WO2011121755A1 - 中古二次電池の選別方法、リビルト電池パック、これを用いた車両及び電池使用機器、並びにリビルト電池パックの製造方法 - Google Patents

中古二次電池の選別方法、リビルト電池パック、これを用いた車両及び電池使用機器、並びにリビルト電池パックの製造方法 Download PDF

Info

Publication number
WO2011121755A1
WO2011121755A1 PCT/JP2010/055846 JP2010055846W WO2011121755A1 WO 2011121755 A1 WO2011121755 A1 WO 2011121755A1 JP 2010055846 W JP2010055846 W JP 2010055846W WO 2011121755 A1 WO2011121755 A1 WO 2011121755A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
resistance
period
rebuilt
used secondary
Prior art date
Application number
PCT/JP2010/055846
Other languages
English (en)
French (fr)
Inventor
真典 伊藤
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201080065791.6A priority Critical patent/CN102823054B/zh
Priority to EP10848933.7A priority patent/EP2555311B1/en
Priority to KR1020127025626A priority patent/KR101398344B1/ko
Priority to JP2012507976A priority patent/JP5370583B2/ja
Priority to CA2795083A priority patent/CA2795083C/en
Priority to PCT/JP2010/055846 priority patent/WO2011121755A1/ja
Priority to US13/637,763 priority patent/US9515355B2/en
Publication of WO2011121755A1 publication Critical patent/WO2011121755A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to a used secondary battery sorting method that has already been used, a rebuilt battery pack using a used secondary battery sorted by this sorting method, a vehicle using the same, and a battery using device. Moreover, it is related with the manufacturing method of the rebuilt battery pack using a used secondary battery.
  • High-capacity, high-power secondary batteries such as nickel-hydrogen secondary batteries and lithium ion secondary batteries are used as such secondary batteries for automobiles.
  • batteries high-power secondary batteries
  • the used secondary batteries include those that are out of order, defective in characteristics, or have reached the end of their life, but are expected to contain many batteries that can still be used. For this reason, from the viewpoint of environmental requirements and effective use of resources and energy associated with battery production, it is required to appropriately reuse used secondary batteries.
  • a used secondary battery may be used instead. It is done.
  • the present invention has been made in view of such problems, and it is an object of the present invention to provide an appropriate method for selecting used secondary batteries. Another object of the present invention is to provide a rebuilt battery pack using a used secondary battery having the characteristics selected by this sorting method. Furthermore, it is providing the vehicle and battery using apparatus using this. Another object of the present invention is to provide a manufacturing method for manufacturing a rebuilt battery pack having the same characteristics of each battery while using a used secondary battery.
  • One aspect of the present invention for solving the above problem is that the battery resistance gradually decreases and the initial resistance high period in which the battery resistance is relatively high appears in the initial stage of the usable period, and can be used. In the middle stage of the period, a low period of medium resistance appears with a relatively low battery resistance, and in the final stage of the usable period, a battery resistance gradually increases and a period of high terminal resistance with a relatively high battery resistance appears.
  • a used secondary battery sorting method relating to a secondary battery having characteristics, wherein the used secondary battery measures the resistance of the used secondary battery, and the used secondary battery has a high initial resistance.
  • the battery resistance when the battery is used (the resistance of the battery by the DC-IR method or the AC-IR method). ))
  • the battery resistance is relatively high, and the battery resistance decreases as the usage time elapses. This period lasts for several months to two years, for example, for secondary batteries for automobiles, depending on the use (driving) situation.
  • the battery resistance is relatively low, does not change even after the usage time has elapsed, and is substantially constant.
  • This period lasts for about 5 to 10 years, for example, for secondary batteries for automobiles. Further, in the subsequent final stage, the battery resistance increases with use time, and the battery resistance becomes relatively high. This period lasts for about 1 to 2 years, for example, for secondary batteries for automobiles. Thereafter, when the battery resistance exceeds the allowable maximum resistance value, the battery is considered to have a life.
  • the used secondary battery having the above-described characteristics is used in the resistance determination step, and the used secondary battery to be determined is used for the battery resistance.
  • a period high initial resistance high period
  • C period final resistance high period
  • B period medium resistance low period
  • the battery resistance of the secondary battery used for sorting includes the direct current resistance of the battery measured by the DC-IR method and the alternating current resistance of the battery measured by the AC-IR method.
  • the period threshold value to be set for example, a value that is lower than the minimum value of the battery resistance that can be taken by the battery at the beginning of use, and a value that is not less than the maximum value of the battery resistance that can be taken by the battery in the low period of the middle Is mentioned.
  • a used secondary battery selection method may include a period determination step of determining whether a used secondary battery belongs to the initial high resistance period or the final high resistance period.
  • a battery having a battery resistance larger than a period threshold value that is, a used secondary battery in an initial resistance high period (A period) or a final resistance high period (C period)
  • the used secondary battery belongs to the initial high resistance period (A period) or the final high resistance period (C period). Is determined.
  • the use history information includes the date of manufacture of the battery, the start date of use of the battery, the use period of the battery, the operating time (actual use time) of the battery, and the like. Furthermore, when the used secondary battery is used for an automobile, the travel distance of the automobile during the period in which the battery is used can be used as the usage history information of the used secondary battery.
  • the used secondary batteries having a battery resistance smaller than the period threshold value are further divided into a plurality of layers according to the magnitude of the battery resistance. It is preferable to use a method for selecting a used secondary battery including a resistance layer-by-resistance step.
  • the value of the battery resistance varies.
  • the resistance layer classification step when the used secondary battery has a battery resistance smaller than the period threshold value, that is, when the used secondary battery belongs to the medium-term resistance low period (B period), In the resistance layer classification step, the resistance layer is further classified according to the magnitude of battery resistance. As a result, the used secondary batteries belonging to the medium-term resistance low period can be further divided into layers, and used secondary batteries having more similar characteristics can be collected.
  • the used secondary battery has a higher direct current resistance of the battery as the temperature of the battery becomes lower within the usable temperature range, and a comparison.
  • the direct current resistance change with temperature is small, in the relatively low temperature low temperature region, the direct current resistance change with temperature is large, and the direct current resistance is more than three times the direct current resistance in the high temperature region.
  • the used secondary battery stratified in the resistance stratification step is a predetermined voltage within the high voltage range of the upper 1/5 of the permissible voltage range from the permissible minimum voltage to the permissible maximum voltage in the environment of the intermediate temperature range. Discharge Based on the length of the discharge time from the initial voltage to constant power discharge or constant current discharge until reaching a predetermined discharge end voltage within the lower 1/5 low voltage range of the allowable voltage range, A used secondary battery sorting method including a discharge time stratification step of stratifying into a plurality of layers is preferable.
  • a used secondary battery having a period B or layered in a resistance layer step is discharged at constant power or in an intermediate temperature range where the direct current resistance of the battery is slightly higher than the high temperature range.
  • the layers are further divided into a plurality of layers. For this reason, it is possible to appropriately detect the difference in battery characteristics under the environment of a relatively low intermediate temperature range, which cannot be understood by measurement of battery resistance (DC-IR method, AC-IR method), and to classify each battery. .
  • the used secondary batteries can be further classified into layers, and used secondary batteries having more similar characteristics can be collected.
  • batteries having similar characteristics in an intermediate temperature region where the temperature is relatively low and the direct current resistance of the battery is slightly high can be collected by layering.
  • a battery pack with stable characteristics or a combined battery (a large battery pack) that combines these is provided. It can be easily configured.
  • the intermediate temperature range is roughly in the range of -20 ° C to 10 ° C.
  • the low temperature region corresponds to the range of ⁇ 30 ° C. to ⁇ 20 ° C.
  • the high temperature region corresponds to the range of 10 ° C. to 60 ° C.
  • the direct current resistance is three times or more in the low temperature region as compared with the high temperature region.
  • the discharge start voltage an appropriate voltage within the high voltage range of the upper 1/5, which is the uppermost range among the five ranges obtained by dividing the allowable voltage range from the allowable minimum voltage to the allowable maximum voltage into five equal parts.
  • a voltage value may be selected. This is because by starting the discharge from a value close to the maximum allowable voltage (full charge (SOC: 100%) voltage), the characteristics of the battery with a relatively large amount of charge can be reflected in the discharge time. Accordingly, the discharge start voltage is preferably a voltage value of an allowable maximum voltage (full charge (SOC: 100%)).
  • the discharge end voltage an appropriate voltage within the lower 1/5 low voltage range, which is the lowest range among the five ranges obtained by dividing the allowable voltage range from the allowable minimum voltage to the allowable maximum voltage into five equal parts.
  • a suitable voltage value may be selected. This is because by discharging to a value close to the allowable minimum voltage (voltage of total discharge (SOC: 0%)), the characteristics of the battery with a relatively low charge can be reflected in the discharge time. Therefore, it is preferable that the discharge end voltage be a voltage value of an allowable maximum voltage (total discharge (SOC: 0%)).
  • the magnitude of the current that flows during constant power discharge or constant current discharge is within the range of current that flows when the battery is actually used. For example, when a battery is mounted on a vehicle, It is preferable that the current be less than the current. Furthermore, it is preferable to set it as 10 C or less. When a large current is passed, the discharge is completed in a short time, so that the measurement accuracy of the discharge time is lowered and it is difficult to properly compare. Moreover, the influence of the voltage drop due to the electrolyte resistance generated to discharge a large current is large, and it becomes difficult to grasp the change in the discharge time due to the deterioration of the characteristics of the battery electrode.
  • the used secondary battery having a battery resistance smaller than the period threshold value is fully charged in an environment of 10 ° C. to ⁇ 20 ° C.
  • a discharge time layer that is further divided into a plurality of layers based on the length of the discharge time until the allowable minimum voltage is reached when constant power discharge or constant current discharge is performed at a current of 10 C or less from a state of charge.
  • the method is a used secondary battery sorting method including another step.
  • this selection method has a wide range of voltages to be changed by discharge. For this reason, a difference in discharge time due to a difference in battery characteristics appears greatly, and each battery can be stratified more appropriately.
  • the battery resistance gradually decreases in the initial stage of the usable period, and the initial resistance high period in which the battery resistance is relatively high appears.
  • the battery resistance is relatively A low period of low intermediate resistance appears, and the battery resistance gradually increases at the end of the usable period, and has a characteristic in which a period of high terminal resistance with a relatively high battery resistance appears.
  • a rebuilt battery pack obtained by collecting and reconfiguring used secondary batteries, wherein each of the used secondary batteries has the above-mentioned medium-term resistance according to the used secondary battery selection method described in the above configuration (1).
  • a rebuilt battery pack that is supposed to be in a low period may be used.
  • this rebuilt battery pack a battery that has been determined to be in a low-term resistance period (period B) by sorting is used. For this reason, there is little variation in the characteristics between the batteries used in the battery pack, and problems such as overvoltage and overcharge to some batteries due to the characteristic variation between the batteries can be prevented. And since the battery of B period is used, even if it uses, the characteristic change of each battery is few and it can be set as the rebuilt battery pack which has the stable characteristic. Moreover, since the battery of the C period is not mixed, a part of the batteries in the rebuilt battery pack can have an early life, and the problem that the rebuilt battery pack cannot be used early can be prevented.
  • the rebuilt battery pack includes a battery pack obtained by collecting a plurality of batteries into a battery pack, and an assembled battery (large battery pack) by combining a plurality of such battery packs.
  • the battery resistance gradually decreases in the initial stage of the usable period, and the initial resistance high period in which the battery resistance is relatively high appears.
  • the battery resistance is relatively A low period of low intermediate resistance appears, and the battery resistance gradually increases at the end of the usable period, and has a characteristic in which a period of high terminal resistance with a relatively high battery resistance appears.
  • a rebuilt battery pack obtained by collecting and reconfiguring used secondary batteries, wherein each of the used secondary batteries has the initial resistance determined by the used secondary battery selection method described in the configuration (2).
  • a rebuilt battery pack that is considered to be in a high period is preferable.
  • this rebuilt battery pack a battery that is determined to be in the initial high resistance period (A period) by sorting is used. For this reason, there is little variation in characteristics between the batteries used in the battery pack, and a rebuilt battery pack that prevents problems such as overvoltage and overcharge to some batteries due to the characteristic variation between batteries is obtained. be able to. Moreover, since the battery of the C period is not mixed, a part of the batteries in the rebuilt battery pack can have an early life, and the problem that the rebuilt battery pack cannot be used early can be prevented. Furthermore, since the batteries of the A period having a long remaining life are collected, the rebuilt battery pack can be used for a long time.
  • the battery resistance gradually decreases in the initial stage of the usable period, and the initial resistance high period in which the battery resistance is relatively high appears.
  • the battery resistance is relatively increased in the middle stage of the usable period.
  • a low period of low intermediate resistance appears, and the battery resistance gradually increases at the end of the usable period, and has a characteristic in which a period of high terminal resistance with a relatively high battery resistance appears.
  • a rebuilt battery pack obtained by collecting and reconfiguring used secondary batteries, wherein each of the used secondary batteries is the resistance layer in the method for sorting used secondary batteries described in the above configuration (3).
  • a rebuilt battery pack that belongs to one layer or a part of adjacent layers among a plurality of layers layered by another step may be used.
  • this rebuilt battery pack batteries that have been classified as having a low middle-term resistance (period B) are further divided into a plurality of layers by battery resistance, and batteries belonging to one layer or some of the adjacent layers are selected. Used. For this reason, the variation in the characteristics between the batteries used in the battery pack is further reduced, and it is possible to prevent problems such as overvoltage and overcharge to some batteries due to the characteristic variation between the batteries. And since the battery of B period is used, even if it uses, there exists little change in the characteristic of each battery, and it can be set as the rebuilt battery pack which has the stable characteristic. Moreover, since the battery of the C period is not mixed, a part of the batteries in the rebuilt battery pack can have an early life, and the problem that the rebuilt battery pack cannot be used early can be prevented.
  • the battery resistance gradually decreases in the initial stage of the usable period, and the initial resistance high period in which the battery resistance is relatively high appears, and the battery resistance relatively increases in the middle stage of the usable period.
  • a rebuilt battery pack obtained by collecting and reconfiguring used secondary batteries, wherein each of the used secondary batteries is the discharge time in the method for sorting used secondary batteries described in the configuration (4).
  • a rebuilt battery pack belonging to one layer or a part of adjacent layers may be used.
  • a battery that has been classified as having a low middle-term resistance (period B) by sorting, or a battery that has been further stratified by battery resistance is further divided into a plurality of layers by discharge time.
  • a battery belonging to a layer or some adjacent layers is used.
  • battery characteristics that cannot be detected by battery resistance (DC-IR method, AC-IR method) between the batteries used in the battery pack are aligned, resulting in variations in characteristics between batteries. , Problems such as overvoltage and overcharge to some batteries can be prevented.
  • the battery of B period since the battery of B period is used, even if it uses, there exists little change in the characteristic of each battery, and it can be set as the rebuilt battery pack which has the stable characteristic. Moreover, since the battery of the C period is not mixed, a part of the batteries in the rebuilt battery pack can have an early life, and the problem that the rebuilt battery pack cannot be used early can be prevented.
  • the battery resistance gradually decreases and the initial resistance high period in which the battery resistance is relatively high appears in the initial stage of the usable period. In the middle stage of the period, a low period of medium resistance appears with a relatively low battery resistance, and in the final stage of the usable period, a battery resistance gradually increases and a period of high terminal resistance with a relatively high battery resistance appears.
  • a rebuilt battery pack that has characteristics and has been used to collect a plurality of used secondary batteries, and is reconfigured, each of the used secondary batteries being a rebuilt battery belonging to the low period of the medium-term resistance. It is a pack.
  • this vehicle is equipped with the above-described rebuilt battery pack, it can be made cheaper than the case where a new battery is used, and the used battery can be effectively used.
  • examples of the vehicle include an electric car, a plug-in hybrid car, a hybrid car, a hybrid railway vehicle, an electric forklift, an electric wheelchair, an electric assist bicycle, and an electric scooter.
  • Another aspect for solving the above-described problem is a battery-using device that includes any one of the above-described rebuilt battery packs and uses the rebuilt battery pack as at least one energy source.
  • this battery-powered device is equipped with the above-mentioned rebuilt battery pack, it can be made cheaper than when a new battery is used, and the used battery can be effectively used. it can.
  • battery-powered devices include personal computers, mobile phones, battery-powered electric tools, uninterruptible power supply devices, and various home appliances, office devices, and industrial devices driven by batteries.
  • Another aspect for solving the above-described problem is that the battery resistance gradually decreases and the initial resistance high period in which the battery resistance is relatively high appears in the initial stage of the usable period. In the middle stage of the period, a low period of medium resistance appears with a relatively low battery resistance, and in the final stage of the usable period, a battery resistance gradually increases and a period of high terminal resistance with a relatively high battery resistance appears.
  • a method of manufacturing a rebuilt battery pack comprising a plurality of used secondary batteries that have characteristics and have already been used, wherein the used secondary battery has a high initial resistance period or an end resistance.
  • the used secondary batteries belonging to the medium-term resistance low period (B period) are collected to reconfigure the rebuilt battery pack. For this reason, there is little variation in the characteristics between the batteries used in the rebuilt battery pack, and in the battery pack, problems such as overvoltage and overcharging to some batteries due to the characteristic variation between the batteries were prevented.
  • a rebuilt battery pack can be manufactured.
  • the battery of B period is used, even if it uses, the rebuilding battery pack which has few characteristic changes of each battery and has the stable characteristic can be manufactured. For this reason, it has characteristics similar to each other, changes in battery resistance hardly occur, and a rebuilt battery pack having stable characteristics can be manufactured.
  • the battery of the C period is not mixed, a part of the batteries in the rebuilt battery pack can have an early life, and the problem that the rebuilt battery pack cannot be used early can be prevented.
  • a plurality of the used secondary batteries are classified according to the magnitude of the battery resistance.
  • a resistance layer separating step for layering, and replacing the first type reconfiguration step with a plurality of layers layered according to the battery resistance belonging to one layer or a part of adjacent layers It is good to set it as the manufacturing method of a rebuilt battery pack provided with the 2nd type reconfiguration
  • a used secondary battery having a battery resistance smaller than a period threshold value that is, a used secondary battery belonging to a medium-term resistance low period (B period)
  • B period medium-term resistance low period
  • the used secondary battery has a higher direct current resistance of the battery as the battery temperature is lower within the usable temperature range.
  • the change in DC resistance due to temperature is small in the high temperature region where the temperature is relatively high, and the change in DC resistance due to temperature is large in the low temperature region where the temperature is relatively low, and is more than three times the DC resistance in the high temperature region.
  • the DC resistance has a characteristic that the direct current resistance increases in an accelerated manner as the temperature of the battery decreases.
  • the used secondary battery having a small resistance or layered in the resistance layering step is an upper side of an allowable voltage range from an allowable minimum voltage to an allowable maximum voltage in the environment of the intermediate temperature region. From a predetermined discharge start voltage within a high voltage range of / 5 to constant power discharge or constant current discharge until reaching a predetermined discharge end voltage within a low voltage range of the lower 1/5 of the allowable voltage range And a discharge time stratification step for further stratifying into a plurality of layers based on the length of the discharge time, and instead of the first type reconstruction step or the second type reconstruction step, the discharge time A rebuilt battery pack comprising a third type reconfiguration step of collecting used secondary batteries belonging to one layer or a part of adjacent layers among a plurality of layers stratified by a length of It is good to use this manufacturing method.
  • a used secondary battery of period B, or a used secondary battery further stratified by battery resistance is further classified based on the length of discharge time by the discharge time stratification step.
  • the battery is divided into layers, and batteries belonging to one layer or a part of adjacent layers are collected to manufacture a rebuilt battery pack. For this reason, it is possible to appropriately classify the difference in battery characteristics under the environment in the intermediate temperature range, which cannot be understood by battery resistance (DC-IR method, AC-IR method). They can be collected to produce a rebuilt battery pack.
  • the used secondary battery having the battery resistance smaller than the period threshold value or layered in the resistance layering step is 10 ° C .- ⁇ Based on the length of discharge time until reaching the minimum allowable voltage when a constant power discharge or a constant current discharge is performed at a current of 10 C or less from a fully charged state in an environment of 20 ° C.
  • the range of voltage to be changed by discharge is wide in the discharge time stratification step. For this reason, a difference in discharge time due to a difference in battery characteristics appears greatly, and each battery can be stratified more appropriately.
  • the following sorting method can also be adopted without sorting the batteries by comparing the battery resistance of the used secondary battery with the period threshold value. That is, a used secondary battery sorting method that has already been used.
  • the direct current resistance of the battery increases as the battery temperature decreases, and the comparison is made.
  • the high temperature region the change in DC resistance due to temperature is small
  • the relatively low temperature low temperature region the change in DC resistance due to temperature is large
  • the DC resistance is more than three times the DC resistance in the high temperature region.
  • the intermediate temperature region between the high temperature region and the low temperature region the lower the battery temperature, the higher the direct current resistance, and the second battery is used under the environment of the intermediate temperature region.
  • a constant power discharge or a constant current discharge is performed from a predetermined discharge start voltage in the upper 1/5 high voltage range, and the allowable voltage range is Lower
  • a secondary battery sorting method comprising: a discharge time stratification step of further stratifying into a plurality of layers based on a length of discharge time until reaching a predetermined discharge end voltage within a low voltage range of / 5 It is also preferable to do.
  • used secondary batteries are divided into a plurality of layers based on the length of discharge time when constant power discharge or constant current discharge is performed in an intermediate temperature range environment. To do. For this reason, it is possible to properly detect the difference in battery characteristics under the environment of relatively low temperature, which is not known by battery resistance at normal temperature (DC-IR method, AC-IR method). Can be stratified into multiple layers. Thus, used secondary batteries having similar characteristics can be accurately collected. In particular, when batteries are used in an intermediate temperature range environment where the direct current resistance of the battery is slightly higher at a relatively low temperature, it is possible to select cells having similar characteristics. In use, a difference in battery characteristics hardly appears, and a battery pack such as a battery assembly (small battery pack) having stable characteristics and an assembled battery (large battery pack) in combination with this can be easily configured.
  • a battery pack such as a battery assembly (small battery pack) having stable characteristics and an assembled battery (large battery pack) in combination with this can be easily configured.
  • the above-mentioned used secondary batteries are discharged at a constant power from a fully charged state in an environment of 10 ° C. to ⁇ 20 ° C. with a current of 10 C or less.
  • a method of selecting a used secondary battery comprising a discharge time stratification step of stratifying into a plurality of layers based on the length of the discharge time until reaching the allowable minimum voltage when constant current discharge is performed. preferable.
  • a rebuilt battery pack in which a plurality of used secondary batteries that have already been used are collected and reconfigured, and each of the used secondary batteries is a used secondary battery according to item 2 above.
  • this sorting method it is also preferable to use a rebuilt battery pack that belongs to one layer or a part of adjacent layers among the plurality of layers stratified by the discharge time stratification step.
  • This rebuilt battery pack uses a used secondary battery that has been sorted and has characteristics in a relatively low intermediate temperature environment. For this reason, battery characteristics that cannot be detected by battery resistance (DC-IR method, AC-IR method) between the batteries used in the battery pack are aligned, resulting in variations in characteristics between batteries. , Problems such as overvoltage and overcharge to some batteries can be prevented. In particular, in a relatively low intermediate temperature range, a difference in characteristics hardly appears and the battery pack can be used stably.
  • the present invention is a method for manufacturing a rebuilt battery pack that is obtained by collecting and reconfiguring a plurality of used secondary batteries, wherein the used secondary battery is connected to the direct current of the battery within the usable temperature range.
  • the resistance increases as the temperature of the battery decreases, and the change in DC resistance due to temperature is small in the high temperature region where the temperature is relatively high, and the change in DC resistance due to temperature is large in the low temperature region where the temperature is relatively low, and It has a direct current resistance that is more than 3 times the direct current resistance in the high temperature region. In the intermediate temperature region between the high temperature region and the low temperature region, it has the characteristic that the direct current resistance increases at an accelerated rate as the battery temperature decreases.
  • the used secondary battery is fixed from a predetermined discharge start voltage within the high voltage range of the upper 1/5 of the allowable voltage range from the allowable minimum voltage to the allowable maximum voltage in the environment of the intermediate temperature range.
  • Electric power Based on the length of the discharge time until reaching a predetermined discharge end voltage in the lower voltage range of the lower 1/5 of the allowable voltage range, further stratified into a plurality of layers A discharge type stratification step, and a fourth type of reconfiguring a battery pack by collecting used secondary batteries belonging to one layer or a part of adjacent layers among a plurality of layers stratified by the discharge time. It is also preferable to provide a method for manufacturing a rebuilt battery pack including a reconfiguration step.
  • the used secondary battery is stratified into a plurality of layers based on the length of the discharge time by the discharge time stratification step. Collect the batteries to which they belong and manufacture the rebuilt battery pack. For this reason, the used secondary batteries with similar characteristics were collected by appropriately stratifying the difference in battery characteristics under the environment in the intermediate temperature range, which is unknown by battery resistance (DC-IR method, AC-IR method).
  • a rebuilt battery pack can be manufactured.
  • batteries with similar characteristics in the environment of the relatively low temperature range can be used, in actual use of the rebuilt battery pack in the environment of the intermediate temperature range, it is difficult to show the difference in the characteristics of each battery, A battery pack that can be used stably can be manufactured.
  • 10 is a flowchart showing the flow of battery sorting and battery assembly and battery assembly manufacturing according to Embodiment 3; It is a graph which shows the relationship between battery temperature and the direct current
  • 6 is a flowchart showing a flow of battery sorting and manufacturing of a battery assembly and an assembled battery according to Embodiment 4. It is explanatory drawing which shows the impact driver carrying a rebuilt battery assembly.
  • the in-vehicle secondary battery is mounted and used as an assembled battery (used assembled battery) UAB in the vehicle 41 as shown in the column (f) in FIG.
  • an assembled battery (used assembled battery) UAB UAB in the vehicle 41 as shown in the column (f) in FIG.
  • the used assembled battery UAB is replaced with a new assembled battery
  • a part of the used battery aggregate UBP constituting the used assembled battery UAB is replaced,
  • the assembled battery UAB or the used battery assembly UBP is generated.
  • This used assembled battery UAB is composed of a plurality of used battery assemblies UBP.
  • the used battery aggregate UBP is composed of a plurality of used secondary batteries 1 (six in FIG. 1) as shown in the column (a) of FIG.
  • the used battery UAB or the used battery assembly UBP may be recyclable as it is, but may be unsuitable for reuse as it is, for example, part of the battery 1 forming the used battery assembly UBP has deteriorated. . Therefore, as shown in the column (b), the used battery aggregate UBP is broken and divided into individual batteries 1 and sorted into a battery 11 that can be reused and a battery 10 that cannot be reused due to deterioration or malfunction.
  • (Batteries in A and period C) 13 are selected (by layer) (see column (c)).
  • the batteries 12 belonging to the period B, which is one layer are collected, and the rebuilt battery assembly 21 is restored.
  • the rebuilt battery assembly 21 is collected, the rebuilt battery 31 is reconfigured, and this is mounted on the vehicle 41.
  • the battery 1 is a known Ni-hydrogen secondary battery (Ni-MH secondary battery) in which a laminated power generation element 1A is housed in a metal battery case 1B.
  • the power generation element 1A includes a positive electrode plate and a negative electrode plate (not shown) and a separator interposed therebetween, and is impregnated with an electrolytic solution 1C mainly composed of potassium hydroxide.
  • This in-vehicle battery 1 has a property that its characteristics change with use, and generally shows a so-called bathtub-shaped characteristic change (resistance change) as shown in FIG. That is, when the change in the direct current resistance (battery resistance) BRD of the battery measured by the DC-IR method, which is an index of the battery characteristics with respect to the usage time of the battery 1, is observed, it has the property of changing as shown in FIG. ing. Specifically, in the vicinity of the start of use (use time 0), the battery resistance (initial resistance value Ri) is lower than the allowable maximum resistance value Rmax described later, but is a relatively high value. However, when the use of the battery 1 is started, the battery resistance BRD gradually decreases.
  • this period varies depending on the use conditions of the battery 1, etc., it is approximately from about six months to two years.
  • the battery resistance BRD becomes substantially constant even when the usage time elapses, and no change occurs. This period lasts approximately 5 to 10 years.
  • the battery resistance BRD gradually increases with the use time, and finally exceeds the allowable maximum resistance value Rmax, and becomes a use limit (unusable). This period generally lasts about 1-2 years. Note that there is variation in the characteristics of each battery 1. Therefore, in FIG. 2, for example, the resistance variation DR of the battery resistance BRD at the point of use time X is expressed as a range of double arrows.
  • the relationship between the magnitude of each current value I at the time of charging or discharging and the battery voltage BV at that time is measured, and the current value is plotted on the horizontal axis and the voltage is plotted on the vertical axis. Plot the relation with.
  • a regression line is drawn by the method of least squares to obtain the slope of this graph (straight line). This inclination corresponds to the direct current resistance (battery resistance) BRD of the battery according to Ohm's law.
  • step S1 of FIG. 3 the appearance of the battery 1 is inspected, and the battery 10 having a defect (deformation such as swelling or dent of the container, scratches, corrosion, etc.) is removed. Further, for each remaining battery 1, the battery resistance BRD is measured by the above-described method (step S2). Next, in step S3, the battery 10 in which a short circuit, open circuit, or other abnormal value is detected, specifically, the battery 10 in which the battery resistance BRD is less than the allowable minimum resistance value Rmin or exceeds the allowable maximum resistance value Rmax, Remove this.
  • step S4 the measured battery resistance BRD is compared with the period threshold value Rp.
  • This period threshold value Rp is lower than the minimum value of the initial resistance value Ri that can be taken by the battery 1 at the beginning of use, as shown in FIG.
  • the value is equal to or greater than the maximum value of the battery resistance BRD that can be taken by the battery at the time when the time UT has elapsed and the battery resistance BRD becomes substantially constant (the maximum value of the battery resistance BRD in consideration of the resistance variation DR during the usage time X).
  • a period in which the battery resistance BRD is lower than the threshold value Rp in the middle period of the usable period UP until the end of the battery life is obtained.
  • the medium-term resistance value low period B (B period). Further, a period in which the use time UT is short and the battery resistance BRD is higher than the period threshold value Rp at the beginning of the usable period UP is defined as an initial resistance value high period A (A period). Further, a period when the battery resistance BRD is higher than the period threshold value Rp at the end of the usable period UP when the usage time is long is defined as a final resistance value high period C (C period).
  • step S4 by comparing the battery resistance BRD and the period threshold value Rp, it is selected whether the battery 1 is the battery 12 in the B period or the battery 13 in the other periods (A and C periods). (Stratified). That is, when the battery resistance BRD is larger than the period threshold value Rp (Yes), the process proceeds to step S11, and it is determined that the battery 11 is the battery 13 in the A period or the C period. On the other hand, when the battery resistance BRD is smaller than the period threshold value Rp (No), the process proceeds to step S5, and it is determined that the battery 11 is the battery 12 in the B period.
  • the used secondary battery 1 (11) can have the battery 13 in the initial high resistance period (A period) or the final high resistance period (C period), and the low intermediate resistance.
  • the battery 12 in the period (B period) can be easily and appropriately selected.
  • step S6 the batteries 12 classified in the period B are collected to form (reconfigure) the rebuilt battery assembly 21 (see FIGS. 1C and 1D).
  • the rebuilt battery assembly 21 can be manufactured.
  • the rebuilt battery assembly 21 collects and reconfigures the batteries 12 of the same B period. For this reason, the battery resistance BRD of each battery 12 is low, and the rebuilt battery assembly 21 as a whole can be a battery assembly having a low battery resistance.
  • the rebuilt battery assembly 21 is one type of rebuilt battery pack (small rebuilt battery pack).
  • step S7 the rebuilt battery assembly 21 using the battery 12 is collected, and the rebuilt battery 31 is formed (reconfigure
  • the rebuilt battery pack 31 can be manufactured.
  • the rebuilt battery pack 31 is one type of rebuilt battery pack (large rebuilt battery pack). Also in this case, there is little variation in characteristics between the batteries 12 used in the assembled battery 31, and overvoltages to some batteries (or the rebuilt battery assembly 21) due to resistance variation DR between the batteries Problems such as overcharging can be prevented.
  • the batteries 12 in the period B are used, even if they are used, the rebuilt assembled battery 31 having a stable characteristic with little change in the characteristics of each battery 12 can be obtained.
