WO2024077605A1 - 电池和用电装置 - Google Patents

电池和用电装置 Download PDF

Info

Publication number
WO2024077605A1
WO2024077605A1 PCT/CN2022/125420 CN2022125420W WO2024077605A1 WO 2024077605 A1 WO2024077605 A1 WO 2024077605A1 CN 2022125420 W CN2022125420 W CN 2022125420W WO 2024077605 A1 WO2024077605 A1 WO 2024077605A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
exhaust
pressure relief
battery cell
relief mechanism
Prior art date
Application number
PCT/CN2022/125420
Other languages
English (en)
French (fr)
Inventor
柯剑煌
陈小波
李耀
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/125420 priority Critical patent/WO2024077605A1/zh
Priority to CN202320340198.2U priority patent/CN220604897U/zh
Publication of WO2024077605A1 publication Critical patent/WO2024077605A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • H01M50/358External gas exhaust passages located on the battery cover or case
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Embodiments of the present application relate to the field of batteries, and more specifically, to a battery and an electrical device.
  • the present application provides a battery and an electrical device, which can ensure the safety performance of the battery.
  • a battery comprising: at least one battery cell having a first pressure relief mechanism; a box body for accommodating the at least one battery cell, and the box body having a second pressure relief mechanism; wherein an exhaust channel is formed between the first pressure relief mechanism of the at least one battery cell and the second pressure relief mechanism of the box body, and when the first pressure relief mechanism is actuated, the exhaust channel is used to discharge the exhaust of the at least one battery cell from the first pressure relief mechanism to the second pressure relief mechanism, and the minimum length of the exhaust path of the exhaust in the exhaust channel is between 0.1m and 10m.
  • an exhaust channel is formed between the first pressure relief mechanism of at least one battery cell and the second pressure relief mechanism of the box.
  • the minimum length of the exhaust path of at least one battery cell in the exhaust channel can be between 0.1m and 10m, preventing the exhaust path from being too short, causing the exhaust temperature of the exhaust to be discharged from the box to be high, and preventing the exhaust path from being too long, causing the exhaust to accumulate inside the box to generate a large pressure and cause serious damage to the sealing of the box. Therefore, through this technical solution, it is possible to take into account the control of the temperature of the exhaust discharged from the box and the pressure generated by the exhaust inside the box, and comprehensively ensure the safety performance and sealing performance of the battery.
  • the minimum length of the discharge path is between 0.3 m and 5 m.
  • the battery box when the minimum length of the discharge path is between 0.3m and 5m, the emissions have little impact on the battery box, the battery box can be in a normal state without any abnormal phenomenon, and the overall safety performance of the battery can be more reliably guaranteed.
  • the minimum length of the discharge path is greater than the shortest distance between the first pressure relief mechanism and the second pressure relief mechanism.
  • the exhaust will not be discharged outside the box through the shortest distance between the first pressure relief mechanism and the second pressure relief mechanism, but the exhaust path inside the box is longer.
  • This technical solution is conducive to reducing the temperature of the exhaust inside the box, thereby further improving the safety performance of the battery.
  • the minimum length B of the discharge path and the volume energy density E of the battery cell satisfy the following relationship: 0.0001m/(Wh/L) ⁇ B/E ⁇ 0.01m/(Wh/L), where the unit of B is m and the unit of E is Wh/L.
  • the volume energy density of the battery cell and the minimum length of the discharge path must meet a certain proportional relationship. Specifically, when the volume energy density of the battery cell is constant, the ratio of the minimum length of the discharge path to the volume energy density of the battery cell is greater than or equal to 0.0001m/(Wh/L), thereby ensuring that the discharge path has sufficient length, and then the emissions of the battery cell are fully cooled inside the box. Furthermore, when the volume energy density of the battery cell is constant, the ratio of the length of the exhaust channel to the volume energy density of the battery cell is less than or equal to 0.01m/(Wh/L).
  • the minimum length B of the discharge path and the volume energy density E of the battery cell satisfy the following relationship: 0.0002 m/(Wh/L) ⁇ B/E ⁇ 0.005 m/(Wh/L).
  • the battery box can be more reliably in a normal state. At this time, the comprehensive performance of the battery is better, and its safety performance and sealing performance can be better guaranteed.
  • the minimum length B of the discharge path, the shortest distance A between the first pressure relief mechanism and the second pressure relief mechanism, and the volume energy density E of the battery cell satisfy the following relationship: 0.0015L/Wh ⁇ (B/A)/E ⁇ 0.08L/Wh, wherein the units of A and B are m, and the unit of E is Wh/L.
  • the design of the minimum length of the discharge path not only takes into account the volume energy density of the battery cell, but also takes into account the shortest distance between the first pressure relief mechanism and the second pressure relief mechanism, thereby comprehensively ensuring the adaptability of the minimum length design of the discharge path in the battery, thereby better improving the safety performance and sealing performance of the battery.
  • the minimum length B of the discharge path, the shortest distance A between the first pressure relief mechanism and the second pressure relief mechanism, and the volume energy density E of the battery cell satisfy the following relationship: 0.003L/Wh ⁇ (B/A)/E ⁇ 0.04L/Wh.
  • the battery box can be more reliably in a normal state. At this time, the comprehensive performance of the battery is better, and its safety performance and sealing performance can be better guaranteed.
  • the battery further includes: an enclosure mechanism for enclosing and forming a first exhaust space corresponding to a first pressure relief mechanism of at least one battery cell, and the enclosure mechanism is provided with an opening connected to the first exhaust space, and the first exhaust space is used to form at least a portion of the exhaust channel.
  • the containment mechanism can form an effective exhaust channel inside the box.
  • the length of the exhaust channel and the minimum length of the exhaust path therein can be effectively controlled to meet the safety and performance requirements of the battery.
  • the opening is located in the enclosure mechanism at a position far away from the second pressure relief mechanism.
  • the opening is set at a position in the enclosure mechanism away from the second pressure relief mechanism, so that the distance between the opening and the second pressure relief mechanism can be farther, thereby further extending the discharge path of the emissions of the battery cells inside the battery box, further reducing the temperature of the emissions when they reach the second pressure relief mechanism, and improving the safety performance of the battery.
  • the opening faces other box walls in the box body except the box wall where the second pressure relief mechanism is located.
  • the opening of the enclosure mechanism can be designed accordingly according to the setting of the second pressure relief mechanism of the box body, so as to ensure that the opening is not facing the box wall where the second pressure relief mechanism is located, increase the distance between the opening and the second pressure relief mechanism, and further extend the discharge path of the emissions of the battery cell inside the battery box body, so as to further reduce the temperature of the emissions when they reach the second pressure relief mechanism, and improve the safety performance of the battery.
  • the opening is located in the middle area of the box.
  • the opening of the enclosure mechanism is located in the middle area of the box body, and the distance between the opening and the second pressure relief mechanism located on the box wall of the box body can also be increased, thereby extending the discharge path of the emissions of the battery cells inside the battery box body, further reducing the temperature of the emissions when they reach the second pressure relief mechanism, and improving the safety performance of the battery.
  • multiple enclosure mechanisms are arranged in the battery box.
  • the multiple enclosure mechanisms can be flexibly set and adjusted according to actual needs, so as to better guide the emissions of battery cells at different positions in the box, so as to further improve the overall safety performance of the battery.
  • openings of two adjacent enclosure mechanisms among the plurality of enclosure mechanisms are disposed on two adjacent walls among the two adjacent enclosure mechanisms, and the openings of the two adjacent enclosure mechanisms are staggered with respect to each other.
  • the openings of adjacent enclosure mechanisms among multiple enclosure mechanisms are staggered with each other, which can prevent the high-temperature emissions of battery cells received by the first exhaust space formed by one enclosure mechanism from causing a wider range of impact and damage to the battery cells corresponding to other adjacent enclosure mechanisms, and also prevent the pressure of the first exhaust space from being too high, thereby ensuring the safety performance of the battery.
  • the first wall of at least one battery cell is provided with a first pressure relief mechanism, the first wall of at least one battery cell is arranged opposite to the first box wall of the box body, and the enclosure mechanism is arranged between the first box wall and the first wall of at least one battery cell.
  • the technical solution of this embodiment can facilitate the arrangement and installation of the enclosure mechanism between the first box wall and the first wall of at least one battery cell, and can also facilitate the enclosure mechanism to enclose the space corresponding to the first pressure relief mechanism of at least one battery cell to form a first exhaust space.
  • the enclosure mechanism is attached to the first box wall and the first wall of at least one battery cell, and the second pressure relief mechanism is disposed on other box walls in the box body except the first box wall.
  • the technical solution of this embodiment not only facilitates the stable installation of the enclosure mechanism in the box, but also facilitates the enclosure mechanism to guide the direction of the emissions of at least one battery cell, extend the emission path of the emissions inside the box, and improve the safety performance of the battery.
  • the second box wall of the box body intersects with the first box wall of the box body, and the second pressure relief mechanism is arranged on the second box wall; a second exhaust space is formed between the enclosure mechanism and the second box wall, and the second exhaust space is connected to the first exhaust space through an opening, and the exhaust enters the second exhaust space through the opening and is discharged to the second pressure relief mechanism.
  • the first exhaust space and the second exhaust space are separated inside the box body by the enclosure mechanism, and the second exhaust space is connected to the second box wall of the box body, so that the position design of the second pressure relief mechanism on the second box wall of the box body can be facilitated, which is beneficial to further extend the discharge path of the exhaust inside the box body and ensure the safety performance of the battery.
  • At least one battery cell is arranged to form a battery cell sequence, and the first wall of each battery cell in the battery cell sequence is provided with two electrode terminals, and the first pressure relief mechanism is provided between the two electrode terminals; the enclosure mechanism is provided between the two electrode terminals of each battery cell in the battery cell sequence.
  • the enclosure mechanism is close to the first pressure relief mechanism, so the enclosure mechanism can play a good blocking and guiding role for the emissions discharged from the first pressure relief mechanism; on the other hand, the enclosure mechanism can prevent the emissions discharged from the first pressure relief mechanism from affecting the electrode terminals or other components of the battery cell, thereby further ensuring the safety performance of the battery.
  • an isolation component is provided between the first box wall and the first wall of at least one battery cell, and the isolation component is used to form an electrical cavity and an exhaust cavity that are isolated from each other inside the box body; the electrical cavity is used to accommodate at least one battery cell, and the exhaust of at least one battery cell is discharged into the exhaust cavity via the isolation component, and an enclosure mechanism is provided in the exhaust cavity, and the enclosure mechanism is attached to the isolation component and the first box wall, and the enclosure mechanism is used to enclose in the exhaust cavity to form a first exhaust space corresponding to the first pressure relief mechanism of at least one battery cell.
  • the box body is divided into an electrical chamber and an exhaust chamber that are isolated from each other by an isolation component. Therefore, the emissions of the battery cells in the electrical chamber will first be discharged to the exhaust chamber through the isolation component, and will not directly affect the electrical structure of the battery cells in the electrical chamber, thereby further improving the safety performance of the battery. Furthermore, a containment mechanism is provided in the exhaust chamber to guide the emissions so that they can only be discharged through the opening in the containment mechanism, extending the emission path of the emissions inside the box body, thereby further improving the safety performance of the battery.
  • the second pressure relief mechanism is disposed on a box wall of the box body corresponding to the exhaust chamber.
  • the exhaust can be discharged from the exhaust cavity, and the exhaust will not affect the electrical structure in the electrical cavity.
  • the second pressure relief mechanism is disposed on other box walls in the box body except the first box wall.
  • the second pressure relief mechanism is not arranged on the first box wall but on other box walls, which can extend the discharge path of the exhaust inside the box body, thereby improving the safety of the battery.
  • a pressure relief area corresponding to a first pressure relief mechanism of at least one battery cell is formed in the isolation component, and emissions from at least one battery cell are discharged to the exhaust cavity via the pressure relief area.
  • the enclosure mechanism is used to enclose a first exhaust space in the exhaust cavity corresponding to the pressure relief area.
  • a pressure relief area is set in the isolation component, which can more effectively allow the emissions discharged from the first pressure relief mechanism to pass through, preventing the emissions from affecting the electrical components in the electrical cavity.
  • the enclosure mechanism encloses the space corresponding to the pressure relief area, which can indirectly enclose the space corresponding to the first pressure relief mechanism of the battery cell, thereby effectively guiding the emissions and comprehensively ensuring the safety performance of the battery.
  • the isolation component is a thermal management component, and the thermal management component is used to adjust the temperature of the battery cell.
  • the thermal management component is reused as an isolation component, which can not only separate the electrical cavity and exhaust cavity that are isolated from each other in the box to ensure the safety of the battery, but also, due to the presence of the thermal management component, the battery cell can be further thermally managed to further improve the safety performance of the battery.
  • a first filter hole is formed in the enclosure mechanism, and the first filter hole is used to filter solid particles in the discharge.
  • the first filter hole is set in the enclosure mechanism mainly for passing the gas in the exhaust, and the solid particles with larger particle size in the exhaust can be filtered by the first filter hole.
  • the solid particles cannot be discharged outside the first exhaust space through the first filter hole. Therefore, through this technical solution, the high-temperature solid particles discharged to the second pressure relief mechanism can be reduced, and the safety of the battery can be further improved.
  • the first filter hole is set in the enclosure mechanism, which can speed up the exhaust speed and pressure relief speed of the first exhaust space and prevent the pressure of the first exhaust space from being too high. At the same time, when there are multiple first filter holes, the airflows discharged from the multiple first filter holes can collide with each other to produce a certain turbulence effect, thereby reducing the harm caused by the direct impact of the gas.
  • the enclosure mechanism is an intermittent structure
  • the enclosure mechanism is formed by a plurality of enclosure parts
  • a gap between two adjacent enclosure parts among the plurality of enclosure parts forms a first filtering hole.
  • the discontinuous design of the enclosure mechanism improves the processing convenience.
  • the enclosure mechanism does not need to be formed in one piece, and multiple enclosure substructures can be manufactured separately to form the enclosure mechanism.
  • the diameter D of the first filter hole and the volume energy density E of the battery cell satisfy the following relationship: 0.0001 mm/(Wh/L) ⁇ D/E ⁇ 0.006 mm/(Wh/L), wherein the unit of D is mm, and the unit of E is Wh/L.
  • the size of the first filter hole can be designed accordingly according to the volume energy density of the battery cell, so that the first filter hole can adapt to the situation where the battery cell has thermal runaway, play a good solid particle filtering role in the enclosure mechanism, and comprehensively improve the safety performance of the battery.
  • the melting point of the material of the enclosure mechanism is not lower than 200°C.
  • the enclosure mechanism can withstand the impact of high-temperature emissions discharged from the battery cells, prevent the high-temperature emissions from affecting the reliability of the enclosure mechanism, and comprehensively ensure the safety performance of the battery.
  • At least one box wall of the box body is a hollow box wall
  • a second pressure relief mechanism is provided on the outer surface of the hollow box wall
  • an exhaust port is provided on the inner surface of the hollow box wall
  • the internal space between the inner and outer surfaces of the hollow box wall forms at least a portion of the exhaust channel.
  • the hollow box wall of the box can be used to form an exhaust channel for emissions, thereby saving the internal space of the box and improving the energy density of the battery.
  • At least two box walls of the box body are hollow box walls, and the exhaust port and the second pressure relief mechanism are arranged on different hollow box walls; alternatively, the exhaust port and the second pressure relief mechanism are arranged on the same hollow box wall, and the exhaust port and the second pressure relief mechanism are staggered with each other.
  • the exhaust port and the second pressure relief mechanism are arranged on different hollow box walls of the box body, or the exhaust port and the second pressure relief mechanism arranged on the same hollow box wall are staggered with each other, which is beneficial to extend the discharge path of the emissions of the battery cell inside the box wall of the box body, thereby reducing the temperature of the emissions reaching the second pressure relief mechanism and improving the safety performance of the battery.
  • At least one box wall of the box body is a hollow box wall, and a second pressure relief mechanism is provided on the outer surface of the hollow box wall;
  • the battery also includes: a hollow cross beam, and the inner surface of the hollow cross beam and/or the hollow box wall is provided with an exhaust port, the internal space of the hollow cross beam is connected to the internal space of the hollow box wall, and the internal space of the hollow cross beam and the internal space of the hollow box wall form at least a portion of the exhaust channel.
  • the internal space of the hollow box wall and/or the hollow cross beam of the box can be used to form a partial exhaust channel for emissions.
  • the emission path of the emissions inside the box can be further extended to improve the safety performance of the battery.
  • the multiple battery cells include multiple groups of battery cells
  • the hollow cross beam is used to divide the internal space of the box into multiple subspaces, and the multiple subspaces are used to respectively accommodate the multiple groups of battery cells;
  • the hollow cross beam is provided with an exhaust port corresponding to each of the multiple subspaces, and/or the inner surface of the hollow box wall is provided with an exhaust port corresponding to each of the multiple subspaces.
  • each subspace is provided with an exhaust port on the inner surface of the hollow crossbeam and/or the hollow box wall, thereby further improving the safety performance of the battery.
  • the battery further includes: an isolation component, the isolation component is used to form an electrical cavity and an exhaust cavity that are isolated from each other in the internal space of the box body, the electrical cavity is used to accommodate at least one battery cell, the exhaust cavity is used to receive emissions from at least one battery cell and form at least a portion of the exhaust channel; the hollow cross beam is located in the electrical cavity and is connected to the isolation component, the connecting portion of the hollow cross beam and the isolation component is provided with an exhaust port, the exhaust port is used to receive emissions from the exhaust cavity.
  • the box body is divided into an electrical chamber and an exhaust chamber that are isolated from each other by the isolation component. Therefore, the emissions of the battery cells in the electrical chamber will be discharged to the exhaust chamber through the isolation component without affecting the electrical structure of the battery cells in the electrical chamber, which can improve the safety performance of the battery. Furthermore, the hollow cross beam in the electrical chamber and the internal space of the hollow box wall are further used as exhaust channels for the emissions, which can further extend the emission path of the emissions inside the box body and improve the safety performance of the battery.
  • the battery further includes: an enclosure mechanism, which is arranged in the exhaust cavity; a pressure relief area of a first pressure relief mechanism corresponding to at least one battery cell is formed in the isolation component, and the emission of at least one battery cell is discharged to the exhaust cavity via the pressure relief area, and the enclosure mechanism is used to enclose in the exhaust cavity to form a first exhaust space corresponding to the pressure relief area, and the enclosure mechanism is provided with an opening connected to the first exhaust space, and the first exhaust space is used to form at least part of the exhaust channel.
  • the enclosure mechanism is set in the exhaust chamber, which can further guide the path of the emissions discharged into the exhaust chamber, thereby further extending the emission path of the emissions inside the box body and improving the safety performance of the battery.
  • the inner surface of the hollow box wall and/or the hollow cross beam is provided with second filter holes, and the second filter holes are used to filter solid particles in the discharge.
  • a second filter hole is provided on the inner surface of the hollow box wall and/or the hollow cross beam to filter solid particles in the emissions, which can reduce high-temperature solid particles discharged to the second pressure relief mechanism and further improve the safety of the battery.
  • At least one of a filtering component, a gas absorbing component and a cooling component is disposed in the exhaust passage.
  • At least one of the filtering component, the gas absorbing component and the cooling component is arranged in the emission path, which can further reduce the harm of the emissions discharged to the outside of the box and improve the safety performance of the battery.
  • the filter component includes a third filter hole or a bent air flow channel, and the third filter hole or the bent air flow channel is used to filter solid particles in the emissions.
  • the third filter hole or the bent air flow channel is easy to realize and can play a good role in filtering solid particles.
  • the gas absorption component is formed of a gas absorption material, and the gas absorption material is used to absorb combustible gas in the exhaust.
  • the gas absorption component is easy to realize, and it can absorb the combustible gas in the exhaust to prevent the combustible gas from causing safety hazards to the battery.
  • the cooling component is formed of a heat absorbing material, and the heat absorbing material is used to absorb heat of the exhaust to cool the exhaust.
  • the cooling component is easy to implement, and it absorbs heat and cools the emissions, which can further reduce the temperature of the emissions discharged to the outside of the box, thereby improving the safety performance of the battery.
  • the maximum temperature T1 of the exhaust at the first pressure relief mechanism and the maximum temperature T2 of the exhaust at the second pressure relief mechanism satisfy the following relationship: T1-T2 ⁇ 300°C.
  • the temperature of the emissions reaching the second pressure relief mechanism is much lower than the temperature at the first pressure relief mechanism, thereby preventing the emissions from being discharged to the outside of the battery and causing safety hazards.
  • the maximum temperature T2 of the exhaust at the second pressure relief mechanism is ⁇ 300°C.
  • an electrical device comprising: a battery in the first aspect or any possible implementation of the first aspect, wherein the battery is used to provide electrical energy.
  • an exhaust channel is formed between the first pressure relief mechanism of at least one battery cell and the second pressure relief mechanism of the box.
  • the minimum length of the exhaust path of at least one battery cell in the exhaust channel can be between 0.1m and 10m, which can prevent the exhaust path from being too short, causing the exhaust temperature of the exhaust to be discharged from the box to be high, and can also prevent the exhaust path from being too long, causing the exhaust to gather inside the box to generate a large pressure and cause serious damage to the sealing of the box. Therefore, through this technical solution, it is possible to take into account the control of the temperature of the exhaust discharged from the box and the pressure generated by the exhaust inside the box, and comprehensively guarantee the safety performance and sealing performance of the battery.
  • FIG1 is a schematic structural diagram of a vehicle provided by an embodiment of the present application.
  • FIG2 is a schematic diagram of the structure of a battery provided by an embodiment of the present application.
  • FIG3 is a schematic diagram of the structure of a battery cell provided by an embodiment of the present application.
  • FIG4 is a schematic diagram of a structure of a battery provided by an embodiment of the present application.
  • FIG5 is another schematic diagram of the structure of a battery provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of two other structures of a battery 10 provided in one embodiment of the present application.
  • FIG7 is another schematic diagram of the structure of a battery provided by an embodiment of the present application.
  • FIG8 is a schematic diagram of an exploded structure of a battery provided by an embodiment of the present application.
  • FIG9 is a schematic top view of the battery in FIG8 ;
  • FIG10 is another exploded structural schematic diagram of a battery provided by an embodiment of the present application.
  • FIG11 is a schematic top view of the battery in FIG10 ;
  • FIG12 is another exploded structural schematic diagram of a battery provided by an embodiment of the present application.
  • FIG13 is a schematic bottom view of the battery in FIG12 ;
  • FIG. 14 is a schematic diagram of two structural diagrams of a pressure relief area enclosed by an enclosure mechanism provided in one embodiment of the present application.
  • FIG. 15 is another two schematic structural diagrams of a battery provided in one embodiment of the present application.
  • FIG16 is another schematic diagram of the structure of a battery provided by an embodiment of the present application.
  • FIG17 is another schematic diagram of the structure of a battery provided by an embodiment of the present application.
  • FIG18 is a schematic diagram of three other structures of a battery provided in one embodiment of the present application.
  • FIG19 is another exploded structural schematic diagram of a battery provided by an embodiment of the present application.
  • FIG20 is another exploded structural schematic diagram of a battery provided by an embodiment of the present application.
  • Fig. 21 is a schematic bottom view and a schematic cross-sectional view along the A-A' direction of the battery shown in Fig. 20;
  • FIG22 is another exploded structural schematic diagram of a battery provided by an embodiment of the present application.
  • FIG. 23 is a schematic bottom view of the battery shown in FIG. 22 .
  • a and/or B can represent: A exists, A and B exist at the same time, and B exists.
  • the character "/" in this application generally indicates that the associated objects before and after are in an "or" relationship.
  • a battery refers to a single physical module that includes one or more battery cells to provide higher voltage and capacity.
  • the battery generally includes a case for encapsulating one or more battery cells.
  • the case can prevent liquids or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery mentioned in this application can be referred to as a battery pack.
  • the battery cell may include a lithium-ion secondary battery, a lithium-ion primary battery, a lithium-sulfur battery, a sodium-lithium-ion battery, a sodium-ion battery or a magnesium-ion battery, etc., which is not limited in the embodiments of the present application.
  • the battery cell may be cylindrical, flat, rectangular or other shapes, etc., which is not limited in the embodiments of the present application. Battery cells are generally divided into three types according to the packaging method: cylindrical battery cells, square battery cells and soft-pack battery cells, which is not limited in the embodiments of the present application.
  • the pressure relief mechanism refers to an element or component that is activated to release the internal pressure or temperature when the internal pressure or temperature of the battery cell reaches a predetermined threshold.
  • the predetermined threshold can be adjusted according to different design requirements.
  • the predetermined threshold may depend on one or more materials of the positive electrode plate, the negative electrode plate, the electrolyte and the separator in the battery cell.
  • the pressure relief mechanism can adopt an element or component such as a pressure-sensitive or temperature-sensitive element, that is, when the internal pressure or temperature of the battery cell reaches a predetermined threshold, the pressure relief mechanism is activated to form a channel for internal pressure or temperature to be released. After the pressure relief mechanism is activated, the high-temperature and high-pressure substances inside the battery cell will be discharged from the pressure relief mechanism as emissions. In this way, the battery cell can be depressurized under controllable pressure or temperature, thereby avoiding potential more serious accidents.
  • the emissions of the battery cell include but are not limited to: high-temperature and high-pressure gas generated by the reaction, electrolyte, dissolved or split positive and negative electrode plates, fragments of the separator, flames, etc.
  • the present application provides a battery, comprising: at least one battery cell having a first pressure relief mechanism and a box for accommodating the at least one battery cell, the box having a second pressure relief mechanism.
  • An exhaust channel is formed between the first pressure relief mechanism of the at least one battery cell and the second pressure relief mechanism of the box, and when the first pressure relief mechanism is actuated, the exhaust channel is used to discharge the exhaust of the at least one battery cell from the first pressure relief mechanism to the second pressure relief mechanism, and the minimum length of the exhaust path of the exhaust in the exhaust channel is between 0.1m and 10m.
  • an exhaust channel is formed between the first pressure relief mechanism of at least one battery cell and the second pressure relief mechanism of the box.
  • the minimum length of the exhaust path of at least one battery cell in the exhaust channel can be between 0.1m and 10m, preventing the exhaust path from being too short, causing the exhaust temperature of the exhaust to be high when discharged from the box, and preventing the exhaust path from being too long, causing the exhaust to accumulate inside the box to generate a large pressure and cause serious damage to the sealing of the box. Therefore, through this technical solution, it is possible to take into account the control of the temperature of the exhaust discharged from the box and the pressure generated by the exhaust inside the box, and comprehensively ensure the safety performance and sealing performance of the battery.
  • FIG1 it is a schematic diagram of the structure of a vehicle 1 according to an embodiment of the present application.
  • the vehicle 1 may be a fuel vehicle, a gas vehicle or a new energy vehicle.
  • the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • a motor 11, a controller 12 and a battery 10 may be provided inside the vehicle 1.
  • the controller 12 is used to control the battery 10 to supply power to the motor 11.
  • a battery 10 may be provided at the bottom, front or rear of the vehicle 1.
  • the battery 10 may be used to supply power to the vehicle 1.
  • the battery 10 may be used as an operating power source for the vehicle 1, for the circuit system of the vehicle 1, for example, for the working power requirements during the start-up, navigation and operation of the vehicle 1.
  • the battery 10 may not only be used as an operating power source for the vehicle 1, but also as a driving power source for the vehicle 1, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1.
  • the battery may include multiple battery cells, wherein the multiple battery cells may be connected in series, in parallel, or in hybrid connection, where hybrid connection refers to a mixture of series and parallel connection.
  • the battery may also be referred to as a battery pack.
  • multiple battery cells may be connected in series, in parallel, or in hybrid connection to form a battery module, and multiple battery modules may be connected in series, in parallel, or in hybrid connection to form a battery.
  • multiple battery cells may be directly connected to form a battery, or may be first connected to form a battery module, and then the battery module may be connected to form a battery.
  • the battery 10 may include a plurality of battery cells 20.
  • the battery 10 may also include a box 110 (or a cover), the interior of the box 110 is a hollow structure, and a plurality of battery cells 20 are accommodated in the box 110.
  • the box 110 may include two parts, which are respectively referred to as a first part 111 and a second part 112, and the first part 111 and the second part 112 are buckled together.
  • the shapes of the first part 111 and the second part 112 may be determined according to the shapes of the combination of the plurality of battery cells 20, and the first part 111 and the second part 112 may each have an opening.
  • the first part 111 and the second part 112 may both be hollow cuboids and each have only one face as an opening face, the opening of the first part 111 and the opening of the second part 112 are arranged opposite to each other, and the first part 111 and the second part 112 are buckled together to form a box 110 with a closed chamber.
  • a plurality of battery cells 20 are connected in parallel, in series or in a mixed combination and are placed in a box body 110 formed by buckling the first part 111 and the second part 112 .
  • the battery 10 may also include other structures, which are not described one by one here.
  • the battery 10 may also include a busbar component, which is used to realize electrical connection between multiple battery cells 20, such as parallel connection, series connection or mixed connection.
  • the busbar component can realize electrical connection between the battery cells 20 by connecting the electrode terminals of the battery cells 20.
  • the busbar component can be fixed to the electrode terminals of the battery cells 20 by welding.
  • the electrical energy of multiple battery cells 20 can be further led out through the box through a conductive mechanism.
  • the conductive mechanism may also belong to the busbar component.
  • the number of battery cells 20 can be set to any value according to different power requirements. Multiple battery cells 20 can be connected in series, parallel or mixed to achieve a larger capacity or power. Since the number of battery cells 20 included in each battery 10 may be large, for ease of installation, the battery cells 20 can be grouped, and each group of battery cells 20 constitutes a battery module. The number of battery cells 20 included in the battery module is not limited and can be set according to demand.
  • the battery cell 20 includes one or more electrode assemblies 22, a shell 211 and a cover plate 212.
  • the walls of the shell 211 and the cover plate 212 are both referred to as the walls of the battery cell 20.
  • the shell 211 is determined according to the shape of the one or more electrode assemblies 22 after being combined.
  • the shell 211 may be a hollow cuboid or a cube or a cylinder, and one of the faces of the shell 211 has an opening so that one or more electrode assemblies 22 can be placed in the shell 211.
  • the cover plate 212 covers the opening and is connected to the shell 211 to form a closed cavity for placing the electrode assembly 22.
  • the shell 211 is filled with an electrolyte, such as an electrolyte.
  • the battery cell 20 may also include two electrode terminals 214, which may be disposed on the cover plate 212.
  • the cover plate 212 is generally in the shape of a flat plate, and the two electrode terminals 214 are fixed on the flat surface of the cover plate 212, and the two electrode terminals 214 are respectively a positive electrode terminal 214a and a negative electrode terminal 214b.
  • Each electrode terminal 214 is provided with a corresponding connection member 23, or may also be referred to as a current collecting member 23, which is located between the cover plate 212 and the electrode assembly 22, and is used to electrically connect the electrode assembly 22 and the electrode terminal 214.
  • each electrode assembly 22 has a first pole tab 221a and a second pole tab 222a with opposite polarities.
  • first pole tab 221a is a positive pole tab
  • second pole tab 222a is a negative pole tab.
  • the first pole tab 221a of one or more electrode assemblies 22 is connected to one electrode terminal through a connecting member 23, and the second pole tab 222a of one or more electrode assemblies 22 is connected to another electrode terminal through another connecting member 23.
  • a first pressure relief mechanism 213 may be further provided on one wall of the battery cell 20.
  • the first pressure relief mechanism 213 is used to be activated to release the internal pressure or temperature of the battery cell 20 when the internal pressure or temperature reaches a threshold.
  • the first pressure relief mechanism 213 and the electrode terminal 214 are disposed on different walls of the battery cell 20.
  • the electrode terminal 214 of the battery cell 20 may be disposed on the top wall of the battery cell 20, that is, the cover plate 212.
  • the first pressure relief mechanism 213 is disposed on another wall of the battery cell 20 different from the top wall, for example, the first pressure relief mechanism 213 is disposed on the bottom wall 215 opposite to the top wall.
  • the first pressure relief mechanism 213 and the electrode terminal 214 are disposed on the same wall of the battery cell 20.
  • the electrode terminal 214 and the first pressure relief mechanism 213 can both be disposed on the top wall of the battery cell 20, that is, the cover plate 212.
  • the first pressure relief mechanism 213 may be a part of the wall where it is located, or may be a separate structure from the wall where it is located, and may be fixed to the wall where it is located by, for example, welding.
  • the first pressure relief mechanism 213 when the first pressure relief mechanism 213 is a part of the bottom wall 215 , the first pressure relief mechanism 213 may be formed by providing a notch on the bottom wall 215 , and the thickness of the bottom wall 215 corresponding to the notch is less than the thickness of the first pressure relief mechanism 213 in other areas except the notch.
  • the first pressure relief mechanism 213 may be various possible pressure relief mechanisms, which are not limited in the embodiments of the present application.
  • the first pressure relief mechanism 213 may be a temperature-sensitive pressure relief mechanism, which is configured to melt when the internal temperature of the battery cell 20 provided with the first pressure relief mechanism 213 reaches a threshold value; and/or, the first pressure relief mechanism 213 may be a pressure-sensitive pressure relief mechanism, which is configured to rupture when the internal air pressure of the battery cell 20 provided with the first pressure relief mechanism 213 reaches a threshold value.
  • Fig. 4 shows a schematic structural diagram of a battery 10 provided in one embodiment of the present application.
  • Fig. 4 may be a top view, a bottom view or a side view of the battery 10.
  • the battery 10 includes: at least one battery cell 20 and a box 110.
  • at least one battery cell 20 has a first pressure relief mechanism 213, and the box 110 is used to accommodate the at least one battery cell 20 and has a second pressure relief mechanism 113.
  • An exhaust channel is formed between the first pressure relief mechanism 213 of at least one battery cell 20 and the second pressure relief mechanism 113 of the box 110, and the exhaust channel is used to discharge the exhaust of at least one battery cell 20 from the first pressure relief mechanism 213 to the second pressure relief mechanism 113, and the minimum length of the exhaust path of the exhaust in the exhaust channel is between 0.1m and 10m.
  • the first pressure relief mechanism 213 in the battery cell 20 can be located on the same wall of the battery cell 20 as the electrode terminal 214 of the battery cell 20 as shown in FIG3.
  • the first pressure relief mechanism 213 and the electrode terminal 214 can also be located on different walls of the battery cell 20.
  • the relevant technical solutions of the battery cell 20 and the first pressure relief mechanism 213 can refer to the relevant description of the embodiment shown in FIG3 above, and no further details will be given here.
  • the box 110 is used to accommodate the at least one battery cell 20, and the specific shape of the box 110 can be adapted to the overall shape of the at least one battery cell 20.
  • the box 110 can be a rectangular box including a first part 111 and a second part 112 in the embodiment shown in FIG. 2 above, and is used to accommodate at least one rectangular battery cell 20.
  • the relevant technical solutions of the box 110 can refer to the relevant description of the embodiment shown in FIG. 2 above, and will not be repeated here.
  • a second pressure relief mechanism 113 may be provided on the box wall of the box body 110, and the second pressure relief mechanism 113 may be connected to the internal space of the box body 110. Therefore, the second pressure relief mechanism can be used to discharge the emissions of the battery cells 20 discharged into the internal space of the box body 110 to the outside of the box body 110, thereby ensuring the safety performance of the battery 10.
  • the second pressure relief mechanism 113 may be a temperature-sensitive pressure relief mechanism or a pressure-sensitive pressure relief structure, so that when the internal temperature and/or pressure of the box body 110 is greater than a preset threshold, the second pressure relief mechanism 113 is actuated, and the internal gas of the box body 110 can be discharged to the outside of the box body 110 through the second pressure relief mechanism 113.
  • the specific implementation method of the second pressure relief mechanism 113 is not limited in the embodiment of the present application.
  • an exhaust channel may be formed between each battery cell 20 in the first pressure relief mechanism 213 of at least one battery cell 20 and the second pressure relief mechanism 113 of the box body, and the exhaust channel is used to guide the exhaust of at least one battery cell 20 from the first pressure relief mechanism 213 of at least one battery cell 20 to the second pressure relief mechanism 113, and the exhaust moves in the exhaust channel to form an exhaust path.
  • the battery 10 shown in FIG. 4 may be provided with a structural component for guiding emissions (as shown by the black structural component in the figure), and the structural component may be arranged accordingly according to the first pressure relief mechanism 213 of the battery cell 20, so as to form an exhaust channel inside the box body 110 to guide the direction and path of the emissions discharged from the first pressure relief mechanism 213.
  • FIG4 shows two discharge paths of the discharge of a battery cell 20 (battery cell 20 shown in shadow in the figure) in at least one battery cell 20 from the first pressure relief mechanism 213 to the second pressure relief mechanism 113 by dashed arrows.
  • the discharge path for downward discharge is the first discharge path
  • the discharge path for upward discharge is the second discharge path
  • the length B' of the second discharge path is greater than the length B of the first discharge path.
  • the length B of the first discharge path can be the minimum length B of the discharge path of the discharge between the first pressure relief mechanism 213 and the second pressure relief mechanism 113, and the minimum length B is between 0.1m and 10m.
  • the minimum length of the exhaust path of the emissions of each battery cell 20 in the plurality of battery cells 20 between the first pressure relief mechanism 213 and the second pressure relief mechanism 113 is between 0.1 m and 10 m.
  • the temperature of the exhaust of the battery cell 20 is relatively high when it is discharged from the first pressure relief mechanism 213.
  • the longer the exhaust path of the exhaust inside the box 110 the more exhaust is likely to accumulate inside the box 110, resulting in a high pressure inside the box 110, bulging, and even affecting the sealing of the box 110, or even causing an explosion.
  • Table 1 below shows experimental data related to the minimum length B of an exhaust path, the maximum temperature of the exhaust at the second pressure relief mechanism 113 , and the state of the box 110 .
  • the minimum length B of the exhaust path when the minimum length B of the exhaust path is less than 0.1m, the temperature of the exhaust discharged from the inside of the box 110 is high, which may cause a more serious fire hazard.
  • the minimum length B of the exhaust path is 0.1m, only a small amount of sparks are ejected from the box 110, and the hazard is small and controllable.
  • the minimum length B of the exhaust path is in the range of 0.3m to 5m, the box 110 can be in a normal state.
  • the minimum length B of the exhaust path is greater than 5m and less than or equal to 10m, the box 110 will bulge.
  • the sealing of the box 110 will be affected to a certain extent, the battery 10 can still be in a usable state.
  • the minimum length B of the exhaust path is greater than 10m, the sealing of the box 110 will be severely damaged, and the box 110 may cause serious hazards such as explosion or even fire.
  • an exhaust channel is formed between the first pressure relief mechanism 213 of at least one battery cell 20 and the second pressure relief mechanism 113 of the box body 110.
  • the minimum length of the exhaust path of the exhaust of at least one battery cell 20 in the exhaust channel can be between 0.1m and 10m, so as to prevent the exhaust path from being too short and causing the exhaust to be discharged from the box body 110 at a high temperature, and to prevent the exhaust path from being too long and causing the exhaust to gather inside the box body 110 to generate a large pressure and cause serious damage to the sealing of the box body 110. Therefore, through this technical solution, it is possible to take into account the control of the temperature of the exhaust discharged from the box body 110 and the pressure generated by the exhaust inside the box body 110, and comprehensively ensure the safety performance and sealing performance of the battery.
  • the minimum length of the above-mentioned discharge path is between 0.3 m and 5 m.
  • the minimum length of the discharge path is greater than the shortest distance between the first pressure relief mechanism 213 and the second pressure relief mechanism 113 .
  • the shortest distance A between the first pressure relief mechanism 213 and the second pressure relief mechanism 113 may be the length of a line from the center of the first pressure relief mechanism 213 to the center of the second pressure relief mechanism 113 .
  • the exhaust will not be discharged outside the box 110 through the shortest distance between the first pressure relief mechanism 213 and the second pressure relief mechanism 113, but the exhaust path inside the box 110 is longer.
  • This technical solution is conducive to reducing the temperature of the exhaust inside the box 110, thereby further improving the safety performance of the battery 10.
  • the minimum length B of the discharge path and the volume energy density E of the battery cell 20 satisfy the following relationship: 0.0001 m/(Wh/L) ⁇ B/E ⁇ 0.01 m/(Wh/L), where the unit of B is m and the unit of E is Wh/L.
  • the minimum length of the discharge path is related to the volume energy density of the battery cell 20. Specifically, the greater the volume energy density of the battery cell 20, the longer the minimum length of the discharge path can be. In the case where the volume energy density of the battery cell 20 is greater, the temperature of the exhaust discharged through the first pressure relief mechanism 213 of the battery cell 20 when thermal runaway occurs may be higher. By extending the length of the exhaust passage inside the box 110, the exhaust with a higher temperature can be fully cooled inside the box 110.
  • the volume energy density of the battery cell 20 and the minimum length of the discharge path must satisfy a certain proportional relationship. Specifically, when the volume energy density of the battery cell 20 is constant, the ratio of the minimum length of the discharge path to the volume energy density of the battery cell 20 is greater than or equal to 0.0001m/(Wh/L), thereby ensuring that the discharge path has sufficient length, and thus the discharge of the battery cell 20 is fully cooled inside the box 110. Further, when the volume energy density of the battery cell 20 is constant, the ratio of the length of the exhaust channel to the volume energy density of the battery cell 20 is less than or equal to 0.01m/(Wh/L). Through this solution, it is possible to prevent the exhaust channel inside the box 110 from being too long, causing excessive discharge to accumulate inside the box 110 and causing excessive pressure inside the box 110.
  • Table 2 shows experimental data related to the ratio of the minimum length B of the discharge path to the volume energy density E of the battery cell 20 , the maximum temperature of the discharge at the second pressure relief mechanism 113 , and the state of the box 110 .
  • the box 110 may have open flames or sealing failure, posing a serious safety hazard to the battery 10.
  • the housing 110 When the ratio of the minimum length B of the discharge path to the volume energy density E of the battery cell 20 is greater than or equal to 0.0001m/(Wh/L) and less than or equal to 0.01m/(Wh/L), the housing 110 is in a normal state or only a small amount of sparks or bulging occurs. Such small amount of sparks and bulging pose little harm to the battery 10, and the battery 10 can still be in a usable state.
  • the minimum length B of the discharge path and the volume energy density E of the battery cell 20 may satisfy the following relationship: 0.0002m/(Wh/L) ⁇ B/E ⁇ 0.005m/(Wh/L).
  • the box 110 can be more reliably in a normal state, and the comprehensive performance of the battery 10 is better, and its safety performance and sealing performance can be better guaranteed.
  • the minimum length B of the discharge path, the shortest distance A between the first pressure relief mechanism 213 and the second pressure relief mechanism 113, and the volume energy density E of the battery cell 20 satisfy the following relationship: 0.0015L/Wh ⁇ (B/A)/E ⁇ 0.08L/Wh, where the units of A and B are m, and the unit of E is Wh/L.
  • the minimum length of the discharge path is related to the ratio of the shortest distance between the two pressure relief mechanisms (the first pressure relief mechanism 213 and the second pressure relief mechanism 113) and the volume energy density of the battery cell 20.
  • the greater the volume energy density of the battery cell 20 the greater the ratio of the minimum length of the discharge path to the shortest distance between the two pressure relief mechanisms.
  • the minimum length of the discharge path can be made longer by the relevant design inside the box 110.
  • the volume energy density of the battery cell 20 is greater, the temperature of the emissions discharged through the first pressure relief mechanism 213 of the battery cell 20 when thermal runaway occurs may be higher. By extending the length of the discharge path inside the box 110, the emissions with a higher temperature can be fully cooled inside the box 110.
  • the ratio of the minimum length of the discharge path to the shortest distance between the two pressure relief mechanisms and the volume energy density of the battery cell 20 must meet a certain proportional relationship. Specifically, when the volume energy density of the battery cell 20 is constant, the ratio of the minimum length of the discharge path to the shortest distance between the two pressure relief mechanisms to the volume energy density of the battery cell 20 is greater than or equal to 0.0015L/Wh, thereby ensuring that the discharge path has sufficient length, and thus the discharge of the battery cell 20 is fully cooled inside the box 110.
  • the ratio of the minimum length of the discharge path to the shortest distance between the two pressure relief mechanisms to the volume energy density of the battery cell 20 is less than or equal to 0.08L/Wh.
  • the design of the minimum length of the discharge path not only takes into account the volume energy density of the battery cell 20, but also takes into account the shortest distance between the two pressure relief mechanisms (the first pressure relief mechanism 213 and the second pressure relief mechanism 113), thereby comprehensively ensuring the adaptability of the minimum length design of the discharge path in the battery 10, thereby better improving the safety performance and sealing performance of the battery.
  • Table 3 shows relevant experimental data on the ratio of the minimum length B of the discharge path to the shortest distance A between the two pressure relief mechanisms, the ratio of the minimum length B of the discharge path to the shortest distance A between the two pressure relief mechanisms to the volume energy density of the battery cell 20, and the maximum temperature of the exhaust at the second pressure relief mechanism 113 and the state of the box 110.
  • the minimum length B of the discharge path, the shortest distance A between the first pressure relief mechanism 213 and the second pressure relief mechanism 113, and the volume energy density E of the battery cell 20 satisfy the following relationship: 0.003L/Wh ⁇ (B/A)/E ⁇ 0.04L/Wh.
  • the box 110 can be more reliably in a normal state, and the comprehensive performance of the battery 10 is better, and its safety performance and sealing performance can be better guaranteed.
  • Fig. 5 shows another schematic diagram of the structure of a battery 10 provided in one embodiment of the present application.
  • Fig. 5 can be a top view, a bottom view or a side view of the battery 10.
  • the battery 10 also includes: an enclosure mechanism 30, which is used to enclose and form a first exhaust space 310 corresponding to the first pressure relief mechanism 213 of at least one battery cell 20, and the enclosure mechanism 30 is provided with an opening 301 connected to the first exhaust space 310, and the first exhaust space 310 is used to form at least part of the above-mentioned exhaust channel.
  • an enclosure mechanism 30 which is used to enclose and form a first exhaust space 310 corresponding to the first pressure relief mechanism 213 of at least one battery cell 20, and the enclosure mechanism 30 is provided with an opening 301 connected to the first exhaust space 310, and the first exhaust space 310 is used to form at least part of the above-mentioned exhaust channel.
  • the black structural member in the embodiment shown in FIG. 4 above may be the enclosure mechanism 30 in the embodiment of the present application.
  • the first exhaust space 310 formed by the enclosure mechanism 30 may include a space facing the first pressure relief mechanism 213 of at least one battery cell 20.
  • the enclosure mechanism 30 is provided with an opening 301, so the enclosure mechanism 30 does not achieve a fully enclosed enclosure, but provides an exhaust outlet for the first exhaust space 310 at the opening 301.
  • the enclosure mechanism 30 may be a frame structure having an opening 301.
  • the enclosure mechanism 30 may be a rectangular frame structure, or, in other alternative embodiments, the enclosure mechanism 30 may also be a frame structure of other shapes, such as a circular frame structure, a polygonal frame structure, etc.
  • the specific shape of the frame structure is not limited in the embodiment of the present application.
  • the enclosure mechanism 30 can be a rectangular frame structure, or, in other alternative embodiments, the enclosure mechanism 30 can also be a frame structure of other shapes, such as a circular frame structure, a polygonal frame structure, etc.
  • the embodiment of the present application does not limit the specific shape of the frame structure.
  • a gap may be left between the enclosure mechanism 30 and the box wall of the box body 110. Therefore, a second exhaust space 320 may be formed between the enclosure mechanism 30 and the box wall of the box body 110, and the second exhaust space 320 is connected to the first exhaust space 310 through the opening 301. After the exhaust of at least one battery cell 20 is discharged to the second exhaust space 320 through the opening 301, it is discharged to the second pressure relief mechanism 113 through the second exhaust space 320.
  • the first exhaust space 310 formed by the enclosure mechanism 30 enclosing the first pressure relief mechanism 213 may be used to form a part of the exhaust channel
  • the second exhaust space 320 formed between the enclosure mechanism 30 and the box wall of the box body 110 may be used to form another part of the exhaust channel.
  • the containment mechanism 30 can form an effective exhaust channel inside the box body 110.
  • the length of the exhaust channel and the minimum length of the exhaust path therein can be effectively controlled to meet the safety requirements and performance requirements of the battery 10.
  • the opening 301 in the enclosure mechanism 30 may be located in the enclosure mechanism 30 at a position away from the second pressure relief mechanism 113 .
  • the enclosure mechanism 30 can be formed by setting an opening 301 on a closed frame structure.
  • the closed frame structure can be composed of a plurality of enclosure parts arranged along the enclosure direction, and the plurality of enclosure parts have the same shape and size.
  • Each enclosure part has a certain distance from the second pressure relief mechanism 113, and the average of the plurality of distances between the plurality of enclosure parts and the second pressure relief mechanism 113 is a.
  • the position of the enclosure part can be understood as the position of the enclosure mechanism 30 far away from the second pressure relief mechanism 113, and the opening 301 can be set at the position of the enclosure part.
  • the opening 301 is set at a position in the enclosure mechanism 30 away from the second pressure relief mechanism 113, so that the distance between the opening 301 and the second pressure relief mechanism 113 can be farther, thereby further extending the discharge path of the emissions of the battery cell 20 inside the box 110 of the battery 10, further reducing the temperature of the emissions when they reach the second pressure relief mechanism 113, and improving the safety performance of the battery 10.
  • the opening 301 in the enclosure mechanism 30 may face other walls of the box body 110 except the wall where the second pressure relief mechanism 113 is located.
  • a second pressure relief mechanism 113 is provided on a box wall of the box body 110, and the opening 301 in the enclosure mechanism 30 may face the box wall adjacent to the box wall where the second pressure relief mechanism 113 is located in the box body 110.
  • the opening 301 may also face the box wall opposite to the box wall where the second pressure relief mechanism 113 is located in the box body 110.
  • the opening 301 faces away from or even away from the second pressure relief mechanism 113, so the technical solution can increase the distance between the opening 301 and the second pressure relief mechanism 113, thereby further extending the discharge path of the discharge of the battery cell 20 inside the box body 110 of the battery 10.
  • the box body 110 may be provided with multiple second pressure relief mechanisms 113.
  • the box body 110 may be provided with second pressure relief mechanisms 113 on two opposite box walls respectively, and the opening 301 of the enclosure mechanism 30 may face other box walls in the box body 110 except the two opposite box walls.
  • the number of openings 301 shown in FIG. 5 is only one. In other alternative embodiments, the number of openings 301 may be multiple, and the multiple openings 301 are all facing other box walls in the box body 110 except the box wall where the second pressure relief mechanism 113 is located.
  • the opening 301 of the enclosure mechanism 30 can be designed accordingly according to the setting of the second pressure relief mechanism 113 of the box body 110, so as to ensure that the opening 301 is not facing the box wall where the second pressure relief mechanism 113 is located, increase the distance between the opening 301 and the second pressure relief mechanism 113, and further extend the discharge path of the emissions of the battery cell 20 inside the box body 110 of the battery 10, so as to further reduce the temperature of the emissions when they reach the second pressure relief mechanism 113, and improve the safety performance of the battery 10.
  • the battery 10 may include only one enclosure mechanism 30 to facilitate installation of the enclosure mechanism 30 in the box 110.
  • the battery 10 may also include multiple enclosure mechanisms 30, which are arranged at intervals.
  • Figure 6 shows two other structural schematic diagrams of a battery 10 provided in an embodiment of the present application. Similar to Figure 5 above, Figure 6 can optionally be a top view, a bottom view or a side view of the battery 10.
  • the plurality of battery cells 20 in the battery 10 may include four groups of battery cells 20.
  • the battery 10 may include four enclosure mechanisms 30, each of which is used to form a first exhaust space 310 corresponding to the first pressure relief mechanism 213 of a group of battery cells 20.
  • the second pressure relief mechanism 113 is disposed on two opposite walls of the box body 110.
  • the opening 301 of each enclosure mechanism 30 can face other walls of the box body 110 except the two walls where the second pressure relief mechanism 113 is located.
  • the openings 301 of the four enclosure mechanisms 30 have the same relative positions in the four enclosure mechanisms 30, and the orientations of the four openings 301 may also be the same.
  • the openings 301 of the four enclosure mechanisms 30 may have different relative positions in the four enclosure mechanisms 30, and the orientations of some of the four openings 301 may also be different.
  • multiple enclosure mechanisms 30 are arranged in the box 110 of the battery 10.
  • the multiple enclosure mechanisms 30 can be flexibly set and adjusted according to actual needs, so as to better guide the emissions of battery cells 20 at different positions in the box 110, so as to further improve the overall safety performance of the battery 10.
  • the opening 301 of the enclosure mechanism 30 may be located in the middle area of the box body 110 .
  • the plurality of battery cells 20 in the battery 10 may include two groups of battery cells 20.
  • the battery 10 may include two enclosure mechanisms 30.
  • the second pressure relief mechanism 113 is disposed on two opposite walls of the box body 110, and in this case, the opening 301 of each enclosure mechanism 30 may be located in the middle area of the box body 110.
  • the two walls where the second pressure relief mechanism 113 is located may be two walls of the box body 110 that are arranged opposite to each other in the x direction.
  • the x direction may be the length direction, width direction or height direction of the box body 110.
  • the opening 301 of each enclosure mechanism 30 may be located in the middle area of the box body 110 in the x direction.
  • the opening 301 of the enclosure mechanism 30 is located in the middle area of the box body 110, and the distance between the opening 301 and the second pressure relief mechanism 113 located on the box wall of the box body 110 can also be increased, thereby extending the discharge path of the emissions of the battery cell 20 inside the box body 110 of the battery 10, further reducing the temperature of the emissions when they reach the second pressure relief mechanism 113, and improving the safety performance of the battery 10.
  • FIG. 7 shows another schematic structural diagram of a battery 10 provided in one embodiment of the present application.
  • the openings of two adjacent enclosure mechanisms 30 among the plurality of enclosure mechanisms 30 are arranged on two adjacent walls among the two adjacent enclosure mechanisms 30 , and the openings 301 of the two adjacent enclosure mechanisms 30 are staggered with each other.
  • one of the enclosure mechanisms 30 is provided with an opening 301, and the other enclosure mechanism 30 is provided with two openings 301.
  • the three openings 301 are staggered with each other to avoid direct convection between the two first exhaust spaces 310 enclosed by the two enclosure mechanisms 30.
  • the openings 301 of two adjacent enclosure mechanisms 30 are not arranged opposite each other, but are staggered with each other, that is, the emissions discharged from the opening 301 of the first enclosure mechanism 30 will not directly enter the first exhaust space 310 formed by the second enclosure mechanism 30 through the opening 301 of the second enclosure mechanism 30, thereby preventing high-temperature emissions from causing wider-range impacts and damages, and also preventing the internal pressure of the box body 110 from being too high, thereby ensuring the safety performance of the battery 10.
  • the number of enclosure mechanisms 30 and the number of battery cells 20 enclosed in each enclosure mechanism 30 are only for illustration and not limitation.
  • the number of enclosure mechanisms 30 and the enclosure method can be determined according to the number and arrangement of battery cells 20 in the battery 10, and the embodiments of the present application do not make specific limitations on this.
  • FIG. 8 shows a schematic diagram of an exploded structure of a battery 10 provided in one embodiment of the present application.
  • the first wall 201 of at least one battery cell 20 is provided with a first pressure relief mechanism 213, and the first wall 201 of at least one battery cell 20 is arranged opposite to the first box wall 101 of the box body 110, and the enclosure mechanism 30 is arranged between the first box wall 101 and the first wall 201 of at least one battery cell 20.
  • the first wall 201 of at least one battery cell 20 may be located in the same plane. This arrangement facilitates the arrangement and installation of the enclosure mechanism 30 between the first box wall 101 and the first wall 201 of at least one battery cell 20, and also facilitates the enclosing of the space corresponding to the first pressure relief mechanism 213 of at least one battery cell 20 to form the first exhaust space 310.
  • the enclosure mechanism 30 is attached to the first box wall 101 of the box body 110 and the first wall 201 of the at least one battery cell 20 , and the second pressure relief mechanism 113 is disposed on other walls of the box body 110 except the first box wall 101 .
  • the box body 110 shown in FIG8 may be a rectangular hollow box body having six planar box walls, wherein the first box wall 101 of the box body 110 is arranged opposite to the first wall 201 of the battery cell 20, and the first box wall 101 of the box body 110 and the first wall 201 of the battery cell 20 are parallel to each other.
  • the enclosure mechanism 30 may be directly attached between the first box wall 101 and the first wall 201 of the battery cell 20, or the enclosure mechanism 30 may be indirectly attached (for example, through a glue layer or a fixing member) between the first box wall 101 and the first wall 201 of the battery cell 20.
  • the first box wall 101 is not provided with the second pressure relief mechanism 113, and the second pressure relief mechanism 113 may be provided on any other box wall except the first box wall 101.
  • the first exhaust space 310 formed by the enclosure mechanism 30 between the first box wall 101 and the first wall 201 of the battery cell 20 is a sealed space in a first direction perpendicular to the first wall 201 of the battery cell 20, and is a space with an opening in a second direction parallel to the first wall 201 of the battery cell 20. Since the second pressure relief mechanism 113 is disposed on other box walls except the first box wall 101, the exhaust discharged from the battery cell 20 via the first pressure relief mechanism 213 cannot be discharged through the first box wall 101 in the first direction, but moves along the second direction and is discharged through the opening of the first exhaust space 310 in the second direction and the second pressure relief mechanism 113 located on other box walls.
  • the enclosure mechanism 30 not only can the enclosure mechanism 30 be stably installed in the box body 110, but it can also be convenient for the enclosure mechanism 30 to guide the direction of the emissions of the at least one battery cell 20, increase the emission path of the emissions inside the box body 110, and improve the safety performance of the battery 10.
  • the second box wall 102 of the box body 110 intersects with the first box wall 101 of the box body 110, and the second pressure relief mechanism 113 is disposed on the second box wall 102.
  • a second exhaust space 320 is formed between the enclosure mechanism 30 and the second box wall 102, and the second exhaust space 320 is connected to the first exhaust space 310 through the opening 301, and the exhaust of at least one battery cell 20 enters the second exhaust space 320 through the opening 301 and is discharged to the second pressure relief mechanism 113.
  • the box body 110 may have four second box walls 102 intersecting with the first box wall 101 of the box body 110.
  • the four second box walls 102 may be the side walls of the box body 110.
  • the number of the second pressure relief mechanism 113 may be one or more, and the one or more second pressure relief mechanisms 113 may be arranged on any one or more of the four second box walls 102.
  • the enclosure mechanism 30 On the basis that the enclosure mechanism 30 encloses the first exhaust space 310 between the first box wall 101 and the first wall 201 of the battery cell 20, the enclosure mechanism 30 can form a second exhaust space 320 with the second box wall 102.
  • the second exhaust space 320 is used to connect the first exhaust space 310 with the second pressure relief mechanism 113 located on the second box wall 102.
  • a first exhaust space 310 and a second exhaust space 320 are separated inside the box body 110 by the enclosure mechanism 30, and the second exhaust space 320 is connected to the second box wall 102 of the box body 110, so that the position design of the second pressure relief mechanism 113 on the second box wall 102 of the box body 110 can be facilitated, which is beneficial to further extend the discharge path of the exhaust inside the box body 110 and ensure the safety performance of the battery 10.
  • FIG. 9 shows a schematic top view of the battery 10 in FIG. 8 .
  • At least one battery cell 20 is arranged to form a battery cell sequence, and the first wall 201 of each battery cell 20 in the battery cell sequence is provided with two electrode terminals 214, and the first pressure relief mechanism 213 is provided between the two electrode terminals 214.
  • the enclosure mechanism 30 is provided between the two electrode terminals 214 of each battery cell in the battery cell sequence.
  • a plurality of battery cells 20 are arranged in a row along the width direction of the battery cells 20, and the row of battery cells 20 can be understood as a battery cell sequence.
  • a plurality of battery cells 20 can also form a battery cell sequence in other arrangements, and the embodiment of the present application does not limit the specific arrangement of the battery cells 20 in the battery cell sequence.
  • the first wall 201 of each battery cell 20 in the battery cell sequence is provided with a first pressure relief mechanism 213 and two electrode terminals 214.
  • the enclosure mechanism 30 is provided close to the first pressure relief mechanism 213 of each battery cell 20 in the battery cell sequence and encloses the space corresponding to the first pressure relief mechanism 213. Further, the enclosure mechanism 30 may be provided between the two electrode terminals 214 of each battery cell 20 in the battery cell sequence.
  • the enclosure mechanism 30 is close to the first pressure relief mechanism 213, so the enclosure mechanism 30 can play a good blocking and guiding role for the emissions discharged from the first pressure relief mechanism 213.
  • the enclosure mechanism 30 can prevent the emissions discharged from the first pressure relief mechanism 213 from affecting the electrode terminal 214 or other components of the battery cell 20, thereby further ensuring the safety performance of the battery 10.
  • the enclosure mechanism 30 can also simultaneously enclose the two electrode terminals 214 of the battery cell 20 and the space corresponding to the first pressure relief mechanism 213.
  • the enclosure mechanism 30 can also block and guide the emissions discharged through the first pressure relief mechanism 213, thereby extending the emission path of the emissions inside the box body 110.
  • FIG8 and FIG9 above show schematic structural diagrams of an embodiment of the present application including one enclosure mechanism 30, and FIG10 and FIG11 below show schematic structural diagrams of another embodiment of the present application including multiple enclosure mechanisms 30.
  • FIG10 is another schematic exploded view of a battery 10 provided in an embodiment of the present application
  • FIG11 is a top view of the battery 10 in FIG10.
  • the battery 10 may include a plurality of groups of battery cells 20, and each group of battery cells 20 may include a battery cell sequence formed by arranging at least one battery cell 20 as shown in FIG. 8 and FIG. 9 .
  • the space corresponding to the first pressure relief mechanism 213 of each group of battery cells 20 encloses an enclosure mechanism 30.
  • Each of the plurality of enclosure mechanisms 30 can be directly attached to the first box wall 101 of the box body 110 and the first wall 201 of a group of battery cells 20.
  • the relevant technical solutions between the enclosure mechanism 30 and a group of battery cells 20 can refer to the relevant description of the embodiments shown in Figures 8 and 9 above, and will not be repeated here.
  • a crossbeam 114 may be provided in the box 110 of the battery 10, and the crossbeam 114 may divide the internal space of the box 110 into a plurality of subspaces, each of which is used to accommodate a group of battery cells 20.
  • the crossbeam 114 may divide the internal space of the box 110 into four subspaces.
  • the box wall corresponding to each subspace may be provided with a second pressure relief mechanism 113.
  • each second box wall 102 may be provided with two second pressure relief mechanisms 113 , that is, a total of four second pressure relief mechanisms 113 are provided in the box wall of the box body 110 .
  • the openings 301 of the plurality of enclosure mechanisms 30 may be located in the middle region of the box body 110.
  • the openings 301 of the plurality of enclosure mechanisms 30 may face other box walls of the box body 110 except the box wall where the second pressure relief mechanism 113 is located.
  • the enclosure mechanism 30 is attached to the first box wall 101 of the box body 110 and the first wall 201 of at least one battery cell 20
  • other components may be arranged between the first box wall 101 of the box body 110 and the first wall 201 of at least one battery cell 20, and the enclosure mechanism 30 may be attached between the component and the first wall 201 of at least one battery cell 20.
  • FIG. 12 shows another exploded schematic diagram of a battery 10 provided in one embodiment of the present application.
  • an isolation component 40 is arranged between the first box wall 101 of the box body 110 and the first wall 201 of at least one battery cell 20 (not shown in the figure), and the isolation component 40 is used to form an electrical cavity and an exhaust cavity that are isolated from each other inside the box body 110, wherein the electrical cavity is used to accommodate at least one battery cell 20 (not shown in the figure), and the enclosure mechanism 30 is arranged in the exhaust cavity, and the enclosure mechanism 30 is attached to the first box wall 101 of the box body 110 and the isolation component 40, and the enclosure mechanism 30 is used to enclose in the exhaust cavity to form a first exhaust space 310 corresponding to the first pressure relief mechanism 213 (not shown in the figure) of at least one battery cell 20.
  • the internal space of the box 110 is separated into an electrical chamber and an exhaust chamber by using an isolation component 40. That is, inside the box 110, the electrical chamber that accommodates at least one battery cell 20 is separated from the exhaust chamber that collects and discharges the exhaust of at least one battery cell 20. In this way, when an abnormality occurs in a battery cell 20, the exhaust of the battery cell 20 first enters the exhaust chamber, and the exhaust will not directly affect the electrical components in the electrical chamber, thereby further enhancing the safety of the battery.
  • the isolation component 40 may have a wall shared by the electrical cavity and the exhaust cavity.
  • the isolation component 40 may be a wall of the electrical cavity and a wall of the exhaust cavity at the same time. In this way, the discharge of the battery cell 20 can directly pass through the isolation component 40 and enter the exhaust cavity, avoiding the introduction of other structural components into the box body 110, which affects the performance parameters of the battery 10 such as the energy density.
  • the enclosure mechanism 30 is disposed in the exhaust cavity and attached to the first box wall 101 and the isolation component 40 of the box body 110 .
  • the enclosure mechanism 30 forms a first exhaust space 310 between the first box wall 101 and the isolation component 40 to receive and guide the discharge of exhaust in the box body 110 .
  • the box body 110 is divided into an electrical chamber and an exhaust chamber that are isolated from each other by the isolation component 40. Therefore, the emissions of the battery cells 20 in the electrical chamber will first be discharged to the exhaust chamber through the isolation component 40, and will not directly affect the electrical structure of the battery cells 20 in the electrical chamber, thereby further improving the safety performance of the battery 10.
  • the enclosure mechanism 30 is arranged in the exhaust chamber to guide the emissions so that they can only be discharged through the opening 301 in the enclosure mechanism 30, extending the emission path of the emissions inside the box body 110, thereby further improving the safety performance of the battery 10.
  • the second pressure relief mechanism 113 may be disposed on any wall of the box body 110. According to the specific position of the second pressure relief mechanism 113, an exhaust passage connecting the second pressure relief mechanism 113 and the first exhaust space 310 may be designed inside the box body 110.
  • the second pressure relief mechanism 113 may be disposed on the box wall corresponding to the electrical cavity in the box body 110 .
  • a channel connecting the electrical cavity and the first exhaust space 310 may be designed in the isolation component 40 to extend the exhaust path of the exhaust inside the box body 110 .
  • the second pressure relief mechanism 113 may also be disposed on a box wall corresponding to the exhaust cavity in the box body 110, so that the exhaust can be discharged from the exhaust cavity without affecting the electrical structure in the electrical cavity.
  • the second pressure relief mechanism 113 may be disposed on other box walls of the box body 110 except the first box wall 101 .
  • the first box wall 101 and the isolation component 40 can be used to form two oppositely disposed walls in the exhaust chamber, and after the discharge of the battery cell 20 passes through the isolation component 40, most of the discharge will directly rush to the first box wall 101. Therefore, the second pressure relief mechanism 113 is not disposed on the first box wall 101 but on other box walls, which can extend the discharge path of the discharge inside the box body 110, thereby improving the safety of the battery 10.
  • the first box wall 101 of the battery 10 when the battery 10 is installed in an electrical device, can be the bottom wall of the box body 110, and the first wall 201 of the at least one battery cell 20 provided with the first pressure relief mechanism 213 can also be called the bottom wall of the at least one battery cell 20.
  • the isolation component 40 can separate the internal space of the box body 110 into two spaces, wherein the electrical chamber is located below the exhaust chamber.
  • the electrical chamber can also be located above the exhaust chamber or in other directions, and the relative positional relationship between the electrical chamber and the exhaust chamber is not specifically limited in the embodiment of the present application.
  • a pressure relief area 410 corresponding to the first pressure relief mechanism 213 of at least one battery cell 20 is formed in the isolation component 40, and the exhaust of the at least one battery cell 20 is discharged to the exhaust cavity via the pressure relief area 410, and the enclosure mechanism 30 is used to enclose a first exhaust space 310 corresponding to the pressure relief area 410 in the exhaust cavity.
  • At least one pressure relief area 410 is provided in the isolation component 40 , and each pressure relief area can be arranged opposite to the first pressure relief mechanism 213 of a battery cell 20 .
  • the exhaust inside the battery cell 20 is discharged through the pressure relief area 410 .
  • the pressure relief area 410 in the isolation component 40 may also be specially processed so that it can be more easily destroyed when the first pressure relief mechanism 213 is actuated.
  • the pressure relief area 410 may be a weak area whose strength is less than the strength of other areas in the isolation component 40 except the pressure relief area 410.
  • the isolation component 40 is provided with a groove arranged opposite to the first pressure relief mechanism 213, and the bottom wall of the groove forms a weak area. Since the bottom wall of the groove is weaker than other areas of the isolation component 40 and is easily damaged by the discharge, when the first pressure relief mechanism 213 is actuated, the discharge can damage the bottom wall of the groove and enter the exhaust chamber.
  • a weak area may be formed in the isolation component 40 as the pressure relief area 410 in other ways, for example, notches are provided in the isolation component 40 to form a weak area, etc., which is not specifically limited in the present application.
  • the enclosure mechanism 30 is used to enclose the space corresponding to the pressure relief area 410 in the isolation component 40, so as to receive the emissions discharged through the first pressure relief mechanism 213 and the pressure relief area 410 to guide the path of the emissions.
  • a pressure relief area 410 is provided in the isolation component 40, which can more effectively allow the discharge discharged from the first pressure relief mechanism 213 to pass through, preventing the discharge from affecting the electrical components in the electrical cavity.
  • the enclosure mechanism 30 encloses the space corresponding to the pressure relief area 410, and can indirectly enclose the space corresponding to the first pressure relief mechanism 213 of the battery cell 20, thereby effectively guiding the discharge and comprehensively ensuring the safety performance of the battery 10.
  • the isolation component 40 may be a thermal management component, which is used to adjust the temperature of the battery cell 20.
  • the thermal management component may be used to contain a fluid to adjust the temperature of multiple battery cells.
  • the fluid here may be a liquid or a gas, and adjusting the temperature refers to heating or cooling multiple battery cells.
  • the thermal management component is used to contain a cooling fluid to lower the temperature of multiple battery cells.
  • the thermal management component may also be referred to as a cooling component, a cooling system or a cooling plate, etc., and the fluid contained therein may also be referred to as a cooling medium or a cooling fluid, more specifically, a coolant or a cooling gas.
  • the thermal management component may also be used for heating to increase the temperature of multiple battery cells, which is not limited in the present application embodiment.
  • the above-mentioned fluid may be circulating to achieve a better temperature regulation effect.
  • the fluid may be water, a mixture of water and ethylene glycol, or air, etc.
  • the thermal management component is reused as the isolation component 40, which can separate the electrical cavity and the exhaust cavity that are isolated from each other in the box body 110 to ensure the safety of the battery 10.
  • the battery cell 20 can be further thermally managed to further improve the safety performance of the battery 10.
  • FIG. 13 shows a schematic bottom view of the battery 10 in FIG. 12 .
  • the battery 10 may include a plurality of enclosure mechanisms 30 , each of which is used to enclose a space corresponding to a group of pressure relief areas 410 , and the group of pressure relief areas 410 corresponds to a first pressure relief mechanism 213 of a group of battery cells 20 .
  • Fig. 13 shows two adjacent enclosure mechanisms 30, and the openings 301 of the two enclosure mechanisms 30 may be located in the middle area of the exhaust cavity.
  • the openings 301 of the two enclosure mechanisms 30 may also be designed in other ways.
  • FIG. 14 shows two schematic structural diagrams of an enclosure mechanism 30 enclosing a pressure relief area 410 provided in one embodiment of the present application.
  • the arrangement of the two enclosure mechanisms 30 is similar to that of Figure 13, but the opening 301 is smaller than the opening 301 shown in Figure 13.
  • the enclosure mechanism 30 can play a better guiding role for the emissions, thereby further extending the emission path of the emissions in the exhaust chamber.
  • one of the two enclosure mechanisms 30 may be provided with two openings 301, and the other enclosure mechanism 30 may be formed with one opening 301.
  • the three openings 301 are staggered to avoid direct convection between the two first exhaust spaces 310 corresponding to the two enclosure mechanisms 30, to prevent high-temperature exhaust from causing a wider range of impact and damage, and to prevent the pressure of the first exhaust space 310 from being too high, thereby ensuring the safety performance of the battery 10.
  • Figures 13 and 14 are only used as schematic illustrations to illustrate the enclosing manner of the pressure relief area 410 by two adjacent enclosure mechanisms 30.
  • the number of enclosure mechanisms 30 may be 1 or more than 3, and the setting manner of the opening 301 in the enclosure mechanism 30 may be related to the second pressure relief mechanism 113.
  • the specific design scheme can be found in the relevant description of the above embodiment, and no further details will be given here.
  • a first filter hole 302 is further formed in the enclosure mechanism 30, and the first filter hole 302 is used to filter solid particles in the exhaust.
  • the aperture of the exhaust hole is smaller than the radial dimension of the opening 301.
  • Figure 15 shows two other schematic structural diagrams of a battery 10 provided in an embodiment of the present application.
  • Figure (a) in Figure 15 may be a top view of the embodiment shown in Figure 10
  • Figure (b) in Figure 15 may be a bottom view of the embodiment shown in Figure 12.
  • the enclosure mechanism 30 has a plurality of first filter holes 302 of smaller size in addition to the opening 301 of larger size, and the plurality of first filter holes 302 may be distributed in the enclosure mechanism 30 at equal or unequal intervals.
  • the position design and position design of the first filter hole 302 may be the same as the relevant design of the opening 301 described above, for example, the first filter hole 302 may also be arranged at a position in the enclosure mechanism 30 away from the second pressure relief mechanism 113, and/or, the first filter hole 302 may also face other box walls in the box body 110 except the box wall where the second pressure relief mechanism 113 is located.
  • the first filter hole 302 can also be used to discharge the emissions discharged by the battery cell 20 through the first pressure relief mechanism 213, but the first filter hole 302 is mainly used to pass the gas in the emissions, and the solid particles with larger particle size in the emissions can be filtered by the first filter hole 302. The solid particles cannot pass through the first filter hole 302 and are discharged outside the first exhaust space 310. Therefore, this technical solution can reduce the high-temperature solid particles discharged to the second pressure relief mechanism 113, further improving the safety of the battery 10.
  • the first filter hole 302 is provided in the enclosure mechanism 30, which can speed up the exhaust speed and pressure relief speed of the first exhaust space 310, and prevent the pressure of the first exhaust space 310 from being too high.
  • the airflows discharged from the multiple first filter holes 302 can collide with each other to produce a certain turbulence effect, thereby reducing the harm caused by the direct impact of the gas.
  • the enclosure mechanism 30 may be a discontinuous structure, and the enclosure mechanism 30 is formed by a plurality of enclosure parts, and a gap between two adjacent enclosure parts among the plurality of enclosure parts forms the first filtering hole 302 .
  • the discontinuous design of the enclosure mechanism 30 improves the processing convenience.
  • the enclosure mechanism 30 does not need to be formed in one piece, and multiple enclosure substructures can be manufactured separately to form the enclosure mechanism 30.
  • the diameter D of the first filter hole and the volume energy density E of the battery cell 20 satisfy the following relationship: 0.0001 mm/(Wh/L) ⁇ D/E ⁇ 0.006 mm/(Wh/L), wherein the unit of D is mm, and the unit of E is Wh/L.
  • the diameter of the first filter hole 302 needs to be less than or equal to a certain preset value to prevent the first filter hole 302 from becoming the main flow channel, that is, to prevent the enclosure mechanism 30 from failing.
  • the enclosure mechanism 30 fails, it cannot effectively block and guide the solid particles in the exhaust. Therefore, a large number of solid particles may quickly rush out of the second pressure relief mechanism 113, causing an explosion outside the battery 10.
  • the diameter of the first filter hole 302 also needs to be greater than or equal to a certain preset value, so that the first filter hole 302 can pass the gas in the exhaust at a certain rate to relieve the pressure of the first exhaust space 310 .
  • Table 4 shows experimental data related to the ratio of the diameter D of the first filter hole to the volume energy density E of the battery cell 20 and the state of the box body 110 .
  • the box 110 may have open flames or sealing failure, posing a serious safety hazard to the battery 10.
  • the box body 110 When D/E is greater than or equal to 0.0001 mm/(Wh/L) and less than or equal to 0.006 mm/(Wh/L), the box body 110 is in a normal state or only a small amount of sparks are ejected. The small amount of sparks does little harm to the battery 10, and the battery 10 can still be in a usable state.
  • D/E may satisfy the following relationship: 0.0001 mm/(Wh/L) ⁇ D/E ⁇ 0.003 m/(Wh/L).
  • the box 110 can be more reliably in a normal state, and the comprehensive performance of the battery 10 is better, and its safety performance and sealing performance can be better guaranteed.
  • the size of the first filter hole 302 can be designed accordingly according to the volume energy density of the battery cell 20, so that the first filter hole 302 can adapt to the situation where the battery cell 20 has thermal runaway, play a good solid filtering and exhaust role in the enclosure mechanism 30, and comprehensively improve the safety performance of the battery 10.
  • the melting point of the material of the enclosure mechanism 30 is not lower than 200°C.
  • the material of the enclosure mechanism 30 may be a metal material, which may have a melting point of more than 300°C, and the enclosure mechanism 30 may be applied to a battery 10 with a higher energy density.
  • the material of the enclosure mechanism 30 may also be a non-metallic material, such as rubber, mica, carbon fiber, melamine foam, and foamed polyurethane. In this case, the carbonization temperature of the enclosure mechanism 30 is not less than 200°C.
  • the material of the enclosure mechanism 30 is a high temperature resistant material, which can withstand the impact of high temperature emissions discharged from the battery cells 20, prevent the high temperature emissions from affecting the reliability of the enclosure mechanism 30, and comprehensively ensure the safety performance of the battery 10.
  • Fig. 16 shows another schematic diagram of the structure of a battery 10 provided in one embodiment of the present application.
  • Fig. 16 may be a top view, a bottom view or a side view of the battery 10.
  • At least one box wall of the box body 110 is a hollow box wall 103
  • the outer surface 1102 of the hollow box wall 103 is provided with a second pressure relief mechanism 113
  • the inner surface 1101 of the hollow box wall 103 is provided with an exhaust port 115
  • the internal space between the inner surface 1101 and the outer surface 1102 of the hollow box wall 103 forms at least part of the above-mentioned exhaust channel.
  • the box body 110 has at least one hollow box wall 103, and the internal space between the inner surface 1101 and the outer surface 1102 of the hollow box wall 103 is a hollow space, wherein the inner surface 1101 of the hollow box wall 103 is the surface of the hollow box wall 103 facing the internal accommodation space of the box body 110, and correspondingly, the outer surface 1102 of the hollow box wall 103 is the surface of the hollow box wall 103 facing the external space of the box body 110.
  • the internal space between the inner surface 1101 and the outer surface 1102 of the hollow box wall 103 can form a partial exhaust channel in the box body 110 for discharging the exhaust of the battery cell 20.
  • an exhaust port 115 is provided on the inner surface 1101 of the hollow box wall 103, and the exhaust port 115 is connected to the inner space of the hollow box wall 103.
  • a second pressure relief mechanism 113 is provided on the outer surface 1102 of the hollow box wall 103, and the second pressure relief mechanism 113 is connected to the exhaust port 115 through the inner space of the hollow box wall 103. Therefore, when the first pressure relief mechanism 213 of the battery cell 20 is actuated to discharge the exhaust, the exhaust is discharged through the inner space of the box body 110 to the exhaust port 115 located on the inner surface 1101 of the hollow box wall 103, and then discharged to the outer surface 1102 of the hollow box wall 103 through the inner space of the hollow box wall 103.
  • the inner space of the box body 110 is used to form a part of the exhaust channel for passing the exhaust, and the inner space of the hollow box wall 103 of the box body 110 is used to form another part of the exhaust channel.
  • the hollow box wall 103 of the box body 110 can be used to form an exhaust channel for exhaust, thereby saving the internal space of the box body 110 and improving the energy density of the battery 10.
  • At least two box walls of the box body 110 are hollow box walls 103 , and the exhaust port 115 and the second pressure relief mechanism 113 can be arranged in different hollow box walls 103 in the box body 110 .
  • the exhaust port 115 and the second pressure relief mechanism 113 may be provided in two opposite hollow box walls 103 in the box body 110, wherein the exhaust port 115 is provided on the inner surface 1101 of one of the hollow box walls 103, and the second pressure relief mechanism 113 is provided on the outer surface 1102 of the other hollow box wall 103.
  • the internal spaces of the two hollow box walls 103 may be communicated through other components in the box body 110, for example, may be communicated through the other hollow box walls 103 of the box body 110.
  • the exhaust port 115 and the second pressure relief mechanism 113 may be disposed on the same hollow box wall 103 of the box body 110, that is, the exhaust port 115 and the second pressure relief mechanism 113 are respectively disposed on the inner surface 1101 and the outer surface 1102 of the same hollow box wall 103, and the two are staggered with each other.
  • the exhaust port 115 and the second pressure relief mechanism 113 are arranged on different hollow box walls 103 of the box body 110, or the exhaust port 115 and the second pressure relief mechanism 113 arranged on the same hollow box wall 103 are staggered with each other, which is beneficial to extend the discharge path of the emissions of the battery cell 20 inside the box wall of the box body 110, thereby reducing the temperature of the emissions reaching the second pressure relief mechanism 113 and improving the safety performance of the battery 10.
  • Fig. 17 shows another schematic diagram of the structure of a battery 10 provided in one embodiment of the present application.
  • Fig. 17 may be a top view, a bottom view or a side view of the battery 10.
  • At least one box wall of the box body 110 is a hollow box wall 103, and the outer surface 1102 of the hollow box wall 103 is provided with a second pressure relief mechanism 113
  • the battery 10 also includes: a hollow cross beam 104, and the inner surface 1101 of the hollow cross beam 104 and/or the hollow box wall 103 is provided with an exhaust port 115, and the internal space of the hollow cross beam 104 is connected to the internal space of the hollow box wall 103, and the internal space of the hollow cross beam 104 and the internal space of the hollow box wall 103 form at least a partial exhaust channel.
  • the hollow cross beam 104 in the battery 10 is disposed in the internal space of the box body 110, and is used to separate the multiple battery cells 20 accommodated in the internal space of the box body 110. At least one end of the hollow cross beam 104 can be attached to at least one hollow box wall 103 of the box body 110, and the internal space of the hollow box wall 103 can be interconnected with the internal space of the hollow cross beam 104.
  • the hollow cross beam 104 is provided with an exhaust port 115, which can be used to receive emissions from the battery cells 20.
  • the emissions enter the internal space of the hollow cross beam 104 through the exhaust port 115 and are further discharged into the internal space of the hollow box wall 103 connected to the internal space of the hollow cross beam 104.
  • the emissions can continue to be discharged to the second pressure relief mechanism 113 located on the outer surface 1102 of the hollow box wall 103, and then discharged to the outside of the box body 110.
  • the exhaust port 115 may be provided on the inner surface 1101 of the hollow box wall 103 in addition to the hollow cross beam 104, or a plurality of exhaust ports 115 may be provided on the inner surfaces of the hollow cross beam 104 and the hollow box wall 103.
  • the exhaust can also be discharged to the second pressure relief mechanism 113 through the inner space of the hollow box wall 103 and the inner space of the hollow cross beam 104, and then discharged to the outside of the box body 110.
  • the internal space of the hollow box wall 103 and/or the hollow cross beam 104 of the box body 110 can be used to form a partial exhaust channel for emissions.
  • the emission path of the emissions inside the box body 110 can be further extended, thereby improving the safety performance of the battery 10.
  • the multiple battery cells 20 include multiple groups of battery cells 20, and the hollow cross beam 104 is used to divide the internal space of the box body 110 into multiple subspaces, and the multiple subspaces are used to respectively accommodate the multiple groups of battery cells 20, and the hollow cross beam 104 is provided with an exhaust port 115 corresponding to each of the multiple subspaces, and/or the inner surface 1101 of the hollow box wall 103 is provided with an exhaust port 115 corresponding to each of the multiple subspaces.
  • the battery 10 may include two hollow cross beams 104 disposed perpendicularly to each other and four hollow box walls 103, the end surface of the hollow cross beam 104 may be attached to the hollow box wall 103 of the box body 110, and the internal space of the hollow cross beam 104 may be connected to the internal space of the hollow box wall 103.
  • the two hollow cross beams 104 may divide the internal space of the box body 110 into four subspaces, each of which is used to accommodate a group of battery cells 20.
  • the four subspaces may be isolated from each other and not connected to each other.
  • the hollow crossbeam 104 is provided with an exhaust port 115 corresponding to each subspace.
  • the same hollow crossbeam 104 may be provided with four exhaust ports 115, and the four exhaust ports 115 correspond to the four subspaces one by one.
  • the second pressure relief mechanism 113 is provided on two opposite hollow box walls 103, and the hollow crossbeam 104 provided with the exhaust port 115 may be located between the two opposite hollow box walls 103 and parallel to the two opposite hollow box walls 103.
  • each of the multiple subspaces divided by the hollow cross beam 104 of the box body 110 is provided with an exhaust port 115.
  • each subspace may also be provided with multiple exhaust ports 115.
  • FIG. 18 shows three other structural schematic diagrams of a battery 10 provided in one embodiment of the present application.
  • two mutually perpendicular hollow beams 104 divide the internal space of the box body 110 into four subspaces, and the inner surfaces 1101 of the hollow beams 104 and/or the hollow box walls 103 of the two hollow beams 104 may be provided with eight exhaust ports 115 , and every two exhaust ports 115 of the eight exhaust ports 115 correspond to a space inside the box body 110 .
  • eight exhaust ports 115 are distributed on one of the two hollow beams 104, the second pressure relief mechanism 113 is disposed on two opposite hollow box walls 103, and the hollow beam 104 provided with the exhaust ports 115 may be located between the two opposite hollow box walls 103 and parallel to the two opposite hollow box walls 103.
  • each exhaust port 115 is distributed on the other hollow beam 104 of the two hollow beams 104, the second pressure relief mechanism 113 is arranged on two opposite hollow box walls 103, and the hollow beam 104 provided with the exhaust ports 115 can be connected to and perpendicular to the two opposite hollow box walls 103.
  • eight exhaust ports 115 are distributed on the inner surface 1101 of the hollow box wall 103 of the box body 110 .
  • each sub-space is provided with an exhaust port 115 on the inner surface 1101 of the hollow cross beam 104 and/or the hollow box wall 103, thereby further improving the safety performance of the battery 10.
  • Fig. 19 shows another schematic exploded view of a battery 10 provided in one embodiment of the present application.
  • Fig. 18 (a) above may be a schematic top view of the battery 10 of the embodiment shown in Fig. 19 .
  • the internal space in the box body 110 of the battery 10 can form an electrical cavity, which is used to accommodate at least one battery cell 20.
  • the emissions discharged by the battery cell 20 when its first pressure relief mechanism 213 is actuated enter the electrical cavity.
  • the hollow box wall 103, the hollow cross beam 104, the exhaust port 115 and the related settings of the second pressure relief mechanism 113 are all designed for the electrical cavity.
  • the first pressure relief mechanism 213 of the battery cell 20 is disposed toward the first box wall 101 of the box body 110, and the exhaust port 115 may be disposed in a region of the hollow cross beam 104 close to the first box wall 101.
  • the exhaust port 115 may also be disposed at other positions of the hollow cross beam 104, which is not specifically limited in the embodiment of the present application.
  • the first box wall 101 of the box body 110 can be a solid wall
  • the hollow box wall 103 can be four box walls intersecting at the first box wall 101
  • the internal spaces of the four hollow box walls 103 can be interconnected
  • the internal space of the hollow beam 104 can be connected to the internal spaces of the four hollow box walls 103.
  • Fig. 20 shows another schematic exploded view of a battery 10 provided in one embodiment of the present application.
  • Fig. 21 shows a schematic bottom view and a schematic cross-sectional view along the A-A' direction of the battery 10 shown in Fig. 20 .
  • the battery 10 further includes: an isolation component 40, which is used to form an electrical cavity and an exhaust cavity that are isolated from each other in the internal space of the box body 110, the electrical cavity is used to accommodate at least one battery cell 20, and the exhaust cavity is used to receive emissions from the at least one battery cell 20 and form at least part of the exhaust passage.
  • the hollow crossbeam 104 is located in the electrical cavity and connected to the isolation component 40, and the connection portion between the hollow crossbeam 104 and the isolation component 40 is provided with an exhaust port 115, and the exhaust port 115 is used to receive emissions from the exhaust cavity.
  • the isolation component 40 may be the same as the isolation component 40 in the embodiments shown in FIGS. 12 to 14 above.
  • the isolation component 40 includes but is not limited to a thermal management component or other types of isolation components.
  • the isolation component 40 can be used as a cavity wall in the electrical cavity, and the first pressure relief mechanism 213 of at least one battery cell 20 accommodated in the electrical cavity can be arranged toward the isolation component 40, so that the exhaust of at least one battery cell 20 can be discharged to the exhaust cavity through the isolation component 40.
  • at least part of the other box walls of the electrical cavity can be a hollow box wall 103, and the second pressure relief mechanism 113 can be arranged on the outer surface of the hollow box wall 103.
  • the isolation component 40 is provided with a pressure relief area 410 corresponding to the first pressure relief mechanism 213 of the battery cell 20.
  • the pressure relief area 410 may be a weak area whose strength may be lower than the strength of other areas of the isolation component 40 except the pressure relief area 410. Therefore, when the first pressure relief mechanism 213 of the battery cell 20 is actuated, the exhaust may easily pass through the first pressure relief mechanism 213 and the pressure relief area 410 corresponding to the first pressure relief mechanism 213 and enter the exhaust chamber.
  • the electrical cavity may also accommodate a hollow crossbeam 104.
  • the hollow crossbeam 104 may be connected to the box wall of the electrical cavity, specifically, the hollow crossbeam 104 may be connected to the hollow box wall 103 provided with the second pressure relief mechanism 113 in the electrical cavity, and the internal space of the hollow crossbeam 104 may be interconnected with the internal space of the hollow box wall 103.
  • the hollow crossbeam 104 in addition to being connected to the hollow box wall 103, can also be connected to the isolation component 40, and the connection between the hollow crossbeam 104 and the isolation component 40 can be provided with an exhaust port 115.
  • the hollow crossbeam 104 and the isolation component 40 are provided with mutually corresponding exhaust ports 115, and the exhaust ports 115 can be connected to the internal space of the hollow crossbeam 104 and the exhaust cavity, so that the exhaust discharged from the battery cell 20 into the exhaust cavity can enter the internal space of the hollow crossbeam 104 through the exhaust port 115, and then reach the second pressure relief mechanism 113 through the internal space of the hollow box wall 103 connected to the internal space of the hollow crossbeam 104, and then be discharged to the outside of the box body 110.
  • the exhaust passage inside the box body 110 may include an exhaust cavity, an internal space of the hollow cross beam 104, and an internal space of the hollow box wall 103, and the exhaust passage and the length of the exhaust path of the exhaust in the exhaust passage may be related to the sizes of the several spaces.
  • the box body 110 is divided into an electrical chamber and an exhaust chamber that are isolated from each other by the isolation component 40. Therefore, the emissions of the battery cells 20 in the electrical chamber will be discharged to the exhaust chamber through the isolation component 40 without affecting the electrical structure of the battery cells 20 in the electrical chamber, thereby improving the safety performance of the battery 10. Furthermore, the hollow cross beam 104 in the electrical chamber and the internal space of the hollow box wall 103 are further used as exhaust channels for emissions, which can further extend the emission path of emissions inside the box body 110 and improve the safety performance of the battery 10.
  • Figure 22 shows another schematic exploded view of a battery 10 provided in one embodiment of the present application.
  • Figure 23 shows a schematic bottom view of the battery 10 shown in Figure 22 .
  • the battery 10 also includes: an enclosure mechanism 30, which is arranged in the exhaust chamber, and a pressure relief area 410 of the first pressure relief mechanism 213 corresponding to at least one battery cell 20 is formed in the isolation component 40, and the exhaust of the at least one battery cell 20 is discharged to the exhaust chamber via the pressure relief area 410, and the enclosure mechanism 30 is used to enclose a first exhaust space 310 corresponding to the pressure relief area 410 in the exhaust chamber, and the enclosure mechanism 30 is provided with an opening 301 connected to the first exhaust space 310, and the first exhaust space 310 is used to form at least a part of the exhaust channel.
  • the enclosure mechanism 30 may be the enclosure mechanism 30 in the embodiment shown in Figures 12 to 14 above.
  • the enclosure mechanism 30 is disposed in the exhaust cavity, and can guide the exhaust discharged into the exhaust cavity, thereby further extending the exhaust path of the exhaust inside the box 110, and improving the safety performance of the battery 10.
  • the enclosure mechanism 30 shown in FIG. 23 may be the enclosure mechanism 30 shown in FIG. 14 (b), or, in other examples, the enclosure mechanism 30 shown in FIG. 23 may also be the enclosure mechanism 30 shown in FIG. 14 (a) or FIG. 13.
  • the specific structure of the enclosure mechanism 30 is not limited in the embodiment of the present application.
  • the inner surface of the hollow box wall 103 and/or the hollow cross beam 104 is provided with second filter holes, and the second filter holes are used to filter solid particles in the discharge.
  • the second filter holes arranged on the inner surface of the hollow box wall 103 and/or the hollow cross beam 104 are mainly used to pass the gas in the exhaust, while solid particles with larger particle sizes in the exhaust can be filtered by the second filter holes, and the solid particles cannot be discharged to the second pressure relief mechanism 113 through the second filter holes. Therefore, this technical solution can reduce the high-temperature solid particles discharged to the second pressure relief mechanism 113, thereby further improving the safety of the battery 10.
  • the diameter design of the second filter hole can refer to the relevant technical solutions of the first filter hole 302. That is, the diameter D' of the second filter hole and the volume energy density E of the battery cell satisfy the following relationship: 0.0001mm/(Wh/L) ⁇ D'/E ⁇ 0.006mm/(Wh/L), where D' is in mm and E is in Wh/L.
  • At least one of a filtering component, a gas absorbing component and a cooling component is provided in the exhaust passage between the first pressure relief mechanism 213 and the second pressure relief mechanism 113 .
  • the filter component can be used to filter solid particles in the exhaust.
  • the gas absorption component can be used to absorb combustible gas in the exhaust.
  • the cooling component can be used to absorb the heat of the exhaust to cool the exhaust.
  • the harm of the exhaust discharged to the outside of the housing 110 can be further reduced, thereby improving the safety performance of the battery 10.
  • the filter component may include a third filter hole or a bent air flow channel, and the third filter hole or the bent air flow channel is used to filter solid particles in the emissions.
  • the design of the third filter hole can be the same as that of the first filter hole 302.
  • the diameter design of the third filter hole can refer to the technical solution of the first filter hole 302. That is, the diameter D" of the third filter hole and the volume energy density E of the battery cell satisfy the following relationship: 0.0001mm/(Wh/L) ⁇ D"/E ⁇ 0.006mm/(Wh/L), where D" is in mm and E is in Wh/L.
  • the airflow channel can also play a turbulent role, preventing the airflow in the emission from directly rushing to the box body 110 and causing damage.
  • the gas absorption component is formed of a gas absorption material, and the gas absorption material is used to absorb combustible gas in the exhaust.
  • the gas absorption material may be a solid material or a liquid material.
  • the gas absorption material may be a material having a microporous structure, such as activated carbon.
  • the gas absorption material may be a solvent capable of absorbing combustible gas, and a shell may be coated on the outside of the solvent to form a solvent package, which is provided as a gas absorption component in the discharge path between the first pressure relief mechanism 213 and the second pressure relief mechanism 113.
  • the gas absorption component and the filter component can be two separate independent components.
  • the gas absorption component can also be connected to the filter component.
  • the gas absorption component can be applied to the filter component in the form of a coating.
  • the cooling component is formed of a heat absorbing material, which is used to absorb heat from the exhaust to cool the exhaust.
  • the heat absorbing material can be a metal material, such as aluminum, copper, steel, etc.
  • the heat absorbing material can also be a phase change material, such as a coolant, etc.
  • the cooling component and the filter component may be two separate independent components.
  • the cooling component may be integrated with the filter component.
  • a second filter hole or a bent air flow channel is formed on the heat absorbing material, and the component is both a cooling component and a filter component.
  • the maximum temperature T1 of the exhaust at the first pressure relief mechanism 213 and the maximum temperature T2 of the exhaust at the second pressure relief mechanism 113 satisfy the following relationship: T1-T2 ⁇ 300°C.
  • the maximum temperature of the emissions reaching the second pressure relief mechanism 113 is significantly lower than the temperature at the first pressure relief mechanism 213, thereby preventing the emissions from being discharged to the outside of the battery 10 and causing safety hazards.
  • the maximum temperature T2 of the exhaust at the second pressure relief mechanism 113 is ⁇ 300°C.
  • the emissions discharged by the battery cell 20 through the first pressure relief mechanism 213 have a lower maximum temperature when reaching the second pressure relief mechanism 113 after a longer discharge path inside the box 110, thereby more reliably preventing the emissions from being discharged to the outside of the battery 10 to cause safety hazards, thereby ensuring the safety performance of the battery 10.
  • An embodiment of the present application also provides an electric device, which may include the battery 10 in the aforementioned embodiments, and the battery 10 is used to provide electrical energy to the electric device.
  • the electric device may be a vehicle 1, a ship, or a spacecraft.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请实施例提供一种电池和用电装置,能够保障电池的安全性能。电池(10)包括:至少一个电池单体(20),具有第一泄压机构(213);箱体(110),具有第二泄压机构(113);其中,至少一个电池单体(20)的第一泄压机构(213)与箱体(110)的第二泄压机构(113)之间形成有排气通道,在第一泄压机构(213)致动时,排气通道用于将至少一个电池单体(20)的排放物由第一泄压机构(213)排放至第二泄压机构(113),且排放物在排气通道内的排放路径的最小长度在0.1m至10m之间。通过在箱体的内部设计排气通道,可以控制电池单体的排放物在箱体内部的最短排放路径,进而控制排放物排出箱体的温度,保障电池的安全性能。

Description

电池和用电装置 技术领域
本申请实施例涉及电池领域,并且更具体地,涉及一种电池和用电装置。
背景技术
随着时代的发展,电动汽车由于其高环保性、低噪音、使用成本低等优点,具有巨大的市场前景且能够有效促进节能减排,有利社会的发展和进步。对于电动汽车而言,电池技术是关乎其发展的一项重要因素。
在电池技术的发展中,除了提高电池的性能外,安全问题也是一个不可忽视的问题。如果电池的安全问题不能保证,那该电池就无法使用。因此,如何保障电池的安全性,是电池技术中一个亟待解决的技术问题。
发明内容
本申请提供一种电池和用电装置,能够保障电池的安全性能。
第一方面,提供一种电池,包括:至少一个电池单体,具有第一泄压机构;箱体,用于容纳至少一个电池单体,且箱体具有第二泄压机构;其中,至少一个电池单体的第一泄压机构与箱体的第二泄压机构之间形成有排气通道,在第一泄压机构致动时,排气通道用于将至少一个电池单体的排放物由第一泄压机构排放至第二泄压机构,且排放物在排气通道内的排放路径的最小长度在0.1m至10m之间。
通过本申请实施例的技术方案,至少一个电池单体的第一泄压机构与箱体的第二泄压机构之间形成有排气通道,通过在箱体的内部设计排气通道,可以使得至少一个电池单体的排放物在该排气通道内排放路径的最小长度在0.1m至10m之间,防止排气路径过短造成排放物排出箱体的温度较高,也能防止排气路径过长造成排放物聚集于箱体内部产生较大的压强对箱体的密封性造成严重破坏。因此,通过该技术方案,能够兼顾控制排放物排出箱体的温度以及排放物在箱体内部产生的压强,综合保障电池的安全性能和密封性能。
在一些可能的实施方式中,排放路径的最小长度在0.3m至5m之间。
通过该实施方式的技术方案,排放路径的最小长度在0.3m至5m之间的情况下,排放物对于电池的箱体影响较小,电池的箱体可处于正常状态,而没有异常现象发生,可以较为可靠的保障电池整体的安全性能。
在一些可能的实施方式中,排放路径的最小长度大于第一泄压机构与第二泄压机构之间的最短距离。
通过该实施方式的技术方案,排放物不会经由第一泄压机构至第二泄压机构之间的最短距离排放至箱体之外,而在箱体内部的排放路径较长。该技术方案有利于在箱体内部降低排放物的温度,从而进一步提升电池的安全性能。
在一些可能的实施方式中,排放路径的最小长度B与电池单体的体积能量密度E满足如下关系:0.0001m/(Wh/L)≤B/E≤0.01m/(Wh/L),其中,B的单位为m,E的单位为Wh/L。
通过该实施方式的技术方案,电池单体的体积能量密度与该排放路径的最小长度需满足一定的比例关系。具体地,当电池单体的体积能量密度一定时,排放路径的最小长度与该电池单体的体积能量密度之比大于或等于0.0001m/(Wh/L),从而保证排放路径具有足够的长度,进而使得电池单体的排放物在箱体内部得到充分的降温。进一步地,当电池单体的体积能量密度一定时,排气通道的长度与该电池单体的体积能量密度之比小于或等于0.01m/(Wh/L),通过该方案,可以防止箱体的内部的排气通道过长造成过多的排放物积累在箱体内部造成箱体内部压力过大。因此,通过该方案,在可以兼顾保障电池的安全性能的同时,保障电池的密封性等综合性能。
在一些可能的实施方式中,排放路径的最小长度B与电池单体的体积能量密度E满足如下关系:0.0002m/(Wh/L)≤B/E≤0.005m/(Wh/L)。
通过该实施方式的技术方案,电池的箱体能够较为可靠的处于正常状态,此时电池的综合性能较佳,其安全性能以及密封性能均能得到较优的保障。
在一些可能的实施方式中,排放路径的最小长度B、第一泄压机构与第二泄压机构之间的最短距离A以及电池单体的体积能量密度E满足如下关系:0.0015L/Wh≤(B/A)/E≤0.08L/Wh,其中,A和B的单位为m,E的单位为Wh/L。
通过本实施方式的技术方案,排放路径的最小长度的设计在考虑电池单体的体积能量密度的基础上,还考虑了第一泄压机构与第二泄压机构之间的最短距离,综合保证了该排放路径的最小长度设计在电池中的适应性,从而较佳的提升电池的安全性能以及密封性等性能。
在一些可能的实施方式中,排放路径的最小长度B、第一泄压机构与第二泄压机构之间的最短距离A以及电池单体的体积能量密度E满足如下关系:0.003L/Wh≤(B/A)/E≤0.04L/Wh。
通过该实施方式的技术方案,电池的箱体能够较为可靠的处于正常状态,此时电池的综合性能较佳,其安全性能以及密封性能均能得到较优的保障。
在一些可能的实施方式中,电池还包括:围挡机构,用于围合形成与至少一个电池单体的第一泄压机构对应的第一排气空间,且围挡机构设有与第一排气空间连通的开口,第一排气空间用于形成至少部分排气通道。
通过该实施方式的技术方案,由于在电池的箱体内部设置有围挡机构,该围挡机构可在箱体内部形成有效的排气通道,通过对该围挡机构进行相关设计,可以实现对排气通道的长度以及其中排气路径的最小长度进行有效控制,以满足电池的安全需求和性能需求。
在一些可能的实施方式中,开口位于围挡机构中远离于第二泄压机构的位置。
通过该实施方式的技术方案,将开口设置于围挡机构中远离于第二泄压机构的位置,可以使得开口与第二泄压机构之间的距离较远,从而进一步延长电池单体的排放物在电池的箱体内部的排放路径,进一步降低排放物到达第二泄压机构时的温度,提升电池的安全性能。
在一些可能的实施方式中,开口朝向箱体中除第二泄压机构所在箱壁以外的其它箱壁。
通过该实施方式的技术方案,围挡机构的开口可根据箱体的第二泄压机构的设置进行相应设计,从而保证该开口不朝向第二泄压机构所在的箱壁,增大开口与第二泄压机构之间的距离,从而进一步延长电池单体的排放物在电池的箱体内部的排放路径,以进一步降低排放物到达第二泄压机构时的温度,提升电池的安全性能。
在一些可能的实施方式中,开口位于箱体的中部区域。
通过该实施方式的技术方案,围挡机构的开口位于箱体的中部区域,也可以增大开口与位于箱体的箱壁的第二泄压机构之间的距离,从而延长电池单体的排放物在电池的箱体内部的排放路径,进一步降低排放物到达第二泄压机构时的温度,提升电池的安全性能。
在一些可能的实施方式中,围挡机构的数量为多个,多个围挡机构间隔设置。
通过该实施方式的技术方案,多个围挡机构设置于电池的箱体内,该多个围挡机构可以根据实际需求灵活设置和调整,从而便于对箱体中不同位置处的电池单体的排放物起到更好的导向作用,以进一步提升电池整体的安全性能。
在一些可能的实施方式中,多个围挡机构中相邻的两个围挡机构的开口设置于相邻的两个围挡机构中相邻的两个壁上,相邻的两个围挡机构的开口相互错开设置。
通过该实施方式的技术方案,多个围挡机构中相邻的围挡机构的开口相互错开设置,可以防止一个围挡机构形成的第一排气空间接收的电池单体的高温排放物对其它相邻围挡机构对应的电池单体造成更大范围影响和损坏,也防止第一排气空间的压强过高,保证电池的安全性能。
在一些可能的实施方式中,至少一个电池单体的第一壁设置有第一泄压机构,至少一个电池单体的第一壁与箱体的第一箱壁相对设置,围挡机构设置于第一箱壁与至少一个电池单体的第一壁之间。
通过该实施方式的技术方案,可以便于围挡机构在第一箱壁与至少一个电池单体的第一壁之间的设置和安装,也便于围挡机构围合至少一个电池单体的第一泄压机构对应的空间以形成第一排气空间。
在一些可能的实施方式中,围挡机构附接于第一箱壁和至少一个电池单体的第一壁,第二泄压机构设置于箱体中除第一箱壁以外的其它箱壁。
通过该实施方式的技术方案,不仅可以便于围挡机构在箱体中的稳定安装,也可以便于围挡机构对该至少一个电池单体的排放物进行方向引导,延长排放物在箱体内部的排放路径,提升电池的安全性能。
在一些可能的实施方式中,箱体的第二箱壁相交于箱体的第一箱壁,第二泄压机构设置于第二箱壁;围挡机构与第二箱壁之间形成第二排气空间,第二排气空间通 过开口连通于第一排气空间,排放物经由开口进入第二排气空间,并排放至第二泄压机构。
通过该实施方式的技术方案,通过围挡机构在箱体内部分隔出第一排气空间和第二排气空间,第二排气空间连通于箱体的第二箱壁,因而可以便于第二泄压机构在箱体的第二箱壁上的位置设计,有利于进一步延长排放物在箱体内部的排放路径,保障电池的安全性能。
在一些可能的实施方式中,至少一个电池单体排列形成电池单体序列,且电池单体序列中每个电池单体的第一壁设置有两个电极端子,第一泄压机构设置于两个电极端子之间;围挡机构设置于电池单体序列中每个电池单体的两个电极端子之间。
通过该实施方式的技术方案,一方面,围挡机构距离第一泄压机构的距离较近,因此该围挡机构能够对从第一泄压机构中排放的排放物起到良好的阻挡和导向作用,另一方面,该围挡机构能够防止从第一泄压机构排放的排放物对电极端子或者电池单体的其它部件造成影响,进一步保证电池的安全性能。
在一些可能的实施方式中,第一箱壁与至少一个电池单体的第一壁之间设置有隔离部件,隔离部件用于在箱体的内部形成相互隔离的电气腔和排气腔;电气腔用于容纳至少一个电池单体,至少一个电池单体的排放物经由隔离部件排放至排气腔,围挡机构设置于排气腔中,且围挡机构附接于隔离部件和第一箱壁,围挡机构用于在排气腔中围合形成与至少一个电池单体的第一泄压机构对应的第一排气空间。
通过本申请实施例的技术方案,箱体被隔离部件分隔为相互隔离的电气腔和排气腔,因此,电气腔中电池单体的排放物会先经由隔离部件排放至排气腔,而不会直接对电气腔中的电池单体的电气结构造成影响,从而进一步提高电池的安全性能。进一步地,围挡机构设置于排气腔中,用于对排放物进行导向,以使得其仅能通过围挡机构中的开口排放,延长该排放物在箱体内部的排放路径,以更进一步提高电池的安全性能。
在一些可能的实施方式中,第二泄压机构设置于箱体对应于排气腔的箱壁。
通过本申请实施例的技术方案,便于排放物可以由排气腔排出,该排放物不会对电气腔中的电气结构造成影响。
在一些可能的实施方式中,第二泄压机构设置于箱体中除第一箱壁以外的其它箱壁。
通过本申请实施例的技术方案,第二泄压机构未设置于该第一箱壁而设置于其它箱壁,可以延长该排放物在箱体内部的排放路径,从而提升电池的安全性。
在一些可能的实施方式中,隔离部件中形成有对应于至少一个电池单体的第一泄压机构的泄压区域,至少一个电池单体的排放物经由泄压区域排放至排气腔,围挡机构用于在排气腔中围合形成与泄压区域对应的第一排气空间。
通过该实施方式的技术方案,在隔离部件中设置泄压区域,能够更为有效的使得从第一泄压机构排放的排放物通过,防止排放物对电气腔中的电气部件造成影响。围合机构围合于该泄压区域对应的空间,能够间接围合电池单体的第一泄压机构对应的空间,从而对排放物进行有效的导向,综合保障电池的安全性能。
在一些可能的实施方式中,隔离部件为热管理部件,热管理部件用于调节电池单体的温度。
通过该实施方式的技术方案,复用热管理部件作为隔离部件,既能在箱体中分隔出相互隔离的电气腔和排气腔,以保证电池的安全性,另外,由于热管理部件的存在,可以对电池单体进行进一步的热管理作用,以进一步提升电池的安全性能。
在一些可能的实施方式中,围挡机构中形成有第一过滤孔,第一过滤孔用于过滤排放物中的固体颗粒。
通过该实施方式的技术方案,在围挡机构中设置第一过滤孔主要用于通过排放物中的气体,而排放物中粒径较大的固体颗粒可以被该第一过滤孔过滤,该固体颗粒无法通过第一过滤孔排放至第一排气空间之外,因此,通过该技术方案可以减少排放至第二泄压机构处的高温固体颗粒,进一步提升电池的安全性。再者,在围挡机构中设置第一过滤孔,可以加快第一排气空间的排气速度以及泄压速度,防止第一排气空间的压强过高。与此同时,在第一过滤孔的数量为多个的情况下,多个第一过滤孔排出的气流可以相互碰撞产生一定的扰流作用,从而减小气体直冲产生的危害。
在一些可能的实施方式中,围挡机构为间断式结构,围挡机构由多个围挡部形成,多个围挡部中相邻的两个围挡部之间的间隙形成第一过滤孔。
通过该实施方式的技术方案,在形成第一过滤孔的基础上,围挡机构的间断式设计提升了加工便捷度,围挡机构无需一体成型,可以分别制造多个围挡子结构以形成围挡机构。
在一些可能的实施方式中,第一过滤孔的直径D与电池单体的体积能量密度E满足如下关系:0.0001mm/(Wh/L)≤D/E≤0.006mm/(Wh/L),其中,D的单位为mm,E的单位为Wh/L。
通过该实施方式的技术方案,第一过滤孔的尺寸可以根据电池单体的体积能量密度进行相应设计,能够使得该第一过滤孔适应于该电池单体发生热失控的情况,在围挡机构中起到良好的固体颗粒过滤作用,综合提升电池的安全性能。
在一些可能的实施方式中,围挡机构的材料的熔点不低于200℃。
通过该实施方式的技术方案,围挡机构能够抵御从电池单体排放的高温排放物的冲击,防止该高温排放物影响围挡机构的使用可靠性,综合保障电池的安全性能。
在一些可能的实施方式中,箱体的至少一个箱壁为空心箱壁,空心箱壁的外表面设置有第二泄压机构,空心箱壁的内表面设置有排气口,空心箱壁的内表面与外表面之间的内部空间形成至少部分排气通道。
通过该实施方式的技术方案,可利用箱体的空心箱壁形成用于排放物的排气通道,从而节省箱体的内部空间提升电池的能量密度。
在一些可能的实施方式中,箱体的至少两个箱壁为空心箱壁,排气口与第二泄压机构设置于不同的空心箱壁,或者,排气口与第二泄压机构设置于同一空心箱壁,且排气口与第二泄压机构相互错开设置。
通过该实施方式的技术方案,排气口与第二泄压机构设置于箱体不同的空心箱壁,或者,设置于同一空心箱壁的排气口和第二泄压机构相互错开设置,有利于延长 电池单体的排放物在箱体的箱壁内部的排放路径,从而降低排放物到达第二泄压机构的温度,提升电池的安全性能。
在一些可能的实施方式中,箱体的至少一个箱壁为空心箱壁,空心箱壁的外表面设置有第二泄压机构;电池还包括:空心横梁,空心横梁和/或空心箱壁的内表面设置有排气口,空心横梁的内部空间连通于空心箱壁的内部空间,且空心横梁的内部空间以及空心箱壁的内部空间形成至少部分排气通道。
在该实施方式的技术方案中,可利用箱体的空心箱壁和/或空心横梁的内部空间形成用于排放物的部分排气通道,在节省箱体的内部空间提升电池的能量密度以外,可以进一步延长排放物在箱体内部的排放路径,提升电池的安全性能。
在一些可能的实施方式中,在至少一个电池单体的数量为多个的情况下,多个电池单体包括多组电池单体,空心横梁用于将箱体的内部空间划分为多个子空间,多个子空间用于分别容纳多组电池单体;空心横梁对应于多个子空间中的每个子空间设置有排气口,和/或,空心箱壁的内表面对应于多个子空间中的每个子空间设置有排气口。
通过该实施方式的技术方案,在空心横梁将箱体的内部空间划分为多个子空间的情况下,有利于降低乃至防止每个子空间容纳的电池单体对其它子空间容纳的电池单体造成影响,提升电池的安全性能。进一步地,为了保证每个子空间中容纳的电池单体的排放物能够顺利排放,每个子空间在空心横梁和/或空心箱壁的内表面设置有排气口,从而进一步提升电池的安全性能。
在一些可能的实施方式中,电池还包括:隔离部件,隔离部件用于在箱体的内部空间形成相互隔离的电气腔和排气腔,电气腔用于容纳至少一个电池单体,排气腔用于接收来自至少一个电池单体的排放物,且形成至少部分排气通道;空心横梁位于电气腔中,且连接于隔离部件,空心横梁与隔离部件的连接部设置有排气口,排气口用于接收来自排气腔的排放物。
通过该实施方式的技术方案,箱体被隔离部件分隔为相互隔离的电气腔和排气腔,因此,电气腔中电池单体的排放物会经由隔离部件排放至排气腔,而不会对电气腔中的电池单体的电气结构造成影响,可提高电池的安全性能。进一步地,利用电气腔中的空心横梁以及空心箱壁的内部空间进一步作为排放物的排气通道,可以进一步延长排放物在箱体内部的排放路径,提升电池的安全性能。
在一些可能的实施方式中,电池还包括:围挡机构,围挡机构设置于排气腔中;隔离部件中形成有对应于至少一个电池单体的第一泄压机构的泄压区域,至少一个电池单体的排放物经由泄压区域排放至排气腔,围挡机构用于在排气腔中围合形成与泄压区域对应的第一排气空间,且围挡机构设有与第一排气空间连通的开口,第一排气空间用于形成至少部分排气通道。
通过该实施方式的技术方案,将围挡机构设置于排气腔中,可以对排放至该排气腔中的排放物起到进一步的路径引导的作用,从而进一步延长排放物在箱体内部的排放路径,提升电池的安全性能。
在一些可能的实施方式中,空心箱壁的内表面和/或空心横梁设置有第二过滤 孔,第二过滤孔用于过滤排放物中的固体颗粒。
通过该实施方式的技术方案,在空心箱壁的内表面和/或空心横梁设置有第二过滤孔以过滤排放物中的固体颗粒,可以减少排放至第二泄压机构处的高温固体颗粒,进一步提升电池的安全性。
在一些可能的实施方式中,排气通道中设置有过滤部件、气体吸收部件和冷却部件中的至少一者。
通过该实施方式的技术方案,在排放路径内设置过滤部件、气体吸收部件和冷却部件中的至少一者,可以进一步降低排放至箱体外部的排放物的危害,提升电池的安全性能。
在一些可能的实施方式中,过滤部件包括第三过滤孔或者弯折的气流通道,第三过滤孔或者弯折的气流通道用于过滤排放物中的固体颗粒。
通过该实施方式的技术方案,第三过滤孔或者弯折的气流通道易于实现且能够起到良好的固体颗粒过滤作用。
在一些可能的实施方式中,气体吸收部件由气体吸收材料形成,气体吸收材料用于吸收排放物中的可燃性气体。
通过该实施方式的技术方案,气体吸收部件易于实现,且其可对排放物中的可燃性气体进行吸收,防止该可燃性气体对电池造成的安全隐患。
在一些可能的实施方式中,冷却部件由吸热材料形成,吸热材料用于吸收排放物的热量以冷却排放物。
通过该实施方式的技术方案,冷却部件易于实现,其对排放物进行吸热冷却,能够进一步降低排放物排放至箱体外部的温度,从而提升电池的安全性能。
在一些可能的实施方式中,排放物在第一泄压机构处的最高温度T1和排放物在第二泄压机构处的最高温度T2满足如下关系:T1-T2≥300℃。
通过该实施方式的技术方案,电池单体经由第一泄压机构排放的排放物在箱体的内部经过较长的排放路径后,其到达第二泄压机构处的温度相比于在第一泄压机构处的温度实现了较大程度的较低,从而防止排放物排放至电池的外部造成安全隐患。
在一些可能的实施方式中,排放物在第二泄压机构处的最高温度T2≤300℃。
通过该实施方式的技术方案,电池单体经由第一泄压机构排放的排放物在箱体的内部经过较长的排放路径后,其到达第二泄压机构处的温度较低,从而可更为可靠的防止排放物排放至电池的外部造成安全隐患,保证电池的安全性能。
第二方面,提供一种用电装置,包括:第一方面或第一方面中任一可能的实施方式中的电池,该电池用于提供电能。
通过本申请实施例的技术方案,至少一个电池单体的第一泄压机构与箱体的第二泄压机构之间形成有排气通道,通过在箱体的内部设计排气通道,可以使得至少一个电池单体的排放物在该排气通道内排放路径的最小长度在0.1m至10m之间,防止排气路径过短造成排放物排出箱体的温度较高,也能防止排气路径过长造成排放物聚集于箱体内部产生较大的压强对箱体的密封性造成严重破坏。因此,通过该技术方案,能够兼顾控制排放物排出箱体的温度以及排放物在箱体内部产生的压强,综合保障电 池的安全性能和密封性能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一个实施例提供的一种车辆的结构示意图;
图2为本申请一个实施例提供的一种电池的结构示意图;
图3为本申请一个实施例提供的一种电池单体的结构示意图;
图4为本申请一个实施例提供的电池的一种结构示意图;
图5为本申请一个实施例提供的电池的另一结构示意图;
图6为本申请一个实施例提供的电池10的另两种结构示意图;
图7为本申请一个实施例提供的电池的另一结构示意图;
图8为本申请一个实施例提供的电池的一种爆炸结构示意图;
图9为图8中电池的一种示意性俯视图;
图10为本申请一个实施例提供的电池的另一爆炸结构示意图;
图11为图10中电池的一种示意性俯视图;
图12为本申请一个实施例提供的电池的另一爆炸结构示意图;
图13为图12中电池的一种示意性仰视图;
图14为本申请一个实施例提供的围挡机构围合泄压区域的两种示意性结构图;
图15为本申请一个实施例提供的电池的另两种示意性结构图;
图16为本申请一个实施例提供的电池的另一结构示意图;
图17为本申请一个实施例提供的电池的另一结构示意图;
图18为本申请一个实施例提供的电池的另三种结构示意图;
图19为本申请一个实施例提供的电池的另一爆炸结构示意图;
图20为本申请一个实施例提供的电池的另一爆炸结构示意图;
图21为图20中所示电池的示意性仰视图和沿A-A’方向的示意性截面图;
图22为本申请一个实施例提供的电池的另一爆炸结构示意图;
图23为图22中所示电池的示意性仰视图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上; 术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:存在A,同时存在A和B,存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书、权利要求书或附图中的术语“第一”、“第二”、“第三”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
在新能源领域中,电池作为用电装置,例如电动车辆、船舶或航天器等的主要动力源,其重要性不言而喻。在本申请中,电池是指包括一个或多个电池单体(battery cell)以提供更高的电压和容量的单一的物理模块。该电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。可选地,本申请中所提到的电池可以称之为电池包(battery pack)。
可选地,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方体方形电池单体和软包电池单体,本申请实施例对此也不限定。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。
对于电池来说,主要的安全危险来自于充电和放电过程,为了提高电池的安全性能,对电池单体一般会设置泄压机构。泄压机构是指电池单体的内部压力或温度达到预定阈值时致动以泄放内部压力或温度的元件或部件。该预定阈值可以根据设计需求不同而进行调整。所述预定阈值可取决于电池单体中的正极极片、负极极片、电解液和隔离膜中一种或几种的材料。泄压机构可以采用诸如对压力敏感或温度敏感的元件或部件,即,当电池单体的内部压力或温度达到预定阈值时,泄压机构致动,从而形成可供内部压力或温度泄放的通道。泄压机构在致动后,电池单体内部的高温高压物质作为排放物会从泄压机构向外排出。以此方式能够在可控压力或温度的情况下使电池单体发生泄压,从而避免潜在的更严重的事故发生。其中,该电池单体的排放物包括但不限于:反应产生的高温高压气体、电解液、被溶解或分裂的正负极极片、隔 离膜的碎片、火焰,等等。
但随着电池系统能量密度的提升,电池单体排放物的温度,速度及固体颗粒物的占比都显著提升,如果不对排放物的排放行为及路径做针对性设计,排放物在排放至箱体外部遇到氧气时极易发生起火事件,造成较大的安全隐患。
鉴于此,本申请提供一种电池,包括:具有第一泄压机构的至少一个电池单体以及用于容纳该至少一个电池单体的箱体,该箱体具有第二泄压机构。至少一个电池单体的第一泄压机构与箱体的第二泄压机构之间形成有排气通道,在第一泄压机构致动时,该排气通道用于将至少一个电池单体的排放物由第一泄压机构排放至第二泄压机构,且排放物在排气通道内的排放路径的最小长度在0.1m至10m之间。
通过该技术方案,至少一个电池单体的第一泄压机构与箱体的第二泄压机构之间形成有排气通道,通过在箱体的内部设计排气通道,可以使得至少一个电池单体的排放物在该排气通道内排放路径的最小长度在0.1m至10m之间,防止排气路径过短造成排放物排出箱体的温度较高,也能防止排气路径过长造成排放物聚集于箱体内部产生较大的压强对箱体的密封性造成严重破坏。因此,通过该技术方案,能够兼顾控制排放物排出箱体的温度以及排放物在箱体内部产生的压强,综合保障电池的安全性能和密封性能。
本申请实施例描述的技术方案均适用于各种使用电池的装置,例如,电瓶车、电动工具、电动车辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等。
应理解,本申请实施例描述的技术方案不仅仅局限适用于上述所描述的装置,还可以适用于所有使用电池的装置,但为描述简洁,下述实施例均以电动车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达11,控制器12以及电池10,控制器12用来控制电池10为马达11的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池可以包括多个电池单体,其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。电池也可以称为电池包。可选地,多个电池单体可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池。也就是说,多个电池单体可以直接组成电池,也可以先组成电池模块,电池模块再组成电池。
例如,如图2所示,为本申请一个实施例的一种电池10的结构示意图,电池10可以包括多个电池单体20。电池10还可以包括箱体110(或称罩体),箱体110的内部为中空结构,多个电池单体20容纳于箱体110内。如图2所示,箱体110可以包 括两部分,这里分别称为第一部分111和第二部分112,第一部分111和第二部分112扣合在一起。第一部分111和第二部分112的形状可以根据多个电池单体20组合的形状而定,第一部分111和第二部分112可以均具有一个开口。例如,第一部分111和第二部分112均可以为中空长方体且各自只有一个面为开口面,第一部分111的开口和第二部分112的开口相对设置,并且第一部分111和第二部分112相互扣合形成具有封闭腔室的箱体110。多个电池单体20相互并联或串联或混联组合后置于第一部分111和第二部分112扣合后形成的箱体110内。
可选地,电池10还可以包括其他结构,在此不再一一赘述。例如,该电池10还可以包括汇流部件,汇流部件用于实现多个电池单体20之间的电连接,例如并联或串联或混联。具体地,汇流部件可通过连接电池单体20的电极端子实现电池单体20之间的电连接。进一步地,汇流部件可通过焊接固定于电池单体20的电极端子。多个电池单体20的电能可进一步通过导电机构穿过箱体而引出。可选地,导电机构也可属于汇流部件。
根据不同的电力需求,电池单体20的数量可以设置为任意数值。多个电池单体20可通过串联、并联或混联的方式连接以实现较大的容量或功率。由于每个电池10中包括的电池单体20的数量可能较多,为了便于安装,可以将电池单体20分组设置,每组电池单体20组成电池模块。电池模块中包括的电池单体20的数量不限,可以根据需求设置。
如图3所示,为本申请一个实施例的一种电池单体20的结构示意图,电池单体20包括一个或多个电极组件22、壳体211和盖板212。壳体211的壁以及盖板212均称为电池单体20的壁。壳体211根据一个或多个电极组件22组合后的形状而定,例如,壳体211可以为中空的长方体或正方体或圆柱体,且壳体211的其中一个面具有开口以便一个或多个电极组件22可以放置于壳体211内。盖板212覆盖开口并且与壳体211连接,以形成放置电极组件22的封闭的腔体。壳体211内填充有电解质,例如电解液。
该电池单体20还可以包括两个电极端子214,两个电极端子214可以设置在盖板212上。盖板212通常是平板形状,两个电极端子214固定在盖板212的平板面上,两个电极端子214分别为正电极端子214a和负电极端子214b。每个电极端子214各对应设置一个连接构件23,或者也可以称为集流构件23,其位于盖板212与电极组件22之间,用于将电极组件22和电极端子214实现电连接。
如图3所示,每个电极组件22具有极性相反的第一极耳221a和第二极耳222a。例如,当第一极耳221a为正极极耳时,第二极耳222a为负极极耳。一个或多个电极组件22的第一极耳221a通过一个连接构件23与一个电极端子连接,一个或多个电极组件22的第二极耳222a通过另一个连接构件23与另一个电极端子连接。
作为示例,电池单体20的一个壁上还可设置第一泄压机构213。第一泄压机构213用于电池单体20的内部压力或温度达到阈值时致动以泄放内部压力或温度。
可选地,在本申请一个实施例中,第一泄压机构213和电极端子214设置于电池单体20的不同壁。作为示例,如图3所示,电池单体20的电极端子214可设置于电池单体20的顶壁,即盖板212。第一泄压机构213设置于电池单体20中不同于顶壁的 另一个壁,例如,第一泄压机构213设置于与顶壁相对的底壁215。
可选地,在本申请另一个实施例中,第一泄压机构213和电极端子214设置于电池单体20的同一壁。作为示例,电极端子214和第一泄压机构213均可设置于电池单体20的顶壁,即盖板212。
上述第一泄压机构213可以为其所在壁的一部分,也可以与其所在壁为分体式结构,通过例如焊接的方式固定在其所在壁上。例如,在图3所示实施例中,当第一泄压机构213为底壁215的一部分时,第一泄压机构213可以通过在底壁215上设置刻痕的方式形成,与该刻痕的对应的底壁215厚度小于第一泄压机构213除刻痕处其他区域的厚度。另外,第一泄压机构213可以为各种可能的泄压机构,本申请实施例对此并不限定。例如,第一泄压机构213可以为温敏泄压机构,温敏泄压机构被配置为在设有第一泄压机构213的电池单体20的内部温度达到阈值时能够熔化;和/或,第一泄压机构213可以为压敏泄压机构,压敏泄压机构被配置为在设有第一泄压机构213的电池单体20的内部气压达到阈值时能够破裂。
图4示出了本申请一个实施例提供的一种电池10的一种结构示意图。可选地,该图4可以为电池10的俯视图、仰视图或者侧视图。
如图4所示,该电池10包括:至少一个电池单体20和箱体110。其中,至少一个电池单体20具有第一泄压机构213,箱体110用于容纳该至少一个电池单体20,且具有第二泄压机构113。至少一个电池单体20的第一泄压机构213与箱体110的第二泄压机构113之间形成有排气通道,该排气通道用于将至少一个电池单体20的排放物由第一泄压机构213排放至第二泄压机构113,且排放物在该排气通道内的排放路径的最小长度在0.1m至10m之间。
具体地,在本申请实施例的电池10中,电池单体20中的第一泄压机构213可以如图3中所示,与电池单体20的电极端子214位于电池单体20的同一壁。或者,该第一泄压机构213也可以与电极端子214位于电池单体20的不同壁。具体地,该电池单体20以及第一泄压机构213的相关技术方案可以参见上文图3所示实施例的相关描述,此处不做过多赘述。
箱体110用于容纳上述至少一个电池单体20,该箱体110的具体形状可以适应于至少一个电池单体20的整体形状。可选地,该箱体110可以为上文图2所示实施例中包括第一部分111和第二部分112的长方体箱体,用于容纳至少一个长方体形状的电池单体20。该箱体110的相关技术方案可以参见上文图2所示实施例的相关描述,此处也不做过多赘述。
该箱体110的箱壁上可设置有第二泄压机构113,该第二泄压机构113可以连通于箱体110的内部空间,因此,该第二泄压机构可用于将排放至箱体110内部空间的电池单体20的排放物排放至箱体110的外部,保证电池10的安全性能。
可选地,与第一泄压机构213的泄压原理类似,该第二泄压机构113可以为温敏泄压机构或者压敏泄压结构,旨在使得箱体110的内部温度和/或压力大于预设阈值时,该第二泄压机构113致动,箱体110的内部气体可以通过该第二泄压机构113排放至箱体110的外部。本申请实施例对该第二泄压机构113的具体实现方式不做限定。
继续参见图4所示,在该电池10中,至少一个电池单体20的第一泄压机构213中每个电池单体20与箱体的第二泄压机构113之间可形成有排气通道,该排气通道用于对至少一个电池单体20的排放物起到导向作用,将其由至少一个电池单体20的第一泄压机构213导向至第二泄压机构113,排放物在该排气通道中运动形成排放路径。
作为示例而非限定,图4所示的电池10内部可设置有用于引导排放物的结构部件(如图中黑色结构件所示),该结构部件可根据电池单体20的第一泄压机构213进行相应设置,从而在箱体110内部形成排气通道,以对从该第一泄压机构213排放的排放物进行方向和路径引导。
可选地,在本申请实施例中,排放物在第一泄压机构213与第二泄压机构113之间的排放路径可以为多个,该多个排放路径中的最小长度可以根据电池10内相关结构件、箱体110等部件的尺寸,以及第一泄压机构213和第二泄压机构113的相对位置确定计算得到。
作为示例,图4中用虚线箭头示出了至少一个电池单体20中某个电池单体20(图中阴影所示的电池单体20)的排放物由第一泄压机构213排放至第二泄压机构113的排放物的两种排放路径。其中,排放物从黑色结构件的开口排出后,向下排放的排放路径为第一排放路径,向上排放的排放路径为第二排放路径,第二排放路径的长度B’大于第一排放路径的长度B。可选地,该第一排放路径的长度B可以为排放物在第一泄压机构213与第二泄压机构113之间的排放路径的最小长度B,该最小长度B在0.1m至10m之间。
在本申请实施例中,在电池10包括多个具有第一泄压机构213的电池单体20的情况下,该多个电池单体20中每个电池单体20的排放物在第一泄压机构213与第二泄压机构113之间的排气路径的最小长度均在0.1m至10m之间。
需要说明的是,电池单体20的排放物从第一泄压机构213排放时温度较高,该排放物在箱体110内部的排气路径的长度越长,则排放物在第二泄压机构113处的温度则越低。然而,排放物在箱体110内部的排气路径的长度越长,也容易造成较多的排放物聚集于箱体110内部,造成箱体110内部压强较大,产生鼓包,乃至对箱体110的密封性造成影响,甚至发生爆炸。
下面表1示出了一种排气路径的最小长度B与排放物在第二泄压机构113处的最高温度以及箱体110的状态的相关实验数据。
表1
Figure PCTCN2022125420-appb-000001
Figure PCTCN2022125420-appb-000002
通过上表可以看出,排气路径的最小长度B小于0.1m的情况下,从箱体110内部排放的排放物温度较高,可引发较为严重的起火危害。在排气路径的最小长度B为0.1m的情况下,仅有少量火星从箱体110喷出,其危害较小且可控。在排气路径的最小长度B为0.3m至5m的范围内,箱体110可处于正常状态。在排气路径的最小长度B大于5m且小于或等于10m的情况下,箱体110会产生鼓包,箱体110的密封性虽会受到一定的影响,但电池10仍可处于可使用状态。在排气路径的最小长度B大于10m的情况下,箱体110的密封性会受到严重破坏,此时箱体110可能会产生爆炸乃至起火的严重危害。
综上,通过本申请实施例的技术方案,至少一个电池单体20的第一泄压机构213与箱体110的第二泄压机构113之间形成有排气通道,通过在箱体110的内部设计排气通道,可以使得至少一个电池单体20的排放物在该排气通道内排放路径的最小长度在0.1m至10m之间,防止排气路径过短造成排放物排出箱体110的温度较高,也能防止排气路径过长造成排放物聚集于箱体110内部产生较大的压强对箱体110的密封性造成严重破坏。因此,通过该技术方案,能够兼顾控制排放物排出箱体110的温度以及排放物在箱体110内部产生的压强,综合保障电池的安全性能和密封性能。
在一些可能的实施方式中,上述排放路径的最小长度在0.3m至5m之间。
通过上述表1可知,排放路径的最小长度在0.3m至5m之间的情况下,箱体110可处于正常状态,而没有异常现象发生,可以较为可靠的保障电池10整体的安全性能。
在一些可能的实施方式中,排放路径的最小长度大于第一泄压机构213与第二泄压机构113之间的最短距离。
可选地,如图4所示的短虚线线段,该第一泄压机构213至第二泄压机构113之间的最短距离A可以为第一泄压机构213的中心至第二泄压机构113的中心的连线长度。
通过该实施方式的技术方案,排放物不会经由第一泄压机构213至第二泄压机构113之间的最短距离排放至箱体110之外,而在箱体110内部的排放路径较长。该技术方案有利于在箱体110内部降低排放物的温度,从而进一步提升电池10的安全性能。
在一些可能的实施方式中,排放路径的最小长度B与电池单体20的体积能量密度E满足如下关系:0.0001m/(Wh/L)≤B/E≤0.01m/(Wh/L),其中,B的单位为m,E的单位为Wh/L。
在本实施方式中,排放路径的最小长度与电池单体20的体积能量密度相关。具体地,电池单体20的体积能量密度越大,则该排放路径的最小长度可越长。在电池单体20的体积能量密度越大的情况下,该电池单体20发生热失控通过其第一泄压机构213排放的排放物的温度可能会越高,通过延长箱体110内部的排气通道的长度,可以使得该具有较高温度的排放物在箱体110内部得到充分的降温。
另外,在本实施方式中,该电池单体20的体积能量密度与该排放路径的最小 长度需满足一定的比例关系。具体地,当电池单体20的体积能量密度一定时,排放路径的最小长度与该电池单体20的体积能量密度之比大于或等于0.0001m/(Wh/L),从而保证排放路径具有足够的长度,进而使得电池单体20的排放物在箱体110内部得到充分的降温。进一步地,当电池单体20的体积能量密度一定时,排气通道的长度与该电池单体20的体积能量密度之比小于或等于0.01m/(Wh/L),通过该方案,可以防止箱体110的内部的排气通道过长造成过多的排放物积累在箱体110内部造成箱体110内部压力过大。
作为一种示例,下面表2示出了排放路径的最小长度B与电池单体20的体积能量密度E之比与排放物在第二泄压机构113处的最高温度以及箱体110的状态的相关实验数据。
表2
Figure PCTCN2022125420-appb-000003
通过上面表2可以看出,在排放路径的最小长度B与电池单体20的体积能量密度E之比小于0.0001m/(Wh/L)或大于0.01m/(Wh/L)的情况下,箱体110可能会出现明火或者密封性失效等现象,对电池10造成较为严重的安全隐患。
在排放路径的最小长度B与电池单体20的体积能量密度E之比大于或等于0.0001m/(Wh/L)且小于或等于0.01m/(Wh/L)的情况下,箱体110处于正常状态或者仅出现少量火星喷出、鼓包等现象,该少量火星以及鼓包等对电池10的危害较小,电池10仍能够处于可使用状态。
在一些实施方式中,排放路径的最小长度B与电池单体20的体积能量密度E可满足如下关系:0.0002m/(Wh/L)≤B/E≤0.005m/(Wh/L)。参见上表所示,在该实施方式下,箱体110能够较为可靠的处于正常状态,此时电池10的综合性能较佳,其安全性能以及密封性能均能得到较优的保障。
在一些实施方式中,排放路径的最小长度B、第一泄压机构213与第二泄压机构113之间的最短距离A以及电池单体20的体积能量密度E满足如下关系:0.0015L/Wh≤(B/A)/E≤0.08L/Wh,其中,A和B的单位为m,E的单位为Wh/L。
在本实施方式中,排放路径的最小长度与两个泄压机构(第一泄压机构213和第二泄压机构113)之间的最短距离之比以及电池单体20的体积能量密度相关。可选地,电池单体20的体积能量密度越大,则该排放路径的最小长度与两个泄压机构之间的最短距离之比越大。在两个泄压机构之间的最短距离一定时,可通过在箱体110内部的相关设计,使得排放路径的最小长度越长。具体地,当电池单体20的体积能量密度越大时,该电池单体20发生热失控通过其第一泄压机构213排放的排放物的温度可能会越高,通过延长箱体110内部的排放路径的长度,可以使得该具有较高温度的排放物在箱体110内部得到充分的降温。
另外,在本实施方式中,排放路径的最小长度与两个泄压机构之间的最短距离之比与电池单体20的体积能量密度需满足一定的比例关系。具体地,当电池单体20的体积能量密度一定时,排放路径的最小长度与两个泄压机构之间的最短距离之比与该电池单体20的体积能量密度的比值大于或等于0.0015L/Wh,从而保证排放路径具有足够的长度,进而使得电池单体20的排放物在箱体110内部得到充分的降温。进一步地,当电池单体20的体积能量密度一定时,排放路径的最小长度与两个泄压机构之间的最短距离之比与该电池单体20的体积能量密度的比值小于或等于0.08L/Wh,通过该方案,可以防止箱体110的内部的排气通道过长造成过多的排放物积累在箱体110内部造成箱体110内部压力过大。
通过本实施方式的技术方案,排放路径的最小长度的设计在考虑电池单体20的体积能量密度的基础上,还考虑了两个泄压机构(第一泄压机构213与第二泄压机构113)之间的最短距离,综合保证了该排放路径的最小长度设计在电池10中的适应性,从而较佳的提升电池的安全性能以及密封性等性能。
作为一种示例,下面表3示出了排放路径的最小长度B与两个泄压机构之间的最短距离A之比、排放路径的最小长度B与两个泄压机构之间的最短距离A之比与电池单体20的体积能量密度的比值、以及排放物在第二泄压机构113处的最高温度以及箱体110的状态的相关实验数据。
表3
Figure PCTCN2022125420-appb-000004
Figure PCTCN2022125420-appb-000005
通过上面表3可以看出,在(B/A)/E小于0.0015L/Wh或大于0.08L/Wh的情况下,箱体110可能会出现明火或者密封性失效等现象,对电池10造成较为严重的安全隐患。
在(B/A)/E大于或等于0.0015L/Wh且小于或等于0.08L/Wh的情况下,箱体110处于正常状态或者仅出现少量火星喷出、鼓包等现象,该少量火星以及鼓包等对电池10的危害较小,电池10仍能够处于可使用状态。
在一些实施方式中,排放路径的最小长度B、第一泄压机构213与第二泄压机构113之间的最短距离A以及电池单体20的体积能量密度E满足如下关系:0.003L/Wh≤(B/A)/E≤0.04L/Wh。参见上表3所示,在该实施方式下,箱体110能够较为可靠的处于正常状态,此时电池10的综合性能较佳,其安全性能以及密封性能均能得到较优的保障。
在上文实施方式中,对本申请中排放路径的最小长度设计进行了相关说明,下面,结合图5至图23,说明本申请对于箱体110内部排气通道的相关结构设计。
图5示出了本申请一个实施例提供的电池10的另一结构示意图。可选地,与上文图4类似,该图5可以为电池10的俯视图、仰视图或者侧视图。
如图5所示,在本申请实施例中,电池10还包括:围挡机构30,用于围合形成与至少一个电池单体20的第一泄压机构213对应的第一排气空间310,且围挡机构30设有与第一排气空间310连通的开口301,该第一排气空间310用于形成至少部分上述排气通道。
可选地,上文图4所示实施例中的黑色结构件可以为本申请实施例中的围挡机构30。
可选地,围挡机构30围合形成的第一排气空间310可以包括至少一个电池单体20的第一泄压机构213的朝向空间。该围挡机构30设置有开口301,因此,围挡机构30并非实现全封闭式的围合,而是在开口301处为第一排气空间310提供了排气出口。
可选地,围挡机构30可以为具有开口301的框型结构。作为示例,如图4所 示,该围挡机构30可以为矩形框型结构,或者,在其它替代实施方式中,该围挡机构30也可以为其它形状的框型结构,例如圆形框型结构、多边形框型结构等等,本申请实施例对该框型结构的具体形状不做限定。
可选地,如图5所示,该围挡机构30可以为矩形框型结构,或者,在其它替代实施方式中,该围挡机构30也可以为其它形状的框型结构,例如圆形框型结构、多边形框型结构等等,本申请实施例对该框型结构的具体形状不做限定。
可选地,如图5所示,在上述围挡机构30围合形成与至少一个电池单体20的第一泄压机构213对应的第一排气空间310的基础上,该围挡机构30可以与箱体110的箱壁之间留有间隙。因而该围挡机构30与箱体110的箱壁之间可形成第二排气空间320,该第二排气空间320通过开口301连接于第一排气空间310,至少一个电池单体20的排放物经由开口301排放至第二排气空间320后,再经由该第二排气空间320排放至第二泄压机构113。换言之,在该实施方式下,围挡机构30围合第一泄压机构213形成的第一排气空间310可用于形成上述排气通道中的一部分通道,围挡机构30与箱体110的箱壁之间形成的第二排气空间320可用于形成上述排气通道中的另一部分通道。
通过本申请实施例的技术方案,由于在电池10的箱体110内部设置有围挡机构30,该围挡机构30可在箱体110内部形成有效的排气通道,通过对该围挡机构30进行相关设计,可以实现对排气通道的长度以及其中排气路径的最小长度进行有效控制,以满足电池10的安全需求和性能需求。
在一些实施方式中,上述围挡机构30中的开口301可位于围挡机构30中远离于第二泄压机构113的位置。
可以理解的是,该围挡机构30可以在封闭的框型结构上设置开口301形成。该封闭的框型结构可以由多个沿围合方向排列的围挡部拼接组成,该多个围挡部形状和大小相同。每个围挡部与第二泄压机构113具有一定的距离,多个围挡部与第二泄压机构113的多个距离的平均数为a,在该多个围挡部中,若某个围挡部与第二泄压机构113距离大于a,则该围挡部的位置可以理解为围挡机构30中远离于第二泄压机构113的位置,则可在该围挡部的位置设置开口301。
通过本申请实施例的技术方案,将开口301设置于围挡机构30中远离于第二泄压机构113的位置,可以使得开口301与第二泄压机构113之间的距离较远,从而进一步延长电池单体20的排放物在电池10的箱体110内部的排放路径,进一步降低排放物到达第二泄压机构113时的温度,提升电池10的安全性能。
在一些实施方式中,上述围挡机构30中的开口301可朝向箱体110中除第二泄压机构113所在箱壁以外的其它箱壁。
作为一种示例,如图5所示,箱体110中一个箱壁设置有一个第二泄压机构113,围挡机构30中的开口301可朝向与箱体110中与该第二泄压机构113所在箱壁相邻的箱壁。或者,在其它示例中,该开口301还可以朝向与箱体110中与该第二泄压机构113所在箱壁相对的箱壁。在该示例的技术方案中,开口301的朝向远离乃至背离于第二泄压机构113,因此,该技术方案可以增大开口301与第二泄压机构113之间的距离, 从而进一步延长电池单体20的排放物在电池10的箱体110内部的排放路径。
在其它示例中,箱体110可设置有多个第二泄压机构113,例如,箱体110可在相对的两个箱壁分别设置第二泄压机构113,则围挡机构30的开口301可朝向箱体110中除该相对的两个箱壁以外的其它箱壁。
作为一种示意,图5中所示的开口301的数量仅为1个,在其它替代的实施方式中,该开口301的数量还可以为多个,该多个开口301均朝向箱体110中除第二泄压机构113所在箱壁以外的其它箱壁。
通过本申请实施例的技术方案,围挡机构30的开口301可根据箱体110的第二泄压机构113的设置进行相应设计,从而保证该开口301不朝向第二泄压机构113所在的箱壁,增大开口301与第二泄压机构113之间的距离,从而进一步延长电池单体20的排放物在电池10的箱体110内部的排放路径,以进一步降低排放物到达第二泄压机构113时的温度,提升电池10的安全性能。
在上文图5所示实施例中,电池10可仅包括一个围挡机构30,从而便于该围挡机构30在箱体110内的安装,在一些其它实施方式中,电池10还可以包括多个围挡机构30,该多个围挡机构30间隔设置。
在该情况下,图6示出了本申请一个实施例提供的电池10的另两种结构示意图。与上文图5类似,可选地,该图6可以为电池10的俯视图、仰视图或者侧视图。
如图6中的(a)图所示,电池10中的多个电池单体20可以包括4组电池单体20。对应于该4组电池单体20,电池10可包括4个围挡机构30,每个围挡机构30用于形成与一组电池单体20的第一泄压机构213对应的第一排气空间310。
另外,在该电池10中,第二泄压机构113设置于箱体110中相对的两个箱壁,此时,每个围挡机构30的开口301可朝向箱体110中除该第二泄压机构113所在两个箱壁以外的其它箱壁。
可选地,如图6中的(a)图所示,该4个围挡机构30的开口301在该4个围挡机构30中的相对位置相同,该4个开口301的朝向也可相同。或者,在其它替代实施例中,该4个围挡机构30的开口301在该4个围挡机构30中的相对位置也可以不相同,且该4个开口301中部分开口301的朝向也可以不相同。
通过本申请实施例的技术方案,多个围挡机构30设置于电池10的箱体110内,该多个围挡机构30可以根据实际需求灵活设置和调整,从而便于对箱体110中不同位置处的电池单体20的排放物起到更好的导向作用,以进一步提升电池10整体的安全性能。
在一些实施方式中,上述围挡机构30的开口301可位于箱体110的中部区域。
如图6中的(b)图所示,电池10中多个电池单体20可以包括2组电池单体20。对应于该2组电池单体20,电池10可包括2个围挡机构30。可选地,在该电池10中,第二泄压机构113设置于箱体110中相对的两个壁,此时,每个围挡机构30的开口301可位于箱体110的中部区域。
可选地,第二泄压机构113所在的两个壁可以为箱体110在x方向上相对排列的两个壁。在箱体110为长方形箱体的情况下,该x方向可以为箱体110的长度方向、 宽度方向或者高度方向。此时,每个围挡机构30的开口301可位于箱体110在x方向上的中部区域。
通过上述实施例的技术方案,围挡机构30的开口301位于箱体110的中部区域,也可以增大开口301与位于箱体110的箱壁的第二泄压机构113之间的距离,从而延长电池单体20的排放物在电池10的箱体110内部的排放路径,进一步降低排放物到达第二泄压机构113时的温度,提升电池10的安全性能。
图7示出了本申请一个实施例提供的电池10的另一结构示意图。
如图7所示,多个围挡机构30中相邻的两个围挡机构30的开口设置于相邻的两个围挡机构30中相邻的两个壁上,相邻的两个围挡机构30的开口301相互错开设置。
作为示例,在图7所示的相邻的两个围挡机构30中,其中一个围挡机构30设置有一个开口301,另一个围挡机构30设置有两个开口301,该三个开口301相互错开设置,以避免两个围挡机构30围合的两个第一排气空间310之间形成直接对流。
在本申请实施例中,相邻两个围挡机构30的开口301并非正对设置,而是相互错开设置,即从第一个围挡机构30的开口301中排出的排放物不会通过第二个围挡机构30的开口301直接进入第二个围挡机构30形成的第一排气空间310中,防止高温排放物造成更大范围影响和损坏,也防止箱体110内部压强过高,保证电池10的安全性能。
需要说明的是,在上文图4至图7所示实施例中,围挡机构30的数量以及每个围挡机构30中围合的电池单体20的数量仅作为示意而非限定,围挡机构30的数量以及围合方式可以根据电池10中电池单体20的数量以及排列方式决定,本申请实施例对此不做具体限定。
图8示出了本申请一个实施例提供的电池10的一种爆炸结构示意图。
如图8所示,至少一个电池单体20的第一壁201设置有第一泄压机构213,该至少一个电池单体20的第一壁201与箱体110的第一箱壁101相对设置,围挡机构30设置于第一箱壁101与至少一个电池单体20的第一壁201之间。
在该实施例中,至少一个电池单体20的第一壁201可位于同一平面。通过该设置,可以便于围挡机构30在第一箱壁101与至少一个电池单体20的第一壁201之间的设置和安装,也便于围合至少一个电池单体20的第一泄压机构213对应的空间以形成第一排气空间310。
可选地,如图8所示,围挡机构30附接于该箱体110的第一箱壁101和该至少一个电池单体20的第一壁201,第二泄压机构113设置于箱体110中除第一箱壁101以外的其它壁。
作为示例,在图8所示的箱体110可以为长方体空心箱体,其具有6个平面的箱壁,其中,该箱体110的第一箱壁101与电池单体20的第一壁201相对设置,且该箱体110的第一箱壁101与电池单体20的第一壁201相互平行。围挡机构30可直接附接于第一箱壁101与电池单体20的第一壁201之间,或者,围挡机构30也可间接附接(例如通过胶层或者固定件)附接于第一箱壁101与电池单体20的第一壁201之间。 第一箱壁101未设置有第二泄压机构113,该第二泄压机构113可设置于除该第一箱壁101以外的其它任意箱壁。
围挡机构30在第一箱壁101与电池单体20的第一壁201之间围合形成的第一排气空间310在垂直于电池单体20的第一壁201的第一方向上为密封空间,而在平行于电池单体20的第一壁201的第二方向上为具有开口的空间。由于第二泄压机构113设置于除第一箱壁101以外的其它箱壁,因此,电池单体20经由第一泄压机构213排放的排放物无法在第一方向上通过第一箱壁101排出,而沿第二方向移动,通过第一排气空间310在第二方向上的开口以及位于其它箱壁的第二泄压机构113排出。
通过本申请实施例的技术方案,不仅可以便于围挡机构30在箱体110中的稳定安装,也可以便于围挡机构30对该至少一个电池单体20的排放物进行方向引导,增长排放物在箱体110内部的排放路径,提升电池10的安全性能。
可选地,在一些实施方式中,如图8所示,箱体110的第二箱壁102相交于箱体110的第一箱壁101,第二泄压机构113设置于该第二箱壁102。围挡机构30与第二箱壁102之间形成第二排气空间320,该第二排气空间320通过开口301连接于第一排气空间310,至少一个电池单体20的排放物经由开口301进入第二排气空间320并排放至第二泄压机构113。
具体地,在该实施方式的技术方案中,箱体110中可具有4个第二箱壁102相交于箱体110的第一箱壁101,例如,在箱体110的第一箱壁101为箱体110的顶壁或底壁的情况下,该4个第二箱壁102可以为箱体110的侧壁。第二泄压机构113的数量可以为一个或多个,该一个或多个第二泄压机构113可设置于4个第二箱壁102中的任意一个或多个第二箱壁102。
在围挡机构30在第一箱壁101与电池单体20的第一壁201之间围合形成第一排气空间310的基础上,该围挡机构30可以与第二箱壁102之间形成第二排气空间320。该第二排气空间320用于连通第一排气空间310与位于第二箱壁102上的第二泄压机构113。
在该实施方式的技术方案中,通过围挡机构30在箱体110内部分隔出第一排气空间310和第二排气空间320,第二排气空间320连通于箱体110的第二箱壁102,因而可以便于第二泄压机构113在箱体110的第二箱壁102上的位置设计,有利于进一步延长排放物在箱体110内部的排放路径,保障电池10的安全性能。
对应于上述图8所示实施例的爆炸图,图9示出了图8中电池10的一种示意性俯视图。
结合图8和图9所示,在一些实施方式中,至少一个电池单体20排列形成电池单体序列,该电池单体序列中每个电池单体20的第一壁201设置有两个电极端子214,第一泄压机构213设置于两个电极端子214之间。围挡机构30设置于电池单体序列中每个电池单体的两个电极端子214之间。
作为示例,在图8和图9所示实施例中,多个电池单体20沿电池单体20的宽度方向排列为一排,该一排电池单体20可理解为一个电池单体序列。或者,在其它示例中,多个电池单体20还可以按照其它排列方式形成一个电池单体序列,本申请实施 例对该电池单体序列中电池单体20的具体排列方式不做限定。
该电池单体序列中每个电池单体20的第一壁201设置有第一泄压机构213以及两个电极端子214。围挡机构30靠近于该电池单体序列中每个电池单体20的第一泄压机构213设置,且围合于该第一泄压机构213对应的空间,进一步地,该围挡机构30可设置于该电池单体序列中每个电池单体20的两个电极端子214之间。
通过该实施方式的技术方案,一方面,该围挡机构30距离第一泄压机构213的距离较近,因此该围挡机构30能够对从第一泄压机构213中排放的排放物起到良好的阻挡和导向作用,另一方面,该围挡机构30能够防止从第一泄压机构213排放的排放物对电极端子214或者电池单体20的其它部件造成影响,进一步保证电池10的安全性能。
可选地,在电池单体20的电极端子214与第一泄压机构213位于同一壁时,作为一种其它替代实施例,围挡机构30也可同时围合于电池单体20的两个电极端子214以及第一泄压机构213对应的空间,通过该实施例的技术方案,围挡机构30也能实现对经由第一泄第一壁201压机构213排放的排放物的阻挡和导向作用,延长该排放物在箱体110的内部的排放路径。
上文图8和图9示出了本申请一实施例包括一个围挡机构30的示意性结构图,下面图10和图11示出本申请另一实施例包括多个围挡机构30的示意性结构图。其中,图10为本申请一个实施例提供的电池10的另一示意性爆炸图,图11为图10中电池10的俯视图。
结合图10和图11所示,在本申请实施例中,电池10可包括多组电池单体20,每组电池单体20可以如图8和图9所示,包括由至少一个电池单体20排列形成的电池单体序列。每组电池单体20的第一泄压机构213对应的空间围合有一个围挡机构30。
该多个围挡机构30中每个围挡机构30可直接附接于箱体110的第一箱壁101和一组电池单体20的第一壁201。具体地,该围挡机构30与一组电池单体20之间的相关技术方案可以参见上文图8和图9所示实施例的相关描述,此处不做过多赘述。
可选地,在一些实施方式中,电池10的箱体110中可设置有横梁114,该横梁114可将箱体110的内部空间划分为多个子空间,每个子空间用于容纳一组电池单体20。作为示例,如图10和图11所示,箱体110中设置有相交的两个横梁114,该两个横梁114将箱体110的内部空间划分为四个子空间。
可选地,为了便于每个子空间中电池单体20的排放物排出,每个子空间对应的箱壁可设置有一个第二泄压机构113。例如,对于图10所示实施例,在箱体110中相对的两个第二箱壁102中,每个第二箱壁102可设置有2个第二泄压机构113,即在该箱体110的箱壁中共设置有4个第二泄压机构113。
可选地,如图10和图11所示,多个围挡机构30的开口301可位于箱体110的中部区域设置。或者,在其它实施方式中,多个围挡机构30的开口301可朝向箱体110中除第二泄压机构113所在箱壁以外的其它箱壁。
除了上文图8至图11所示的围挡机构30附接于箱体110的第一箱壁101和至少一个电池单体20的第一壁201的技术方案以外,在其它实施例中,箱体110的第一 箱壁101和至少一个电池单体20的第一壁201之间可设置有其它部件,围挡机构30可附接于该部件与至少一个电池单体20的第一壁201之间。
图12示出了本申请一个实施例提供的电池10的另一爆炸示意图。
如图12所示,在本申请实施例中,箱体110的第一箱壁101与至少一个电池单体20的第一壁201(图中未示出)之间设置有隔离部件40,该隔离部件40用于在箱体110的内部形成相互隔离的电气腔和排气腔,其中,电气腔用于容纳至少一个电池单体20(图中未示出),围挡机构30设置于排气腔中,且该围挡机构30附接于箱体110的第一箱壁101和隔离部件40,围挡机构30用于在排气腔中围合形成与至少一个电池单体20的第一泄压机构213(图中未示出)对应的第一排气空间310。
具体地,在该实施例的技术方案中,采用隔离部件40将箱体110的内部空间隔离为电气腔和排气腔。也就是说,在箱体110内部,容纳至少一个电池单体20的电气腔与收集并排放至少一个电池单体20的排放物的排气腔分离。这样,当电池单体20发生异常时,电池单体20的排放物先进入排气腔,该排放物不会直接影响电气腔中的电气部件,因此能够进一步增强电池的安全性。
可选地,在一些实施方式中,隔离部件40可以具有为电气腔和排气腔共用的壁。例如,隔离部件40可以同时为电气腔的一个壁以及排气腔的一个壁。这样,电池单体20的排放物可以直接经过隔离部件40进入排气腔,避免在箱体110中引入其他结构部件,影响电池10的能量密度等性能参数。
进一步地,围挡机构30设置于排气腔中,且附接于箱体110的第一箱壁101与隔离部件40,该围挡机构30在该第一箱壁101与隔离部件40之间形成第一排气空间310以接收并引导排放物在箱体110内的排放。
通过本申请实施例的技术方案,箱体110被隔离部件40分隔为相互隔离的电气腔和排气腔,因此,电气腔中电池单体20的排放物会先经由隔离部件40排放至排气腔,而不会直接对电气腔中的电池单体20的电气结构造成影响,从而进一步提高电池10的安全性能。进一步地,围挡机构30设置于排气腔中,用于对排放物进行导向,以使得其仅能通过围挡机构30中的开口301排放,延长该排放物在箱体110内部的排放路径,以更进一步提高电池10的安全性能。
可选地,第二泄压机构113可以设置于箱体110的任意一个箱壁。针对于第二泄压机构113的具体位置,可以在箱体110内部设计连通于该第二泄压机构113与第一排气空间310的排气通道。
例如,第二泄压机构113可设置于箱体110中电气腔对应的箱壁,在该情况下,隔离部件40中可以设计连通于电气腔与第一排气空间310的通道,延长排放物在箱体110内部的排放路径。
或者,第二泄压机构113也可设置于箱体110中排气腔对应的箱壁,便于排放物可以由排气腔排出,该排放物不会对电气腔中的电气结构造成影响。
可选地,第二泄压机构113可设置于箱体110中除第一箱壁101以外的其它箱壁。
具体地,在本申请实施例中,第一箱壁101和隔离部件40可用于形成排气腔中 相对设置的两个壁,电池单体20的排放物经过隔离部件40后,其中的大部分会直冲第一箱壁101。因此,第二泄压机构113未设置于该第一箱壁101而设置于其它箱壁,可以延长该排放物在箱体110内部的排放路径,从而提升电池10的安全性。
可选地,在一些实施方式中,当电池10安装于用电装置后,该电池10的第一箱壁101可以为箱体110的底壁,且至少一个电池单体20中设置有第一泄压机构213的第一壁201也可称为该至少一个电池单体20的底壁。该隔离部件40可以将箱体110的内部空间分隔为两个空间,其中,电气腔位于排气腔的下方。或者,在一些其它的替代实施方式中,电气腔也可以位于排气腔的上方或者其它方向,本申请实施例对该电气腔和排气腔的相对位置关系不做具体限定。
可选地,继续参见图12所示,在一些实施方式中,隔离部件40中形成有对应于至少一个电池单体20的第一泄压机构213的泄压区域410,该至少一个电池单体20的排放物经由该泄压区域410排放至排气腔,围挡机构30用于在排气腔中围合形成与泄压区域410对应的第一排气空间310。
可选地,隔离部件40中设置有至少一个泄压区域410,每个泄压区域可与一个电池单体20的第一泄压机构213相对设置,当第一泄压机构213致动时,该电池单体20内部的排放物经由该泄压区域410排放。
在一些实施方式中,隔离部件40中的泄压区域410也可以经过特殊处理,使其能够在第一泄压机构213致动时更容易被破坏。作为一种示例,该泄压区域410可以为薄弱区,其强度小于隔离部件40中除该泄压区域410以外其他区域处的强度。
可选地,隔离部件40设置有与第一泄压机构213相对设置的凹槽,凹槽的底壁形成薄弱区。由于凹槽的底壁较隔离部件40的其他区域薄弱,容易被排放物破坏,第一泄压机构213致动时,排放物可以破坏凹槽的底壁而进入排气腔。
可选地,还可以通过其它方式在隔离部件40中形成薄弱区作为泄压区域410,例如,在隔离部件40中设置刻痕以形成薄弱区等等,本申请对此不做具体限定。
围挡机构30用于围合隔离部件40中泄压区域410对应的空间,从而能够接收经由第一泄压机构213以及泄压区域410排放的排放物,以对该排放物进行路径导向。
通过该实施方式的技术方案,在隔离部件40中设置泄压区域410,能够更为有效的使得从第一泄压机构213排放的排放物通过,防止排放物对电气腔中的电气部件造成影响。围挡机构30围合于该泄压区域410对应的空间,能够间接围合电池单体20的第一泄压机构213对应的空间,从而对排放物进行有效的导向,综合保障电池10的安全性能。
可选地,在上述申请实施例中,隔离部件40可以为热管理部件,该热管理部件用于调节电池单体20的温度。可选地,该热管理部件可用于容纳流体以给多个电池单体调节温度。这里的流体可以是液体或气体,调节温度是指给多个电池单体加热或者冷却。在给电池单体冷却或降温的情况下,该热管理部件用于容纳冷却流体以给多个电池单体降低温度,此时,热管理部件也可以称为冷却部件、冷却系统或冷却板等,其容纳的流体也可以称为冷却介质或冷却流体,更具体的,可以称为冷却液或冷却气体。另外,热管理部件也可以用于加热以给多个电池单体升温,本申请实施例对此并 不限定。可选的,上述流体可以是循环流动的,以达到更好的温度调节的效果。可选的,流体可以为水、水和乙二醇的混合液或者空气等。
通过该实施方式的技术方案,复用热管理部件作为隔离部件40,既能在箱体110中分隔出相互隔离的电气腔和排气腔,以保证电池10的安全性,另外,由于热管理部件的存在,可以对电池单体20进行进一步的热管理作用,以进一步提升电池10的安全性能。
图13示出了图12中电池10的一种示意性仰视图。
如图13所示,该电池10可包括多个围挡机构30,每个围挡机构30用于围合一组泄压区域410对应的空间,该一组泄压区域410对应于一组电池单体20的第一泄压机构213。
作为示例,图13示出了相邻的两个围挡机构30,该两个围挡机构30的开口301可位于排气腔的中部区域。或者,在替代实施方式中,该两个围挡机构30的开口301还可以按照其它方式进行设计。
例如,图14示出了本申请一个实施例提供的围挡机构30围合泄压区域410的两种示意性结构图。
如图14中的(a)图所示,在该实施例中,两个围挡机构30的设置方式与图13类似,但开口301相较于图13中所示的开口301较小,通过该实施例的技术方案,围挡机构30对于排放物能够起到更好的导向作用,从而进一步延长排放物在排气腔中的排放路径。
如图14中的(b)图所示,在该实施例中,两个围挡机构30中的一个围挡机构30可设置有两个开口301,另一个围挡机构30形成有一个开口301。该三个开口301相互错开设置,以避免两个围挡机构30对应的两个第一排气空间310之间形成直接对流,防止高温排放物造成更大范围影响和损坏,也防止第一排气空间310的压强过高,保证电池10的安全性能。
需要说明的是,图13和图14仅作为示意说明了相邻的两个围挡机构30对于泄压区域410的围合方式,在其它替代实施方式中,围挡机构30的数量也可以为1个或者3个以上,围挡机构30中开口301的设置方式可以与第二泄压机构113相关,其具体设计方案可以参见上文实施例的相关描述,此处不做过多赘述。
在上文实施例的围挡机构30的基础上,可选地,该围挡机构30中还形成有第一过滤孔302,该第一过滤孔302用于过滤排放物中的固体颗粒。可选地,该排气孔的孔径小于开口301的径向尺寸。
作为示例,图15示出了本申请一个实施例提供的电池10的另两种示意性结构图。可选地,图15中的(a)图可以为图10所示实施例的俯视图,图15中的(b)图可以为图12所示实施例的仰视图。
如图15所示,围挡机构30具有较大尺寸的开口301以外,还形成有多个较小尺寸的第一过滤孔302,该多个第一过滤孔302可以等间距或非等间距的分布于该围挡机构30。可选地,该第一过滤孔302的位置设计以及位置设计可以与上文开口301的相关设计相同,例如,该第一过滤孔302也可以设置于围挡机构30中远离于第二泄压 机构113的位置,和/或,该第一过滤孔302也可以朝向箱体110中除第二泄压机构113所在箱壁以外的其它箱壁。
与开口301的作用类似,第一过滤孔302也可以用于排放电池单体20经由第一泄压机构213排放的排放物,但该第一过滤孔302的主要用于通过排放物中的气体,而排放物中粒径较大的固体颗粒可以被该第一过滤孔302过滤,该固体颗粒无法通过第一过滤孔302排放至第一排气空间310之外,因此,通过该技术方案可以减少排放至第二泄压机构113处的高温固体颗粒,进一步提升电池10的安全性。
再者,在围挡机构30中设置第一过滤孔302,可以加快第一排气空间310的排气速度以及泄压速度,防止第一排气空间310的压强过高。与此同时,在第一过滤孔302的数量为多个的情况下,多个第一过滤孔302排出的气流可以相互碰撞产生一定的扰流作用,从而减小气体直冲产生的危害。
可选地,在一些实施方式中,围挡机构30可以为间断式结构,该围挡机构30由多个围挡部形成,多个围挡部中相邻的两个围挡部之间的间隙形成上述第一过滤孔302。
通过该实施方式的技术方案,在形成第一过滤孔302的基础上,围挡机构30的间断式设计提升了加工便捷度,围挡机构30无需一体成型,可以分别制造多个围挡子结构以形成围挡机构30。
可选地,第一过滤孔的直径D与电池单体20的体积能量密度E满足如下关系:0.0001mm/(Wh/L)≤D/E≤0.006mm/(Wh/L),其中,D的单位为mm,E的单位为Wh/L。
具体地,第一过滤孔302的直径需要小于或等于一定的预设值以防止该第一过滤孔302成为主流道,即防止围挡机构30发生失效。当围挡机构30发生失效后,其无法对排放物中的固体颗粒起到良好的阻挡和导向作用,因此,大量固体颗粒物可能会快速冲出第二泄压机构113导致电池10外部发生爆燃的情况。
另外,第一过滤孔302的直径也需要大于或等于一定的预设值,以使得该第一过滤孔302能够以一定速率通过排放物中的气体,起到对第一排气空间310的泄压作用。
作为一种示例,下面表4示出了第一过滤孔的直径D与电池单体20的体积能量密度E之比以及箱体110的状态的相关实验数据。
表4
Figure PCTCN2022125420-appb-000006
Figure PCTCN2022125420-appb-000007
通过上面表4可以看出,在D/E小于0.0001mm/(Wh/L)或大于0.006mm/(Wh/L)的情况下,箱体110可能会出现明火或者密封性失效等现象,对电池10造成较为严重的安全隐患。
在D/E大于或等于0.0001mm/(Wh/L)且小于或等于0.006mm/(Wh/L)的情况下,箱体110处于正常状态或者仅出现少量火星喷出等现象,该少量火星对电池10的危害较小,电池10仍能够处于可使用状态。
在一些实施方式中,D/E可满足如下关系:0.0001mm/(Wh/L)≤D/E≤0.003m/(Wh/L)。参见上表所示,在该实施方式下,箱体110能够较为可靠的处于正常状态,此时电池10的综合性能较佳,其安全性能以及密封性能均能得到较优的保障。
因此,通过本申请实施例的技术方案,第一过滤孔302的尺寸可以根据电池单体20的体积能量密度进行相应设计,能够使得该第一过滤孔302适应于该电池单体20发生热失控的情况,在围挡机构30中起到良好的固体过滤以及排气作用,综合提升电池10的安全性能。
可选地,在上述申请实施例中,围挡机构30的材料的熔点不低于200℃。
在一些实施方式中,围挡机构30的材料可以为金属材料,其可以具有300℃以上的熔点,该围挡机构30可以应用于能量密度较高的电池10。可选地,围挡机构30的材料也可以为非金属材料,如橡胶,云母,碳纤维,三聚氰胺泡棉,发泡聚氨酯,此时,围挡机构30的碳化温度不低于200℃。
通过该实施方式的技术方案,围挡机构30的材料为耐高温材料,其能够抵御从电池单体20排放的高温排放物的冲击,防止该高温排放物影响围挡机构30的使用可靠性,综合保障电池10的安全性能。
上文结合图5至图15说明了本申请实施例中用于形成排气通道的围挡机构30的相关技术方案,下面结合图16至图23说明本申请实施例中用于形成排气通道的其它技术方案。
图16示出了本申请一个实施例提供的电池10的另一结构示意图。可选地,该图16可以为电池10的俯视图、仰视图或者侧视图。
如图16所示,在本申请实施例中,箱体110的至少一个箱壁为空心箱壁103,该空心箱壁103的外表面1102设置有第二泄压机构113,该空心箱壁103的内表面1101设置有排气口115,该空心箱壁103的内表面1101与外表面1102之间的内部空间形成至少部分上述排气通道。
具体地,在本申请实施例中,箱体110具有至少一个空心箱壁103,该空心箱壁103的内表面1101与外表面1102之间的内部空间为中空空间,其中,空心箱壁103 的内表面1101为空心箱壁103中朝向箱体110的内部容纳空间的表面,相对的,空心箱壁103的外表面1102为空心箱壁103中朝向箱体110的外部空间的表面。利用该空心箱壁103的内表面1101与外表面1102之间的内部空间可以形成箱体110中用于排放电池单体20的排放物的部分排气通道。
具体地,空心箱壁103的内表面1101上设置有排气口115,该排气口115与空心箱壁103的内部空间相连。进一步地,空心箱壁103的外表面1102上设置有第二泄压机构113,该第二泄压机构113通过空心箱壁103的内部空间连通于排气口115。因此,在电池单体20的第一泄压机构213致动以泄放排放物的情况下,该排放物通过箱体110的内部空间排放至位于空心箱壁103的内表面1101的排气口115,在经过空心箱壁103的内部空间排放至位于空心箱壁103的外表面1102。箱体110的内部空间用于形成用于通过排放物的排气通道中的一部分通道,箱体110的空心箱壁103的内部空间用于形成排气通道的另一部分通道。
通过本申请实施例的技术方案,可利用箱体110的空心箱壁103形成用于排放物的排气通道,从而节省箱体110的内部空间提升电池10的能量密度。
可选地,在上述申请实施例中,箱体110的至少两个箱壁为空心箱壁103,排气口115可以与第二泄压机构113设置于箱体110中不同的空心箱壁103。
作为一种示例,如图16所示,排气口115可以与第二泄压机构113设置于箱体110中相对的两个空心箱壁103,其中,排气口115设置于其中一个空心箱壁103的内表面1101,第二泄压机构113设置于另一个空心箱壁103的外表面1102。该两个空心箱壁103的内部空间可以通过箱体110中的其它部件进行连通,例如,可通过箱体110的其它空心箱壁103相连通。
或者,在其它示例中,排气口115也可以与第二泄压机构113设置于箱体110的同一个空心箱壁103,即排气口115与第二泄压机构113分别设置于该同一个空心箱壁103的内表面1101和外表面1102,且二者相互错开设置。
通过该实施方式的技术方案,排气口115与第二泄压机构113设置于箱体110不同的空心箱壁103,或者,设置于同一空心箱壁103的排气口115和第二泄压机构113相互错开设置,有利于延长电池单体20的排放物在箱体110的箱壁内部的排放路径,从而降低排放物到达第二泄压机构113的温度,提升电池10的安全性能。
图17示出了本申请一个实施例提供的电池10的另一结构示意图。可选地,该图17可以为电池10的俯视图、仰视图或者侧视图。
如图17所示,在本申请实施例中,箱体110的至少一个箱壁为空心箱壁103,该空心箱壁103的外表面1102设置有第二泄压机构113,电池10还包括:空心横梁104,该空心横梁104和/或空心箱壁103的内表面1101设置有排气口115,该空心横梁104的内部空间连通于空心箱壁103的内部空间,且该空心横梁104的内部空间与该空心箱壁103的内部空间形成至少部分排气通道。
具体地,电池10中的空心横梁104设置于箱体110的内部空间中,用于分隔箱体110的内部空间容纳的多个电池单体20。该空心横梁104的至少一端可附接于箱体110的至少一个空心箱壁103,该空心箱壁103的内部空间可以与空心横梁104的内部 空间相互连通。
作为一种示例,如图17所示,该空心横梁104设置有排气口115,该排气口115可用于接收电池单体20的排放物,该排放物经由排气口115进入空心横梁104的内部空间并进一步排放至与该空心横梁104的内部空间相连通的空心箱壁103的内部空间,通过该空心箱壁103的内部空间,排放物可继续排放至位于空心箱壁103的外表面1102的第二泄压机构113从而排放至箱体110之外。
在其它示例中,排气口115除了可设置于空心横梁104以外,还可以仅设置于空心箱壁103的内表面1101,又或者,多个排气口115可分别设置于空心横梁104和空心箱壁103的内表面。通过该示例的技术方案,排放物也可通过空心箱壁103的内部空间和空心横梁104的内部空间排放至第二泄压机构113从而排放至箱体110之外。
在该实施例的技术方案中,可利用箱体110的空心箱壁103和/或空心横梁104的内部空间形成用于排放物的部分排气通道,在节省箱体110的内部空间提升电池10的能量密度以外,可以进一步延长排放物在箱体110内部的排放路径,提升电池10的安全性能。
可选地,在一些实施方式中,在电池10中的至少一个电池单体20的数量为多个的情况下,该多个电池单体20包括多组电池单体20,该空心横梁104用于将箱体110的内部空间划分为多个子空间,该多个子空间用于分别容纳该多组电池单体20,空心横梁104对应于多个子空间中的每个子空间均设置有排气口115,和/或,空心箱壁103的内表面1101对应于多个子空间中的每个子空间均设置有排气口115。
作为示例,如图17所示,电池10可包括两个相互垂直设置的空心横梁104以及4个空心箱壁103,该空心横梁104的端面可附接于箱体110的空心箱壁103,且该空心横梁104的内部空间可连通于空心箱壁103的内部空间。该两个空心横梁104可以将箱体110的内部空间划分为4个子空间,每个子空间用于容纳一组电池单体20。
可选地,该4个子空间可相互隔绝,彼此之间互不连通。为了便于将每个子空间中容纳的电池单体20的排放物有效排放至箱体110之外,该空心横梁104对应于每个子空间均设置有一个排气口115,例如,在图17所示实施例中,同一空心横梁104可设置有4个排气口115,该4个排气口115一一对应于4个子空间。可选地,在图17所示实施例中,第二泄压机构113设置于两个相对的空心箱壁103,该设置有排气口115的空心横梁104可位于该两个相对的空心箱壁103之间且平行于该两个相对的空心箱壁103。
可选地,在上文实施例中,箱体110被空心横梁104划分的多个子空间中,每个子空间均对应设置有一个排气口115。或者,在其它替代实施例中,每个子空间也可对应设置有多个排气口115。
图18示出了本申请一个实施例提供的电池10的另三种结构示意图。
如图18所示,两个相互垂直的空心横梁104将箱体110的内部空间划分为4个子空间,两个空心横梁104中空心横梁104和/或空心箱壁103的内表面1101可设置有8个排气口115,该8个排气口115中每两个排气口115对应于箱体110内部的一个空间。
可选地,与上述图17所示实施例相同,在该图18中(a)图所示实施例中,8个排气口115分布设置于两个空心横梁104中的一个空心横梁104,第二泄压机构113设置于两个相对的空心箱壁103,设置有排气口115的空心横梁104可位于该两个相对的空心箱壁103之间且平行于该两个相对的空心箱壁103。
在该图18中(b)图所示实施例中,8个排气口115分布设置于两个空心横梁104中的另一空心横梁104,第二泄压机构113设置于两个相对的空心箱壁103,设置有排气口115的空心横梁104可连接并垂直于该两个相对的空心箱壁103。
在该图18中(c)图所示实施例中,8个排气口115分布设置于箱体110的空心箱壁103的内表面1101。
通过本申请实施例的技术方案,在空心横梁104将箱体110的内部空间划分为多个子空间的情况下,有利于降低乃至防止每个子空间容纳的电池单体20对其它子空间容纳的电池单体20造成影响,提升电池10的安全性能。进一步地,为了保证每个子空间中容纳的电池单体20的排放物能够顺利排放,每个子空间在空心横梁104和/或空心箱壁103的内表面1101设置有排气口115,从而进一步提升电池10的安全性能。
图19示出了本申请一个实施例提供的电池10的另一示意性爆炸图。可选地,上文图18中的(a)图可以为该图19所示实施例的电池10的示意性俯视图。
在该图19所示申请实施例中,电池10的箱体110中的内部空间可形成电气腔,该电气腔用于容纳至少一个电池单体20,该电池单体20在其第一泄压机构213致动时排放的排放物进入该电气腔中,空心箱壁103、空心横梁104、排气口115以及第二泄压机构113的相关设置均针对于该电气腔进行设计。
可选地,在图19所示实施例中,电池单体20的第一泄压机构213朝向箱体110的第一箱壁101设置,该排气口115可以设置于空心横梁104中靠近于第一箱壁101的区域。或者,在其它替代实施例中,排气口115也可以设置于空心横梁104的其它位置,本申请实施例对此不做具体限定。
可选地,在图19所示实施例中,箱体110的第一箱壁101可以为实心壁,空心箱壁103可以为相交于该第一箱壁101的4个箱壁,该4个空心箱壁103的内部空间可相互连通,且空心横梁104的内部空间可以连通于该4个空心箱壁103的内部空间。
图20示出了本申请一个实施例提供的电池10的另一示意性爆炸图。图21示出了图20中所示电池10的示意性仰视图和沿A-A’方向的示意性截面图。
如图20和图21所示,在本申请实施例中,电池10还包括:隔离部件40,该隔离部件40用于在箱体110的内部空间形成相互隔离的电气腔和排气腔,该电气腔用于容纳至少一个电池单体20,排气腔用于接收来自该至少一个电池单体20的排放物,且形成至少部分排气通道。空心横梁104位于电气腔,且连接于该隔离部件40,空心横梁104与隔离部件40的连接部设置有排气口115,该排气口115用于接收来自排气腔的排放物。
可选地,在本申请实施例中,隔离部件40可以与上文图12至图14所示实施例中的隔离部件40相同,作为示例,该隔离部件40包括但不限于是热管理部件或者其它类型的隔离部件。
可选地,隔离部件40可以作为电气腔中的一个腔壁,电气腔中容纳的至少一个电池单体20的第一泄压机构213可以朝向该隔离部件40设置,以便于至少一个电池单体20的排放物通过该隔离部件40排放至排气腔。除了隔离部件40以外,该电气腔的其它至少部分箱壁可以为空心箱壁103,第二泄压机构113可设置于该空心箱壁103的外表面。
可选地,如图21中的(a)图所示,该隔离部件40中设置有与电池单体20的第一泄压机构213相互对应的泄压区域410,该泄压区域410可以为薄弱区,其强度可小于隔离部件40中除该泄压区域410以外其他区域处的强度,因此,在电池单体20的第一泄压机构213致动时,排放物可易于经过第一泄压机构213以及与该第一泄压机构213对应的泄压区域410进入至排气腔。
进一步地,电气腔除了容纳有至少一个电池单体20以外,还可以容纳有空心横梁104。如图20所示,该空心横梁104可连接于电气腔的箱壁,具体地,该空心横梁104可连接于电气腔中设置有第二泄压机构113的空心箱壁103,该空心横梁104的内部空间可与空心箱壁103的内部空间相互连通。
如图21中的(b)图所示,该空心横梁104除了可连接于空心箱壁103以外,该空心横梁104还可连接于隔离部件40,且该空心横梁104与隔离部件40之间的连接部可设置有排气口115。具体地,空心横梁104与隔离部件40设置有相互对应的排气口115,该排气口115可连通于空心横梁104的内部空间与排气腔,以使得电池单体20排放至排气腔中的排放物可以经过该排气口115进入空心横梁104的内部空间,进而再通过与空心横梁104的内部空间连通的空心箱壁103的内部空间到达第二泄压机构113,从而排放至箱体110之外。
在该实施方式中,箱体110的内部的排气通道可以包括排气腔、空心横梁104的内部空间以及空心箱壁103的内部空间,该排气通道以及排放物在该排气通道中的排放路径的长度可以与该几个空间的尺寸相关。
通过本申请实施例的技术方案,箱体110被隔离部件40分隔为相互隔离的电气腔和排气腔,因此,电气腔中电池单体20的排放物会经由隔离部件40排放至排气腔,而不会对电气腔中的电池单体20的电气结构造成影响,可提高电池10的安全性能。进一步地,利用电气腔中的空心横梁104以及空心箱壁103的内部空间进一步作为排放物的排气通道,可以进一步延长排放物在箱体110内部的排放路径,提升电池10的安全性能。
在上述图20至图21所示实施例的基础上,图22示出了本申请一个实施例提供的电池10的另一示意性爆炸图。图23示出了图22中所示电池10的示意性仰视图。
如图22和图23所示,在图20和图21所示电池10的基础上,电池10还包括:围挡机构30,该围挡机构30设置于排气腔中,隔离部件40中形成有对应于至少一个电池单体20的第一泄压机构213的泄压区域410,该至少一个电池单体20的排放物经由该泄压区域410排放至排气腔,围挡机构30用于在排气腔中围合形成与泄压区域410对应的第一排气空间310,且围挡机构30设有与第一排气空间310连通的开口301,第一排气空间310用于形成至少部分排气通道。
可选地,在本申请实施例中,该围挡机构30可以为上文图12至图14所示实施例中的围挡机构30。该围挡机构30设置于排气腔中,可以对排放至该排气腔中的排放物起到路径引导的作用,从而进一步延长排放物在箱体110内部的排放路径,提升电池10的安全性能。
作为一种示例,图23中所示的围挡机构30可以为如图14中(b)图所示的围挡机构30,或者,在其它示例中,图23中所示的围挡机构30也可以如图14中的(a)图或者图13中所示的围挡机构30。本申请实施例对该围挡机构30的具体结构不做限定。
可选地,在上述申请实施例中,空心箱壁103的内表面和/或空心横梁104设置有第二过滤孔,该第二过滤孔用于过滤排放物中的固体颗粒。
具体地,在本申请实施例中,该空心箱壁103的内表面和/或空心横梁104中设置的第二过滤孔主要用于通过排放物中的气体,而排放物中粒径较大的固体颗粒可以被该第二过滤孔过滤,该固体颗粒无法通过第二过滤孔排放至第二泄压机构113,因此,通过该技术方案可以减少排放至第二泄压机构113处的高温固体颗粒,进一步提升电池10的安全性。
可选地,该第二过滤孔的直径设计可以参考上述第一过滤孔302的相关技术方案。即第二过滤孔的直径D’与电池单体的体积能量密度E满足如下关系:0.0001mm/(Wh/L)≤D’/E≤0.006mm/(Wh/L),其中,D’的单位为mm,E的单位为Wh/L。
可选地,在上述申请实施例中,排放物在第一泄压机构213与第二泄压机构113之间的排气通道中设置有过滤部件、气体吸收部件和冷却部件中的至少一者。
具体地,该过滤部件可用于过滤排放物中的固体颗粒。气体吸收部件可用于吸收排放物中的可燃性气体。冷却部件可用于吸收排放物的热量以对排放物进行降温。
通过在排放路径内设置过滤部件、气体吸收部件和冷却部件中的至少一者,可以进一步降低排放至箱体110外部的排放物的危害,提升电池10的安全性能。
可选地,上述过滤部件可包括第三过滤孔或者弯折的气流通道,该第三过滤孔或者该弯折的气流通道用于过滤排放物中的固体颗粒。
具体地,该第三过滤孔的相关设计可以与上述第一过滤孔302的设计相同。可选地,该第三过滤孔的直径设计可以参考上述第一过滤孔302的相关技术方案。即第三过滤孔的直径D”与电池单体的体积能量密度E满足如下关系:0.0001mm/(Wh/L)≤D”/E≤0.006mm/(Wh/L),其中,D”的单位为mm,E的单位为Wh/L。
另外,排放物在经过弯折的气流通道时,排放物中的固体颗粒也较为容易的残留于气流通道内,从而起到过滤作用。另外,该气流通道还可以起到扰流作用,防止排放物中的气流直冲对箱体110造成损害。
可选地,上述气体吸收部件由气体吸收材料形成,该气体吸收材料用于吸收排放物中的可燃性气体。
可选地,该气体吸收材料可以为固体材料或者为液体材料。例如,该气体吸收材料可以为具有微孔结构的材料,例如,活性炭等。又例如,该气体吸收材料可以为能够吸收可燃性气体的溶剂,可在该溶剂的外部包覆外壳形成溶剂封装体,该溶剂封 装体作为气体吸收部件设置于第一泄压机构213与第二泄压机构113之间的排放路径。
在一些实施方式,气体吸收部件可以与上述过滤部件为两个分离的独立部件。或者,在另一些实施方式,气体吸收部件也可以与上述过滤部件相互连接。例如,气体吸收部件可以以涂层的形式涂覆于过滤部件。
可选地,上述冷却部件由吸热材料形成,该吸热材料用于吸收排放物的热量以冷却排放物。作为示例而非限定,该吸热材料可以为金属材料,例如铝、铜、钢等。或者,该吸热材料也可以为相变材料,例如冷却液等。
在一些实施方式,冷却部件可以与上述过滤部件为两个分离的独立部件。或者,在另一些实施方式,冷却部件也可以与上述过滤部件集成为一体。例如,在吸热材料上形成第二过滤孔或者弯折的气流通道,该部件既为冷却部件也为过滤部件。
可选地,在上述申请实施例中,排放物在第一泄压机构213处的最高温度T1和该排放物在第二泄压机构113处的最高温度T2满足如下关系:T1-T2≥300℃。
通过该实施方式的技术方案,电池单体20经由第一泄压机构213排放的排放物在箱体110的内部经过较长的排放路径后,其到达第二泄压机构113处的最高温度相比于在第一泄压机构213处的温度实现了较大程度的较低,从而防止排放物排放至电池10的外部造成安全隐患。
可选地,在上述申请实施例中,排放物在第二泄压机构113处的最高温度T2≤300℃。
通过该实施方式的技术方案,电池单体20经由第一泄压机构213排放的排放物在箱体110的内部经过较长的排放路径后,其到达第二泄压机构113处的最高温度较低,从而可更为可靠的防止排放物排放至电池10的外部造成安全隐患,保证电池10的安全性能。本申请一个实施例还提供了一种用电装置,该用电装置可以包括前述各实施例中的电池10,电池10用于向该用电装置提供电能。可选地,用电装置可以为车辆1、船舶或航天器。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (40)

  1. 一种电池(10),其特征在于,包括:
    至少一个电池单体(20),具有第一泄压机构(213);
    箱体(110),用于容纳所述至少一个电池单体(20),且所述箱体(110)具有第二泄压机构(113);
    其中,所述至少一个电池单体(20)的第一泄压机构(213)与所述箱体(110)的第二泄压机构(113)之间形成有排气通道,在所述第一泄压机构(213)致动时,所述排气通道用于将所述至少一个电池单体(20)的排放物由所述第一泄压机构(213)排放至所述第二泄压机构(113),且所述排放物在所述排气通道内的排放路径的最小长度在0.1m至10m之间。
  2. 根据权利要求1所述的电池(10),其特征在于,所述排放路径的最小长度在0.3m至5m之间。
  3. 根据权利要求1或2所述的电池(10),其特征在于,所述排放路径的最小长度大于所述第一泄压机构(213)与所述第二泄压机构(113)之间的最短距离。
  4. 根据权利要求1至3中任一项所述的电池(10),其特征在于,所述排放路径的最小长度B与所述电池单体(20)的体积能量密度E满足如下关系:0.0001m/(Wh/L)≤B/E≤0.01m/(Wh/L),其中,B的单位为m,E的单位为Wh/L。
  5. 根据权利要求4所述的电池(10),其特征在于,所述排放路径的最小长度B与所述电池单体(20)的体积能量密度E满足如下关系:0.0002m/(Wh/L)≤B/E≤0.005m/(Wh/L)。
  6. 根据权利要求1至5中任一项所述的电池(10),其特征在于,所述排放路径的最小长度B、所述第一泄压机构(213)与所述第二泄压机构(113)之间的最短距离A以及所述电池单体(20)的体积能量密度E满足如下关系:0.0015L/Wh≤(B/A)/E≤0.08L/Wh,其中,A和B的单位为m,E的单位为Wh/L。
  7. 根据权利要求6所述的电池(10),其特征在于,所述排放路径的最小长度B、所述第一泄压机构(213)与所述第二泄压机构(113)之间的最短距离A以及所述电池单体(20)的体积能量密度E满足如下关系:0.003L/Wh≤(B/A)/E≤0.04L/Wh。
  8. 根据权利要求1至7中任一项所述的电池(10),其特征在于,所述电池(10)还包括:围挡机构(30),用于围合形成与所述至少一个电池单体(20)的第一泄压机构(213)对应的第一排气空间(310),且所述围挡机构(30)设有与所述第一排气空间(310)连通的开口(301),所述第一排气空间(310)用于形成至少部分所述排气通道。
  9. 根据权利要求8所述的电池(10),其特征在于,所述开口(301)位于所述围挡机构(30)中远离于所述第二泄压机构(113)的位置。
  10. 根据权利要求8或9所述的电池(10),其特征在于,所述开口(301)朝向所述箱体(110)中除所述第二泄压机构(113)所在箱壁以外的其它箱壁。
  11. 根据权利要求8至10中任一项所述的电池(10),其特征在于,所述开口(301)位于所述箱体(110)的中部区域。
  12. 根据权利要求8至11中任一项所述的电池(10),其特征在于,所述围挡机构(30)的数量为多个,多个所述围挡机构(30)间隔设置。
  13. 根据权利要求12所述的电池(10),其特征在于,多个所述围挡机构(30)中相邻的两个围挡机构(30)的开口(301)设置于所述相邻的两个围挡机构(30)中相邻的两个壁上,所述相邻的两个围挡机构(30)的开口(301)相互错开设置。
  14. 根据权利要求8至13中任一项所述的电池(10),其特征在于,所述至少一个电池单体(20)的第一壁(201)设置有所述第一泄压机构(213),所述至少一个电池单体(20)的第一壁(201)与所述箱体(110)的第一箱壁(101)相对设置,所述围挡机构(30)设置于所述第一箱壁(101)与所述至少一个电池单体(20)的第一壁(201)之间。
  15. 根据权利要求14所述的电池(10),其特征在于,所述围挡机构(30)附接于所述第一箱壁(101)和所述至少一个电池单体(20)的第一壁(201),所述第二泄压机构(113)设置于所述箱体(110)中除所述第一箱壁(101)以外的其它箱壁。
  16. 根据权利要求15所述的电池(10),其特征在于,所述箱体(110)的第二箱壁(102)相交于所述箱体(110)的第一箱壁(101),所述第二泄压机构(113)设置于所述第二箱壁(102);
    所述围挡机构(30)与所述第二箱壁(102)之间形成第二排气空间(320),所述第二排气空间(320)通过所述开口(301)连通于所述第一排气空间(310),所述排放物经由所述开口(301)进入所述第二排气空间(320),并排放至所述第二泄压机构(113)。
  17. 根据权利要求14至16中任一项所述的电池(10),其特征在于,所述至少一个电池单体(20)排列形成电池单体序列,且所述电池单体序列中每个电池单体(20)的第一壁(201)设置有两个电极端子(214),所述第一泄压机构(213)设置于所述两个电极端子(214)之间;所述围挡机构(30)设置于所述电池单体序列中每个电池单体(20)的两个电极端子(214)之间。
  18. 根据权利要求14所述的电池(10),其特征在于,所述第一箱壁(101)与所述至少一个电池单体(20)的第一壁(201)之间设置有隔离部件(40),所述隔离部件(40)用于在所述箱体(110)的内部形成相互隔离的电气腔和排气腔;
    所述电气腔用于容纳所述至少一个电池单体(20),所述至少一个电池单体(20)的排放物经由所述隔离部件(40)排放至所述排气腔,所述围挡机构(30)设置于所述排气腔中,且所述围挡机构(30)附接于所述隔离部件(40)和所述第一箱壁(101),所述围挡机构(30)用于在所述排气腔中围合形成与所述至少一个电池单体(20)的所述第一泄压机构(213)对应的所述第一排气空间(310)。
  19. 根据权利要求18所述的电池(10),其特征在于,所述第二泄压机构(113)设置于所述箱体(110)对应于所述排气腔的箱壁。
  20. 根据权利要求18或19所述的电池(10),其特征在于,所述第二泄压机构 (113)设置于所述箱体(110)中除所述第一箱壁(101)以外的其它箱壁。
  21. 根据权利要求18至20中任一项所述的电池(10),其特征在于,所述隔离部件(40)中形成有对应于所述至少一个电池单体(20)的第一泄压机构(213)的泄压区域(410),所述至少一个电池单体(20)的排放物经由所述泄压区域(410)排放至所述排气腔,所述围挡机构(30)用于在所述排气腔中围合形成与所述泄压区域(410)对应的所述第一排气空间(310)。
  22. 根据权利要求18至21中任一项所述的电池(10),其特征在于,所述隔离部件(40)为热管理部件,所述热管理部件用于调节所述电池单体(20)的温度。
  23. 根据权利要求8至22中任一项所述的电池(10),其特征在于,所述围挡机构(30)中形成有第一过滤孔(302),所述第一过滤孔(302)用于过滤所述排放物中的固体颗粒。
  24. 根据权利要求23所述的电池(10),其特征在于,所述围挡机构(30)为间断式结构,所述围挡机构(30)由多个围挡部形成,所述多个围挡部中相邻的两个围挡部之间的间隙形成所述第一过滤孔(302)。
  25. 根据权利要求23或24所述的电池(10),其特征在于,所述第一过滤孔(302)的直径D与所述电池单体(20)的体积能量密度E满足如下关系:
    0.0001mm/(Wh/L)≤D/E≤0.006mm/(Wh/L),其中,D的单位为mm,E的单位为Wh/L。
  26. 根据权利要求8至25中任一项所述的电池(10),其特征在于,所述围挡机构(30)的材料的熔点不低于200℃。
  27. 根据权利要求1至7中任一项所述的电池(10),其特征在于,所述箱体(110)的至少一个箱壁为空心箱壁(103),所述空心箱壁(103)的外表面设置有所述第二泄压机构(113),所述空心箱壁(103)的内表面设置有排气口(115),所述空心箱壁(103)的内表面与外表面之间的内部空间形成至少部分所述排气通道。
  28. 根据权利要求27所述的电池(10),其特征在于,所述箱体(110)的至少两个箱壁为空心箱壁(103),所述排气口(115)与所述第二泄压机构(113)设置于不同的空心箱壁(103),或者,
    所述排气口(115)与所述第二泄压机构(113)设置于同一空心箱壁(103),且所述排气口(115)与所述第二泄压机构(113)相互错开设置。
  29. 根据权利要求1至7中任一项所述的电池(10),其特征在于,所述箱体(110)的至少一个箱壁为空心箱壁(103),所述空心箱壁(103)的外表面设置有所述第二泄压机构(113);
    所述电池(10)还包括:空心横梁(104),所述空心横梁(104)和/或所述空心箱壁(103)的内表面设置有排气口(115),所述空心横梁(104)的内部空间连通于所述空心箱壁(103)的内部空间,且所述空心横梁(104)的内部空间以及所述空心箱壁(103)的内部空间形成至少部分所述排气通道。
  30. 根据权利要求29所述的电池(10),其特征在于,在所述至少一个电池单体(20)的数量为多个的情况下,多个电池单体(20)包括多组电池单体(20),所述 空心横梁(104)用于将所述箱体(110)的内部空间划分为多个子空间,所述多个子空间用于分别容纳所述多组电池单体(20);
    所述空心横梁(104)对应于所述多个子空间中的每个子空间设置有所述排气口(115),和/或,
    所述空心箱壁(103)的内表面对应于所述多个子空间中的每个子空间设置有所述排气口(115)。
  31. 根据权利要求29所述的电池(10),其特征在于,所述电池(10)还包括:隔离部件(40),所述隔离部件(40)用于在所述箱体(110)的内部空间形成相互隔离的电气腔和排气腔,所述电气腔用于容纳所述至少一个电池单体(20),所述排气腔用于接收来自所述至少一个电池单体(20)的排放物,且形成至少部分所述排气通道;
    所述空心横梁(104)位于所述电气腔中,且连接于所述隔离部件(40),所述空心横梁(104)与所述隔离部件(40)的连接部设置有所述排气口(115),所述排气口(115)用于接收来自所述排气腔的排放物。
  32. 根据权利要求31所述的电池(10),其特征在于,所述电池(10)还包括:围挡机构(30),所述围挡机构(30)设置于所述排气腔中;
    所述隔离部件(40)中形成有对应于所述至少一个电池单体(20)的第一泄压机构(213)的泄压区域(410),所述至少一个电池单体(20)的排放物经由所述泄压区域(410)排放至所述排气腔,所述围挡机构(30)用于在所述排气腔中围合形成与所述泄压区域(410)对应的第一排气空间(310),且所述围挡机构(30)设有与所述第一排气空间(310)连通的开口(301),所述第一排气空间(310)用于形成至少部分所述排气通道。
  33. 根据权利要求27至32中任一项所述的电池(10),其特征在于,所述空心箱壁(103)的内表面和/或空心横梁(104)设置有第二过滤孔,所述第二过滤孔用于过滤所述排放物中的固体颗粒。
  34. 根据权利要求1至33中任一项所述的电池(10),其特征在于,所述排气通道中设置有过滤部件、气体吸收部件和冷却部件中的至少一者。
  35. 根据权利要求34所述的电池(10),其特征在于,所述过滤部件包括第三过滤孔或者弯折的气流通道,所述第三过滤孔或者所述弯折的气流通道用于过滤所述排放物中的固体颗粒。
  36. 根据权利要求34或35所述的电池(10),其特征在于,所述气体吸收部件由气体吸收材料形成,所述气体吸收材料用于吸收所述排放物中的可燃性气体。
  37. 根据权利要求34至36中任一项所述的电池(10),其特征在于,所述冷却部件由吸热材料形成,所述吸热材料用于吸收所述排放物的热量以冷却所述排放物。
  38. 根据权利要求1至37中任一项所述的电池(10),其特征在于,所述排放物在所述第一泄压机构(213)处的最高温度T1和所述排放物在所述第二泄压机构(113)处的最高温度T2满足如下关系:T1-T2≥300℃。
  39. 根据权利要求38所述的电池(10),其特征在于,所述排放物在所述第二泄压机构(113)处的最高温度T2≤300℃。
  40. 一种用电装置,其特征在于,包括:根据权利要求1至39中任一项所述的电池(10),所述电池(10)用于提供电能。
PCT/CN2022/125420 2022-10-14 2022-10-14 电池和用电装置 WO2024077605A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/125420 WO2024077605A1 (zh) 2022-10-14 2022-10-14 电池和用电装置
CN202320340198.2U CN220604897U (zh) 2022-10-14 2023-02-28 电池和用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/125420 WO2024077605A1 (zh) 2022-10-14 2022-10-14 电池和用电装置

Publications (1)

Publication Number Publication Date
WO2024077605A1 true WO2024077605A1 (zh) 2024-04-18

Family

ID=90182241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125420 WO2024077605A1 (zh) 2022-10-14 2022-10-14 电池和用电装置

Country Status (2)

Country Link
CN (1) CN220604897U (zh)
WO (1) WO2024077605A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203466244U (zh) * 2013-09-24 2014-03-05 宁德新能源科技有限公司 动力电池模组及其安全保护装置
US20160301051A1 (en) * 2013-11-22 2016-10-13 Hitachi Automotive Systems, Ltd. Assembled battery
CN110165113A (zh) * 2019-01-09 2019-08-23 比亚迪股份有限公司 动力电池包及电动车
CN112567564A (zh) * 2018-08-23 2021-03-26 松下知识产权经营株式会社 电池模块
CN112751121A (zh) * 2020-12-29 2021-05-04 长城汽车股份有限公司 电池箱体和电池包
CN217426941U (zh) * 2022-04-26 2022-09-13 蜂巢能源科技股份有限公司 动力电池及电动汽车

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203466244U (zh) * 2013-09-24 2014-03-05 宁德新能源科技有限公司 动力电池模组及其安全保护装置
US20160301051A1 (en) * 2013-11-22 2016-10-13 Hitachi Automotive Systems, Ltd. Assembled battery
CN112567564A (zh) * 2018-08-23 2021-03-26 松下知识产权经营株式会社 电池模块
CN110165113A (zh) * 2019-01-09 2019-08-23 比亚迪股份有限公司 动力电池包及电动车
CN112751121A (zh) * 2020-12-29 2021-05-04 长城汽车股份有限公司 电池箱体和电池包
CN217426941U (zh) * 2022-04-26 2022-09-13 蜂巢能源科技股份有限公司 动力电池及电动汽车

Also Published As

Publication number Publication date
CN220604897U (zh) 2024-03-15

Similar Documents

Publication Publication Date Title
JP7422790B2 (ja) 電池のケース、電池、電力消費装置、電池製造方法及び装置
JP7403561B2 (ja) 電池のケース、電池、電力消費装置、電池製造方法及び装置
CN114424397B (zh) 电池组和包括该电池组的装置
KR20220104219A (ko) 배터리, 장치, 배터리 제조 방법 및 배터리 제조 장치
US20240162526A1 (en) Battery and electrical apparatus
WO2024077604A1 (zh) 电池和用电装置
US20230238610A1 (en) Case of battery, battery, power consumption device, and method and device for manufacturing battery
CN219917483U (zh) 电池和用电设备
WO2024077605A1 (zh) 电池和用电装置
JP7490085B2 (ja) 電池、電力消費装置、電池を製造する方法と装置
EP4329069A1 (en) Battery, electrical apparatus, method and apparatus for preparing battery
EP4016714B1 (en) Case body for battery, battery and electric device
CN219873920U (zh) 电池和用电设备
KR102681019B1 (ko) 전지, 전기 장치, 전지 제조 방법 및 장치
US11973243B2 (en) Battery, power consumption device, and method and device for producing battery
RU2808228C1 (ru) Кожух батареи, батарея, энергопотребляющее устройство и способ и устройство для изготовления батареи
KR102681020B1 (ko) 배터리, 장치, 배터리 제조 방법 및 배터리 제조 장치
US11909068B2 (en) Battery, power consuming apparatus, and method and apparatus for manufacturing battery
KR20220107025A (ko) 배터리, 장치, 배터리 제조 방법 및 배터리 제조 장치
KR20230044138A (ko) 배터리의 박스 본체, 배터리, 전기 장치, 배터리 제조 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22961792

Country of ref document: EP

Kind code of ref document: A1