WO2010114317A2 - 우수한 방열 특성의 전지모듈 및 중대형 전지팩 - Google Patents

우수한 방열 특성의 전지모듈 및 중대형 전지팩 Download PDF

Info

Publication number
WO2010114317A2
WO2010114317A2 PCT/KR2010/001993 KR2010001993W WO2010114317A2 WO 2010114317 A2 WO2010114317 A2 WO 2010114317A2 KR 2010001993 W KR2010001993 W KR 2010001993W WO 2010114317 A2 WO2010114317 A2 WO 2010114317A2
Authority
WO
WIPO (PCT)
Prior art keywords
battery
heat dissipation
heat
air
battery module
Prior art date
Application number
PCT/KR2010/001993
Other languages
English (en)
French (fr)
Other versions
WO2010114317A3 (ko
Inventor
이진규
윤희수
이범현
강달모
여재성
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP10759042.4A priority Critical patent/EP2416439B1/en
Priority to CN201080012735.6A priority patent/CN102356505B/zh
Priority to JP2012503334A priority patent/JP5540070B2/ja
Priority to US12/851,880 priority patent/US9203064B2/en
Publication of WO2010114317A2 publication Critical patent/WO2010114317A2/ko
Publication of WO2010114317A3 publication Critical patent/WO2010114317A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0481Compression means other than compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0486Frames for plates or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/651Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6562Gases with free flow by convection only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • F28D2021/0029Heat sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery module and a medium-large battery pack having excellent heat dissipation characteristics, and more particularly, a battery module in which a plurality of plate-shaped battery cells are built in a module case and sequentially stacked.
  • An electrode assembly having a cathode / separation membrane / cathode structure is built in a battery case of a laminate sheet including a metal layer, and includes a plurality of heat dissipation members interposed at two or more battery cell interfaces, and heat generated from a battery cell during charge and discharge. It relates to a battery module made of a structure that is removed by heat conduction through the heat radiating member.
  • the secondary battery is an electric vehicle (EV), a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle that has been proposed as a solution for air pollution of existing gasoline and diesel vehicles using fossil fuel. It is attracting attention as a power source such as (Plug-In HEV).
  • One or two or four battery cells are used for small mobile devices, whereas medium and large battery modules, which are electrically connected to a plurality of battery cells, are used in medium and large devices such as automobiles due to the necessity of high output capacity.
  • medium and large battery modules are preferably manufactured in a small size and weight as possible
  • square batteries and pouch-type batteries which can be charged with high integration and have a small weight to capacity, are mainly used as battery cells (unit cells) of medium and large battery modules.
  • battery cells unit cells
  • a pouch-type battery using an aluminum laminate sheet or the like as an exterior member has attracted much attention in recent years due to advantages such as low weight, low manufacturing cost, and easy form deformation.
  • the battery cells constituting the medium-large battery module are composed of secondary batteries capable of charging and discharging, such a high output large capacity secondary battery generates a large amount of heat during the charging and discharging process.
  • the laminate sheet of the pouch-type battery widely used in the battery module is coated with a low thermal conductivity polymer material, it is difficult to effectively cool the temperature of the entire battery cell.
  • a vehicle battery pack that is a high output large capacity battery requires a cooling system for cooling the battery cells embedded therein.
  • a battery module mounted in a medium-large battery pack is generally manufactured by stacking a plurality of battery cells with high density, and stacking adjacent battery cells at regular intervals to remove heat generated during charging and discharging.
  • the battery cells themselves may be sequentially stacked without a separate member at predetermined intervals, or in the case of battery cells having low mechanical rigidity, one or more combinations may be embedded in a cartridge or the like, and a plurality of such cartridges may be stacked.
  • the battery module can be configured.
  • a coolant flow path is formed between the battery cells or the battery modules so as to effectively remove heat accumulated between the stacked battery cells or the battery modules.
  • this structure has a problem in that the total size of the battery module is increased because a plurality of refrigerant passages must be secured corresponding to the plurality of battery cells.
  • the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • An object of the present invention is to provide a battery module having a structure capable of reducing the temperature deviation by uniformizing the overall temperature while suppressing the increase in size of the entire battery module by removing heat by heat conduction through air cooling.
  • Still another object of the present invention is to provide a battery module capable of maximizing cooling efficiency in the same structure by minimizing heat conduction resistance existing between members used in the construction of the battery module.
  • a battery module is a battery module in which a plurality of plate-shaped battery cells are built in a module case and sequentially stacked, and the plate-shaped battery cell includes a cathode / battery in a battery case of a laminate sheet including a resin layer and a metal layer.
  • An electrode assembly having a separator / cathode structure is built in, and includes a plurality of heat dissipation members interposed at two or more battery cell interfaces, and heat generated from the battery cells during charge and discharge is removed by heat conduction through the heat dissipation member. Consists of
  • the battery module is configured by stacking the battery cells spaced by a predetermined distance in order to form the refrigerant flow path, and prevents the overheating of the battery cells by flowing ('air-cooled') air to these spaced spaces
  • sufficient heat dissipation effect is not obtained.
  • the battery module of the present invention is provided with a plurality of heat dissipating members at two or more battery cell interfaces, so that no space is required between the battery cells, or even a very small space is required, and thus the efficiency of the battery module is higher than that of the conventional cooling system. Since the battery cell stack can be cooled, the heat dissipation efficiency of the battery module can be maximized, and the battery cells can be stacked with high integration.
  • the battery module, the air-cooling heat exchange member for integrally connecting the heat dissipation member is further mounted on one side of the battery cell stack, the heat generated from the battery cell during charging and discharging via the heat dissipation member It may be a structure that is removed by heat conduction through the air-cooled heat exchange member.
  • the battery module having the above structure includes a plurality of heat dissipation members at two or more battery cell interfaces, and adds an air-cooling heat exchange member integrally connected to one side of the battery cell stack, thereby thermally conducting heat generated from the battery cells. Can be removed more effectively.
  • the battery cell is a light weight pouch type battery in which an electrode assembly is embedded in a battery sheet of a laminate sheet including an inner resin layer for thermal fusion, a barrier metal layer, and an outer resin layer exhibiting excellent durability.
  • an electrode assembly is embedded in a battery sheet of a laminate sheet including an inner resin layer for thermal fusion, a barrier metal layer, and an outer resin layer exhibiting excellent durability.
  • the battery cell may be a structure that is mounted inside the battery cartridge of the frame structure, this structure can be preferably applied to a battery in which a sealing portion by heat fusion is formed at the end portion of the outer peripheral surface.
  • the cartridge is composed of at least a pair of plate-like frame for fixing the outer peripheral surface of the battery cell at least one side of the both sides of the battery cell open, the heat dissipation member on the outer surface of the frame of the battery cell It consists of a structure that is equipped with an elastic pressing member for fixing in close contact with the open side.
  • the elastic pressing member mounted on the outer surface of the frame increases structural stability of the cartridge stack, and the heat dissipation member is applied to the cartridge stack. It can be fixed effectively.
  • the cartridge consists of at least one pair of plate-shaped frames, it is possible to have a structure in which not only one battery cell is mounted but also two or more battery cells.
  • a structure in which two battery cells are mounted inside a cartridge by mounting an intermediate frame between the battery cells, one battery cell is mounted between the upper frame and the intermediate frame, and the remaining battery cells are mounted. It can be mounted between the intermediate frame and the lower frame.
  • the heat dissipation member can be configured to be in contact with the outer surface of each battery cell, the heat dissipation effect by heat conduction can be exhibited.
  • the elastic pressing member is not particularly limited as long as it is mounted on the frame to fix the heat dissipation member when the battery module is constructed.
  • the upper and lower sides and / or the upper and lower left and right sides of the outer surface of the frame are not particularly limited. It may be mounted on the structure.
  • the heat dissipation member is effectively pressed by the elastic pressing member mounted on the outer surface of the frame, thereby increasing the fixing force of the heat dissipation member to the frame, and thus does not require the use of an additional member for fixing the heat dissipation member.
  • the elastic pressing member may be further mounted on the inner surface of the frame in contact with the sealing portion of the battery cell.
  • the battery cell is mounted to the frame with the open side protruding from the frame
  • the elastic pressing member may be a structure that is mounted on the outer surface of the frame to a height greater than the height of the protrusion of the battery cell open side.
  • the frame formed lower than the height of the battery cell is fixed only the outer peripheral portion of the battery cell, it can achieve effective heat dissipation through the protruding open side.
  • the elastic pressing member mounted higher than the height of the protruding open side of the battery cell when the heat dissipation member can be effectively pressed while pressing up to the open side of the battery cell, if not causing an increase in the size of the battery module using the This can increase the overall mechanical stiffness.
  • the elastic pressing member mounted on the outer surface of the frame is not particularly limited as long as it is a material that exerts an elastic pressing force when pressed, and preferably may include a polymer resin having elastic properties.
  • the polymer resin may be a material that exhibits an elastic force in the characteristics of the material itself or exhibits an elastic force in structure or shape.
  • Typical examples of the former include rubber, and examples of the latter include a structure in which a polymer resin is foamed.
  • the method of mounting the elastic pressing member on the frame may vary, and for more efficient mounting, grooves are preferably formed on the outer surface of the frame, and the elastic pressing member may have a structure mounted on such grooves. .
  • the width of the elastic pressing member may have a width of 10% or more based on the width of the frame.
  • the width of the elastic pressing member is too small based on the width of the frame, it may be difficult to exert an effect according to its mounting.
  • the width of the elastic pressing member is too large, the pressing member is elastically deformed when pressed. It is not preferable to cover many surfaces of the heat dissipation member to lower the heat dissipation effect, or to protrude out of the frame. Therefore, of course, the width of the elastic pressing member may exceed the above range unless it causes such a problem.
  • the heat dissipation member is not particularly limited as long as it is a heat conductive material, for example, it may be made of a plate having a thermal conductivity of 20 to 500 W / (m ⁇ K). Examples of such a plate include aluminum, copper, polymers, and the like, but are not limited thereto.
  • the heat dissipation members may be interposed at each battery cell interface, or may be interposed only at some battery cell interfaces. For example, when the heat dissipation members are interposed at each battery cell interface, each of the battery cells is in contact with different heat dissipation members on both sides. On the other hand, when the heat dissipation member is interposed only on some battery cell interfaces, there may be some battery cells making contact with the heat dissipation member only on one surface of both surfaces.
  • the air-cooled heat exchange member is also not particularly limited as long as it is a material having excellent thermal conductivity, and preferably, a material having a thermal conductivity of 20 to 500 W / (m ⁇ K). Therefore, the heat dissipation member and the air-cooling heat exchange member are interconnected to achieve heat transfer efficiently.
  • the heat dissipation member is interposed at the interface between the battery cells in a state in which at least a portion thereof is exposed to the outside of the stacked battery cells, the externally exposed portion is bent toward the side of the battery cell Can be. That is, the heat dissipation member interposed at the interface between the battery cells conducts heat generated from the battery cells and is easily transferred to the air-cooling heat exchange member through the bent structure, thereby effectively dissipating the battery cells.
  • the air-cooled heat exchange member may be mounted on the bent portion of the heat dissipation member, and the mounting method may be variously made by welding or mechanical fastening. Therefore, heat generated in the battery cell is transferred to the heat radiating member interposed between the battery cells, it can be effectively removed through the air-cooled heat exchange member mounted on one side of the battery cell stack.
  • the heat conduction medium may be further interposed between the upper portion of the bent portion of the heat dissipation member and the air-cooled heat exchange member so that heat transfer is more efficiently performed between the heat dissipation member and the air-cooled heat exchange member.
  • the thermal interface material T.I.M
  • the thermally conductive medium include thermally conductive grease, thermally conductive epoxy-based bonds, thermally conductive silicone pads, thermally conductive adhesive tapes, and graphite sheets. (graphite sheet) and the like, but are not limited thereto, and these may be used alone or in combination of two or more.
  • the air cooling is performed between the upper portion of the bent portion of the heat dissipation member and the heat exchange member for air cooling having a large tropical flow area by interposing a heat conduction medium capable of minimizing thermal resistance that may be generated by contact between metals.
  • the heat transfer to the heat exchanging member can be more efficiently achieved.
  • the thermally conductive medium may be added to the mutual contact portions of the heat dissipation member and / or the air-cooling heat exchange member in a coating manner, or may be added in the form of a sheet, which is a separate member.
  • the air-cooled heat exchange member may have a structure including a base portion in which the heat radiating members are in close contact with the bottom surface and a plurality of heat radiating fins extending upwardly from the base portion.