  • the process proceeds to step S8, and the rebuilt battery pack 31 is incorporated into the vehicle 41 (see FIG. 1 (f)).
  • the vehicle 41 equipped with the rebuilt battery 31 (rebuilt battery assembly 21) can be manufactured.
  • the vehicle 41 is a hybrid vehicle that is driven by using an engine 42, a front motor 43, and a rear motor 44.
  • the vehicle 41 includes a vehicle body 45, an engine 42, a front motor 43, a rear motor 44, a cable 46, and an inverter 47 attached thereto.
  • the vehicle 41 includes a rebuilt battery pack 31, and electric energy generated by the rebuilt battery pack 31 is used to drive the front motor 43 and the rear motor 44.
  • the vehicle 41 Since the vehicle 41 is equipped with the rebuilt battery 31 (rebuilt battery pack), the vehicle 41 can be made cheaper than the case where a new battery (assembled battery) is used. Can be used effectively.
  • step S2 corresponds to the resistance measurement step
  • step S4 corresponds to the resistance determination step
  • steps S6 and S7 correspond to the first type reconstruction step.
  • step S4 that is, the battery whose battery resistance BRD is larger than the period threshold value Rp
  • step S11 is selected as the battery 13 in the period A or C, but nothing is performed after that. There wasn't.
  • the rebuilt battery assembly 121 and the rebuilt battery 131 are manufactured according to steps S11 to S18 for the batteries 13 in the periods A and C, and further to the vehicle 141. Is installed. Therefore, the following description will be focused on the parts different from the first embodiment, while the description of the same parts as the first embodiment will be omitted or simplified.
  • the battery 1 similar to the first embodiment is rebuilt. That is, as in the first embodiment, the appearance of the battery 1 is inspected in step S1, and the defective battery 10 is removed. Further, the battery resistance BRD is measured (step S2), and in step S3, the battery 10 that has detected an abnormal value is removed. Subsequently, in step S4, the measured battery resistance BRD and the period threshold value Rp are compared in magnitude. When the battery resistance BRD is smaller than the period threshold value Rp (No), the process proceeds to step S5, and it is determined that the battery 11 is the battery 12 in the B period. Thereafter, the rebuilt battery assembly 21 and the rebuilt battery 31 are manufactured and mounted on the vehicle 41 in the same manner as steps S6 to S8 of the first embodiment.
  • step S4 when the battery resistance BRD is larger than the period threshold value Rp (Yes) in step S4, the process proceeds to step S11, and it is determined that the battery 11 is the battery 13 in the A period or the C period.
  • the process proceeds to step S12, and it is determined from the usage history information of the battery 13 whether this is a battery of period A.
  • the battery 1 used for the assembled battery UAB the manufacture and the use history are all managed. Therefore, for each battery 1 (13), there is usage history information such as the battery operating time (actual usage time) from the start of use. Therefore, the determination is made using the usage time UT in the usage history information of the battery 13. Specifically, when the usage time UT of the battery 13 is two years or less (Yes), the process proceeds to step S13, and it is assumed that the battery 14 is in period A. On the other hand, if the usage time UT exceeds 2 years (No), the process proceeds to step S17, where the battery 15 is in the C period. In this way, the battery 13 is divided into two layers (batteries 14 and 15).
  • step S18 the battery 15 determined to be in the period C in step S17 proceeds to step S18, is discarded as a battery, is disassembled, and is reused as a material.
  • the battery life is expected to increase with use, and the battery resistance BRD is expected to increase with use. Therefore, even if it is rebuilt as a battery assembly or battery assembly, each battery is likely to reach the end of its service life and is difficult to reuse. is there.
  • step S14 the batteries 14 classified in the period A are collected to form (reconfigure) a rebuilt battery assembly 121 (see FIG. 1D).
  • the rebuilt battery assembly 121 can be manufactured from the battery 14 in the A period.
  • the rebuilt battery assembly 121 uses the battery 14 that is determined to be in the A period by sorting. For this reason, there is little variation in characteristics between the batteries 14 used in the battery assembly 121, and rebuilding has been achieved to prevent problems such as overvoltage and overcharge to some batteries due to resistance variation DR between batteries.
  • the battery assembly 121 can be obtained.
  • step S15 the rebuilt battery assembly 121 using the battery 14 is collected, and the rebuilt battery 131 is formed (reconfigure
  • the rebuilt assembled battery 131 can be manufactured.
  • the rebuilt battery 131 is also a type of rebuilt battery pack. Also in this case, there is little variation in characteristics between the batteries 14 used in the assembled battery 131, and an overvoltage to some of the batteries (or the rebuilt battery assembly 121) due to resistance variation DR between the batteries. Problems such as overcharging can be prevented.
  • the battery 14 of the period A is used, even if it is used, the characteristic change of each battery 14 is small, and the rebuilt assembled battery 131 having stable characteristics can be obtained.
  • step S16 the rebuild assembled battery 131 is integrated in the vehicle 141 (refer FIG.1 (f)).
  • the vehicle 141 on which the rebuilt battery 131 (rebuilt battery assembly 121) is mounted can be manufactured. Since this vehicle 141 is the same as the vehicle 41 except for the assembled battery 131, the description thereof is omitted. Since the vehicle 141 is equipped with the rebuilt battery 131 (rebuilt battery pack), the vehicle 141 can be made cheaper than the case where a new battery (assembled battery) is used. Can be used effectively.
  • step S2 corresponds to the resistance measurement step
  • step S4 corresponds to the resistance determination step
  • steps S6 and S7 correspond to the first type reconstruction step
  • step S12 corresponds to the period determination step.
  • the battery 1 similar to the first embodiment is rebuilt. That is, as in the first embodiment, the appearance of the battery 1 is inspected in step S1, and the defective battery 10 is removed. Further, the battery resistance BRD is measured (step S2), and in step S3, the battery 10 that has detected an abnormal value is removed. Subsequently, in step S4, the measured battery resistance BRD and the period threshold value Rp are compared in magnitude. When the battery resistance BRD is smaller than the period threshold value Rp (No), the process proceeds to step S5, and it is determined that the battery 11 is the battery 12 in the B period.
  • the process proceeds to step S31, and the batteries 12 in the period B are stratified by the size of the battery resistance BRD (for example, the batteries 12A, 12B, and 12C are arranged in three layers in ascending order of the battery resistance BRD. Stratified).
  • the range of the resistance variation DR of the battery 12 during the usage time X is indicated by double arrows in FIG.
  • each battery 12 is divided into a plurality of layers (three layers in this example) according to the size of the battery resistance BRD. Further, it can be classified into batteries 12A and the like having similar battery resistances BRD.
  • step S32 out of the batteries divided into three layers, the batteries (for example, the battery 12A) belonging to one layer are collected to form a rebuilt battery assembly 221 (221A, 221B, 221C) (FIG. 1 (d)).
  • the variation in the characteristics between the batteries used in the battery assembly is further reduced, and it is possible to prevent problems such as overvoltage and overcharge to some batteries due to the resistance variation DR between the batteries.
  • the battery of period B is used, even if it is used, there is little change in the characteristics of each battery, and a rebuilt battery assembly 221 having stable characteristics can be obtained.
  • a battery of adjacent layers for example, the battery 12A and the battery 12B or the battery 12B and the battery 12C are combined to form a rebuilt battery assembly. You may do it.
  • step S7 the rebuilt battery assembly 231 is formed using the rebuilt battery assembly 221 as in the first embodiment (see FIG. 1E).
  • This assembled battery 231 has little variation in characteristics among the batteries used therein, and overvoltage and overcharge to some batteries (or the rebuilt battery assembly 221) due to resistance variation DR between the batteries. Etc. can be prevented.
  • step S8 the rebuilt battery pack 231 is incorporated into the vehicle 241 as in the first embodiment (see FIG. 1 (f)).
  • the vehicle 241 equipped with the rebuilt battery 231 can be manufactured. Since this vehicle 241 is the same as the vehicle 41 except for the assembled battery 231, description thereof is omitted. Since the vehicle 241 is equipped with the rebuilt battery 231 (rebuilt battery pack), the vehicle 241 can be made cheaper than the case where a new battery (assembled battery) is used. Can be used effectively.
  • step S2 corresponds to a resistance measurement step
  • step S4 corresponds to a resistance determination step
  • step S31 corresponds to a step by resistance layer
  • steps S32 and S7 correspond to a second type reconstruction step.
  • FIG. 4 a fourth embodiment will be described with reference to FIGS. 1, 2, and 7 to 9.
  • FIG. 3 for the battery 12 in period B, the rebuilt battery assembly 21 and the rebuilt battery 31 are manufactured according to steps S5 to S8, and further mounted on the vehicle 41. .
  • the battery 12 was further stratified by the battery resistance BRD.
  • the rebuilt battery assembly 221 and the rebuilt battery 231 were manufactured and further mounted on the vehicle 241.
  • the fourth embodiment similarly to the third embodiment, after the batteries 12 in the period B are selected in steps S4 and S5, the batteries 12 are further classified.
  • the layers are classified according to the size of the battery resistance BRD, but instead, the layers are classified according to the discharge time DT of the battery. Therefore, in the following, the description will focus on the parts different from the first and third embodiments, while the description of the same parts as the first and third embodiments will be omitted or simplified.
  • the battery 1 which is an in-vehicle nickel metal hydride battery can be used in the usable temperature range UT (-30 to 60 ° C. for the battery 1).
  • the battery resistance BRD of the battery 1 in a temperature range slightly below normal temperature (20 ° C.) (10 ° C.) to about 60 ° C. is lower than this range. (Battery internal resistance) is lowered. This is because the battery reaction is sufficiently generated in the battery 1.
  • the battery resistance BRD In this temperature range, even if the battery temperature BT changes, the battery resistance BRD varies little, but the battery resistance BTD tends to decrease linearly as the battery temperature BT increases.
  • the battery temperature BT falls within a temperature range of ⁇ 20 ° C. or lower (low temperature region L to be described later), for example, ⁇ 30 ° C.
  • the battery resistance BRD is three times the battery resistance BRD in the high temperature region H due to the increase in electrolyte resistance. This is the above size (5 times or more in this example).
  • the battery resistance BRD has a characteristic of rapidly increasing as the battery temperature BT decreases. Further, in the temperature range between 10 ° C. and ⁇ 20 ° C. (intermediate temperature region M described later), the battery resistance BRD increases at an accelerated rate as the battery temperature BT decreases.
  • a temperature range of 10 to 60 ° C. in which the battery resistance BRD decreases linearly as the temperature increases is defined as a high temperature range H.
  • a temperature region of ⁇ 20 ° C. or lower ( ⁇ 30 to ⁇ 20 ° C.) is defined as a low temperature region L.
  • the temperature range between ⁇ 20 ° C. and + 10 ° C. is set as an intermediate temperature range M.
  • FIG. 8 shows the time change of the battery voltage BV until the battery voltage BV) reaches the allowable minimum voltage Vmin (SOC 0%).
  • the relationship between the discharge time DT and the battery voltage BV greatly depends on the battery temperature BT. The lower the battery temperature BT, the more the battery voltage BV decreases, that is, the short. It can be seen that the battery voltage BV decreases with time. Further, as shown by the broken line and the solid line in FIG.
  • the discharge time difference ⁇ is relatively small.
  • the discharge time difference ⁇ is relatively large as indicated by ⁇ (0) and ⁇ ( ⁇ 10).
  • the difference in battery characteristics cannot be determined by the battery resistance BRD measured by the DC-IR method by discharging the battery 1 with the battery temperature BT set to a specific temperature in the intermediate temperature region M. Can be detected and stratified.
  • the discharge start voltage Vst was discharged from the fully charged state (SOC 100%: allowable maximum voltage Vmax) until the battery voltage BV reached the discharge end voltage Ved (SOC 0%; allowable minimum voltage Vmin).
  • the discharge start voltage Vst for starting discharge corresponds to the uppermost range among the five ranges obtained by dividing the allowable voltage range (Vmin to Vmax) from the allowable minimum voltage Vmin to the allowable maximum voltage Vmax into five equal parts. A value within the upper 1/5 high voltage range may be selected.
  • the discharge start voltage Vst is preferably a voltage value of the allowable maximum voltage Vmax (full charge (SOC: 100%)).
  • the discharge end voltage Ved for terminating the discharge is within the lower 1/5 low voltage range corresponding to the uppermost range among the five ranges obtained by dividing the allowable voltage range (Vmin to Vmax) into five equal parts. Should be selected.
  • the discharge end voltage Ved is preferably set to a voltage value of the allowable minimum voltage Vmin (total discharge (SOC: 0%)).
  • the current that flows during discharge is 10 C or less.
  • the discharge is completed in a short time, so that the measurement accuracy of the discharge time DT is lowered and it is difficult to appropriately compare the discharge time difference ⁇ .
  • the influence of the voltage drop due to the resistance of the electrolyte generated to discharge a large current is large, and it becomes difficult to grasp the change in the discharge time DT due to the deterioration of the characteristics of the battery electrode.
  • the same battery 1 as in the first and third embodiments is rebuilt. That is, in step S1 of FIG. 9, the appearance of the battery 1 is inspected, and the defective battery 10 is removed. Further, the battery resistance BRD is measured (step S2), and in step S3, the battery 10 that has detected an abnormal value is removed. Subsequently, in step S4, the measured battery resistance BRD and the period threshold value Rp are compared in magnitude. When the battery resistance BRD is smaller than the period threshold value Rp (No), the process proceeds to step S5, and it is determined that the battery 11 is the battery 12 in the B period.
  • step S31 in the third embodiment the battery 12 in the B period is stratified by the discharge time DT in step S41.
  • the battery voltage BV is set to 1.7 V / cell (discharge start voltage Vst) which is a fully charged voltage in advance
  • the battery temperature BT is set to 0 ° C.
  • 60 W / cell is supplied via the charging / discharging device.
  • the discharge time DT until the battery voltage BV reaches the discharge end voltage Ved of 0.9 V / cell is measured by constant power discharge, and a plurality of layers (for example, the batteries 12P and 12Q are arranged in the order of short discharge time DT). , 12R).
  • step S42 the process proceeds to step S42, and the batteries belonging to one layer (for example, the battery 12P) among the batteries divided into a plurality of layers (three layers in this example) are collected, and the rebuilt battery aggregate 321 (321P, 321Q) is collected. , 321R) (see FIG. 1D).
  • the variation in the characteristics between the batteries used in the battery assembly is particularly small, and it is possible to prevent problems such as overvoltage and overcharge to some batteries due to the characteristic variation between the batteries.
  • the batteries of period B are used, even if they are used, there is little change in the characteristics of each battery, and a rebuilt battery assembly 321 having stable characteristics can be obtained.
  • the batteries 12P having similar characteristics are combined in use in the environment of the intermediate temperature region M, the difference in the battery characteristics is hardly exhibited in actual use of the battery in the environment of the intermediate temperature region M.
  • a battery assembly 321 with stable characteristics can be obtained.
  • the batteries of adjacent layers for example, the battery 12P and the battery 12Q or the battery 12Q and the battery 12R are combined to form the rebuilt battery assembly 321. It may be configured.
  • step S7 the rebuilt battery assembly 331 is formed using the rebuilt battery assembly 321 as in the first and third embodiments (see FIG. 1 (e)).
  • This assembled battery 331 has particularly little variation in characteristics among the batteries used in this battery, and overvoltage or overcharge to some batteries (or the rebuilt battery assembly 321) due to the characteristic variation between the batteries. Etc. can be prevented.
  • a difference in battery characteristics hardly appears and the assembled battery 331 having stable characteristics can be obtained.
  • step S8 the rebuilt battery pack 331 is incorporated into the vehicle 341 as in the first and third embodiments (see FIG. 1 (f)).
  • the vehicle 341 equipped with the rebuilt battery 331 (rebuilt battery assembly 321) can be manufactured. Since this vehicle 341 is the same as the vehicle 41 except for the assembled battery 331, the description thereof is omitted. Since the vehicle 341 also includes the rebuilt battery 331 (rebuilt battery pack), the vehicle 341 can be made cheaper than the case where a new battery (assembled battery) is used, and the used secondary battery 1 Can be used effectively.
  • step S31 indicated by a broken line is omitted, and in step S41, the battery 12 in the B period is stratified by the discharge time DT.
  • step S31 indicated by a broken line in FIG. 9 may be omitted, and two layers of step S31 and step S41 may be performed. That is, the batteries 12 in the period B may be first stratified by the battery resistance BRD in step S31, and further, each stratified battery may be further stratified by the discharge time DT in step 41.
  • step S2 is a resistance measurement step
  • step S4 is a resistance determination step
  • step S41 is a discharge time stratification step
  • steps S42 and S7 are a third type reconstruction step or a fourth type reconstruction step. Corresponds to the configuration step.
  • the hammer drill 60 according to the fifth embodiment is a battery-operated device on which the rebuilt battery assembly 61 assembled and reconfigured from the battery 12 according to the first embodiment is mounted. As shown in FIG. 10, the hammer drill 60 has a rebuilt battery assembly 61 accommodated in a bottom 63 of a main body 62, which is used as an energy source for driving the drill.
  • the hammer drill 60 Since the hammer drill 60 is equipped with the above-described rebuilt battery assembly 61, the hammer drill 60 can be made inexpensive as compared with the case where a battery assembly using a new battery is used. Can be planned.
  • the present invention has been described with reference to the first to fifth embodiments.
  • the present invention is not limited to the above-described first to fifth embodiments, and can be appropriately modified and applied without departing from the scope of the present invention.
  • the battery 1 is exemplified by a nickel metal hydride secondary battery.
  • the present invention can also be applied to other types of secondary batteries such as lithium ion secondary batteries and nickel cadmium batteries.
  • the prismatic battery is illustrated, but the present invention can also be applied to a cylindrical battery.
  • the battery provided with the laminated power generation element has been illustrated, it can also be applied to a battery having a wound power generation element.
  • the direct current resistance of the battery measured by the DC-IR method is used as the battery resistance, the alternating current resistance of the battery using the AC-IR method may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 適切な中古二次電池の選別方法、この選別方法で選別した特性の揃った中古二次電池を用いたリビルト電池パック、これを用いた車両及び電池使用機器、及び中古二次電池を用いながらも、各電池の特性の揃ったリビルト電池パックを製造する製造方法を提供する。本発明の中古二次電池の選別方法は、使用期間に対する電池抵抗(BRD)の特性がバスタブ状を示す電池(1)について、その電池抵抗(BRD)を測定する抵抗測定ステップ(S2)と、電池(1)が、初期抵抗高期間(A)または終期抵抗高期間(C)と、中期抵抗低期間(B)とのいずれにあるかを識別する期間しきい値(Rp)に比して、電池(1)の電池抵抗(BRD)が大きいか小さいかを判別する抵抗判別ステップ(S4)と、を備える。

Description

中古二次電池の選別方法、リビルト電池パック、これを用いた車両及び電池使用機器、並びにリビルト電池パックの製造方法
 本発明は、既に使用された中古二次電池の選別方法、この選別方法で選別した中古二次電池を用いたリビルト電池パック、これを用いた車両及び電池使用機器に関する。また、中古二次電池を用いたリビルト電池パックの製造方法に関する。
 近時の研究開発により、ハイブリッド自動車や電気自動車が実用化されている。このような自動車用の二次電池には、ニッケル水素二次電池やリチウムイオン二次電池などの高容量高出力の二次電池(以下、単に電池とも言う)が用いられる。
 ところで、このような二次電池の使用が本格化すると、車の廃棄や電池(組電池)の交換などにより、中古の二次電池が多数発生することになる。しかるに、この中古二次電池の中には、故障していたり、特性不良あるいは寿命となったものも含まれるが、未だ使用可能な電池も数多く含まれていることが予想される。このため、環境上の要請および電池製造に伴う資源やエネルギーの有効利用の観点などからも、中古二次電池を適切に再使用することが求められている。また、組電池のうちで、故障或いは大きく劣化した特定の電池を除去し、これに代えて別の電池を補充するに当たり、新品の電池を用いないで、中古の二次電池を用いる場合も考えられる。
 しかしながら、未だ使用可能な電池であるとしても、各々の中古二次電池は、製造されてから中古品として集められるまでの間に、様々な履歴を経由していることが予測される。電池の特性は、製造時のバラツキも存在するが、その後の使用の履歴(例えば、使用年数や使用態様(多く大電流を流して充電・放電をさせたか否か、寒冷地や酷暑地など熱的環境))の違いによって、特性及び劣化度合いが大きく異なる。
 一方、自動車用などでは、電池を単独で使用することは少なく、中古二次電池についても、複数個(例えば12ヶ)を集めて電池パック(小さな電池パック)を再構成(リビルト)し、またさらに、この電池パックを複数用いて組電池(大きな電池パック)を再構成(リビルト)し、これを自動車に搭載して用いる場合が多い。
 しかるに、同じ品番(型番)の中古二次電池を集めて電池パックとした場合に、用いた中古二次電池同士の特性や劣化度合いが異なる場合には、充電や放電時に、電池同士あるいは電池パック同士の間でその挙動が異なることとなり、適切な充放電ができなかったり、場合によっては、電池の故障と診断される虞がある。あるいは、電池パックを形成(リビルト)したにも拘わらず、早期に一部の電池が寿命となり、リビルトした電池パック自身が、早期に使用不能となる虞もある。
 本発明は、かかる問題点に鑑みてなされたものであって、適切な中古二次電池の選別方法を提供することにある。また、この選別方法で選別した特性の揃った中古二次電池を用いたリビルト電池パックを提供することにある。さらに、これを用いた車両及び電池使用機器を提供することにある。また、中古二次電池を用いながらも、各電池の特性の揃ったリビルト電池パックを製造する製造方法を提供することにある。
(1)上記課題を解決するための本発明の一態様は、使用可能期間の初期段階に、電池抵抗が徐々に低下すると共に、電池抵抗が相対的に高い初期抵抗高期間が現れ、使用可能期間の中期段階に、電池抵抗が相対的に低い中期抵抗低期間が現れ、使用可能期間の終期段階に、電池抵抗が徐々に上昇すると共に、電池抵抗が相対的に高い終期抵抗高期間が現れる特性を有する二次電池に関する、既に使用された中古二次電池の選別方法であって、上記中古二次電池の電池抵抗を測定する抵抗測定ステップと、上記中古二次電池が、上記初期抵抗高期間または終期抵抗高期間と、上記中期抵抗低期間とのいずれにあるかを識別する期間しきい値に比して、上記中古二次電池の電池抵抗が大きいか小さいかを判別する抵抗判別ステップと、を備える中古二次電池の選別方法である。
 ところで、自動車用などの高容量高出力のNi-MH二次電池やリチウムイオン二次電池などの電池では、これを使用した場合の電池抵抗(DC-IR法あるいはAC-IR法による電池の抵抗)の経時変化を観察すると、概略、バスタブ曲線を描くことが判ってきた。
 即ち、初期段階では、比較的電池抵抗が高く、使用時間の経過と共に電池抵抗が減少する。この期間は、たとえば、自動車用途の二次電池では、使用(運転)状況にもよるが、数ヶ月~2年程度継続する。
 その後の中期段階では、電池抵抗は相対的に低く、使用時間が経過しても変化せず、ほぼ一定となる。この期間は、たとえば、自動車用途の二次電池では、5~10年程度継続する。
 さらにその後の終期段階では、使用時間と共に電池抵抗が増加し、比較的電池抵抗が高くなる。この期間は、たとえば、自動車用途の二次電池では、1,2年程度継続する。その後、電池抵抗が許容最大抵抗値を超えると、電池は寿命とされる。
 これに対し、上述の選別方法では、上述の特性を有する中古二次電池について、抵抗判別ステップで、中古二次電池の電池抵抗を用いて、この判断対象の中古二次電池が、電池抵抗の高い初期抵抗高期間(以下、A期間とも言う)または終期抵抗高期間(以下、C期間とも言う)と、電池抵抗の低い中期抵抗低期間(以下、B期間とも言う)のいずれの時期にある電池であるかを選別する。これにより、中古二次電池に関し、初期抵抗高期間または終期抵抗高期間にある物と、中期抵抗低期間にある物とを、容易にかつ適切に選別することができる。
 なお、選別に用いる二次電池の電池抵抗としては、DC-IR法によって測定した電池の直流抵抗やAC-IR法によって測定した電池の交流抵抗が挙げられる。
 また、設定する期間しきい値としては、例えば、使用当初の電池が取り得る電池抵抗の最小値よりも低く、中期抵抗値低期間の電池が取り得る電池抵抗の最大値以上の値としたものが挙げられる。
(2)さらに、上述の中古二次電池の選別方法であって、前記期間しきい値よりも前記電池抵抗が大きい中古二次電池について、当該中古二次電池の使用履歴情報に基づいて、当該中古二次電池が、上記初期抵抗高期間に属しているのか、上記終期抵抗高期間に属しているのかを判別する期間判別ステップ、を備える中古二次電池の選別方法とすると良い。
 この中古二次電池の選別方法では、期間しきい値よりも電池抵抗が大きい電池、つまり、初期抵抗高期間(A期間)または終期抵抗高期間(C期間)にある中古二次電池について、期間判別ステップで、当該中古二次電池の使用履歴情報に基づいて、この中古二次電池が、初期抵抗高期間(A期間)に属しているのか、終期抵抗高期間(C期間)に属しているのかを判別する。
 これにより、上述の特性を有する中古二次電池について、この中古二次電池が、3つの期間のうちのどの期間(段階)にあるのかを適切に識別して、再使用や廃棄などの処理を適切に行うことができる。
 また、複数の中古二次電池を集めて電池パックを再構成する場合にも、段階(期間)の同じ中古二次電池を集めて電池パックを構成することができ、電池間の特性バラツキに起因する、一部の電池への過電圧や過充電などの不具合を防止して、安定した特性の電池パックを構成することができる。
 なお、使用履歴情報としては、電池の製造年月日、電池の使用開始年月日、電池の使用期間、電池の稼働時間(実使用時間)等が挙げられる。
 さらに、中古二次電池の使用履歴情報として、当該中古二次電池が自動車用である場合には、電池が使用された期間中の自動車の走行距離を用いることもできる。
(3)さらに、前述の中古二次電池の選別方法であって、前記期間しきい値よりも前記電池抵抗が小さい中古二次電池を、電池抵抗の大きさにより、さらに複数の層に層別する抵抗層別ステップ、を備える中古二次電池の選別方法とすると良い。
 同じ中期抵抗低期間(B期間)に属する中古二次電池であっても、電池抵抗の値にはバラツキがある。
 これに対し、この電池の選別方法では、期間しきい値よりも電池抵抗が小さい中古二次電池である場合、つまり、当該中古二次電池が中期抵抗低期間(B期間)に属する場合に、抵抗層別ステップにおいて、さらに、電池抵抗の大きさにより層別する。これにより、中期抵抗低期間に属する中古二次電池について、更に細かく層別をすることができ、より似通った特性の中古二次電池をそれぞれ集めることができる。
(4)さらに前述の中古二次電池の選別方法であって、前記中古二次電池は、その使用可能温度範囲内において、電池の直流抵抗が、電池の温度が低くなるほど高くなり、かつ、比較的高温の高温領域では、温度による直流抵抗の変化が小さく、比較的低温の低温領域では、温度による直流抵抗の変化が大きく、かつ、高温領域における直流抵抗の3倍以上の直流抵抗を有し、高温領域と低温領域の間の中間温度領域では、電池の温度が低くなるほど、直流抵抗が加速的に大きくなる特性を有しており、前記期間しきい値よりも前記電池抵抗が小さい、または前記抵抗層別ステップで層別した中古二次電池を、上記中間温度領域の環境下で、許容最小電圧から許容最大電圧までの許容電圧範囲のうち、上側1/5の高電圧範囲内の所定の放電開始電圧から、定電力放電または定電流放電させ、上記許容電圧範囲のうち、下側1/5の低電圧範囲内の所定の放電終了電圧に至るまでの放電時間の長さに基づいて、さらに複数の層に層別する放電時間層別ステップ、を備える中古二次電池の選別方法とすると良い。
 この電池の選別方法では、B期間の、または抵抗層別ステップで層別した中古二次電池を、電池の直流抵抗が高温領域よりも若干高くなる中間温度領域の環境下で、定電力放電または定電流放電させたときの、放電終了電圧に至るまでの放電時間の長さに基づいて、さらに複数の層に層別する。
 このため、電池抵抗(DC-IR法、AC-IR法)の測定では判らない、比較的低温の中間温度領域の環境下での電池特性の相違を適切に検知し、各電池を層別できる。このため、中古二次電池について、更に細かく層別をすることができ、より似通った特性の中古二次電池同士をそれぞれ集めることができる。
 特に、比較的温度が低く、電池の直流抵抗が若干高くなる中間温度領域の環境下での特性の似通った電池を、層別によりそれぞれ集めることができる。かくして、比較的低温の中間温度領域の環境下での電池の実使用において、電池同士の特性の相違が表れにくく、特性の安定した電池パックやこれを組み合わせた組電池(大きい電池パック)を、容易に構成することができる。
 なお、-30℃~60℃程度の温度範囲を使用温度領域とするニッケル水素二次電池やLiイオン二次電池においては、中間温度領域としては、概略、-20℃~10℃の範囲が該当する。またこの場合、低温領域は、-30℃~-20℃の範囲が該当し、高温領域は、10℃~60℃の範囲が該当する。また、高温領域に比して、低温領域では、直流抵抗は、3倍以上の値となる。
 また、放電開始電圧としては、許容最小電圧から許容最大電圧までの許容電圧範囲を5等分した5つの範囲のうち、最も上の範囲である、上側1/5の高電圧範囲内の適当な電圧値を選択すればよい。許容最大電圧(満充電(SOC:100%)の電圧)に近い値から放電を開始させることで、比較的充電量が多い状態の電池の特性を、放電時間に反映できるからである。従って、放電開始電圧としては、中でも、許容最大電圧(満充電(SOC:100%))の電圧値とするのが好ましい。
 また、放電終了電圧としては、許容最小電圧から許容最大電圧までの許容電圧範囲を5等分した5つの範囲のうち、最も下の範囲である、下側1/5の低電圧範囲内の適当な電圧値を選択すればよい。許容最小電圧(全放電(SOC:0%)の電圧)に近い値まで放電をさせることで、比較的充電量が低い状態の電池の特性を、放電時間に反映できるからである。従って、放電終了電圧としては、中でも、許容最大電圧(全放電(SOC:0%))の電圧値とするのが好ましい。
 さらに、定電力放電あるいは定電流放電の際に流す電流の大きさとしては、電池を実使用する場合に流す電流の範囲内、例えば、電池を車載する場合には、車載した場合に流しうる最大の電流以下とするのが良い。さらに、10C以下とするのが好ましい。大きな電流を流すと、放電が短時間で終了するので、放電時間の計測精度が低くなり、適切に比較しにくくなる。また、大きな電流を放電させるために生じる電解液抵抗による電圧降下の影響が大きく、電池電極の特性の劣化に起因する放電時間の変化を把握し難くなるからである。
 従って、前述のいずれかに記載の中古二次電池の選別方法であって、前記期間しきい値よりも前記電池抵抗が小さい中古二次電池を、10℃~-20℃の環境下で、満充電の状態から、10C以下の電流で、定電力放電または定電流放電させたときの、許容最小電圧に至るまでの放電時間の長さに基づいて、さらに複数の層に層別する放電時間層別ステップ、を備える中古二次電池の選別方法とするのが好ましい。
 しかも、この選別方法では、放電で変化させる電圧の範囲が広い。このため、電池特性の違いによる放電時間の相違が大きく現れ、より適切に各電池を層別できる。
(5)さらに、使用可能期間の初期段階に、電池抵抗が徐々に低下すると共に、電池抵抗が相対的に高い初期抵抗高期間が現れ、使用可能期間の中期段階に、電池抵抗が相対的に低い中期抵抗低期間が現れ、使用可能期間の終期段階に、電池抵抗が徐々に上昇すると共に、電池抵抗が相対的に高い終期抵抗高期間が現れる特性を有し、既に使用された、複数の中古二次電池を集めて、再構成してなるリビルト電池パックであって、上記中古二次電池は、いずれも、上記構成(1)に記載の中古二次電池の選別方法によって、上記中期抵抗低期間にあるとされたものであるリビルト電池パックとすると良い。
 このリビルト電池パックでは、選別によって中期抵抗低期間(B期間)にあるとされた電池を用いている。このため、電池パックに使用されている電池間での特性のバラツキが少なく、電池間の特性バラツキに起因する、一部の電池への過電圧や過充電などの不具合を防止できる。しかも、B期間の電池を用いているので、使用しても、各電池の特性変化が少なく、安定した特性を有するリビルト電池パックとすることができる。
 また、C期間の電池が混入していないため、リビルト電池パック内の電池の一部が早期に寿命となり、リビルト電池パックが早期に使用不能となる不具合も防止できる。
 なお、リビルト電池パックには、電池を複数集めて電池パックとしたものの他、このような電池パックを複数組み合わせて組電池(大きいパック電池)も含まれる。
(6)さらに、使用可能期間の初期段階に、電池抵抗が徐々に低下すると共に、電池抵抗が相対的に高い初期抵抗高期間が現れ、使用可能期間の中期段階に、電池抵抗が相対的に低い中期抵抗低期間が現れ、使用可能期間の終期段階に、電池抵抗が徐々に上昇すると共に、電池抵抗が相対的に高い終期抵抗高期間が現れる特性を有し、既に使用された、複数の中古二次電池を集めて、再構成してなるリビルト電池パックであって、上記中古二次電池は、いずれも、上記構成(2)に記載の中古二次電池の選別方法によって、上記初期抵抗高期間にあるとされたものであるリビルト電池パックとすると良い。
 このリビルト電池パックでは、選別によって初期抵抗高期間(A期間)にあるとされた電池を用いている。このため、電池パックに使用されている電池間での特性のバラツキが少なく、電池間の特性バラツキに起因する、一部の電池への過電圧や過充電などの不具合を防止したリビルト電池パックとすることができる。
 また、C期間の電池が混入していないため、リビルト電池パック内の電池の一部が早期に寿命となり、リビルト電池パックが早期に使用不能となる不具合も防止できる。
 さらに、残寿命の長いA期間の電池を集めているので、長期に亘って、このリビルト電池パックを使用することができる。
(7)さらに、使用可能期間の初期段階に、電池抵抗が徐々に低下すると共に、電池抵抗が相対的に高い初期抵抗高期間が現れ、使用可能期間の中期段階に、電池抵抗が相対的に低い中期抵抗低期間が現れ、使用可能期間の終期段階に、電池抵抗が徐々に上昇すると共に、電池抵抗が相対的に高い終期抵抗高期間が現れる特性を有し、既に使用された、複数の中古二次電池を集めて、再構成してなるリビルト電池パックであって、上記中古二次電池は、いずれも、上記構成(3)に記載の中古二次電池の選別方法において、前記抵抗層別ステップによって層別された複数の層のうち、1層又は隣り合う一部の層に属するものであるリビルト電池パックとすると良い。
 このリビルト電池パックでは、選別によって中期抵抗低期間(B期間)にあるとされた電池について、さらに、電池抵抗で複数層に層別し、そのうち1層又は隣り合う一部の層に属する電池を用いている。このため、電池パックに使用されている電池間での特性のバラツキがさらに少なく、電池間の特性バラツキに起因する、一部の電池への過電圧や過充電などの不具合を防止できる。しかも、B期間の電池を用いているので、使用をしても、各電池の特性変化が少なく、安定した特性を有するリビルト電池パックとすることができる。
 また、C期間の電池が混入していないため、リビルト電池パック内の電池の一部が早期に寿命となり、リビルト電池パックが早期に使用不能となる不具合も防止できる。
(8)あるいは、使用可能期間の初期段階に、電池抵抗が徐々に低下すると共に、電池抵抗が相対的に高い初期抵抗高期間が現れ、使用可能期間の中期段階に、電池抵抗が相対的に低い中期抵抗低期間が現れ、使用可能期間の終期段階に、電池抵抗が徐々に上昇すると共に、電池抵抗が相対的に高い終期抵抗高期間が現れる特性を有し、既に使用された、複数の中古二次電池を集めて、再構成してなるリビルト電池パックであって、上記中古二次電池は、いずれも、上記構成(4)に記載の中古二次電池の選別方法において、前記放電時間層別ステップによって層別された複数の層のうち、1層又は隣り合う一部の層に属するものであるリビルト電池パックとすると良い。
 このリビルト電池パックでは、選別によって中期抵抗低期間(B期間)にあるとされた電池、あるいはさらに、電池抵抗で層別された電池について、さらに、放電時間で複数層に層別し、そのうち1層又は隣り合う一部の層に属する電池を用いている。このため、電池パックに使用されている電池間での、電池抵抗(DC-IR法、AC-IR法)では検知できない、電池の特性までもが揃っており、電池間の特性バラツキに起因する、一部の電池への過電圧や過充電などの不具合を防止できる。特に比較的低温の中間温度領域で、特性の相違が表れにくい、特性の揃ったリビルト電池パックとすることができる。しかも、B期間の電池を用いているので、使用をしても、各電池の特性変化が少なく、安定した特性を有するリビルト電池パックとすることができる。
 また、C期間の電池が混入していないため、リビルト電池パック内の電池の一部が早期に寿命となり、リビルト電池パックが早期に使用不能となる不具合も防止できる。
(9)あるいは、前記課題を解決するための他の態様は、使用可能期間の初期段階に、電池抵抗が徐々に低下すると共に、電池抵抗が相対的に高い初期抵抗高期間が現れ、使用可能期間の中期段階に、電池抵抗が相対的に低い中期抵抗低期間が現れ、使用可能期間の終期段階に、電池抵抗が徐々に上昇すると共に、電池抵抗が相対的に高い終期抵抗高期間が現れる特性を有し、既に使用された、複数の中古二次電池を集めて、再構成してなるリビルト電池パックであって、上記中古二次電池は、いずれも上記中期抵抗低期間に属するリビルト電池パックである。
 このリビルト電池パックでは、中期抵抗低期間(B期間)に属する中古二次電池を集めてなる。このため、電池パックに使用されている電池間での特性のバラツキが少なく、電池間の特性バラツキに起因する、一部の電池への過電圧や過充電などの不具合を防止できる。しかも、B期間の電池を用いているので、使用をしても、各電池の特性変化が少なく、安定した特性を有するリビルト電池パックとすることができる。
 逆に、C期間の電池が混入していないため、リビルト電池パック内の電池の一部が早期に寿命となり、リビルト電池パックが早期に使用不能となる不具合も防止できる。
(10)さらに、前記課題を解決するための他の態様は、前述のいずれかのリビルト電池パックを搭載し、このリビルト電池パックによる電気エネルギーを動力源の全部または一部に使用する車両である。
 この車両は、前述のリビルト電池パックを搭載しているため、新品の電池を使用した場合に比して、安価とすることができる上、中古となった電池の有効利用を図ることができる。
 なお、車両としては、例えば、電気自動車、プラグインハイブリッドカー、ハイブリッドカー、ハイブリッド鉄道車両、電動フォークリフト、電動車いす、電動アシスト自転車、電動スクータなどが挙げられる。
(11)さらに、前記課題を解決するための他の態様は、前述のいずれかのリビルト電池パックを搭載し、このリビルト電池パックをエネルギー源の少なくとも1つとして使用する電池使用機器である。
 この電池使用機器は、前述のリビルト電池パックを搭載しているため、新品の電池を使用した場合に比して、安価とすることができる上、中古となった電池の有効利用を図ることができる。
 なお、電池使用機器としては、例えば、パーソナルコンピュータ、携帯電話、電池駆動の電動工具、無停電電源装置など、電池で駆動される各種の家電製品、オフィス機器、産業機器などが挙げられる。
(12)さらに、前記課題を解決するための他の態様は、使用可能期間の初期段階に、電池抵抗が徐々に低下すると共に、電池抵抗が相対的に高い初期抵抗高期間が現れ、使用可能期間の中期段階に、電池抵抗が相対的に低い中期抵抗低期間が現れ、使用可能期間の終期段階に、電池抵抗が徐々に上昇すると共に、電池抵抗が相対的に高い終期抵抗高期間が現れる特性を有し、既に使用された、複数の中古二次電池を集めて、再構成してなるリビルト電池パックの製造方法であって、上記中古二次電池が、上記初期抵抗高期間または終期抵抗高期間と、上記中期抵抗低期間とのいずれにあるかを識別する期間しきい値に比して、上記中古二次電池の電池気抵抗が大きいか小さいかを判別する抵抗判別ステップと、上記期間しきい値よりも上記電池抵抗が小さい中古二次電池を集めて、電池パックを再構成する第1タイプ再構成ステップと、を備えるリビルト電池パックの製造方法である。
 このリビルト電池パックの製造方法では、第1タイプ再構成ステップで、中期抵抗低期間(B期間)に属する中古二次電池を集めて、リビルト電池パックを再構成する。
 このため、リビルト電池パックに使用されている電池間での特性のバラツキが少なく、電池パックにおいて、電池間の特性バラツキに起因する、一部の電池への過電圧や過充電などの不具合を防止したリビルト電池パックを製造することができる。
 しかも、B期間の電池を用いているので、使用をしても、各電池の特性変化が少なく、安定した特性を有するリビルト電池パックを製造することができる。このため、互いに似通った特性を有しており、電池抵抗の変化も生じにくく、安定した特性のリビルト電池パックを製造することができる。
 また、C期間の電池が混入していないため、リビルト電池パック内の電池の一部が早期に寿命となり、リビルト電池パックが早期に使用不能となる不具合も防止できる。
(13)さらに、上述のリビルト電池パックの製造方法であって、前記期間しきい値よりも前記電池抵抗が小さい中古二次電池について、電池抵抗の大きさにより、当該中古二次電池を複数の層に層別する抵抗層別ステップを備えると共に、前記第1タイプ再構成ステップに代えて、上記電池抵抗で層別された複数の層のうち、1層又は隣り合う一部の層に属する中古二次電池を集めて、電池パックを再構成する第2タイプ再構成ステップを備えるリビルト電池パックの製造方法とすると良い。
 このリビルト電池パックの製造方法では、期間しきい値よりも電池抵抗が小さい中古二次電池、つまり、中期抵抗低期間(B期間)に属する中古二次電池について、抵抗層別ステップにおいて、さらに、電池抵抗の大きさにより複数の層に層別する。そして、さらに層別をした複数の層のうち1層又は隣り合う一部の層に属する電池を集めて、リビルト電池パックを製造する。このため、電池パックに使用されている電池間での特性のバラツキがさらに少なく、特に、電池間の特性バラツキに起因する、一部の電池への過電圧や過充電などの不具合を防止できる。しかも、B期間の電池を用いているので、使用をしても、各電池の特性変化が少なく、安定した特性を有するリビルト電池パックを製造することができる。
(14)さらに、前述のいずれかに記載のリビルト電池パックの製造方法であって、前記中古二次電池は、その使用可能温度範囲内において、電池の直流抵抗が、電池の温度が低くなるほど高くなり、かつ、比較的高温の高温領域では、温度による直流抵抗の変化が小さく、比較的低温の低温領域では、温度による直流抵抗の変化が大きく、かつ、高温領域における直流抵抗の3倍以上の直流抵抗を有し、高温領域と低温領域の間の中間温度領域では、電池の温度が低くなるほど、直流抵抗が加速的に大きくなる特性を有しており、前記期間しきい値よりも前記電池抵抗が小さい、または前記抵抗層別ステップで層別された前記中古二次電池を、上記中間温度領域の環境下で、許容最小電圧から許容最大電圧までの許容電圧範囲のうち、上側1/5の高電圧範囲内の所定の放電開始電圧から、定電力放電または定電流放電させ、上記許容電圧範囲のうち、下側1/5の低電圧範囲内の所定の放電終了電圧に至るまでの放電時間の長さに基づいて、さらに複数の層に層別する放電時間層別ステップ、を備えると共に、前記第1タイプ再構成ステップまたは前記第2タイプ再構成ステップに代えて、上記放電時間の長さで層別された複数の層のうち、1層又は隣り合う一部の層に属する中古二次電池を集めて、電池パックを再構成する第3タイプ再構成ステップを備えるリビルト電池パックの製造方法とすると良い。
 このリビルト電池パックの製造方法では、放電時間層別ステップによって、B期間の中古二次電池、またはさらに電池抵抗で層別された中古二次電池を、放電時間の長さに基づいてさらに複数の層に層別し、そのうちの1層又は隣り合う一部の層に属する電池を集めてリビルト電池パックを製造する。このため、電池抵抗(DC-IR法、AC-IR法)では判らない、中間温度領域の環境下での電池特性の相違をも適切に層別し、より似通った特性の中古二次電池を集めてリビルト電池パックを製造することができる。特に、比較的低温の中間温度領域の環境下での特性の似通った電池を使用できるので、中間温度領域の環境下でのリビルト電池パックの実使用において、各電池の特性の相違が表れにくく、安定して使用できる電池パックを製造できる。
 なお特に、前述のリビルト電池パックの製造方法であって、前記期間しきい値よりも前記電池抵抗が小さい、または前記抵抗層別ステップで層別された前記中古二次電池を、10℃~-20℃の環境下で、満充電の状態から、10C以下の電流で、定電力放電または定電流放電させたときの、許容最小電圧に至るまでの放電時間の長さに基づいて複数の層に層別する放電時間層別ステップ、を備えると共に、前記第1タイプ再構成ステップまたは前記第2タイプ再構成ステップに代えて、上記放電時間の長さで層別された複数の層のうち、1層又は隣り合う一部の層に属する中古二次電池を集めて、電池パックを再構成する第3タイプ再構成ステップを備えるリビルト電池パックの製造方法とするのが好ましい。
 この製造方法では、放電時間層別ステップにおいて、放電で変化させる電圧の範囲が広い。このため、電池特性の違いによる放電時間の相違が大きく現れ、より適切に各電池を層別できる。
 なお、中古二次電池の電池抵抗を期間しきい値と比較して、電池を選別すること行うことなく、以下の選別方法を採用することもできる。即ち、既に使用された中古二次電池の選別方法であって、上記中古二次電池は、その使用可能温度範囲内において、電池の直流抵抗が、電池の温度が低くなるほど高くなり、かつ、比較的高温の高温領域では、温度による直流抵抗の変化が小さく、比較的低温の低温領域では、温度による直流抵抗の変化が大きく、かつ、高温領域における直流抵抗の3倍以上の直流抵抗を有し、高温領域と低温領域の間の中間温度領域では、電池の温度が低くなるほど、直流抵抗が加速的に大きくなる特性を有しており、上記中古二次電池を、上記中間温度領域の環境下で、許容最小電圧から許容最大電圧までの許容電圧範囲のうち、上側1/5の高電圧範囲内の所定の放電開始電圧から、定電力放電または定電流放電させ、上記許容電圧範囲のうち、下側1/5の低電圧範囲内の所定の放電終了電圧に至るまでの放電時間の長さに基づいて、さらに複数の層に層別する放電時間層別ステップ、を備える中古二次電池の選別方法とすることも好ましい。
 この中古二次電池の選別方法では、中間温度領域の環境下で、定電力放電または定電流放電させたときの放電時間の長さに基づいて、中古二次電池を、複数の層に層別する。このため、常温下での電池抵抗(DC-IR法、AC-IR法)では判らない、比較的低温の中間温度領域の環境下での電池特性の相違を、適切に検知し、各電池を複数の層に層別できる。かくして、似通った特性を有する中古二次電池を的確に集めることができる。特に、比較的低温で、電池の直流抵抗が若干高くなる中間温度領域の環境下での電池の使用において、特性の似通ったものを選別できるので、この中間温度領域の環境下での電池の実使用において、電池特性の相違が表れにくく、特性の安定した電池集合体(小さい電池パック)やこれを組み合わせた組電池(大きい電池パック)などの電池パックを、容易に構成することができる。
 特に、既に使用された中古二次電池の選別方法であって、上記中古二次電池を、10℃~-20℃の環境下で、満充電の状態から、10C以下の電流で、定電力放電または定電流放電させたときの、許容最小電圧に至るまでの放電時間の長さに基づいて複数の層に層別する放電時間層別ステップ、を備える中古二次電池の選別方法とするのが好ましい。
 この中古二次電池の選別方法では、比較的低温の環境下で、定電力放電または定電流放電させたときの、満充電状態から許容最小電圧に至るまでの放電時間の長さに基づいて、中古二次電池を、複数の層に層別する。このため、常温下での電池抵抗(DC-IR法、AC-IR法)では判らない、比較的低温環境下での電池特性の相違を、適切に検知し、各電池を層別できる。かくして、似通った特性の中古二次電池を的確に集めることができる。特に、比較的低温環境下での電池の使用において、特性の似通ったものを選別できるので、このような環境下での電池の実使用において、特性の相違が表れにくく、特性の安定した電池パックやこれを組み合わせた組電池(大きい電池パック)を、容易に構成することができる。
 しかも、この選別方法では、放電で変化させる電圧の範囲が広い。このため、電池特性の違いによる放電時間の相違が大きく現れ、より適切に各電池を層別できる。
 さらに、既に使用された、複数の中古二次電池を集めて、再構成してなるリビルト電池パックであって、上記中古二次電池は、いずれも、直上の2項に記載の中古二次電池の選別方法において、前記放電時間層別ステップによって層別された複数の層のうち、1層又は隣り合う一部の層に属するものであるリビルト電池パックとすることも好ましい。
 このリビルト電池パックは、選別により、比較的低温の中間温度領域の環境下での特性が揃った中古二次電池を用いている。このため、電池パックに使用されている電池間での、電池抵抗(DC-IR法、AC-IR法)では検知できない、電池の特性までもが揃っており、電池間の特性バラツキに起因する、一部の電池への過電圧や過充電などの不具合を防止できる。特に比較的低温の中間温度領域で、特性の相違が表れにくく、安定して使用することができる電池パックとなる。
 さらに、既に使用された、複数の中古二次電池を集めて、再構成してなるリビルト電池パックの製造方法であって、上記中古二次電池は、その使用可能温度範囲内において、電池の直流抵抗が、電池の温度が低くなるほど高くなり、かつ、比較的高温の高温領域では、温度による直流抵抗の変化が小さく、比較的低温の低温領域では、温度による直流抵抗の変化が大きく、かつ、高温領域における直流抵抗の3倍以上の直流抵抗を有し、高温領域と低温領域の間の中間温度領域では、電池の温度が低くなるほど、直流抵抗が加速的に大きくなる特性を有しており、上記中古二次電池を、上記中間温度領域の環境下で、許容最小電圧から許容最大電圧までの許容電圧範囲のうち、上側1/5の高電圧範囲内の所定の放電開始電圧から、定電力放電または定電流放電させ、上記許容電圧範囲のうち、下側1/5の低電圧範囲内の所定の放電終了電圧に至るまでの放電時間の長さに基づいて、さらに複数の層に層別する放電時間層別ステップと、上記放電時間で層別された複数の層のうち、1層又は隣り合う一部の層に属する中古二次電池を集めて、電池パックを再構成する第4タイプ再構成ステップと、を備えるリビルト電池パックの製造方法とするのも好ましい。
 このリビルト電池パックの製造方法では、放電時間層別ステップによって、中古二次電池を、放電時間の長さに基づいて複数の層に層別し、そのうちの1層又は隣り合う一部の層に属する電池を集めてリビルト電池パックを製造する。このため、電池抵抗(DC-IR法、AC-IR法)では判らない、中間温度領域の環境下での電池特性の相違を適切に層別し、似通った特性の中古二次電池を集めたリビルト電池パックを製造することができる。特に、比較的低温の中間温度領域の環境下での特性の似通った電池を使用できるので、中間温度領域の環境下でのリビルト電池パックの実使用において、各電池の特性の相違が表れにくく、安定して使用できる電池パックを製造できる。
 特に、既に使用された、複数の中古二次電池を集めて、再構成してなるリビルト電池パックの製造方法であって、上記中古二次電池を、10℃~-20℃の環境下で、満充電の状態から、10C以下の電流で、定電力放電または定電流放電させたときの、許容最小電圧に至るまでの放電時間の長さに基づいて複数の層に層別する低温放電時間層別ステップと、上記放電時間で層別された1つの層に属する中古二次電池を集めて、電池パックを再構成する第4タイプ再構成ステップと、を備えるリビルト電池パックの製造方法とするのが好ましい。
 この中古二次電池の選別方法では、比較的低温の環境下で、定電力放電または定電流放電させたときの、満充電状態から許容最小電圧に至るまでの放電時間の長さに基づいて、中古二次電池を、複数の層に層別する。このため、常温下での電池抵抗(DC-IR法、AC-IR法)では判らない、比較的低温環境下での電池特性の相違を、適切に検知し、各電池を層別できる。かくして、似通った特性の中古二次電池を的確に集めることができる。特に、比較的低温環境下での電池の使用において、特性の似通ったものを選別できるので、このような環境下での電池の実使用において、特性の相違が表れにくく、特性の安定した電池パックやこれを組み合わせた組電池(大きい電池パック)を、容易に構成することができる。
 しかも、この選別方法では、放電で変化させる電圧の範囲が広い。このため、電池特性の違いによる放電時間の相違が大きく現れ、より適切に各電池を層別できる。
中古電池集合体から、中古二次電池を得、リビルトした組電池を車両に搭載するまでの流れを示す説明図である。 使用時間の経過に対する、電池抵抗(DC-IR法)の変化を示すグラフである。 実施形態1に係る電池の選別、並びに、電池集合体及び組電池の製造の流れを示すフローチャートである。 リビルト組電池を搭載した車両を示す説明図である。 実施形態2に係る電池の選別、並びに、電池集合体及び組電池の製造の流れを示すフローチャートである。 実施形態3に係る電池の選別、並びに、電池集合体及び組電池の製造の流れを示すフローチャートである。 電池温度と電池の直流抵抗との関係を示すグラフである。 電池を満充電の状態から許容最小電圧まで、定電力放電させた場合の電池電圧の変化を、電池温度を変えて測定した場合のグラフである。 実施形態4に係る電池の選別、並びに、電池集合体及び組電池の製造の流れを示すフローチャートである。 リビルト電池集合体を搭載したインパクトドライバを示す説明図である。
(実施形態1)
 本発明の第1の実施形態について、図1~図4を参照して説明する。車載用の二次電池は、図1において(f)欄に示すように、車両41に組電池(中古組電池)UABとして搭載され使用されている。このような車両41が廃車となった場合や、中古組電池UABを新たな組電池に交換した場合、中古組電池UABを構成する中古電池集合体UBPの一部を交換した場合には、中古組電池UABあるいは中古電池集合体UBPが発生することとなる。
 この中古組電池UABは、複数の中古電池集合体UBPから構成されている。また、中古電池集合体UBPは、図1の(a)欄に示すように、複数の中古二次電池1(図1では、6ヶ)から構成されている。この中古組電池UABあるいは中古電池集合体UBPは、そのままリサイクルできる場合もあるが、中古電池集合体UBPをなす電池1の一部が劣化しているなど、そのままでは再利用に適しない場合がある。そこで、(b)欄に示すように、中古電池集合体UBPを崩し、個々の電池1に分け、再使用できる電池11と、劣化や不具合等で再使用できない電池10とに選別する。さらに、本実施形態では、後述するように、再使用できる電池11のうちでも、使用の程度が寿命の中頃程度の電池(後述する期間Bの電池)12と、それ以外の電池(後述する期間A及び期間Cの電池)13とを選別(層別)する((c)欄参照)。
 さらに、(d)欄に示すように、電池12と電池13の2層に層別した電池11のうち、1つの層である期間Bに属する電池12を集めて、リビルト電池集合体21を再構成する。さらに、(e)欄に示すように、リビルト電池集合体21を集めて、リビルト組電池31を再構成し、これを、車両41に搭載する。
 まず、本実施形態1にかかる電池1について説明する。電池1は、金属電槽内1Bに、積層形の発電要素1Aを収容した、公知のNi-水素二次電池(Ni-MH二次電池)である。発電要素1Aには、図示しない正電極板と負電極板とこれらの間に介在するセパレータとが含まれ、水酸化カリウムを主体とする電解液1Cが含浸されている。
 この車載用の電池1は、使用と共にその特性が変化する性質を有しており、概略、図2のような、いわゆるバスタブ形の特性変化(抵抗変化)を示す。即ち、電池1の使用時間に対する、電池の特性の指標となる、DC-IR法で測定した電池の直流抵抗(電池抵抗)BRDの変化を観察すると、図2のように変化する性質を有している。具体的には、使用開始時(使用時間0)付近では、電池抵抗(初期抵抗値Ri)は、後述する許容最大抵抗値Rmaxよりは低いが、比較的高い値となる。しかるに、電池1の使用を開始すると、徐々に電池抵抗BRDが減少する。この期間は、電池1の使用条件等によって異なるが、概略半年から2年程度である。そして、或る程度、電池を使用をすると、使用時間が経過しても、電池抵抗BRDはほぼ一定となり変化が生じない時期となる。この期間が、概略、5~10年程度継続する。さらに、この時期を過ぎて電池1を使用すると、使用時間と共に電池抵抗BRDが緩やかに上昇し、遂には、許容最大抵抗値Rmaxを越え、使用限界(使用不能)となる。この期間は、概略、1~2年程度継続する。
 なお、各電池1の特性には、バラツキが存在している。従って、図2において、例えば、使用時間Xの時点における電池抵抗BRDの抵抗バラツキDRは、両矢印の範囲として表される。
 また、電池抵抗(DC-IR法)BRDの測定は、以下のようにして行う。
即ち、期間T秒、電流値Iの充電、休止、期間T秒、電流値Iの放電、休止を、電流値Iを、I=2C,4C,10C,20Cの順に変化させて充放電を行う。なお、期間T秒としては、2~10秒から選択した値、例えばT=2秒とする。このような充電あるいは放電の際の、各電流値Iの大きさと、その際の電池電圧BVとの関係を測定しておき、横軸を電流値、縦軸を電圧として、各電流値について電圧との関係をプロットする。さらに最小二乗法により回帰直線を引き、このグラフ(直線)の傾きを得る。この傾きは、オームの法則により、電池の直流抵抗(電池抵抗)BRDに相当している。
 そして、前述の特性を利用して、電池1を選別する。本実施形態にかかる選別及びリビルト電池集合体やリビルト組電池の製造手順について、図3及び図2を参照して説明する。
 まず、図3のステップS1において、電池1の外観を検査し、不具合(容器の膨らみ、凹み等の変形や、キズ、腐蝕等)がある電池10は、これを除去する。さらに、残った各々の電池1について、電池抵抗BRDを上述の手法により測定する(ステップS2)。次いで、ステップS3において、短絡や開放、その他の異常値を検出した電池10、具体的には、電池抵抗BRDが、許容最小抵抗値Rmin未満、あるいは許容最大抵抗値Rmaxを越える電池10についても、これを除去する。
 さらにステップS4において、測定した電池抵抗BRDと期間しきい値Rpとの大小を比較する。この期間しきい値Rpとしては、各電池1の特性バラツキを考慮した上で、図2に示すように、使用当初の電池1が取り得る初期抵抗値Riの最小値よりも低く、かつ、使用時間UTが経過し電池抵抗BRDがほぼ一定となる時期の電池が取り得る電池抵抗BRDの最大値(使用時間Xにおける抵抗バラツキDRを考慮した電池抵抗BRDの最大値)以上の値とする。
 また、図2に示すように、この期間しきい値Rpとの比較により、電池の寿命となるまでの使用可能期間UPの中期に当たり、電池抵抗BRDがこの期間しきい値Rpよりも低い期間を、中期抵抗値低期間B(B期間)とする。また、使用時間UTが短く、使用可能期間UPの初期に当たり、電池抵抗BRDがこの期間しきい値Rpよりも高い期間を、初期抵抗値高期間A(A期間)とする。また、使用時間が長く、使用可能期間UPの終期に当たり、電池抵抗BRDがこの期間しきい値Rpよりも高い期間を、終期抵抗値高期間C(C期間)とする。
 前述したステップS4では、電池抵抗BRDと期間しきい値Rpとの比較により、電池1がB期間の電池12であるか、それ以外の期間(A,C期間)の電池13であるかを選別(層別)する。即ち、電池抵抗BRDが期間しきい値Rpよりも大きい場合(Yes)には、ステップS11に進み、この電池11は、A期間或いはC期間の電池13であると判断する。
 一方、電池抵抗BRDが期間しきい値Rpよりも小さい場合(No)には、ステップS5に進み、この電池11は、B期間の電池12であると判断する。このように、期間しきい値Rpを用いることで、中古二次電池1(11)に関し、初期抵抗高期間(A期間)または終期抵抗高期間(C期間)にある電池13と、中期抵抗低期間(B期間)にある電池12とを、容易にかつ適切に選別することができる。
 さらに、ステップS6では、B期間に分類された電池12を集めて、リビルト電池集合体21を形成(再構成)する(図1(c),(d)参照)。かくして、リビルト電池集合体21が製造できる。
 このように、このリビルト電池集合体21は、同じB期間の電池12を集めて再構成している。このため、各電池12の電池抵抗BRDが低く、リビルト電池集合体21の全体としても、電池抵抗が低い電池集合体とすることができる。
 さらに、使用されている電池12間での特性のバラツキが少なく、使用している電池12間の抵抗バラツキDRに起因する、一部の電池への過電圧や過充電などの不具合を防止できる。しかも、B期間の電池12を用いているので、使用をしても、各電池12の特性変化が少なく、安定した特性を有するリビルト電池集合体21とすることができる。
 逆に、C期間の電池13が混入していないため、リビルト電池集合体21内の電池の一部が早期に寿命となり、リビルト電池集合体21全体が早期に使用不能となる不具合も防止できる。
 なお、このリビルト電池集合体21は、リビルト電池パックの1種(小さなリビルト電池パック)である。
 さらに、ステップS7に進み、電池12を用いたリビルト電池集合体21を集め、リビルト組電池31を形成(再構成)する(図1(e)参照)。かくして、リビルト組電池31が製造できる。なお、このリビルト組電池31は、リビルト電池パックの1種(大きなリビルト電池パック)である。
 この場合にも、組電池31に使用している電池12間での特性のバラツキが少なく、電池間の抵抗バラツキDRに起因する、一部の電池(或いはリビルト電池集合体21)への過電圧や過充電などの不具合を防止できる。しかも、B期間の電池12を用いているので、使用をしても、各電池12の特性変化が少なく、安定した特性を有するリビルト組電池31とすることができる。
 さらにステップS8に進み、リビルト組電池31を車両41に組み込む(図1(f)参照)。かくして、リビルト組電池31(リビルト電池集合体21)を搭載した車両41が製造できる。この車両41は、図4に示すように、エンジン42、フロントモータ43及びリアモータ44を併用して駆動するハイブリッド自動車である。この車両41は、車体45、エンジン42、これに取り付けられたフロントモータ43、リアモータ44、ケーブル46、インバータ47を備える。更に、この車両41は、リビルト組電池31を備え、このリビルト組電池31による電気エネルギーを、フロントモータ43及びリアモータ44の駆動に利用している。
 この車両41は、リビルト組電池31(リビルト電池パック)を搭載しているため、新品の電池(組電池)を使用した場合に比して、安価とすることができる上、中古二次電池1の有効利用を図ることができる。
 なお、本実施形態1では、ステップS2が抵抗測定ステップに、ステップS4が抵抗判別ステップに、ステップS6及びS7が第1タイプ再構成ステップに該当する。
(実施形態2)
 次いで、第2の実施形態について、図1,図2,図5を参照して説明する。前述した実施形態1では、B期間の電池12について、ステップS5~S8に従い、リビルト電池集合体21及びリビルト組電池31の製造を行い、さらに、車両41への搭載を行った。一方、ステップS4でYes、つまり電池抵抗BRDが期間しきい値Rpよりも大きい電池については、ステップS11に進み、期間Aまたは期間Cの電池13として選別したが、それ以降については、何も行わなかった。
 これに対し、本実施形態2では、実施形態1と異なり、A,C期間の電池13についても、ステップS11~S18に従い、リビルト電池集合体121、リビルト組電池131を製造し、さらに車両141への搭載を行う。
 そこで以下では、実施形態1と異なる部分を中心に説明する一方、実施形態1と同様な部分については、説明を省略或いは簡略化する。
 本実施形態2でも、実施形態1と同様の電池1について、リビルトを行う。即ち、実施形態1と同様、ステップS1において電池1の外観を検査し、不具合のある電池10を除去する。さらに、電池抵抗BRDを測定し(ステップS2)、ステップS3において、異常値を検出した電池10を除去する。
 続いて、ステップS4において、測定した電池抵抗BRDと期間しきい値Rpとの大小を比較する。電池抵抗BRDが期間しきい値Rpよりも小さい場合(No)には、ステップS5に進み、この電池11は、B期間の電池12であると判断する。これ以降は、実施形態1のステップS6~8と同様にして、リビルト電池集合体21及びリビルト組電池31の製造を行い、さらに、車両41への搭載を行う。
 一方、ステップS4において、電池抵抗BRDが期間しきい値Rpよりも大きい場合(Yes)には、ステップS11に進み、この電池11は、A期間或いはC期間の電池13であると判断する。
 その後、実施形態1とは異なり、ステップS12に進み、電池13の使用履歴情報から、これが、A期間の電池であるか否かを判断する。組電池UABに使用されている電池1は、いずれも、その製造及び使用履歴が管理されている。従って、各電池1(13)について、使用開始からの電池の稼働時間(実使用時間)などの使用履歴情報が存在している。そこで、電池13の使用履歴情報のうちの使用時間UTを用いて判断する。具体的には、電池13の使用時間UTが2年以下の場合(Yes)には、ステップS13に進み、A期間の電池14であるとする。一方、使用時間UTが2年を越える場合(No)には、ステップS17に進み、C期間の電池15であるとする。このようにして、電池13を、2つの層(電池14,15)に層別する。
 なお、ステップS17で、C期間であるとされた電池15は、ステップS18に進み、電池としては廃棄され、分解して素材として再利用される。寿命が間近であり、使用と共に、電池抵抗BRDが増加すると見込まれるので、電池集合体や組電池としてリビルトしても、早期に各電池が寿命となる可能性が高く、再利用が難しいからである。
 一方、ステップS14において、A期間に分類された電池14を集めて、リビルト電池集合体121を形成(再構成)する(図1(d)参照)。かくして、この実施形態2では、A期間の電池14からも、リビルト電池集合体121が製造できる。
 このリビルト電池集合体121では、選別によってA期間にあるとされた電池14を用いている。このため、電池集合体121に使用されている電池14間での特性のバラツキが少なく、電池間の抵抗バラツキDRに起因する、一部の電池への過電圧や過充電などの不具合を防止したリビルト電池集合体121とすることができる。
 また、C期間の電池15が混入していないため、リビルト電池集合体121内の電池の一部が早期に寿命となり、リビルト電池集合体が早期に使用不能となる不具合も防止できる。
 さらに、残寿命の長いA期間の電池14を集めているので、長期に亘って、このリビルト電池集合体を使用することができる。
 さらに、ステップS15に進み、電池14を用いたリビルト電池集合体121を集め、リビルト組電池131を形成(再構成)する(図1(e)参照)。かくして、リビルト組電池131が製造できる。なお、このリビルト組電池131も、リビルト電池パックの1種である。
 この場合にも、組電池131に使用している電池14間での特性のバラツキが少なく、電池間の抵抗バラツキDRに起因する、一部の電池(或いはリビルト電池集合体121)への過電圧や過充電などの不具合を防止できる。しかも、A期間の電池14を用いているので、使用をしても、各電池14の特性変化が少なく、安定した特性を有するリビルト組電池131とすることができる。
 さらにステップS16に進み、リビルト組電池131を車両141に組み込む(図1(f)参照)。かくして、リビルト組電池131(リビルト電池集合体121)を搭載した車両141が製造できる。この車両141は、組電池131以外は、車両41と同様であるので、説明を省略する。
 この車両141は、リビルト組電池131(リビルト電池パック)を搭載しているため、新品の電池(組電池)を使用した場合に比して、安価とすることができる上、中古二次電池1の有効利用を図ることができる。
 なお、本実施形態2でも、ステップS2が抵抗測定ステップに、ステップS4が抵抗判別ステップに、ステップS6,S7が第1タイプ再構成ステップに該当するほか、ステップS12が期間判別ステップに該当する。
(実施形態3)
 次いで、第3の実施形態について、図1,図2,図6を参照して説明する。前述した実施形態1(図3参照)では、B期間の電池12について、ステップS5~S8に従い、リビルト電池集合体21及びリビルト組電池31の製造を行い、さらに、車両41への搭載を行った。
 これに対し、本実施形態3では、ステップS4,S5でB期間の電池12を選別した後、さらにこの電池12について、電池抵抗BRDでさらに層別する。そして、その後、リビルト電池集合体221及びリビルト組電池231の製造を行い、さらに、車両241への搭載を行う。
 そこで以下では、実施形態1と異なる部分を中心に説明する一方、実施形態1と同様な部分については、説明を省略或いは簡略化する。
 本実施形態3でも、実施形態1と同様の電池1について、リビルトを行う。即ち、実施形態1と同様、ステップS1において電池1の外観を検査し、不具合のある電池10を除去する。さらに、電池抵抗BRDを測定し(ステップS2)、ステップS3において、異常値を検出した電池10を除去する。
 続いて、ステップS4において、測定した電池抵抗BRDと期間しきい値Rpとの大小を比較する。電池抵抗BRDが期間しきい値Rpよりも小さい場合(No)には、ステップS5に進み、この電池11は、B期間の電池12であると判断する。
 その後、実施形態1とは異なり、ステップS31に進み、B期間の電池12を、電池抵抗BRDの大きさで層別(例えば、電池抵抗BRDの小さい順に、電池12A,12B,12Cの3層に層別)する。B期間の電池12は、図2において、使用時間Xにおける電池12の抵抗バラツキDRの範囲を両矢印で示した。このようにB期間の電池12は、電池抵抗BRDについてバラツキDRを有しているので、各電池12を電池抵抗BRDの大きさによって複数の層(本例では3層)に層別することで、さらに電池抵抗BRDが互いに似通った電池12A等に分類することができる。
 次いで、ステップS32では、3つの層に層別した電池のうち、1つの層に属する電池(例えば、電池12A)を集めて、リビルト電池集合体221(221A,221B,221C)を形成する(図1(d)参照)。このため、電池集合体に使用されている電池間での特性のバラツキがさらに少なく、電池間の抵抗バラツキDRに起因する、一部の電池への過電圧や過充電などの不具合を防止できる。しかも、B期間の電池を用いているので、使用をしても、各電池の特性変化が少なく、安定した特性を有するリビルト電池集合体221とすることができる。
 なお、組合せ得る電池の数が、1つの層で不足する場合には、隣り合う層の電池、例えば、電池12Aと電池12B、あるいは電池12Bと電池12Cとを組み合わせて、リビルト電池集合体を構成しても良い。
 その後は、ステップS7に進み、このリビルト電池集合体221を用いて、実施形態1と同様に、リビルト組電池231を形成する(図1(e)参照)。
 この組電池231は、これに使用している電池間での特性のバラツキが少なく、電池間の抵抗バラツキDRに起因する、一部の電池(或いはリビルト電池集合体221)への過電圧や過充電などの不具合を防止できる。
 さらに、ステップS8で、実施形態1と同様に、リビルト組電池231を車両241に組み込む(図1(f)参照)。かくして、リビルト組電池231(リビルト電池集合体221)を搭載した車両241が製造できる。この車両241は、組電池231以外は、車両41と同様であるので、説明を省略する。
 この車両241は、リビルト組電池231(リビルト電池パック)を搭載しているため、新品の電池(組電池)を使用した場合に比して、安価とすることができる上、中古二次電池1の有効利用を図ることができる。
 なお、本実施形態3では、ステップS2が抵抗測定ステップに、ステップS4が抵抗判別ステップに、ステップS31が抵抗層別ステップに、ステップS32,S7が第2タイプ再構成ステップに該当する。
(実施形態4)
 次いで、第4の実施形態について、図1,図2,図7~図9を参照して説明する。前述した実施形態1(図3参照)では、B期間の電池12について、ステップS5~S8に従い、リビルト電池集合体21及びリビルト組電池31の製造を行い、さらに、車両41への搭載を行った。
 また、実施形態3では、ステップS4,S5でB期間の電池12を選別した後、さらにこの電池12について、電池抵抗BRDでさらに層別した。そして、その後、リビルト電池集合体221及びリビルト組電池231の製造を行い、さらに、車両241への搭載を行った。
 これに対し、本実施形態4では、実施形態3と同様に、ステップS4,S5でB期間の電池12を選別した後、さらにこの電池12について層別を行う。但し、実施形態3では、電池抵抗BRDの大きさで層別したが、これに代えて、電池の放電時間DTで層別する。
 そこで以下では、実施形態1,3と異なる部分を中心に説明する一方、実施形態1,3と同様な部分については、説明を省略或いは簡略化する。
 先ず、電池1(12)における、電池温度BTと電池抵抗BRDとの関係(電池抵抗BRDの温度特性)について、図7を参照して説明する。この図7のグラフから判るように、車載用のニッケル水素電池である電池1は、使用可能温度範囲UT(電池1では、-30~60℃)で使用可能である。
 この範囲のうち、常温(20℃)をやや下回る程度(10℃)から60℃程度までの温度域(後述する高温領域H)では、これより低温域に比して、電池1の電池抵抗BRD(電池の内部抵抗)が低くなる。電池1において、電池反応が十分に生じているためである。また、この温度域では、電池温度BTが変化しても電池抵抗BRDの変動は小さいが、電池温度BTが高くなるにつれて、電池抵抗BTDが直線的に低下する傾向を示す。
 一方、電池温度BTが-20℃以下の温度範囲(後述する低温領域L)、例えば-30℃になると、電解液抵抗の上昇により、電池抵抗BRDが、高温領域Hにおける電池抵抗BRDの3倍以上(本例では5倍以上)の大きさになる。さらに電池温度BTの低下につれて、電池抵抗BRDが急激に大きくなる特性を有する。
 また、これらの間の10℃~-20℃の温度範囲(後述する中間温度領域M)では、電池温度BTが低くなるほど、電池抵抗BRDが加速的に大きくなる。
 そこで、図7に示すように、この電池1において、温度が高くなるにつれて電池抵抗BRDが直線的に低下する、10~60℃の温度領域を、高温領域Hとする。また、-20℃以下(-30~-20℃)の温度領域を、低温領域Lとする。さらに、これらの間の-20~+10℃の温度領域を、中間温度領域Mとする。
 なお、-30℃以下では、電池1の電解液の抵抗が高くなり、使用が困難である。また、60℃を越えると、充電が困難となり同様に使用が困難となる。
 さらに、この電池1(12)を満充電状態(SOC100%:電池電圧BV=許容最大電圧Vmax)とした上で、充放電装置を通して、最大10Cの定電力で放電させ、電池の端子間電圧(電池電圧BV)が許容最小電圧Vmin(SOC0%)になるまでの、電池電圧BVの時間変化を見ると、図8のようになる。この図8から容易に理解できるように、放電時間DTと電池電圧BVの関係は、電池温度BTに大きく依存しており、この電池温度BTが低いほど、電池電圧BVの低下が著しい、つまり短時間で電池電圧BVが低下することが判る。
 さらに、この図8に破線と実線で示すように、同じB期間にある電池12(記号SとTで示す)を用いた場合でも、電池の抵抗バラツキDRによって、実線(電池T)と破線(電池S)で示されるように、放電時間DTと電池電圧BVの関係に違いが生じることがある。さらに、放電開始から許容最小電圧Vminに至るまでの放電時間DTについて、この電池SとTとで比較すると、△(25)、△(0)、△(-10)、△(-30)で示す放電時間差△には、温度依存性があることが判る。具体的には、高温領域H(10~50℃)では、△(25)で示すように、放電時間差△は相対的に小さい。同様に、低温領域L(-30~-20℃)でも、△(-30)で示すように、放電時間差△は相対的に小さい。しかるに、中間温度領域M(-20~+10℃)では、△(0)及び△(-10)で示すように、相対的に放電時間差△が大きいことが判る。
 このような放電時間差△に、温度依存性が生じる理由は、以下であると考えられる。
即ち、高温領域Hでは、電池抵抗BRDの絶対値が小さいため、電池が劣化していても抵抗のバラツキが電圧差として現れにくい。また低温領域Lでは、電池抵抗BRDに占める電解液の抵抗が支配的になり、電極抵抗の寄与が小さくなるので、電池劣化の有意さを見出せない。これに対し、中間温度領域Mでは、電池抵抗BRDにおける電極の抵抗が支配的であり、電極の特性劣化のバラツキが現れやすいためであると考えられる。
 従って、この結果から、電池温度BTを中間温度領域M内の特定の温度とした状態で、電池1を放電させることで、DC-IR法で測定した電池抵抗BRDでは、判別できない電池特性の違いを検知し、層別できることが判る。
 なお、図8では、放電開始電圧Vstとして、満充電状態(SOC100%:許容最大電圧Vmax)から、電池電圧BVが放電終了電圧Ved(SOC0%;許容最小電圧Vmin)となるまで放電させた。
 しかし、放電を開始させる放電開始電圧Vstとしては、許容最小電圧Vminから許容最大電圧Vmaxまでの許容電圧範囲(Vmin~Vmax)を5等分した5つの範囲のうち、最も上の範囲に該当する上側1/5の高電圧範囲内の値を選択すればよい。許容最大電圧Vmax(満充電(SOC:100%)の電圧)に近い値から放電を開始させることで、比較的充電量が多い状態の電池の特性を、放電時間DTに反映できるからである。従って、放電開始電圧Vstとしては、中でも、許容最大電圧Vmax(満充電(SOC:100%))の電圧値とするのが好ましい。
 また、放電を終了させる放電終了電圧Vedとしては、許容電圧範囲(Vmin~Vmax)を5等分した5つの範囲のうち、最も上の範囲に該当する、下側1/5の低電圧範囲内の値を選択すればよい。許容最小電圧Vmin(全放電(SOC:0%)の電圧)に近い値まで放電をさせることで、比較的充電量が低い状態の電池の特性を、放電時間DTに反映できるからである。従って、放電終了電圧Vedとしては、中でも、許容最小電圧Vmin(全放電(SOC:0%))の電圧値とするのが好ましい。
 さらに、本実施形態では、放電の際に流す電流は、10C以下としている。大きな電流を流すと、放電が短時間で終了するので、放電時間DTの計測精度が低くなり、放電時間差△を適切に比較しにくくなる。また、大きな電流を放電させるために生じる電解液の抵抗による電圧降下の影響が大きく、電池電極の特性の劣化に起因する放電時間DTの変化を把握し難くなるからである。
 本実施形態4でも、実施形態1,3と同様の電池1について、リビルトを行う。即ち、図9のステップS1において電池1の外観を検査し、不具合のある電池10を除去する。さらに、電池抵抗BRDを測定し(ステップS2)、ステップS3において、異常値を検出した電池10を除去する。
 続いて、ステップS4において、測定した電池抵抗BRDと期間しきい値Rpとの大小を比較する。電池抵抗BRDが期間しきい値Rpよりも小さい場合(No)には、ステップS5に進み、この電池11は、B期間の電池12であると判断する。
 その後、実施形態3におけるステップS31に代えて(本実施形態4では、図9で破線で示すステップS31は行わない)、B期間の電池12を、ステップS41において、放電時間DTで層別する。具体的には、予め、電池電圧BVを満充電の電圧である1.7V/セル(放電開始電圧Vst)としておき、電池温度BTを0℃として、充放電装置を介して、60W/セルの定電力放電で放電させ、電池電圧BVが、0.9V/セルの放電終了電圧Vedとなるまでの放電時間DTを計測し、複数の層(例えば、放電時間DTの短い順に、電池12P,12Q,12Rの3層)に層別する。
 この層別により、常温下での電池抵抗BRDでは判らない、比較的低温の中間温度領域Mの環境下での電池特性の相違を適切に検知し、各電池を複数の層に層別できる。かくして、似通った特性を有する中古二次電池同士を的確に集めることができる。特に、比較的低温で、電池抵抗BRDが若干高くなる中間温度領域Mの環境下での電池の使用において、特性の似通ったもの同士を選別できるので、この中間温度領域Mの環境下での電池1の実使用において、電池特性の相違が表れにくく、特性の安定した電池集合体(小さい電池パック)やこれを組み合わせた組電池(大きい電池パック)を、容易に構成することができる。
 そこで、ステップS42に進み、複数の層(本例では3層)に層別した電池のうち、1つの層に属する電池(例えば、電池12P)を集めて、リビルト電池集合体321(321P,321Q,321R)を形成する(図1(d)参照)。このため、電池集合体に使用されている電池間での特性のバラツキが特に少なく、電池間の特性バラツキに起因する、一部の電池への過電圧や過充電などの不具合を防止できる。しかも、B期間の電池を用いているので、使用をしても、各電池の特性変化が少なく、安定した特性を有するリビルト電池集合体321とすることができる。
 特に、中間温度領域Mの環境下での使用において、特性の似通った電池12P同士を組み合わせているので、この中間温度領域Mの環境下での電池の実使用において、電池特性の相違が表れにくく、特性の安定した電池集合体321とすることができる。
 なお、組合せ得る電池の数が、1つの層で不足する場合には、隣り合う層の電池、例えば、電池12Pと電池12Q、あるいは電池12Qと電池12Rとで組み合わせて、リビルト電池集合体321を構成しても良い。
 その後は、ステップS7に進み、このリビルト電池集合体321を用いて、実施形態1,3と同様に、リビルト組電池331を形成する(図1(e)参照)。
 この組電池331は、これに使用している電池間での特性のバラツキが特に少なく、電池間の特性バラツキに起因する、一部の電池(或いはリビルト電池集合体321)への過電圧や過充電などの不具合を防止できる。特に、中間温度領域Mの環境下での電池の実使用において、電池特性の相違が表れにくく、特性の安定した組電池331とすることができる。
 さらに、ステップS8で、実施形態1,3と同様に、リビルト組電池331を車両341に組み込む(図1(f)参照)。かくして、リビルト組電池331(リビルト電池集合体321)を搭載した車両341が製造できる。この車両341は、組電池331以外は、車両41と同様であるので、説明を省略する。
 この車両341も、リビルト組電池331(リビルト電池パック)を搭載しているため、新品の電池(組電池)を使用した場合に比して、安価とすることができる上、中古二次電池1の有効利用を図ることができる。
 なお、上述した実施形態4では、図9において、破線で示すステップS31を省略し、ステップS41で、B期間の電池12を放電時間DTで層別した例を示した。
 しかし、図9に破線で示すステップS31を省略しないで、ステップS31とステップS41の2つの層別を行うようにしても良い。即ち、B期間の電池12を、先ずステップS31の電池抵抗BRDで層別し、さらに、層別された各電池を、ステップ41における放電時間DTでさらに層別しても良い。
 なお、本実施形態4では、ステップS2が抵抗測定ステップに、ステップS4が抵抗判別ステップに、ステップS41が放電時間層別ステップに、ステップS42,S7が第3タイプ再構成ステップあるいは第4タイプ再構成ステップに該当する。
(実施形態5)
 次いで、第5の実施の形態について説明する。本実施形態5のハンマードリル60は、実施形態1の電池12集めて再構成したリビルト電池集合体61を搭載した電池使用機器である。図10に示すように、このハンマードリル60は、本体62の底部63に、リビルト電池集合体61が収容されており、これを、ドリルを駆動するためのエネルギー源として利用している。
 このハンマードリル60は、前述のリビルト電池集合体61を搭載しているため、新品の電池を使用した電池集合体を用いる場合に比して、安価とすることができる上、電池の有効利用を図ることができる。
 以上において、本発明を実施形態1~5に即して説明したが、本発明は上述の実施形態1~5に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
 例えば、上記実施形態1~5では、電池1として、ニッケル水素二次電池を例示した。しかし、リチウムイオン二次電池、ニッケルカドミウム電池等の他の種類の二次電池にも、本発明を適用できる。
 また、上記実施形態1~5では、角型電池の電池を例示したが、円筒型電池などにも、本発明を適用できる。また、積層形の発電要素を備える電池を例示したが、捲回型の発電要素を有する電池にも適用できる。また、電池抵抗としてDC-IR法で測定した電池の直流抵抗を用いたが、AC-IR法を用いた電池の交流抵抗を用いても良い。
1 電池(中古二次電池)
11,12,13,14,15 選別(層別)された電池
21,121,221,221A,221B,221C,321、321P,321Q,321R リビルト電池集合体(リビルト電池パック)
31,131,231,331 リビルト組電池(リビルト電池パック)
41,141,241,341 車両
42 エンジン
43 フロントモータ
44 リアモータ
45 車体
46 ケーブル
47 インバータ
60 ハンマドリル(電池使用機器)
61 バッテリパック
62 (ハンマドリルの)本体
63 (本体の)底部
UBP 中古電池集合体
UAB 中古組電池
UP 使用可能期間
A A期間(初期抵抗高期間:初期段階)
B B期間(中期抵抗低期間:中期段階)
C C期間(終期抵抗高期間:終期段階)
UT (電池の)使用時間
BRD 電池抵抗
Rmin (電池抵抗の)許容最小抵抗値
Rmax (電池抵抗の)許容最大抵抗値
Rp (電池抵抗の)期間しきい値
Ri 初期抵抗値
DR 抵抗バラツキ
BT 電池温度
UT (電池の)使用可能温度範囲
H 高温領域
M 中間温度領域
L 低温領域
Vst 放電開始電圧
Ved 放電終了電圧
Vmax 許容最大電圧
Vmin 許容最小電圧
BV 電池電圧
DT 放電時間
△ 放電時間差
S,T B期間の電池
S2 抵抗測定ステップ
S4 抵抗判別ステップ
S12 期間判別ステップ
S31 抵抗層別ステップ
S41 放電時間層別ステップ
S6,S7 第1タイプ再構成ステップ
S32,S7 第2タイプ再構成ステップ
S42,S7 第3タイプ再構成ステップ,第4タイプ再構成ステップ

Claims (14)

  1. 使用可能期間の初期段階に、電池抵抗が徐々に低下すると共に、電池抵抗が相対的に高い初期抵抗高期間が現れ、
    使用可能期間の中期段階に、電池抵抗が相対的に低い中期抵抗低期間が現れ、
    使用可能期間の終期段階に、電池抵抗が徐々に上昇すると共に、電池抵抗が相対的に高い終期抵抗高期間が現れる特性を有する二次電池に関する、既に使用された中古二次電池の選別方法であって、
     上記中古二次電池の電池抵抗を測定する抵抗測定ステップと、
     上記中古二次電池が、上記初期抵抗高期間または終期抵抗高期間と、上記中期抵抗低期間とのいずれにあるかを識別する期間しきい値に比して、上記中古二次電池の電池抵抗が大きいか小さいかを判別する抵抗判別ステップと、を備える
    中古二次電池の選別方法。
  2. 請求項1に記載の中古二次電池の選別方法であって、
     前記期間しきい値よりも前記電池抵抗が大きい中古二次電池について、当該中古二次電池の使用履歴情報に基づいて、当該中古二次電池が、上記初期抵抗高期間に属しているのか、上記終期抵抗高期間に属しているのかを判別する期間判別ステップ、を備える
    中古二次電池の選別方法。
  3. 請求項1または請求項2に記載の中古二次電池の選別方法であって、
     前記期間しきい値よりも前記電池抵抗が小さい中古二次電池を、電池抵抗の大きさにより、さらに複数の層に層別する抵抗層別ステップ、を備える
    中古二次電池の選別方法。
  4. 請求項1~請求項3のいずれか1項に記載の中古二次電池の選別方法であって、
     前記中古二次電池は、
      その使用可能温度範囲内において、
       電池の直流抵抗が、電池の温度が低くなるほど高くなり、かつ、
       比較的高温の高温領域では、温度による直流抵抗の変化が小さく、
       比較的低温の低温領域では、温度による直流抵抗の変化が大きく、かつ、高温領域における直流抵抗の3倍以上の直流抵抗を有し、
       高温領域と低温領域の間の中間温度領域では、電池の温度が低くなるほど、直流抵抗が加速的に大きくなる特性を有しており、
     前記期間しきい値よりも前記電池抵抗が小さい、または前記抵抗層別ステップで層別した中古二次電池を、
      上記中間温度領域の環境下で、
       許容最小電圧から許容最大電圧までの許容電圧範囲のうち、上側1/5の高電圧範囲内の所定の放電開始電圧から、定電力放電または定電流放電させ、上記許容電圧範囲のうち、下側1/5の低電圧範囲内の所定の放電終了電圧に至るまでの放電時間の長さに基づいて、
      さらに複数の層に層別する放電時間層別ステップ、を備える
    中古二次電池の選別方法。
  5. 使用可能期間の初期段階に、電池抵抗が徐々に低下すると共に、電池抵抗が相対的に高い初期抵抗高期間が現れ、
    使用可能期間の中期段階に、電池抵抗が相対的に低い中期抵抗低期間が現れ、
    使用可能期間の終期段階に、電池抵抗が徐々に上昇すると共に、電池抵抗が相対的に高い終期抵抗高期間が現れる特性を有し、既に使用された、複数の中古二次電池を集めて、再構成してなるリビルト電池パックであって、
     上記中古二次電池は、いずれも、請求項1に記載の中古二次電池の選別方法によって、上記中期抵抗低期間にあるとされたものである
    リビルト電池パック。
  6. 使用可能期間の初期段階に、電池抵抗が徐々に低下すると共に、電池抵抗が相対的に高い初期抵抗高期間が現れ、
    使用可能期間の中期段階に、電池抵抗が相対的に低い中期抵抗低期間が現れ、
    使用可能期間の終期段階に、電池抵抗が徐々に上昇すると共に、電池抵抗が相対的に高い終期抵抗高期間が現れる特性を有し、既に使用された、複数の中古二次電池を集めて、再構成してなるリビルト電池パックであって、
     上記中古二次電池は、いずれも、請求項2に記載の中古二次電池の選別方法によって、上記初期抵抗高期間にあるとされたものである
    リビルト電池パック。
  7. 使用可能期間の初期段階に、電池抵抗が徐々に低下すると共に、電池抵抗が相対的に高い初期抵抗高期間が現れ、
    使用可能期間の中期段階に、電池抵抗が相対的に低い中期抵抗低期間が現れ、
    使用可能期間の終期段階に、電池抵抗が徐々に上昇すると共に、電池抵抗が相対的に高い終期抵抗高期間が現れる特性を有し、既に使用された、複数の中古二次電池を集めて、再構成してなるリビルト電池パックであって、
     上記中古二次電池は、いずれも、請求項3に記載の中古二次電池の選別方法において、前記抵抗層別ステップによって層別された複数の層のうち、1層又は隣り合う一部の層に属するものである
    リビルト電池パック。
  8. 使用可能期間の初期段階に、電池抵抗が徐々に低下すると共に、電池抵抗が相対的に高い初期抵抗高期間が現れ、
    使用可能期間の中期段階に、電池抵抗が相対的に低い中期抵抗低期間が現れ、
    使用可能期間の終期段階に、電池抵抗が徐々に上昇すると共に、電池抵抗が相対的に高い終期抵抗高期間が現れる特性を有し、既に使用された、複数の中古二次電池を集めて、再構成してなるリビルト電池パックであって、
     上記中古二次電池は、いずれも、請求項4に記載の中古二次電池の選別方法において、前記放電時間層別ステップによって層別された複数の層のうち、1層又は隣り合う一部の層に属するものである
    リビルト電池パック。
  9. 使用可能期間の初期段階に、電池抵抗が徐々に低下すると共に、電池抵抗が相対的に高い初期抵抗高期間が現れ、
    使用可能期間の中期段階に、電池抵抗が相対的に低い中期抵抗低期間が現れ、
    使用可能期間の終期段階に、電池抵抗が徐々に上昇すると共に、電池抵抗が相対的に高い終期抵抗高期間が現れる特性を有し、既に使用された、複数の中古二次電池を集めて、再構成してなるリビルト電池パックであって、
     上記中古二次電池は、いずれも上記中期抵抗低期間に属する
    リビルト電池パック。
  10. 請求項5~請求項9のいずれか1項に記載のリビルト電池パックを搭載し、このリビルト電池パックによる電気エネルギーを動力源の全部または一部に使用する
    車両。
  11. 請求項5~請求項9のいずれか1項に記載のリビルト電池パックを搭載し、このリビルト電池パックをエネルギー源の少なくとも1つとして使用する
    電池使用機器。
  12. 使用可能期間の初期段階に、電池抵抗が徐々に低下すると共に、電池抵抗が相対的に高い初期抵抗高期間が現れ、
    使用可能期間の中期段階に、電池抵抗が相対的に低い中期抵抗低期間が現れ、
    使用可能期間の終期段階に、電池抵抗が徐々に上昇すると共に、電池抵抗が相対的に高い終期抵抗高期間が現れる特性を有し、既に使用された、複数の中古二次電池を集めて、再構成してなるリビルト電池パックの製造方法であって、
     上記中古二次電池が、上記初期抵抗高期間または終期抵抗高期間と、上記中期抵抗低期間とのいずれにあるかを識別する期間しきい値に比して、上記中古二次電池の電池抵抗が大きいか小さいかを判別する抵抗判別ステップと、
     上記期間しきい値よりも上記電池抵抗が小さい中古二次電池を集めて、電池パックを再構成する第1タイプ再構成ステップと、を備える
    リビルト電池パックの製造方法。
  13. 請求項12に記載のリビルト電池パックの製造方法であって、
     前記期間しきい値よりも前記電池抵抗が小さい中古二次電池について、電池抵抗の大きさにより、当該中古二次電池を複数の層に層別する抵抗層別ステップを備えると共に、
     前記第1タイプ再構成ステップに代えて、上記電池抵抗で層別された複数の層のうち、1層又は隣り合う一部の層に属する中古二次電池を集めて、電池パックを再構成する第2タイプ再構成ステップを備える
    リビルト電池パックの製造方法。
  14. 請求項12または請求項13に記載のリビルト電池パックの製造方法であって、
     前記中古二次電池は、
      その使用可能温度範囲内において、
       電池の直流抵抗が、電池の温度が低くなるほど高くなり、かつ、
       比較的高温の高温領域では、温度による直流抵抗の変化が小さく、
       比較的低温の低温領域では、直流抵抗の温度による変化が大きく、かつ、高温領域における直流抵抗の3倍以上の直流抵抗を有し、
       高温領域と低温領域の間の中間温度領域では、電池の温度が低くなるほど、直流抵抗が加速的に大きくなる特性を有しており、
     前記期間しきい値よりも前記電池抵抗が小さい、または前記抵抗層別ステップで層別された前記中古二次電池を、
      上記中間温度領域の環境下で、
       許容最小電圧から許容最大電圧までの許容電圧範囲のうち、上側1/5の高電圧範囲内の所定の放電開始電圧から、定電力放電または定電流放電させ、上記許容電圧範囲のうち、下側1/5の低電圧範囲内の所定の放電終了電圧に至るまでの放電時間の長さに基づいて、
      さらに複数の層に層別する放電時間層別ステップ、を備えると共に、
     前記第1タイプ再構成ステップまたは前記第2タイプ再構成ステップに代えて、上記放電時間の長さで層別された複数の層のうち、1層又は隣り合う一部の層に属する中古二次電池を集めて、電池パックを再構成する第3タイプ再構成ステップを備える
    リビルト電池パックの製造方法。
PCT/JP2010/055846 2010-03-31 2010-03-31 中古二次電池の選別方法、リビルト電池パック、これを用いた車両及び電池使用機器、並びにリビルト電池パックの製造方法 WO2011121755A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201080065791.6A CN102823054B (zh) 2010-03-31 2010-03-31 中古二次电池的挑选方法、重建电池组、使用了该重建电池组的车辆及电池使用设备、以及重建电池组的制造方法
EP10848933.7A EP2555311B1 (en) 2010-03-31 2010-03-31 Method for screening used secondary battery and method for manufacturing rebuilt battery pack
KR1020127025626A KR101398344B1 (ko) 2010-03-31 2010-03-31 중고 2차 전지의 선별 방법, 리빌트 전지 팩, 이것을 사용한 차량 및 전지 사용 기기, 및 리빌트 전지 팩의 제조 방법
JP2012507976A JP5370583B2 (ja) 2010-03-31 2010-03-31 中古二次電池の選別方法、リビルト電池パック、これを用いた車両及び電池使用機器、並びにリビルト電池パックの製造方法
CA2795083A CA2795083C (en) 2010-03-31 2010-03-31 Method for sorting used secondary battery, rebuilt battery pack, vehicle and battery operated device incorporating same, and method for manufacturing rebuilt battery pack
PCT/JP2010/055846 WO2011121755A1 (ja) 2010-03-31 2010-03-31 中古二次電池の選別方法、リビルト電池パック、これを用いた車両及び電池使用機器、並びにリビルト電池パックの製造方法
US13/637,763 US9515355B2 (en) 2010-03-31 2010-03-31 Method for sorting used secondary battery, rebuilt battery pack, vehicle and battery operated device incorporating same, and method for manufacturing rebuilt battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/055846 WO2011121755A1 (ja) 2010-03-31 2010-03-31 中古二次電池の選別方法、リビルト電池パック、これを用いた車両及び電池使用機器、並びにリビルト電池パックの製造方法

Publications (1)

Publication Number Publication Date
WO2011121755A1 true WO2011121755A1 (ja) 2011-10-06

Family

ID=44711542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055846 WO2011121755A1 (ja) 2010-03-31 2010-03-31 中古二次電池の選別方法、リビルト電池パック、これを用いた車両及び電池使用機器、並びにリビルト電池パックの製造方法

Country Status (7)

Country Link
US (1) US9515355B2 (ja)
EP (1) EP2555311B1 (ja)
JP (1) JP5370583B2 (ja)
KR (1) KR101398344B1 (ja)
CN (1) CN102823054B (ja)
CA (1) CA2795083C (ja)
WO (1) WO2011121755A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012101800A1 (de) 2012-03-02 2013-09-05 ropa development GmbH Versorgungsnetzkomponente für ein Versorgungsnetz
JP2014020804A (ja) * 2012-07-12 2014-02-03 Toyota Motor Corp 定置用蓄電池の余寿命判定装置
JP2015076165A (ja) * 2013-10-07 2015-04-20 トヨタ自動車株式会社 組電池再利用システムおよび装置
JP2015103387A (ja) * 2013-11-25 2015-06-04 プライムアースEvエナジー株式会社 使用済み二次電池の選択方法、及び、組電池の製造方法
US20150200384A1 (en) * 2014-01-14 2015-07-16 Ford Global Technologies, Llc Electric vehicle battery cell having conductive case
JP2015222195A (ja) * 2014-05-22 2015-12-10 トヨタ自動車株式会社 中古二次電池の再構成品適用判定方法及び組電池再構成品の再構成方法
JP5860544B2 (ja) * 2012-10-03 2016-02-16 川崎重工業株式会社 電動車両、電動車両の組立管理システム及び電動車両の組立方法
US9406982B2 (en) 2011-11-24 2016-08-02 Toyota Jidosha Kabushiki Kaisha Secondary battery reuse method, vehicle drive power source, and vehicle
JP2017084693A (ja) * 2015-10-30 2017-05-18 日産自動車株式会社 車載バッテリの評価装置及び方法
WO2018034019A1 (ja) * 2016-08-19 2018-02-22 東洋ゴム工業株式会社 使用済み電池を用いた組電池の製造方法及び組電池
JP7398190B2 (ja) 2018-09-25 2023-12-14 株式会社Gsユアサ 二次電池の再利用方法、及びコンピュータプログラム

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110107070A (ko) * 2010-03-24 2011-09-30 삼성에스디아이 주식회사 배터리 셀의 분류 장치 및 그 분류 방법
US9166261B2 (en) * 2010-03-31 2015-10-20 Primearth Ev Energy Co., Ltd. Method for reusing secondary battery
US8736273B2 (en) * 2010-04-15 2014-05-27 Lg Chem, Ltd. Testing system and method for testing a battery cell
US8716981B2 (en) 2011-11-11 2014-05-06 Lg Chem, Ltd. System and method for cooling and cycling a battery pack
US8816692B2 (en) 2011-12-01 2014-08-26 Lg Chem, Ltd. Test system for a battery module
JP5247874B2 (ja) * 2011-12-06 2013-07-24 パナソニック株式会社 蓄電池移転支援装置および蓄電池移転支援方法
US9063179B2 (en) 2012-09-26 2015-06-23 Lg Chem, Ltd. System and method for determining an isolation resistance of a battery pack disposed on a vehicle chassis
US9525195B2 (en) 2013-07-30 2016-12-20 Johnson Controls Technology Corporation Remanufacturing methods for battery module
US9164151B2 (en) 2013-08-07 2015-10-20 Lg Chem, Ltd. System and method for determining isolation resistances of a battery pack
WO2015037184A1 (ja) * 2013-09-11 2015-03-19 株式会社Gsユアサ 蓄電素子の寿命推定装置、寿命推定方法及び蓄電システム
CN103560277B (zh) * 2013-09-24 2016-03-23 国家电网公司 一种电动汽车退役电池重组分选方法
CN104062594B (zh) * 2014-03-27 2017-04-05 浙江超威创元实业有限公司 锂离子动力电池配组方法
JP6164503B2 (ja) * 2015-06-25 2017-07-19 トヨタ自動車株式会社 二次電池の内部抵抗推定方法および出力制御方法
JP6311942B2 (ja) * 2015-08-31 2018-04-18 トヨタ自動車株式会社 再利用可能な非水電解液二次電池の選別方法
JP6623306B2 (ja) * 2015-11-16 2019-12-18 モレックス エルエルシー 電力充電モジュール及びその使用方法
CN105375080B (zh) * 2015-11-16 2018-08-24 天能电池(芜湖)有限公司 蓄电池极板淋酸的余酸回酸装置
US11018380B2 (en) 2016-05-09 2021-05-25 Spiers New Technologies, Inc. Reconditioned battery pack and method of making same
JP6835289B2 (ja) * 2018-03-06 2021-02-24 トヨタ自動車株式会社 電池種類判別装置、及び電池種類の判別方法
CN108872863B (zh) * 2018-05-02 2020-09-08 广东工业大学 一种优化分类的电动汽车充电状态监测方法
EP3907777A4 (en) 2019-01-09 2022-07-27 BYD Company Limited POWER AND ELECTRIC VEHICLE BATTERY PACK
EP3990309A1 (en) 2019-06-28 2022-05-04 Analog Devices International Unlimited Company Battery fleet monitoring systems
KR102363397B1 (ko) * 2019-12-09 2022-02-16 주식회사 에스디포 2차 전지 재활용 플랫폼 장치 및 이를 이용한 2차 전지 재활용 방법
US11977121B2 (en) 2020-09-15 2024-05-07 Analog Devices International Unlimited Company Autonomous battery monitoring system
US11909008B2 (en) 2021-05-28 2024-02-20 Ford Global Technologies, Llc Battery pack wireless array tracker
US11652357B1 (en) 2021-10-27 2023-05-16 China Energy Investment Corporation Limited Controller, system and method for controlling discharge of heterogeneous battery packs
CN114137418B (zh) * 2021-11-29 2024-08-06 中国南方电网有限责任公司超高压输电公司昆明局 蓄电池性能识别方法、装置、计算机设备和存储介质
DE102022129838A1 (de) 2022-11-11 2024-05-16 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Wiederverwenden von Batteriemodulen sowie Kraftfahrzeug

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729614A (ja) * 1993-07-09 1995-01-31 Japan Storage Battery Co Ltd 蓄電池監視装置
JP2000299137A (ja) * 1998-08-10 2000-10-24 Toyota Motor Corp 二次電池の状態判定方法及び状態判定装置、並びに二次電池の再生方法
JP2008293703A (ja) * 2007-05-22 2008-12-04 Panasonic Ev Energy Co Ltd 組電池の製造方法、及び組電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3325101B2 (ja) 1993-11-24 2002-09-17 エフ・ディ−・ケイ株式会社 リチウム電池の異常検出方法
JPH10289729A (ja) 1997-04-16 1998-10-27 Fuji Photo Film Co Ltd 二次電池の製造システム及び二次電池の製造方法
JP2000215923A (ja) 1999-01-25 2000-08-04 Matsushita Electric Ind Co Ltd 電池劣化判定装置
EP1394889B1 (en) * 2002-02-12 2010-10-27 Panasonic Corporation Method for recycling secondary battery
JP5039980B2 (ja) * 2005-11-14 2012-10-03 日立ビークルエナジー株式会社 二次電池モジュール
JP2008295169A (ja) 2007-05-23 2008-12-04 Canon Inc バッテリーパック、充電装置、及び電子機器
JP5011007B2 (ja) 2007-07-04 2012-08-29 プライムアースEvエナジー株式会社 組電池及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729614A (ja) * 1993-07-09 1995-01-31 Japan Storage Battery Co Ltd 蓄電池監視装置
JP2000299137A (ja) * 1998-08-10 2000-10-24 Toyota Motor Corp 二次電池の状態判定方法及び状態判定装置、並びに二次電池の再生方法
JP2008293703A (ja) * 2007-05-22 2008-12-04 Panasonic Ev Energy Co Ltd 組電池の製造方法、及び組電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2555311A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2783416B1 (en) * 2011-11-24 2018-08-29 Toyota Jidosha Kabushiki Kaisha Secondary battery reuse method, vehicle drive power source, and vehicle
US9406982B2 (en) 2011-11-24 2016-08-02 Toyota Jidosha Kabushiki Kaisha Secondary battery reuse method, vehicle drive power source, and vehicle
DE102012101800A1 (de) 2012-03-02 2013-09-05 ropa development GmbH Versorgungsnetzkomponente für ein Versorgungsnetz
WO2013128009A2 (de) 2012-03-02 2013-09-06 ropa development GmbH Versorgungsnetzkomponente für ein versorgungsnetz
US10008869B2 (en) 2012-03-02 2018-06-26 Unicorn Energy GmbH Supply network component for a supply network
US9347996B2 (en) 2012-07-12 2016-05-24 Toyota Jidosha Kabushiki Kaisha Remaining life determining system for stationary storage battery, and method of determining remaining life of stationary storage battery
JP2014020804A (ja) * 2012-07-12 2014-02-03 Toyota Motor Corp 定置用蓄電池の余寿命判定装置
JP5860544B2 (ja) * 2012-10-03 2016-02-16 川崎重工業株式会社 電動車両、電動車両の組立管理システム及び電動車両の組立方法
JP2015076165A (ja) * 2013-10-07 2015-04-20 トヨタ自動車株式会社 組電池再利用システムおよび装置
US10158150B2 (en) 2013-10-07 2018-12-18 Toyota Jidosha Kabushiki Kaisha Assembled battery reusing system, and apparatus for assembled battery reusing system
JP2015103387A (ja) * 2013-11-25 2015-06-04 プライムアースEvエナジー株式会社 使用済み二次電池の選択方法、及び、組電池の製造方法
US20150200384A1 (en) * 2014-01-14 2015-07-16 Ford Global Technologies, Llc Electric vehicle battery cell having conductive case
JP2015222195A (ja) * 2014-05-22 2015-12-10 トヨタ自動車株式会社 中古二次電池の再構成品適用判定方法及び組電池再構成品の再構成方法
JP2017084693A (ja) * 2015-10-30 2017-05-18 日産自動車株式会社 車載バッテリの評価装置及び方法
WO2018034019A1 (ja) * 2016-08-19 2018-02-22 東洋ゴム工業株式会社 使用済み電池を用いた組電池の製造方法及び組電池
JP7398190B2 (ja) 2018-09-25 2023-12-14 株式会社Gsユアサ 二次電池の再利用方法、及びコンピュータプログラム

Also Published As

Publication number Publication date
JPWO2011121755A1 (ja) 2013-07-04
US20130015702A1 (en) 2013-01-17
JP5370583B2 (ja) 2013-12-18
CN102823054A (zh) 2012-12-12
CA2795083A1 (en) 2011-10-06
CA2795083C (en) 2016-02-09
US9515355B2 (en) 2016-12-06
EP2555311A1 (en) 2013-02-06
EP2555311A4 (en) 2014-01-08
EP2555311B1 (en) 2016-02-17
KR20120135295A (ko) 2012-12-12
CN102823054B (zh) 2014-12-17
KR101398344B1 (ko) 2014-05-23

Similar Documents

Publication Publication Date Title
JP5370583B2 (ja) 中古二次電池の選別方法、リビルト電池パック、これを用いた車両及び電池使用機器、並びにリビルト電池パックの製造方法
US9166261B2 (en) Method for reusing secondary battery
JP5462689B2 (ja) 二次電池の再利用方法
JP5519371B2 (ja) 二次電池の再利用方法
JP5276357B2 (ja) ニッケル−水素二次電池の交換方法
US6573685B2 (en) Method of replacing secondary battery
KR100669434B1 (ko) 이차 전지 모듈 제어방법
Omar et al. Evaluation of performance characteristics of various lithium-ion batteries for use in BEV application
CN107768761B (zh) 电池组的制造方法
JP7398190B2 (ja) 二次電池の再利用方法、及びコンピュータプログラム
US9453887B2 (en) Method of selecting used secondary battery and method of manufacturing battery pack
JP2014020818A (ja) 組電池の制御装置及び組電池の再利用判定方法
JP2016152110A (ja) 車両用の二次電池の再利用方法
JP7293599B2 (ja) 二次電池の再利用方法
KR100937507B1 (ko) 2차 전지 관리방법
JP6911746B2 (ja) 電池情報処理装置、電池製造支援装置、組電池、電池情報処理方法、及び組電池の製造方法
JP7192323B2 (ja) 二次電池の再利用方法、管理装置、及びコンピュータプログラム
JP5839093B2 (ja) 組電池管理システムおよび装置
US20130309554A1 (en) Lead-acid battery with high specific power and specific energy
KR101004762B1 (ko) 배터리 복원장치 및 방법
Dell'Era et al. Automotive application of lithium-ion batteries: Control of commercial batteries in laboratory tests
Ahir et al. Impact of battery cell imbalance on the voltage behavior of commercial Ni-MH EV/HEV battery modules
Pierson et al. Innovative valve-regulated battery designs rekindle excitement inlead/acid battery technology
CN108963358A (zh) 在线监测车载镍氢动力电池包内阻的方法
Franco Rius et al. Influence of shallow cycling on the ageing of SLI batteries

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080065791.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848933

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012507976

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010848933

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13637763

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2795083

Country of ref document: CA

Ref document number: 20127025626

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE