body of the unit cell 100 has three directions of the X direction, the Y direction, and the Z direction perpendicular to each other.
  • the X direction, the Y direction, and the Z direction are perpendicular to each other, the X direction is the arrangement direction of the unit cells 100, the Y direction is the longitudinal direction of the unit cells 100, and the Z direction is the height direction of the unit cells 100.
  • the X direction is the arrangement direction of the unit cells 100
  • the Y direction is the longitudinal direction of the unit cells 100
  • the Z direction is the height direction of the unit cells 100.
  • the length direction of the battery pack 200 may be parallel to the longitudinal direction of the vehicle 1, and the length of the battery pack 200
  • the width direction may be parallel to the lateral direction of the vehicle 1
  • the Y direction may be parallel to the lateral direction of the vehicle 1
  • the X direction may be parallel to the longitudinal direction of the vehicle 1
  • the Z direction may be parallel to the vertical direction of the vehicle 1; for example, in the embodiment shown in FIG. 24
  • the length of the battery pack 200 may be parallel to the longitudinal direction of the vehicle 1
  • the width of the battery pack 200 may be parallel to the lateral direction of the vehicle 1
  • the Y direction may be parallel to the longitudinal direction of the vehicle 1.
  • the X direction may be parallel to the lateral direction of the vehicle 1
  • the Z direction may be parallel to the vertical direction of the vehicle 1.
  • the X direction, Y direction, Z direction and the actual direction of the vehicle may have other corresponding relationships, and the actual corresponding relationship depends on the installation direction of the battery pack 200.
  • the direction of vehicle travel in this application is the longitudinal direction of the vehicle; the direction perpendicular to the vehicle travel direction and coplanar is the lateral direction of the vehicle, usually the horizontal direction; the vertical direction is the vertical direction of the vehicle, usually the vertical direction Straight direction.
  • the single cells 100 may be arranged in sequence in the X direction, and the number may not be limited.
  • the number of single cells arranged in the battery pack increases, the heat dissipation performance of the entire battery pack will be relatively Poor, in order to improve the safety performance of the entire battery pack, by defining L/H or L/D, the thickness in the X direction and the height in the Z direction can be made smaller, and the surface area of a single cell is larger than in the related art
  • the surface area of the single battery can increase the heat dissipation area of the single battery and increase the heat dissipation rate of the single battery, thereby improving the safety of the entire battery pack and making the battery pack safer and more reliable.
  • the plurality of single cells 100 have various arrangements in the battery array 3, the length of the battery body is L, the thickness is D, the height is H, the thickness direction is the X direction, the length direction is the Y direction, and the height direction is the Z direction .
  • a plurality of unit cells 100 may be arranged at intervals in the X direction, or closely arranged, as shown in FIG. 2, in this embodiment, closely arranged in the X direction to Make full use of space.
  • several single cells 100 are arranged along the X direction of at least one single cell in the battery array 3, and the X direction is the thickness direction of any single cell 100 in the battery array 3.
  • the thickness of the battery body is D, and at least one single battery 100 satisfies: 10 ⁇ L/D ⁇ 208, such as: 23 ⁇ L/D ⁇ 208, such as: 50 ⁇ L/D ⁇ 70.
  • the inventor has found through a large number of experiments that the unit battery 100 that meets the above-mentioned size requirements can make the unit battery 100 thinner in the X direction on the basis of the stiffness meeting the support requirements, so that the unit battery 100 itself has a higher Heat dissipation capacity.
  • several single cells 100 are arranged along the Z direction of at least one single cell in the battery array 3.
  • the Z direction is the height direction of any single cell 100 in the battery array 3.
  • the height of the battery body is H, and at least one single battery 100 satisfies: 10 ⁇ L/H ⁇ 208, such as: 23 ⁇ L/H ⁇ 208, such as: 50 ⁇ L/H ⁇ 70.
  • the inventor has found through a lot of experiments that the single cell 100 satisfying the above-mentioned size requirements can make the thickness of the battery body in the Z direction thinner on the basis of satisfying the rigidity of the support requirements, so that the battery body itself has a higher heat dissipation capability.
  • an array with flush ends may be formed, or an angle may be formed with the X direction or the Z direction, that is, an inclined arrangement.
  • the placement directions of the plurality of unit batteries 100 may be the same, or may be partially different or different from each other, as long as they are distributed along a predetermined direction.
  • 600mm ⁇ L ⁇ 1500mm preferably 600mm ⁇ L ⁇ 1000mm.
  • the single cell 100 of this length has a long length, and when used in the battery pack 200, only a single single cell 100 needs to be arranged along the first direction.
  • the volume of the battery body of the unit battery 100 is V, and at least one unit battery 100 satisfies: 0.0005 mm -2 ⁇ L/V ⁇ 0.002 mm -2 .
  • the inventor found through extensive experiments that when the single cell 100 satisfies the above limitation, the cross section of the battery body is small, and the heat dissipation effect of the battery body is good, so that the temperature difference between the inside and the periphery of the battery body is small.
  • the ratio of the surface area S of the battery body of the unit cell 100 to the volume V satisfies 0.1 mm -1 ⁇ S/V ⁇ 0.35 mm -1 .
  • the ratio of the surface area S of the single battery 100 to the volume V the battery body can be guaranteed While the length extends in the Y direction, it has sufficient heat dissipation area to ensure the heat dissipation effect of the unit battery 100.
  • V is the volume of the battery body, the relationship between the volume V of the cell body of the battery body height H corresponding to 0.0001mm -2 ⁇ H / V ⁇ 0.00015mm -2.
  • the surface area of the single cell refers to the sum of the areas of all the surfaces of the single cell.
  • the length of the battery body is L
  • the thickness is D
  • the height is H
  • the thickness direction is X direction
  • the length direction is Y direction
  • the height direction is Z direction
  • battery body The height H ⁇ the thickness D of the battery body, at least one single cell satisfies: 23 ⁇ L/D ⁇ 208, and 4 ⁇ L/H ⁇ 21, several single cells along the X of at least one single cell in the battery array 3
  • at least one single cell satisfies: 9 ⁇ L/H ⁇ 13.
  • the battery 100 can be conveniently densely packed in the X direction.
  • At least one unit cell 100 has a first end and a second end in the Y direction, and at least one of the first end and the second end has an electrode terminal that draws an internal current of the unit cell ,
  • the electrode terminals between the unit batteries 100 are electrically connected through a connector.
  • the "first end" and “second end” of the unit battery 100 are used to describe the orientation of the unit battery 100, and are not used to define and describe the specific structure of the unit battery 100, for example, the first end and The second end is not used to define and describe the positive electrode and the negative electrode of the unit battery 100.
  • the first electrode terminal 101 of the unit battery 100 is The body battery 100 is drawn out toward the first end in the Y direction, and the second electrode terminal 102 of the unit cell 100 is drawn out from the unit cell 100 toward the second end in the Y direction.
  • the longitudinal direction of the unit battery 100 may be the current direction inside the unit battery 100, that is, the current direction inside the unit battery 100 is the Y direction.
  • the first electrode terminal 101 may be the positive electrode of the unit battery 100, and the second electrode terminal 102 may be the negative electrode of the unit battery 100; or, the first electrode terminal 101 may be the negative electrode of the unit battery 100, and the second electrode terminal 102 may be The positive electrode of the unit cell 100.
  • the electrode terminals of the unit battery 100 are connected in series and parallel through a connector.
  • the thickness direction of at least part of the unit cells 100 extends in the X direction, that is, a plurality of unit cells are arranged along the thickness direction of the unit cells.
  • the battery array 3 includes several single cells 100 arranged in sequence along the X direction, the length of the single cells 100 extends along the Y direction, and the height extends along the Z direction. That is to say, a plurality of unit batteries 100 are arranged in the thickness direction and extend in the length direction, so that the space of the battery pack can be fully utilized, thereby arranging more unit batteries.
  • the length of the unit cell 100 has a first end and a second end.
  • the first end and/or the second end have electrode terminals for drawing current inside the unit cell, and the electrode terminals of the unit cell are connected by a connector.
  • the "first end" and “second end” of the unit battery 100 are used to describe the orientation of the unit battery 100, and are not used to define and describe the specific structure of the unit battery 100, for example, the first end and The second end is not used to define and describe the positive electrode and the negative electrode of the unit battery 100.
  • the first electrode terminal 101 of the unit battery 100 is The first end of the body cell 100 in the longitudinal direction is drawn out, and the second electrode terminal 102 of the unit cell 100 is drawn out from the second end in the length direction of the cell 100.
  • the longitudinal direction of the unit battery 100 may be the current direction inside the unit battery 100, that is, the current direction inside the unit battery 100 is the Y direction.
  • the first electrode terminal 101 may be the positive electrode of the unit battery 100, and the second electrode terminal 102 may be the negative electrode of the unit battery 100; or, the first electrode terminal 101 may be the negative electrode of the unit battery 100, and the second electrode terminal 102 may be The positive electrode of the unit cell 100.
  • the electrode terminals of the unit battery 100 are connected in series and parallel through a connector.
  • the ratio of the length L and thickness D of the battery body of at least one unit cell 100 satisfies 23 ⁇ L/D ⁇ 208. At this ratio, a single cell 100 with a moderate length and a thin thickness can be obtained, which can ensure that the appropriate resistance value and high heat dissipation can be maintained when the length of the single cell 100 extends in the first direction Area and heat dissipation efficiency, good adaptability of various models.
  • the ratio of the length L and thickness D of the battery body of at least one unit cell 100 satisfies 50 ⁇ L/D ⁇ 70. At this ratio, a single cell 100 with a moderate length can be obtained, and the stiffness of the single cell 100 is also large enough to facilitate processing and transportation and assembly. When the single cell 100 is installed in the battery pack shell, the single cell 100 is used. Because of the large rigidity of the body battery 100, the unit battery 100 itself can be used as a reinforcing beam.
  • the battery pack 200 in the X direction, further includes two side plate members arranged oppositely on both sides of the battery array 3 and used to clamp the battery array 3, and the side plate members hold the battery array 3, having The function of limiting the expansion and deformation of a plurality of single cells 100 is ensured to ensure the activation of the explosion-proof valve 103 and/or current interruption device (CID).
  • the side plate components may be the third side beam 203 and the fourth side beam 204; in other embodiments, as shown in FIG. 12, the side plate components may be The first side plate 209 and the second side plate 210.
  • the battery pack provided according to the present application further includes a sealing cover 220, and the sealing cover 220 and the support 4 form a receiving cavity that receives the battery array 3.
  • the sealing cover 220 and the supporting member 4 define an accommodating cavity for accommodating a single battery, and the sealing cover 220 functions to prevent water and moisture.
  • the battery pack 200 includes a vehicle tray, which is a separately produced vehicle tray for accommodating and mounting the unit battery 100. As shown in FIGS. 16, 18 and 19, after the unit battery 100 is installed in the vehicle tray, the vehicle tray can be mounted on the vehicle body by fasteners, for example, suspended on the chassis of an electric vehicle.
  • the vehicle tray includes a first side beam 201 and a second side beam 202 oppositely arranged along the Y direction, the support member 4 is a first side beam 201 and a second side beam 202, and the first end of the unit cell 100 is supported on the first On the side beam 201, the second end of the unit cell 100 is supported on the second side beam 202.
  • the specific structures of the first side beam 201 and the second side beam 202 are not limited, the first side beam 201 and the second side beam 202 are relatively disposed, and the first side beam 201 and the second side
  • the beams 202 may be parallel to each other, or may be arranged at an angle, and may be a straight structure or a curved structure.
  • the first side beam 201 may be rectangular, cylindrical, or polygonal, which is not particularly limited in this application.
  • the first side beam 201 and the second side beam 202 are oppositely arranged along the Y direction, and a plurality of unit cells 100 are provided between the first side beam 201 and the second side beam 202, and both ends of the unit cell 100 are supported on the first On the side beam 201 and the second side beam 202.
  • the first end of each unit cell 100 is supported by the first side beam 201
  • the second end of each unit cell 100 is supported by the second side beam 202.
  • each unit cell 100 extends between the first side beam 201 and the second side beam 202, and the plurality of unit cells 100 are arranged along the length direction of the first side beam 201 and the second side beam 202, that is, Arrange in X direction.
  • the first end and the second end of the unit cell 100 are supported on the first side beam 201 and the second side beam 202, respectively.
  • the unit cell 100 may be directly supported by the first side beam 201 and the second side beam 202. That is, they are placed on the first side beam 201 and the second side beam 202 respectively, and can also be fixed on the first side beam 201 and the second side beam 202.
  • the specific fixing method is described in detail below. For specific support and fixing There are no restrictions on this application.
  • the first end of each unit cell 100 may be directly or indirectly supported on the first side beam 201, and the second end of each unit cell 100 may be directly or indirectly supported on the second On the side beam 202.
  • the direct meaning means that the first end of the unit cell 100 and the first side beam 201 are directly in contact with and supported, and the second end of the unit cell 100 and the second side beam 202 are in direct contact and fit; the indirect meaning is, for example,
  • the first end of the unit cell 100 is supported by the first end plate 207 in cooperation with the first side beam 201, and the second end of the unit cell 100 is supported by the second end plate 208 in cooperation with the second side beam 202 .
  • the single cell 100 may be perpendicular to the first side beam 201 and/or the second side beam 202, or disposed at an acute or obtuse angle with the first side beam 201 and/or the second side beam 202, for example, when When the first side beam 201 and the second side beam 202 are parallel to each other, the first side beam 201, the second side beam 202, and the battery cell 100 may form a rectangular, square, parallelogram, fan, or other structure; when the first side beam 201 At an angle to the second side beam 202, the first side beam 201, the second side beam 202, and the unit cell 100 may form a trapezoidal, triangular, or other structure.
  • the present application does not limit the angular relationship between the first side beam 201 and the second side beam 202, and the angle relationship between the unit cell 100 and the first side beam 201 and the second side beam 202.
  • the first side beam 201 and the second side beam 202 are located on opposite sides of the tray in the Y direction, which means that, as shown in FIG. 2, the first side beam 201 and the second side beam 202 are located on the outermost side of the tray in the Y direction On the side, the first side beam 201 and the second side beam 202 are the outermost sides of the tray.
  • first end and second end of the unit battery 100 mentioned above are used to describe the orientation of the unit battery 100, and are not used to define and describe the specific structure of the unit battery 100, for example
  • the first end and the second end are not used to define and describe the positive electrode and the negative electrode of the unit battery 100, that is, in this application, the end of the unit battery 100 supported on the first side beam 201 is the first end, One end of the unit battery 100 supported on the second side beam 202 is the second end.
  • the width of the body is larger, such as 1.2m-2m; the length is longer, such as 2m-5m; for different models, the corresponding body width and body length are different.
  • the larger width and length of the car body make the overall size requirements of the pallet installed at the bottom of the car body larger; the larger pallet size leads to that in the related art, in addition to the side beams on the side of the pallet, It is also necessary to provide a crossbeam inside the tray to provide sufficient support and structural strength for the unit cells inside.
  • the length L of the unit battery is 600-1500 mm, supporting both ends of the unit battery 100 on the first side beam 201 and the second side beam 202 to decompose the weight of the unit battery to both sides On the side beam of the tray; on the basis of removing the cross beam, the load-bearing capacity of the tray is effectively improved; at the same time, the single battery 100 itself can also be used as a moving
  • the first side beam 201 and the second side beam 202 respectively include inner wall surfaces matching the two end surfaces of the unit cell 100, and insulation is interposed between the inner wall surface of the first side beam 201 and the first end of the unit cell 100
  • the plate that is, the insulating plate is located between the unit cell 100 and the inner wall surface of the first side beam 201; an insulating plate is interposed between the inner wall surface of the second side beam 202 and the second end of the unit cell 100, that is, the insulation
  • the plate is located between the unit cell 100 and the inner wall surface of the second side beam 202.
  • the specific structure of the insulating plate is not limited, as long as it can play the role of fixing the battery array 3 and strengthening and preventing expansion.
  • the insulating plate may be the first end plate 207 and the first ⁇ 208.
  • the tray includes a bottom plate, and the first side beam 201 and the second side beam 202 are oppositely disposed at both ends of the bottom plate along the Y direction, and the unit cells 100 are spaced from the bottom plate, thereby reducing the load on the unit cells 100 by the bottom plate.
  • Most of the weight of the single cell 100 can be borne by the first side beam and the second side beam, and the load-bearing requirements of the bottom plate are reduced, thereby reducing the manufacturing process of the bottom plate and the production cost.
  • a thermal insulation layer 217 is provided between the bottom of the battery array 3 formed by the plurality of single cells 100 and the bottom plate of the tray to isolate the heat transfer between the single cells 100 and the outside world, to achieve the function of keeping the single cells 100 warm, and to avoid batteries A phenomenon of thermal interference between the external environment of the package 200 and the unit cells 100 in the battery pack 200.
  • the thermal insulation layer 217 may be made of a material with thermal insulation and thermal insulation functions, for example, made of thermal insulation cotton.
  • the first side beam 201 is provided with a first supporting plate 213, and the second side beam 202 is provided with a second supporting plate 214; the surface of the first supporting plate 213 facing the sealing cover 220 is provided with a first supporting surface, and the second supporting plate 214 is facing the sealing cover 220
  • the surface is provided with a second support surface, the first end of each unit cell 100 is supported on the first support surface of the first support plate 213, and the second end of each unit cell 100 is supported on the second support plate 214
  • the surface of the first supporting plate 213 facing away from the sealing cover 220 is provided with a first mounting surface
  • the surface of the second supporting plate 214 facing away from the sealing cover 220 is provided with a second mounting surface.
  • the bottom plate of the tray is installed on the first mounting surface and the second mounting surface, the first support plate 213 may protrude inward from the bottom of the first side beam 201, and the second support plate 214 may extend from the bottom of the second side beam 202 Protruding inside.
  • the first supporting plate 213 and the second supporting plate provided on the first side beam 201 and the second side beam 202
  • the two support plates 214 support the single battery 100, which can simplify the structure of the battery pack 200 provided in this application and reduce the weight of the battery pack 200.
  • An insulating plate may be provided on the first supporting plate 213 and the second supporting plate 214, and the insulating plate is located between the unit cell 100 and the first supporting plate 213 and the second supporting plate 214.
  • connection method of the first side beam 201, the second side beam 202 and the bottom plate is not particularly limited, and may be integrally formed or welded together.
  • the inner wall surface of the first side beam 201 facing the unit cell 100 has a first connecting surface 215, the distance from the first connecting surface 215 to the sealing cover 220 is smaller than the distance from the first supporting surface to the sealing cover 220; the orientation of the second side beam 202
  • the inner wall surface of the unit battery 100 has a second connecting surface, the distance from the second connecting surface 216 to the sealing cover 220 is smaller than the distance from the second supporting surface to the sealing cover 220; both ends of the unit battery 100 are respectively connected to the first connecting surface 2.
  • the second connection surface contacts.
  • the first side beam 201 is further provided with a first connection surface 215, the second side beam 202 is further provided with a second connection surface 216, and the first end of each unit cell 100 is fixed on the first connection surface On 215, the second end of each unit cell 100 is fixed on the second connection surface 216.
  • the first connection surface 215 may be a third support plate provided on the first side beam 201, the third support plate is located above the first support plate 213, and the second connection surface 216 may be provided on the second side beam 202 On the fourth support plate, the fourth support plate is located above the second support plate 214.
  • the first and second ends of the battery may be fixed to the first connection surface 215 and the second connection surface 216 by fasteners; or welded to the first connection surface 215 and the second connection surface 216.
  • the inner wall surface of the first side beam 201 facing the unit battery 100 has at least two stepped structures, wherein the two stepped surfaces facing the sealing cover 220 respectively form a first connecting surface 215 and a first supporting surface;
  • the inner wall surface of the two side beams 202 facing the unit battery 100 has at least two stepped structures, wherein the surfaces of the two stepped surfaces facing the sealing cover 220 respectively form a second connecting surface 216 and a second supporting surface.
  • one end of the unit battery 100 adjacent to the first side beam 201 toward the first side beam 201 is provided with a first One end plate 207; at least part of the plurality of single cells 100, one end of one single cell 100 adjacent to the second side beam 202 toward the second side beam 202 is provided with a second end plate 208; at least one single cell 100
  • the first end is connected to the first connection surface 215 through the first end plate 207, and the second section of at least one unit cell 100 is connected to the second connection surface 216 through the second end plate 208, that is, there is only one unit cell Supported by the first end plate on the first side beam 201, at least one single cell 100 is supported by the second end plate 208 on the second side beam 202; the first end plate 207, the second end plate 208 and at least part of a plurality of single
  • the body battery 100 constitutes a battery module.
  • the first end plate 207 may be one, and the second end plate 208 may be one.
  • the first end plate 207, the second end plate 208, and a plurality of single cells 100 form a battery module, and the battery module passes through the first end
  • the plate 207 and the second end plate 208 are supported between the first side beam 201 and the second side beam 202.
  • first end plates 207, second end plates 208, and single cells 100 constitute multiple battery modules, each battery module Supported by the corresponding first end plate 207 and second end plate 208 between the first side beam 201 and the second side beam 202, each battery module extends between the first side beam 201 and the second side beam 202 , And the plurality is arranged along the length direction of the first side beam 201 and the second side beam 202.
  • the number of first end plates 207 and second end plates 208 that is, the number of battery modules, is not limited.
  • the first end plate 207 includes: an end plate body 231 disposed opposite to the end surface of the unit cell 100 and a first connection plate 232 connected to the end plate body 231 and protruding toward the first side beam 201
  • the second end plate 208 includes: an end plate body 231 opposite to the end surface of the unit cell 100, and a first connection plate 232 connected to the end plate body 231 and protruding toward the second side beam 202.
  • the first connection plate 232 is connected to the first connection surface 215, and the first connection plate 232 of the second end plate 208 is connected to the second connection surface 216.
  • the specific connection form is not limited.
  • the first end of the single battery 100 toward the first side beam 201 is provided with an explosion-proof valve 103, and an exhaust passage 222 is provided inside the first side beam 201.
  • a vent hole 221 is provided on a side beam 201 corresponding to the explosion-proof valve 103, the vent hole 221 communicates with the exhaust passage 222, and the battery pack 200 is provided with an exhaust port communicating with the exhaust passage 222;
  • a single battery 100 toward the second end of the second side beam 202 is provided with an explosion-proof valve 103, an exhaust passage 222 is provided inside the second side beam 202, and an exhaust hole 221 is provided on the second side beam 202 at a position corresponding to the explosion-proof valve 103,
  • the exhaust hole 221 communicates with the exhaust passage 222, and the battery pack 200 is provided with an exhaust port that communicates with the exhaust passage 222.
  • the vent hole 221 may also be formed on the first end plate 207 and the first side beam
  • the explosion-proof valve opens, and the flame, smoke or gas inside the single battery will be discharged through the explosion-proof valve. Or the gas will accumulate inside the battery pack, and if it cannot be discharged in time, it will cause secondary damage to the single battery.
  • the first side beam 201 and/or the second side beam 202 is provided with an air inlet 221 corresponding to the explosion-proof valve 103 of the single cell 100, and the first side beam 201 and/or the second The side beam 202 is provided with an exhaust channel 222.
  • the explosion-proof valve 103 When the internal pressure of the single cell 100 increases, the explosion-proof valve 103 is opened, and the flame, smoke, or gas inside the cell 100 will directly enter the first side beam 201 through the air inlet 221. And/or the exhaust channel 222 in the second side beam 202, and exhaust the first side beam 201 and or the second side beam 202 through the exhaust hole, for example, through the exhaust hole into the atmosphere, so that the flame, Smoke or gas will not collect inside the battery pack 200, thereby avoiding secondary damage to the unit battery 100 caused by flame, smoke, or gas.
  • a management accommodating cavity for accommodating battery management components and power distribution components is defined between the first connection surface 215 and the second connection surface 216 and the sealing cover 220.
  • the tray bottom plate, the single battery 100 and the tray bottom plate are spaced apart, so that the tray bottom plate is not stressed, the manufacturing process of the tray bottom plate can be simplified, and the manufacturing cost is saved.
  • a heat insulation layer is provided between the single battery 100 and the tray bottom plate to isolate the heat transfer between the single battery 100 and the outside, to achieve the function of keeping the single battery 100 warm, and to avoid the external environment outside the battery pack 200 and the inside of the battery pack 200 The phenomenon of thermal interference between the single cells 100 occurs.
  • the thermal insulation layer may be made of materials with thermal insulation and thermal insulation functions, for example, made of thermal insulation cotton.
  • the battery pack 200 may further include a third side beam 203 and a fourth side beam 204 oppositely arranged along the X direction.
  • the battery 100 is arranged between the third side beam 203 and the fourth side beam 204 in the X direction.
  • the first side beam 201 and the second side beam 202 are perpendicular to and connected to the third side beam 203 and the fourth side beam 204, so that the battery pack 200 is formed into a rectangle or a square.
  • first side beam 201 and the second side beam 202 may be parallel to each other, and the third side beam 203 and the fourth side beam 204 may be disposed at an angle to the first side beam 201 and the second side beam 202.
  • the battery pack 200 is formed into a trapezoid, a parallelogram, or the like. The present application does not limit the specific shape of the battery pack 200 formed by the first side beam 201, the second side beam 202, the third side beam 203, and the fourth side beam 204.
  • the third side beam 203 and the fourth side beam 204 provide the pressing force for the battery array 3, and the third side beam 203 is applied to the single cell 100 disposed adjacent to the third side beam 203.
  • the force toward the fourth side beam 204, the fourth side beam 204 applies a force toward the third side beam 203 to the unit cells 100 disposed adjacent to the fourth side beam 204, so that the plurality of unit cells 100 can be closely Arranged between the third side beam 203 and the fourth side beam 204 in the X direction, the plurality of unit cells 100 can be attached to each other.
  • the third side beam 203 and the fourth side beam 204 can limit the plurality of unit batteries 100 in the X direction, especially when the unit battery 100 undergoes a small expansion, the unit battery 100 can be buffered And to provide the effect of inward pressure to prevent excessive expansion and deformation of the single cell 100.
  • the third side beam 203 and the fourth side beam 204 can effectively limit the expansion of the single battery 100, so that when the single battery 100 When a fault occurs and expands, it can have enough air pressure to break through the overturn valve in the explosion-proof valve 103 or the current interrupt device (CID) device, thereby short-circuiting the single cell 100, ensuring the safety of the single cell 100, and preventing the single cell
  • the battery 100 exploded.
  • a first elastic device 205 may be provided between the third side beam 203 and the unit cell 100 adjacent to the third side beam 203, and/or the fourth side beam 204 and the adjacent fourth side
  • a second elastic device 206 may be provided between the unit cells 100 of the beam 204.
  • the first elastic device 205 may be installed on the third side beam 203, and the second elastic device 206 may be installed on the fourth side beam 204.
  • the first elastic device 205 and the second elastic device 206 make the plurality of single cells 100 tight Arranged in this way, so that the number of single cells 100 arranged between the third side beam 203 and the fourth side beam 204 can be changed without changing the spacing between the third side beam 203 and the fourth side beam 204 In the case of, it is adjusted by changing the installation distance between the first elastic device 205 and the second elastic device 206 and the third side beam 203 and the fourth side beam 204.
  • the third side beam 203 is further provided with a third connection surface 236, the fourth side beam 204 is further provided with a fourth connection surface 235, and the first side of each unit cell 100 is fixed on the third connection surface On 236, the second side of each unit cell 100 is fixed to the fourth connection surface 235.
  • one end of one unit cell 100 adjacent to the third side beam 203 toward the third side beam 203 is provided with a first side plate 209;
  • one side of the single cell 100 adjacent to the fourth side beam 204 toward the fourth side beam 210 is provided with a second side plate 210;
  • the first side of the at least one unit cell 100 is connected to the third connection surface 236 through the first side plate 209, and the second side of the at least one unit cell 100 is connected to the fourth connection surface 235 through the second side plate 210, that is, In other words, at least one unit cell is supported on the fourth side beam 209 through the first side plate, and at least one unit cell 100 is supported on the fourth side beam 210 through the second side plate 210; the first side plate 209, the second side plate 210 and at least part of the plurality of single cells 100 constitute a battery module.
  • the first side plate 209 may be one
  • the second side plate 210 may be one.
  • the first side plate 209, the second side plate 210 and a plurality of single cells 100 form a battery module, and the battery module passes through the first side
  • the plate 209 and the second side plate 210 are supported between the third side beam 203 and the fourth side beam 204.
  • Multiple first side plates 209, second side plates 210, and single cells 100 constitute multiple battery modules, each battery module Supported between the third side beam 203 and the fourth side beam 210 by the corresponding first side plate 209 and the second side plate 210, each battery module is arranged between the third side beam 203 and the fourth side beam 210 between.
  • the number of first side plates 209 and second side plates 210 that is, the number of battery modules is not limited.
  • the first side plate 209 includes: a side plate body 234 opposite to the end surface of the unit cell 100 and a second connection plate 233 connected to the side plate body 234 and protruding toward the third side beam 203
  • the second side plate 210 includes: a side plate body 234 disposed opposite to the end surface of the unit cell 100 and a second connection plate 234 connected to the end plate body 234 and protruding toward the fourth side beam 204
  • the first side plate 209 corresponds to
  • the second connecting plate 234 is connected to the third connecting surface 236, and the second connecting plate 234 corresponding to the second side plate 210 is connected to the fourth connecting surface 235.
  • the specific connection form is not limited.
  • At least part of the unit cells 100 are supported between the first side beam 201 and the second side beam 202 through the second panel 211; the second panel 211 and at least part of the unit cells 100 constitute a battery module.
  • at least part of the plurality of unit cells 100 is provided with a second panel 211, and each unit cell 100 is supported on the first side beam 201 and the second side beam 202 by the second panel 211; the second panel 211 is at least partially Multiple battery cells 100 constitute a battery module.
  • multiple battery cells 100 are supported on the first side beam 201 and the second side beam 202 through the second panel 211, which simplifies the structure of the battery module , Which is conducive to lightening the battery pack.
  • the first end plate 207 and the second end plate 208, or the second panel 211 can be supported on the first side beam 201 and the second side beam 202 in various embodiments, and this application is not limited, for example, by
  • the fastener is detachably fastened on the first side beam 201 and the second side beam 202; or fixed to the first side beam 201 and the second side beam 202 by welding; or fixed to the first side beam by dispensing
  • the side beam 201 and the second side beam 202 are connected; or directly prevented from being supported by the first side beam 201 and the second side beam 202 on the first side beam 201 and the second side beam 202.
  • the battery pack 200 includes a first panel 212 and a second panel 211, and at least a portion of the upper and lower surfaces of the unit battery 100 are connected to the first panel 212 and the second panel 211, respectively; the first end Plate 207 and second end plate 208, at least part of the two end surfaces of the single cell 100 are provided with a first end plate 207 and a second end plate 208; the first side plate 209 and the second side plate 210, the outermost two The outer side of each unit battery 100 is provided with a first side plate 209 and a second side plate 210; wherein the first end plate 207, the second end plate 208, the first side plate 209 and the second side plate 210 are The first panel 212 and the second panel 211 are connected, the inner wall of the first side beam 201 facing the unit cell 100 has a first supporting surface and a first connecting surface 215; and the second side beam 202 facing the unit cell 100 The inner wall surface has a second support surface and a second connection surface 216, the first two
  • the first end plate 207, the second end plate 208, the first side plate 209, the second side plate 210, the first panel 212, and the second panel 211 are collectively defined to accommodate a plurality of unit cells 100 Enclosed storage space, so that when the single battery 100 fails and fires and explodes, the first end plate 207, the second end plate 208, the first side plate 209, the second side plate 210, the first panel 212 and the first
  • the second panel 211 can control the failure of the unit battery 100 within a certain range, preventing the unit battery 100 from exploding and affecting the surrounding components.
  • the first side plate 209 may be the first elastic buffer device 205 mentioned above, and the second side plate 210 may be the second elastic buffer plate 206 mentioned above, so that the first side plate 209 and the second
  • the side plate 210 has a function of restricting expansion and deformation of the plurality of unit cells 100, thereby ensuring activation of the explosion-proof valve 103 and/or current interrupt device (CID).
  • a heat conduction plate 218 may be provided between the first panel 212 and the unit battery 100 to facilitate heat dissipation of the unit battery 100 and ensure The temperature difference between the plurality of unit batteries 100 will not be excessive.
  • the heat conductive plate 218 may be made of a material with good thermal conductivity.
  • the heat conductive plate 218 may be made of copper or aluminum with high thermal conductivity.
  • the length direction of the unit battery 100 may be the width direction of the vehicle, that is, the left-right direction of the vehicle, as an optional Implementation.
  • the support member 4 is a plurality of bottom beams, and the bottom beams are located below the battery array 3.
  • the bottom beam is used to support the battery array 3.
  • the upper surface of the bottom beam may be flat to form a surface support with the battery array 3.
  • the bottom beam has a rectangular cross section.
  • the battery array 3 can be fixed to the bottom beam by means of glue, threaded connectors and the like.
  • the battery pack further includes a sealing cover, and the sealing cover and the bottom beam form a receiving cavity for receiving the battery array 3.
  • the sealing cover is used to prevent the intrusion of ash layer and water.
  • the bottom beam includes a first beam 501 and a second beam 502 located on the first beam 501 and intersecting the first beam 501.
  • the angle between the extension direction of the first beam 501 and the Y direction is 60-90 degrees
  • the unit cell 100 is supported on the first beam 501.
  • the first beam 501 and the second beam 502 are vertically connected, and the connection manners of the first beam 501 and the second beam 502 include, but are not limited to, screw connection, welding, and the like.
  • the first beam 501 and the second beam 502 may both be linear beams.
  • the second beam 502 includes two.
  • the two second beams 502 are respectively located at two ends of the first beam 501 and are perpendicular to the first beam 501 respectively.
  • the unit cell 100 is supported on the first beam 501.
  • the second beam 502 projects upward (Z direction) relative to the first beam 501.
  • the lower surface of the second beam 502 may be connected to the upper surface of the first beam 501.
  • the two outermost The body battery 100 may be pressed against the sides of the two second beams 502 toward each other.
  • the center of the unit cell 100 is located on the first beam 501, and the length direction of the unit cell 100 is perpendicular to the length direction of the first beam 501.
  • Aligning the center of the unit cell 100 with the first beam 501 can realize the single beam support unit ⁇ 100 ⁇ The body battery 100.
  • the bottom beam may also be a plurality of parallel and spaced rectangular beams; the angle between the extending direction of the rectangular beam and the Y direction is 60-90 degrees, and the single cell 100 is supported on the rectangular beam.
  • the rectangular beams can be evenly distributed along the Y direction, the extending direction of the rectangular beams is perpendicular to the Y direction, and the unit cells 100 are located on the evenly distributed rectangular beams.
  • the shape of the bottom beam includes but is not limited to a linear type, a rectangular shape, and may also be a triangular shape, a trapezoidal shape, or other special shapes.
  • the support 4 is an automobile chassis
  • the battery array 3 is located on the automobile chassis
  • the battery pack 200 may be directly formed on the electric vehicle, that is, the battery pack 200 is A device for mounting the unit battery 100 formed at any appropriate position on the electric vehicle.
  • the battery pack 200 may be formed on the chassis of an electric vehicle.
  • the automobile chassis is provided with a cavity 300 recessed downward to facilitate the assembly of the single battery 100.
  • the cavity 300 may include a first side wall 301 and a second side wall 302 disposed oppositely, and the first side wall 301 may be obtained by extending the chassis of the electric vehicle downward
  • the extension of the first side wall 301, the first side wall 302 can be extended downward from the chassis of the electric vehicle to obtain the extension of the second side wall 302, so that, as an embodiment, the first end of the unit cell 100 can be Supported on the extension of the first side wall 301, the second end of the unit cell 100 may be supported on the extension of the second side wall 302.
  • the present application also provides an electric vehicle capable of arranging the single batteries 100 according to the above technical solution.
  • the electric vehicle is formed with a cavity 300 having the same characteristics as a separate vehicle tray, thereby constituting the battery pack 200 provided by the present application .
  • the extension of the first side wall 301 and the extension of the second side wall 302 form the bottom 305 of the cavity 300.
  • the extension portion of the first side wall 301 is in contact with the extension portion of the second side wall 302, so that the cavity 300 is formed as a cavity 300 having a U-shaped groove recessed downward, and the single cell 100 can be formed by the cavity 300
  • the bottom 305 supports.
  • the extension of the first side wall 301 may also be separated from the extension of the second side wall 302 by a certain distance.
  • the battery pack 200 forms a battery placement area, the battery array 3 is located in the battery placement area, and the battery pack 200 contains a battery array 3.
  • the battery pack accommodates only one single battery 100 in the Y direction, that is, the battery pack 200 is in the Y direction, and the single battery 100 cannot be arranged in two or more than two In the direction, the above-mentioned accommodating only one unit battery 100 means that in the Y direction of the battery pack 200, only one unit battery 100 can be arranged side by side. As shown in FIGS.
  • the unit battery 100 is perpendicular to the first side beam 201 and the second side beam 202, the distance between the first end and the second end of the unit battery 100 is L1, and the first side The distance between the inner surface of the beam 201 and the inner surface of the second side beam 202 is L2, where the ratio of L1 and L2 satisfies L1/L2 ⁇ 50%.
  • L1 and L2 satisfies L1/L2 ⁇ 50%.
  • the single cell 100 by arranging only one single cell 100 between the first side beam 201 and the second side beam 202 along the Y direction, the single cell 100 itself can be used as a reinforced battery pack 200 beams or longitudinal beams with structural strength are used.
  • the ratio of L1 and L2 may satisfy 80% ⁇ L1/L2 ⁇ 97%, so that the first and second ends of the unit cell 100 are as close as possible to the first side beam 201 and the second side
  • the beam 202 is even against the first side beam 201 and the second side beam 202, so as to facilitate the dispersion and transmission of force through the structure of the unit cell 100 itself, and ensure that the unit cell 100 can be used as a reinforced battery pack 200
  • the use of structural beams or longitudinal beams ensures that the battery pack 200 has sufficient strength to resist deformation by external forces.
  • the embodiments of the present application are not limited to the absence of reinforcing ribs. Therefore, there may be a plurality of battery arrays 3.
  • a battery placement area is formed in the battery pack 200, and the battery array 3 is located in the battery placement area.
  • the battery placement area is provided with N battery arrays 3 along the X direction and M battery arrays 3 along the Y direction ,
  • the electrical connection between the battery array 3 and the battery array 3 is achieved through the connection between the electrode terminals of the single cells, N is greater than or equal to 1, and M is greater than or equal to 1.
  • the electrode terminals of the last unit cell of the N-1th battery array 3 and the first unit cell of the Nth battery array 3 are connected by a connector, and N is greater than or equal to 1.
  • a plurality of battery arrays 3 may be provided in the battery pack along the arrangement direction of the unit batteries 100, that is, a plurality of rows of battery arrays 3 are provided in the battery pack 200.
  • the first separator 700 divides the illustrated battery array 3 into two battery arrays 3 along the X direction of the battery pack 200.
  • the last unit cell 100 of the previous battery array 3 and the first unit cell of the following battery array 3 are connected by a connecting member.
  • a battery placement area is formed in the battery pack, and the battery array 3 is located in the battery placement area.
  • the battery placement area is provided with M battery arrays 3 along the Y direction.
  • the connection between the electrode terminals of the body battery is electrically connected, and M is greater than or equal to 1.
  • the electrode terminals of the last unit cell of the M-1th battery array 3 and the first unit cell of the Mth battery array 3 are connected by a connector, and M is greater than or equal to 1.
  • a plurality of unit batteries 100 can be accommodated, that is, a plurality of rows of battery arrays 3 are provided in the battery pack 200.
  • the second separator 800 divides the battery array 3 into two battery arrays 3 along the Y direction of the battery pack 2000.
  • the last unit cell 100 of the previous battery array 3 and the first unit cell of the following battery array 3 are connected by a connecting member.
  • a battery placement area is formed in the battery pack, and the battery array 3 is located in the battery placement area.
  • the battery placement area is provided with N battery arrays 3 along the X direction and M battery arrays 3 along the Y direction.
  • the battery array 3 and the battery array 3 are electrically connected by connecting members between the electrode terminals of the single cells, N is greater than or equal to 1, and M is greater than or equal to 1.
  • the battery placement area is divided into a plurality of sub-battery placement areas, and in the extension direction Y direction of the unit battery 100, a plurality of unit batteries 100 can be accommodated, that is, the battery pack 200 is provided with multiple rows Multi-row battery array 3.
  • the battery pack 200 is provided with a first separator 700 and a second separator 800.
  • the first separator 700 and the second separator 800 divide the plurality of unit cells into two rows and two columns Battery array 3. Any two battery arrays 3 are connected by connectors between electrode terminals.
  • first separator 700 and the second separator 800 may be reinforcing ribs, or other structural members such as thermal insulation cotton, which is not limited in this application.
  • This application does not specifically limit the number of battery cells 100 in the battery array 3, and different numbers of battery cells 100 can be arranged according to different vehicle models and different power requirements.
  • the battery array 3 The number of middle cells is 60-200. In some other specific examples of this application, the number of single cells in the battery array 3 is 80-150.
  • the single cells in the battery array 3 are bonded by glue, and the single cell 100 and the single battery 100 are bonded by glue, which can save space, reduce other structural parts, and meet the requirements of light weight. Quantify, increase energy density, increase production efficiency, etc.
  • the first panel 212 is a heat exchange plate 219 with a cooling structure inside, and a cooling liquid is provided inside the heat exchange plate 219, so that the cooling of the unit battery 100 is achieved by the cooling liquid, so that the unit The body battery 100 can be at an appropriate operating temperature. Since the heat exchange plate 219 and the unit battery 100 are provided with a heat conduction plate 218, when the unit battery 100 is cooled by the cooling liquid, the temperature difference at each position of the heat exchange plate 219 can be equalized by the heat conduction plate 218, thereby multiple The temperature difference between the single cells 100 is controlled within 1°C.
  • the single battery 100 may have any suitable structure and shape.
  • the battery body of the single battery 100 is a square battery with a square structure, and has a length, thickness and The height between the length and the thickness, each unit cell 100 is placed sideways, the length direction of the battery body of each unit cell 100 is the Y direction, the thickness direction is the X direction, and the height direction is the Z direction, adjacent
  • the two unit cells 100 are arranged in a large-to-large manner.
  • the square has a length L in the length direction, a thickness D in the thickness direction perpendicular to the length direction, and a height H in the height direction, which is between the length L and the thickness D.
  • the unit cell 100 has a large surface, a narrow surface, and an end surface, the long side of the large surface has the above-mentioned length L, and the short side has the above-mentioned height H; the long side of the narrow surface has the above-mentioned length L, and the short side has the above-mentioned thickness D; The long side of the end face has the above-mentioned height H, and the short side has the above-mentioned thickness D.
  • the side-by-side placement of the unit battery 100 means that the two end surfaces of the unit battery 100 respectively face the first side beam 201 and the second side beam 202, and the large surfaces of the adjacent two unit batteries 100 face each other, so that the unit battery 100 With the function of replacing the beam, its effect is better and its strength is higher.
  • the unit battery 100 may also be a cylindrical battery.
  • the ratio of the length L and thickness D of the battery body of the unit cell 100 satisfies 23 ⁇ L/D ⁇ 208. At this ratio, a single cell 100 with a longer length and a thinner thickness can be obtained. In this way, it can be ensured that when the length of the single cell 100 extends along Y, an appropriate resistance value and a high The heat dissipation area and heat dissipation efficiency are good for various models.
  • the ratio of the length L to the height H of the battery body of the unit cell 100 satisfies 4 ⁇ L/H ⁇ 21, such as: 9 ⁇ L/H ⁇ 13. At this ratio, it can be achieved by the above-mentioned single battery 100 with a long length and a thin thickness, or by adjusting the size. By controlling the ratio of the length L of the battery body of the single battery 100 to the height H, it can be guaranteed While the length of the unit battery 100 extends in the Y direction, it has a sufficient heat dissipation area to ensure the heat dissipation effect of the unit battery 100.
  • the assembly process is to arrange a plurality of single batteries to form the battery array 3 first.
  • the array 3 is provided with end plates and/or side plates; generally, the end plates and side plates are simultaneously included, and the end plates and side plates are fixed to form a space for accommodating the battery array 3, that is, a battery module is formed, and then the battery module Installed in the package, and the battery pack also needs to be equipped with beams and/or totals to match the installation of the battery module.
  • the assembly process is more complicated. During the assembly process of the battery pack, the probability of a defective rate is increased. The possibility that the battery pack is loose or not firmly installed is increased, which adversely affects the quality of the battery pack, and the stability and reliability of the battery pack are reduced.
  • the single single battery 100 can be directly placed sideways into the tray directly.
  • the first end of the body battery 100 is supported on the first side beam 201, and the other end of the cell 100 is supported on the second side beam 200, and then other battery cells are sequentially placed along the X direction of the battery pack, and 100 forms a battery array 3.
  • the fasteners are used to fix the battery array 3 and install the battery management components and power distribution components.
  • the entire assembly is relatively simple. It is not necessary to assemble the battery module first, and then install the battery module into the battery pack.
  • the battery array 3 can be formed directly in the battery pack, saving manpower, material and other costs, and reducing the defect rate. , The stability and reliability of the battery pack are increased.
  • the second object of the present application is to provide a vehicle 1 including the battery pack 200 described above.
  • the vehicle 1 may include a commercial vehicle, a special vehicle, an electric bicycle, an electric motorcycle, an electric scooter, and other electric vehicles that need to use a battery pack to provide electric energy for driving the vehicle.
  • the battery pack 200 is provided at the bottom of the electric vehicle, and the support 4 is fixedly connected to the chassis of the vehicle 1. Due to the large installation space at the chassis of the electric vehicle, the battery pack 200 is provided at the chassis of the electric vehicle, which can increase the number of single cells 100 as much as possible, thereby improving the endurance of the electric vehicle.
  • the vehicle includes a battery pack disposed at the bottom of the vehicle, the battery pack is fixedly connected to the chassis of the vehicle, the Q direction or the length direction of the smallest circumscribed rectangular body of the single battery, or the Y direction is the width direction of the vehicle body, That is, the left-right direction of the vehicle, the P direction or the width direction of the smallest circumscribed rectangular body of the unit cell, or the X direction is the longitudinal direction of the vehicle body, that is, the front-rear direction of the vehicle.
  • the vehicle may include a plurality of battery packs provided at the bottom of the vehicle. The shape and size of the plurality of battery packs may be the same or different. Specifically, each battery pack may be based on the shape and size of the vehicle chassis After adjustment, a plurality of battery packs are arranged along the length of the vehicle body, that is, in the front-rear direction.
  • the ratio of the width L3 of the battery pack 200 in the Q direction or the length of the smallest circumscribed rectangular body of the single cell or the Y direction and the width W of the vehicle body satisfies: 50 % ⁇ L3/W ⁇ 80%, in this embodiment, it can be achieved by only providing one battery pack 200 along the width direction of the vehicle body, when there are multiple battery packs 200, the multiple battery packs 200 are arranged along the length direction of the vehicle body .
  • the body width is 600mm-2000mm, for example, 600mm, 1600mm, 1800mm, 2000mm
  • the body length is 500mm-5000mm
  • the width of the passenger car is usually 600mm-1800mm
  • the length of the body is 600mm-4000mm.
  • the ratio of the unit cell 100 along the Q direction or the length direction of the smallest circumscribed rectangular body of the unit cell, or the dimension L′ in the direction and the width W of the vehicle body satisfies: 46% ⁇ L′/W ⁇ 76% .
  • the thicknesses of the first side beam 201 and the second side beam 202 of the battery pack 200 when the ratio of the dimension L of the single cell 100 in the Y direction to the width W of the vehicle body satisfies: 46% ⁇ L'/ When W ⁇ 76%, in this embodiment, it can be realized by only providing one unit battery 100 along the width direction of the vehicle body.
  • the size of the unit battery 100 in the Y direction is 600 mm-1500 mm.
  • the thickness of the single cell has a minimum limit value; this makes the length of the single cell affected by the limit value of the thickness, the first party The ability to change the length upward is also limited, and cannot increase the length of the single cell indefinitely.
  • the application also discloses an energy storage device 2.
  • the energy storage device 2 of the present application includes the battery pack 200 of any one of the foregoing embodiments.
  • the energy storage device 2 of the present application can be used for domestic backup power supplies, commercial backup power supplies, outdoor power supplies, peak-shaving energy storage devices for power stations, power sources for various vehicles, and the like.
  • Comparative Example 1 and Example 1-2 Comparative Example 2 and Example 4-4, Comparative Example 3 and Example 5, according to the battery pack 200 of the embodiment of the present application, by arranging the single cells 100 And the design of dimensional parameters, etc., in the improvement of energy density and other aspects.
  • Example 1 the total volume of the battery pack 200 is 213L.
  • the combined volume of the battery pack shell and the internal battery management system and other power distribution modules is 82.54L.
  • two cross beams 500 and one longitudinal beam 600 are provided in the battery pack casing, and the two cross beams 500 and one longitudinal beam 600 divide the single battery 100 into six battery molds Group 400.
  • the length direction of the unit batteries 100 is arranged along the width direction of the battery pack 200, and the plurality of unit batteries 100 are arranged along the length direction of the battery pack 200.
  • the battery pack case accommodates one unit battery 100, and the unit battery 100 extends from one side to the other side of the battery pack case in the width direction of the battery pack 200.
  • a first separator 700 is provided in the battery pack casing, and a second separator 800 is not provided.
  • the first separator 700 extends along the width direction of the battery pack 200, and a plurality of unit cells 100 are arranged along the length direction of the battery pack 200 In the battery array 400, the first separator 700 divides the battery array 400 into two parts along the length direction of the battery pack 200.
  • the first side beam side beam 201 and the second side beam 202 of the battery pack shell on both sides of the battery pack 200 in the width direction provide support for the single battery 100, and the third side of the battery pack shell on both ends of the battery pack 200 in the length direction
  • the beam 203 and the fourth side beam 204 provide the inward pressing force for the adjacent unit cells 100.
  • the battery pack casing contains a battery layer battery array 400 along the height direction of the battery pack 200.
  • the length direction of the unit batteries 100 is arranged along the width direction of the battery pack 200, and the plurality of unit batteries 100 are arranged along the length direction of the battery pack 200.
  • the battery pack case accommodates one unit battery 100, and the unit battery 100 extends from one side to the other side of the battery pack case in the width direction of the battery pack 200.
  • the first separator 700 and the second separator 800 are not provided in the battery pack casing.
  • the first side beams 201 and the second side beams 202 on both sides of the battery pack 200 in the width direction of the battery pack shell provide support for the single cell 100, and the third side beams 203 on both ends of the battery pack 200 in the longitudinal direction And the fourth side beam 204 provides an inward pressing force for the adjacent unit cell 100.
  • the battery pack housing contains two battery arrays 400 along the height direction of the battery pack 200.
  • Example 3 and Example 4 the total volume of the battery pack 200 is 310L, and the combined volume of the battery pack shell and the internal battery management system and other power distribution modules is 90L.
  • the actual remaining capacity of the battery pack The volume of the single battery 100 and/or the first separator and the second separator is 220L, in which the length of the battery pack shell is 1580mm, the width is 1380mm, the thickness is 137mm, the volume of the distribution box is 11L, the battery pack
  • the total volume of 310L 1580 ⁇ 1380 ⁇ 137 ⁇ 0.000001 + 11.
  • the length direction of the unit batteries 100 is arranged along the length direction of the battery pack 200, and the plurality of unit batteries 100 are arranged along the width direction of the battery pack 200.
  • the battery pack housing accommodates a single battery 100, and the unit battery 100 extends from one side to the other side of the battery pack housing in the length direction of the battery pack 200.
  • a second separator 800 is provided in the battery pack casing, and no crossbeam 500 is provided.
  • the second separator 800 extends along the length of the battery pack 200, and a plurality of single cells 100 are arranged along the width of the battery pack 200 to form a battery array 400
  • the second separator 800 divides the battery array 400 into two parts along the width direction of the battery pack 200.
  • the third side beams 203 and the fourth side beams 204 at the two ends of the battery pack 200 in the longitudinal direction of the battery pack shell provide support for the single cell 100, and the first side beams 201 at the two sides of the battery pack 200 in the width direction
  • the second side beam 202 provides an inward pressing force for the adjacent unit cell 100.
  • the battery pack housing contains two battery arrays 400 along the height direction of the battery pack 200.
  • the length direction of the unit batteries 100 is arranged along the length direction of the battery pack 200, and a plurality of unit batteries 100 are arranged along the width direction of the battery pack 200.
  • the battery pack housing accommodates a single battery 100, and the unit battery 100 extends from one side to the other side of the battery pack housing in the length direction of the battery pack 200.
  • the third side beams 203 and the fourth side beams 204 at the two ends of the battery pack 200 in the longitudinal direction of the battery pack shell provide support for the single cell 100, and the first side beams 201 at the two sides of the battery pack 200 in the width direction
  • the second side beam 202 provides an inward pressing force for the adjacent unit cell 100.
  • the battery pack housing contains two battery arrays 400 along the height direction of the battery pack 200.
  • Example 5 the total volume of the battery pack 200 is 414L.
  • the combined volume of the battery pack shell and the internal battery management system and other power distribution modules is 102L.
  • the actual remaining capacity of the battery pack can accommodate single cells
  • the arrangement of the single cells is the same as the arrangement of Comparative Example 1.
  • the arrangement of the single cells in the battery pack is the same as that in Example 4.
  • the total volume of the battery pack 200 is 508L, and the combined volume of the battery pack shell and the internal battery management system and other power distribution modules is 119L.
  • the arrangement of the single cells in the battery pack is the same as that in Example 4.
  • the battery pack 200 according to the embodiments of the present application, through the design of the arrangement, size parameters and other factors of the single battery 100, the space utilization rate can break through the existing Limitations of the battery pack 200, thereby achieving higher energy density. Moreover, this increase in energy density will be magnified as the overall volume of the battery pack 200 increases. That is, for the battery pack 200 with a larger volume, the effect of the solution of the embodiment of the present application on energy density is more significant .

Abstract

一种电池包、车辆和储能装置,所述电池包包括电池阵列及支撑件,所述电池阵列包括若干单体电池,所述单体电池具有第一尺寸,所述第一尺寸为虚拟夹持所述单体电池的两平行平面的间距的最大值;至少一个单体电池满足:600mm≤第一尺寸≤2500mm,且支撑在所述支撑件上;与所述第一尺寸对应的所述两平行平面的法向为Q方向,所述电池包内形成电池放置区,所述电池阵列位于所述电池放置区,所述单体电池沿所述Q方向从所述电池放置区的一侧延伸到所述电池放置区的另一侧。

Description

电池包、车辆和储能装置
相关申请的交叉引用
本申请要求比亚迪股份有限公司于2019年1月9日提交的中国专利申请号“201910021244.0”、“201910020967.9”、“201910021246.X”、“201910021248.9”、“201910021247.4”及“201910020925.5”的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于车辆制造技术领域,具体而言,涉及一种电池包、具有该电池包的车辆、具有该电池包的储能装置。
背景技术
相关技术中诸如应用于电动车的电池包,主要包括电池包和安装在电池包内的多个电池模组,其中,每个电池模组由多个单体电池组装而成。
随着用户对电动车的续航能力的要求逐渐提升,而在车身底部空间有限的情况下,采用现有技术的动力电池包,内部空间的利用率低;动力电池包的能量密度无法满足需求,这也逐渐成为制约电动车发展的重要因素。
发明内容
相关现有技术中,如图1所示,电池包包括电池包外壳,多个横梁500和多个纵梁600将电池包外壳分割成多个电池模组400的安装区域,电池模组400通过螺钉等方式,固定在横梁500或纵梁600上。电池模组400包括依次排列的多个单体电池,多个单体电池排列形成电池阵列,在电池阵列外部设置有端板和/或侧板;一般同时包含端板和侧板,端板和侧板固定,围成容纳电池阵列的空间。同时,端板和侧板通过螺钉连接,焊接或者通过拉杆等其他连接件连接,以实现对电池阵列的固定。
电池模组400通过螺钉等结构固定在横梁500和纵梁600上,浪费了空间,同时因为加入了螺钉等连接件,提高了重量,降低了能量密度;另外,电池模组400通过端板和侧板的配合设计,端板和侧板均具有一定的厚度和高度,浪费了电池包内部的空间,降低了电池包的体积利用率。一般情况下,上述相关技术中的电池包,电池包内单体电池的体积之和与电池包体积的比值均在50%左右,甚至低至40%。
采用上述相关技术实施例提供的电池包,电池模组400的端板、侧板,电池包内部的连接安装方式等,都降低了电池包内部空间的利用率;导致电池包中,单体电池的体积之和与电池包体积的比值过低,其能量密度无法满足上述需求的升高,逐渐成为制约电动车发展的重要因素。另外,存在繁琐组装过程,组装工序复杂,需要先组装成电池模组,再将电池模组安装在电池包内,增加了人力、物力等成本;同时,因需要多次组装工序,在电池包的组装过程中,产生不良率的概率被提高,多次组装加大了电池包出现松动、安装不牢固的可能性,对电池包的品质造成不良影响,并且电池包的稳定性下降,可靠性降低。
本申请旨在至少解决相关技术中存在的技术问题之一。为此,本公开的一个目的在于提出一种电池包,该电池包具有空间利用率高、能量密度大、续航能力强、可靠性高、成本低及品质高等优点。
为了实现上述目的,本申请提供一种电池包,包括包括电池阵列及支撑件,所述电池阵列包括若干单体电池,所述单体电池具有第一尺寸,所述第一尺寸为虚拟夹持所述单体电池的两平行平面的间距的最大值;至少一个单体电池满足:600mm≤第一尺寸≤2500mm,且支撑在所述支撑件上;与所述第一尺寸对应的所述两平行平面的法向为Q方向,所述电池包内形成电池放置区,所述电池阵列位于所述电池放置区,所述单体电池沿所述Q方向从所述电池放置区的一侧延伸到所述电池放置区的另一侧。
本申请提供一种电池包,包括电池阵列及支撑件,所述电池阵列包括若干单体电池,所述单体电池具有尺寸A,所述尺寸A为所述单体电池的最小外接矩形体的长,至少一个单体电池满足:600mm≤尺寸A≤2500mm,且支撑在所述支撑件上。
本申请提供一种电池包,包括电池阵列及支撑件,所述电池阵列包括若干单体电池,至少一个单体电池满足:包括电池本体及延伸出所述电池本体用于引出电池本体内部电流的电极端子,所述电池本体为大体长方体,所述电池本体的长度为L,600mm≤L≤2500mm,且支撑在所述支撑件上;所述电池包内形成电池放置区,所述电池阵列位于所述电池放置区,所述至少一个单体电池沿所述单体电池的最小外接矩形体的长度方向从所述电池放置区的一侧延伸到所述电池放置区的另一侧。
根据上述技术方案,通过限定单体电池的在电池包中的排列方式以及单体电池的尺寸,可以使得电池包内布置更多的单体电池;单体电池为软包电池且可以支撑在支撑件上,软包电池会鼓气裂开,而不会发生爆炸,从而提高单体电池的安全性能,直接放置在电池包外壳内的单体电池,由于少了模组框架,一方面便于单体电池通过电池包外壳或其他散热部件散热,另一方面,可以在有效的空间内布置更多的单体电池,结合软包电池的极芯占比大,可以极大提高体积利用率,且电池包的制作工艺得到了简化,单体电池的组装复杂度降低,生产成本降低,使得电池包和整个电池包的重量减轻,实现了电池包的轻量化。 特别地,当电池包安装在电动车上时,还可以提升电动车的续航能力,实现电动车的轻量化。。进而提高整个电池包的容量、电压以及续航能力。比如在电动车中,此设计可以将空间利用率由原先的40%左右,提高到60%以上甚至更高,比如80%。
本申请还提出了一种车辆,包括上述电池包。
本申请还提出了一种储能装置,包括上述电池包。
所述车辆、所述储能装置与上述的电池包相对于相关技术所具有的优势相同,在此不再赘述。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是相关技术提供的电池包的爆炸示意图;
图2是本申请一种实施方式提供的电池包的立体结构示意图;
图3是本申请一种实施方式提供的单体电池的立体结构示意图;
图4是本申请一种实施方式提供的多个单体电池在电池包内的排列示意图;
图5是本申请一种实施方式提供的电池包的立体结构示意图;
图6是本申请另一种实施方式提供的电池包的立体结构示意图;
图7是本申请再一种实施方式提供的电池包的立体结构示意图;
图8是图7中A部分的放大图;
图9是本申请一种实施方式提供的电池包的剖视立体图;
图10是图9中B部分的放大图;
图11是本申请另一种实施方式提供的电池包的剖视图,其中,第一边梁和第二边梁未示出;
图12是本申请一种实施方式提供的电池包的爆炸图;
图13是本申请一种实施方式提供的第一侧板或第二侧板的立体结构示意图;
图14是本申请一种实施方式提供的第一端板或第二端板的立体结构示意图;
图15是本申请一种实施方式提供的电池包的立体结构示意图,其中,电池模组为多个;
图16是本申请一种实施方式提供电池包(腔体)形成在电动车上的立体结构示意图;
图17是本申请一种实施方式提供的腔体的剖视图;
图18是本申请一种实施方式提供的车用托盘固定在电动车上的立体示意图;
图19是本申请一种实施方式提供电池包(车用托盘)固定在电动车上的爆炸示意图;
图20是本申请一种实施方式提供电池包的立体图;
图21是本申请另一种实施方式提供电池包的立体图;
图22是本申请再一种实施方式提供电池包的立体图;
图23是本申请又一种实施方式提供电池包的立体图;
图24是本申请又一种实施方式提供电池包的立体图;
图25是本申请一种实施方式提供底梁的立体图;
图26是本申请一种实施方式提供车辆的结构示意图;
图27是本申请一种实施方式提供储能装置的结构示意图;
图28是本申请的第一尺寸和第二尺寸的测量原理图;
图29是本申请又一种实施方式提供电池包的立体图;
图30是本申请又一种实施方式提供的单体电池的结构示意图;
图31是本申请又一种实施方式提供电池包的立体图;
图32是本申请又一种实施方式提供的单体电池的结构示意图。
附图标记:
1   车辆          2   储能装置
3   电池阵列      4   支撑件
100 单体电池      101 第一电极端子
102 第二电极端子  103 防爆阀
104 加强壳体      105 软包单体
200 电池包        201 第一边梁
202 第二边梁      203 第三边梁
204 第四边梁      205 第一弹性缓冲装置
206 第二弹性装置  207 第一端板
208 第二端板      209 第一侧板
210 第二侧板      211 第二面板
212 第一面板      213 第一支撑板
214 第二支撑板    215 第一连接面
216 第二连接面    217 保温层
218 导热板        219 换热板
221 进气口        222 排气通道
235   第四连接面            236   第三连接面
233   第二连接板            234   侧板体
232   第一连接板            231   端板体
700   第一隔板              800   第二隔板
300   腔体                  301   第一侧壁
302   第二侧壁              305   腔体的底部
400   电池模组              500   横梁
501   第一梁                502   第二梁
600   纵梁
L     单体电池沿Y方向上的尺寸
D     单体电池沿X方向上的尺寸
H     单体电池沿Z方向上的尺寸
L1    单体电池的第一端与第二端之间的距离
L2    第一边梁的内表面与第二边梁的内表面之间的距离/第一侧壁与第二侧壁之间沿第一方向的距离
L3    电池包在Y方向上的宽度
具体实施方式
下面详细描述本申请的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
如图2至图32所示,根据本申请的一个方面,提供一种电池包200,包括电池阵列3和支撑件4。
电池阵列3包括若干单体电池100,单体电池100具有第一尺寸,第一尺寸为虚拟夹持单体电池100的两平行平面的间距的最大值。至少一个单体电池100满足:600mm≤第一尺寸≤2500mm。
需要说明的是,对于某一个单体电池100,存在很多组平行平面,每组平行平面均包括两个平行平面,每组的两个平行平面均能虚拟夹持该单体电池100,每组的两个平行平面之间具有一个距离,第一尺寸即为这些距离中的最大值。
如图28所示,第一尺寸的定义可以参考费雷特(feret)直径,费雷特(feret)直径是一种物体沿某一方向测量的尺寸。一般来讲,该度量方法被定义为两个平行平面间的距离,这两个平行面需要卡住物体,并垂直于指定的方向。
单体电池100的形状可以为多种,可以为规则的几何形状,也可以为不规则的几何形状,例如可以为方形、圆形、多边形、三角形,也可以是任意的形状,如异形电池。可以理解的是,本申请对单体电池的形状不作限定。
当该单体电池100为异形电池时,第一尺寸可理解为——与该单体电池100的轮廓边缘相切的两平行平面存在多组,当其中一组的两平行平面的间距大于其他各组的两平行平面的间距,则最大的间距可定义为所述第一尺寸。
在实际的执行中,单体电池100的外表面设有设有支撑区,支撑区可以设在单体电池100沿第一尺寸方向的两端,这样可以将单体电池100沿第一尺寸的方向支撑于支撑件4。
而本申请的发明人发现,可以将单体电池100的第一尺寸设计成600mm-2500mm,由于单体电池100足够的长,单体电池100可以直接支撑在支撑件4上,从而减少电池包200中横梁500和/或纵梁600的使用,甚至电池包200中可以不使用横梁500和/或纵梁600,从而减少了横梁500和/或纵梁600在电池包200中占据的空间,提高了电池包200的空间利用率,尽可能地使更多的单体电池100能够布置在电池包200中,进而提高整个电池包的容量、电压以及续航能力。比如在电动车中,此设计可以将空间利用率由原先的40%左右,提高到60%以上甚至更高,比如80%。
这里,支撑件4与支撑区对接可以为支撑件4与所述支撑区直接接触,以支撑所述单体电池,也可以为支撑件4通过其他部件与所述支撑区间接接触或连接,可根据使用情境对应设置,本申请不做限定。
上述单体电池100为软包电池,当发生安全隐患的情况下,软包电池会鼓气裂开,而不会发生爆炸,从而提高单体电池100的安全性能。另一方面,软包电池的极芯占比大,可以提高体积利用率,软包电池加工成本低。比如在电动车中,此设计可以将空间利用率由原先的40%左右,提高到60%以上甚至更高,比如80%。
在一些实施例中,如图29-图32所示,单体电池100包括外壳、位于外壳内的极芯、用于加强外壳的加强件,支撑件4与加强件对接以支撑单体电池100。其中支撑区可以设于加强件的外表面,软包单体105包括外壳、位于外壳内的极芯。这样可以防止软包单体105铝塑膜由于软包单体105的错动被磨破,且单体电池100自身的刚度较大,可以增强电池包200的刚度。
加强件包括加强壳体104,加强壳体104包裹在至少一个单体电池100的外壳上,支撑件4与加强壳体104对接以支撑单体电池100。加强壳体104可以完全包裹软包单体105,或者包裹软包单体105的与支撑件4对应的区域,加强壳体104为硬质壳体,加强壳体104可以为钢壳,也可以为复合材料。当加强壳体104由金属材料制成时,这样单体电池100的金属外壳的导热性能更好,从而能够提高单体电池100的散热效率,优化散热效果。
加强壳体104可以局部开孔,用于减重。
在图29和图30所示的实施例中,每个加强壳体104包裹包括1个软包单体105;在图31和图32所示的实施例中,每个加强壳体104包裹包括多个软包单体105。
在一些实施例中,单体电池100具有引出内部电流的电极端子,加强件包括汇流件,汇流件被构造为电连接多个单体电池100的电极端子,支撑件4与汇流件对接以支撑单体电池100。这样,在将多个单体电池100布置在支撑件4上时,还能同时实现多个单体电池100的电连接。
并且,由于电池包200中无需再布置横梁和/或纵梁,一方面,使得电池包200的制作工艺得到了简化,单体电池100的组装复杂度降低,生产成本降低,另一方面,使得电池包200的重量减轻,实现了电池包的轻量化。特别地,当电池包安装在电动车上时,还可以提升电动车的续航能力,实现电动车的轻量化。
600mm≤第一尺寸≤1500mm,优先,600mm≤第一尺寸≤1000mm。该长度的单体电池100长度足够长以能够支撑在支撑件4上,且该长度的单体电池100的长度又不过于长,在用于电池包200时,单体电池100自身的刚度也足够大。
本申请中,对电池包的具体形式不作特殊限定,只需限定电池包包括支撑件4,电池阵列3位于支撑件4上,单体电池100支撑在支撑件4上,本申请对支撑件4的具体结构不作限定,只要单体电池100能支撑在支撑件4上即可,关于支撑件4的具体结构见下文描述。单体电池100支撑在支撑件4上,单体电池100可以直接支撑件4支撑,即,分别放置在支撑件4上,也可以固定在支撑件4上,具体的固定方式在下文中详细描述,对于特定的支撑和固定方式,对此本申请不作限制。
上述支撑件4用于支撑电池阵列3,支撑件4通常为刚性结构,支撑件4可以为独立加工的托盘或者在车辆的底盘上成型出的刚性支撑结构,以及便于安装于整车或其他装置上。
在一些实施例中,单体电池100具有第二尺寸,单体电池具有第二尺寸,第二尺寸为虚拟夹持单体电池的两平行平面的间距的最小值,与第二尺寸对应的两平行平面的法向为P方向,若干单体电池沿至少一个单体电池的P方向排列。
需要说明的是,对于某一个单体电池100,存在很多组平行平面,每组平行平面均包括两个平行平面,每组的两个平行平面均能虚拟夹持该单体电池100,每组的两个平行平面之间具有一个距离,第二尺寸即为这些距离中的最小值。
如图28所示,第二尺寸的定义可以参考费雷特(feret)直径,费雷特(feret)直径是一种物体沿某一方向测量的尺寸。一般来讲,该度量方法被定义为两个平行平面间的距离,这两个平行面需要卡住物体,并垂直于指定的方向。
当所述单体电池100为异形电池时,所述第二尺寸可理解为,与所述单体电池100的 轮廓边缘相切的两平行平面存在多组,当其中一组的两平行平面的间距小于其他各组的两平行平面的间距,则最小的间距可定义为所述第二尺寸。
与第二尺寸对应的所述两平行平面的法向为P方向,若干单体电池沿电池阵列3中任意一个单体电池的P方向排列。
至少一个单体电池满足:23≤第一尺寸/第二尺寸≤208,在一些实施例中,50≤第一尺寸/第二尺寸≤70。发明人通过大量试验发现,满足上述尺寸要求的单体电池100,可以在刚度满足支撑要求的基础上使得单体电池100在第二尺寸所在的方向的厚度较薄,从而使单体电池100自身具有较高的散热能力。
在一些实施例中,单体电池100的体积为V,至少一个单体电池100的电池本体的满足:0.0005mm -2≤第一尺寸/V≤0.002mm -2。单体电池的体积V可以采用排水法得到:即将单体电池放入装满水的容器中,从容器中溢出水的体积即等于单体电池的体积。发明人通过大量试验发现,当单体电池100满足上述限定时,单体电池100的横截面小,单体电池100的散热效果好,这样单体电池100的内部和四周的温差小。
在本申请提供的另一种实施方式中,单体电池100的电池本体的表面积S与体积V的比值满足0.1mm -1≤S/V≤0.35mm -1。。在该比值下,可以通过上述长度较长,厚度较薄的单体电池100实现,也可以通过尺寸的调整实现,通过控制单体电池100的表面积S与体积V的比值,可以保证单体电池100的长度沿Y方向延伸的同时,具备足够的散热面积,以保证单体电池100的散热效果。
需要指出的是,单体电池的表面积是指单体电池的所有面的面积之和。
在本申请的实施方式中,至少一个单体电池100沿第一尺寸方向具有第一端和第二端,第一端和第二端中的至少一个具有用于引出单体电池100内部电流的电极端子,单体电池100间的电极端子通过连接件电连接。
这里,单体电池100的“第一端”和“第二端”是用于描述单体电池100的方位的,并不用于限定和描述单体电池100的具体结构,例如,第一端和第二端并不用于限定和描述单体电池100的正极和负极,单体电池100在一种实施方式中,如图2至图4所示,单体电池100的第一电极端子101由单体电池100的第一端引出,单体电池100的第二电极端子102由单体电池100的第二端引出。换言之,单体电池100的第一尺寸方向可以为单体电池100内部的电流方向,即,单体电池100内部的电流方向为第一尺寸方向。这样,由于电流方向与单体电池100的第一尺寸方向相同,单体电池100的有效散热面积更大、散热效率更好。这里,第一电极端子101可以为单体电池100的正极,第二电极端子102为单体电池100的负极;或者,第一电极端子101为单体电池100的负极,第二电极端子102为单体电池100的正极。单体电池100的电极端子通过连接件进串并联。
电池包还包括相对设置在电池阵列3两侧并用于夹持电池阵列3的两侧板部件,侧板部件夹持电池阵列3,具有限制多个单体电池100膨胀变形的功能,从而确保防爆阀103和/电流中断装置(CID)的启动。具体的,在一些实施例中,如图4所示,侧板部件可以为第三边梁203和第四边梁204;在另一些实施例中,如图12所示,侧板部件可以为第一侧板209和第二侧板210。
在一些实施例中,如图3和图20-图24所示,与第一尺寸对应的两平行平面的法向为Q方向,电池包包括车用托盘,车用托盘包括沿Q方向相对设置的第一边梁201和第二边梁202,支撑件4为第一边梁201和第二边梁202,单体电池100的两端分别支撑在第一边梁201和第二边梁上202。
在另一些实施例中,支撑件4为若干底梁,底梁位于电池阵列3下方。底梁用于支撑电池阵列3,底梁的上表面可以为平面以与电池阵列3形成面面支撑。在实际的执行中,底梁具有矩形横截面。底梁可以为多个,多个底梁可以平行间隔开设置,或者交叉设置。电池阵列3可以通过胶粘、螺纹连接件等方式固定于底梁。电池包还包括密封盖,密封盖与底梁形成容纳电池阵列3的容纳腔。密封盖用于防止灰层、水等侵入。
如图25所示,与第一尺寸对应的两平行平面的法向为Q方向,底梁包括第一梁501及位于第一梁501上与第一梁501相交的第二梁502,第一梁501的延伸方向与Q方向的夹角为60-90度,单体电池100支撑在第一梁501上。在如图25所示的实施例中,第一梁501与第二梁502垂直连接,第一梁501与第二梁502的连接方式包括但不限于螺纹连接件连接、焊接等。第一梁501和第二梁502可以均为直线型的梁。
在实际的执行中,第二梁502包括两个,两个第二梁502分别位于第一梁501的两端且分别与第一梁501垂直,单体电池100支撑在第一梁501上。第二梁502相对于第一梁501向上凸出(Z方向),比如第二梁502的下表面可以与第一梁501的上面相连,在排列单体电池100时,最外侧的两个单体电池100可以分别被两个第二梁502朝向彼此的侧面抵顶。单体电池100的中心位于第一梁501上,单体电池100的长度方向与第一梁501的长度方向垂直,将单体电池100的中心与第一梁501对齐,可以实现单梁支撑单体电池100。当然,在其他实施例中,第一梁501也可以为多个,多个第一梁501沿第二方向平行间隔开。
在其他实施方式中,与第一尺寸对应的两平行平面的法向为Q方向,底梁也可以为若干平行且间隔设置的矩形梁;矩形梁的延伸方向与Q方向的夹角为60-90度,单体电池100支撑在矩形梁上。矩形梁可以沿Q方向均匀分布,矩形梁的延伸方向与Y方向垂直,单体电池100位于均匀分布的矩形梁上。
当然,底梁的形状包括但不限于直线型、矩形,还可以为三角形、梯形或其他异形。 在本申请提供的另一种实施方式中,如图16,支撑件4为汽车底盘,电池阵列3位于汽车底盘上,电池包200可以直接形成在电动车上,也就是说,电池包200为形成在电动车上任意适当位置的用于安装单体电池100的装置。例如,电池包200可以形成在电动车的底盘上。
一些实施例中,汽车底盘上设有向下凹陷的腔体300,以便于单体电池100的装配。
其中,在本申请提供的一种具体实施方式中,该腔体300可以包括相对设置的第一侧壁301和第二侧壁302,第一侧壁301可以由电动车的底盘向下延伸得到第一侧壁301的延伸部,第一侧壁302可以由电动车的底盘向下延伸得到第二侧壁302的延伸部,这样,作为一种实施方式,单体电池100的第一端可以支撑在第一侧壁301的延伸部上,单体电池100的第二端可以支撑在第二侧壁302的延伸部上。即,本申请还提供一种能够按上述技术方案排布单体电池100的电动车,该电动车上形成和单独的车用托盘相同特征的腔体300,从而构成本申请提供的电池包200。
在一些实施例中,如图2所示,与第一尺寸对应的两平行平面的法向为Q方向,电池包200形成电池放置区,电池阵列3位于电池放置区,电池包200含有一个电池阵列3,单体电池100沿Q方向从电池放置区的一侧延伸到电池放置区的另一侧。电池包在Q方向上仅容纳一个单体电池。
在一些实施例中,单体电池具有第二尺寸,第二尺寸为虚拟夹持单体电池的两平行平面的间距的最小值,与第二尺寸对应的两平行平面的法向为P方向,电池包200内形成电池放置区,电池阵列3位于电池放置区,电池放置区设有沿P方向的N个电池阵列3,沿Q方向的M个电池阵列3,电池阵列3与电池阵列3间通过单体电池的电极端子间的连接件实现电连接,N大于等于1,M大于等于1。第N-1个电池阵列3的最后一个单体电池与第N电池阵列3的第一个单体电池的电极端子间通过连接件连接,N大于等于1。换言之,电池包中沿单体电池100的排列方向,可以设有多个电池阵列3,即电池包200内设有多列电池阵列3。
具体,如图21所示,第一隔板700将所示电池阵列3沿电池包200的P方向分割成2个电池阵列3。前一个电池阵列3的最后一个单体电池100与后一个电池阵列3的首个单体单池件通过连接件连接。
根据本申请提供的电池包200,电池包内形成电池放置区,电池阵列3位于电池放置区,电池放置区设有沿Q方向的M个电池阵列3,电池阵列3与电池阵列3间通过单体电池的电极端子间的连接件实现电连接,M大于等于1。第M-1个电池阵列3的最后一个单体电池与第M个电池阵列3的第一个单体电池的电极端子间通过连接件连接,M大于等于1。换言之,在单体电池100的延伸方向,可以容纳多个单体电池100,即,电池包200内设有多 排电池阵列3。
具体的,如图20所示,第二隔板800将电池阵列3沿电池包2000的Q方向分割成2个电池阵列3。前一个电池阵列3的最后一个单体电池100与后一个电池阵列3的首个单体单池件通过连接件连接。
根据本申请提供的电池包200,电池包内形成电池放置区,电池阵列3位于电池放置区,电池放置区设有沿P方向的N个电池阵列3,沿Q方向的M个电池阵列3,电池阵列3与电池阵列3间通过单体电池的电极端子间的连接件实现电连接,N大于等于1,M大于等于1。换言之,在电池包P方向,电池放置区被分割成多个子电池放置区,且在单体电池100的延伸方向Q方向,可以容纳多个单体电池100,即电池包200内设有多排多列电池阵列3。
需要说明的是,在上述实施方式中,当电池包内设有沿所述Q方向分布的多个电池阵列,或设有沿单体电池的最小外接矩形体的长度方向分布的多个电池阵列,或设有沿所述Y方向分布的多个电池阵列时,所述电池内形成多个电池放置区,且所述多个电池阵列一一对应位于所述电池放置区。
具体的,如图22所示,电池包200内设有第一隔板700和第二隔板800,第一隔板700和第二隔板800将多个单体电池分割成两排两列电池阵列3。任意两个电池阵列3中通过电极端子间的连接件连接。
在上述描述中,第一个隔板700和第二隔板800可以为加强筋,也可以为隔热棉等其他结构件,本申请不作限定。
本申请对电池阵列3中单体电池100的数量不作特殊限制,可以根据不同的车型,以及需要不同的动力来布置不同数量的单体电池100,在本申请一些具体的示例中,电池阵列3中单体电池的数量为60-200,在本申请另一些具体的示例中,电池阵列3中单体电池的数量为80-150。
需要说明的是,本申请的电池阵列中单体电池100的个数不受限制,例如可以为2个。本申请的电池包中可以含有上述一个电池阵列,也可以含有多个电池阵列,各电池阵列可以相同也可以不同,电池包内除上述电池阵列外还可以含有其他类型的单体电池,例如根据电池包内部空间设置的尺寸较小的电池,其具体放置与本发明的电池阵列间不受限制。
如图2至图32所示,根据本申请的另一个方面,提供一种电池包200,包括电池阵列3和支撑件4。
电池阵列3包括若干单体电池100,单体电池100具有尺寸A,尺寸A为单体电池100的最小外接矩形体的长。至少一个单体电池100满足:600mm≤尺寸A≤2500mm,单体电池100支撑于支撑件4。
所述最小外接矩形体仅为方便理解所述尺寸A而引入,在本申请的方案中并不实际存 在。
具体而言,所述最小外接矩形体可理解为:对于所述单体电池100,假设存在一个长方体型的外壳,这个长方体型外壳均的6个侧面的内壁同时与所述单体电池的外部轮廓抵接,则该长方体型的外壳即为所述最小外接矩形体。尺寸A即为最小外接矩形体的长。当然,对于长方体来说,长度>高度>宽度。
单体电池100的形状可以为多种,可以为规则的几何形状,也可以为不规则的几何形状,例如可以为方形、圆形、多边形、三角形,也可以是任意的形状,如异形电池。可以理解的是,本申请对单体电池的形状不作限定。
在实际的执行中,单体电池100的外表面设有设有支撑区,支撑区可以设在单体电池100沿尺寸A方向的两端,这样可以将单体电池100沿尺寸A的方向支撑于支撑件4。
而本申请的发明人发现,可以将单体电池100的尺寸A设计成600mm-2500mm,由于单体电池100足够的长,单体电池100可以直接支撑在支撑件4上,,从而减少电池包200中横梁500和/或纵梁600的使用,甚至电池包200中可以不使用横梁500和/或纵梁600,从而减少了横梁500和/或纵梁600在电池包200中占据的空间,提高了电池包200的空间利用率,尽可能地使更多的单体电池100能够布置在电池包200中,进而提高整个电池包的容量、电压以及续航能力。比如在电动车中,此设计可以将空间利用率由原先的40%左右,提高到60%以上甚至更高,比如80%。这里,支撑件4与支撑区对接可以为支撑件4与所述支撑区直接接触,以支撑所述单体电池,也可以为支撑件4通过其他部件与所述支撑区间接接触或连接,可根据使用情境对应设置,本申请不做限定。
上述单体电池100为软包电池,当发生安全隐患的情况下,软包电池会鼓气裂开,而不会发生爆炸,从而提高单体电池100的安全性能。另一方面,软包电池的极芯占比大,可以提高体积利用率,软包电池加工成本低。比如在电动车中,此设计可以将空间利用率由原先的40%左右,提高到60%以上甚至更高,比如80%。
在一些实施例中,如图29-图32所示,单体电池100包括外壳、位于外壳内的极芯、用于加强外壳的加强件,支撑件4与加强件对接以支撑单体电池100。其中支撑区可以设于加强件的外表面,软包单体105包括外壳、位于外壳内的极芯。这样可以防止软包单体105铝塑膜由于软包单体105的错动被磨破,且单体电池100自身的刚度较大,可以增强电池包200的刚度。
加强件包括加强壳体104,加强壳体104包裹在至少一个单体电池100的外壳上,支撑件4与加强壳体104对接以支撑单体电池100。加强壳体104可以完全包裹软包单体105,或者包裹软包单体105的与支撑件4对应的区域,加强壳体104为硬质壳体,加强壳体104可以为钢壳,也可以为复合材料。当加强壳体104由金属材料制成时,这样单体电池100 的金属外壳的导热性能更好,从而能够提高单体电池100的散热效率,优化散热效果。
加强壳体104可以局部开孔,用于减重。
在图29和图30所示的实施例中,每个加强壳体104包裹包括1个软包单体105;在图31和图32所示的实施例中,每个加强壳体104包裹包括多个软包单体105。
在一些实施例中,单体电池100具有引出内部电流的电极端子,加强件包括汇流件,汇流件被构造为电连接多个单体电池100的电极端子,支撑件4与汇流件对接以支撑单体电池100。这样,在将多个单体电池100布置在支撑件4上时,还能同时实现多个单体电池100的电连接。
并且,由于电池包200中无需再布置横梁和/或纵梁,一方面,使得电池包200的制作工艺得到了简化,单体电池100的组装复杂度降低,生产成本降低,另一方面,使得电池包200的重量减轻,实现了电池包的轻量化。特别地,当电池包安装在电动车上时,还可以提升电动车的续航能力,实现电动车的轻量化。
在一些实施例中,600mm≤尺寸A≤1500mm,如:600mm≤尺寸A≤1000mm。该长度的单体电池100长度足够长以能够支撑在支撑件4上,且该长度的单体电池100的长度又不过于长,在用于电池包200时,单体电池100自身的刚度也足够大。
本申请中,对电池包的具体形式不作特殊限定,只需限定电池包包括支撑件4,电池阵列3位于支撑件4上,单体电池100支撑在支撑件4上,本申请对支撑件4的具体结构不作限定,只要单体电池100能支撑在支撑件4上即可,关于支撑件4的具体结构见下文描述。单体电池100支撑在支撑件4上,单体电池100可以直接支撑件4支撑,即,分别放置在支撑件4上,也可以固定在支撑件4上,具体的固定方式在下文中详细描述,对于特定的支撑和固定方式,对此本申请不作限制。
上述支撑件4用于支撑电池阵列3,支撑件4通常为刚性结构,支撑件4可以为独立加工的托盘或者在车辆的底盘上成型出的刚性支撑结构,以及便于安装于整车或其他装置上。
在一些实施例中,若干单体电池沿K方向排列,K方向为电池阵列3中至少一个单体电池的最小外接矩形体的宽度方向。
单体电池100具有尺寸B,单体电池具有尺寸B,尺寸B为所述尺寸B为所述单体电池的最小外接矩形体的宽,与尺寸B对应的两平行平面的法向为K方向,若干单体电池沿至少一个单体电池的K方向排列。
至少一个单体电池满足:10≤尺寸A/尺寸B≤208,在一些实施例中,至少一个单体电池满足:23≤尺寸A/尺寸B≤208。在一些实施例中,50≤尺寸A/尺寸B≤70。发明人通过大量试验发现,满足上述尺寸要求的单体电池100,可以在刚度满足支撑要求的基础上使得单体电池100在尺寸B所在的方向的厚度较薄,从而使单体电池100自身具有较高的散 热能力。
在一些实施例中,若干单体电池100沿K方向排列,K方向为电池阵列3中至少一个单体电池100的最小外接矩形体的高度方向。单体电池100具有尺寸C,尺寸C为单体电池100的最小外接矩形体的高。
至少一个单体电池100满足:10≤尺寸A/尺寸C≤208,如:23≤尺寸A/尺寸C≤208,如:50≤尺寸A/尺寸C≤70。发明人通过大量试验发现,满足上述尺寸要求的单体电池100,可以在刚度满足支撑要求的基础上使得单体电池100在尺寸C所在的方向的厚度较薄,从而使单体电池100自身具有较高的散热能力。
电池包200还包括相对设置在电池阵列3两侧并用于夹持电池阵列3的两侧板部件,侧板部件夹持电池阵列3,具有限制多个单体电池100膨胀变形的功能,从而确保防爆阀103和/电流中断装置(CID)的启动。具体的,在一些实施例中,如图4所示,侧板部件可以为第三边梁203和第四边梁204;在另一些实施例中,如图12所示,侧板部件可以为第一侧板209和第二侧板210。
在一些实施例中,如图3和图20-图24所示,电池包200包括车用托盘,车用托盘包括沿单体电池200的最小外接矩形体的长度方向相对设置第一边梁201和第二边梁202,支撑件4为第一边梁201和第二边梁202,单体电池100的两端分别支撑在第一边梁201和第二边梁上202。
在另一些实施例中,支撑件4为若干底梁,底梁位于电池阵列3下方。底梁用于支撑电池阵列3,底梁的上表面可以为平面以与电池阵列3形成面面支撑。在实际的执行中,底梁具有矩形横截面。底梁可以为多个,多个底梁可以平行间隔开设置,或者交叉设置。电池阵列3可以通过胶粘、螺纹连接件等方式固定于底梁。电池包还包括密封盖,密封盖与底梁形成容纳电池阵列3的容纳腔。密封盖用于防止灰层、水等侵入。
如图25所示,底梁包括第一梁501及位于第一梁501上与第一梁501相交的第二梁502,第一梁501的延伸方向与单体电池的最小外接矩形体的长度方向的夹角为60-90度,单体电池100支撑在第一梁501上。在如图25所示的实施例中,第一梁501与第二梁502垂直连接,第一梁501与第二梁502的连接方式包括但不限于螺纹连接件连接、焊接等。第一梁501和第二梁502可以均为直线型的梁。
在实际的执行中,第二梁502包括两个,两个第二梁502分别位于第一梁501的两端且分别与第一梁501垂直,单体电池100支撑在第一梁501上。第二梁502相对于第一梁501向上凸出(Z方向),比如第二梁502的下表面可以与第一梁501的上面相连,在排列单体电池100时,最外侧的两个单体电池100可以分别被两个第二梁502朝向彼此的侧面抵顶。单体电池100的中心位于第一梁501上,单体电池100的长度方向与第一梁501的 长度方向垂直,将单体电池100的中心与第一梁501对齐,可以实现单梁支撑单体电池100。当然,在其他实施例中,第一梁501也可以为多个,多个第一梁501沿第二方向平行间隔开。
当然,底梁的形状包括但不限于直线型、矩形,还可以为三角形、梯形或其他异形。在本申请提供的另一种实施方式中,如图16,支撑件4为汽车底盘,电池阵列3位于汽车底盘上,电池包200可以直接形成在电动车上,也就是说,电池包200为形成在电动车上任意适当位置的用于安装单体电池100的装置。例如,电池包200可以形成在电动车的底盘上。
一些实施例中,汽车底盘上设有向下凹陷的腔体300,以便于单体电池100的装配。
其中,在本申请提供的一种具体实施方式中,该腔体300可以包括相对设置的第一侧壁301和第二侧壁302,第一侧壁301可以由电动车的底盘向下延伸得到第一侧壁301的延伸部,第一侧壁302可以由电动车的底盘向下延伸得到第二侧壁302的延伸部,这样,作为一种实施方式,单体电池100的第一端可以支撑在第一侧壁301的延伸部上,单体电池100的第二端可以支撑在第二侧壁302的延伸部上。即,本申请还提供一种能够按上述技术方案排布单体电池100的电动车,该电动车上形成和单独的车用托盘相同特征的腔体300,从而构成本申请提供的电池包200。
在一些实施例中,如图2所示,电池包200形成电池放置区,电池阵列3位于电池放置区,电池包200含有一个电池阵列3,单体电池100沿单体电池100的最小外接矩形体的长度方向从电池放置区的一侧延伸到电池放置区的另一侧。电池包200在单体电池100的最小外接矩形体的长度方向上仅容纳一个单体电池。
在一些实施例中,电池包200内形成电池放置区,电池阵列3位于电池放置区,电池放置区设有沿单体电池的最小外接矩形体的宽度方向的N个电池阵列3,电池阵列3与电池阵列3间通过单体电池的电极端子间的连接件实现电连接,N大于等于1。
电池放置区设有沿单体电池的最小外接矩形体的长度方向的M个电池阵列3,电池阵列3与电池阵列3间通过单体电池的电极端子间的连接件实现电连接,M大于等于1。
具体,如图21所示,第一隔板700将所示电池阵列3沿电池包200的K方向分割成2个电池阵列3。前一个电池阵列3的最后一个单体电池100与后一个电池阵列3的首个单体单池件通过连接件连接。
根据本申请提供的电池包200,电池包内形成电池放置区,电池阵列3位于电池放置区,电池放置区设有沿Q方向的M个电池阵列3,电池阵列3与电池阵列3间通过单体电池的电极端子间的连接件实现电连接,M大于等于1。第M-1个电池阵列3的最后一个单体电池与第M个电池阵列3的第一个单体电池的电极端子间通过连接件连接,M大于等于1。换言 之,在单体电池100的延伸方向,可以容纳多个单体电池100,即,电池包200内设有多排电池阵列3。
具体的,如图20所示,第二隔板800将电池阵列3沿电池包2000的Q方向分割成2个电池阵列3。前一个电池阵列3的最后一个单体电池100与后一个电池阵列3的首个单体单池件通过连接件连接。
根据本申请提供的电池包200,电池包内形成电池放置区,电池阵列3位于电池放置区,电池放置区设有沿K方向的N个电池阵列3,沿Q方向的M个电池阵列3,电池阵列3与电池阵列3间通过单体电池的电极端子间的连接件实现电连接,N大于等于1,M大于等于1。换言之,在电池包K方向,电池放置区被分割成多个子电池放置区,且在单体电池100的延伸方向Q方向,可以容纳多个单体电池100,即电池包200内设有多排多列电池阵列3。
具体的,如图22所示,电池包200内设有第一隔板700和第二隔板800,第一隔板700和第二隔板800将多个单体电池分割成两排两列电池阵列3。任意两个电池阵列3中通过电极端子间的连接件连接。
在上述描述中,第一个隔板700和第二隔板800可以为加强筋,也可以为隔热棉等其他结构件,本申请不作限定。
电池包内形成电池放置区,电池阵列3位于电池放置区,电池放置区设有沿单体电池的最小外接矩形体的高度方向的J个电池阵列3,电池阵列3与电池阵列3间通过单体电池的电极端子间的连接件实现电连接,J大于等于1。
本申请对电池阵列3中单体电池100的数量不作特殊限制,可以根据不同的车型,以及需要不同的动力来布置不同数量的单体电池100,在本申请一些具体的示例中,电池阵列3中单体电池的数量为60-200,在本申请另一些具体的示例中,电池阵列3中单体电池的数量为80-150。
如图2至图32所示,根据本申请的又一个方面,提供一种电池包200,包括电池阵列3和支撑件4。
电池阵列3包括若干单体电池100,至少一个单体电池100满足:包括电池本体及延伸出电池本体用于引出电池本体内部电流的电极端子,电池本体为大体长方体,电池本体的长度为L,600mm≤L≤2500mm。单体电池100支撑于支撑件4。
需要说明的是,所述电池本体为大体长方体可以理解为,所述电池本体可为长方体形、正方体形,或局部存在异形,但大致为长方体形、正方体形;或部分存在缺口、凸起、倒角、弧度、弯曲但整体呈近似长方体形、正方体形。
在相关技术中,由于单体电池100的尺寸较小,电池本体的长度L较短,远远小于电池包Y方向或者X方向的尺寸,单体电池100无法直接安装,因此,电池包200中需要设 置横梁500和/或纵梁600(如图1所示),从而便于单体电池100的装配。当单体电池100通过电池模组400安装到电池包200中后,电池模组通过紧固件与相邻的横梁500和/或纵梁600固定。
由于相关技术中的电池包中设置有横梁500和/或纵梁600,横梁500和/或纵梁600占据了电池包200中大量的用于容纳单体电池的安装空间,导致电池包的体积利用率较低,通常,电池包200的体积利用率约为40%,甚至更低,也就是说,相关技术中的电池包200中仅有40%左右的空间可以用于安装单体电池,导致电池包200中可容纳的单体电池100的数量有限,整个电池包的容量、电压受到限制,电池包的续航能力较差。
而本申请的发明人发现,可以将单体电池100的电池本体的长度L设计成600mm-2500mm,由于单体电池100的电池本体足够的长,在单体电池100的外表面设有设有支撑区,可以直接将单体电池100支撑到支撑区,从而减少电池包200中横梁500和/或纵梁600的使用,甚至电池包200中可以不使用横梁500和/或纵梁600,从而减少了横梁500和/或纵梁600在电池包200中占据的空间,提高了电池包200的空间利用率,尽可能地使更多的单体电池100能够布置在电池包200中,进而提高整个电池包的容量、电压以及续航能力。比如在电动车中,此设计可以将空间利用率由原先的40%左右,提高到60%以上甚至更高,比如80%。这里,支撑件4与支撑区对接可以为支撑件4与所述支撑区直接接触,以支撑所述单体电池,也可以为支撑件4通过其他部件与所述支撑区间接接触或连接,可根据使用情境对应设置,本申请不做限定。
并且,由于电池包200中无需再布置横梁和/或纵梁,一方面,使得电池包200的制作工艺得到了简化,单体电池100的组装复杂度降低,生产成本降低,另一方面,使得电池包200的重量减轻,实现了电池包的轻量化。特别地,当电池包安装在电动车上时,还可以提升电动车的续航能力,实现电动车的轻量化。
上述单体电池100为软包电池,当发生安全隐患的情况下,软包电池会鼓气裂开,而不会发生爆炸,从而提高单体电池100的安全性能。另一方面,软包电池的极芯占比大,可以提高体积利用率,软包电池加工成本低。比如在电动车中,此设计可以将空间利用率由原先的40%左右,提高到60%以上甚至更高,比如80%。
在一些实施例中,如图29-图32所示,单体电池100包括外壳、位于外壳内的极芯、用于加强外壳的加强件,支撑件4与加强件对接以支撑单体电池100。其中支撑区可以设于加强件的外表面,软包单体105包括外壳、位于外壳内的极芯。这样可以防止软包单体105铝塑膜由于软包单体105的错动被磨破,且单体电池100自身的刚度较大,可以增强电池包200的刚度。
加强件包括加强壳体104,加强壳体104包裹在至少一个单体电池100的外壳上,支撑 件4与加强壳体104对接以支撑单体电池100。加强壳体104可以完全包裹软包单体105,或者包裹软包单体105的与支撑件4对应的区域,加强壳体104为硬质壳体,加强壳体104可以为钢壳,也可以为复合材料。当加强壳体104由金属材料制成时,这样单体电池100的金属外壳的导热性能更好,从而能够提高单体电池100的散热效率,优化散热效果。
加强壳体104可以局部开孔,用于减重。
在图29和图30所示的实施例中,每个加强壳体104包裹包括1个软包单体105;在图31和图32所示的实施例中,每个加强壳体104包裹包括多个软包单体105。
在一些实施例中,单体电池100具有引出内部电流的电极端子,加强件包括汇流件,汇流件被构造为电连接多个单体电池100的电极端子,支撑件4与汇流件对接以支撑单体电池100。这样,在将多个单体电池100布置在支撑件4上时,还能同时实现多个单体电池100的电连接。
本申请中,对电池包的具体形式不作特殊限定,只需限定电池包包括支撑件4,电池阵列3位于支撑件4上,单体电池100支撑在支撑件4上,本申请对支撑件4的具体结构不作限定,只要单体电池100能支撑在支撑件4上即可,关于支撑件4的具体结构见下文描述。单体电池100支撑在支撑件4上,单体电池100可以直接支撑件4支撑,即,分别放置在支撑件4上,也可以固定在支撑件4上,具体的固定方式在下文中详细描述,对于特定的支撑和固定方式,对此本申请不作限制。
上述支撑件4用于支撑电池阵列3,支撑件4通常为刚性结构,支撑件4可以为独立加工的托盘或者在车辆的底盘上成型出的刚性支撑结构。支撑件4用于使电池包保持完整的外形,以及便于安装于整车或其他装置上。
由于本申请中,单体电池100的电池本体的长度L的尺寸较长,电池本体本身可以起支撑作用,减少了电池包中横梁和纵梁的加强作用,电池包的空间利用率变高,可以布置更多的单体电池。
单体电池100的电池本本体具有相互垂直的X方向、Y方向、Z方向三个方向。X方向、Y方向、Z方向两两垂直,X方向为单体电池100的排布方向,Y方向为单体电池100的长度方向,Z方向为单体电池100的高度方向。在实际的执行中,比如在图20-图23所示的实施例中,当将电池包200安装于整车时,电池包200的长度方向可以沿与车辆1的纵向平行,电池包200的宽度方向可以与车辆1的横向平行,Y方向可以与车辆1的横向平行,X方向可以与车辆1的纵向平行,Z方向可以与车辆1的竖向平行;比如在图24所示的实施例中,当将电池包200安装于整车时,电池包200的长度方向可以沿与车辆1的纵向平行,电池包200的宽度方向可以与车辆1的横向平行,Y方向可以与车辆1的纵向平行,X方向可以与车辆1的横向平行,Z方向可以与车辆1的竖向平行。当然,当将电池包200 安装于整车时,X方向、Y方向、Z方向与车辆的实际方向还可以有其他对应关系,其实际对应关系取决于电池包200的安装方向。
如无特殊的说明,本申请中的车辆行进的方向为车辆的纵向;与车辆行进方向垂直且共面的方向为车辆的横向,通常为水平方向;上下方向为车辆的竖向,通常为竖直方向。
在一些实施例中,单体电池100可以在X方向依次排列下去,数量可以不作限制,在上述排列方式下,由于电池包内排列的单体电池的数量增多,整个电池包的散热性能会相对较差,为了提高整个电池包的安全性能,通过限定L/H或L/D,可以使得其沿X方向的厚度和沿Z方向的高度的较小,单个单体电池的表面积大于相关技术中单体电池的表面积,从而可以增大单体电池的散热面积,提高单体电池的散热速率,进而提高了整个电池包的安全性,使电池包更加安全可靠。
多个单体电池100在电池阵列3中具有多种排布方式,电池本体的长度为L,厚度为D,高度为H,厚度方向为X方向,长度方向为Y方向,高度方向为Z方向。
在本申请提供的一种实施方式中,多个单体电池100可以沿X方向间隔排布,或者紧密排布,如图所示2所示,在本实施方式中沿X方向紧密排布以充分利用空间。
在一些实施例中,若干单体电池100沿电池阵列3中至少一个单体电池的X方向排列,X方向为电池阵列3中任意一个单体电池100的厚度方向。电池本体的厚度为D,至少一个单体电池100满足:10≤L/D≤208,如:23≤L/D≤208,如:50≤L/D≤70。发明人通过大量试验发现,满足上述尺寸要求的单体电池100,可以在刚度满足支撑要求的基础上使得单体电池100在X方向的厚度较薄,从而使单体电池100自身具有较高的散热能力。
在另一些实施例中,若干单体电池100沿电池阵列3中至少一个单体电池的Z方向排列。Z方向为电池阵列3中任意一个单体电池100的高度方向。电池本体的高度为H,至少一个单体电池100满足:10≤L/H≤208,如:23≤L/H≤208,如:50≤L/H≤70。发明人通过大量试验发现,满足上述尺寸要求的单体电池100,可以在刚度满足支撑要求的基础上使得电池本体在Z方向的厚度较薄,从而使电池本体自身具有较高的散热能力。
需要说明的是,若干单体电池100在排布时,可以形成端部平齐的阵列,也可以与所述X向或Z向形成夹角,即倾斜排布。多个单体电池100的放置方向可以一致,也可以部分不同或互不相同,只需满足沿预定方向分布即可。
在一些实施例中,600mm≤L≤1500mm,优先600mm≤L≤1000mm。该长度的单体电池100长度较长,在用于电池包200时,沿第一方向只需布置单个的单体电池100即可。
在一些实施例中,单体电池100的电池本体的体积为V,至少一个单体电池100满足:0.0005mm -2≤L/V≤0.002mm -2。发明人通过大量试验发现,当单体电池100满足上述限定时,电池本体的横截面小,电池本体的散热效果好,这样电池本体的内部和四周的温差小。
在本申请提供的另一种实施方式中,单体电池100的电池本体的表面积S与体积V的比值满足0.1mm -1≤S/V≤0.35mm -1。在该比值下,可以通过上述长度较长,厚度较薄的单体电池100实现,也可以通过尺寸的调整实现,通过控制单体电池100的表面积S与体积V的比值,可以保证电池本体的长度沿Y方向延伸的同时,具备足够的散热面积,以保证单体电池100的散热效果。
在一些实施例中,电池本体的体积为V,电池本体的高度H与对应的电池本体的体积V的关系为0.0001mm ﹣2≤H/V≤0.00015mm ﹣2
需要指出的是,单体电池的表面积是指单体电池的所有面的面积之和。
如图3-图4、图20-图24所示,电池本体的长度为L,厚度为D,高度为H,厚度方向为X方向,长度方向为Y方向,高度方向为Z方向;电池本体的高度H≥电池本体的厚度D,至少一个单体电池满足:23≤L/D≤208,且4≤L/H≤21,若干单体电池沿电池阵列3中至少一个单体电池的X方向排列,在一些实施例方案中,至少一个单体电池满足:9≤L/H≤13。发明人通过大量试验发现,满足上述尺寸要求的电池本体,可以在刚度满足支撑要求的基础上使得电池本体在X方向的厚度较薄,从而使电池本体自身具有较高的散热能力,且单体电池100在X方向上可以方便地实现密堆。
在本申请的一些示例性实施方式中,至少一个单体电池100沿Y方向具有第一端和第二端,第一端和第二端中的至少一个具有引出单体电池内部电流的电极端子,单体电池100之间的电极端子通过连接件电连接。
这里,单体电池100的“第一端”和“第二端”是用于描述单体电池100的方位的,并不用于限定和描述单体电池100的具体结构,例如,第一端和第二端并不用于限定和描述单体电池100的正极和负极,单体电池100在一种实施方式中,如图2至图4所示,单体电池100的第一电极端子101由单体电池100朝向Y方向的第一端引出,单体电池100的第二电极端子102由单体电池100朝向Y方向的第二端引出。换言之,单体电池100的长度方向可以为单体电池100内部的电流方向,即,单体电池100内部的电流方向为Y方向。这样,由于电流方向与单体电池100的长度方向相同,单体电池100的有效散热面积更大、散热效率更好。这里,第一电极端子101可以为单体电池100的正极,第二电极端子102为单体电池100的负极;或者,第一电极端子101为单体电池100的负极,第二电极端子102为单体电池100的正极。单体电池100的电极端子通过连接件进串并联。
在一个实施方式中,至少部分单体电池100的厚度方向沿X方向延伸,即多个单体电池沿单体电池的厚度方向排列。
在一些实施例中,电池阵列3包括若干沿X方向依次排列的单体电池100,单体电池100的长度沿Y方向延伸,高度沿Z方向延伸。也就是说多个单体电池100沿厚度方向排 列,沿长度方向延伸,则可以充分利用电池包的空间,从而布置更多的单体电池。
单体电池100的长度具有第一端和第二端,第一端和/或第二端具有引出单体电池内部电流的电极端子,单体电池的电极端子间通过连接件连接。
这里,单体电池100的“第一端”和“第二端”是用于描述单体电池100的方位的,并不用于限定和描述单体电池100的具体结构,例如,第一端和第二端并不用于限定和描述单体电池100的正极和负极,单体电池100在一种实施方式中,如图2至图4所示,单体电池100的第一电极端子101由单体电池100长度方向的第一端引出,单体电池100的第二电极端子102由单体电池100长度方向的第二端引出。换言之,单体电池100的长度方向可以为单体电池100内部的电流方向,即,单体电池100内部的电流方向为Y方向。这样,由于电流方向与单体电池100的长度方向相同,单体电池100的有效散热面积更大、散热效率更好。这里,第一电极端子101可以为单体电池100的正极,第二电极端子102为单体电池100的负极;或者,第一电极端子101为单体电池100的负极,第二电极端子102为单体电池100的正极。单体电池100的电极端子通过连接件进串并联。
在相关技术中,如何设计矩形单体电池100的尺寸,使其不仅能够具有适当的电池容量和良好的散热效果,一直是电池技术领域需要解决的问题之一。
在本申请提供的一种实施方式中,至少一个单体电池100的电池本体的长度L和厚度D的比值满足23≤L/D≤208。在该比值下,可以得到长度适中,厚度较薄的单体电池100,可以保证在单体电池100的长度沿第一方向延伸的情况下,还能保持适当的阻值、和较高的散热面积和散热效率,各种车型的适应性好。
在本申请提供的一种实施方式中,至少一个单体电池100的电池本体的长度L和厚度D的比值满足50≤L/D≤70。在该比值下,可以得到长度适中的单体电池100,且单体电池100自身的刚度也足够大,便于加工和运输装配,在将该单体电池100安装于电池包外壳时,利用该单体电池100的刚度大的特点,可以将该单体电池100自身作为加强梁使用。另一方面,可以保证在单体电池100的长度沿第一方向延伸的情况下,还能保持适当的阻值、和较高的散热面积和散热效率,各种车型的适应性好。
根据本申请提供的电池包200,在X方向上,电池包200还包括相对设置在电池阵列3两侧并用于夹持电池阵列3的两侧板部件,侧板部件夹持电池阵列3,具有限制多个单体电池100膨胀变形的功能,从而确保防爆阀103和/电流中断装置(CID)的启动。具体的,在一些实施例中,如图4所示,侧板部件可以为第三边梁203和第四边梁204;在另一些实施例中,如图12所示,侧板部件可以为第一侧板209和第二侧板210。
根据本申请提供的电池包,还包括密封盖220,密封盖220与支撑件4形成容纳电池阵列3的容纳腔。密封盖220与支撑件4限定出容纳单体电池的容纳腔,密封盖220起到防 水防潮的作用。
电池包200包括车用托盘,该车用托盘为单独生产的用于容纳并安装单体电池100的车用托盘。如图16、图18和图19所示,当单体电池100安装到车用托盘中后,该车用托盘可以通过紧固件安装到车身上,例如,悬挂在电动车的底盘上。
车用托盘包括沿Y方向相对设置的第一边梁201和第二边梁202,支撑件4为第一边梁201和第二边梁202,单体电池100的第一端支撑在第一边梁上201,单体电池100的第二端支撑在第二边梁202上。在本申请的技术构思下,第一边梁201和第二边梁202的具体结构不作限制,第一边梁201和第二边梁202是相对设置的,第一边梁201和第二边梁202可以相互平行,也可以呈角度设置,可以是直线结构也可以是曲线结构。第一边梁201可以是矩形的,也可以是圆柱形的,或者是多边形的,本申请不作特殊限定。
第一边梁201和第二边梁202沿Y向相对设置,多个单体电池100设置在第一边梁201和第二边梁202之间,单体电池100的两端分别支撑在第一边梁201和第二边梁202上。一个实施例中,每个单体电池100的第一端支撑在第一边梁201,每个单体电池100的第二端支撑在第二边梁202。
换言之,每个单体电池100在第一边梁201和第二边梁202之间延伸,多个单体电池100沿第一边梁201和第二边梁202的长度方向排布,即,沿X方向排布。
单体电池100的第一端和第二端是分别支撑在第一边梁201和第二边梁202上的,单体电池100可以直接由第一边梁201和第二边梁202支撑,即,分别放置在第一边梁201和第二边梁202上,也可以固定在第一边梁201和第二边梁202上,具体的固定方式在下文中详细描述,对于特定的支撑和固定方式,对此本申请不作限制。
在本申请的一些实施例中,每个单体电池100的第一端可以直接或间接支撑在第一边梁201上,每个单体电池100的第二端可以直接或间接支撑在第二边梁202上。直接的含义是指单体电池100的第一端和第一边梁201直接接触配合支撑,和单体电池100的第二端和第二边梁202直接接触配合;间接的含义是指,比如一些实施例中,单体电池100的第一端通过第一端板207与第一边梁201配合支撑,单体电池100的第二端通过第二端板208与第二边梁202配合支撑。
需要注意的是,单体电池100可以与第一边梁201和/或第二边梁202垂直,或与第一边梁201和/或第二边梁202呈锐角或钝角设置,例如,当第一边梁201和第二边梁202相互平行时,第一边梁201、第二边梁202以及单体电池100可以构成矩形、正方形或平行四边形、扇形等结构;当第一边梁201和第二边梁202呈角度时,第一边梁201、第二边梁202以及单体电池100可以构成梯形、三角形等结构。本申请对第一边梁201和第二边梁202之间的角度关系、单体电池100与第一边梁201和第二边梁202之间的角度关系不 作限制。
第一边梁201和第二边梁202位于托盘沿Y方向相对的两侧,指的是,如图2所示,第一边梁201和第二边梁202位于托盘沿Y方向的最边侧,第一边梁201和第二边梁202为托盘最外部侧边。
此外,上文提及的单体电池100的“第一端”和“第二端”是用于描述单体电池100的方位的,并不用于限定和描述单体电池100的具体结构,例如,第一端和第二端并不用于限定和描述单体电池100的正极和负极,也就是说,在本申请中,单体电池100支撑在第一边梁201的一端为第一端,单体电池100支撑在第二边梁202的一端为第二端。
在车用托盘中,由于车体宽度较大,比如在1.2m-2m;长度较长,比如在2m-5m;针对不同的车型,对应的车体宽度和车体长度是不同的。较大的车体宽度和长度,使得设置在车体底部的托盘整体尺寸要求也较大;较大的托盘尺寸,导致在相关技术中,必须在托盘上除了设置位于边侧的边梁外,还需要在托盘内部设置横梁,才能够为内部设置单体电池提供足够的支撑力和结构强度。而在车用托盘中加入横梁后,车用托盘的部分承重及内部空间被横梁占用,使得在托盘内部,能够有效利用的空间较低;同时,由于横梁的存在,为配合横梁安装,必须在托盘内部宽度和长度方向上设置多个电池模组,安装复杂,需要的安装结构件也较多。
然而,若要去掉横梁,在相关技术中的模组布局及单体电池布局方式而言,是无法给电池模组提供足够的结构强度的,托盘无法提供足够的承重力。
而在本申请中,单体电池的长度L为600-1500mm,将单体电池100的两端支撑在第一边梁201和第二边梁202上,将单体电池的重量分解到两侧的托盘边梁上;在去除横梁的基础上,有效的提高了托盘的承重能力;同时,单体电池100本身也能够作为动
第一边梁201和第二边梁202分别包括与单体电池100的两端面匹配的内壁面,在第一边梁201的内壁面和单体电池100的第一端之间夹设有绝缘板,即绝缘板位于单体电池100与第一边梁201的内壁面之间;在第二边梁202的内壁面和单体电池100的第二端之间夹设有绝缘板,即绝缘板位于单体电池100与第二边梁202的内壁面之间。具体的,绝缘板的具体结构不作限定,只要能起到固定电池阵列3以及加强和防止膨胀的作用即可,在一些实施方式中,绝缘板可以为下文提到的第一端板207和第二端板208。
托盘包括底板,第一边梁201和第二边梁202沿Y方向相对设置在底板的两端,单体电池100与底板之间间隔设置,由此可以减轻底板对单体电池100的承重,单体电池100的大部分重量可以由第一边梁和第二边梁承担,底板的承重要求降低,从而降低底板的制造工艺,降低生产成本。
即多个单体电池100排成的电池阵列3的底部与托盘的底板之间设置有保温层217以 隔绝单体电池100与外界的热量传递,实现单体电池100保温的功能,并避免电池包200的外部环境与电池包内200内的单体电池100之间发生热干扰的现象。保温层217可以为具有隔热、保温功能的材料制成,例如,由保温棉制成。
此外,为使第一边梁201和第二边梁202能过对单体电池100提供支撑力,在本申请提供的一种实施方式中,如图5和图6所示,第一边梁201设置有第一支撑板213,第二边梁202设置有第二支撑板214;第一支撑板213朝向密封盖220的面设有第一支撑面,第二支撑板214朝向密封盖220的面设有第二支撑面,每个单体电池100的第一端支撑在第一支撑板213的第一支撑面上,每个单体电池100的第二端支撑在第二支撑板214的第二支撑面上,第一支撑板213背离密封盖220的面设有第一安装面,第二支撑板214背离密封盖220的面设有第二安装面。托盘的底板安装在第一安装面和第二安装面上,第一支撑板213可以从第一边梁201的底部向内凸出,第二支撑板214可以从第二边梁202的底部向内凸出。
与相关技术中通过电池包中的底板来支撑单体电池100的技术方案相比,在本申请中,通过设置在第一边梁201和第二边梁202上的第一支撑板213和第二支撑板214来支撑单体电池100,可以简化本申请提供的电池包200的结构,并减轻电池包200的重量。第一支撑板213和第二支撑板214上可以设置绝缘板,绝缘板位于单体电池100与第一支撑板213和第二支撑板214之间。
第一边梁201、第二边梁202和底板的连接方式不作特殊限定,可一体成型,也可以焊接在一起。
第一边梁201朝向单体电池100的内壁面具有第一连接面215,第一连接面215到密封盖220的距离小于第一支撑面到密封盖220的距离;第二边梁202的朝向单体电池100的内壁面均具有第二连接面,第二连接面216到密封盖220的距离小于第二支撑面到密封盖220的距离;单体电池100的两端分别与第一连接面、第二连接面接触。
一些实施例中,第一边梁201上还设置有第一连接面215,第二边梁202还设置有第二连接面216,每个单体电池100的第一端固定在第一连接面215上,每个单体电池100的第二端固定在第二连接面216。该第一连接面215可以是设置在第一边梁201上的第三支撑板,第三支撑板位于第一支撑板213的上方,该第二连接面216可以是设置在第二边梁202上的第四支撑板,第四支撑板位于第二支撑板214的上方。电池的第一端和第二端可以通过紧固件与第一连接面215和第二连接面216固定;或者焊接在第一连接面215和第二连接面216上。
在实际的执行中,第一边梁201朝向单体电池100的内壁面具有至少两级台阶结构,其中两级台阶朝向密封盖220的面分别形成第一连接面215和第一支撑面;第二边梁202 的朝向单体电池100的内壁面具有至少两级台阶结构,其中两级台阶朝向密封盖220的面分别形成第二连接面216和第二支撑面。
根据本申请提供的电池包,至少部分多个单体电池100中,如图12和图14所示,邻近第一边梁201的一个单体电池100朝向第一边梁201的一端设置有第一端板207;至少部分多个单体电池100中,邻近第二边梁202的一个单体电池100朝向第二边梁202的一端设置有第二端板208;至少一个单体电池100的第一端通过第一端板207与第一连接面215相连,至少一个单体电池100的第二段通过第二端板208与第二连接面216相连,也就是说,只好一个单体电池通过第一端板支撑在第一边梁201,至少一个单体电池100通过第二端板208支撑在第二边梁202;第一端板207、第二端板208和至少部分多个单体电池100组成电池模组。第一端板207可以为一个,第二端板208可以为一个,第一端板207、第二端板208与多个单体电池100组成一个电池模组,该电池模组通过第一端板207和第二端板208支撑在第一边梁201和第二边梁202之间。第一端板207可以为多个,第二端板208可以为多个,多个第一端板207、第二端板208、单体电池100组成多个电池模组,每个电池模组通过对应的第一端板207和第二端板208支撑在第一边梁201和第二边梁202之间,每个电池模组在第一边梁201和第二边梁202之间延伸,且多个沿第一边梁201和第二边梁202的长度方向排列。在本申请中,对第一端板207、第二端板208的数量,即,电池模组的数量不作限制。
在一些实施例中,第一端板207包括:与单体电池100的端面相对设置的端板体231和与端板体231相连且向第一边梁201凸出的第一连接板232,第二端板208包括:与单体电池100的端面相对设置的端板体231和与端板体231相连且向第二边梁202凸出的第一连接板232,第一端板207的第一连接板232与第一连接面215相连,第二端板208的第一连接板232与第二连接面216相连。具体的连接形式不作限定。
在一种实施方式中,如图2和图10所示,单体电池100朝向第一边梁201的第一端设置有防爆阀103,第一边梁201内部设置有排气通道222,第一边梁201上与防爆阀103对应的位置设置有排气孔221,排气孔221与排气通道222连通,电池包200上设置有与排气通道222连通的排气口;单体电池100朝向第二边梁202的第二端设置有防爆阀103,第二边梁202内部设置有排气通道222,第二边梁202上与防爆阀103对应的位置设置有排气孔221,排气孔221与排气通道222连通,电池包200上设置有与排气通道222连通的排气口。在其他实施方式中,如图12和图14所示,排气孔221也可以形成在第一端板207和第一边梁201上,和/或第二端板208和第二边梁202上。
在相关技术中,在单体电池的使用过程中,如果其内部的气压增大到一定程度,则防爆阀开启,单体电池内部的火焰、烟雾或气体会通过防爆阀排出,该火焰、烟雾或气体会 聚集在电池包的内部,若无法及时排出,则会对单体电池造成二次伤害。然而在本申请中,由于第一边梁201和/或第二边梁202上设置有与单体电池100的防爆阀103对应的进气口221,且第一边梁201和/或第二边梁202内部设置有排气通道222,当单体电池100内部气压增大时,其防爆阀103开启,其内部的火焰、烟雾或气体等将直接通过进气口221进入第一边梁201和/或第二边梁202内的排气通道222,并通过排气孔排出第一边梁201和或第二边梁202,例如,通过排气孔排到大气中,这样,该火焰、烟雾或气体便不会聚集在电池包200内部,从而避免火焰、烟雾或气体对单体电池100造成二次伤害。
在一些实施例中,第一连接面215和第二连接面216与密封盖220之间限定出用于容纳电池管理元器件和配电原器件的管理容纳腔。由此可以节省电池管理元器件和配电原器件的占用空间,从而可以在电池包内布置更多的单体电池,提高空间利用率,提高体积能量密度和续航能力。
托盘底板,单体电池100与托盘底板间隔开设置,由此托盘底板不受力,可以简化托盘底板的制造工艺,节省制造成本。单体电池100与托盘底板之间设置有保温层,以隔绝单体电池100与外界的热量传递,实现单体电池100保温的功能,并避免电池包200外的外部环境与电池包200内的单体电池100之间发生热干扰的现象。保温层可以为具有隔热、保温功能的材料制成,例如,由保温棉制成。
此外,在本申请提供的一种实施方式中,如图3至图8所示,电池包200还可以包括沿X方向相对设置有第三边梁203和第四边梁204,多个单体电池100沿X方向排布在第三边梁203和第四边梁204之间。在一种实施方式中,第一边梁201和第二边梁202与第三边梁203和第四边梁204垂直并连接,以使电池包200形成为矩形或正方形。在其他实施方式中,第一边梁201和第二边梁202可以相互平行,第三边梁203和第四边梁204可以与第一边梁201和第二边梁202呈角度设置,以使电池包200形成为梯形、平行四边形等。本申请对第一边梁201、第二边梁202、第三边梁203、第四边梁204构成的电池包200的具体形状不作限制。
一些实施例中,如图2所示,第三边梁203和第四边梁204为电池阵列3提供压紧力,第三边梁203向邻近第三边梁203设置的单体电池100施加朝向第四边梁204的作用力,第四边梁204向邻近第四边梁204设置的单体电池100施加朝向第三边梁203的作用力,以使多个单体电池100能够紧密地沿X方向排布在第三边梁203和第四边梁204之间,多个单体电池100之间能够相互贴合。此外,第三边梁203和第四边梁204可以在X方向上对多个单体电池100进行限位,特别是当单体电池100发生少量膨胀时,可以对单体电池100起到缓冲和提供向内压力的作用,防止单体电池100膨胀量和变形量过大。特别是当单体电池100设置有防爆阀103和电流中断装置(CID)装置时,通过第三边梁203和第四 边梁204可以有效地限制单体电池100膨胀,使得当单体电池100在发生故障并膨胀时时,其内部能够具有足够的气压冲破防爆阀103或电流中断装置(CID)装置内的翻转片,从而使单体电池100短路,保证单体电池100的安全,防止单体电池100爆炸。
如图12和图13所示,第三边梁203与邻近第三边梁203的单体电池100之间可以设置有第一弹性装置205,和/或第四边梁204与邻近第四边梁204的单体电池100之间可以设置有第二弹性装置206。第一弹性装置205可以安装在第三边梁203上,第二弹性装置206可以安装在第四边梁204上,通过第一弹性装置205和第二弹性装置206使多个单体电池100紧密地排布,这样,可以使得在第三边梁203和第四边梁204之间排布的单体电池100的数量可以在不改变第三边梁203与第四边梁204之间的间距的情况下,通过改变第一弹性装置205和第二弹性装置206与第三边梁203和第四边梁204之间的安装距离来调整。
一些实施例中,第三边梁203上还设置有第三连接面236,第四边梁204还设置有第四连接面235,每个单体电池100的第一侧固定在第三连接面236上,每个单体电池100的第二侧固定在第四连接面235。
至少部分多个单体电池100中,如图12和图13所示,邻近第三边梁203的一个单体电池100朝向第三边梁203的一端设置有第一侧板209;至少部分多个单体电池100中,邻近第四边梁204的一个单体电池100朝向第四边梁210的一端设置有第二侧板210;
至少一个单体电池100的第一侧通过第一侧板209与第三连接面236相连,至少一个单体电池100的第二侧通过第二侧板210与第四连接面235相连,也就是说,至少一个单体电池通过第一侧板支撑在第四边梁209,至少一个单体电池100通过第二侧板210支撑在第四边梁210;第一侧板209、第二侧板210和至少部分多个单体电池100组成电池模组。第一侧板209可以为一个,第二侧板210可以为一个,第一侧板209、第二侧板210与多个单体电池100组成一个电池模组,该电池模组通过第一侧板209和第二侧板210支撑在第三边梁203和第四边梁204之间。第一侧板209可以为多个,第二侧板210可以为多个,多个第一侧板209、第二侧板210、单体电池100组成多个电池模组,每个电池模组通过对应的第一侧板209和第二侧板210支撑在第三边梁203和第四边梁210之间,每个电池模组排布在第三边梁203和第四边梁210之间。在本申请中,对第一侧板209、第二侧板210的数量,即,电池模组的数量不作限制。
在一些实施例中,第一侧板209包括:与单体电池100的端面相对设置的侧板体234和与侧板体234相连且向第三边梁203凸出的第二连接板233,第二侧板210包括:与单体电池100的端面相对设置的侧板体234和与端板体234相连且向第四边梁204凸出的第二连接板234,第一侧板209对应的第二连接板234与第三连接面236连接,第二侧板210 对应的第二连接板234与第四连接面235相连。具体的连接形式不作限定。
一些实施例中,至少部分单体电池100通过第二面板211支撑在第一边梁201和第二边梁202之间;第二面板211与至少部分单体电池100组成电池模组。换言之,至少部分多个单体电池100下方设置有第二面板211,每个单体电池100通过第二面板211支撑在第一边梁201和第二边梁202;第二面板211与至少部分多个单体电池100组成电池模组,在该实施方式中,多个单体电池100通过第二面板211支撑在第一边梁201和第二边梁202上,简化了电池模组的结构,利于实现电池包的轻量化。
上述第一端板207和第二端板208,或者,第二面板211可以通过多种实施方式支撑在第一边梁201和第二边梁202上,对此本申请不作限制,例如,通过紧固件可拆卸地紧固在第一边梁201和第二边梁202上;或者通过焊接的方式与第一边梁201和第二边梁202固定;或者通过点胶的方式与第一边梁201和第二边梁202连接;或者直接防止在第一边梁201和第二边梁202上,被第一边梁201和第二边梁202支撑。
在一种实施方式中,电池包200包括:第一面板212和第二面板211,至少部分单体电池100的上表面和下表面分别相连有第一面板212和第二面板211;第一端板207和第二端板208,至少部分单体电池100的两个端面分别设有第一端板207和第二端板208;第一侧板209和第二侧板210,最外侧的两个单体电池100的外侧面分别设有第一侧板209和第二侧板210;其中第一端板207、第二端板208、第一侧板209和第二侧板210均与两个第一面板212、第二面板211相连,第一边梁201朝向单体电池100的内壁面具有第一支撑面和第一连接面215;和第二边梁202的朝向单体电池100的内壁面具有第二支撑面和第二连接面216,单体电池100的第一两端支撑于第一支撑面上,单体电池100的第二端支撑于第二支撑面上,第一端板207与第一连接面215相连,第二端板208与第二连接面216相连;第三边梁203朝向单体电池100的内壁面具有第三连接面236,第四边梁朝向单体电池的内壁面具有第四连接面235;第一侧板209与第三连接面236相连,第二侧板210与第四连接面235相连。
通过上述实施方式,第一端板207、第二端板208、第一侧板209、第二侧板210、第一面板212、第二面板211共同限定出用于容纳多个单体电池100的封闭的容纳空间,这样,当单体电池100发生故障,起火爆炸时,第一端板207、第二端板208、第一侧板209、第二侧板210、第一面板212以及第二面板211可以将单体电池100的故障控制在一定范围内,防止单体电池100爆炸影响其周围的部件。该第一侧板209可以为上文提及的第一弹性缓冲装置205,该第二侧板210可以为上文提及的第二弹性缓冲板206,以使第一侧板209和第二侧板210具备限制多个单体电池100膨胀变形的功能,从而确保防爆阀103和/或电流中断装置(CID)的启动。
对于电池模组中包括有第一面板212的实施例而言,如图11所示,第一面板212与单体电池100之间可以设置导热板218,以利于单体电池100散热,并保证多个单体电池100之间的温度差不会过大。导热板218可以由导热性好的材料制成,例如,导热板218可以有导热系数高的铜或铝等材料制成。
在一些实施例中,当电池包作为车辆上使用的提供电能的电池包使用时,可以使单体电池100的长度方向为车辆的宽度方向,即,车辆的左右方向,作为一种可以选的实施方式。
在本申请提供的另一种实施方式中,支撑件4为若干底梁,底梁位于电池阵列3下方。底梁用于支撑电池阵列3,底梁的上表面可以为平面以与电池阵列3形成面面支撑。在实际的执行中,底梁具有矩形横截面。底梁可以为多个,多个底梁可以平行间隔开设置,或者交叉设置。电池阵列3可以通过胶粘、螺纹连接件等方式固定于底梁。电池包还包括密封盖,密封盖与底梁形成容纳电池阵列3的容纳腔。密封盖用于防止灰层、水等侵入。
如图25所示,底梁包括第一梁501及位于第一梁501上与第一梁501相交的第二梁502,第一梁501的延伸方向与Y方向的夹角为60-90度,单体电池100支撑在第一梁501上。在如图25所示的实施例中,第一梁501与第二梁502垂直连接,第一梁501与第二梁502的连接方式包括但不限于螺纹连接件连接、焊接等。第一梁501和第二梁502可以均为直线型的梁。
在实际的执行中,第二梁502包括两个,两个第二梁502分别位于第一梁501的两端且分别与第一梁501垂直,单体电池100支撑在第一梁501上。第二梁502相对于第一梁501向上凸出(Z方向),比如第二梁502的下表面可以与第一梁501的上面相连,在排列单体电池100时,最外侧的两个单体电池100可以分别被两个第二梁502朝向彼此的侧面抵顶。单体电池100的中心位于第一梁501上,单体电池100的长度方向与第一梁501的长度方向垂直,将单体电池100的中心与第一梁501对齐,可以实现单梁支撑单体电池100。当然,在其他实施例中,第一梁501也可以为多个,多个第一梁501沿第二方向平行间隔开。
在其他实施方式中,底梁也可以为若干平行且间隔设置的矩形梁;矩形梁的延伸方向与Y方向的夹角为60-90度,单体电池100支撑在矩形梁上。矩形梁可以沿Y方向均匀分布,矩形梁的延伸方向与Y方向垂直,单体电池100位于均匀分布的矩形梁上。
当然,底梁的形状包括但不限于直线型、矩形,还可以为三角形、梯形或其他异形。
在本申请提供的另一种实施方式中,如图16,支撑件4为汽车底盘,电池阵列3位于汽车底盘上,电池包200可以直接形成在电动车上,也就是说,电池包200为形成在电动车上任意适当位置的用于安装单体电池100的装置。例如,电池包200可以形成在电动车 的底盘上。
一些实施例中,汽车底盘上设有向下凹陷的腔体300,以便于单体电池100的装配。
其中,在本申请提供的一种具体实施方式中,该腔体300可以包括相对设置的第一侧壁301和第二侧壁302,第一侧壁301可以由电动车的底盘向下延伸得到第一侧壁301的延伸部,第一侧壁302可以由电动车的底盘向下延伸得到第二侧壁302的延伸部,这样,作为一种实施方式,单体电池100的第一端可以支撑在第一侧壁301的延伸部上,单体电池100的第二端可以支撑在第二侧壁302的延伸部上。即,本申请还提供一种能够按上述技术方案排布单体电池100的电动车,该电动车上形成和单独的车用托盘相同特征的腔体300,从而构成本申请提供的电池包200。
一些实施例中,在本申请提供的一种示例性实施方式中,第一侧壁301的延伸部和第二侧壁302的延伸部形成腔体300的底部305,在一种实施方式中,第一侧壁301的延伸部与第二侧壁302的延伸部相接,使上述腔体300形成为具有向下凹陷的U形槽的腔体300,单体电池100可以由该腔体300的底部305支撑。在另一种实施方式中,第一侧壁301的延伸部也可以与第二侧壁302的延伸部之间间隔一定距离。
根据本申请提供的电池包200,如图2所示,电池包200形成电池放置区,电池阵列3位于电池放置区,电池包200含有一个电池阵列3。
也就是说,在电池包内无需设置任何加强筋,直接通过连接的单体电池100承担加强筋的作用,极大的简化了电池包200的结构,且减少了加强筋占用的空间以及单体电池100的安装结构占用的空间,从而提高空间利用率,以提高续航能力。
在本申请一些具体示例中,电池包在Y方向仅容纳一个单体电池100,也就是说,电池包200在Y方向上,单体电池100无法以两个或两个以上的数量布置在该方向上,上述仅容纳一个单体电池100,指的是电池包200的Y方向上,仅能够并排设置一个单体电池100。如图2、图4至图6,单体电池100与第一边梁201和第二边梁202垂直,单体电池100的第一端与第二端之间的距离为L1,第一边梁201的内表面与第二边梁202的内表面之间的距离为L2,其中L1与L2的比值满足L1/L2≥50%。换言之,沿Y方向,在第一边梁201与第二边梁202之间仅布置一个单体电池100,通过在Y方向上,如此布置单体电池100和两个边梁之间距离的关系,可以起到通过单体电池100作为横梁或纵梁的目的。其中在本申请提供的示例性实施方式中,通过沿Y方向,第一边梁201与第二边梁202之间仅布置一个单体电池100,以使单体电池100本身可以作为加强电池包200结构强度的横梁或纵梁使用。
在一些实施例中,L1和L2的比值可以满足80%≤L1/L2≤97%,以使单体电池100的第一端和第二端尽可能地靠近第一边梁201和第二边梁202,甚至与第一边梁201和第二边 梁202抵顶,以便于通过单体电池100本身的结构来实现力的分散、传到,保证单体电池100可以用作加强电池包200结构强度的横梁或纵梁使用,保证电池包200具有足够强度抵抗外力变形。
当然,本申请的实施例并不限制于不设置加强筋。因而,电池阵列3可以为多个。
根据本申请提供的电池包200,电池包200内形成电池放置区,电池阵列3位于电池放置区,电池放置区设有沿X方向的N个电池阵列3,沿Y方向的M个电池阵列3,电池阵列3与电池阵列3间通过单体电池的电极端子间的连接件实现电连接,N大于等于1,M大于等于1。第N-1个电池阵列3的最后一个单体电池与第N电池阵列3的第一个单体电池的电极端子间通过连接件连接,N大于等于1。换言之,电池包中沿单体电池100的排列方向,可以设有多个电池阵列3,即电池包200内设有多列电池阵列3。
具体,如图21所示,第一隔板700将所示电池阵列3沿电池包200的X方向分割成2个电池阵列3。前一个电池阵列3的最后一个单体电池100与后一个电池阵列3的首个单体单池件通过连接件连接。
根据本申请提供的电池包200,电池包内形成电池放置区,电池阵列3位于电池放置区,电池放置区设有沿Y方向的M个电池阵列3,电池阵列3与电池阵列3间通过单体电池的电极端子间的连接件实现电连接,M大于等于1。第M-1个电池阵列3的最后一个单体电池与第M个电池阵列3的第一个单体电池的电极端子间通过连接件连接,M大于等于1。换言之,在单体电池100的延伸方向,可以容纳多个单体电池100,即,电池包200内设有多排电池阵列3。
具体的,如图20所示,第二隔板800将电池阵列3沿电池包2000的Y方向分割成2个电池阵列3。前一个电池阵列3的最后一个单体电池100与后一个电池阵列3的首个单体单池件通过连接件连接。
根据本申请提供的电池包200,电池包内形成电池放置区,电池阵列3位于电池放置区,电池放置区设有沿X方向的N个电池阵列3,沿Y方向的M个电池阵列3,电池阵列3与电池阵列3间通过单体电池的电极端子间的连接件实现电连接,N大于等于1,M大于等于1。换言之,在电池包X方向,电池放置区被分割成多个子电池放置区,且在单体电池100的延伸方向Y方向,可以容纳多个单体电池100,即电池包200内设有多排多列电池阵列3。
具体的,如图22所示,电池包200内设有第一隔板700和第二隔板800,第一隔板700和第二隔板800将多个单体电池分割成两排两列电池阵列3。任意两个电池阵列3中通过电极端子间的连接件连接。
在上述描述中,第一个隔板700和第二隔板800可以为加强筋,也可以为隔热棉等其他结构件,本申请不作限定。
本申请对电池阵列3中单体电池100的数量不作特殊限制,可以根据不同的车型,以及需要不同的动力来布置不同数量的单体电池100,在本申请一些具体的示例中,电池阵列3中单体电池的数量为60-200,在本申请另一些具体的示例中,电池阵列3中单体电池的数量为80-150。
在本申请提供的电池包200中,电池阵列3中的单体电池通过胶粘结,单体电池100与单体电池100之间通过胶粘结,可以省空间,减少其他结构件,满足轻量化,提高能量密度、提高生产效率等。
在一种实施方式中,上述第一面板212为内部设置有冷却结构的换热板219,换热板219内部设置有冷却液,从而通过冷却液来实现对单体电池100的降温,使单体电池100能够处于适宜的工作温度。由于换热板219与单体电池100设置有导热板218,在通过冷却液对单体电池100进行冷却时,换热板219各位置处的温差可以通过导热板218进行均衡,从而将多个单体电池100之间的温度差控制在1℃以内。
单体电池100可以具有任意适当的结构和形状,在本申请提供的一种实施方式中,如图3所示,单体电池100的电池本体为方形结构的方形电池,并具有长度、厚度和介于长度和厚度之间的高度,每个单体电池100侧立放置,每个单体电池100的电池本体的长度方向为Y方向,厚度方向为X方向,高度方向为Z方向,相邻两个单体电池100通过大面对大面的方式排布。换言之,该方形在长度方向上具有长度L,在垂直于长度方向的厚度方向上具有厚度D,在高度方向上具有高度H,该高度H介于长度L和厚度D之间。具体地,单体电池100具有大面、窄面和端面,大面的长边具有上述长度L,短边具有上述高度H;窄面的长边具有上述长度L,短边具有上述厚度D;端面的长边具有上述高度H,短边具有上述厚度D。单体电池100侧立放置是指,单体电池100的两个端面分别面向第一边梁201和第二边梁202,相邻两个单体电池100的大面相对,使得单体电池100具备替代横梁的功能,其效果更好,强度更高。在其他实施方式中,单体电池100也可以为圆柱形电池。
在相关技术中,如何设计单体电池100的形状和尺寸,使其不仅能够具有适当的电池容量和良好的散热效果,一直是电池技术领域需要解决的问题之一。
在本申请提供的一种实施方式中,单体电池100的电池本体的长度L和厚度D的比值满足23≤L/D≤208。在该比值下,可以得到长度较长,厚度较薄的单体电池100,这样,可以保证在单体电池100的长度沿Y延伸的情况下,还能保持适当的阻值、和较高的散热面积和散热效率,各种车型的适应性好。
在本申请提供的另一种实施方式中,单体电池100的电池本体的长度L与高度H的比值满足4≤L/H≤21,如:9≤L/H≤13。在该比值下,可以通过上述长度较长,厚度较薄的单体电池100实现,也可以通过尺寸的调整实现,通过控制单体电池100的电池本体的长 度L与高度H的比值,可以保证单体电池100的长度沿Y方向延伸的同时,具备足够的散热面积,以保证单体电池100的散热效果。
在相关技术中,由于单体电池的尺寸L较短,单体电池的两端无法直接支撑在边梁梁上,其组装工艺为需要先将多个单体电池排列形成电池阵列3,在电池阵列3外部设置有端板和/或侧板;一般同时包含端板和侧板,端板和侧板固定,围成容纳电池阵列3的空间,即形成电池模组,然后再将电池模组安装在包内,且且电池包内还需要设置横梁和/总量来配合电池模组的安装,工序组装比较复杂在电池包的组装过程中,产生不良率的概率被提高,多次组装加大了电池包出现松动、安装不牢固的可能性,对电池包的品质造成不良影响,并且电池包的稳定性下降,可靠性降低。
与相关技术相比,本申请中,由于单体电池的尺寸L较长,所以单体电池在组装成电池包时,可直接先将单个单体电池100直接侧立放入到托盘内,单体电池100的第一端支撑在第一边梁201,单体池100的另一端支撑在第二边梁200,然后沿电池包的X方向顺次放入其他单体电,100形成电池阵列3,然后通过紧固件实现对电池阵列3的固定以及电池管理元器件和配电元器件的安装。整个组装比较简单,不需要先组装成电池模组,再将电池模组安装到电池包内,可直接在电池包内形成电池阵列3,节省了人力,物力等成本,同时也减低了不良率,电池包的稳定性、可靠性增加。
当然,本申请也可以先将单体电池组装成电池阵列3,然后再将电池阵列3安装在电池包内,该种实施方式也在本申请要保护的技术范围之内。
如图26所示,本申请的第二个目的,提供了一种车辆1,包括上述的电池包200。
这里,车辆1可以包括商用车、特种车、电动自行车、电动摩托车、电动滑板车等需要使用电池包为其提供电能,以驱动其行驶的电动车。
一些实施例中,电池包200设置在电动车的底部,支撑件4与车辆1的底盘固定连接。由于电动车底盘处的安装空间较大,将电池包200设置在电动车的底盘处,可以尽可能地提高单体电池100的数量,从而提高电动车的续航能力。
一些实施例中,车辆包括设置在车辆底部的一个电池包,电池包与车辆的底盘固定连接,Q方向或单体电池的最小外接矩形体的长度方向、或Y方向为车辆的车身宽度方向,即,车辆的左右方向,P方向或单体电池的最小外接矩形体的宽度方向、或X方向为车辆的车身长度方向,即,车辆的前后方向。在其他实施方式中,车辆可以包括多个设置在车辆底部的电池包,该多个电池包的形状和尺寸可以相同,也可以不同,具体地,每个电池包可以根据车辆底盘的形状及尺寸进行调整,多个电池包沿车身的长度方向,即,前后方向排列。
一些实施例中,在本申请提供的一种实施方式中,电池包200在Q方向或单体电池的 最小外接矩形体的长度方向、或Y方向的宽度L3与车身宽度W的比值满足:50%≤L3/W≤80%,在本实施方式中,可以通过沿车身的宽度方向仅设置一个电池包200实现,当电池包200为多个时,多个电池包200沿车身的长度方向排列。通常,对于多数车辆而言,车身宽度为600mm-2000mm,例如,600mm、1600mm、1800mm、2000mm,车身长度为500mm-5000mm,对于乘用车而言,乘用车的宽度通常为600mm-1800mm,车身的长度为600mm-4000mm。
一些实施例中,单体电池100沿Q方向或单体电池的最小外接矩形体的长度方向、或方向上的尺寸L'与车身宽度W的比值满足:46%≤L'/W≤76%。在考虑电池包200的第一边梁201和第二边梁202的厚度的情况下,当单体电池100的在Y方向上的尺寸L与车身宽度W的比值满足:46%≤L'/W≤76%时,在本实施方式中,可以沿车身的宽度方向仅设置一个单体电池100实现。在其他可能的实施方式中,满足这样的尺寸要求的情况下,可以在长度方向上设置多个电池模组或多个单体电池来实现。作为一种实施方式,单体电池100在Y方向上的尺寸为600mm-1500mm。
需要说明的是,本申请中的一些实施例中,虽然申请了一个单体电池的两端分别与第一边梁和第二边梁配合支撑的方案,但是在实际生产过程中,有可能出现无法制作与车身宽度相配合的长度尺寸的单体电池;也即是说,单体电池因为某些原因,无法被加工成我们想要的长度。因为,电动车对单体电池的电压平台是有要求的,而在固定的材料体系下,要达到一定的电压平台,其所需单体电池的体积是一定的;这就使得,如果增加单体电池的长度,就会减小其厚度或者宽度。而另一方面,要保证整个电池的表面积,以提高散热功能,在此前提下,无法通过降低单体电池的宽度(高度)来增加单体电池的长度;同时,在车体上,其高度空间利用也是有限的,为了最大程度降低影响,一般对单体电池的宽度(高度)不做调整。因此,只能改变单体电池沿第一方向的长度和第二方向的厚度来改变整个单体电池的表面积;所以,若想要增加长度,大概率会从减小厚度的角度考虑。而实际上,单体电池因为内部需要加入电芯及相关材料,其厚度的变化是有一个最小极限值的;这就使得,单体电池的长度因受厚度以的极限值影响,第一方向上的长度改变能力,也是有限的,并不能无限的增加单体电池的长度。
本申请还公开了一种储能装置2。
如图27所示,本申请的储能装置2包括上述任一种实施例的电池包200。本申请的储能装置2可以用于家用备用电源、商用备用电源、户外电源、电站的调峰储能设备、各种交通工具的动力电源等。
以上结合附图详细描述了本申请的实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
此外,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所申请的内容。
下面通过对比例1和实施例1-2、对比例2和实施例4-4、对比例3和实施例5说明,根据本申请实施例的电池包200,通过对单体电池100的排布及尺寸参数等的设计,在能量密度等方面的提升。
以下实施例和对比例均以磷酸铁锂电池为例。
对比例1、实施例1、实施例2中,电池包200的总体积为213L,其电池包外壳与内部电池管理系统及其它配电模块所占体积的综合为82.54L,电池包200的实际剩余能够容纳单体电池100和/或第一隔板、第二隔板的体积为130.46L,其中,电池包外壳的长度为1380mm、宽度为1005mm、厚度为137mm,配电箱的体积为22.5L,电池包的总体积213L=1380×1005×137×0.000001+22.5。
对比例1
相关技术中的电池包200,如图1所示,电池包外壳内设置有两个横梁500和一个纵梁600,两个横梁500和一个纵梁600将单体电池100分隔成六个电池模组400。
实施例1
根据本申请实施例的电池包200,如图21所示,单体电池100的长度方向沿电池包200的宽度方向布置,多个单体电池100沿电池包200的长度方向排列,在电池包200的宽度方向上,电池包外壳容纳一个单体电池100,单体电池100在电池包200的宽度方向上从电池包外壳的一侧延伸到另一侧。电池包外壳内设置有一个第一隔板700,不设置第二隔板800,第一隔板700沿电池包200的宽度方向延伸,多个单体电池100沿电池包200的长度方向排列形成电池阵列400,第一隔板700将电池阵列400沿电池包200的长度方向分割成两部分。电池包外壳的位于电池包200宽度方向两侧的第一边梁边梁201和第二边梁202为单体电池100提供支撑力,电池包外壳的位于电池包200长度方向两端的第三边梁203和第四边梁204为邻近的单体电池100提供向内的压紧力。电池包外壳内沿电池包200的高度方向含有一电池层电池阵列400。
实施例2
根据本申请实施例的电池包200,如图23所示,单体电池100的长度方向沿电池包200 的宽度方向布置,多个单体电池100沿电池包200的长度方向排列,在电池包200的宽度方向上,电池包外壳容纳一个单体电池100,单体电池100在电池包200的宽度方向上从电池包外壳的一侧延伸到另一侧。电池包外壳内不设置第一隔板700和第二隔板800。电池包外壳的位于电池包200宽度方向两侧的第一边梁201和第二边梁202为单体电池100提供支撑力,电池包外壳的位于电池包200长度方向两端的第三边梁203和第四边梁204为邻近的单体电池100提供向内的压紧力。电池包外壳内沿电池包200的高度方向含有两层电池阵列400。
本领域的技术人员通过对比上述对比例1和实施例1-3可知,相比相关技术中的电池包200,根据本申请实施例的电池包200,通过单体电池100的排布、尺寸参数以及其它因素的设计,成组率能够突破现有电池包200的限制,从而实现更高的能量密度。
对比例2、实施例3和实施例4中,电池包200的总体积为310L,其电池包外壳与内部电池管理系统及其它配电模块所占体积的综合为90L,电池包的实际剩余能够容纳单体电池100和/或第一隔板、第二隔板的体积为220L,其中,电池包外壳的长度为1580mm、宽度为1380mm、厚度为137mm,配电箱的体积为11L,电池包的总体积310L=1580×1380×137×0.000001+11。
对比例2
单体电池在电池包中的排布方式与对比例1相同。
实施例3
根据本申请实施例的电池包200,如图20所示,单体电池100的长度方向沿电池包200的长度方向布置,多个单体电池100沿电池包200的宽度方向排列,在电池包200的长度方向上,电池包外壳容纳一个单体电池100,单体电池100在电池包200的长度方向上从电池包外壳的一侧延伸到另一侧。电池包外壳内设置有一个第二隔板800,不设置横梁500,第二隔板800沿电池包200的长度方向延伸,多个单体电池100沿电池包200的宽度方向排列形成电池阵列400,第二隔板800将电池阵列400沿电池包200的宽度方向分割成两部分。电池包外壳的位于电池包200长度方向两端的第三边梁203和第四边梁204为单体电池100提供支撑力,电池包外壳的位于电池包200宽度方向两侧的第一边梁201和第二边梁202为邻近的单体电池100提供向内的压紧力。电池包外壳内沿电池包200的高度方向含有两层电池阵列400。
实施例4
根据本申请实施例的电池包200,如图24所示,单体电池100的长度方向沿电池包200的长度方向布置,多个单体电池100沿电池包200的宽度方向排列,在电池包200的长度方向上,电池包外壳容纳一个单体电池100,单体电池100在电池包200的长度方向上从电池包外壳的一侧延伸到另一侧。电池包外壳的位于电池包200长度方向两端的第三边梁203和第四边梁204为单体电池100提供支撑力,电池包外壳的位于电池包200宽度方向两侧的第一边梁201和第二边梁202为邻近的单体电池100提供向内的压紧力。电池包外壳内沿电池包200的高度方向含有两层电池阵列400。
对比例3、实施例5中,电池包200的总体积为414L,其电池包外壳与内部电池管理系统及其它配电模块所占体积的综合为102L,电池包的实际剩余能够容纳单体电池100的体积为312L,其中,电池包外壳的长度为2130mm、宽度为1380mm、厚度为137mm,配电箱的体积为11L,电池包的总体积414L=2130×1380×137×0.000001+11。
对比例3
单体电池的排布方式与对比例1的排布方式相同。
实施例5
单体电池在电池包中的排布方式与实施例4相同。
实施例6
在本实施例中,电池包200的总体积为508L,其电池包外壳与内部电池管理系统及其它配电模块所占体积的综合为119L,电池包的实际剩余能够容纳单体电池100的体积为389L,其中,电池包外壳的长度为2630mm、宽度为1380mm、厚度为137mm,配电箱的体积为11L,电池包的总体积414L=2630×1380×137×0.000001+11。单体电池在电池包中的排布方式与实施例4相同。
实施例1-6、对比例1-2的具体参数如表1。
表1
Figure PCTCN2019092389-appb-000001
下面通过对比例4和实施例7-11说明,根据本申请实施例的电池包200,通过对单体电池100尺寸参数等的设计,在散热效果等方面的提升。
对对比例4以及实施例7-11中的单体电池,以2C的速度进行快充,测量在快充过程中,单体电池的温度升高情况。下表2中,记录了每个实施例和对比例中,单体电池的长度、宽度、厚度、体积、表面积和能量的参数选取,并对具体温升进行了记录。
表2
Figure PCTCN2019092389-appb-000002
Figure PCTCN2019092389-appb-000003
由表格中的数据可以看出,本申请提供的单体电池100中,在同等条件的快充下,其温升较之对比例均有不同程度的降低,具有优于现有技术的散热效果,将该单体电池100组装成电池包时,电池包的温升液相对于电池包有所降低。
本领域的技术人员通过对比上述对比例和实施例,不仅可知根据本申请实施例的电池包200,通过单体电池100的排布、尺寸参数以及其它因素的设计,空间利用率能够突破现有电池包200的限制,从而实现更高的能量密度。而且这种能量密度的提高,随着电池包200的整体体积的增大,会被放大,即对于体积越大的电池包200,采用本申请实施例的方案对能量密度的提高效果越为显著。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体 特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (112)

  1. 一种电池包,其特征在于,包括电池阵列及支撑件;
    所述电池阵列包括若干单体电池,所述单体电池具有第一尺寸,所述第一尺寸为虚拟夹持所述单体电池的两平行平面的间距的最大值;至少一个单体电池满足:600mm≤第一尺寸≤2500mm,且支撑在所述支撑件上;
    与所述第一尺寸对应的所述两平行平面的法向为Q方向,所述电池包内形成电池放置区,所述电池阵列位于所述电池放置区,所述单体电池沿所述Q方向从所述电池放置区的一侧延伸到所述电池放置区的另一侧。
  2. 根据权利要求1所述的电池包,其特征在于,所述单体电池具有第二尺寸,所述第二尺寸为虚拟夹持所述单体电池的两平行平面的间距的最小值,与所述第二尺寸对应的所述两平行平面的法向为P方向,若干单体电池沿所述至少一个单体电池的P方向排列。
  3. 根据权利要求2所述的电池包,其特征在于,所述至少一个单体电池满足:10≤第一尺寸/第二尺寸≤208。
  4. 根据权利要求3所述的电池包,其特征在于,所述至少一个单体电池满足:23≤第一尺寸/第二尺寸≤208。
  5. 根据权利要求4所述的电池包,其特征在于,所述至少一个单体电池满足:50≤第一尺寸/第二尺寸≤70。
  6. 根据权利要求1所述的电池包,其特征在于,所述至少一个单体电池满足:600mm≤第一尺寸≤1500mm。
  7. 根据权利要求6所述的电池包,其特征在于,所述至少一个单体电池满足:600mm≤第一尺寸≤1000mm。
  8. 根据权利要求1所述的电池包,其特征在于,所述单体电池具有体积V,所述至少一个单体电池满足:0.0005mm -2≤第一尺寸/V≤0.002mm -2
  9. 根据权利要求1所述的电池包,其特征在于,所述单体电池具有体积V和表面积S,所述至少一个单体电池满足:0.1mm -1≤S/V≤0.35mm -1
  10. 根据权利要求1所述的电池包,其特征在于,所述单体电池包括外壳、位于外壳内的极芯、用于加强所述外壳的加强件,所述支撑件与所述加强件对接以支撑所述单体电池。
  11. 根据权利要求10所述的电池包,其特征在于,所述加强件包括加强壳体,所述加强壳体包裹在至少一个所述单体电池的外壳上,所述支撑件与所述加强壳体对接以支撑所述单体电池。
  12. 根据权利要求10所述的电池包,其特征在于,所述单体电池具有引出内部电流的电极端子,所述加强件包括汇流件,所述汇流件被构造为电连接多个单体电池的电极端子,所述支撑件与汇流件对接以支撑所述单体电池。
  13. 根据权利要求1所述的电池包,其特征在于,所述电池包还包括相对设置在所述电池阵列两侧并用于夹持所述电池阵列的两侧板部件。
  14. 根据权利要求1所述的电池包,其特征在于,与所述第一尺寸对应的所述两平行平面的法向为Q方向,所述电池包包括车用托盘,所述车用托盘包括沿Q方向相对设置的第一边梁和第二边梁,所述支撑件为第一边梁和第二边梁,所述单体电池的两端分别支撑在所述第一边梁和所述第二边梁上。
  15. 根据权利要求1所述的电池包,其特征在于,所述支撑件为若干底梁,所述底梁位于所述电池阵列下方。
  16. 根据权利要求15所述的电池包,其特征在于,与所述第一尺寸对应的所述两平行平面的法向为Q方向,所述底梁包括第一梁及位于第一梁上并与第一梁相交的第二梁,所述第一梁的延伸方向与Q方向的夹角为60-90度,所述单体电池支撑在第一梁上。
  17. 根据权利要求15所述的电池包,其特征在于,与所述第一尺寸对应的所述两平行平面的法向为Q方向,所述底梁为若干平行且间隔设置的矩形梁;所述矩形梁的延伸方向与Q方向的夹角为60-90度,所述单体电池支撑在所述矩形梁上。
  18. 根据权利要求1所述的电池包,其特征在于,所述支撑件为汽车底盘,所述电池阵列位于汽车底盘上。
  19. 根据权利要求12所述的电池包,其特征在于,所述电极端子设于所述单体电池沿所述Q方向的两端。
  20. 根据权利要求1所述的电池包,其特征在于,所述电池包在所述Q方向上仅容纳一个所述单体电池。
  21. 根据权利要求1所述的电池包,其特征在于,所述单体电池具有第二尺寸,所述第二尺寸为虚拟夹持所述单体电池的两平行平面的间距的最小值,与所述第二尺寸对应的所述两平行平面的法向为P方向,所述电池包内形成电池放置区,所述电池阵列位于电池放置区,所述电池包包括沿P方向的N个电池阵列,电池阵列与电池阵列间通过单体电池的电极端子间的连接件电连接,N大于等于1。
  22. 根据权利要求1所述的电池包,其特征在于,与所述第一尺寸对应的所述两平行平面的法向为Q方向,所述电池包内形成多个电池放置区,所述电池包包括沿所述Q方向分布并一一对应位于所述多个电池放置区的M个电池阵列,电池阵列与电池阵列间通过单体电池的电极端子间的连接件电连接,M大于等于1。
  23. 一种电池包,其特征在于,包括电池阵列及支撑件;
    所述电池阵列包括若干单体电池,所述单体电池具有尺寸A,所述尺寸A为所述单体电池的最小外接矩形体的长,至少一个单体电池满足:600mm≤尺寸A≤2500mm,且支撑在所述支撑件上;
    所述电池包内形成电池放置区,所述电池阵列位于所述电池放置区,所述至少一个单体电池沿所述单体电池的最小外接矩形体的长度方向从所述电池放置区的一侧延伸到所述电池放置区的另一侧。
  24. 根据权利要求23所述的电池包,其特征在于,所述若干单体电池沿K方向排列,所述K方向为电池阵列中所述至少一个单体电池的最小外接矩形体的宽度方向。
  25. 根据权利要求24所述的电池包,其特征在于,所述单体电池具有尺寸B,所述尺寸B为所述单体电池的最小外接矩形体的宽,所述至少一个单体电池满足:10≤尺寸A/尺寸B≤208。
  26. 根据权利要求25所述的电池包,其特征在于,所述至少一个单体电池满足:23≤尺寸A/尺寸B≤208。
  27. 根据权利要求26所述的电池包,其特征在于,所述至少一个单体电池满足:50≤尺寸A/尺寸B≤70。
  28. 根据权利要求23所述的电池包,其特征在于,所述若干单体电池沿K方向排列,所述K方向为电池阵列中所述至少一个单体电池的最小外接矩形体的高度方向。
  29. 根据权利要求28所述的电池包,其特征在于,所述单体电池具有尺寸C,所述尺寸C为所述单体电池的最小外接矩形体的高,所述至少一个单体电池满足:10≤尺寸A/尺寸C≤208。
  30. 根据权利要求29所述的电池包,其特征在于,所述至少一个单体电池满足:23≤尺寸A/尺寸C≤208。
  31. 根据权利要求30所述的电池包,其特征在于,所述至少一个单体电池满足:50≤尺寸A/尺寸C≤70。
  32. 根据权利要求23所述的电池包,其特征在于,所述至少一个单体电池满足:600mm≤尺寸A≤1500mm。
  33. 根据权利要求32所述的电池包,其特征在于,所述至少一个单体电池满足:600mm≤尺寸A≤1000mm。
  34. 根据权利要求23所述的电池包,其特征在于,所述单体电池包括外壳、位于外壳内的极芯、用于加强所述外壳的加强件,所述支撑件与加强件对接以支撑所述单体电池。
  35. 根据权利要求34所述的电池包,其特征在于,所述加强件包括加强壳体,所述加强壳体包裹在至少一个所述单体电池的外壳上,所述支撑件与所述加强壳体对接以支撑所述单体电池。
  36. 根据权利要求34所述的电池包,其特征在于,所述单体电池具有引出内部电流的电极端子,所述加强件包括汇流件,所述汇流件被构造为电连接多个单体电池的电极端子,所述支撑件与汇流件对接以支撑所述单体电池。
  37. 根据权利要求23所述的电池包,其特征在于,所述电池包还包括相对设置在所述电池阵列两侧并用于夹持所述电池阵列的两侧板部件。
  38. 根据权利要求23所述的电池包,其特征在于,所述电池包包括车用托盘,所述车用托盘包括沿所述至少一个单体电池的最小外接矩形体的长度方向相对设置的第一边梁和第二边梁,所述支撑件为第一边梁和第二边梁,所述至少一个单体电池的两端分别支撑在所述第一边梁和所述第二边梁上。
  39. 根据权利要求23所述的电池包,其特征在于,所述支撑件为若干底梁,所述底梁位于电池阵列下方。
  40. 根据权利要求39所述的电池包,其特征在于,所述底梁包括第一梁及位于第一梁上并与第一梁相交的第二梁,所述第一梁的延伸方向与所述至少一个单体电池的最小外接矩形体的长度方向的夹角为60-90度,所述至少一个单体电池支撑在第一梁上。
  41. 根据权利要求39所述的电池包,其特征在于,所述底梁为若干平行且间隔设置的矩形梁;所述矩形梁的延伸方向与所述单体电池的最小外接矩形体的长度方向的夹角为60-90度,所述至少一个单体电池支撑在矩形梁上。
  42. 根据权利要求23所述的电池包,其特征在于,所述支撑件为汽车底盘,所述电池阵列位于汽车底盘上。
  43. 根据权利要求36所述的电池包,其特征在于,所述电极端子设于所述单体电池沿所述尺寸A的方向的两端。
  44. 根据权利要求43所述的电池包,其特征在于,所述电池包在所述单体电池的最小外接矩形体的长度方向上仅容纳一个所述单体电池。
  45. 根据权利要求23所述的电池包,其特征在于,所述电池包内形成电池放置区,所述电池阵列位于电池放置区,所述电池包包括沿所述单体电池的最小外接矩形体的宽度方向的N个电池阵列,电池阵列与电池阵列间通过单体电池的电极端子间的连接件电连接,N大于等于1。
  46. 根据权利要求23所述的电池包,其特征在于,所述电池包内形成多个电池放置区,所述电池包包括沿所述单体电池的最小外接矩形体的长度方向分布并一一对应位于所述多 个电池放置区的M个电池阵列,电池阵列与电池阵列间通过单体电池的电极端子间的连接件电连接,M大于等于1。
  47. 根据权利要求23所述的电池包,其特征在于,所述电池包内形成电池放置区,所述电池阵列位于电池放置区,所述电池包包括沿所述至少一个单体电池的最小外接矩形体的高度方向的J个电池阵列,电池阵列与电池阵列间通过单体电池的电极端子间的连接件实现电连接,J大于等于1。
  48. 一种电池包,其特征在于,包括电池阵列及支撑件,
    所述电池阵列包括若干单体电池,至少一个单体电池满足:包括电池本体及延伸出所述电池本体用于引出电池本体内部电流的电极端子,所述电池本体为大体长方体,所述电池本体的长度为L,600mm≤L≤2500mm,且支撑在所述支撑件上;
    所述电池包内形成电池放置区,所述电池阵列位于电池放置区,所述单体电池沿所述L的方向从所述电池放置区的一侧延伸到所述电池放置区的另一侧。
  49. 根据权利要求48所述的电池包,其特征在于,所述单体电池包括外壳、位于外壳内的极芯、用于加强所述外壳的加强件,所述支撑件与加强件对接以支撑所述单体电池。
  50. 根据权利要求49所述的电池包,其特征在于,所述加强件包括加强壳体,所述加强壳体包裹在至少一个所述单体电池的外壳上,所述支撑件与所述加强壳体对接以支撑所述单体电池。
  51. 根据权利要求49所述的电池包,其特征在于,所述单体电池具有引出内部电流的电极端子,所述加强件包括汇流件,所述汇流件被构造为电连接多个单体电池的电极端子,所述支撑件与汇流件对接以支撑所述单体电池。
  52. 根据权利要求48所述的电池包,其特征在于,所述电池本体的厚度为D,高度为H,厚度方向为X方向,长度方向为Y方向,高度方向为Z方向。
  53. 根据权利要求52所述的电池包,其特征在于,所述若干单体电池沿电池阵列中所述至少一个单体电池的X方向排列。
  54. 根据权利要求53所述的电池包,其特征在于,所述至少一个单体电池满足:10≤L/D≤208。
  55. 根据权利要求54所述的电池包,其特征在于,所述至少一个单体电池满足:23≤L/D≤208。
  56. 根据权利要求55所述的电池包,其特征在于,所述至少一个单体电池满足:50≤L/D≤70。
  57. 根据权利要求52所述的电池包,其特征在于,所述若干单体电池沿电池阵列中所述至少一个单体电池的Z方向排列。
  58. 根据权利要求57所述的电池包,其特征在于,所述至少一个单体电池满足:10≤L/H≤208。
  59. 根据权利要求58所述的电池包,其特征在于,所述至少一个单体电池满足:23≤L/H≤208。
  60. 根据权利要求59所述的电池包,其特征在于,所述至少一个单体电池满足:50≤L/H≤70。
  61. 根据权利要求48所述的电池包,其特征在于,所述单体电池的体积为V,所述至少一个单体电池满足:0.0005mm -2≤L/V≤0.002mm -2
  62. 根据权利要求48所述的电池包,其特征在于,所述至少一个单体电池满足:600mm≤L≤1500mm。
  63. 根据权利要求62所述的电池包,其特征在于,所述至少一个单体电池满足:600mm≤L≤1000mm。
  64. 根据权利要求62所述的电池包,其特征在于,所述电池本体的厚度为D,高度为H,厚度方向为X方向,长度方向为Y方向,高度方向为Z方向;所述电池本体的高度H≥所述电池本体的厚度D,所述至少一个单体电池满足:23≤L/D≤208,且4≤L/H≤21,所述若干单体电池沿所述电池阵列中至少一个所述单体电池的X方向排列。
  65. 根据权利要求64所述的电池包,其特征在于,所述至少一个单体电池满足:9≤L/H≤13。
  66. 根据权利要求62所述的电池包,其特征在于,所述电池本体的体积为V且表面积为S,表面积S与体积V的关系为0.1mm -1≤S/V≤0.35mm -1
  67. 根据权利要求64所述的电池包,其特征在于,所述电池包还包括沿所述X方向相对设置在所述电池阵列两侧并用于夹持所述电池阵列的两侧板部件。
  68. 根据权利要求64所述的电池包,其特征在于,所述电池包包括车用托盘,所述车用托盘包括沿Y方向相对设置的第一边梁和第二边梁,所述支撑件为所述第一边梁和第二边梁,所述单体电池的两端分别支撑在所述第一边梁和所述第二边梁上。
  69. 根据权利要求68所述的电池包,其特征在于,所述第一边梁和所述第二边梁分别包括与所述单体电池的两端面匹配的内壁面,所述第一边梁和所述第二边梁的内壁面分别与所述单体电池的端面之间夹设绝缘板。
  70. 根据权利要求68所述的电池包,其特征在于,所述托盘包括底板,所述第一边梁和所述第二边梁分别设置在所述底板的两端,所述单体电池与所述底板间隔开设置。
  71. 根据权利要求70所述的电池包,其特征在于,所述单体电池与所述底板之间设有保温层。
  72. 根据权利要求70所述的电池包,其特征在于,所述电池包还包括密封盖,所述密封盖与所述托盘形成容纳电池阵列的容纳腔。
  73. 根据权利要求72所述的电池包,其特征在于,所述第一边梁朝向所述单体电池的内壁面具有凸出的第一支撑板,所述第一支撑板的朝向所述密封盖的面设有第一支撑面,所述第一支撑板背离密封盖的面设有第一安装面;
    所述第二边梁的朝向所述单体电池的内壁面具有凸出的第二支撑板,所述第二支撑板的朝向所述密封盖的面设有第二支撑面,所述第二支撑板背离密封盖的面设有第二安装面;
    所述第一支撑面和所述第二支撑面用于支撑单体电池,所述第一安装面和所述第二安装面用于安装所述底板。
  74. 根据权利要求73所述的电池包,其特征在于,所述第一边梁朝向所述单体电池的内壁面具有第一连接面,所述第一连接面到所述密封盖的距离小于所述第一支撑面到所述密封盖的距离;所述第二边梁的朝向所述单体电池的内壁面均具有第二连接面,所述第二连接面到所述密封盖的距离小于所述第二支撑面到所述密封盖的距离;所述单体电池的两端分别与所述第一连接面、所述第二连接面接触。
  75. 根据权利要求74所述的电池包,其特征在于,所述第一边梁朝向所述单体电池的内壁面具有至少两级台阶结构,其中两级台阶朝向密封盖的面分别形成所述第一连接面和所述第一支撑面;
    所述第二边梁的朝向所述单体电池的内壁面具有至少两级台阶结构,其中两级台阶朝向密封盖的面分别形成所述第二连接面和所述第二支撑面。
  76. 根据权利要求74所述的电池包,其特征在于,还包括:第一端板和第二端板,所述第一端板设置在至少一个所述单体电池的第一端和第一边梁之间,所述第二端板设置在至少一个所述单体电池的第二端和所述第二边梁之间;至少一个所述单体电池的第一端通过所述第一端板与所述第一连接面相连,至少一个所述单体电池的第二端通过所述第二端板与第二连接面相连。
  77. 根据权利要求76所述的电池包,其特征在于,所述第一端板包括与所述单体电池的端面相对设置的端板体和与所述端板体相连且向所述第一边梁凸出的第一连接板,所述第二端板包括与所述单体电池的端面相对设置的端板体和与所述端板体相连且向所述第二边梁凸出的第一连接板,所述第一连接板与所述第一连接面、第二连接面相连。
  78. 根据权利要求68-77中任意一项所述的电池包,其特征在于,至少一个所述单体电池的第一端设置有防爆阀,所述第一边梁内部设置有排气通道,所述第一边梁上与所述防爆阀对应的位置设置有排气孔,所述排气孔与所述排气通道连通;所述单体电池的第二端设置有防爆阀,所述第二边梁内部设置有排气通道,所述第二边梁上与所述防爆阀对应 的位置设置有排气孔,所述排气孔与所述排气通道连通;所述电池包上设置有与所述排气通道连通的排气口。
  79. 根据权利要求72所述的电池包,其特征在于,所述托盘还包括沿X方向相对设置的第三边梁和第四边梁,所述第三边梁和第四边梁为所述电池阵列提供压紧力。
  80. 根据权利要求77所述的电池包,其特征在于,所述第一连接面、第二连接面、所述单体电池与所述密封盖之间限定出用于容纳电池管理元器件和配电元器件的管理容纳腔。
  81. 根据权利要求79所述的电池包,其特征在于,所述电池包还包括:第一弹性装置和/或第二弹性装置,所述第三边梁和与所述第三边梁相邻的所述单体电池之间弹性夹设有所述第一弹性装置,和/或所述第四边梁和与所述第四边梁相邻的所述单体电池之间弹性夹设有所述第二弹性装置。
  82. 根据权利要求79所述的电池包,其特征在于,还包括:第一侧板和/或第二侧板,所述第三边梁和与所述第三边梁相邻的所述单体电池之间设有第一侧板;所述第四边梁和与所述第四边梁相邻的所述单体电池之间设有所述第二侧板。
  83. 根据权利要求82所述的电池包,其特征在于,所述第一侧板包括与所述单体电池的侧面相对设置的侧板体和与所述侧板体相连且向所述第三边梁凸出的第二连接板,所述第二侧板包括:与所述单体电池的侧面相对设置的侧板体和与所述侧板体相连且向所述第四边梁凸出的第二连接板;
    所述第三边梁设有朝向所述密封盖的第三连接面,和所述第四边梁设有朝向所述密封盖的第四连接面;
    所述第一侧板通过对应的第二连接板与所述第三连接面连接,所述第二侧板通过对应的第二连接板与所述第四连接面相连。
  84. 根据权利要求79所述的电池包,其特征在于,还包括:
    第一面板和第二面板,分别连接于至少部分所述单体电池的上表面和下表面;
    第一端板和第二端板,分别设于至少部分所述单体电池的两个端面;
    第一侧板和第二侧板,分别设于最外侧的两个所述单体电池的外侧;
    所述第一端板、所述第二端板、所述第一侧板和所述第二侧板均与所述第一面板、第二面板相连;
    所述第一边梁朝向所述单体电池的内壁面具有第一支撑面和第一连接面;所述第二边梁的朝向所述单体电池的内壁面具有第二支撑面和第二连接面,所述单体电池的第一端支撑于所述第一支撑面上,所述单体电池的第二端支撑于所述第二支撑面上,所述第一端板 与所述第一连接面相连,所述第二端板与所述第二连接面相连;
    所述第三边梁朝向所述单体电池的内壁面具有第三连接面,所述第四边梁朝向所述单体电池的内壁面具有第四连接面;所述第一侧板与所述第三连接面相连,所述第二侧板与所述第四连接面相连。
  85. 根据权利要求52-66中任一项所述的电池包,其特征在于,所述支撑件为若干底梁,所述底梁位于电池阵列下方。
  86. 根据权利要求85所述的电池包,其特征在于,所述底梁包括第一梁及位于第一梁上并与第一梁相交的第二梁,所述第一梁的延伸方向与Y方向的夹角为60-90度,所述单体电池支撑在所述第一梁上。
  87. 根据权利要求86所述的电池包,其特征在于,所述第二梁包括两个,两个第二梁分别位于所述第一梁的两端且分别与所述第一梁垂直,所述单体电池支撑在所述第一梁上。
  88. 根据权利要求87所述的电池包,其特征在于,所述单体电池的中心位于所述第一梁上。
  89. 根据权利要求85所述的电池包,其特征在于,所述底梁为若干平行且间隔设置的矩形梁;所述矩形梁的延伸方向与Y方向的夹角为60-90度,所述单体电池支撑在所述矩形梁上。
  90. 根据权利要求89所述的电池包,其特征在于,所述矩形梁沿Y方向均匀分布,所述矩形梁的延伸方向与Y方向垂直,所述单体电池位于所述矩形梁上。
  91. 根据权利要求48-66中任一项所述的电池包,其特征在于,所述支撑件为汽车底盘,所述电池阵列位于汽车底盘上。
  92. 根据权利要求52-77或79-84或86-90中任一项所述的电池包,其特征在于,所述电池包内形成电池放置区,所述电池阵列位于电池放置区,所述电池包含有1个电池阵列,所述单体电池沿Y方向从所述电池放置区的一侧延伸到所述电池放置区的另一侧。
  93. 根据权利要求92所述的电池包,其特征在于,所述电池包在Y方向上仅容纳一个所述单体电池。
  94. 根据权利要求92所述的电池包,其特征在于,所述单体电池沿X方向从所述电池放置区的一端排到另一端。
  95. 根据权利要求48-77或79-84或86-90中任一项所述的电池包,其特征在于,所述电池包内形成电池放置区,所述电池阵列位于电池放置区,所述电池包包括沿X方向的N个电池阵列,电池阵列与电池阵列间通过单体电池的电极端子间的连接件实现电连接,N大于等于1。
  96. 根据权利要求95所述的电池包,其特征在于,所述第N-1个电池阵列的最后一个 单体电池与第N电池阵列的第一个单体电池的电极端子间通过连接件连接。
  97. 根据权利要求52-77或79-84或86-90中任一项所述的电池包,其特征在于,所述电池包内形成多个电池放置区,所述电池包包括沿Y方向分布并一一对应位于所述多个电池放置区的M个电池阵列,电池阵列与电池阵列间通过单体电池的电极端子间的连接件实现电连接,M大于等于1。
  98. 根据权利要求97所述的电池包,其特征在于,所述第M-1个电池阵列的最后一个单体电池与第M个电池阵列的第一个单体电池的电极端子间通过连接件连接。
  99. 根据权利要求52-77或79-84或86-90中任一项所述的电池包,其特征在于,所述电池包内形成多个电池放置区,所述电池包包括沿X方向的N个电池阵列,沿Y方向的M个电池阵列,所述电池阵列一一对应位于所述多个电池放置区,电池阵列与电池阵列间通过单体电池的电极端子间的连接件实现电连接,N大于等于1,M大于等于1。
  100. 根据权利要求48-77或79-84或86-90中任一项所述的电池包,其特征在于,所述电池包内形成电池放置区,所述电池阵列位于电池放置区,所述电池包包括沿Z方向的J个电池阵列,电池阵列与电池阵列间通过单体电池的电极端子间的连接件实现电连接,J大于等于1。
  101. 根据权利要求48所述的电池包,其特征在于,所述电池阵列中单体电池的数量为60-200。
  102. 根据权利要求101所述的电池包,其特征在于,所述电池阵列中单体电池的数量为80-150。
  103. 根据权利要求48所述的电池包,其特征在于,所述电池阵列中至少部分所述单体电池间通过胶粘结。
  104. 根据权利要求48所述的电池包,其特征在于,还包括:换热板,所述换热板安装于所述电池阵列的上表面。
  105. 根据权利要求52所述的电池包,其特征在于,所述电池本体的体积为V,所述电池本体的高度H与对应的电池本体的体积V的关系为0.0001mm ﹣2≤H/V≤0.00015mm ﹣2
  106. 一种车辆,其特征在于,包括如权利要求1-105中任一项所述的电池包。
  107. 根据权利要求106所述的车辆,其特征在于,所述电池包设置在所述车辆的底部,所述支撑件与所述车辆的底盘固定连接。
  108. 根据权利要求106或107所述的车辆,其特征在于,所述车辆包括设置在所述车辆底部的一个电池包,所述Q方向或所述单体电池的最小外接矩形体的长度方向、或Y方向沿所述车辆的车身宽度方向布置,所述P方向或所述单体电池的最小外接矩形体的宽度方向、或X方向沿所述车辆的车身长度方向布置。
  109. 根据权利要求108所述的车辆,其特征在于,所述电池包在Q方向或所述单体电池的最小外接矩形体的长度方向、或Y方向上的宽度L3与车身宽度W满足:50%≤L3/W≤80%。
  110. 根据权利要求108所述的车辆,其特征在于,所述单体电池沿Q方向或所述单体电池的最小外接矩形体的长度方向、或Y方向上的尺寸L'与车身宽度W满足:46%≤L'/W≤76%。
  111. 根据权利要求107所述的车辆,其特征在于,所述车身宽度W为600mm-2000mm。
  112. 一种储能装置,其特征在于,包括如权利要求1-105中任一项所述的电池包。
PCT/CN2019/092389 2019-01-09 2019-06-21 电池包、车辆和储能装置 WO2020143173A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020247010761A KR20240046642A (ko) 2019-01-09 2019-06-21 배터리 팩, 차량, 및 에너지 저장 디바이스
JP2021540122A JP7311611B2 (ja) 2019-01-09 2019-06-21 電池パック、車両及びエネルギー蓄積装置
KR1020217024749A KR102654288B1 (ko) 2019-01-09 2019-06-21 배터리 팩, 차량, 및 에너지 저장 디바이스
US17/422,124 US20220126705A1 (en) 2019-01-09 2019-06-21 Battery pack, vehicle, and energy storage device
EP19909561.3A EP3907778A4 (en) 2019-01-09 2019-06-21 BATTERY PACK, VEHICLE AND POWER STORAGE DEVICE
JP2023108900A JP2023134546A (ja) 2019-01-09 2023-06-30 電池パック、車両及びエネルギー蓄積装置

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN201910020925 2019-01-09
CN201910021244 2019-01-09
CN201910020925.5 2019-01-09
CN201910021247 2019-01-09
CN201910020967.9 2019-01-09
CN201910021244.0 2019-01-09
CN201910021246 2019-01-09
CN201910021248.9 2019-01-09
CN201910021246.X 2019-01-09
CN201910021247.4 2019-01-09
CN201910020967 2019-01-09
CN201910021248 2019-01-09

Publications (1)

Publication Number Publication Date
WO2020143173A1 true WO2020143173A1 (zh) 2020-07-16

Family

ID=67626469

Family Applications (8)

Application Number Title Priority Date Filing Date
PCT/CN2019/092390 WO2020143174A1 (zh) 2019-01-09 2019-06-21 动力电池包及电动车
PCT/CN2019/092391 WO2020143175A1 (zh) 2019-01-09 2019-06-21 电池包、车辆和储能装置
PCT/CN2019/092349 WO2020143171A1 (zh) 2019-01-09 2019-06-21 单体电池、动力电池包和电动车
PCT/CN2019/092389 WO2020143173A1 (zh) 2019-01-09 2019-06-21 电池包、车辆和储能装置
PCT/CN2019/092393 WO2020143177A1 (zh) 2019-01-09 2019-06-21 动力电池包及电动车
PCT/CN2019/092392 WO2020143176A1 (zh) 2019-01-09 2019-06-21 动力电池包及电动车
PCT/CN2019/092351 WO2020143172A1 (zh) 2019-01-09 2019-06-21 电池包及电动车
PCT/CN2019/092394 WO2020143178A1 (zh) 2019-01-09 2019-06-21 电池包、车辆和储能装置

Family Applications Before (3)

Application Number Title Priority Date Filing Date
PCT/CN2019/092390 WO2020143174A1 (zh) 2019-01-09 2019-06-21 动力电池包及电动车
PCT/CN2019/092391 WO2020143175A1 (zh) 2019-01-09 2019-06-21 电池包、车辆和储能装置
PCT/CN2019/092349 WO2020143171A1 (zh) 2019-01-09 2019-06-21 单体电池、动力电池包和电动车

Family Applications After (4)

Application Number Title Priority Date Filing Date
PCT/CN2019/092393 WO2020143177A1 (zh) 2019-01-09 2019-06-21 动力电池包及电动车
PCT/CN2019/092392 WO2020143176A1 (zh) 2019-01-09 2019-06-21 动力电池包及电动车
PCT/CN2019/092351 WO2020143172A1 (zh) 2019-01-09 2019-06-21 电池包及电动车
PCT/CN2019/092394 WO2020143178A1 (zh) 2019-01-09 2019-06-21 电池包、车辆和储能装置

Country Status (10)

Country Link
US (10) US20220126705A1 (zh)
EP (15) EP3907776A4 (zh)
JP (19) JP7197689B2 (zh)
KR (11) KR20210109018A (zh)
CN (43) CN114512759B (zh)
ES (1) ES2939728T3 (zh)
HU (2) HUE060771T2 (zh)
PT (1) PT3782837T (zh)
TW (2) TWI753316B (zh)
WO (8) WO2020143174A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111923750A (zh) * 2020-07-29 2020-11-13 中国第一汽车股份有限公司 一种动力锂电池系统
CN112290143A (zh) * 2020-10-21 2021-01-29 孚能科技(赣州)股份有限公司 动力电池及车辆
CN113659279A (zh) * 2021-08-13 2021-11-16 蜂巢能源科技有限公司 用于电池包的防爆装置和电池包
CN115275488A (zh) * 2022-08-24 2022-11-01 浙江凌骁能源科技有限公司 电池包下箱体
US11926225B2 (en) 2020-10-19 2024-03-12 Jiangsu Contemporary Amperex Technology Limited Case of battery, battery, power consumption device, and method and device for producing battery
US11936027B2 (en) 2020-10-19 2024-03-19 Jiangsu Contemporary Amperex Technology Limited Case of battery, battery, power consumption device, and method and device for producing battery

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3660946A4 (en) * 2017-07-27 2020-07-08 Sanyo Electric Co., Ltd. BATTERY PACK AND MANUFACTURING METHOD THEREOF
CN110417266A (zh) 2018-04-26 2019-11-05 比亚迪股份有限公司 Dcdc变换器、车载充电机和电动车辆
KR20210109018A (ko) 2019-01-09 2021-09-03 비와이디 컴퍼니 리미티드 배터리 팩 및 전기 차량
WO2020177606A1 (zh) * 2019-03-05 2020-09-10 爱驰汽车有限公司 电池包
CN110190216B (zh) * 2019-03-08 2020-06-19 比亚迪股份有限公司 动力电池包、储能装置以及电动车
CN112582743B (zh) * 2019-09-27 2022-08-09 比亚迪股份有限公司 托盘、电池包及车辆
JP7100005B2 (ja) * 2019-10-03 2022-07-12 本田技研工業株式会社 車両下部構造
CN110854325B (zh) * 2019-11-13 2022-10-25 北京海纳川汽车部件股份有限公司 电动车的电池组件以及电动车
CN115513583A (zh) * 2019-11-19 2022-12-23 宁德时代新能源科技股份有限公司 电池包和车辆
CN110854330A (zh) * 2019-11-27 2020-02-28 华霆(合肥)动力技术有限公司 排气定位工装、电池模组和电池包
CN112874285A (zh) * 2019-11-29 2021-06-01 比亚迪股份有限公司 电池包和电动车
CN113036256B (zh) * 2019-12-05 2022-11-11 比亚迪股份有限公司 电池包及电动车
CN113335080A (zh) * 2020-02-18 2021-09-03 比亚迪股份有限公司 电池包及车辆
CN117525759A (zh) * 2020-02-28 2024-02-06 比亚迪股份有限公司 电池包及电动车
KR20210127320A (ko) * 2020-04-14 2021-10-22 주식회사 엘지에너지솔루션 전지 팩 및 이를 포함하는 디바이스
CN111613745B (zh) * 2020-04-16 2022-11-08 宁波吉利汽车研究开发有限公司 动力电池包及车辆
CN111599957A (zh) * 2020-04-27 2020-08-28 威睿电动汽车技术(宁波)有限公司 一种电池模组及电池包
KR20210133536A (ko) * 2020-04-29 2021-11-08 주식회사 엘지에너지솔루션 전지팩 및 이를 포함하는 디바이스
KR20210133537A (ko) * 2020-04-29 2021-11-08 주식회사 엘지에너지솔루션 전지팩 및 이를 포함하는 디바이스
KR20210133539A (ko) * 2020-04-29 2021-11-08 주식회사 엘지에너지솔루션 전지 모듈 및 이를 포함하는 전지팩
KR20210134164A (ko) * 2020-04-29 2021-11-09 주식회사 엘지에너지솔루션 배터리 팩, 그것을 포함하는 전자 디바이스, 및 자동차
KR20210134165A (ko) * 2020-04-29 2021-11-09 주식회사 엘지에너지솔루션 개선된 고정 구조 및 가스 배출 구조를 갖는 배터리 팩, 그리고 이를 포함하는 전자 디바이스 및 자동차
CN113594614B (zh) * 2020-04-30 2023-06-20 蜂巢能源科技有限公司 用于车辆的电池模组以及具有其的车辆
CN113594612A (zh) * 2020-04-30 2021-11-02 蜂巢能源科技有限公司 用于车辆的电池模组以及具有其的车辆
CN113594610B (zh) * 2020-04-30 2024-02-23 蜂巢能源科技有限公司 用于车辆的电池模组以及车辆
CN113594616B (zh) * 2020-04-30 2023-05-23 蜂巢能源科技有限公司 用于车辆的电池模组以及车辆
US20210359374A1 (en) * 2020-05-12 2021-11-18 Samsung Sdi Co., Ltd. Battery system and vehicle including the battery system
CN113782890A (zh) * 2020-05-22 2021-12-10 比亚迪股份有限公司 一种电池包及电动车
CN113782899A (zh) * 2020-05-22 2021-12-10 比亚迪股份有限公司 一种电池包外壳、电池包及电动车
CN113782904B (zh) * 2020-05-22 2023-04-07 比亚迪股份有限公司 一种电池包及电动车
CN113809479B (zh) * 2020-05-27 2023-02-10 比亚迪股份有限公司 电池包以及车辆
CN113809461B (zh) * 2020-05-28 2022-12-09 比亚迪股份有限公司 电池包壳体、电池包及车辆
CN111584787A (zh) * 2020-06-08 2020-08-25 王文阁 一种直角瓦棱形刀片电池
CN112332032B (zh) * 2020-06-23 2024-02-23 宁德时代新能源科技股份有限公司 电池组以及使用电池组作为电源的装置
CN111900302A (zh) * 2020-08-21 2020-11-06 常州瑞德丰精密技术有限公司 组合动力电池及电动车
KR20220032933A (ko) * 2020-09-08 2022-03-15 주식회사 엘지에너지솔루션 전지 팩 내부를 관통하는 보강 폴을 포함하는 전지 팩 및 이를 포함하는 자동차
CN114204334A (zh) * 2020-09-17 2022-03-18 奥动新能源汽车科技有限公司 用于水平方向对接的车端电连接器和电动汽车
US11584238B2 (en) * 2020-09-22 2023-02-21 Ford Global Technologies, Llc Passive structural stopper bracket
CN114361683B (zh) * 2020-09-27 2024-01-09 比亚迪股份有限公司 一种电池托盘及具有其的电池组件
JP7229978B2 (ja) * 2020-09-30 2023-02-28 本田技研工業株式会社 車両
CN213692271U (zh) 2020-11-20 2021-07-13 宁德时代新能源科技股份有限公司 电池单体、电池及用电装置
CN112490579A (zh) * 2020-12-16 2021-03-12 广东和胜新能源汽车配件有限公司 电池箱体
JP7186760B2 (ja) * 2020-12-21 2022-12-09 プライムプラネットエナジー&ソリューションズ株式会社 蓄電モジュール
KR20220091958A (ko) * 2020-12-24 2022-07-01 에스케이온 주식회사 파우치형 배터리셀 및 이를 포함하는 배터리 팩
CN112701408B (zh) * 2020-12-25 2022-12-09 孚能科技(赣州)股份有限公司 箱体底盘的底板结构、箱体底盘、电池包和汽车
CN112701410B (zh) * 2020-12-29 2022-08-19 长城汽车股份有限公司 电池包以及具有其的车辆
CN112701394B (zh) * 2020-12-29 2022-09-09 长城汽车股份有限公司 用于车辆的电池包以及车辆
CN113067038B (zh) * 2021-01-04 2022-11-01 苏州清陶新能源科技有限公司 一种电池包、车辆及储能装置
CN113054301A (zh) * 2021-03-11 2021-06-29 广州小鹏汽车科技有限公司 动力电池包及电动汽车
FR3120578A1 (fr) * 2021-03-12 2022-09-16 Psa Automobiles Sa Support d’un chargeur de batterie électrique d’un véhicule automobile
WO2022197830A1 (en) * 2021-03-18 2022-09-22 Grouper Acquistition Company, Llc Vehicle battery tray and method of manufacturing the same
CN112864510B (zh) * 2021-04-23 2021-08-03 苏州清陶新能源科技有限公司 一种软包电池包
CN115249862A (zh) * 2021-04-26 2022-10-28 北京航空航天大学 用于车辆的动力电池防护系统、动力电池总成和车辆
CN115347293A (zh) * 2021-05-14 2022-11-15 中创新航科技股份有限公司 电池包及车辆
CN115377597B (zh) * 2021-05-17 2023-12-05 华晨宝马汽车有限公司 无框架的电池组及其制造方法
KR20220156319A (ko) * 2021-05-18 2022-11-25 남도금형(주) 전기자동차용 배터리 케이스
CN113232526B (zh) * 2021-05-24 2023-04-07 上海兰钧新能源科技有限公司 电池包和汽车
KR20220163202A (ko) * 2021-06-02 2022-12-09 주식회사 엘지에너지솔루션 배터리 팩, 및 그것을 포함하는 자동차
CN115458857A (zh) * 2021-06-09 2022-12-09 太普动力新能源(常熟)股份有限公司 电池模块
EP4120439A1 (en) * 2021-07-16 2023-01-18 Volvo Car Corporation Structural battery comprising cooling channels
FR3125638A1 (fr) * 2021-07-20 2023-01-27 Manitou Bf Ensemble de batteries pour un engin de travail
CN113451698A (zh) * 2021-07-23 2021-09-28 湖北亿纬动力有限公司 一种ctp电池包及汽车
CN113629315B (zh) * 2021-07-23 2023-01-03 上汽通用汽车有限公司 一种电池包底盘及电池包
US20230033505A1 (en) * 2021-07-28 2023-02-02 Rivian Ip Holdings, Llc Battery module thermal isolation
CN113566602A (zh) * 2021-07-30 2021-10-29 浙江银轮新能源热管理系统有限公司 换热器、电池系统及车辆
CN116097517A (zh) 2021-07-30 2023-05-09 宁德时代新能源科技股份有限公司 电池、用电设备和电池的制备方法
CN113601451A (zh) * 2021-07-30 2021-11-05 国网浙江电动汽车服务有限公司 一种用于拼合动力电池电芯的夹具
CN113675456A (zh) * 2021-08-20 2021-11-19 夏秀明 一种动力型锂离子电池单体、动力电池包和电动车
KR20230040668A (ko) * 2021-09-16 2023-03-23 주식회사 엘지에너지솔루션 전지 팩 및 이를 포함하는 디바이스
CN113937393A (zh) * 2021-10-13 2022-01-14 天能帅福得能源股份有限公司 一种改善圆柱型锂离子电池散热的方法
EP4354598A1 (en) * 2021-11-03 2024-04-17 Contemporary Amperex Technology Co., Limited Battery cell and manufacturing method and manufacturing system therefor, and battery and electric apparatus
CN113879341B (zh) * 2021-11-22 2023-01-20 中车青岛四方机车车辆股份有限公司 双动力轨道车辆
CN114156581B (zh) * 2021-11-30 2022-12-02 深圳品驾智能科技有限公司 一种动力电池的保护外壳
CN114421086A (zh) * 2021-12-29 2022-04-29 杰锋汽车动力系统股份有限公司 一种汽车动力锂离子电池模组结构
KR20230114906A (ko) * 2022-01-26 2023-08-02 주식회사 엘지에너지솔루션 배터리팩 및 이를 구비한 자동차
CN217158423U (zh) * 2022-02-11 2022-08-09 湖北亿纬动力有限公司 一种电芯模组、动力电池及电动车辆
KR20230134377A (ko) * 2022-03-14 2023-09-21 에스케이온 주식회사 배터리 팩
TWI800312B (zh) * 2022-03-18 2023-04-21 和緯車輛技術股份有限公司 增加電池組散熱功效的底盤車架
CN115214777B (zh) * 2022-03-31 2023-11-24 长城汽车股份有限公司 车辆底盘结构及车辆
CN114665177A (zh) * 2022-04-02 2022-06-24 合肥国轩高科动力能源有限公司 一种无模组电池系统
CN114678652B (zh) * 2022-04-08 2024-03-19 欣旺达动力科技股份有限公司 单体电池及电池包
WO2023220884A1 (zh) * 2022-05-16 2023-11-23 宁德时代新能源科技股份有限公司 电池及用电装置
KR20230167969A (ko) * 2022-06-03 2023-12-12 주식회사 엘지에너지솔루션 배터리 팩
CN114883658B (zh) * 2022-06-09 2023-09-26 江苏正力新能电池技术有限公司 一种可充电电池及可充电电池模组
WO2024000502A1 (zh) * 2022-06-30 2024-01-04 宁德时代新能源科技股份有限公司 电池及用电设备
CN115123388B (zh) * 2022-06-30 2023-05-16 东风汽车集团股份有限公司 一种车架电池包的分层式模块化集成结构
EP4300667A1 (de) 2022-07-01 2024-01-03 Speira GmbH Batteriezellgehäuse und verfahren zur herstellung
WO2024015392A1 (en) * 2022-07-12 2024-01-18 Paccar Inc Battery pack enclosures for modular and scalable battery packs
CN117438712A (zh) * 2022-07-15 2024-01-23 比亚迪股份有限公司 储能电池柜和具有其的储能系统
CN115249866B (zh) * 2022-07-19 2024-04-12 集瑞联合重工有限公司 电池包安装结构、车架组件及车辆
EP4310971A3 (en) * 2022-07-22 2024-02-21 Milwaukee Electric Tool Corporation Rechargeable battery pack with improved energy density
US11949080B2 (en) 2022-09-06 2024-04-02 Harbinger Motors Inc. Battery packs with safety features and methods of installing such packs on truck frames
US11961987B2 (en) 2022-09-06 2024-04-16 Harbinger Motors Inc. Battery modules with casted module enclosures and methods of fabricating thereof
WO2024077605A1 (zh) * 2022-10-14 2024-04-18 宁德时代新能源科技股份有限公司 电池和用电装置
WO2024077626A1 (zh) * 2022-10-14 2024-04-18 宁德时代新能源科技股份有限公司 电池及用电设备
CN115498348B (zh) * 2022-11-18 2023-03-14 中创新航科技股份有限公司 电池包的装配方法及装配设备、电池包
CN116454526B (zh) * 2023-06-14 2023-08-29 深圳海辰储能控制技术有限公司 储能装置、用电系统及储能系统
CN116454515B (zh) * 2023-06-15 2023-09-19 中创新航科技集团股份有限公司 电池包
CN116666733B (zh) * 2023-07-28 2024-02-06 宁德时代新能源科技股份有限公司 电池单体、电池和用电装置
CN117199644B (zh) * 2023-11-03 2024-04-05 宁德时代新能源科技股份有限公司 电池单体、电池以及用电装置
CN117308863B (zh) * 2023-11-22 2024-04-12 宁德时代新能源科技股份有限公司 电池包的碰撞损害检测方法、装置、电子设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10328209A1 (de) * 2003-06-24 2005-01-13 Conti Temic Microelectronic Gmbh Bordnetz eines Kraftfahrzeugs
CN101305488A (zh) * 2005-11-10 2008-11-12 丰田自动车株式会社 管形燃料电池模块及其制造方法
CN103928642A (zh) * 2013-01-16 2014-07-16 微宏动力系统(湖州)有限公司 软包电池支架
CN107785511A (zh) * 2016-08-30 2018-03-09 比亚迪股份有限公司 电池模组、动力电池包及汽车
CN208014765U (zh) * 2018-01-29 2018-10-26 合肥国轩高科动力能源有限公司 一种具有高能量密度的电池包装置

Family Cites Families (397)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138858A (ja) 1988-03-01 1990-05-28 Ricoh Co Ltd ガス検出装置
JPH02138858U (zh) * 1989-04-26 1990-11-20
JP3157226B2 (ja) * 1991-11-25 2001-04-16 三洋電機株式会社 アルカリ蓄電池
JPH05193366A (ja) * 1992-01-22 1993-08-03 Honda Motor Co Ltd 電気自動車用バッテリの固定構造
US5419983A (en) 1993-07-20 1995-05-30 Matsushita Electric Industrial Co., Ltd. Lead acid battery
JPH07186734A (ja) 1993-12-27 1995-07-25 Honda Motor Co Ltd 電動車両のバッテリボックス構造
JP3388624B2 (ja) * 1994-03-01 2003-03-24 本田技研工業株式会社 電動車両のバッテリ冷却装置
DE4407156C1 (de) * 1994-03-04 1995-06-08 Deutsche Automobilgesellsch Batteriekasten
US5620057A (en) 1994-12-19 1997-04-15 General Motors Corporation Electric vehicle battery enclosure
JPH08250151A (ja) * 1995-03-14 1996-09-27 Matsushita Electric Ind Co Ltd 密閉形アルカリ蓄電池の単位電池
JPH09274899A (ja) 1996-04-03 1997-10-21 Daihatsu Motor Co Ltd 電気自動車のバッテリ取付装置
JP3428336B2 (ja) * 1996-12-26 2003-07-22 松下電器産業株式会社 角形密閉式蓄電池
TW364221B (en) 1998-03-24 1999-07-11 Electric Fuel Ltd Cell for a metal-air battery
JP3485162B2 (ja) * 1998-10-09 2004-01-13 矢崎総業株式会社 バッテリ用接続プレートおよびその製造方法
FR2790870B1 (fr) * 1999-03-11 2001-06-01 Oldham France Sa Coffre pour ensemble de batteries d'accumulateurs electriques
JP3498636B2 (ja) * 1999-06-09 2004-02-16 日産自動車株式会社 電気自動車のバッテリ取付構造
JP2001313009A (ja) * 2000-02-24 2001-11-09 Sanyo Electric Co Ltd 対流促進膜付き密閉電池
JP4114030B2 (ja) * 2000-03-13 2008-07-09 大阪瓦斯株式会社 電池モジュール及び扁平形状電池
CN1193443C (zh) * 2000-09-29 2005-03-16 Lg化学株式会社 二次电池的安全板
JP2002246068A (ja) * 2001-02-15 2002-08-30 Osaka Gas Co Ltd 非水系二次電池
JP2002298827A (ja) * 2001-03-28 2002-10-11 Osaka Gas Co Ltd 非水系二次電池
JP2003007345A (ja) 2001-04-16 2003-01-10 Mitsubishi Chemicals Corp リチウム二次電池
EP1391950B1 (en) * 2001-04-20 2010-08-25 GS Yuasa Corporation Anode active matter and production method therefor, non- aqueous electrolyte secondary battery-use anode, and non-aqueous electrolyte secondary battery
US6808842B2 (en) 2002-02-08 2004-10-26 Microsoft Corporation Battery pack
US6780539B2 (en) * 2002-02-21 2004-08-24 The Gillette Company Alkaline battery with flat housing
JP4242665B2 (ja) 2002-05-13 2009-03-25 パナソニック株式会社 組電池の冷却装置及び二次電池
JP3711962B2 (ja) * 2002-06-28 2005-11-02 日産自動車株式会社 薄型電池
JP3729164B2 (ja) * 2002-08-05 2005-12-21 日産自動車株式会社 自動車用電池
KR20040017094A (ko) * 2002-08-20 2004-02-26 삼성에스디아이 주식회사 안전변을 구비한 파우치형 이차전지
JP4170714B2 (ja) * 2002-09-20 2008-10-22 松下電器産業株式会社 組電池
JP2004296110A (ja) * 2003-03-25 2004-10-21 Osaka Gas Co Ltd 非水系二次電池
KR100580972B1 (ko) * 2004-01-07 2006-05-17 주식회사 엘지화학 전지
JP5040056B2 (ja) * 2004-02-17 2012-10-03 パナソニック株式会社 略長円形状電池
JP2005285633A (ja) * 2004-03-30 2005-10-13 Osaka Gas Co Ltd 非水系二次電池及びその充電方法
JP2006107995A (ja) * 2004-10-07 2006-04-20 Aoi Electronics Co Ltd 放熱性及び安全性に優れた大容量二次電池
JP5220588B2 (ja) * 2005-05-02 2013-06-26 エルジー・ケム・リミテッド 安全性が向上した中型又は大型の改良バッテリーパック
JP2007027011A (ja) 2005-07-20 2007-02-01 Sanyo Electric Co Ltd 電源装置
JP4211769B2 (ja) 2005-08-19 2009-01-21 日産自動車株式会社 自動車用電池
CN100479251C (zh) 2006-03-12 2009-04-15 中国科学技术大学 一种平板型电极支撑固体氧化物燃料电池
CN100483792C (zh) * 2006-05-26 2009-04-29 比亚迪股份有限公司 电动汽车的电池组件
JP5378670B2 (ja) 2006-10-13 2013-12-25 パナソニック株式会社 電池パック
JP4420018B2 (ja) * 2006-12-28 2010-02-24 三菱自動車工業株式会社 電気自動車のバッテリ搭載構造
CN201044247Y (zh) * 2007-01-08 2008-04-02 罗杰 一种加长型车用电池
TWM319637U (en) 2007-01-08 2007-09-21 Shr-Shiung Shie Electromagnetic insulation card
JP2008171628A (ja) * 2007-01-10 2008-07-24 Furukawa Sky Kk 電池ケースの放熱用仕切り板
EP3121866B1 (en) * 2007-03-30 2023-05-17 Sony Group Corporation Battery pack
TW200840170A (en) * 2007-03-30 2008-10-01 Amita Technologies Inc Power disconnection safety structure for preventing soft-shell lithium-ion battery overcharging
KR101087942B1 (ko) * 2007-04-02 2011-11-28 미토시 이시이 축전지, 축전지 수납 장치, 축전지 충전 장치, 및 축전지의 사용량 정산 장치
KR101141057B1 (ko) * 2007-06-28 2012-05-03 주식회사 엘지화학 중대형 전지팩
JP5295664B2 (ja) * 2007-07-12 2013-09-18 株式会社東芝 非水電解質電池用電極および非水電解質電池
JP5164470B2 (ja) * 2007-08-07 2013-03-21 三洋電機株式会社 パック電池
CN100495280C (zh) 2007-11-01 2009-06-03 上海交通大学 动力锂电池组温度控制装置
CN201146206Y (zh) * 2008-01-21 2008-11-05 浙江超威电源有限公司 一种电动车用电池
JP5617630B2 (ja) * 2008-03-14 2014-11-05 日本電気株式会社 フィルム外装電気デバイス
JP5331517B2 (ja) 2008-04-14 2013-10-30 日産自動車株式会社 組電池、および組電池を搭載した車両
US8012407B2 (en) 2008-07-08 2011-09-06 Siemens Industry, Inc. Power clamping for water boxes
JP4659861B2 (ja) * 2008-07-09 2011-03-30 シャープ株式会社 扁平型二次電池およびその製造方法
CN101521294B (zh) 2008-10-10 2011-05-18 比亚迪股份有限公司 一种电动汽车用动力电池
CN201387916Y (zh) * 2009-02-27 2010-01-20 天津力神电池股份有限公司 大尺寸聚合物电池正反面贴保护胶带工装
WO2010114317A2 (ko) * 2009-04-01 2010-10-07 주식회사 엘지화학 우수한 방열 특성의 전지모듈 및 중대형 전지팩
WO2010114318A2 (ko) * 2009-04-01 2010-10-07 주식회사 엘지화학 모듈의 구조 설계에 유연성을 가진 전지모듈 및 이를 포함하는 중대형 전지팩
US8268469B2 (en) * 2009-04-22 2012-09-18 Tesla Motors, Inc. Battery pack gas exhaust system
US10476051B2 (en) * 2009-04-22 2019-11-12 Tesla, Inc. Battery pack base plate heat exchanger
CN101877413B (zh) * 2009-04-30 2013-10-30 比亚迪股份有限公司 一种单体电池及包含该单体电池的动力电池组
JP5392951B2 (ja) * 2009-06-18 2014-01-22 古河電池株式会社 二次電池
CN201682023U (zh) * 2009-06-26 2010-12-22 比亚迪股份有限公司 一种锂离子电池
CN101604763B (zh) * 2009-07-07 2012-07-04 广东国光电子有限公司 一种窄型锂离子电池及其制造工艺
JP5466906B2 (ja) 2009-09-18 2014-04-09 パナソニック株式会社 電池モジュール
FR2951029A1 (fr) * 2009-10-01 2011-04-08 Peugeot Citroen Automobiles Sa Module et unite de stockage d'energie electrique plat pour coffre a bagage de vehicule et procede de mise en place
CN102576835B (zh) * 2009-10-13 2014-12-10 株式会社Lg化学 具有优异的结构稳定性的电池模块
KR101182427B1 (ko) 2009-12-21 2012-09-12 에스비리모티브 주식회사 배터리 팩 및 이를 구비하는 자동차
CN201766132U (zh) * 2010-02-11 2011-03-16 北京神州巨电新能源技术开发有限公司 大容量聚合物锂离子电池结构
JP2011210619A (ja) * 2010-03-30 2011-10-20 Sanyo Electric Co Ltd 組電池
WO2011121755A1 (ja) 2010-03-31 2011-10-06 トヨタ自動車株式会社 中古二次電池の選別方法、リビルト電池パック、これを用いた車両及び電池使用機器、並びにリビルト電池パックの製造方法
KR200479471Y1 (ko) * 2010-05-21 2016-02-01 그라프텍 인터내셔널 홀딩스 인코포레이티드 각형 리튬 이온 배터리 팩용 서멀 솔루션
DE102011102019B4 (de) * 2010-06-02 2014-05-28 Mazda Motor Corporation Batteriemontagestruktur für ein Elektromotorfahrzeug
JP5384432B2 (ja) 2010-06-04 2014-01-08 株式会社神戸製鋼所 自動車のバッテリートレイ
US9083062B2 (en) 2010-08-02 2015-07-14 Envia Systems, Inc. Battery packs for vehicles and high capacity pouch secondary batteries for incorporation into compact battery packs
CN101944638B (zh) * 2010-09-08 2013-06-12 奇瑞汽车股份有限公司 一种电动汽车用锂离子电池组的制造方法
US9843027B1 (en) 2010-09-14 2017-12-12 Enovix Corporation Battery cell having package anode plate in contact with a plurality of dies
JP5558283B2 (ja) * 2010-09-14 2014-07-23 本田技研工業株式会社 電池モジュール
US20130177793A1 (en) * 2010-09-20 2013-07-11 Tetsuo Seki Assembling pallet for secondary battery and method of the secondary battery
JP5610309B2 (ja) * 2010-09-30 2014-10-22 株式会社Gsユアサ 単電池、電池モジュール及び組電池
KR101191660B1 (ko) 2010-11-08 2012-10-17 에스비리모티브 주식회사 전지 모듈
US20120261206A1 (en) 2010-11-30 2012-10-18 Shunsuke Yasui Battery block, battery module, and battery pack arrangement structure
JP2012119138A (ja) 2010-11-30 2012-06-21 Panasonic Corp 電池モジュール
US20120288738A1 (en) 2010-12-13 2012-11-15 Shunsuke Yasui Battery pack
KR101220768B1 (ko) 2010-12-28 2013-01-21 주식회사 포스코 전기 자동차용 언더 바디
CN102683907B (zh) * 2011-01-24 2015-01-07 冯国安 用于电池单元之间的电气连接的夹子系统
DE102011000693B4 (de) 2011-02-14 2021-03-04 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Elektrischer Energiespeicher eines Kraftfahrzeugs
JP2012209248A (ja) 2011-03-11 2012-10-25 Nissan Motor Co Ltd 車載用バッテリ
EP2693515A4 (en) 2011-03-31 2014-12-03 Nec Energy Devices Ltd BATTERY PACK AND ELECTRIC BIKE
WO2012140727A1 (ja) 2011-04-12 2012-10-18 日立ビークルエナジー株式会社 二次電池モジュール
CN202034426U (zh) 2011-04-27 2011-11-09 湖北骆驼蓄电池研究院有限公司 卷绕式蓄电池排气壳体
JP5784978B2 (ja) * 2011-05-17 2015-09-24 日立オートモティブシステムズ株式会社 非水電解質電池
JP5853417B2 (ja) * 2011-05-17 2016-02-09 日産自動車株式会社 電気自動車のバッテリパック構造
JP5803259B2 (ja) * 2011-05-17 2015-11-04 日産自動車株式会社 電気自動車のバッテリパック構造
CN202332978U (zh) 2011-05-25 2012-07-11 天津科斯特汽车技术有限责任公司 电动汽车用动力电池包壳体
JP5513445B2 (ja) * 2011-06-08 2014-06-04 本田技研工業株式会社 車両用電源装置
CN202217748U (zh) 2011-07-05 2012-05-09 惠州比亚迪电池有限公司 一种电池散热装置及电池组
DE102011079037A1 (de) 2011-07-12 2013-01-17 Sb Limotive Company Ltd. Batteriezellenmodul, Verfahren zum Betreiben eines Batteriezellenmoduls sowie Batterie und Kraftfahrzeug
CN202178305U (zh) * 2011-07-19 2012-03-28 惠州比亚迪电池有限公司 一种电动汽车电源模块
CN102956934B (zh) 2011-08-17 2015-05-13 比亚迪股份有限公司 一种电池模组
DE102011111229A1 (de) 2011-08-20 2013-02-21 GEDIA Gebrüder Dingerkus GmbH Batterieeinhausung für Elektro- und Hybridfahrzeuge
KR101292984B1 (ko) * 2011-08-22 2013-08-02 로베르트 보쉬 게엠베하 배터리 모듈
WO2013031614A1 (ja) * 2011-08-26 2013-03-07 三洋電機株式会社 電源装置及びこれを備える車両並びに蓄電装置
CN202210539U (zh) 2011-08-31 2012-05-02 重庆长安汽车股份有限公司 一种动力电池包支承固定结构
KR101272524B1 (ko) * 2011-09-20 2013-06-11 현대자동차주식회사 배터리 셀용 방열판 및 이를 갖는 배터리 모듈
JP5533828B2 (ja) 2011-09-21 2014-06-25 株式会社Gsユアサ 電池
CN202268412U (zh) * 2011-09-28 2012-06-06 上海比亚迪有限公司 一种车用动力电池包
CN202268403U (zh) 2011-09-29 2012-06-06 深圳市沃特玛电池有限公司 电池箱
US9614208B2 (en) 2011-10-10 2017-04-04 Samsung Sdi Co., Ltd. Battery pack with degassing cover and plate thereon
CN103931020B (zh) 2011-11-11 2016-08-17 松下知识产权经营株式会社 电池组
JP5692019B2 (ja) * 2011-11-22 2015-04-01 トヨタ自動車株式会社 サービスホールカバー取付構造、及びこれを備えた車両用電池搭載構造
JP5720544B2 (ja) * 2011-11-23 2015-05-20 株式会社デンソー 電池ユニット
CN202373642U (zh) 2011-12-02 2012-08-08 苏州冠硕新能源有限公司 一种锂电池
WO2013098982A1 (ja) * 2011-12-28 2013-07-04 日立ビークルエナジー株式会社 電池モジュール、電池ブロック、及び、電池パック
KR101328010B1 (ko) * 2011-12-28 2013-11-13 주식회사 피엠그로우 전기 자동차용 배터리 케이스
KR101488411B1 (ko) * 2012-01-02 2015-02-03 주식회사 엘지화학 연결부재, 측면 지지부재 및 하단 지지부재를 포함하는 전지팩
KR101447057B1 (ko) * 2012-01-26 2014-10-07 주식회사 엘지화학 전지셀의 장착 및 방열을 위한 방열 지지부재를 포함하는 전지모듈
JP5880086B2 (ja) * 2012-01-31 2016-03-08 三菱自動車工業株式会社 電池容器
WO2013129732A1 (ko) * 2012-02-28 2013-09-06 세방전지(주) 연결장치가 구비된 리튬전지
US8652672B2 (en) 2012-03-15 2014-02-18 Aquion Energy, Inc. Large format electrochemical energy storage device housing and module
JP2013211197A (ja) * 2012-03-30 2013-10-10 Primearth Ev Energy Co Ltd 電池モジュール及び組電池
WO2013161370A1 (ja) * 2012-04-26 2013-10-31 積水化学工業株式会社 蓄電システム、及びカートリッジ
WO2013168980A1 (ko) * 2012-05-07 2013-11-14 주식회사 엘지화학 비정형 구조의 전지팩
US8592063B1 (en) * 2012-05-29 2013-11-26 Vecture, Inc. Battery pack pressure valve
KR101947831B1 (ko) 2012-06-14 2019-02-13 현대자동차주식회사 차량용 고전압 배터리팩
JP2014022277A (ja) 2012-07-20 2014-02-03 Primearth Ev Energy Co Ltd 電池パックの支持構造及び電池パック
KR101392778B1 (ko) * 2012-07-23 2014-05-08 임기정 생두를 커피로 자동 생산하여 소비자에게 전달하는 커피메이트시스템의 상품을 이송시키기 위한 이송수단
JP6015190B2 (ja) 2012-07-23 2016-10-26 三菱自動車工業株式会社 バッテリボックス
CN202712297U (zh) 2012-07-24 2013-01-30 上海电巴新能源科技有限公司 一种车载动力电池箱
JP6136168B2 (ja) 2012-09-28 2017-05-31 株式会社Gsユアサ 組電池
JP6070046B2 (ja) 2012-10-16 2017-02-01 トヨタ自動車株式会社 車両用電池搭載構造
JP5939307B2 (ja) 2012-10-25 2016-06-22 日産自動車株式会社 電池モジュールのガス排出構造
KR101934396B1 (ko) 2012-10-30 2019-01-02 삼성에스디아이 주식회사 배터리 조립체
KR101441210B1 (ko) * 2012-12-27 2014-09-17 에이치엘그린파워 주식회사 배터리 셀의 확장 및 변경이 용이한 배터리 모듈
KR101669118B1 (ko) 2013-01-03 2016-10-25 삼성에스디아이 주식회사 배터리 팩
CN203150637U (zh) * 2013-01-24 2013-08-21 东风汽车公司 纯电动汽车动力电池单体成组结构
US20160006006A1 (en) 2013-02-14 2016-01-07 Sanyo Electric Co., Ltd. Battery module
JP2014164795A (ja) 2013-02-21 2014-09-08 Nissan Motor Co Ltd バッテリユニット
WO2014162963A1 (ja) * 2013-04-03 2014-10-09 Necエナジーデバイス株式会社 電池モジュール
US20140357757A1 (en) 2013-05-30 2014-12-04 Sabic Global Technologies B.V. Poly(phenylene ether) composition and article
JP6174381B2 (ja) 2013-06-06 2017-08-02 日立オートモティブシステムズ株式会社 蓄電ブロックおよび蓄電モジュール
JP2015022915A (ja) * 2013-07-19 2015-02-02 住友電気工業株式会社 二次電池パック及びこれを備えた移動体
US9748548B2 (en) * 2013-07-30 2017-08-29 Johnson Controls Technology Company Pouch frame with integral circuitry for battery module
JP2015057759A (ja) * 2013-08-09 2015-03-26 住友電気工業株式会社 電池モジュール、電池モジュールユニットおよび電池パック
JP6158006B2 (ja) * 2013-09-17 2017-07-05 株式会社東芝 音声処理装置、方法、及びプログラム
KR101699855B1 (ko) 2013-09-30 2017-01-25 주식회사 엘지화학 전기 절연성 부재를 포함하는 전지팩
WO2015064096A1 (ja) 2013-10-31 2015-05-07 パナソニックIpマネジメント株式会社 電池モジュール
CN203600973U (zh) * 2013-11-15 2014-05-21 上汽通用五菱汽车股份有限公司 一种车用动力电池系统的布置结构
CN203760534U (zh) 2013-11-20 2014-08-06 北京科易动力科技有限公司 一种电池模块
JP2015118799A (ja) 2013-12-18 2015-06-25 古河電池株式会社 蓄電池収納箱
CN104795527B (zh) 2014-01-21 2018-07-17 微宏动力系统(湖州)有限公司 电池模块
CN103779613B (zh) * 2014-02-19 2016-01-20 广州丰江电池新技术股份有限公司 超薄锂离子电池化成系统、化成方法及制作的电池
CN103824984B (zh) 2014-03-10 2016-05-18 江西博能上饶客车有限公司 用于新能源汽车的快换锂电池箱总成
DE102014207403A1 (de) 2014-04-17 2015-10-22 Robert Bosch Gmbh Batterieeinheit mit einer Aufnahmeeinrichtung und einer Mehrzahl von elektrochemischen Zellen sowie Batteriemodul mit einer Mehrzahl von solchen Batterieeinheiten
CN105024022B (zh) * 2014-04-30 2017-12-26 湖南大学 一种层式软包锂离子电池模块及其电池组
JP2017123212A (ja) * 2014-05-14 2017-07-13 三洋電機株式会社 電池パックおよび電子機器
JP6487466B2 (ja) * 2014-06-03 2019-03-20 サムスン エスディアイ カンパニー, リミテッドSamsung Sdi Co., Ltd. 電池トレイ
CN203983373U (zh) 2014-07-16 2014-12-03 中航锂电(洛阳)有限公司 电池保护装置及使用该电池保护装置的电池模块
CN204029891U (zh) 2014-07-25 2014-12-17 北汽福田汽车股份有限公司 电池模组
JP6441125B2 (ja) 2014-07-31 2018-12-19 株式会社東芝 非水電解質電池及び電池パック
DE102014216407A1 (de) 2014-08-19 2016-02-25 Robert Bosch Gmbh Aufnahme für ein Batteriemodul und Batteriemodul aufweisend eine derartige Aufnahme
US9893390B2 (en) 2014-08-27 2018-02-13 Duracell U.S. Operations, Inc. Battery pack including an indicator circuit
CN105489828B (zh) * 2014-09-15 2019-11-05 比亚迪股份有限公司 动力电池模组和具有其的动力电池包
US20160093843A1 (en) 2014-09-26 2016-03-31 Powertree Services, Inc. Systems and methods for a modular battery pack
US20160093854A1 (en) 2014-09-26 2016-03-31 Johnson Controls Technology Company Prismatic battery cell energy density for a lithium ion battery module
CN204189846U (zh) 2014-09-30 2015-03-04 比亚迪股份有限公司 一种动力电池模组
CN204130608U (zh) 2014-10-23 2015-01-28 北汽福田汽车股份有限公司 一种新型电池箱结构
US20160133889A1 (en) * 2014-11-07 2016-05-12 Cheng Uei Precision Industry Co., Ltd. Battery holder
CN104319360B (zh) 2014-11-11 2017-01-25 东莞新能源科技有限公司 锂离子电池和电池包
KR20160059166A (ko) * 2014-11-18 2016-05-26 삼성에스디아이 주식회사 배터리 팩
JP6330634B2 (ja) * 2014-11-26 2018-05-30 株式会社オートネットワーク技術研究所 蓄電モジュール
DE102014117547B4 (de) * 2014-11-28 2016-08-04 Technische Universität München Gehäuse für einen Zellstapel einer Batterie und Verfahren zur Herstellung eines solchen
CN104617244B (zh) * 2014-12-05 2017-02-22 超威电源有限公司 电动车蓄电池抗震防撞结构
US9868361B2 (en) * 2014-12-11 2018-01-16 Ford Global Technologies, Llc Battery impact absorbing system
KR101806415B1 (ko) * 2014-12-19 2017-12-07 주식회사 엘지화학 냉각효율이 향상된 이차전지 셀 및 이를 포함하는 모듈형 전지
KR101792820B1 (ko) * 2014-12-22 2017-11-01 주식회사 엘지화학 파단 유도부가 형성된 단자 접속부재 및 댐핑부재를 포함하는 전지팩
JP6184938B2 (ja) * 2014-12-25 2017-08-23 本田技研工業株式会社 蓄電モジュールが搭載される電動車両
CN104576999A (zh) * 2015-01-14 2015-04-29 重庆长安汽车股份有限公司 电动汽车及动力电池包
CN204348866U (zh) * 2015-01-26 2015-05-20 盐城师范学院 一种高比能量锂离子电池包的散热结构
US9283837B1 (en) * 2015-01-28 2016-03-15 Atieva, Inc. Compliantly mounted motor assembly utilizing dual levels of vibration isolation
KR20160094235A (ko) * 2015-01-30 2016-08-09 삼성에스디아이 주식회사 전력저장장치
US9662997B2 (en) * 2015-02-11 2017-05-30 Ford Global Technologies, Llc Method and apparatus for attaching a crushable carbon fiber reinforced polymer structure to the outer surface of a battery enclosure
US10403869B2 (en) 2015-04-13 2019-09-03 Cps Technology Holdings, Llc Adhesive tape for positioning battery cells in a battery module
WO2016174855A1 (ja) * 2015-04-28 2016-11-03 三洋電機株式会社 電源装置及びこれを備える車両
CN204614833U (zh) 2015-05-11 2015-09-02 宁德时代新能源科技有限公司 电池模组及动力电池系统
CN204577542U (zh) 2015-05-14 2015-08-19 中国科学院宁波材料技术与工程研究所 金属空气电池堆及其电池单体
CN204668376U (zh) 2015-05-20 2015-09-23 微宏动力系统(湖州)有限公司 电池组系统
CN204651372U (zh) * 2015-06-05 2015-09-16 宁德时代新能源科技有限公司 用于电池模组的上盖组件
JP6698082B2 (ja) 2015-06-23 2020-05-27 ヤマハ発動機株式会社 磁歪式センサ、磁性構造体およびその製造方法、ならびに、磁歪式センサを備えたモータ駆動ユニットおよび電動アシスト付き自転車
CN204809680U (zh) 2015-06-26 2015-11-25 枣庄市航宇电力电器设备制造有限公司 一种箱式变电站箱体
CN204732461U (zh) 2015-07-01 2015-10-28 深圳市慧通天下科技股份有限公司 防爆电池箱
CN204885223U (zh) 2015-07-18 2015-12-16 新余市晟源科技有限公司 一种锂电池防爆外壳
CN105024112B (zh) 2015-07-28 2017-09-26 合肥献芝新能源有限公司 圆形带密封圈无极耳锌空电池
CN204857906U (zh) 2015-07-28 2015-12-09 合肥献芝新能源有限公司 圆形带密封圈无锌极耳锌空电池
JP6606907B2 (ja) 2015-07-30 2019-11-20 株式会社Gsユアサ 蓄電装置
KR102036666B1 (ko) 2015-08-24 2019-10-28 주식회사 엘지화학 라멜라 구조 전극 및 이를 포함하는 이차 전지
CN204991802U (zh) * 2015-08-31 2016-01-20 天津森丰科技有限公司 一种电动车电池盒
JP2017054683A (ja) * 2015-09-09 2017-03-16 プライムアースEvエナジー株式会社 電池モジュール
CN106558659B (zh) 2015-09-24 2019-07-26 比亚迪股份有限公司 电池包和具有该电池包的车辆
CN105244462B (zh) 2015-09-25 2017-10-17 中国科学院广州能源研究所 电动汽车动力电池组的热管理系统
DE102015218727A1 (de) * 2015-09-29 2017-03-30 Robert Bosch Gmbh Batteriemodul und Batteriepack
CN205016591U (zh) * 2015-09-29 2016-02-03 比亚迪股份有限公司 一种电池包体及其汽车
JP6118381B2 (ja) 2015-09-30 2017-04-19 富士重工業株式会社 車載用バッテリー
JP6350480B2 (ja) * 2015-10-05 2018-07-04 トヨタ自動車株式会社 密閉型電池
KR102030726B1 (ko) 2015-10-15 2019-10-10 주식회사 엘지화학 배터리 팩
KR102127273B1 (ko) * 2015-11-05 2020-06-26 주식회사 엘지화학 보강 지지부재를 포함하고 있는 전지팩
US10497985B2 (en) 2015-11-06 2019-12-03 Sanyo Electric Co., Ltd. Electrode plate for power storage devices and power storage device
KR102032504B1 (ko) 2015-11-06 2019-11-08 주식회사 엘지화학 내충격성이 향상된 배터리 모듈
CN205159465U (zh) 2015-11-24 2016-04-13 国联汽车动力电池研究院有限责任公司 一种恒温动力电池模块
JP6646427B2 (ja) * 2015-12-15 2020-02-14 豊田鉄工株式会社 電池ケース
CN205282524U (zh) 2015-12-16 2016-06-01 比亚迪股份有限公司 托盘、动力电池包及电动车
CN205282525U (zh) 2015-12-16 2016-06-01 惠州比亚迪电池有限公司 托盘、动力电池包及电动车
CN106257714A (zh) 2015-12-21 2016-12-28 上海卡耐新能源有限公司 一种新体系锂离子电池及其制备方法
WO2017117720A1 (zh) * 2016-01-05 2017-07-13 宁德时代新能源科技股份有限公司 电池模组及电池包
KR101916720B1 (ko) 2016-01-05 2018-11-08 엘지전자 주식회사 배터리 모듈 및 그 제조방법, 배터리 모듈을 이용한 전기 자동차
JP6115659B2 (ja) * 2016-01-27 2017-04-19 三菱自動車工業株式会社 電池容器
KR102061872B1 (ko) 2016-01-28 2020-01-02 주식회사 엘지화학 이차전지 팩 케이스 및 이를 포함하는 이차전지 팩
CN205488247U (zh) * 2016-01-31 2016-08-17 谢振华 一种锂电池的防爆阀结构
US10017037B2 (en) * 2016-02-09 2018-07-10 Nio Usa, Inc. Vehicle having a battery pack directly attached to the cross rails of a frame structure
CN205429111U (zh) * 2016-02-22 2016-08-03 迪吉亚节能科技股份有限公司 锂电池导热模块
CN107123769B (zh) 2016-02-25 2019-09-13 比亚迪股份有限公司 单体电池、电池模组、电池包及电动汽车
WO2017143752A1 (zh) * 2016-02-25 2017-08-31 比亚迪股份有限公司 单体电池、电池模组、动力电池及电动汽车
CN107123776B (zh) * 2016-02-25 2019-11-08 比亚迪股份有限公司 单体电池、电池模组、动力电池及电动汽车
CN205621793U (zh) 2016-02-25 2016-10-05 比亚迪股份有限公司 一种电池模组、包含该电池模组的动力电池及电动汽车
KR102072764B1 (ko) 2016-03-03 2020-02-03 주식회사 엘지화학 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
KR102034208B1 (ko) 2016-03-03 2019-10-18 주식회사 엘지화학 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
KR101805546B1 (ko) 2016-03-08 2017-12-07 삼성에스디아이 주식회사 절곡부를 갖춘 연결 탭을 포함하는 전지 팩
DE102016203818A1 (de) * 2016-03-09 2017-09-14 Robert Bosch Gmbh Batteriepack
CN205645921U (zh) * 2016-04-08 2016-10-12 比亚迪股份有限公司 电池包箱体和具有其的车辆
CN105845860B (zh) 2016-04-13 2018-05-08 王建标 用于电动汽车的蓄电池
JP6520808B2 (ja) * 2016-04-21 2019-05-29 トヨタ自動車株式会社 車両のバッテリ搭載構造
JP6512162B2 (ja) * 2016-04-21 2019-05-15 トヨタ自動車株式会社 車両のバッテリ搭載構造
JP6840934B2 (ja) 2016-04-25 2021-03-10 トヨタ自動車株式会社 車両のバッテリ搭載構造
JP6614012B2 (ja) * 2016-04-26 2019-12-04 トヨタ自動車株式会社 車両のバッテリ搭載構造
JP2017197093A (ja) * 2016-04-28 2017-11-02 トヨタ自動車株式会社 車両のバッテリ搭載構造
SG10202106068XA (en) * 2016-05-13 2021-07-29 Enovix Corp Dimensional constraints for three-dimensional batteries
CN107394063B (zh) * 2016-05-16 2023-06-06 宁德时代新能源科技股份有限公司 二次电池
CN105762316A (zh) * 2016-05-20 2016-07-13 宁德时代新能源科技股份有限公司 一种电池箱
CN107437594B (zh) 2016-05-27 2020-03-10 宁德时代新能源科技股份有限公司 电池包
JP2017228391A (ja) * 2016-06-21 2017-12-28 本田技研工業株式会社 角型電池の製造方法、車両の製造方法、角型電池の設計支援方法、角型電池及び車両
WO2017221536A1 (ja) * 2016-06-21 2017-12-28 Necエナジーデバイス株式会社 枠部材及び枠部材を用いた電池パック
US10062876B2 (en) * 2016-07-07 2018-08-28 Samsung Sdi Co., Ltd. Battery module carrier, battery module, and vehicle with a battery system
US11139521B2 (en) * 2016-07-07 2021-10-05 Samsung Sdi Co., Ltd. Battery submodule carrier, battery submodule, battery system and vehicle
US11075423B2 (en) * 2016-07-07 2021-07-27 Samsung Sdi Co., Ltd. Battery submodule carrier, battery submodule, battery system and vehicle
KR20180006150A (ko) 2016-07-08 2018-01-17 주식회사 엘지화학 안전성이 개선된 셀 모듈 어셈블리 및 이를 위한 팩 구조물
US10367221B2 (en) * 2016-07-14 2019-07-30 The Curators Of The University Of Missouri Distributed energy storage system
CN205900631U (zh) * 2016-07-21 2017-01-18 北京新能源汽车股份有限公司 动力电池和具有其的汽车
CN205900633U (zh) * 2016-07-21 2017-01-18 北京新能源汽车股份有限公司 动力电池和具有其的汽车
CN205900638U (zh) 2016-07-21 2017-01-18 北京新能源汽车股份有限公司 动力电池和具有其的汽车
CN106098993B (zh) * 2016-07-26 2018-08-07 广东松湖动力技术有限公司 一种电池箱
JP6615714B2 (ja) 2016-07-29 2019-12-04 本田技研工業株式会社 電気自動車用のバッテリパック
CN106058111B (zh) * 2016-08-12 2018-09-11 辽宁比科新能源股份有限公司 一种热均衡锂离子电池包
CN107768560A (zh) 2016-08-16 2018-03-06 原道电子股份有限公司 具有导流隔板结构的电池模块
CN205960060U (zh) 2016-08-16 2017-02-15 原道电子股份有限公司 具有导流隔板结构的电池模块
KR102119183B1 (ko) 2016-08-18 2020-06-04 주식회사 엘지화학 배터리 모듈
CN106182714B (zh) * 2016-08-31 2019-04-30 南通鼎鑫电池有限公司 一种大容量聚合物锂电池的冲坑磨具
CN106299166B (zh) 2016-09-20 2020-02-11 宁德时代新能源科技股份有限公司 电池包
CN205992578U (zh) * 2016-09-21 2017-03-01 宁波利维能储能系统有限公司 兼具加热与散热功能的电池包
CN107845742A (zh) * 2016-09-21 2018-03-27 宁德时代新能源科技股份有限公司 动力电池及其电池模组
CN106992273B (zh) * 2016-09-21 2018-09-11 比亚迪股份有限公司 动力电池包
CN206040913U (zh) * 2016-09-29 2017-03-22 宁德时代新能源科技股份有限公司 电池模组
CN107887536B (zh) * 2016-09-30 2021-08-20 蜂巢能源科技有限公司 电池包
CN206134803U (zh) * 2016-10-17 2017-04-26 宁德时代新能源科技股份有限公司 二次电芯
CN206259400U (zh) 2016-10-18 2017-06-16 南京金邦动力科技有限公司 一种汽车锂电池组
EP3530324A4 (en) * 2016-10-18 2020-06-10 Hitachi, Ltd. STORAGE BATTERY DEVICE FOR ELECTRIC AUTORAIL WITH STORAGE BATTERY, AND ELECTRIC AUTORAIL WITH STORAGE BATTERY
CN206364073U (zh) 2016-10-25 2017-07-28 微宏动力系统(湖州)有限公司 方壳电池
JP6680181B2 (ja) * 2016-10-26 2020-04-15 株式会社デンソー 電池パック
CN206134820U (zh) 2016-11-02 2017-04-26 天能电池集团(安徽)有限公司 铅酸蓄电池阶梯结构板栅
JP6629710B2 (ja) 2016-11-08 2020-01-15 トヨタ自動車株式会社 組電池
CN206225503U (zh) * 2016-11-09 2017-06-06 宝沃汽车(中国)有限公司 电池、具有所述电池的电池组及具有所述电池组的电池包
CN106450089B (zh) * 2016-11-09 2023-02-28 安徽天鑫能源科技有限公司 一种无模组化电池包结构
CN108075063B (zh) * 2016-11-09 2021-06-29 Cps科技控股有限公司 具有排气通道的电池包
CN106486625B (zh) * 2016-11-11 2019-06-04 宁德时代新能源科技股份有限公司 电池包
CN108075065A (zh) 2016-11-18 2018-05-25 比亚迪股份有限公司 电池包
CN206349418U (zh) * 2016-11-18 2017-07-21 比亚迪股份有限公司 电池包
DE102016223220A1 (de) * 2016-11-23 2018-05-24 Volkswagen Aktiengesellschaft Batteriegehäuse für ein Fahrzeug
JP6693394B2 (ja) * 2016-11-24 2020-05-13 トヨタ自動車株式会社 車載電池パック
CN106627081A (zh) 2016-11-24 2017-05-10 深圳市沃特玛电池有限公司 一种电动汽车底盘
CN206322750U (zh) * 2016-11-30 2017-07-11 惠州比亚迪实业有限公司 一种电池托盘及电池包
EP3331055B1 (en) 2016-12-05 2020-09-16 Samsung SDI Co., Ltd. Battery system including removable battery component carriers
JP6555244B2 (ja) * 2016-12-19 2019-08-07 トヨタ自動車株式会社 車両
CA3047021A1 (en) * 2016-12-19 2018-06-28 Dana Canada Corporation Battery cooler support architecture
CN106684287A (zh) 2016-12-20 2017-05-17 常州普莱德新能源电池科技有限公司 电池模组
CN206532801U (zh) 2016-12-22 2017-09-29 惠州比亚迪实业有限公司 一种电池托盘及电池包
JP6717189B2 (ja) * 2016-12-22 2020-07-01 トヨタ自動車株式会社 蓄電装置
CN206374545U (zh) 2016-12-23 2017-08-04 比亚迪股份有限公司 电动车顶围电池包组件和具有其的电动车
US11322793B2 (en) 2016-12-27 2022-05-03 Panasonic Inteilectual Property Management Co., Ltd. Battery module
JP6798310B2 (ja) * 2016-12-28 2020-12-09 日産自動車株式会社 車両搭載用の電池パック
WO2018125641A1 (en) 2016-12-28 2018-07-05 Nanotek Instruments, Inc. Flexible and shape-conformal rope-shape alkali metal batteries
CN107425159A (zh) * 2017-01-04 2017-12-01 上海蓝诺新能源技术有限公司 软包电池模组
PL3345779T3 (pl) * 2017-01-05 2021-11-22 Samsung Sdi Co., Ltd. Część nadwozia pojazdu i pojazd ze zintegrowanym układem akumulatora
CN106654103B (zh) * 2017-01-20 2019-10-22 宁德时代新能源科技股份有限公司 电池模组端板及电池模组
CN106654114A (zh) 2017-01-22 2017-05-10 北京新能源汽车股份有限公司 一种动力电池结构及汽车
DE102017102699B4 (de) * 2017-02-10 2021-01-28 Benteler Automobiltechnik Gmbh Batterieträger mit verbesserten Crasheigenschaften
CN206595314U (zh) 2017-02-21 2017-10-27 广州小鹏汽车科技有限公司 一种电动汽车电池包泄压防爆结构
CN107256932B (zh) 2017-02-23 2023-06-23 吴华锋 一种电动汽车供电组件
CN206490118U (zh) * 2017-02-27 2017-09-12 宁德时代新能源科技股份有限公司 一种动力电池模组
DE102017104359A1 (de) * 2017-03-02 2018-09-06 Kirchhoff Automotive Deutschland Gmbh Batteriegehäuse sowie Verfahren zum Herstellen eines solchen
DE102017204412A1 (de) 2017-03-16 2018-09-20 Audi Ag Batterie für ein Kraftfahrzeug und Kraftfahrzeug
JP6796188B2 (ja) * 2017-03-21 2020-12-02 日本碍子株式会社 フレーム構造体組立キット、電池モジュール、及び電池モジュールの製造方法
CN206584990U (zh) * 2017-03-28 2017-10-24 长城汽车股份有限公司 电池包用侧板结构、电池包壳体、电池包和车辆
CN206679475U (zh) * 2017-04-01 2017-11-28 比亚迪股份有限公司 电池托盘和车辆
EP3386002B1 (de) * 2017-04-03 2021-02-24 hofer powertrain innovation GmbH Traktionsakkumulator, inbesondere länglicher bauart mit benachbart angeordneten lithium-ionen-sekundärzellen und verfahren zur kontrolle des thermischen flusses in einem traktionsakkumulator
DE202017101961U1 (de) * 2017-04-03 2018-07-04 Hofer Mechatronik Gmbh Traktionsakkumulator, insbesondere länglicher Bauart mit benachbart angeordneten Lithium-Ionen-Sekundärzellen
KR102172517B1 (ko) 2017-04-04 2020-10-30 주식회사 엘지화학 크래쉬 빔 구조를 갖는 배터리 팩
JP6845984B2 (ja) * 2017-04-11 2021-03-24 トヨタ車体株式会社 車両用バッテリートレイ
WO2018198895A1 (ja) * 2017-04-24 2018-11-01 株式会社村田製作所 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
CN206849954U (zh) * 2017-04-26 2018-01-05 微宏动力系统(湖州)有限公司 电池模组
CN206864505U (zh) 2017-04-27 2018-01-09 浙江壹舸能源有限公司 电动车锂电池模组
CN108878698B (zh) * 2017-05-09 2021-08-13 华为技术有限公司 电池包、电池储能系统和电动汽车
WO2018213383A1 (en) 2017-05-16 2018-11-22 Shape Corp. Vehicle battery tray with integrated battery retention and support features
WO2018213475A1 (en) * 2017-05-16 2018-11-22 Shape Corp. Polarized battery tray for a vehicle
CN107275710A (zh) 2017-05-18 2017-10-20 苏州鲁卡斯金属科技有限公司 电池包导热散热装置
CN108933296B (zh) * 2017-05-25 2020-11-24 宁德时代新能源科技股份有限公司 锂离子电池包
CN108933203A (zh) 2017-05-25 2018-12-04 宁德时代新能源科技股份有限公司 电池包
US10319978B2 (en) 2017-05-25 2019-06-11 GM Global Technology Operations LLC Multi-tabbed electrodes having high aspect ratios and batteries incorporating the same
JP7359527B2 (ja) * 2017-05-31 2023-10-11 トヨタ自動車株式会社 電池搭載構造
JP2018206495A (ja) * 2017-05-31 2018-12-27 株式会社日立製作所 二次電池モジュール
DE102017209342A1 (de) * 2017-06-01 2018-12-06 Volkswagen Aktiengesellschaft Unterschale für ein Batteriegehäuse einer Traktionsbatterie und Traktionsbatterie
CN207097887U (zh) 2017-06-06 2018-03-13 北京新能源汽车股份有限公司 电池壳体及其底板组件
KR102165328B1 (ko) 2017-06-22 2020-10-13 주식회사 엘지화학 배터리 팩
CN206893769U (zh) * 2017-06-28 2018-01-16 上海杰士鼎虎动力有限公司 一种冷库叉车电池
WO2019001357A1 (zh) 2017-06-30 2019-01-03 比亚迪股份有限公司 电池托盘、电池包总成以及具有它的车辆
CN107248557A (zh) 2017-07-03 2017-10-13 江苏银基烯碳能源科技有限公司 一种电池箱
CN107195829A (zh) * 2017-07-05 2017-09-22 江西优特汽车技术有限公司 新能源汽车的动力电池
CN107394279A (zh) 2017-07-28 2017-11-24 深圳市博澳能源技术开发有限公司 单体大容量聚合物锂离子电池的封装方法
CN107437606A (zh) * 2017-07-28 2017-12-05 深圳市博澳能源技术开发有限公司 一种单体大容量聚合物锂离子电池的注液方法
CN207967197U (zh) * 2017-07-28 2018-10-12 深圳市博澳能源技术开发有限公司 单体超大容量的聚合物锂离子电池
CN107293809A (zh) 2017-08-01 2017-10-24 珠海格力电器股份有限公司 一种软包锂离子电池及其制造方法
US20190044114A1 (en) * 2017-08-04 2019-02-07 Peter J. DeMar Battery removal, insertion and replacement
CN107644962B (zh) * 2017-08-11 2024-02-02 长沙先度科技有限公司 一种电池包箱体与单体锂电池的连接结构
CN207183353U (zh) 2017-08-11 2018-04-03 湖南小步科技有限公司 一种电池包箱体与单体锂电池的连接结构
CN207233816U (zh) 2017-08-11 2018-04-13 深圳市沃特玛电池有限公司 一种电池包
CN107611296A (zh) * 2017-08-11 2018-01-19 湖南小步科技有限公司 一种电动汽车用锂电池包
CN111108015A (zh) 2017-09-13 2020-05-05 形状集团 具有管状外围壁的车辆电池托盘
CN207398218U (zh) 2017-09-21 2018-05-22 宁德时代新能源科技股份有限公司 电池模组
CN207664083U (zh) 2017-09-25 2018-07-27 安徽鹭江电子工业制造有限公司 一种多规格电池托盘
CN207233915U (zh) * 2017-09-29 2018-04-13 成都雅骏新能源汽车科技股份有限公司 一种水冷散热的电池箱体结构
CN207425959U (zh) 2017-09-29 2018-05-29 东软集团股份有限公司 一种电池包壳体及其内部安装组件
CN207818836U (zh) 2017-09-30 2018-09-04 比亚迪股份有限公司 电池模组、导热件以及电池包
CN207705320U (zh) 2017-10-17 2018-08-07 蔚来汽车有限公司 电池模组以及动力电池
CN207398226U (zh) * 2017-10-17 2018-05-22 宁德时代新能源科技股份有限公司 电池模组
CN207868256U (zh) 2017-10-26 2018-09-14 苏州宇量电池有限公司 一种具有防爆阀的快速排压锂电池
CN107946506B (zh) 2017-10-27 2022-07-29 天津市捷威动力工业有限公司 一种新的动力电池模组结构
CN107833996A (zh) 2017-10-30 2018-03-23 北京普莱德新能源电池科技有限公司 一种可承载双层电池模组的单层电池箱
CN207381449U (zh) 2017-10-31 2018-05-18 宁德时代新能源科技股份有限公司 电池箱体及电池包
CN207441810U (zh) * 2017-11-15 2018-06-01 宁德时代新能源科技股份有限公司 电池模组及电池包
CN207559010U (zh) 2017-11-16 2018-06-29 东莞市迈泰热传科技有限公司 一种新能源电池托盘水冷一体式箱体结构
CN207459036U (zh) 2017-11-24 2018-06-05 天台县银兴机械铸造有限公司 电动汽车用电池托盘
CN107946692A (zh) * 2017-11-27 2018-04-20 安徽欧鹏巴赫新能源科技有限公司 用于电池模组的散热结构
CN207530003U (zh) 2017-11-28 2018-06-22 苏州奥杰汽车技术股份有限公司 一种动力电池包快速拆装结构及一种电动汽车
CN207474601U (zh) 2017-11-28 2018-06-08 福建荣华科技有限公司 锂离子电池及电池模组
CN207781669U (zh) * 2017-11-29 2018-08-28 长城汽车股份有限公司 用于车辆的电池包及具有其的车辆
CN108011069A (zh) * 2017-12-01 2018-05-08 衢州职业技术学院 动力电池以及动力电池的热管理系统
CN207781672U (zh) 2017-12-05 2018-08-28 银隆新能源股份有限公司 电池箱、电池组件及汽车
CN108155311B (zh) * 2017-12-06 2021-03-05 国联汽车动力电池研究院有限责任公司 一种锂离子动力电池液冷模组
CN207818670U (zh) * 2017-12-21 2018-09-04 宁德时代新能源科技股份有限公司 电池模组
CN207558892U (zh) * 2017-12-25 2018-06-29 宁德时代新能源科技股份有限公司 电池模组及电池包
CN207818679U (zh) 2017-12-28 2018-09-04 宁德时代新能源科技股份有限公司 电池模组
CN207743264U (zh) 2018-01-06 2018-08-17 江西安驰新能源科技有限公司 一种用于电动乘用车的电池模组
CN107978800A (zh) * 2018-01-15 2018-05-01 华动智慧信息技术(深圳)有限公司 把单体电池实现高压的方法和制备及其电池组制法
CN207818697U (zh) 2018-01-29 2018-09-04 宁德时代新能源科技股份有限公司 电池及电池模组
CN207967093U (zh) * 2018-01-31 2018-10-12 北京智行鸿远汽车有限公司 一种风冷电池包系统
CN207993982U (zh) * 2018-02-01 2018-10-19 林悦忠 一种新型锂电池
CN207743294U (zh) 2018-02-05 2018-08-17 宁德时代新能源科技股份有限公司 电池包
CN207800740U (zh) * 2018-02-07 2018-08-31 宁德时代新能源科技股份有限公司 电池模组
CN207938676U (zh) * 2018-02-09 2018-10-02 比亚迪股份有限公司 电池托盘及电池包
CN108389986B (zh) 2018-02-11 2021-01-22 长乐致远技术开发有限公司 新能源汽车电池密封箱
CN108417747A (zh) * 2018-02-28 2018-08-17 奇瑞汽车股份有限公司 电池包安装螺栓保护装置及具有其的电动汽车
CN207967121U (zh) * 2018-03-30 2018-10-12 宁德时代新能源科技股份有限公司 电池模组
CN207967123U (zh) 2018-03-30 2018-10-12 宁德时代新能源科技股份有限公司 固定压板以及电池箱
CN208014778U (zh) 2018-03-30 2018-10-26 宁德时代新能源科技股份有限公司 电池箱体以及电池箱
CN208256735U (zh) * 2018-04-19 2018-12-18 南京卡耐新能源技术发展有限公司 一种vda标准尺寸的软包锂离子电池
CN108777268A (zh) * 2018-04-19 2018-11-09 芜湖天量电池系统有限公司 一种新型动力电池包结构及其组装工艺
CN208189676U (zh) 2018-04-27 2018-12-04 比亚迪股份有限公司 动力电池托盘及车辆
CN208336298U (zh) 2018-05-03 2019-01-04 大陆汽车投资(上海)有限公司 用于电动汽车的电池箱及具有该电池箱的电动汽车
CN108749548B (zh) 2018-05-14 2022-04-29 奇瑞汽车股份有限公司 一种新能源汽车电池包总成及新能源汽车
CN108493384A (zh) * 2018-05-29 2018-09-04 北斗航天汽车(北京)有限公司 方型锂离子电池模组、电池包、电动汽车
CN208256768U (zh) 2018-05-31 2018-12-18 上海科泰电源股份有限公司 一种抽屉式双层电池箱
CN108550747B (zh) * 2018-06-05 2023-12-01 安徽艾伊德动力科技有限公司 一种新型动力电池梯次利用pack
CN208256770U (zh) * 2018-06-08 2018-12-18 宁德时代新能源科技股份有限公司 电池模组
CN108598354A (zh) 2018-06-13 2018-09-28 东莞塔菲尔新能源科技有限公司 一种多极耳电芯、多端子电池、电池模组及其制备方法
CN109103371A (zh) * 2018-07-13 2018-12-28 湖北锂诺新能源科技有限公司 一种电池包安装总成
CN108717961A (zh) * 2018-07-27 2018-10-30 广东亚太轻量化技术研究有限公司 一种新能源电动汽车的电池盒下盒体
CN208722952U (zh) * 2018-08-15 2019-04-09 北京普莱德新能源电池科技有限公司 一种拼焊式铝合金模组托盘及电池包
CN109148771B (zh) * 2018-08-23 2021-07-23 北京新能源汽车股份有限公司 电池包
CA3110459A1 (en) * 2018-08-24 2020-02-27 Hexagon Purus North America Holdings Inc. Battery system for heavy duty vehicles
CN109346637B (zh) 2018-10-15 2021-10-22 杭州技师学院 燃油汽车蓄电池壳体
KR20200046333A (ko) * 2018-10-24 2020-05-07 현대자동차주식회사 파우치 타입 배터리 셀
DE102018127368A1 (de) 2018-11-02 2020-05-07 Benteler Automobiltechnik Gmbh Schweller und Fahrzeugrahmen einer Fahrzeugkarosserie und Verfahren zur Herstellung eines Schwellers
CN110190212B (zh) 2018-12-29 2020-02-04 比亚迪股份有限公司 动力电池包及车辆
CN110190211B (zh) 2018-12-29 2020-03-31 比亚迪股份有限公司 电池托盘、动力电池包及车辆
CN111384335A (zh) * 2018-12-30 2020-07-07 宁德时代新能源科技股份有限公司 一种电池包及车辆
KR20210109018A (ko) 2019-01-09 2021-09-03 비와이디 컴퍼니 리미티드 배터리 팩 및 전기 차량

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10328209A1 (de) * 2003-06-24 2005-01-13 Conti Temic Microelectronic Gmbh Bordnetz eines Kraftfahrzeugs
CN101305488A (zh) * 2005-11-10 2008-11-12 丰田自动车株式会社 管形燃料电池模块及其制造方法
CN103928642A (zh) * 2013-01-16 2014-07-16 微宏动力系统(湖州)有限公司 软包电池支架
CN107785511A (zh) * 2016-08-30 2018-03-09 比亚迪股份有限公司 电池模组、动力电池包及汽车
CN208014765U (zh) * 2018-01-29 2018-10-26 合肥国轩高科动力能源有限公司 一种具有高能量密度的电池包装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3907778A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111923750A (zh) * 2020-07-29 2020-11-13 中国第一汽车股份有限公司 一种动力锂电池系统
CN111923750B (zh) * 2020-07-29 2023-05-23 中国第一汽车股份有限公司 一种动力锂电池系统
US11926225B2 (en) 2020-10-19 2024-03-12 Jiangsu Contemporary Amperex Technology Limited Case of battery, battery, power consumption device, and method and device for producing battery
US11936027B2 (en) 2020-10-19 2024-03-19 Jiangsu Contemporary Amperex Technology Limited Case of battery, battery, power consumption device, and method and device for producing battery
JP7457870B2 (ja) 2020-10-19 2024-03-28 ジアンス・コンテンポラリー・アンプレックス・テクノロジー・リミテッド 電池用筐体、電池、電力消費装置、電池の製造方法及びその装置
JP7473737B2 (ja) 2020-10-19 2024-04-23 ジアンス・コンテンポラリー・アンプレックス・テクノロジー・リミテッド 電池の筐体、電池、電力利用装置、電池を製造する方法及び装置
CN112290143A (zh) * 2020-10-21 2021-01-29 孚能科技(赣州)股份有限公司 动力电池及车辆
CN113659279A (zh) * 2021-08-13 2021-11-16 蜂巢能源科技有限公司 用于电池包的防爆装置和电池包
CN113659279B (zh) * 2021-08-13 2023-05-12 蜂巢能源科技股份有限公司 用于电池包的防爆装置和电池包
CN115275488A (zh) * 2022-08-24 2022-11-01 浙江凌骁能源科技有限公司 电池包下箱体

Also Published As

Publication number Publication date
WO2020143176A1 (zh) 2020-07-16
CN114256553A (zh) 2022-03-29
JP2022500824A (ja) 2022-01-04
CN111430596A (zh) 2020-07-17
CN210403795U (zh) 2020-04-24
CN114256552A (zh) 2022-03-29
EP3907775A4 (en) 2022-02-23
JP2022517214A (ja) 2022-03-07
US20210175572A1 (en) 2021-06-10
KR20240046642A (ko) 2024-04-09
CN114256555A (zh) 2022-03-29
CN110165118B (zh) 2019-12-20
EP3782837A4 (en) 2021-10-13
CN111430598A (zh) 2020-07-17
CN111430599B (zh) 2022-01-07
CN110165113B (zh) 2019-12-20
CN114256551B (zh) 2023-09-05
CN110165117B (zh) 2019-12-20
CN111430603B (zh) 2022-01-07
CN114256554A (zh) 2022-03-29
CN210403796U (zh) 2020-04-24
CN209389111U (zh) 2019-09-13
CN111430603A (zh) 2020-07-17
US20220102787A1 (en) 2022-03-31
EP3907775A1 (en) 2021-11-10
JP2023162215A (ja) 2023-11-08
US20230352783A1 (en) 2023-11-02
CN114512760A (zh) 2022-05-17
CN114221072A (zh) 2022-03-22
CN114512758B (zh) 2024-01-30
CN114597564A (zh) 2022-06-07
CN210403799U (zh) 2020-04-24
CN110165116A (zh) 2019-08-23
CN210403797U (zh) 2020-04-24
CN110165113A (zh) 2019-08-23
CN114512759A (zh) 2022-05-17
CN111430597A (zh) 2020-07-17
WO2020143178A1 (zh) 2020-07-16
JP2022517212A (ja) 2022-03-07
EP3782837B1 (en) 2022-10-19
US20220123404A1 (en) 2022-04-21
KR20210110683A (ko) 2021-09-08
CN115020887B (zh) 2024-01-09
JP2024038070A (ja) 2024-03-19
US11183729B2 (en) 2021-11-23
US20220118841A1 (en) 2022-04-21
WO2020143172A1 (zh) 2020-07-16
KR20200139202A (ko) 2020-12-11
CN114221082B (zh) 2023-11-14
CN110165114A (zh) 2019-08-23
JP7197689B2 (ja) 2022-12-27
TWI753316B (zh) 2022-01-21
TWI755643B (zh) 2022-02-21
EP4329067A2 (en) 2024-02-28
CN110165115A (zh) 2019-08-23
CN210403800U (zh) 2020-04-24
CN111430602A (zh) 2020-07-17
CN114256546A (zh) 2022-03-29
JP2024012331A (ja) 2024-01-30
KR20210110695A (ko) 2021-09-08
KR20210109018A (ko) 2021-09-03
WO2020143171A1 (zh) 2020-07-16
CN114256550A (zh) 2022-03-29
EP4329057A2 (en) 2024-02-28
EP3907774B1 (en) 2023-02-08
JP2023156319A (ja) 2023-10-24
CN114597565A (zh) 2022-06-07
JP2022517213A (ja) 2022-03-07
JP2024050559A (ja) 2024-04-10
CN210167401U (zh) 2020-03-20
KR20210109025A (ko) 2021-09-03
KR20210006940A (ko) 2021-01-19
EP3783688A4 (en) 2021-12-15
CN110379963A (zh) 2019-10-25
CN114824631B (zh) 2024-04-16
EP3907777A4 (en) 2022-07-27
WO2020143175A1 (zh) 2020-07-16
CN114221072B (zh) 2024-01-30
US20220126666A1 (en) 2022-04-28
HUE060771T2 (hu) 2023-04-28
CN210403798U (zh) 2020-04-24
EP3907778A4 (en) 2022-03-02
KR102478780B1 (ko) 2022-12-20
CN111430599A (zh) 2020-07-17
HUE061756T2 (hu) 2023-08-28
CN114256550B (zh) 2023-10-17
CN115020893B (zh) 2024-01-09
JP2022153540A (ja) 2022-10-12
CN114597565B (zh) 2023-10-17
KR20230165881A (ko) 2023-12-05
US20210249725A1 (en) 2021-08-12
US20220118840A1 (en) 2022-04-21
EP3907774A4 (en) 2022-02-23
EP3782837A1 (en) 2021-02-24
EP3907776A1 (en) 2021-11-10
EP4343942A2 (en) 2024-03-27
JP2022517007A (ja) 2022-03-03
CN111430602B (zh) 2022-08-09
CN114512759B (zh) 2023-07-11
CN111430597B (zh) 2021-12-07
CN111430601B (zh) 2022-01-07
KR20210110374A (ko) 2021-09-07
CN114512760B (zh) 2024-01-09
JP2021535556A (ja) 2021-12-16
US20240128565A1 (en) 2024-04-18
WO2020143177A1 (zh) 2020-07-16
CN114256555B (zh) 2023-10-17
TW202027326A (zh) 2020-07-16
CN115020887A (zh) 2022-09-06
CN115020886B (zh) 2024-01-26
KR20210109028A (ko) 2021-09-03
PT3782837T (pt) 2022-11-25
JP7319376B2 (ja) 2023-08-01
CN114824630A (zh) 2022-07-29
KR20230003450A (ko) 2023-01-05
US20220126705A1 (en) 2022-04-28
CN114221082A (zh) 2022-03-22
CN110165116B (zh) 2019-12-20
EP3907776A4 (en) 2022-03-02
JP2022517006A (ja) 2022-03-03
EP4350864A2 (en) 2024-04-10
JP2024050558A (ja) 2024-04-10
KR102609117B1 (ko) 2023-12-04
EP3907777A1 (en) 2021-11-10
JP2024050560A (ja) 2024-04-10
CN110165115B (zh) 2019-12-20
JP2023134546A (ja) 2023-09-27
EP4329056A2 (en) 2024-02-28
CN114256551A (zh) 2022-03-29
CN115020893A (zh) 2022-09-06
CN111430601A (zh) 2020-07-17
CN110165114B (zh) 2019-12-20
EP3907774A1 (en) 2021-11-10
JP7371179B2 (ja) 2023-10-30
CN114256553B (zh) 2023-12-12
JP7311611B2 (ja) 2023-07-19
CN114824630B (zh) 2023-10-13
TW202027319A (zh) 2020-07-16
CN111430600A (zh) 2020-07-17
ES2939728T3 (es) 2023-04-26
US11955651B2 (en) 2024-04-09
KR102483099B1 (ko) 2022-12-30
CN111430600B (zh) 2022-04-15
JP7114799B2 (ja) 2022-08-08
EP3907846A4 (en) 2022-02-23
CN111430598B (zh) 2022-01-07
KR102654288B1 (ko) 2024-04-05
CN111430596B (zh) 2022-06-10
CN114256554B (zh) 2023-12-12
CN110379963B (zh) 2020-03-31
JP2023116467A (ja) 2023-08-22
JP2023182588A (ja) 2023-12-26
CN110165118A (zh) 2019-08-23
JP7410155B2 (ja) 2024-01-09
CN114512758A (zh) 2022-05-17
CN110165117A (zh) 2019-08-23
EP4329058A2 (en) 2024-02-28
CN209389112U (zh) 2019-09-13
WO2020143174A1 (zh) 2020-07-16
EP3907778A1 (en) 2021-11-10
JP2022516792A (ja) 2022-03-02
CN115020886A (zh) 2022-09-06
EP3783688A1 (en) 2021-02-24
EP3907846A1 (en) 2021-11-10
CN114824631A (zh) 2022-07-29
EP4343941A2 (en) 2024-03-27

Similar Documents

Publication Publication Date Title
WO2020143173A1 (zh) 电池包、车辆和储能装置
JP7383721B2 (ja) 動力電池パック、エネルギー蓄積装置及び電気自動車
CN110379962B (zh) 动力电池包、储能装置以及电动车
CN111900302A (zh) 组合动力电池及电动车
CN110416451B (zh) 电池容纳装置和电动车
CN110277521B (zh) 电动车
CN110271402B (zh) 动力电池包、储能装置以及电动车
CN112224003A (zh) 电动车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909561

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021540122

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217024749

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019909561

Country of ref document: EP

Effective date: 20210805