  • heat transferred from the battery cell to the heat dissipation member is conducted via the bottom surface of the base portion, and heat is removed to the outside while forming a tropical flow from a plurality of heat dissipation fins having a large surface area, thereby effectively performing heat dissipation of the battery cell.
  • the battery cells achieve heat conduction from the heat dissipation member to the air-cooled heat exchange member very effectively through a heat conduction medium, and as described above, the air-cooled heat exchange member, in particular, the heat dissipation fins can be more flexibly configured.
  • the heat dissipation fins of the air-cooling heat exchange member may have a structure extending upwardly from the base in the longitudinal direction, or may have a structure extending upward from the base in the width direction.
  • the heat dissipation efficiency of the air-cooled heat exchange member is largely determined by its surface area.
  • the surface area of the air-cooling heat exchange member refers to the sum of the base and the surface area exposed to the outside of the heat dissipation fins extending upward from the base.
  • the surface area of the air-cooling heat exchange member may be mainly determined by the width of the base portion, the height and spacing of the heat dissipation fins, and the like. Therefore, the wider the base portion, the higher the height of the heat dissipation fins, and the narrower the spacing of the heat dissipation fins, the larger surface area can be obtained.
  • the surface area of the air-cooling heat exchange member may be preferably 7 to 15 times based on the surface area of the battery cell.
  • the air-cooled heat exchange member may be selected as needed in the range that the length, width, and height can have the maximum heat dissipation efficiency to the minimum size, for example, the length, width, And a size of 30 to 70%, a size of 50 to 120%, and a size of 20 to 50%, respectively, based on the height.
  • the air-cooled heat exchange member is not particularly limited as long as it is mounted on one side of the battery cell stack to easily remove heat generated from the battery cell.
  • the upper or lower surface of the module case is more preferable. May be mounted on the top surface of the module case. Therefore, heat generated in the battery cell can be radiated with high efficiency outside the module case.
  • an indentation of a size capable of accommodating an air-cooling heat exchange member is formed at an upper end or a lower end of a module case in which the air-cooling heat exchange member is mounted, and the height of the air-cooling heat exchange member mounted on the indentation is increased. It may be formed of a structure equal to or less than the height of the top or bottom surface of the case. This structure, even when stacking a plurality of battery modules in the direction in which the air-cooling heat exchange member is mounted, there is no difficulty of lamination due to the air-cooled heat exchange member, it may be preferable in manufacturing a large output large-capacity battery pack.
  • the battery module according to the present invention because it is an indirect cooling method through the heat dissipation member, it is possible to flexibly configure the air-cooling heat exchange member in the longitudinal direction and the width direction according to the characteristics and configuration of the battery module.
  • a flexible configuration is highly desirable as it allows for a variety of designs for factors relating to the installation location of the cooling fan, flow structure and the like.
  • the heat dissipation member having a specific structure according to the present invention may be applied to a battery module including not only a pouch-type battery cell as described above but also a rectangular battery cell as a plate-shaped battery cell.
  • the present invention provides a battery module in which a plurality of rectangular battery cells are built in a module case and sequentially stacked.
  • the prismatic battery cell is an electrode assembly of a positive electrode / separator / negative electrode structure is sealed in the interior of the rectangular can with the electrolyte, and includes a plurality of heat dissipation members interposed at two or more battery cell interfaces, When discharged, the heat generated from the battery cell is removed by heat conduction through the heat radiating member.
  • the battery module of the present invention is provided with a plurality of heat dissipating members at two or more rectangular battery cell interfaces, so that no space is required between the rectangular battery cells or even a very small space is more efficient than conventional cooling systems. Since the cooling of the battery cell stack can be performed, the heat dissipation efficiency of the battery module can be maximized, and the rectangular battery cells can be stacked with high integration.
  • the air-cooling heat exchange member as described above may be further installed in the battery module based on the rectangular battery cell.
  • an air-cooling heat exchange member for integrally connecting the heat dissipation members is additionally mounted on one side of the battery cell stack, and heat generated from the rectangular battery cell during charge and discharge is heat conducted through the air-cooled heat exchange member via the heat dissipation member. It may be a structure removed by.
  • the present invention two or more heat dissipation members interposed at the battery cell interfaces; And an air cooling heat exchange member connected to one side of the heat dissipation members and removing heat transferred from the heat dissipation members.
  • Such a cooling device is a novel member in itself and exhibits various advantages as described above.
  • the air-cooled heat exchange member may have a structure including a base portion in which the heat dissipation members are in close contact with the bottom surface, and a plurality of heat dissipation fins extending upward from the base portion.
  • the present invention provides a battery pack manufactured by combining the battery module according to a desired output and capacity.
  • the battery pack according to the present invention includes a plurality of battery cells to achieve a high output large capacity, such as electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles that high heat generated during charging and discharging seriously emerge in terms of safety It can be preferably used for power supply.
  • the battery pack according to the present invention is an electric vehicle and a plug-in. More preferably used in hybrid electric vehicles.
  • FIG. 1 is a schematic diagram of a plate-shaped battery cell
  • FIG. 2 is a perspective view of a battery cartridge having the battery cell of FIG. 1 mounted therein;
  • FIG. 3 is a vertical sectional view along the A direction of the battery cartridge of FIG. 2;
  • FIG. 4 is an exploded view of a battery cartridge comprising two battery cells
  • FIG. 5 is a perspective view of the battery cartridge of FIG. 4;
  • FIG. 6 is a schematic view of a battery module having a heat dissipation member interposed between the battery cartridges of FIG. 2; FIG.
  • FIG. 7 is a schematic view of the heat radiation member of FIG. 6;
  • FIG. 8 is a schematic view of an enlarged structure of a heat exchanging member extending in a longitudinal direction
  • FIG. 9 is a schematic view of an enlarged structure of a heat exchanging member extending in the width direction
  • FIG. 10 is a schematic diagram before the heat exchange member is mounted on one side of the battery module according to an embodiment of the present invention.
  • FIG. 11 is a schematic view of a structure in which a heat exchange member is mounted on one side of a battery module according to an embodiment of the present invention
  • FIG. 12 is a schematic diagram of a structure in which a heat exchange member is mounted on one side of a module case according to another embodiment of the present invention.
  • FIG. 13 and 14 are schematic views of a battery module according to another embodiment of the present invention.
  • FIG. 1 shows a schematic diagram of a plate-shaped battery cell.
  • the plate-shaped battery cell 100 is composed of an electrode assembly (not shown) of the anode / separator / cathode structure built in the battery case 110 of the laminate sheet including a resin layer and a metal layer,
  • the positive electrode terminal 120 and the negative electrode terminal 130 electrically connected to the electrode assembly at the upper and lower portions of the battery case 110 protrude outwards.
  • FIG. 2 schematically shows a perspective view of a battery cartridge having the battery cell of FIG. 1 mounted therein
  • FIG. 3 schematically shows a vertical cross-sectional view along the direction A of the battery cartridge of FIG. 2.
  • the battery cartridge 200 has a plate-shaped battery cell 100 mounted therein, and electrode terminals 120 and 130 of the battery cell 100 protrude outwards.
  • the battery cartridge 200 is composed of a pair of plate-shaped frames 300 and 302 for fixing both sides of the outer circumference of the battery cell 100 in a state where the side of the battery cell 100 is open.
  • Elastic pressing members 310, 320, 312, and 322 are mounted on the left side and the right side of the outer surfaces of the frames 300 and 302 in parallel in the longitudinal direction.
  • the battery cell 100 is mounted on the frames 300, 302 with the open side protruding from the frames 300, 302, the elastic pressing members 310, 320, 312, 322 is a battery cell (100) It is mounted on the outer surface of the frames 300, 302 to a height H that is greater than the projecting height h of the open side. Accordingly, the elastic pressing members 310, 320, 312, and 322 may exert elastic pressing force on the heat radiating member (not shown) when the heat radiating member (not shown) is interposed. In addition, the interposed heat dissipation member (not shown) may be closely pressed to the open side of the battery cell 100 by the elastic pressing members 310, 320, 312, and 322. Effective heat dissipation can be achieved without causing an increase in size.
  • FIG. 4 schematically illustrates an exploded view of a battery cartridge including two battery cells
  • FIG. 5 schematically illustrates a perspective view of the battery cartridge of FIG. 4.
  • the battery cartridge 200a stacks two plate-shaped battery cells 100 and 102 and is mounted therein, and an intermediate frame 301 is added between the battery cells 100 and 102. Except for being mounted to the same as FIG. 2, detailed description thereof will be omitted.
  • FIG. 6 is a perspective view schematically illustrating a battery module 400 having a heat radiating member interposed between the battery cartridges of FIG. 2, and a perspective view of the heat radiating member of FIG. 6 is schematically illustrated in FIG. 7.
  • the four heat dissipation members 500 are interposed at some interfaces of the cartridges 200, and the cartridge 200 Heat generated from the battery (exactly, heat generated from the battery cell embedded in the cartridge) may be conducted to the heat radiating member 500, thereby exhibiting a high heat radiating effect.
  • the elastic pressing members 310 and 320 mounted on the outer surface of the frame 300 among the eight cartridges 200 help the heat dissipation member 500 to be stably mounted and fixed to the frame 300.
  • each of the heat dissipation members 510, 520, 530, and 540 is a copper plate having high thermal conductivity, and each of the portions 511, 521, 531, and 541 exposed to the outside is directed toward the side of the cartridge 200. It is bent.
  • FIG. 8 is a schematic view of an air cooling heat exchange member according to an embodiment of the present invention.
  • the air-cooled heat exchange member 600 includes a base 610 in which the heat radiating members 500 are in close contact with the bottom surface, and a plurality of heat radiating fins 620 extending upward from the base 610. It consists of a containing structure.
  • the air-cooled heat exchange member 600 is made of a high thermal conductive aluminum material, and the heat dissipation fins 620 extend upward from the base 610 in the longitudinal direction l.
  • FIG. 9 is a schematic view of an air cooling heat exchange member according to another embodiment of the present invention.
  • FIG. 10 illustrates a battery module and an air-cooled heat exchange member according to an embodiment of the present invention
  • FIG. 11 shows a schematic diagram of a structure in which an air-cooled heat exchange member is mounted on one side of the battery module of FIG. 10.
  • the battery module 400 is an air-cooling heat exchange member 600 on top of a battery cell stack in which a plurality of cartridges 200, in which battery cells 100 are mounted, are sequentially stacked. It consists of a structure that is mounted.
  • a heat conduction medium 550 made of heat-dissipating grease is interposed between the upper portion of the bent portion of the heat-dissipating member 500 and the air-cooling heat-exchanging member 600, thereby achieving heat transfer more effectively.
  • the member 600 can be configured flexibly.
  • the heat generated from the battery cells 100 in the charging and discharging process is transferred to the heat dissipation member 500 interposed between the cartridges 200 and then through the heat conduction medium 550, the heat exchange member 600 for air cooling Since it is discharged to the outside through, a high heat dissipation efficiency can be achieved while forming a compact battery module structure as a whole.
  • the air-cooled heat exchange member 600 has a length (l), a width (w), and a height (t) based on the length (L), width (W), and height (T) of the battery cell stack, respectively. It consists of about 60%, about 100%, and about 30%, and the surface area of the air-cooling heat exchange member 600 has a size of about 10 times based on the surface area of the battery cell 100.
  • FIG. 12 is a schematic diagram of a structure in which a heat exchange member is mounted on one side of a module case according to another embodiment of the present invention.
  • the battery module 400 embedded in the module case 410 includes a battery cell in which eight cartridges 200 in which the battery cells 100 are mounted are sequentially stacked. It has a structure in which the air-cooling heat exchange member 601 is added to the upper part of the laminated body.
  • the heat transmitted from the heat dissipation member 500 is highly reliable by conduction. It can be removed with excellent cooling efficiency.
  • FIG. 13 and 14 are schematic views of a battery module according to another embodiment of the present invention.
  • the battery cells 104 have a structure in which both of the positive electrode terminal 120 and the negative electrode terminal 130 protrude upward from the battery cells 104.
  • the heat dissipation members 500 as shown in the battery module 400 of FIG. 6, have positive electrode terminals 120 as well as battery cells 100 in which the positive electrode terminals 120 and the negative electrode terminals 130 protrude in opposite directions.
  • the negative electrode terminal 130 is also applicable to the battery cells 104 protruding in the same direction.
  • other structures are the same as the battery module 400 of FIG. 6, and thus a detailed description thereof will be omitted.
  • the heat dissipation members 502 are positioned on one side of the battery cell stack. Accordingly, the heat dissipation members 502 are positioned on the battery cell stack as shown in the battery module 400a of FIG. 13, or the heat dissipation members 502 as the battery module 400b of FIG. It can also be seen that the structure located on one side of the. Hereinafter, other structures are the same as the battery module 400a of FIG. 13, and thus detailed descriptions thereof will be omitted.
  • the battery module according to the present invention has a structure in which a heat dissipation member is disposed at the battery cell interfaces to promote heat dissipation of the battery. It can release to the outside effectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Algebra (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

본 발명은 다수의 판상형 전지셀들이 모듈 케이스에 내장되어 순차적으로 적층되어 있는 전지모듈로서, 상기 판상형 전지셀은 수지층과 금속층을 포함하는 라미네이트 시트의 전지케이스에 양극/분리막/음극 구조의 전극조립체가 내장되어 있고, 둘 이상의 전지셀 계면들에 개재되는 다수의 방열부재들을 포함하고 있으며, 충방전시 전지셀로부터 발생한 열이 상기 방열부재를 통해 열전도에 의해 제거되는 구조로 이루어진 전지모듈을 제공한다.

Description

우수한 방열 특성의 전지모듈 및 중대형 전지팩
본 출원은 2009.04.01 일자로 한국특허청에 출원된 한국특허출원 제2009-0027936호에 대한 우선권과 그것의 이익을 주장한다.
본 발명은 우수한 방열 특성의 전지모듈 및 중대형 전지팩에 관한 것으로, 더욱 상세하게는, 다수의 판상형 전지셀들이 모듈 케이스에 내장되어 순차적으로 적층되어 있는 전지모듈로서, 상기 판상형 전지셀은 수지층과 금속층을 포함하는 라미네이트 시트의 전지케이스에 양극/분리막/음극 구조의 전극조립체가 내장되어 있고, 둘 이상의 전지셀 계면들에 개재되는 다수의 방열부재들을 포함하고 있으며, 충방전시 전지셀로부터 발생한 열이 상기 방열부재를 통해 열전도에 의해 제거되는 구조로 이루어진 전지모듈에 관한 것이다.
최근, 충방전이 가능한 이차전지는 와이어리스 모바일 기기의 에너지원으로 광범위하게 사용되고 있다. 또한, 이차전지는 화석 연료를 사용하는 기존의 가솔린 차량, 디젤 차량 등의 대기오염 등을 해결하기 위한 방안으로 제시되고 있는 전기자동차(EV), 하이브리드 전기자동차(HEV), 플러그-인 하이브리드 전기자동차(Plug-In HEV) 등의 동력원으로서도 주목받고 있다.
소형 모바일 기기들에는 디바이스 1 대당 하나 또는 두서너 개의 전지셀들이 사용됨에 반하여, 자동차 등과 같은 중대형 디바이스에는 고출력 대용량의 필요성으로 인해, 다수의 전지셀을 전기적으로 연결한 중대형 전지모듈이 사용된다.
중대형 전지모듈은 가능하면 작은 크기와 중량으로 제조되는 것이 바람직하므로, 높은 집적도로 충적될 수 있고 용량 대비 중량이 작은 각형 전지, 파우치형 전지 등이 중대형 전지모듈의 전지셀(단위전지)로서 주로 사용되고 있다. 특히, 알루미늄 라미네이트 시트 등을 외장부재로 사용하는 파우치형 전지는 중량이 작고 제조비용이 낮으며 형태 변형이 용이하다는 등의 이점으로 인해 최근 많은 관심을 모으고 있다.
이러한 중대형 전지모듈을 구성하는 전지셀들은 충방전이 가능한 이차전지로 구성되어 있으므로, 이와 같은 고출력 대용량 이차전지는 충방전 과정에서 다량의 열을 발생시킨다. 특히, 상기 전지모듈에 널리 사용되는 파우치형 전지의 라미네이트 시트는 열전도성이 낮은 고분자 물질로 표면이 코팅되어 있으므로, 전지셀 전체의 온도를 효과적으로 냉각시키기 어려운 실정이다.
충방전 과정에서 발생한 전지모듈의 열이 효과적으로 제거되지 못하면, 열축적이 일어나고 결과적으로 전지모듈의 열화를 촉진하며, 경우에 따라서는 발화 또는 폭발을 유발할 수 있다. 따라서, 고출력 대용량의 전지인 차량용 전지팩에는 그것에 내장되어 있는 전지셀들을 냉각시키는 냉각 시스템이 필요하다.
중대형 전지팩에 장착되는 전지모듈은 일반적으로 다수의 전지셀들을 높은 밀집도로 적층하는 방법으로 제조하며, 충방전시에 발생한 열을 제거할 수 있도록 인접한 전지셀들을 일정한 간격으로 이격시켜 적층한다. 예를 들어, 전지셀 자체를 별도의 부재 없이 소정의 간격으로 이격시키면서 순차적으로 적층하거나, 또는 기계적 강성이 낮은 전지셀의 경우, 하나 또는 둘 이상의 조합으로 카트리지 등에 내장하고 이러한 카트리지들을 다수 개 적층하여 전지모듈을 구성할 수 있다. 적층된 전지셀들 또는 전지모듈들 사이에는 축적되는 열을 효과적으로 제거할 수 있도록, 냉매의 유로가 전지셀들 또는 전지모듈들 사이에 형성되는 구조로 이루어진다.
그러나, 이러한 구조는 다수의 전지셀들에 대응하여 다수의 냉매 유로를 확보하여야 하므로, 전지모듈의 전체 크기가 커지게 되는 문제점을 가지고 있다.
또한, 전지모듈의 크기를 고려하여, 많은 전지셀들을 적층할수록 상대적으로 좁은 간격의 냉매 유로들을 형성하게 되는데, 이로 인해 냉각 구조의 설계가 복잡해지는 문제점이 발생한다. 즉, 냉매의 유입구 대비 상대적으로 좁은 간격의 냉매 유로는 높은 압력 손실을 유발하게 되어, 냉매의 유입구 및 배출구의 형태와 위치 등을 설계하는데 많은 어려움이 따른다. 또한, 이러한 압력 손실을 방지하기 위하여 팬이 추가적으로 설치되기도 하므로, 전력 소모와 팬 소음, 공간 등과 같이 설계상의 제약이 따를 수 있다.
더욱이, 냉각 구조의 구성시 사용되는 부재들 사이에 존재하는 열전도 저항으로 인해, 설계시에 의도한 냉각 효율성이 얻어지지 못하는 경우가 자주 발생한다.
따라서, 고출력 대용량의 전력을 제공하면서도 간단하고 콤팩트한 구조로 제조될 수 있고, 수명 특성과 안전성이 우수한 전지모듈에 대한 필요성이 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 발명의 목적은 공냉을 통한 열전도에 의해 열을 제거함으로써, 전지모듈 전체의 크기 증가를 억제하면서 전체온도를 균일하게 하여 온도편차를 줄일 수 있는 구조의 전지모듈을 제공하는 것이다.
본 발명의 또 다른 목적은 전지모듈의 구성시 사용되는 부재들 사이에 존재하는 열전도 저항을 최소화하여, 동일한 구조에서 냉각 효율성을 극대화할 수 있는 전지모듈을 제공하는 것이다.
따라서, 본 발명에 따른 전지모듈은, 다수의 판상형 전지셀들이 모듈 케이스에 내장되어 순차적으로 적층되어 있는 전지모듈로서, 상기 판상형 전지셀은 수지층과 금속층을 포함하는 라미네이트 시트의 전지케이스에 양극/분리막/음극 구조의 전극조립체가 내장되어 있고, 둘 이상의 전지셀 계면들에 개재되는 다수의 방열부재들을 포함하고 있으며, 충방전시 전지셀로부터 발생한 열이 상기 방열부재를 통해 열전도에 의해 제거되는 구조로 이루어져 있다.
일반적으로, 전지모듈은 냉매 유로의 형성을 위해 전지셀들을 소정의 거리만큼 이격된 상태로 적층하여 구성하고, 이러한 이격된 공간으로 공기를 유동('공냉식')시켜 전지셀들의 과열을 방지하고 있으나, 충분한 방열 효과는 얻고 있지 못하는 실정이다.
이에 반해, 본 발명의 전지모듈은 둘 이상의 전지셀 계면들에 다수의 방열부재를 개재함으로써, 전지셀들 사이에 이격 공간을 필요로 하지 않거나 매우 작은 이격 공간만으로도, 종래의 냉각 시스템보다 높은 효율성으로 전지셀 적층체의 냉각을 수행할 수 있으므로, 전지모듈의 방열 효율성을 극대화할 수 있고, 높은 집적도로 전지셀들을 적층할 수 있다.
하나의 바람직한 예에서, 상기 전지모듈은, 방열부재들을 일체로 연결하는 공냉용 열교환 부재가 전지셀 적층체의 일측에 추가로 장착되어 있고, 충방전시 전지셀로부터 발생한 열이 상기 방열부재를 경유하여 공냉용 열교환 부재를 통해 열전도에 의해 제거되는 구조일 수 있다.
따라서, 상기 구조의 전지모듈은 둘 이상의 전지셀 계면들에 다수의 방열부재를 개재하고, 이를 일체로 연결하는 공냉용 열교환 부재를 전지셀 적층체의 일측에 부가함으로써, 전지셀로부터 발생한 열을 열전도에 의해 더욱 효과적으로 제거할 수 있다.
상기 전지셀은 바람직하게는 열융착을 위한 내부 수지층, 차단성 금속층, 및 우수한 내구성을 발휘하는 외부 수지층을 포함하는 라미네이트 시트의 전지케이스에 전극조립체가 내장되어 있는 가벼운 중량의 파우치형 전지일 수 있다.
바람직하게는, 상기 전지셀이 프레임 구조의 전지 카트리지 내부에 장착되어 있는 구조일 수 있으며, 이러한 구조는 외주면 단부 부위에 열융착에 의한 실링부가 형성되어 있는 전지에 바람직하게 적용될 수 있다.
상기 구조에서, 카트리지는 전지셀의 양 측면 중 적어도 일 측면이 개방된 상태로 전지셀의 외주면을 고정하는 적어도 한 쌍의 판상형 프레임으로 이루어져 있고, 상기 프레임의 외면에는 상기 방열부재가 상기 전지셀의 개방 측면에 밀착된 상태로 고정되기 위한 탄성 가압부재가 장착되어 있는 구조로 이루어져 있다.
따라서, 전지셀이 내장된 다수 개의 카트리지들을 적층하고 상기 카트리지 사이에 방열부재를 개재하였을 때, 프레임 외면에 장착된 상기 탄성 가압부재는 카트리지 적층체의 구조적 안정성을 높이고, 방열부재가 카트리지 적층체에 효과적으로 고정될 수 있도록 해 준다.
상기 카트리지는 적어도 한 쌍의 판상형 프레임으로 이루어져 있으므로, 1 개의 전지셀이 장착되는 경우뿐만 아니라, 2 개 이상의 전지셀이 장착되는 구조로 가능하다. 예를 들어, 카트리지의 내부에 2 개의 전지셀들이 장착되는 구조에서는, 전지셀들 사이에 중간 프레임을 추가로 장착함으로써, 하나의 전지셀이 상부 프레임과 중간 프레임 사이에 장착되고, 나머지 전지셀이 중간 프레임과 하부 프레임 사이에 장착될 수 있다. 이러한 구조에서도, 방열부재가 각 전지셀의 외면에 접하게 되도록 구성할 수 있으므로, 열전도에 의한 방열효과를 발휘할 수 있다.
상기 탄성 가압부재는 프레임 상에 장착되어 전지모듈의 구성시 방열부재를 고정할 수 있는 구조라면 특별히 한정되는 것은 아니며, 예를 들어, 상기 프레임의 외면 중 상측과 하측, 및/또는 좌측과 우측 상에 장착되어 있는 구조일 수 있다.
따라서, 방열부재가 프레임 외면에 장착된 탄성 가압부재에 의해 효과적으로 밀착 가압되어, 프레임에 대한 방열부재의 고정력을 높여주는 역할을 하므로, 방열부재의 고정을 위한 추가적인 부재의 사용을 필요로 하지 않는다.
경우에 따라서는, 탄성 가압부재가 전지셀의 실링부에 접하는 프레임의 내면에 추가로 장착될 수 있음은 물론이다.
하나의 바람직한 예에서, 전지셀은 개방 측면이 프레임으로부터 돌출된 상태로 프레임에 장착되고, 탄성 가압부재는 전지셀 개방 측면의 돌출 높이보다 큰 높이로 프레임의 외면에 장착되어 있는 구조일 수 있다.
즉, 전지셀의 높이보다 낮게 형성된 프레임은 전지셀의 외주부만을 고정하므로, 돌출된 개방 측면을 통해 효과적인 방열을 이룰 수 있다. 또한, 전지셀의 돌출된 개방 측면의 높이보다 높게 장착된 탄성 가압부재는, 방열부재 개재시 전지셀의 개방 측면까지 효과적으로 가압하면서 밀착시킬 수 있으므로, 이를 사용하는 전지모듈의 크기 증가를 유발하지 않으면서 전체적인 기계적 강성을 높일 수 있다.
프레임의 외면에 장착되는 탄성 가압부재는 압박시 탄성 가압력을 발휘하는 소재라면 특별히 제한되는 것은 아니며, 바람직하게는 탄성적 물성의 고분자 수지를 포함하는 것일 수 있다. 이러한 고분자 수지는 소재 자체의 특성상 탄성력을 발휘하거나 또는 구조 내지 형태 상으로 탄성력을 발휘하는 소재일 수 있다. 전자의 대표적인 예로는 고무를 들 수 있으며, 후자의 예로는 고분자 수지를 발포한 구조 등을 들 수 있다.
상기 프레임 상에 탄성 가압부재를 장착하는 방식은 다양할 수 있으며, 더욱 효율적인 장착을 위해, 바람직하게는 프레임의 외면에 그루브가 형성되어 있고, 탄성 가압부재는 그러한 그루브 상에 장착되는 구조일 수 있다.
탄성 가압부재의 폭은 프레임의 폭을 기준으로 10% 이상의 폭 크기를 가질 수 있다. 프레임의 폭을 기준으로 탄성 가압부재의 폭이 너무 작은 경우에는 그것의 장착에 따른 효과를 발휘하기 어려울 수 있으며, 이와는 반대로, 탄성 가압부재의 폭이 너무 큰 경우에는, 압박시 탄성 변형된 가압부재가 방열부재의 많은 면을 커버하여 방열 효과를 저하시킬 수 있으며, 또는 프레임 외부로 돌출될 수 있으므로 바람직하지 않다. 따라서, 이러한 문제점을 유발하지 않는다면 탄성 가압부재의 폭이 상기 범위를 넘어설 수도 있음은 물론이다.
한편, 상기 방열부재는 열전도성의 소재라면 그것의 종류가 특별히 제한되는 것은 아니며, 예를 들어, 열전도율이 20 내지 500 W/(m·K)인 판재로 이루어질 수 있다. 이러한 판재의 예로는 알루미늄, 구리, 폴리머 등을 들 수 있지만, 이들만으로 한정되지 않음은 물론이다.
상기 방열부재들은 각각의 전지셀 계면에 개재될 수도 있고, 일부의 전지셀 계면들에만 개재될 수도 있다. 예를 들어, 방열부재들이 각각의 전지셀 계면에 개재되는 경우, 각각의 전지셀들은 양면에서 서로 다른 방열부재들과 접촉 상태를 이루게 된다. 반면에, 방열부재가 일부의 전지셀 계면들에만 개재되는 경우, 양면 중 일면에서만 방열부재와 접촉 상태를 이루는 전지셀들이 일부 존재할 수 있다.
상기 공냉용 열교환 부재 또한, 열전도성이 우수한 소재라면 특별히 제한되지는 않으나, 바람직하게는, 열전도율이 20 내지 500 W/(m·K)인 소재로 이루어질 수 있다. 따라서, 이러한 방열부재와 공냉용 열교환 부재가 상호 연결됨으로써 효율적으로 열전달을 이룰 수 있다.
바람직하게는, 방열부재는 그것의 적어도 일부가 적층된 전지셀들의 외부로 노출된 상태로 전지셀들 사이의 계면에 개재되어 있으며, 상기 외부로 노출된 부위는 전지셀의 측면쪽으로 절곡되어 있는 구조일 수 있다. 즉, 전지셀들 사이의 계면에 개재된 방열부재는 전지셀에서 발생한 열을 전도하여, 절곡된 구조를 통해 공냉용 열교환 부재 등으로 용이하게 전달하므로, 전지셀의 방열을 효과적으로 수행할 수 있다.
공냉용 열교환 부재는 방열부재의 절곡된 부위의 상부에 장착될 수 있으며, 상기 장착 방법은 용접이나, 기계적 체결 등 다양하게 이루어질 수 있다. 따라서, 전지셀에서 발생한 열이 전지셀들 사이에 개재된 방열부재로 전달되고, 전지셀 적층체의 일측에 장착된 공냉용 열교환 부재를 통해 효과적으로 제거될 수 있다.
상기 구조에서, 방열부재와 공냉용 열교환 부재 사이에서 보다 효율적으로 열전달이 이루어질 수 있도록, 바람직하게는 상기 방열부재의 절곡된 부위의 상부와 상기 공냉용 열교환 부재 사이에는 열전도 매개체가 추가로 개재되어 있을 수 있다. 여기서, 열전도 매개체(Thermal Interface Material; T.I.M)는 열을 전도하는 기능의 계면물질로서, 열저항을 최소화시키는 역할을 한다. 상기 열전도 매개체의 예로서, 방열 그리스(thermally conductive grease), 방열 에폭시계 접착제(thermally conductive epoxy-based bond), 방열 실리콘 패드(thermally conductive silicone pad), 방열 접착테이프(thermally conductive adhesive tape), 흑연 시트(graphite sheet) 등을 들 수 있지만, 이들만으로 한정되는 것은 아니며, 이들은 단독으로 사용될 수도 있고 둘 이상의 조합으로 사용될 수도 있다.
이와 같이, 상기 방열부재의 절곡된 부위의 상부와 넓은 열대류 면적을 가지는 공냉용 열교환 부재 사이에, 금속간의 접촉에 의해 발생될 수 있는 열 저항을 최소시킬 수 있는 열전도 매개체를 개재함으로써, 상기 공냉용 열교환 부재로의 열전달을 더욱 효율적으로 달성할 수 있다.
더욱이, 이러한 열전도 매개체의 부가는 높은 열전도 효율성에 의해 공냉용 열교환 부재의 구조를 다양한 형태로 설계하는 것을 가능하게 한다.
상기 열전도 매개체는, 그것의 종류에 따라, 방열부재 및/또는 공냉용 열교환 부재의 상호 접촉 부위에 도포 방식으로 부가될 수도 있고, 별도의 부재인 시트 형태로 부가될 수도 있다.
상기 공냉용 열교환 부재는, 예를 들어, 방열부재들이 하단면에 밀착되어 있는 기저부 및 상기 기저부로부터 상향 연장되어 있는 다수의 방열핀들을 포함하는 구조로 이루어질 수 있다.
따라서, 전지셀로부터 방열부재로 전달된 열이 기저부의 하단면을 경유하여 전도되고, 넓은 표면적을 가진 다수의 방열핀들로부터 열대류를 이루면서 열이 외부로 제거되므로, 전지셀의 방열을 효과적으로 수행할 수 있다.
전지셀들은 열전도 매개체를 통해 방열부재로부터 공냉용 열교환 부재로 매우 효과적으로 열전도를 이룸으로써, 앞서 설명한 바와 같이, 상기 공냉용 열교환 부재, 특히, 방열핀들을 보다 유연성 있게 구성할 수 있다.
구체적으로, 공냉용 열교환 부재의 방열핀들은 상기 기저부로부터 길이방향으로 상향 연장되어 있는 구조일 수도 있고, 또는 상기 기저부로부터 폭 방향으로 상향 연장되어 있는 구조일 수도 있다.
공냉용 열교환 부재의 방열 효율은 그것의 표면적에 의해 크게 좌우된다. 여기서, 공냉용 열교환 부재의 표면적은 기저부 및 상기 기저부로부터 상향 연장되어 있는 방열핀들의 외부로 노출된 표면 면적의 합을 의미한다. 예를 들어, 공냉용 열교환 부재의 표면적은 기저부의 너비, 방열핀들의 높이 및 간격 등에 의해 주로 결정될 수 있다. 따라서, 기저부의 넓이가 넓고, 방열핀들의 높이가 높으며, 방열핀들의 간격이 좁을수록 보다 큰 표면적이 얻어질 수 있다.
이러한 공냉용 열교환 부재의 표면적이 클수록 방열 효율이 커질 수 있지만, 예를 들어, 보다 넓은 표면적의 확보를 위해 방열핀들의 간격을 너무 조밀하게 만들면, 냉매의 유동 저항이 커져 오히려 냉각 효율성이 저하되고, 그로 인해 크기 증가 대비 방열 효율이 떨어지며, 전지모듈의 전체 크기가 커지게 되므로 바람직하지 않다.
이러한 점들을 종합적으로 고려할 때, 공냉용 열교환 부재의 표면적은 전지셀의 표면적을 기준으로 바람직하게는 7 내지 15 배일 수 있다.
한편, 상기 공냉용 열교환 부재는 길이, 폭, 및 높이가 최소의 크기로 최대의 방열 효율을 가질 수 있는 범위에서 필요에 따라 선택될 수 있으며, 예시적으로, 전지셀 적층체의 길이, 폭, 및 높이를 기준으로 각각 30 내지 70%의 크기, 50 내지 120%의 크기, 및 20 내지 50%의 크기로 이루어질 수 있다.
한편, 공냉용 열교환 부재는 전지셀 적층체의 일측에 장착되어 전지셀로부터 발생한 열을 용이하게 제거하는 위치라면 특별히 제한되지는 않으나, 바람직하게는, 모듈 케이스의 상단면 또는 하단면, 더욱 바람직하게는 모듈 케이스의 상단면 상에 장착될 수 있다. 따라서, 전지셀에서 발생한 열이 모듈 케이스 외부에서 높은 효율성으로 방열될 수 있다.
경우에 따라서는, 공냉용 열교환 부재가 장착되는 모듈 케이스의 상단부 또는 하단부에는 공냉용 열교환 부재를 수용할 수 있는 크기의 만입부가 형성되어 있고, 상기 만입부 상에 장착된 공냉용 열교환 부재의 높이는 모듈 케이스의 상단면 또는 하단면의 높이와 동일하거나 그 보다 낮은 구조로 형성되어 있을 수 있다. 이러한 구조는, 다수의 전지모듈들을 공냉용 열교환 부재가 장착된 방향으로 적층하는 경우에도, 공냉용 열교환 부재로 인한 적층의 어려움이 없으므로, 고출력 대용량의 중대형 전지팩을 제조함에 있어서 바람직할 수 있다.
즉, 본 발명에 따른 전지모듈은, 앞서 설명한 바와 같이, 방열부재를 통한 간접 냉각방식이기 때문에 전지모듈의 특성 및 구성에 따라 공냉용 열교환 부재를 길이방향 및 폭방향으로 유연하게 구성할 수 있을 뿐만 아니라, 이러한 유연한 구성은 냉각 팬의 설치 위치, 유동 구조 등과 관련한 인자들에 대한 다양한 설계를 가능하게 하므로, 매우 바람직하다.
상기와 같은 본 발명에 따른 특정한 구조의 방열부재는 판상형 전지셀로서 앞서 설명한 바와 같은 파우치형 전지셀 뿐만 아니라 각형 전지셀들로 구성된 전지모듈에도 적용될 수 있음은 물론이다.
따라서, 본 발명은 다수의 각형 전지셀들이 모듈 케이스에 내장되어 순차적으로 적층되어 있는 전지모듈을 제공한다.
구체적으로는, 상기 각형 전지셀은 양극/분리막/음극 구조의 전극조립체가 전해액과 함께 각형 캔의 내부에 밀봉되어 있고, 둘 이상의 전지셀 계면들에 개재되는 다수의 방열부재들을 포함하고 있으며, 충방전시 전지셀로부터 발생한 열이 상기 방열부재를 통해 열전도에 의해 제거되는 구조로 구성되어 있다.
따라서, 본 발명의 전지모듈은 둘 이상의 각형 전지셀 계면들에 다수의 방열부재를 개재함으로써, 각형 전지셀들 사이에 이격 공간을 필요로 하지 않거나 매우 작은 이격 공간만으로도, 종래의 냉각 시스템보다 높은 효율성으로 전지셀 적층체의 냉각을 수행할 수 있으므로, 전지모듈의 방열 효율성을 극대화할 수 있고, 높은 집적도로 각형 전지셀들을 적층할 수 있다.
이와 같이 각형 전지셀에 기반한 전지모듈에도, 앞서 설명한 바와 같은 공냉용 열교환 부재가 추가로 장착될 수 있음은 물론이다.
즉, 방열부재들을 일체로 연결하는 공냉용 열교환 부재가 전지셀 적층체의 일측에 추가로 장착되어 있고, 충방전시 각형 전지셀로부터 발생한 열이 상기 방열부재를 경유하여 공냉용 열교환 부재를 통해 열전도에 의해 제거되는 구조일 수 있다.
또한, 본 발명은, 전지셀 계면들에 개재되는 둘 또는 그 이상의 방열부재들; 및 상기 방열부재들의 일측에 연결되어 있고, 상기 방열부재들로부터 전달되는 열을 제거하는 공냉용 열교환 부재;를 포함하는 구조로 이루어진 냉각장치를 제공한다.
이러한 냉각장치는 그 자체로 신규한 부재이며, 앞서 설명한 바와 같은 다양한 잇점들을 발휘한다.
하나의 바람직한 예에서, 상기 공냉용 열교환 부재는, 앞서 설명한 바와 같이, 방열부재들이 하단면에 밀착되어 있는 기저부, 및 상기 기저부로부터 상향 연장되어 있는 다수의 방열핀들을 포함하는 구조로 이루어질 수 있다.
한편, 중대형 전지팩의 경우 고출력 대용량의 성능 확보를 위해 다수의 전지셀들이 사용되는 바, 이러한 전지팩을 구성하는 전지모듈들은 안전성의 확보를 위해 더욱 높은 방열 효율성이 요구된다.
따라서, 본 발명은 상기 전지모듈을 소망하는 출력 및 용량에 따라 조합하여 제조되는 전지팩을 제공한다.
본 발명에 따른 전지팩은 고출력 대용량의 달성을 위해 다수의 전지셀들을 포함함으로써, 충방전시 발생하는 고열이 안전성 측면에서 심각하게 대두되는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차의 등의 전원에 바람직하게 사용될 수 있다.
특히, 장시간에 걸쳐 전지팩을 통한 높은 출력이 요구되는 전기자동차와 플러그-인 하이브리드 전기자동차의 경우, 높은 방열 특성이 요구되는 바, 그러한 측면에서 본 발명에 따른 전지팩은 전기자동차와 플러그-인 하이브리드 전기자동차에 더욱 바람직하게 사용될 수 있다.
도 1은 판상형 전지셀의 모식도이다;
도 2는 도 1의 전지셀을 내부에 장착하고 있는 전지 카트리지의 사시도이다;
도 3은 도 2의 전지 카트리지의 A 방향에 따른 수직 단면도이다;
도 4는 2 개의 전지셀들을 포함하는 전지 카트리지의 분해도이다;
도 5는 도 4의 전지 카트리지의 사시도이다;
도 6은 도 2의 전지 카트리지 사이에 방열부재가 개재되는 전지모듈의 모식도이다;
도 7은 도 6의 방열부재의 모식도이다;
도 8은 길이방향으로 연장된 열교환 부재를 확대한 구조의 모식도이다;
도 9는 폭 방향으로 연장된 열교환 부재를 확대한 구조의 모식도이다;
도 10은 본 발명의 하나의 실시예에 따른 전지모듈의 일측에 열교환 부재가 장착되기 전의 모식도이다;
도 11은 본 발명의 하나의 실시예에 따른 전지모듈의 일측에 열교환 부재를 장착한 구조의 모식도이다;
도 12는 본 발명의 또 다른 실시예에 따른 모듈케이스의 일측에 열교환 부재를 장착한 구조의 모식도이다;
도 13 및 도 14는 본 발명의 또 다른 실시예에 따른 전지모듈의 모식도들이다.
이하, 본 발명의 실시예에 따른 도면을 참조하여 본 발명을 더욱 상술하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
도 1에는 판상형 전지셀의 모식도가 도시되어 있다.
도 1을 참조하면, 판상형 전지셀(100)은 수지층과 금속층을 포함하는 라미네이트 시트의 전지케이스(110)에 내장된 양극/분리막/음극 구조의 전극조립체(도시하지 않음)로 구성되어 있고, 전지케이스(110)의 상부와 하부에 전극조립체와 전기적으로 연결된 양극단자(120)와 음극단자(130)가 외부로 돌출되어 있다.
도 2에는 도 1의 전지셀을 내부에 장착하고 있는 전지 카트리지의 사시도가 모식적으로 도시되어 있고, 도 3에는 도 2의 전지 카트리지의 A 방향에 따른 수직 단면도가 모식적으로 도시되어 있다.
이들 도면을 참조하면, 전지 카트리지(200)는 판상형 전지셀(100)을 내부에 장착하고 있고, 전지셀(100)의 전극단자(120, 130)들이 외부로 돌출되어 있다.
전지 카트리지(200)는 전지셀(100)의 측면이 개방된 상태에서 전지셀(100)의 외주부 양면을 고정하는 한 쌍의 판상형 프레임들(300, 302)로 구성되어 있다.
프레임들(300, 302)의 외면 중 좌측과 우측 상에는 탄성 가압부재들(310, 320, 312, 322)이 길이방향으로 평행하게 장착되어 있다.
또한, 전지셀(100)은 개방 측면이 프레임들(300, 302)로부터 돌출된 상태로 프레임들(300, 302)에 장착되고, 탄성 가압부재들(310, 320, 312, 322)은 전지셀(100) 개방 측면의 돌출 높이(h)보다 큰 높이(H)로 프레임들(300, 302)의 외면에 장착되어 있다. 따라서, 방열부재(도시하지 않음) 개재시 탄성 가압부재들(310, 320, 312, 322)은 방열부재(도시하지 않음)에 대해 탄성 가압력을 발휘할 수 있다. 또한, 개재된 방열부재(도시하지 않음)는 탄성 가압부재들(310, 320, 312, 322)에 의해 전지셀(100)의 개방 측면까지 효과적으로 가압하면서 밀착시킬 수 있으므로, 이를 사용하는 전지모듈의 크기 증가를 유발하지 않으면서 효과적인 방열을 달성할 수 있다.
도 4에는 2 개의 전지셀들을 포함하는 전지 카트리지의 분해도가 모식적으로 도시되어 있고, 도 5에는 도 4의 전지 카트리지의 사시도가 모식적으로 도시되어 있다.
이들 도면을 참조하면, 전지 카트리지(200a)는 2개의 판상형 전지셀들(100, 102)을 적층하여 내부에 장착하고 있고, 전지셀들(100, 102)의 사이에 중간 프레임(301)이 추가로 장착되어 있는 점을 제외하고는 도 2와 동일하므로 자세한 설명은 생략하기로 한다.
이러한 구조에서, 방열부재(도시하지 않음)가 전지셀(100, 102)의 외면 각각에 접하도록 설치되어도 열전도에 의해 우수한 방열효과를 발휘할 수 있으므로, 도 2의 구조와 비교하여, 한 쌍의 프레임(300, 302) 및 중간 프레임(301)에 장착된 탄성 가압부재(310, 320)에 의해 밀착 가압되어, 결과적으로 전지모듈의 크기 증가를 최소화하면서 효과적인 방열을 달성할 수 있다.
도 6에는 도 2의 전지 카트리지 사이에 방열부재가 개재되는 전지모듈(400)의 사시도가 모식적으로 도시되어 있고, 도 7에는 도 6의 방열부재의 사시도가 모식적으로 도시되어 있다.
이들 도면을 참조하면, 8개의 카트리지들(200)이 순차적으로 적층되어 있는 전지모듈(400)에서, 4개의 방열부재들(500)은 카트리지들(200)의 일부 계면에 개재되어, 카트리지(200)에서 발생한 열(정확하게는 카트리지에 내장된 전지셀로부터 발생한 열)이 방열부재(500)로 전도되면서 높은 방열 효과를 발휘할 수 있다.
8개의 카트리지들(200) 중 프레임(300)의 외면에 장착된 탄성 가압부재들(310, 320)은 방열부재(500)가 안정적으로 프레임(300)에 장착 및 고정되는 것을 돕는다.
한편, 각각의 방열부재들(510, 520, 530, 540)은 열전도성이 높은 구리 판재로서, 외부로 노출된 각각의 부위들(511, 521, 531, 541)은 카트리지(200)의 측면쪽으로 절곡되어 있다.
도 8에는 본 발명의 하나의 실시예에 따른 공냉용 열교환 부재의 모식도가 도시되어 있다.
도 8을 참조하면, 공냉용 열교환 부재(600)는 방열부재들(500)이 하단면에 밀착되어 있는 기저부(610)와, 기저부(610)로부터 상향 연장되어 있는 다수의 방열핀들(620)을 포함하는 구조로 이루어져 있다.
공냉용 열교환 부재(600)는 높은 열전도성의 알루미늄 소재로 이루어져 있으며, 방열핀들(620)은 기저부(610)로부터 길이방향(l)으로 상향 연장되어 있다.
도 9에는 본 발명의 또 다른 실시예에 따른 공냉용 열교환 부재의 모식도가 도시되어 있다.
도 9를 참조하면, 공냉용 열교환 부재(601)의 방열핀들(630)은 기저부(612)로부터 폭 방향(w)으로 상향 연장되어 있는 구조를 제외하고는, 도 8과 동일하므로 그에 대한 자세한 설명은 생략한다.
도 10에는 본 발명의 하나의 실시예에 따른 전지모듈 및 공냉용 열교환 부재가 도시되어 있고, 도 11에는 도 10의 전지모듈의 일측에 공냉용 열교환 부재를 장착한 구조의 모식도가 도시되어 있다.
이들 도면을 참조하면, 전지모듈(400)은 전지셀들(100)을 내부에 장착하고 있는 다수의 카트리지들(200)이 순차적으로 적층된 전지셀 적층체의 상부에 공냉용 열교환 부재(600)가 장착되는 구조로 이루어져 있다.
또한, 방열부재(500)의 절곡된 부위의 상부와 공냉용 열교환 부재(600) 사이에는 방열 그리스로 이루어진 열전도 매개체(550)가 개재되어 있어서, 보다 효과적으로 열전달을 이룰 수 있고, 이에 따라 공냉용 열교환 부재(600)를 유연성 있게 구성할 수 있다.
즉, 충방전 과정에서 전지셀(100)들로부터 발생한 열은 카트리지들(200) 사이에 개재된 방열부재(500)로 전달된 후 열전도 매개체(550)를 거쳐, 공냉용 열교환 부재(600)를 통해 외부로 방출되므로, 전체적으로 콤팩트한 전지모듈 구조를 이루면서 높은 방열 효율을 달성할 수 있다.
또한, 공냉용 열교환 부재(600)는 길이(l), 폭(w), 및 높이(t)가 전지셀 적층체의 길이(L), 폭(W), 및 높이(T)를 기준으로 각각 약 60%, 약 100%, 및 약 30%의 크기로 이루어져 있고, 공냉용 열교환 부재(600)의 표면적은 전지셀(100)의 표면적을 기준으로 대략 10배의 크기를 가지고 있다.
도 12에는 본 발명의 또 다른 실시예에 따른 모듈케이스의 일측에 열교환 부재를 장착한 구조의 모식도가 도시되어 있다.
도 12를 도 9와 함께 참조하면, 모듈 케이스(410)에 내장되어 있는 전지모듈(400)은 전지셀들(100)이 내부에 장착된 8개의 카트리지들(200)이 순차적으로 적층된 전지셀 적층체의 상부에 공냉용 열교환 부재(601)가 부가되어 있는 구조로 이루어져 있다.
방열핀들(630)이 기저부(612)로부터 폭 방향(w)으로 상향 연장되어 있는 공냉용 열교환 부재(601)가 모듈 케이스(410)의 상단면 상에 장착되어 있는 구조를 제외하고는 도 11과 동일하므로 자세한 설명은 생략하기로 한다.
즉, 공냉용 열교환 부재(601)의 다수의 방열핀들(630)은 공기의 유동을 위해 소정의 이격 간격(d)을 가지고 있으므로, 방열부재(500)로부터 전달된 열을 전도에 의해 높은 신뢰성과 우수한 냉각 효율성으로 제거할 수 있다.
도 13 및 도 14에는 본 발명의 또 다른 실시예에 따른 전지모듈의 모식도들이 도시되어 있다.
이들 도면을 참조하면, 도 13의 전지모듈(400a)에서 전지셀들(104)은 양극단자(120)와 음극단자(130)가 모두 전지셀들(104)의 상부 방향으로 돌출되어 있는 구조를 가지고 있다. 따라서, 방열부재들(500)은 도 6의 전지모듈(400)과 같이 양극단자(120)와 음극단자(130)가 서로 반대 방향으로 돌출된 전지셀들(100) 뿐만 아니라 양극단자(120)와 음극단자(130)가 서로 동일한 방향으로 돌출된 전지셀들(104)에도 적용이 가능함을 알 수 있다. 이하 기타 구조는 도 6의 전지모듈(400)과 동일하므로 자세한 설명은 생략하기로 한다.
다음으로, 도 14의 전지모듈(400b)에서 방열부재들(502)은 전지셀 적층체의 일측면에 위치하고 있다. 따라서, 방열부재들(502)은 도 13의 전지모듈(400a)과 같이 전지셀 적층체의 상부에 위치하거나, 도 14의 전지모듈(400b)과 같이 방열부재들(502)이 전지셀 적층체의 일측면에 위치한 구조도 가능함을 알 수 있다. 이하 기타 구조는 도 13의 전지모듈(400a)과 동일하므로 자세한 설명은 생략하기로 한다.
이상 본 발명의 실시예에 따른 도면을 참조하여 설명하였지만, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
이상에서 설명한 바와 같이, 본 발명에 따른 전지모듈은 전지의 방열을 촉진하기 위한 방열부재가 전지셀 계면들에 개재되어 있는 구조로 이루어져 있으므로, 전지모듈의 크기 증가를 최소화하면서 전지셀에서 발생한 열을 효과적으로 외부로 방출할 수 있다.

Claims (30)

  1. 다수의 판상형 전지셀들이 모듈 케이스에 내장되어 순차적으로 적층되어 있는 전지모듈로서, 상기 판상형 전지셀은 수지층과 금속층을 포함하는 라미네이트 시트의 전지케이스에 양극/분리막/음극 구조의 전극조립체가 내장되어 있고, 둘 이상의 전지셀 계면들에 개재되는 다수의 방열부재들을 포함하고 있으며, 충방전시 전지셀로부터 발생한 열이 상기 방열부재를 통해 열전도에 의해 제거되는 것을 특징으로 하는 전지모듈.
  2. 제 1 항에 있어서, 상기 방열부재들을 일체로 연결하는 공냉용 열교환 부재가 전지셀 적층체의 일측에 추가로 장착되어 있고, 충방전시 전지셀로부터 발생한 열이 상기 방열부재를 경유하여 공냉용 열교환 부재를 통해 열전도에 의해 제거되는 것을 특징으로 하는 전지모듈.
  3. 제 1 항에 있어서, 상기 라미네이트 시트는 열융착의 내부 수지층, 차단성 금속층, 및 외부 수지층을 포함하는 구조로 이루어진 것을 특징으로 하는 전지모듈.
  4. 제 1 항에 있어서, 상기 전지셀은 프레임 구조의 전지 카트리지 내부에 장착되어 있는 것을 특징으로 하는 전지모듈.
  5. 제 4 항에 있어서, 상기 카트리지는 전지셀의 양 측면 중 적어도 일 측면이 개방된 상태로 전지셀의 외주면을 고정하는 적어도 한 쌍의 판상형 프레임으로 이루어져 있고, 상기 프레임의 외면에는 상기 방열부재가 상기 전지셀의 개방 측면에 밀착된 상태로 고정되기 위한 탄성 가압부재가 장착되어 있는 것을 특징으로 하는 전지모듈.
  6. 제 5 항에 있어서, 상기 탄성 가압부재는 상기 프레임의 외면 중 상측과 하측, 및/또는 좌측과 우측 상에 장착되어 있는 것을 특징으로 하는 전지모듈.
  7. 제 5 항에 있어서, 상기 전지셀은 개방 측면이 프레임으로부터 돌출된 상태로 프레임에 장착되고, 상기 탄성 가압부재는 전지셀 개방 측면의 돌출 높이보다 큰 높이로 프레임의 외면에 장착되어 있는 것을 특징으로 하는 전지모듈.
  8. 제 5 항에 있어서, 상기 탄성 가압부재는 압박시 탄성 가압력을 발휘하는 고분자 수지를 포함하는 것을 특징으로 하는 전지모듈.
  9. 제 5 항에 있어서, 상기 프레임의 외면에는 그루브가 형성되어 있고, 상기 탄성 가압부재는 상기 그루브 상에 장착되어 있는 것을 특징으로 하는 전지모듈.
  10. 제 1 항에 있어서, 상기 방열부재의 열전도율이 20 내지 500 W/(m·K)인 것을 특징으로 하는 전지모듈.
  11. 제 2 항에 있어서, 상기 공냉용 열교환 부재의 열전도율이 20 내지 500 W/(m·K)인 것을 특징으로 하는 전지모듈.
  12. 제 2 항에 있어서, 상기 방열부재는 그것의 적어도 일부가 적층된 전지셀들의 외부로 노출된 상태로 전지셀들 사이의 계면에 개재되어 있으며, 상기 외부로 노출된 부위는 전지셀의 측면쪽으로 절곡되어 있는 것을 특징으로 하는 전지모듈.
  13. 제 12 항에 있어서, 상기 공냉용 열교환 부재는 방열부재의 절곡된 부위의 상부에 장착되어 있는 것을 특징으로 하는 전지모듈.
  14. 제 13 항에 있어서, 상기 방열부재의 절곡된 부위의 상부와 상기 공냉용 열교환 부재 사이에는 열전도 매개체가 개재되어 있는 것을 특징으로 하는 전지모듈.
  15. 제 14 항에 있어서, 상기 열전도 매개체는 방열 그리스(thermally conductive grease), 방열 에폭시계 접착제(thermally conductive epoxy-based bond), 방열 실리콘 패드(thermally conductive silicone pad), 방열 접착테이프(thermally conductive adhesive tape) 및 흑연 시트(graphite sheet)로 이루어진 군에서 선택되는 하나 이상인 것을 특징으로 하는 전지모듈.
  16. 제 12 항에 있어서, 상기 공냉용 열교환 부재는 방열부재들이 하단면에 밀착되어 있는 기저부 및 상기 기저부로부터 상향 연장되어 있는 다수의 방열핀들을 포함하는 것을 특징으로 하는 전지모듈.
  17. 제 16 항에 있어서, 상기 공냉용 열교환 부재의 방열핀들은 상기 기저부로부터 길이방향으로 상향 연장되어 있는 것을 특징으로 하는 전지모듈.
  18. 제 16 항에 있어서, 상기 공냉용 열교환 부재의 방열핀들은 상기 기저부로부터 폭 방향으로 상향 연장되어 있는 것을 특징으로 하는 전지모듈.
  19. 제 16 항에 있어서, 상기 공냉용 열교환 부재의 표면적은 전지셀의 표면적을 기준으로 7 내지 15 배인 것을 특징으로 하는 전지모듈.
  20. 제 16 항에 있어서, 상기 공냉용 열교환 부재의 길이는 전지셀 적층체의 길이를 기준으로 30 내지 70%인 것을 특징으로 하는 전지모듈.
  21. 제 16 항에 있어서, 상기 공냉용 열교환 부재의 폭은 전지셀 적층체의 폭을 기준으로 50 내지 120%인 것을 특징으로 하는 전지모듈.
  22. 제 16 항에 있어서, 상기 공냉용 열교환 부재의 높이는 전지셀 적층체의 높이를 기준으로 200 내지 50%인 것을 특징으로 하는 전지모듈.
  23. 제 2 항에 있어서, 상기 공냉용 열교환 부재는 상기 모듈 케이스의 상단면 또는 하단면 상에 장착되어 있는 것을 특징으로 하는 전지모듈.
  24. 제 2 항에 있어서, 상기 모듈 케이스의 상단부에는 공냉용 열교환 부재를 수용할 수 있는 크기의 만입부가 형성되어 있고, 상기 만입부 상에 장착된 공냉용 열교환 부재의 높이는 모듈 케이스의 상단면의 높이와 동일하거나 그 보다 낮은 것을 특징으로 하는 전지모듈.
  25. 다수의 각형 전지셀들이 모듈 케이스에 내장되어 순차적으로 적층되어 있는 전지모듈로서, 상기 각형 전지셀은 양극/분리막/음극 구조의 전극조립체가 전해액과 함께 각형 캔의 내부에 밀봉되어 있는 각형 전지셀이고, 둘 이상의 각형 전지셀 계면들에 개재되는 다수의 방열부재들을 포함하고 있으며, 충방전시 각형 전지셀로부터 발생한 열이 상기 방열부재를 통해 열전도에 의해 제거되는 것을 특징으로 하는 전지모듈.
  26. 제 25 항에 있어서, 상기 방열부재들을 일체로 연결하는 공냉용 열교환 부재가 전지셀 적층체의 일측에 추가로 장착되어 있고, 충방전시 각형 전지셀로부터 발생한 열이 상기 방열부재를 경유하여 공냉용 열교환 부재를 통해 열전도에 의해 제거되는 것을 특징으로 하는 전지모듈.
  27. 전지셀 계면들에 개재되는 둘 또는 그 이상의 방열부재들; 및 상기 방열부재들의 일측에 연결되어 있고, 상기 방열부재들로부터 전달되는 열을 제거하는 공냉용 열교환 부재;를 포함하는 구조로 이루어진 냉각장치.
  28. 제 27 항에 있어서, 상기 공냉용 열교환 부재는, 방열부재들이 하단면에 밀착되어 있는 기저부, 및 상기 기저부로부터 상향 연장되어 있는 다수의 방열핀들을 포함하는 구조로 이루어진 것을 특징으로 하는 냉각장치.
  29. 제 1 항 내지 제 26 항 중 어느 하나에 따른 전지모듈 둘 이상을 포함하고 있는 전지팩.
  30. 제 29 항에 있어서, 상기 전지팩은 전기자동차, 하이브리드 전기자동차, 또는 플러그-인 하이브리드 전기자동차의 전원인 것을 특징으로 하는 전지팩.
PCT/KR2010/001993 2009-04-01 2010-03-31 우수한 방열 특성의 전지모듈 및 중대형 전지팩 WO2010114317A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10759042.4A EP2416439B1 (en) 2009-04-01 2010-03-31 Battery module having excellent heat dissipation ability and battery pack employed with the same
CN201080012735.6A CN102356505B (zh) 2009-04-01 2010-03-31 具有优良散热特性的电池模块和中型到大型电池组
JP2012503334A JP5540070B2 (ja) 2009-04-01 2010-03-31 電池モジュール及び電池パック
US12/851,880 US9203064B2 (en) 2009-04-01 2010-08-06 Battery module having excellent heat dissipation ability and battery pack employed with the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20090027936 2009-04-01
KR10-2009-0027936 2009-04-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/851,880 Continuation US9203064B2 (en) 2009-04-01 2010-08-06 Battery module having excellent heat dissipation ability and battery pack employed with the same

Publications (2)

Publication Number Publication Date
WO2010114317A2 true WO2010114317A2 (ko) 2010-10-07
WO2010114317A3 WO2010114317A3 (ko) 2011-01-06

Family

ID=42828865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/001993 WO2010114317A2 (ko) 2009-04-01 2010-03-31 우수한 방열 특성의 전지모듈 및 중대형 전지팩

Country Status (6)

Country Link
US (1) US9203064B2 (ko)
EP (2) EP2933861B1 (ko)
JP (1) JP5540070B2 (ko)
KR (1) KR101145719B1 (ko)
CN (1) CN102356505B (ko)
WO (1) WO2010114317A2 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102456938A (zh) * 2010-10-27 2012-05-16 通用汽车环球科技运作有限责任公司 具有互锁结构部件的电池热系统
JP2012134101A (ja) * 2010-12-24 2012-07-12 Nissan Motor Co Ltd 電池モジュールおよび組電池
US20120270096A1 (en) * 2011-04-21 2012-10-25 Liankuan Xu High-power and large-capacity lithium battery of electric bus
WO2013031406A1 (ja) * 2011-08-31 2013-03-07 日産自動車株式会社 バッテリ温調用モジュール
WO2014196331A1 (ja) 2013-06-06 2014-12-11 Necエナジーデバイス株式会社 電池モジュール
CN114256553A (zh) * 2019-01-09 2022-03-29 比亚迪股份有限公司 无模组框架的电池包、车辆和储能装置

Families Citing this family (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101047937B1 (ko) 2009-05-11 2011-07-11 주식회사 엘지화학 탄성 가압부재를 포함하는 전지 카트리지, 및 이를 포함하는 전지모듈
EP2273162B1 (de) * 2009-07-06 2019-01-09 Carl Freudenberg KG Dichtungsrahmen zur Verwendung in einer Batterie
KR101071537B1 (ko) * 2009-09-17 2011-10-10 주식회사 엘지화학 신규한 구조의 방열부재를 포함하는 전지모듈 및 중대형 전지팩
KR101680709B1 (ko) * 2010-11-12 2016-12-12 에스케이이노베이션 주식회사 배터리 모듈 케이스
KR101450274B1 (ko) * 2010-12-13 2014-10-23 에스케이이노베이션 주식회사 이차 전지용 셀 케이스
KR101297005B1 (ko) * 2010-12-16 2013-08-14 삼성에스디아이 주식회사 배터리 온도 제어장치 및 방법
EP2654096B1 (en) * 2010-12-16 2017-10-11 Murata Manufacturing Co., Ltd. Battery
KR101816813B1 (ko) * 2010-12-30 2018-01-11 에스케이이노베이션 주식회사 파우치형 셀 케이스
JP5613601B2 (ja) * 2011-03-24 2014-10-29 カヤバ工業株式会社 蓄電装置及びその製造方法
JP5773412B2 (ja) 2011-03-31 2015-09-02 Necエナジーデバイス株式会社 電池パックおよび電動自転車
WO2012131799A1 (ja) * 2011-03-31 2012-10-04 Necエナジーデバイス株式会社 電池パックおよび電動自転車
FR2974249B1 (fr) * 2011-04-12 2015-03-27 Peugeot Citroen Automobiles Sa Dispositif modulaire de transport de la temperature pour batterie de vehicule automobile, procede de montage de ce dispositif et batterie de vehicule automobile comprenant un tel dispositif
KR101261918B1 (ko) * 2011-06-13 2013-05-08 현대자동차주식회사 배터리 케이스용 복합소재 및 이의 제조방법
US8968906B2 (en) * 2011-09-20 2015-03-03 GM Global Technology Operations LLC Compact battery cooling design
JP6068912B2 (ja) * 2011-10-28 2017-01-25 日本碍子株式会社 Co2選択吸収部材を備えた金属−空気電池システム及びその運転方法
KR101866345B1 (ko) * 2011-12-02 2018-06-12 에스케이이노베이션 주식회사 배터리모듈
KR101305122B1 (ko) 2012-02-08 2013-09-12 현대자동차주식회사 배터리 셀 모듈용 열 제어 파우치 및 이를 갖는 배터리 셀 모듈
JP5866463B2 (ja) * 2012-02-29 2016-02-17 エルジー・ケム・リミテッド 安全性が向上した電池セルアセンブリ及びそれを含む電池モジュール
JP2013222603A (ja) * 2012-04-17 2013-10-28 Shin Kobe Electric Mach Co Ltd 二次電池、二次電池を組み込んだ二次電池モジュール、及び二次電池モジュールを組み込んだ組電池システム
KR20130122996A (ko) * 2012-05-02 2013-11-12 에스케이이노베이션 주식회사 배터리모듈
WO2013168856A1 (ko) * 2012-05-08 2013-11-14 주식회사 엘지화학 높은 효율성의 냉각 구조를 포함하는 전지모듈
KR101392799B1 (ko) 2012-06-07 2014-05-14 주식회사 엘지화학 안정성이 향상된 구조 및 높은 냉각 효율성을 갖는 전지모듈
KR20140000761A (ko) * 2012-06-25 2014-01-06 에스케이이노베이션 주식회사 전지팩
KR101547814B1 (ko) * 2012-07-12 2015-08-27 주식회사 엘지화학 간접 공냉 구조를 포함하는 전지모듈
KR101459828B1 (ko) 2012-08-07 2014-11-10 현대자동차주식회사 배터리 셀 모듈용 다기능 방열 플레이트 및 이를 갖는 배터리 셀 모듈
CN103579712B (zh) * 2012-08-08 2016-08-03 上海通用汽车有限公司 一种具有导热结构的电池单体、电池以及车辆
WO2014036227A1 (en) * 2012-08-31 2014-03-06 Avl Test Systems Inc. High power battery cells having improved cooling
KR101524007B1 (ko) * 2012-09-25 2015-05-29 주식회사 엘지화학 가압 탄성부재를 포함하는 전지모듈
KR101393436B1 (ko) * 2012-09-27 2014-05-13 주식회사 코캄 전지 모듈용 셀 카트리지 및 이를 이용한 전지 모듈
JP6051753B2 (ja) * 2012-10-10 2016-12-27 株式会社オートネットワーク技術研究所 蓄電モジュール
JP6020903B2 (ja) * 2012-10-24 2016-11-02 株式会社オートネットワーク技術研究所 蓄電モジュール
TWI494051B (zh) * 2012-11-19 2015-07-21 Acer Inc 流體熱交換裝置
US9647302B2 (en) * 2012-12-05 2017-05-09 GM Global Technology Operations LLC Battery thermal system with a stacking frame
DE102012112294A1 (de) 2012-12-14 2014-06-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Elektrischer Energiespeicher
US10079413B2 (en) * 2013-01-24 2018-09-18 Farasis Energy, Inc. Li-ion pouch cell and a cell module
KR101534913B1 (ko) 2013-06-17 2015-07-08 현대자동차주식회사 열전소자를 구비한 배터리 팩 공냉장치와 이의 제어 방법
KR20150006103A (ko) * 2013-07-05 2015-01-16 현대모비스 주식회사 직접 수냉 방식을 활용한 이차전지 모듈 및 이의 냉각방법
KR101465491B1 (ko) * 2013-08-30 2014-11-26 주식회사 코캄 전지 모듈용 셀 카트리지 및 이를 이용한 전지 모듈
JP6214985B2 (ja) * 2013-09-20 2017-10-18 株式会社東芝 組電池、電池パック及び自動車
KR101544548B1 (ko) 2013-10-24 2015-08-13 엘지전자 주식회사 셀 모듈 어셈블리
US9780418B2 (en) 2013-10-28 2017-10-03 Johnson Controls Technology Company System and method for battery cell thermal management using carbon-based thermal films
EP2983239B1 (en) 2014-02-24 2018-08-29 LG Chem, Ltd. Vehicle battery pack with improved cooling efficiency
JP6237479B2 (ja) * 2014-06-05 2017-11-29 株式会社豊田自動織機 電池モジュール及び電池パック
KR101601442B1 (ko) * 2014-06-30 2016-03-09 현대자동차주식회사 배터리 시스템 및 그 온도조절유닛
JP6123746B2 (ja) * 2014-07-11 2017-05-10 株式会社デンソー 組電池
US10446887B2 (en) * 2014-07-21 2019-10-15 Ford Global Technologies, Llc Battery thermal management system including thermal interface material with integrated heater element
KR101773105B1 (ko) * 2014-07-31 2017-08-30 주식회사 엘지화학 배터리 모듈
US10199695B2 (en) 2014-08-18 2019-02-05 Johnson Controls Technology Company Battery module with restrained battery cells utilizing a heat exchanger
KR101792816B1 (ko) * 2014-11-12 2017-11-01 주식회사 엘지화학 전지셀 장착용 지그
CN107210387B (zh) * 2014-12-03 2020-05-15 K2能源处理公司 用于高功率应用的长周期寿命棱柱型电池电芯
KR101761825B1 (ko) * 2014-12-05 2017-07-26 주식회사 엘지화학 배터리 모듈 및 그를 구비하는 배터리 팩
KR101652318B1 (ko) * 2015-02-16 2016-08-31 세방전지(주) 방열가능한 이차전지모듈의 셀밸런싱 장치
KR101865995B1 (ko) * 2015-03-27 2018-06-08 주식회사 엘지화학 배터리 모듈
US10700317B2 (en) 2015-04-13 2020-06-30 Cps Technology Holdings, Llc Cell to heat sink thermal adhesive
KR101780037B1 (ko) * 2015-04-22 2017-09-19 주식회사 엘지화학 배터리 셀 냉각장치 및 이를 포함하는 배터리 모듈
US11038223B2 (en) 2015-06-12 2021-06-15 Lg Chem, Ltd. Battery module
JP6477399B2 (ja) * 2015-10-01 2019-03-06 株式会社デンソー 組電池
KR102024326B1 (ko) 2015-10-14 2019-09-23 주식회사 엘지화학 배터리 모듈 및 이를 포함하는 배터리 팩
KR102080284B1 (ko) * 2015-10-22 2020-02-21 주식회사 엘지화학 복수의 전극 탭들이 형성되어 있는 단위 전극을 포함하는 파우치형 전지셀
KR102053965B1 (ko) * 2015-10-30 2019-12-09 주식회사 엘지화학 배터리 모듈, 배터리 모듈을 포함하는 배터리 팩 및 배터리 팩을 포함하는 자동차
US9774064B2 (en) * 2015-11-30 2017-09-26 Lg Chem, Ltd. Battery pack
US10892528B2 (en) 2015-12-14 2021-01-12 Lg Chem, Ltd. Battery module, battery pack comprising battery module, and vehicle comprising battery pack
CN108885245A (zh) * 2016-03-01 2018-11-23 皇家飞利浦有限公司 用于磁共振成像的软件狗
CN108886185B (zh) * 2016-03-29 2022-11-15 阿莫绿色技术有限公司 散热盒及利用其的电动汽车用电池组
KR102067713B1 (ko) * 2016-05-31 2020-01-17 주식회사 엘지화학 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
KR101861429B1 (ko) * 2016-06-08 2018-05-25 엘지전자 주식회사 배터리 팩
WO2018033880A2 (en) 2016-08-17 2018-02-22 Shape Corp. Battery support and protection structure for a vehicle
WO2018080183A1 (ko) * 2016-10-26 2018-05-03 삼성에스디아이 주식회사 전지시스템 및 이를 포함하는 전기자동차
DE102016221817A1 (de) * 2016-11-08 2018-05-09 Robert Bosch Gmbh Batteriemodul mit einer Mehrzahl an Batteriezellen und Batterie
CN106531917B (zh) * 2016-11-29 2019-07-30 宁德时代新能源科技股份有限公司 电池模组
CN110383526A (zh) 2017-01-04 2019-10-25 形状集团 节点模块化的车辆电池托盘结构
CN107017368A (zh) * 2017-03-22 2017-08-04 上海蓝诺新能源技术有限公司 动力电池包
WO2018213383A1 (en) 2017-05-16 2018-11-22 Shape Corp. Vehicle battery tray with integrated battery retention and support features
WO2018213306A1 (en) 2017-05-16 2018-11-22 Shape Corp. Vehicle battery tray having tub-based component
US10483510B2 (en) 2017-05-16 2019-11-19 Shape Corp. Polarized battery tray for a vehicle
CN111263989B (zh) * 2017-06-01 2023-08-11 柯锐世先进解决方案有限责任公司 电池单元组装件、电池单元子模块、能量储存模块及其组装方法
WO2018220199A1 (en) * 2017-06-01 2018-12-06 Johnson Controls Advanced Power Solutions Gmbh Cell assembly, cell sub-module, energy storage module and method for assembling the same
US10804577B2 (en) 2017-06-27 2020-10-13 Ford Global Technologies, Llc Battery pack array frame designs that exclude thermal fins
CN111108015A (zh) 2017-09-13 2020-05-05 形状集团 具有管状外围壁的车辆电池托盘
US10661646B2 (en) 2017-10-04 2020-05-26 Shape Corp. Battery tray floor assembly for electric vehicles
DE102018100691A1 (de) 2018-01-12 2019-07-18 Bgt Materials Limited Hochleistungsakkumodul oder Hochleistungskondensatormodul
DE202018100173U1 (de) 2018-01-12 2018-01-26 Bgt Materials Limited Hochleistungsakkumodul oder Hochleistungskondensatormodul
DE102018202263A1 (de) * 2018-02-14 2019-08-14 Conti Temic Microelectronic Gmbh Batterie für ein Kraftfahrzeug
WO2019169080A1 (en) 2018-03-01 2019-09-06 Shape Corp. Cooling system integrated with vehicle battery tray
US11688910B2 (en) 2018-03-15 2023-06-27 Shape Corp. Vehicle battery tray having tub-based component
KR102580847B1 (ko) * 2018-04-26 2023-09-19 에스케이온 주식회사 배터리 랙
CN112334542B (zh) 2018-06-27 2023-02-21 美国陶氏有机硅公司 热间隙填料及其在电池管理系统中的应用
DE102018214528A1 (de) * 2018-08-28 2020-03-05 Mahle International Gmbh Akkumulatoranordnung
KR102149993B1 (ko) * 2018-12-03 2020-08-31 에스케이씨 주식회사 적층체 및 이를 이용한 배터리 셀 모듈
US11139516B2 (en) 2019-05-06 2021-10-05 Bae Systems Controls Inc. Battery cell module
US11437666B2 (en) * 2019-07-31 2022-09-06 Karma Automotive Llc Battery module including side pressure plates and pouch cell modules
CN113690526B (zh) * 2020-05-15 2023-10-13 有量科技股份有限公司 锂电池的均温散热容器结构及其组合模块
US20210391607A1 (en) * 2020-06-16 2021-12-16 Amita Technologies Inc. Lithium battery module with temperature equalization and heat dissipation structure
WO2022177210A1 (ko) * 2021-02-19 2022-08-25 주식회사 엘지에너지솔루션 워터탱크가 구비된 전기차용 언더 바디
KR20230090237A (ko) 2021-12-14 2023-06-21 주식회사 에이치앤에스 2액형 열전도성 폴리우레탄 갭 충전제 조성물
CN116960516A (zh) * 2023-09-19 2023-10-27 歌尔股份有限公司 电池散热装置及眼镜

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090027936A (ko) 2007-09-13 2009-03-18 주식회사 에스에프에이 도포 장치

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5006924A (en) * 1989-12-29 1991-04-09 International Business Machines Corporation Heat sink for utilization with high density integrated circuit substrates
JPH08321329A (ja) * 1995-05-26 1996-12-03 Sanyo Electric Co Ltd 組電池
JPH09120847A (ja) * 1995-10-26 1997-05-06 Yuasa Corp 集合電池装置
JPH10214605A (ja) * 1997-01-31 1998-08-11 Sanyo Electric Co Ltd リチウム二次電池
JP4164212B2 (ja) * 1999-11-18 2008-10-15 株式会社日立製作所 電池モジュール及び電力供給装置
JP2003007355A (ja) * 2001-06-19 2003-01-10 Kojima Press Co Ltd 二次電池の冷却構造
US20050074666A1 (en) * 2002-08-29 2005-04-07 Hirokazu Kimiya Heat control device for battery
JP4400234B2 (ja) * 2004-02-03 2010-01-20 新神戸電機株式会社 組電池
JP4570888B2 (ja) * 2004-03-18 2010-10-27 富士重工業株式会社 蓄電体装置
KR20060102851A (ko) * 2005-03-25 2006-09-28 삼성에스디아이 주식회사 이차 전지 모듈
KR100648698B1 (ko) * 2005-03-25 2006-11-23 삼성에스디아이 주식회사 이차 전지 모듈
KR100880386B1 (ko) * 2005-06-03 2009-01-23 주식회사 엘지화학 신규한 구조의 이차전지 및 이를 포함하는 전지팩
JPWO2007043392A1 (ja) * 2005-10-03 2009-04-16 Tdkラムダ株式会社 電池パック
US8546009B2 (en) * 2006-01-25 2013-10-01 Tulsee Satish Doshi Method and apparatus for thermal energy transfer
JP5354846B2 (ja) * 2006-08-11 2013-11-27 株式会社東芝 組電池および組電池の充放電方法
KR100841670B1 (ko) * 2006-10-10 2008-06-26 현대에너셀 주식회사 방열판을 가지는 전지모듈
US7531270B2 (en) * 2006-10-13 2009-05-12 Enerdel, Inc. Battery pack with integral cooling and bussing devices
KR101067627B1 (ko) * 2006-11-13 2011-09-26 주식회사 엘지화학 콤팩트한 구조와 우수한 방열 특성의 전지모듈
DE102007010742B4 (de) * 2007-02-27 2012-12-06 Daimler Ag Zellverbund einer Batterie, Batterie und deren Verwendung
WO2008122384A1 (de) * 2007-04-05 2008-10-16 Behr Gmbh & Co. Kg Elektrochemische energiespeichereinheit mit kühlvorrichtung
US8309248B2 (en) * 2007-07-26 2012-11-13 Lg Chem, Ltd. Battery cell carrier assembly having a battery cell carrier for holding a battery cell therein
KR100998845B1 (ko) * 2007-11-09 2010-12-08 주식회사 엘지화학 방열특성의 전지모듈, 열교환 부재 및 이를 이용하는 중대형 전지팩
KR101095346B1 (ko) * 2008-12-12 2011-12-16 주식회사 엘지화학 우수한 방열 특성의 전지모듈 및 중대형 전지팩
KR101071537B1 (ko) * 2009-09-17 2011-10-10 주식회사 엘지화학 신규한 구조의 방열부재를 포함하는 전지모듈 및 중대형 전지팩
KR101259757B1 (ko) * 2009-12-04 2013-05-07 주식회사 엘지화학 우수한 냉각 효율성과 콤팩트한 구조의 전지모듈 및 중대형 전지팩

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090027936A (ko) 2007-09-13 2009-03-18 주식회사 에스에프에이 도포 장치

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102456938A (zh) * 2010-10-27 2012-05-16 通用汽车环球科技运作有限责任公司 具有互锁结构部件的电池热系统
JP2012134101A (ja) * 2010-12-24 2012-07-12 Nissan Motor Co Ltd 電池モジュールおよび組電池
US20120270096A1 (en) * 2011-04-21 2012-10-25 Liankuan Xu High-power and large-capacity lithium battery of electric bus
WO2013031406A1 (ja) * 2011-08-31 2013-03-07 日産自動車株式会社 バッテリ温調用モジュール
WO2014196331A1 (ja) 2013-06-06 2014-12-11 Necエナジーデバイス株式会社 電池モジュール
CN114256553A (zh) * 2019-01-09 2022-03-29 比亚迪股份有限公司 无模组框架的电池包、车辆和储能装置
CN114256553B (zh) * 2019-01-09 2023-12-12 比亚迪股份有限公司 无模组框架的电池包、车辆和储能装置
US11955651B2 (en) 2019-01-09 2024-04-09 Byd Company Limited Power battery pack and electric vehicle

Also Published As

Publication number Publication date
JP2012523086A (ja) 2012-09-27
US20110059347A1 (en) 2011-03-10
EP2933861A3 (en) 2016-05-11
JP5540070B2 (ja) 2014-07-02
EP2416439A2 (en) 2012-02-08
CN102356505A (zh) 2012-02-15
KR101145719B1 (ko) 2012-05-14
EP2416439A4 (en) 2014-01-01
US9203064B2 (en) 2015-12-01
WO2010114317A3 (ko) 2011-01-06
EP2933861A2 (en) 2015-10-21
EP2933861B1 (en) 2017-09-13
KR20100109872A (ko) 2010-10-11
EP2416439B1 (en) 2015-07-29
CN102356505B (zh) 2015-05-20

Similar Documents

Publication Publication Date Title
WO2010114317A2 (ko) 우수한 방열 특성의 전지모듈 및 중대형 전지팩
WO2011034325A2 (ko) 신규한 구조의 방열부재를 포함하는 전지모듈 및 중대형 전지팩
WO2011034324A2 (ko) 온도 센서가 장착된 전지모듈 및 이를 포함하는 중대형 전지팩
WO2018008866A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
WO2013111959A1 (ko) 신규한 구조의 전지모듈
WO2017052041A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2011083968A2 (ko) 냉각 효율성이 향상된 중대형 전지팩
WO2013183945A1 (ko) 안정성이 향상된 구조 및 높은 냉각 효율성을 갖는 전지모듈
WO2013168856A1 (ko) 높은 효율성의 냉각 구조를 포함하는 전지모듈
WO2016171345A1 (ko) 배터리 셀 냉각장치 및 이를 포함하는 배터리 모듈
WO2014010842A1 (ko) 간접 공냉 구조를 포함하는 전지모듈
WO2011145830A2 (ko) 콤팩트하고 안정성이 우수한 냉각부재와 이를 포함하는 전지모듈
WO2011068320A2 (ko) 우수한 냉각 효율성과 콤팩트한 구조의 전지모듈 및 중대형 전지팩
WO2017209365A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
WO2010131852A2 (ko) 탄성 가압부재를 포함하는 전지 카트리지, 및 이를 포함하는 전지모듈
WO2011145831A2 (ko) 신규한 구조의 냉각부재와 이를 포함하는 전지모듈
WO2012023753A2 (ko) 콤팩트한 구조와 우수한 방열 특성의 전지모듈 및 그것을 포함하는 중대형 전지팩
WO2010114311A2 (ko) 안전성이 향상된 전지모듈
WO2017104878A1 (ko) 배터리 팩
WO2010114318A2 (ko) 모듈의 구조 설계에 유연성을 가진 전지모듈 및 이를 포함하는 중대형 전지팩
WO2011013905A2 (ko) 냉각 효율성이 향상된 전지모듈
WO2010067943A1 (en) Battery module having excellent heat dissipation ability and battery pack employed with the same
WO2017217633A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
WO2017146379A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
WO2021210771A1 (ko) 전지 모듈 및 이를 포함하는 전지팩

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080012735.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10759042

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2012503334

Country of ref document: JP

Ref document number: 2010759042

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE