JP7212265B2 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
JP7212265B2
JP7212265B2 JP2019560982A JP2019560982A JP7212265B2 JP 7212265 B2 JP7212265 B2 JP 7212265B2 JP 2019560982 A JP2019560982 A JP 2019560982A JP 2019560982 A JP2019560982 A JP 2019560982A JP 7212265 B2 JP7212265 B2 JP 7212265B2
Authority
JP
Japan
Prior art keywords
refrigerant
point
hfo
coordinates
line segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019560982A
Other languages
English (en)
Other versions
JPWO2019124140A1 (ja
Inventor
英二 熊倉
拓郎 山田
敦史 吉見
育弘 岩田
充司 板野
大輔 加留部
佑樹 四元
一博 高橋
達哉 高桑
雄三 小松
瞬 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2018/037483 external-priority patent/WO2019123782A1/ja
Priority claimed from PCT/JP2018/038748 external-priority patent/WO2019123806A1/ja
Priority claimed from PCT/JP2018/038747 external-priority patent/WO2019123805A1/ja
Priority claimed from PCT/JP2018/038746 external-priority patent/WO2019123804A1/ja
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority claimed from PCT/JP2018/045290 external-priority patent/WO2019124140A1/ja
Publication of JPWO2019124140A1 publication Critical patent/JPWO2019124140A1/ja
Application granted granted Critical
Publication of JP7212265B2 publication Critical patent/JP7212265B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M131/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing halogen
    • C10M131/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing halogen containing carbon, hydrogen and halogen only
    • C10M131/04Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing halogen containing carbon, hydrogen and halogen only aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/02Specified values of viscosity or viscosity index
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • F24F1/24Cooling of electric components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/32Refrigerant piping for connecting the separate outdoor units to indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/34Protection means thereof, e.g. covers for refrigerant pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/38Fan details of outdoor units, e.g. bell-mouth shaped inlets or fan mountings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/044Systems in which all treatment is given in the central station, i.e. all-air systems
    • F24F3/048Systems in which all treatment is given in the central station, i.e. all-air systems with temperature control at constant rate of air-flow
    • F24F3/052Multiple duct systems, e.g. systems in which hot and cold air are supplied by separate circuits from the central station to mixing chambers in the spaces to be conditioned
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/0018Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters using electric energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/026Compressor arrangements of motor-compressor units with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/08Arrangements for cooling or ventilating by gaseous cooling medium circulating wholly within the machine casing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/106Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/122Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/128Perfluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/22All components of a mixture being fluoro compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/24Only one single fluoro component present
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/40Replacement mixtures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/40Replacement mixtures
    • C09K2205/43Type R22
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/02Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
    • C10M2211/022Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/05Cost reduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/07Exceeding a certain pressure value in a refrigeration component or cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/05Refrigerant levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Signal Processing (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Lubricants (AREA)
  • Liquid Crystal Substances (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Compressor (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)
  • Complex Calculations (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Analytical Chemistry (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Geometry (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

本開示は、冷凍サイクル装置に関する。
従来より、空気調和装置等の熱サイクルシステムでは、冷媒として、R410Aが多用されている。R410Aは、(CH2F2;HFC-32又はR32)とペンタフルオロエタン(C2HF5;HFC-125又はR125)との2成分混合冷媒であり、擬似共沸組成物である。
しかし、R410Aの地球温暖化係数(GWP)は2088であり、近年、地球温暖化への懸念の高まりから、GWPがより低い冷媒であるR32がより多く使用されつつある。 このため、例えば、特許文献1(国際公開第2015/141678号)においては、R410Aに代替可能な低GWP混合冷媒が種々提案されている。
ところが、このようなGWPが小さい冷媒を用いることができる具体的な冷媒回路については、これまで、なんら検討されていない。
本開示の内容は、上述した点に鑑みたものであり、GWPが小さい冷媒を用いて冷凍サイクルを行うことが可能な空調ユニットを提供することを目的とする。
第1観点に係る冷凍サイクル装置は、冷媒回路と冷媒を備えている。冷媒回路は、圧縮機と凝縮器と減圧部と蒸発器とを有している。冷媒は、少なくとも1,2-ジフルオロエチレンを含んでいる。冷媒は、冷媒回路に封入されている。
この冷凍サイクル装置は、圧縮機と凝縮器と減圧部と蒸発器とを有する冷媒回路において、1,2-ジフルオロエチレンを含む冷媒を用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
第2観点に係る冷凍サイクル装置は、第1観点の冷凍サイクル装置であって、冷媒回路は、低圧レシーバをさらに有している。低圧レシーバは、蒸発器から圧縮機の吸入側に向かう冷媒流路の途中に設けられている。
この冷凍サイクル装置は、冷媒回路における余剰冷媒を低圧レシーバに溜めながら冷凍サイクルを行うことが可能になる。
第3観点に係る冷凍サイクル装置は、第1観点または第2観点の冷凍サイクル装置であって、冷媒回路は、高圧レシーバをさらに有している。高圧レシーバは、凝縮器から蒸発器に向かう冷媒流路の途中に設けられている。
この冷凍サイクル装置では、冷媒回路における余剰冷媒を高圧レシーバに溜めながら冷凍サイクルを行うことが可能になる。
第4観点に係る冷凍サイクル装置は、第1観点から第3観点のいずれかの冷凍サイクル装置であって、冷媒回路は、第1減圧部と第2減圧部と中間圧レシーバとさらに有している。第1減圧部と第2減圧部と中間圧レシーバは、いずれも、凝縮器から蒸発器に向かう冷媒流路の途中に設けられている。中間圧レシーバは、凝縮器から蒸発器に向かう冷媒流路における第1減圧部と第2減圧部との間に設けられている。
この冷凍サイクル装置では、冷媒回路における余剰冷媒を中間圧レシーバに溜めながら冷凍サイクルを行うことが可能になる。
第5観点に係る冷凍サイクル装置は、第1観点から第4観点のいずれかの冷凍サイクル装置であって、制御部をさらに備えている。冷媒回路は、第1減圧部と第2減圧部とをさらに有している。第1減圧部と第2減圧部は、凝縮器から蒸発器に向かう冷媒流路の途中に設けられている。制御部は、第1減圧部を通過する冷媒の減圧程度と第2減圧部を通過する冷媒の減圧程度との両方を調節する。
この冷凍サイクル装置では、凝縮器から蒸発器に向かう冷媒流路の途中に設けられた第1減圧部と第2減圧部の各減圧程度を制御することにより、凝縮器から蒸発器に向かう冷媒流路の途中における第1減圧部と第2減圧部との間に位置する冷媒の密度を低下させることが可能になる。これにより、冷媒回路に封入された冷媒を、凝縮器および/または蒸発器に多く存在させやすくなり、能力を向上させることが可能になる。
第6観点に係る冷凍サイクル装置は、第1観点から第5観点のいずれかの冷凍サイクル装置であって、冷媒回路は、冷媒熱交換部をさらに有している。冷媒熱交換部は、凝縮器から蒸発器に向かう冷媒と、蒸発器から圧縮機に向かう冷媒と、の間で熱交換を行わせる。
この冷凍サイクル装置では、冷媒熱交換部において、蒸発器から圧縮機に向かう冷媒が凝縮器から蒸発器に向かう冷媒によって加熱される。このため、圧縮機における液圧縮を抑制することが可能になる。
第7観点に係る冷凍サイクル装置は、第1観点から第6観点のいずれかの冷凍サイクル装置であって、冷媒は、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)を含んでいる。
この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の冷凍能力[Refrigeration Capacity(Cooling Capacity又はCapacityと表記されることもある)]及び成績係数[Coefficient of Performance(COP)]を有する、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
第8観点に係る冷凍サイクル装置は、第7観点の冷凍サイクル装置であって、冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点A(68.6, 0.0, 31.4)、
点A’(30.6, 30.0, 39.4)、
点B(0.0, 58.7, 41.3)、
点D(0.0, 80.4, 19.6)、
点C’(19.5,70.5,10.0)、
点C(32.9, 67.1, 0.0)及び
点O(100.0, 0.0, 0.0)
の7点をそれぞれ結ぶ線分AA’、A’B、BD、DC’、C’C、CO及びOAで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分BD、CO及びOA上の点は除く)、
前記線分AA’は、
座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
前記線分A’Bは、
座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
前記線分DC’は、
座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
で表わされ、
前記線分C’Cは、
座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
で表わされ、かつ
前記線分BD、CO及びOAが直線である。
第9観点に係る冷凍サイクル装置は、第7観点の冷凍サイクル装置であって、冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点G(72.0, 28.0, 0.0)、
点I(72.0, 0.0, 28.0)、
点A(68.6, 0.0, 31.4)、
点A’(30.6, 30.0, 39.4)、
点B(0.0, 58.7, 41.3)、
点D(0.0, 80.4, 19.6)、
点C’(19.5,70.5,10.0) 及び
点C(32.9, 67.1, 0.0)
の8点をそれぞれ結ぶ線分GI、IA、AA’、A’B、BD、DC’、C’C及びCGで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分IA、BD及びCG上の点は除く)、
前記線分AA’は、
座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
前記線分A’Bは、
座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
前記線分DC’は、
座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
で表わされ、
前記線分C’Cは、
座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
で表わされ、かつ
前記線分GI、IA、BD及びCGが直線である。
第10観点に係る冷凍サイクル装置は、第7観点の冷凍サイクル装置であって、冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点J(47.1, 52.9, 0.0)、
点P(55.8, 42.0, 2.2)、
点N(68.6, 16.3, 15.1)、
点K(61.3, 5.4, 33.3)、
点A’(30.6, 30.0, 39.4)、
点B(0.0, 58.7, 41.3)、
点D(0.0, 80.4, 19.6)、
点C’(19.5,70.5,10.0) 及び
点C(32.9, 67.1, 0.0)
の9点をそれぞれ結ぶ線分JP、PN、NK、KA’、A’B、BD、DC’、C’C及びCJで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分BD及びCJ上の点は除く)、
前記線分PNは、
座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
で表わされ、
前記線分NKは、
座標(x, 0.2421x2-29.955x+931.91, -0.2421x2+28.955x-831.91)
で表わされ、
前記線分KA’は、
座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
前記線分A’Bは、
座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
前記線分DC’は、
座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
で表わされ、
前記線分C’Cは、
座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
で表わされ、かつ
前記線分JP、BD及びCJが直線である。
第11観点に係る冷凍サイクル装置は、第7観点の冷凍サイクル装置であって、冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点J(47.1, 52.9, 0.0)、
点P(55.8, 42.0, 2.2)、
点L(63.1, 31.9, 5.0)、
点M(60.3, 6.2, 33.5)、
点A’(30.6, 30.0, 39.4)、
点B(0.0, 58.7, 41.3)、
点D(0.0, 80.4, 19.6)、
点C’(19.5,70.5,10.0) 及び
点C(32.9, 67.1, 0.0)
の9点をそれぞれ結ぶ線分JP、PL、LM、MA’、A’B、BD、DC’、C’C及びCJで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分BD及びCJ上の点は除く)、
前記線分PLは、
座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
で表わされ、
前記線分MA’は、
座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
前記線分A’Bは、
座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
前記線分DC’は、
座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
で表わされ、
前記線分C’Cは、
座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
で表わされ、かつ
前記線分JP、LM、BD及びCJが直線である。
第12観点に係る冷凍サイクル装置は、第7観点の冷凍サイクル装置であって、冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点P(55.8, 42.0, 2.2)、
点L(63.1, 31.9, 5.0)、
点M(60.3, 6.2, 33.5)、
点A’(30.6, 30.0, 39.4)、
点B(0.0, 58.7, 41.3)、
点F(0.0, 61.8, 38.2)及び
点T(35.8, 44.9, 19.3)
の7点をそれぞれ結ぶ線分PL、LM、MA’、A’B、BF、FT及びTPで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分BF上の点は除く)、
前記線分PLは、
座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
で表わされ、
前記線分MA’は、
座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
前記線分A’Bは、
座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
前記線分FTは、
座標(x, 0.0078x2-0.7501x+61.8, -0.0078x2-0.2499x+38.2)
で表わされ、
前記線分TPは、
座標(x, 0.0067x2-0.7607x+63.525, -0.0067x2-0.2393x+36.475)
で表わされ、かつ
前記線分LM及びBFが直線である。
第13観点に係る冷凍サイクル装置は、第7観点の冷凍サイクル装置であって、冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点P(55.8, 42.0, 2.2)、
点L(63.1, 31.9, 5.0)、
点Q(62.8, 29.6, 7.6) 及び
点R(49.8, 42.3, 7.9)
の4点をそれぞれ結ぶ線分PL、LQ、QR及びRPで囲まれる図形の範囲内又は前記線分上にあり、
前記線分PLは、
座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
で表わされ、
前記線分RPは、
座標(x, 0.0067x2-0.7607x+63.525, -0.0067x2-0.2393x+36.475)
で表わされ、かつ
前記線分LQ及びQRが直線である。
第14観点に係る冷凍サイクル装置は、第7観点の冷凍サイクル装置であって、冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点S(62.6, 28.3, 9.1)、
点M(60.3, 6.2, 33.5)、
点A’(30.6, 30.0, 39.4)、
点B(0.0, 58.7, 41.3)、
点F(0.0, 61.8, 38.2)及び
点T(35.8, 44.9, 19.3)
の6点をそれぞれ結ぶ線分SM、MA’、A’B、BF、FT、及びTSで囲まれる図形の範囲内又は前記線分上にあり、
前記線分MA’は、
座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
前記線分A’Bは、
座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
前記線分FTは、
座標(x, 0.0078x2-0.7501x+61.8, -0.0078x2-0.2499x+38.2)
で表わされ、
前記線分TSは、
座標(x, 0.0017x2-0.7869x+70.888, -0.0017x2-0.2131x+29.112)
で表わされ、かつ
前記線分SM及びBFが直線である。
第15観点に係る冷凍サイクル装置は、第1観点から第6観点のいずれかの冷凍サイクル装置であって、冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))及びトリフルオロエチレン(HFO-1123)の合計を、該冷媒の全体に対して99.5質量%以上含み、かつ該冷媒が、HFO-1132(E)を、該冷媒の全体に対して62.0質量%~72.0質量%含む。
この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の成績係数[Coefficient of Performance(COP)]と冷凍能力[RefrigerationCapacity(Cooling Capacity、Capacityと表記されることもある)]とを有し、アメリカ暖房冷凍空調学会(ASHRAE)の規格で微燃性(2Lクラス)である、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
第16観点に係る冷凍サイクル装置は、第1観点から第6観点のいずれかの冷凍サイクル装置であって、冷媒が、HFO-1132(E)及びHFO-1123の合計を、該冷媒の全体に対して99.5質量%以上含み、かつ該冷媒が、HFO-1132(E)を、該冷媒の全体に対して45.1質量%~47.1質量%含む。
この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の成績係数[Coefficient of Performance(COP)]と冷凍能力[RefrigerationCapacity(Cooling Capacity、Capacityと表記されることもある)]とを有し、アメリカ暖房冷凍空調学会(ASHRAE)の規格で微燃性(2Lクラス)である、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
第17観点に係る冷凍サイクル装置は、第1観点から第6観点のいずれかの冷凍サイクル装置であって、冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)並びにジフルオロメタン(R32)を含み、
前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yf並びにR32の、これらの総和を基準とする質量%をそれぞれx、y及びz並びにaとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる3成分組成図において、座標(x,y,z)が、
0<a≦11.1のとき、
点G(0.026a2-1.7478a+72.0, -0.026a2+0.7478a+28.0, 0.0)、
点I(0.026a2-1.7478a+72.0, 0.0, -0.026a2+0.7478a+28.0)、
点A(0.0134a2-1.9681a+68.6, 0.0, -0.0134a2+0.9681a+31.4)、
点B(0.0, 0.0144a2-1.6377a+58.7, -0.0144a2+0.6377a+41.3)、
点D’(0.0, 0.0224a2+0.968a+75.4, -0.0224a2-1.968a+24.6)及び
点C(-0.2304a2-0.4062a+32.9, 0.2304a2-0.5938a+67.1, 0.0)
の6点をそれぞれ結ぶ直線GI、IA、AB、BD’、D’C及びCGで囲まれる図形の範囲内又は前記直線GI、AB及びD’C上にあり(ただし、点G、点I、点A、点B、点D’及び点Cは除く)、
11.1<a≦18.2のとき、
点G(0.02a2-1.6013a+71.105, -0.02a2+0.6013a+28.895, 0.0)、
点I(0.02a2-1.6013a+71.105, 0.0, -0.02a2+0.6013a+28.895)、
点A(0.0112a2-1.9337a+68.484, 0.0, -0.0112a2+0.9337a+31.516)、
点B(0.0, 0.0075a2-1.5156a+58.199, -0.0075a2+0.5156a+41.801)及び
点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にあり(ただし、点G、点I、点A、点B及び点Wは除く)、
18.2<a≦26.7のとき、
点G(0.0135a2-1.4068a+69.727, -0.0135a2+0.4068a+30.273, 0.0)、
点I(0.0135a2-1.4068a+69.727, 0.0, -0.0135a2+0.4068a+30.273)、
点A(0.0107a2-1.9142a+68.305, 0.0, -0.0107a2+0.9142a+31.695)、
点B(0.0, 0.009a2-1.6045a+59.318, -0.009a2+0.6045a+40.682)及び
点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にあり(ただし、点G、点I、点A、点B及び点Wは除く)、
26.7<a≦36.7のとき、
点G(0.0111a2-1.3152a+68.986, -0.0111a2+0.3152a+31.014, 0.0)、
点I(0.0111a2-1.3152a+68.986, 0.0, -0.0111a2+0.3152a+31.014)、
点A(0.0103a2-1.9225a+68.793, 0.0, -0.0103a2+0.9225a+31.207)、
点B(0.0, 0.0046a2-1.41a+57.286, -0.0046a2+0.41a+42.714)及び
点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にあり(ただし、点G、点I、点A、点B及び点Wは除く)、及び
36.7<a≦46.7のとき、
点G(0.0061a2-0.9918a+63.902, -0.0061a2-0.0082a+36.098,0.0)、
点I(0.0061a2-0.9918a+63.902, 0.0, -0.0061a2-0.0082a+36.098)、
点A(0.0085a2-1.8102a+67.1, 0.0, -0.0085a2+0.8102a+32.9)、
点B(0.0, 0.0012a2-1.1659a+52.95, -0.0012a2+0.1659a+47.05)及び
点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にある(ただし、点G、点I、点A、点B及び点Wは除く)。
この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の冷凍能力[Refrigeration Capacity(Cooling Capacity又はCapacityと表記されることもある)]及び成績係数[Coefficient of Performance(COP)]を有する、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
第18観点に係る冷凍サイクル装置は、第1観点から第6観点のいずれかの冷凍サイクル装置であって、冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)並びにジフルオロメタン(R32)を含み、
前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yf並びにR32の、これらの総和を基準とする質量%をそれぞれx、y及びz並びにaとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる3成分組成図において、座標(x,y,z)が、
0<a≦11.1のとき、
点J(0.0049a2-0.9645a+47.1, -0.0049a2-0.0355a+52.9, 0.0)、
点K’(0.0514a2-2.4353a+61.7, -0.0323a2+0.4122a+5.9, -0.0191a2+1.0231a+32.4)、
点B(0.0, 0.0144a2-1.6377a+58.7, -0.0144a2+0.6377a+41.3)、
点D’(0.0, 0.0224a2+0.968a+75.4, -0.0224a2-1.968a+24.6)及び
点C(-0.2304a2-0.4062a+32.9, 0.2304a2-0.5938a+67.1, 0.0)
の5点をそれぞれ結ぶ直線JK’、K’B、BD’、D’C及びCJで囲まれる図形の範囲内又は前記直線JK’、K’B及びD’C上にあり(ただし、点J、点B、点D’及び点Cは除く)、
11.1<a≦18.2のとき、
点J(0.0243a2-1.4161a+49.725, -0.0243a2+0.4161a+50.275, 0.0)、
点K’(0.0341a2-2.1977a+61.187, -0.0236a2+0.34a+5.636, -0.0105a2+0.8577a+33.177)、
点B(0.0, 0.0075a2-1.5156a+58.199, -0.0075a2+0.5156a+41.801)及び
点W(0.0, 100.0-a, 0.0)
の4点をそれぞれ結ぶ直線JK’、K’B、BW及びWJで囲まれる図形の範囲内又は前記直線JK’及びK’B上にあり(ただし、点J、点B及び点Wは除く)、
18.2<a≦26.7のとき、
点J(0.0246a2-1.4476a+50.184, -0.0246a2+0.4476a+49.816, 0.0)、
点K’(0.0196a2-1.7863a+58.515, -0.0079a2-0.1136a+8.702, -0.0117a2+0.8999a+32.783)、
点B(0.0, 0.009a2-1.6045a+59.318, -0.009a2+0.6045a+40.682)及び
点W(0.0, 100.0-a, 0.0)
の4点をそれぞれ結ぶ直線JK’、K’B、BW及びWJで囲まれる図形の範囲内又は前記直線JK’及びK’B上にあり(ただし、点J、点B及び点Wは除く)、
26.7<a≦36.7のとき、
点J(0.0183a2-1.1399a+46.493, -0.0183a2+0.1399a+53.507, 0.0)、
点K’(-0.0051a2+0.0929a+25.95, 0.0, 0.0051a2-1.0929a+74.05)、
点A(0.0103a2-1.9225a+68.793, 0.0, -0.0103a2+0.9225a+31.207)、
点B(0.0, 0.0046a2-1.41a+57.286, -0.0046a2+0.41a+42.714)及び
点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線JK’、K’A、AB、BW及びWJで囲まれる図形の範囲内又は前記直線JK’、K'A及びAB上にあり(ただし、点J、点B及び点Wは除く)、及び
36.7<a≦46.7のとき、
点J(-0.0134a2+1.0956a+7.13, 0.0134a2-2.0956a+92.87, 0.0)、
点K’(-1.892a+29.443, 0.0, 0.892a+70.557)、
点A(0.0085a2-1.8102a+67.1, 0.0, -0.0085a2+0.8102a+32.9)、
点B(0.0, 0.0012a2-1.1659a+52.95, -0.0012a2+0.1659a+47.05)及び
点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線JK’、K’A、AB、BW及びWJで囲まれる図形の範囲内又は前記直線JK’、K'A及びAB上にある(ただし、点J、点B及び点Wは除く)。
この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の冷凍能力[Refrigeration Capacity(Cooling Capacity又はCapacityと表記されることもある)]及び成績係数[Coefficient of Performance(COP)]を有する、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
第19観点に係る冷凍サイクル装置は、第1観点から第6観点のいずれかの冷凍サイクル装置であって、冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、ジフルオロメタン(R32)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)を含み、前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点I(72.0, 0.0, 28.0)、
点J(48.5, 18.3, 33.2)、
点N(27.7, 18.2, 54.1)及び
点E(58.3, 0.0, 41.7)
の4点をそれぞれ結ぶ線分IJ、JN、NE、及びEIで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分EI上にある点は除く)、
前記線分IJは、
座標(0.0236y2-1.7616y+72.0, y, -0.0236y2+0.7616y+28.0)
で表わされ、
前記線分NEは、
座標(0.012y2-1.9003y+58.3, y, -0.012y2+0.9003y+41.7)
で表わされ、かつ
前記線分JN及びEIが直線である。
この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の冷凍能力[Refrigeration Capacity(Cooling Capacity又はCapacityと表記されることもある)]を有し、アメリカ暖房冷凍空調学会(ASHRAE)の規格で微燃性(2Lクラス)である、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
第20観点に係る冷凍サイクル装置は、第1観点から第6観点のいずれかの冷凍サイクル装置であって、冷媒が、HFO-1132(E)、R32及びR1234yfを含み、前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点M(52.6, 0.0, 47.4)、
点M’(39.2, 5.0, 55.8)、
点N(27.7, 18.2, 54.1)、
点V(11.0, 18.1, 70.9)及び
点G(39.6, 0.0, 60.4)
の5点をそれぞれ結ぶ線分MM’、M’N、NV、VG、及びGMで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分GM上にある点は除く)、
前記線分MM’は、
座標(x, 0.132x2-3.34x+52.6, -0.132x2+2.34x+47.4)
で表わされ、
前記線分M’Nは、
座標(0.0313y2-1.4551y+43.824, y, -0.0313y2+0.4551y+56.176)
で表わされ、
前記線分VGは、
座標(0.0123y2-1.8033y+39.6, y, -0.0123y2+0.8033y+60.4)
で表わされ、かつ
前記線分NV及びGMが直線である。
この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の冷凍能力[Refrigeration Capacity(Cooling Capacity又はCapacityと表記されることもある)]を有し、アメリカ暖房冷凍空調学会(ASHRAE)の規格で微燃性(2Lクラス)である、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
第21観点に係る冷凍サイクル装置は、第1観点から第6観点のいずれかの冷凍サイクル装置であって、冷媒が、HFO-1132(E)、R32及びR1234yfを含み、前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点O(22.6, 36.8, 40.6)、
点N(27.7, 18.2, 54.1)及び
点U(3.9, 36.7, 59.4)
の3点をそれぞれ結ぶ線分ON、NU及びUOで囲まれる図形の範囲内又は前記線分上にあり、
前記線分ONは、
座標(0.0072y2-0.6701y+37.512, y, -0.0072y2-0.3299y+62.488)
で表わされ、
前記線分NUは、
座標(0.0083y2-1.7403y+56.635, y, -0.0083y2+0.7403y+43.365)
で表わされ、かつ
前記線分UOが直線である。
この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の冷凍能力[Refrigeration Capacity(Cooling Capacity又はCapacityと表記されることもある)]を有し、アメリカ暖房冷凍空調学会(ASHRAE)の規格で微燃性(2Lクラス)である、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
第22観点に係る冷凍サイクル装置は、第1観点から第6観点のいずれかの冷凍サイクル装置であって、冷媒が、HFO-1132(E)、R32及びR1234yfを含み、前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点Q(44.6, 23.0, 32.4)、
点R(25.5, 36.8, 37.7)、
点T(8.6, 51.6, 39.8)、
点L(28.9, 51.7, 19.4)及び
点K(35.6, 36.8, 27.6)
の5点をそれぞれ結ぶ線分QR、RT、TL、LK及びKQで囲まれる図形の範囲内又は前記線分上にあり、
前記線分QRは、
座標(0.0099y2-1.975y+84.765, y, -0.0099y2+0.975y+15.235)
で表わされ、
前記線分RTは、
座標(0.082y2-1.8683y+83.126, y, -0.082y2+0.8683y+16.874)
で表わされ、
前記線分LKは、
座標(0.0049y2-0.8842y+61.488, y, -0.0049y2-0.1158y+38.512)
で表わされ、
前記線分KQは、
座標(0.0095y2-1.2222y+67.676, y, -0.0095y2+0.2222y+32.324)
で表わされ、かつ
前記線分TLが直線である。
この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の冷凍能力[Refrigeration Capacity(Cooling Capacity又はCapacityと表記されることもある)]を有し、アメリカ暖房冷凍空調学会(ASHRAE)の規格で微燃性(2Lクラス)である、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
第23観点に係る冷凍サイクル装置は、第1観点から第6観点のいずれかの冷凍サイクル装置であって、冷媒が、HFO-1132(E)、R32及びR1234yfを含み、前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点P(20.5, 51.7, 27.8)、
点S(21.9, 39.7, 38.4)及び
点T(8.6, 51.6, 39.8)
の3点をそれぞれ結ぶ線分PS、ST及びTPで囲まれる図形の範囲内又は前記線分上にあり、
前記線分PSは、
座標(0.0064y2-0.7103y+40.1, y, -0.0064y2-0.2897y+59.9)
で表わされ、
前記線分STは、
座標(0.082y2-1.8683y+83.126, y, -0.082y2+0.8683y+16.874)
で表わされ、かつ
前記線分TPが直線である。
この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の冷凍能力[Refrigeration Capacity(Cooling Capacity又はCapacityと表記されることもある)]を有し、アメリカ暖房冷凍空調学会(ASHRAE)の規格で微燃性(2Lクラス)である、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
第24観点に係る冷凍サイクル装置は、第1観点から第6観点のいずれかの冷凍サイクル装置であって、冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及びジフルオロメタン(R32)を含み、
前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点I(72.0, 28,0, 0.0)
点K(48.4, 33.2, 18.4)
点B’(0.0, 81.6, 18.4)
点H(0.0, 84.2, 15.8)
点R(23.1, 67.4, 9.5)及び
点G(38.5, 61.5, 0.0)
の6点をそれぞれ結ぶ線分IK、KB’、B’H、HR、RG及びGIで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分B’H及びGI上の点を除く)、
前記線分IKは、
座標(0.025z2-1.7429z+72.00, -0.025z2+0.7429z+28.0, z)
で表わされ、
前記線分HRは、
座標(-0.3123z2+4.234z+11.06, 0.3123z2-5.234z+88.94, z)
で表わされ、
前記線分RGは、
座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
で表わされ、かつ
前記線分KB’及びGIが直線である。
この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の成績係数[Coefficient of Performance(COP)]を有するという、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
第25観点に係る冷凍サイクル装置は、第1観点から第6観点のいずれかの冷凍サイクル装置であって、冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点I(72.0, 28,0, 0.0)
点J(57.7, 32.8, 9.5)
点R(23.1, 67.4, 9.5)及び
点G(38.5, 61.5, 0.0)
の4点をそれぞれ結ぶ線分IJ、JR、RG及びGIで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分GI上の点を除く)、
前記線分IJは、
座標(0.025z2-1.7429z+72.0, -0.025z2+0.7429z+28.0, z)
で表わされ、かつ
前記線分RGは、
座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
で表わされ、
前記線分JR及びGIが直線である。
この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の成績係数[Coefficient of Performance(COP)]を有するという、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
第26観点に係る冷凍サイクル装置は、第1観点から第6観点のいずれかの冷凍サイクル装置であって、冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点M(47.1, 52.9, 0.0)
点P(31.8, 49.8, 18.4)
点B’(0.0, 81.6, 18.4)
点H(0.0, 84.2, 15.8)
点R(23.1, 67.4, 9.5)及び
点G(38.5, 61.5, 0.0)
の6点をそれぞれ結ぶ線分MP、PB’、B’H、HR、RG及びGMで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分B’H及びGM上の点を除く)、
前記線分MPは、
座標(0.0083z2-0.984z+47.1,-0.0083z2-0.016z+52.9, z)
で表わされ、
前記線分HRは、
座標(-0.3123z2+4.234z+11.06, 0.3123z2-5.234z+88.94, z)
で表わされ、
前記線分RGは、
座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
で表わされ、かつ
前記線分PB’及びGMが直線である。
この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の成績係数[Coefficient of Performance(COP)]を有するという、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
第27観点に係る冷凍サイクル装置は、第1観点から第6観点のいずれかの冷凍サイクル装置であって、冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点M(47.1, 52.9, 0.0)
点N(38.5, 52.1, 9.5)
点R(23.1, 67.4, 9.5)及び
点G(38.5, 61.5, 0.0)
の4点をそれぞれ結ぶ線分MN、NR、RG及びGMで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分GM上の点を除く)、
前記線分MNは、
座標(0.0083z2-0.984z+47.1,-0.0083z2-0.016z+52.9, z)
で表わされ、かつ
前記線分RGは、
座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
で表わされ、
前記線分JR及びGIが直線である。
この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の成績係数[Coefficient of Performance(COP)]を有するという、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
第28観点に係る冷凍サイクル装置は、第1観点から第6観点のいずれかの冷凍サイクル装置であって、冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点P(31.8, 49.8, 18.4)
点S(25.4, 56.2, 18.4)及び
点T(34.8, 51.0, 14.2)
の3点をそれぞれ結ぶ線分PS、ST及びTPで囲まれる図形の範囲内又は前記線分上にあり、
前記線分STは、
座標(-0.0982z2+0.9622z+40.931, 0.0982z2-1.9622z+59.069, z)
で表わされ、かつ
前記線分TPは、
座標(0.0083z2-0.984z+47.1,-0.0083z2-0.016z+52.9, z)
で表わされ、
前記線分PSが直線である。
この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の成績係数[Coefficient of Performance(COP)]を有するという、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
第29観点に係る冷凍サイクル装置は、第1観点から第6観点のいずれかの冷凍サイクル装置であって、冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点Q(28.6, 34.4, 37.0)
点B’’(0.0, 63.0, 37.0)
点D(0.0, 67.0, 33.0)及び
点U(28.7, 41.2, 30.1)
の4点をそれぞれ結ぶ線分QB’’、B’’D、DU及びUQで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分B’’D上の点を除く)、
前記線分DUは、
座標(-3.4962z2+210.71z-3146.1, 3.4962z2-211.71z+3246.1, z)で表わされ、かつ
前記線分UQは、
座標(0.0135z2-0.9181z+44.133, -0.0135z2-0.0819z+55.867, z)
で表わされ、
前記線分QB’’及びB’’Dが直線である。
この冷凍サイクル装置では、GWPが十分に小さく、R410Aと同等の成績係数[Coefficient of Performance(COP)]を有するという、という性能を兼ね備える冷媒を用いて冷凍サイクルを行うことが可能である。
燃焼性試験に用いた装置の模式図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図に、点A~T並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる3成分組成図に、点A~C、D’、G、I、J及びK’並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が92.9質量%(R32含有割合が7.1質量%)となる3成分組成図に、点A~C、D’、G、I、J及びK’並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が88.9質量%(R32含有割合が11.1質量%)となる3成分組成図に、点A~C、D’、G、I、J、K’及びW並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が85.5質量%(R32含有割合が14.5質量%)となる3成分組成図に、点A、B、G、I、J、K’及びW並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が81.8質量%(R32含有割合が18.2質量%)となる3成分組成図に、点A、B、G、I、J、K’及びW並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が78.1質量%(R32含有割合が21.9質量%)となる3成分組成図に、点A、B、G、I、J、K’及びW並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が73.3質量%(R32含有割合が26.7質量%)となる3成分組成図に、点A、B、G、I、J、K’及びW並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が70.7質量%(R32含有割合が29.3質量%)となる3成分組成図に、点A、B、G、I、J、K’及びW並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が63.3質量%(R32含有割合が36.7質量%)となる3成分組成図に、点A、B、G、I、J、K’及びW並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が55.9質量%(R32含有割合が44.1質量%)となる3成分組成図に、点A、B、G、I、J、K’及びW並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が52.2質量%(R32含有割合が47.8質量%)となる3成分組成図に、点A、B、G、I、J、K’及びW並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図に、点A~C、E、G、及びI~W並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図に、点A~U並びにそれらを互いに結ぶ線分を示した図である。 第1実施形態に係る冷媒回路の概略構成図である。 第1実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第2実施形態に係る冷媒回路の概略構成図である。 第2実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第3実施形態に係る冷媒回路の概略構成図である。 第3実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第4実施形態に係る冷媒回路の概略構成図である。 第4実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第5実施形態に係る冷媒回路の概略構成図である。 第5実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第6実施形態に係る冷媒回路の概略構成図である。 第6実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第7実施形態に係る冷媒回路の概略構成図である。 第7実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第8実施形態に係る冷媒回路の概略構成図である。 第8実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第9実施形態に係る冷媒回路の概略構成図である。 第9実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第10実施形態に係る冷媒回路の概略構成図である。 第10実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第11実施形態に係る冷媒回路の概略構成図である。 第11実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。 第12実施形態に係る冷媒回路の概略構成図である。 第12実施形態に係る冷凍サイクル装置の概略制御ブロック構成図である。
(1)用語の定義
本明細書において用語「冷媒」には、ISO817(国際標準化機構)で定められた、冷媒の種類を表すRで始まる冷媒番号(ASHRAE番号)が付された化合物が少なくとも含まれ、さらに冷媒番号が未だ付されていないとしても、それらと同等の冷媒としての特性を有するものが含まれる。冷媒は、化合物の構造の面で、「フルオロカーボン系化合物」と「非フルオロカーボン系化合物」とに大別される。「フルオロカーボン系化合物」には、クロロフルオロカーボン(CFC)、ハイドロクロロフルオロカーボン(HCFC)及びハイドロフルオロカーボン(HFC)が含まれる。「非フルオロカーボン系化合物」としては、プロパン(R290)、プロピレン(R1270)、ブタン(R600)、イソブタン(R600a)、二酸化炭素(R744)及びアンモニア(R717)等が挙げられる。
本明細書において、用語「冷媒を含む組成物」には、(1)冷媒そのもの(冷媒の混合物を含む)と、(2)その他の成分をさらに含み、少なくとも冷凍機油と混合することにより冷凍機用作動流体を得るために用いることのできる組成物と、(3)冷凍機油を含有する冷凍機用作動流体とが少なくとも含まれる。本明細書においては、これら三態様のうち、(2)の組成物のことを、冷媒そのもの(冷媒の混合物を含む)と区別して「冷媒組成物」と表記する。また、(3)の冷凍機用作動流体のことを「冷媒組成物」と区別して「冷凍機油含有作動流体」と表記する。
本明細書において、用語「代替」は、第一の冷媒を第二の冷媒で「代替」するという文脈で用いられる場合、第一の類型として、第一の冷媒を使用して運転するために設計された機器において、必要に応じてわずかな部品(冷凍機油、ガスケット、パッキン、膨張弁、ドライヤその他の部品のうち少なくとも一種)の変更及び機器調整のみを経るだけで、第二の冷媒を使用して、最適条件下で運転することができることを意味する。すなわち、この類型は、同一の機器を、冷媒を「代替」して運転することを指す。この類型の「代替」の態様としては、第二の冷媒への置き換えの際に必要とされる変更乃至調整の度合いが小さい順に、「ドロップイン(drop in)代替」、「ニアリー・ドロップイン(nealy drop in)代替」及び「レトロフィット(retrofit)」があり得る。
第二の類型として、第二の冷媒を用いて運転するために設計された機器を、第一の冷媒の既存用途と同一の用途のために、第二の冷媒を搭載して用いることも、用語「代替」に含まれる。この類型は、同一の用途を、冷媒を「代替」して提供することを指す。
本明細書において用語「冷凍機(refrigerator)」とは、物あるいは空間の熱を奪い去ることにより、周囲の外気よりも低い温度にし、かつこの低温を維持する装置全般のことをいう。言い換えれば、冷凍機は温度の低い方から高い方へ熱を移動させるために、外部からエネルギーを得て仕事を行いエネルギー変換する変換装置のことをいう。
本明細書において冷媒が「WCF微燃」であるとは、米国ANSI/ASHRAE34-2013規格に従い最も燃えやすい組成(Worst case of formulation for flammability; WCF)が、燃焼速度が10cm/s以下であることを意味する。また、本明細書において冷媒が「ASHRAE微燃」であるとは、WCFの燃焼速度が10cm/s以下で、かつ、WCFを用いてANSI/ASHRAE34-2013に基づいた貯蔵、輸送、使用時の漏洩試験を行うことで特定される最も燃えやすい分画組成(Worst case of fractionation for flammability; WCFF)が、燃焼速度が10cm/s以下であり、米国ANSI/ASHRAE34-2013規格の燃焼性区分が「2Lクラス」と判断されることを意味する。
本明細書において冷媒について「RCLがx%以上」というときは、かかる冷媒についての、米国ANSI/ASHRAE34-2013規格に従い算出される冷媒濃度限界(Refrigerant Concentration Limit; RCL)がx%以上であることを意味する。RCLとは、安全係数を考慮した空気中における濃度限界であり、人間が存在する密閉空間において、急性毒性、窒息及び可燃性の危険度を低減することを目的とした指標である。RCLは上記規格に従って決定される。具体的には、上記規格7.1.1、7.1.2及び7.1.3に従いそれぞれ算出される、急性毒性曝露限界(Acute-Toxicity Exposure Limit; ATEL)、酸欠濃度限界(Oxygen Deprivation Limit; ODL)及び可燃濃度限界(Flammable Concentration Limit; FCL)のうち、最も低い濃度がRCLとなる。
本明細書において温度グライド(Temperature Glide)とは、冷媒システムの熱交換器内における本開示の冷媒を含む組成物の相変化過程の開始温度と終了温度の差の絶対値を意味する。
(2)冷媒
(2-1)冷媒成分
詳細は後述するが、冷媒A、冷媒B、冷媒C、冷媒D、冷媒Eの各種冷媒のいずれか1種を冷媒として用いることができる。
(2-2)冷媒の用途
本開示の冷媒は、冷凍機における作動流体として好ましく使用することができる。
本開示の組成物は、R410A、R407CおよびR404A等のHFC冷媒、並びにR22等のHCFC冷媒の代替冷媒としての使用に適している。
(3)冷媒組成物
本開示の冷媒組成物は、本開示の冷媒を少なくとも含み、本開示の冷媒と同じ用途のために使用することができる。また、本開示の冷媒組成物は、さらに少なくとも冷凍機油と混合することにより冷凍機用作動流体を得るために用いることができる。
本開示の冷媒組成物は、本開示の冷媒に加え、さらに少なくとも一種のその他の成分を含有する。本開示の冷媒組成物は、必要に応じて、以下のその他の成分のうち少なくとも一種を含有していてもよい。上述の通り、本開示の冷媒組成物を、冷凍機における作動流体として使用するに際しては、通常、少なくとも冷凍機油と混合して用いられる。したがって、本開示の冷媒組成物は、好ましくは冷凍機油を実質的に含まない。具体的には、本開示の冷媒組成物は、冷媒組成物全体に対する冷凍機油の含有量が好ましくは0~1質量%であり、より好ましくは0~0.1質量%である。
(3-1)水
本開示の冷媒組成物は微量の水を含んでもよい。冷媒組成物における含水割合は、冷媒全体に対して、0.1質量%以下とすることが好ましい。冷媒組成物が微量の水分を含むことにより、冷媒中に含まれ得る不飽和のフルオロカーボン系化合物の分子内二重結合が安定化され、また、不飽和のフルオロカーボン系化合物の酸化も起こりにくくなるため、冷媒組成物の安定性が向上する。
(3-2)トレーサー
トレーサーは、本開示の冷媒組成物が希釈、汚染、その他何らかの変更があった場合、その変更を追跡できるように検出可能な濃度で本開示の冷媒組成物に添加される。
本開示の冷媒組成物は、トレーサーとして、一種を単独で含有してもよいし、二種以上を含有してもよい。
トレーサーとしては、特に限定されず、一般に用いられるトレーサーの中から適宜選択することができる。好ましくは、本開示の冷媒に不可避的に混入する不純物とはなり得ない化合物をトレーサーとして選択する。
トレーサーとしては、例えば、ハイドロフルオロカーボン、ハイドロクロロフルオロカーボン、クロロフルオロカーボン、ハイドロクロロカーボン、フルオロカーボン、重水素化炭化水素、重水素化ハイドロフルオロカーボン、パーフルオロカーボン、フルオロエーテル、臭素化化合物、ヨウ素化化合物、アルコール、アルデヒド、ケトン、亜酸化窒素(N2O)等が挙げられる。
トレーサーとしては、ハイドロフルオロカーボン、ハイドロクロロフルオロカーボン、クロロフルオロカーボン、ハイドロクロロカーボン、フルオロカーボン及びフルオロエーテルが特に好ましい。
上記トレーサーとしては、具体的には、以下の化合物が好ましい。
FC-14(テトラフルオロメタン、CF4
HCC-40(クロロメタン、CHCl)
HFC-23(トリフルオロメタン、CHF
HFC-41(フルオロメタン、CHCl)
HFC-125(ペンタフルオロエタン、CFCHF
HFC-134a(1,1,1,2-テトラフルオロエタン、CFCHF)
HFC-134(1,1,2,2-テトラフルオロエタン、CHFCHF
HFC-143a(1,1,1-トリフルオロエタン、CFCH
HFC-143(1,1,2-トリフルオロエタン、CHFCHF)
HFC-152a(1,1-ジフルオロエタン、CHFCH
HFC-152(1,2-ジフルオロエタン、CHFCHF)
HFC-161(フルオロエタン、CHCHF)
HFC-245fa(1,1,1,3,3-ペンタフルオロプロパン、CFCHCHF
HFC-236fa(1,1,1,3,3,3-ヘキサフルオロプロパン、CFCHCF
HFC-236ea(1,1,1,2,3,3-ヘキサフルオロプロパン、CFCHFCHF
HFC-227ea(1,1,1,2,3,3,3-ヘプタフルオロプロパン、CFCHFCF)
HCFC-22(クロロジフルオロメタン、CHClF
HCFC-31(クロロフルオロメタン、CHClF)
CFC-1113(クロロトリフルオロエチレン、CF=CClF)
HFE-125(トリフルオロメチル-ジフルオロメチルエーテル、CFOCHF
HFE-134a(トリフルオロメチル-フルオロメチルエーテル、CFOCHF)
HFE-143a(トリフルオロメチル-メチルエーテル、CFOCH
HFE-227ea(トリフルオロメチル-テトラフルオロエチルエーテル、CFOCHFCF
HFE-236fa(トリフルオロメチル-トリフルオロエチルエーテル、CFOCHCF
トレーサー化合物は、約10重量百万分率(ppm)~約1000ppmの合計濃度で冷媒組成物中に存在し得る。好ましくは、トレーサー化合物は約30ppm~約500ppmの合計濃度で冷媒組成物中に存在し、最も好ましくは、トレーサー化合物は約50ppm~約300ppmの合計濃度で冷媒組成物中に存在する。
(3-3)紫外線蛍光染料
本開示の冷媒組成物は、紫外線蛍光染料として、一種を単独で含有してもよいし、二種以上を含有してもよい。
紫外線蛍光染料としては、特に限定されず、一般に用いられる紫外線蛍光染料の中から適宜選択することができる。
紫外線蛍光染料としては、例えば、ナフタルイミド、クマリン、アントラセン、フェナントレン、キサンテン、チオキサンテン、ナフトキサンテン及びフルオレセイン、並びにこれらの誘導体が挙げられる。紫外線蛍光染料としては、ナフタルイミド及びクマリンのいずれか又は両方が特に好ましい。
(3-4)安定剤
本開示の冷媒組成物は、安定剤として、一種を単独で含有してもよいし、二種以上を含有してもよい。
安定剤としては、特に限定されず、一般に用いられる安定剤の中から適宜選択することができる。
安定剤としては、例えば、ニトロ化合物、エーテル類及びアミン類等が挙げられる。
ニトロ化合物としては、例えば、ニトロメタン及びニトロエタン等の脂肪族ニトロ化合物、並びにニトロベンゼン及びニトロスチレン等の芳香族ニトロ化合物等が挙げられる。
エーテル類としては、例えば、1,4-ジオキサン等が挙げられる。
アミン類としては、例えば、2,2,3,3,3-ペンタフルオロプロピルアミン、ジフェニルアミン等が挙げられる。
その他にも、ブチルヒドロキシキシレン、ベンゾトリアゾール等が挙げられる。
安定剤の含有割合は、特に限定されず、冷媒全体に対して、通常、0.01~5質量%とすることが好ましく、0.05~2質量%とすることがより好ましい。
(3-5)重合禁止剤
本開示の冷媒組成物は、重合禁止剤として、一種を単独で含有してもよいし、二種以上を含有してもよい。
重合禁止剤としては、特に限定されず、一般に用いられる重合禁止剤の中から適宜選択することができる。
重合禁止剤としては、例えば、4-メトキシ-1-ナフトール、ヒドロキノン、ヒドロキノンメチルエーテル、ジメチル-t-ブチルフェノール、2,6-ジ-tert-ブチル-p-クレゾール、ベンゾトリアゾール等が挙げられる。
重合禁止剤の含有割合は、特に限定されず、冷媒全体に対して、通常、0.01~5質量%とすることが好ましく、0.05~2質量%とすることがより好ましい。
(4)冷凍機油含有作動流体
本開示の冷凍機油含有作動流体は、本開示の冷媒又は冷媒組成物と、冷凍機油とを少なくとも含み、冷凍機における作動流体として用いられる。具体的には、本開示の冷凍機油含有作動流体は、冷凍機の圧縮機において使用される冷凍機油と、冷媒又は冷媒組成物とが互いに混じり合うことにより得られる。冷凍機油含有作動流体には冷凍機油は一般に10~50質量%含まれる。
(4-1)冷凍機油
冷凍機油としては、特に限定されず、一般に用いられる冷凍機油の中から適宜選択することができる。その際には、必要に応じて、前記混合物との相溶性(miscibility)及び前記混合物の安定性等を向上する作用等の点でより優れている冷凍機油を適宜選択することができる。
冷凍機油の基油としては、例えば、ポリアルキレングリコール(PAG)、ポリオールエステル(POE)及びポリビニルエーテル(PVE)からなる群より選択される少なくとも一種が好ましい。
冷凍機油は、基油に加えて、さらに添加剤を含んでいてもよい。添加剤は、酸化防止剤、極圧剤、酸捕捉剤、酸素捕捉剤、銅不活性化剤、防錆剤、油性剤及び消泡剤からなる群より選択される少なくとも一種であってもよい。
冷凍機油として、40℃における動粘度が5~400 cStであるものが、潤滑の点で好ましい。
本開示の冷凍機油含有作動流体は、必要に応じて、さらに少なくとも一種の添加剤を含んでもよい。添加剤としては例えば以下の相溶化剤等が挙げられる。
(4-2)相溶化剤
本開示の冷凍機油含有作動流体は、相溶化剤として、一種を単独で含有してもよいし、二種以上を含有してもよい。
相溶化剤としては、特に限定されず、一般に用いられる相溶化剤の中から適宜選択することができる。
相溶化剤としては、例えば、ポリオキシアルキレングリコールエーテル、アミド、ニトリル、ケトン、クロロカーボン、エステル、ラクトン、アリールエーテル、フルオロエーテルおよび1,1,1-トリフルオロアルカン等が挙げられる。相溶化剤としては、ポリオキシアルキレングリコールエーテルが特に好ましい。
(5)各種冷媒
以下、本実施形態において用いられる冷媒である冷媒A~冷媒Eについて、詳細に説明する。
なお、以下の冷媒A、冷媒B、冷媒C、冷媒D、冷媒Eの各記載は、それぞれ独立しており、点や線分を示すアルファベット、実施例の番号および比較例の番号は、いずれも冷媒A、冷媒B、冷媒C、冷媒D、冷媒Eの間でそれぞれ独立であるものとする。例えば、冷媒Aの実施例1と冷媒Bの実施例1とは、互いに異なる実施例を示している。
(5-1)冷媒A
本開示の冷媒Aは、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)を含む混合冷媒である。
本開示の冷媒Aは、R410Aと同等の冷凍能力及び成績係数を有し、かつGWPが十分に小さい、という、R410A代替冷媒として望ましい諸特性を有する。
本開示の冷媒Aは、HFO-1132(E)及びR1234yf、並びに必要に応じてHFO-1123を含む組成物であって、さらに以下の要件を満たすものであってもよい。この冷媒もR410Aと同等の冷凍能力及び成績係数を有し、かつGWPが十分に小さい、という、R410A代替冷媒として望ましい諸特性を有する。
要件:
本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点A(68.6, 0.0, 31.4)、
点A’(30.6, 30.0, 39.4)、
点B(0.0, 58.7, 41.3)、
点D(0.0, 80.4, 19.6)、
点C’(19.5, 70.5, 10.0)、
点C(32.9, 67.1, 0.0)及び
点O(100.0, 0.0, 0.0)
の7点をそれぞれ結ぶ線分AA’、A’B、BD、DC’、C’C、CO及びOAで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分CO上の点は除く)、
前記線分AA’は、
座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
前記線分A’Bは、
座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
前記線分DC’は、
座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
で表わされ、
前記線分C’Cは、
座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
で表わされ、かつ
前記線分BD、CO及びOAが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、かつR410Aを基準とするCOP比が92.5%以上となる。
本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点G(72.0, 28.0, 0.0)、
点I(72.0, 0.0, 28.0)、
点A(68.6, 0.0, 31.4)、
点A’(30.6, 30.0, 39.4)、
点B(0.0, 58.7, 41.3)、
点D(0.0, 80.4, 19.6)、
点C’(19.5, 70.5, 10.0)及び
点C(32.9, 67.1, 0.0)
の8点をそれぞれ結ぶ線分GI、IA、AA’、A’B、BD、DC’、C’C及びCGで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分CG上の点は除く)、
前記線分AA’は、
座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
前記線分A’Bは、
座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
前記線分DC’は、
座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
で表わされ、
前記線分C’Cは、
座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
で表わされ、かつ
前記線分GI、IA、BD及びCGが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、かつR410Aを基準とするCOP比が92.5%以上となるだけでなく、さらにASHRAEの規格でWCF微燃性(WCF組成の燃焼速度が10cm/s以下)を示す。
本開示の冷媒Aは、HFO-1132(E) HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点J(47.1, 52.9, 0.0)、
点P(55.8, 42.0, 2.2)、
点N(68.6, 16.3, 15.1)、
点K(61.3, 5.4, 33.3)、
点A’(30.6, 30.0, 39.4)、
点B(0.0, 58.7, 41.3)、
点D(0.0, 80.4, 19.6)、
点C’(19.5, 70.5, 10.0) 及び
点C(32.9, 67.1, 0.0)
の9点をそれぞれ結ぶ線分JP、PN、NK、KA’、A’B、BD、DC’、C’C及びCJで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分CJ上の点は除く)、
前記線分PNは、
座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
で表わされ、
前記線分NKは、
座標(x, 0.2421x2-29.955x+931.91, -0.2421x2+28.955x-831.91)
で表わされ、
前記線分KA’は、
座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
前記線分A’Bは、
座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
前記線分DC’は、
座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
で表わされ、
前記線分C’Cは、
座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
で表わされ、かつ
前記線分JP、BD及びCJが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、かつR410Aを基準とするCOP比が92.5%以上となるだけでなく、さらにASHRAEの規格で微燃性(2Lクラス(WCF組成及びWCFF組成の燃焼速度が10cm/s以下))を示す。
本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点J(47.1, 52.9, 0.0)、
点P(55.8, 42.0, 2.2)、
点L(63.1, 31.9, 5.0)、
点M(60.3, 6.2, 33.5)、
点A’(30.6, 30.0, 39.4)、
点B(0.0, 58.7, 41.3)、
点D(0.0, 80.4, 19.6)、
点C’(19.5, 70.5, 10.0)及び
点C(32.9, 67.1, 0.0)
の9点をそれぞれ結ぶ線分JP、PL、LM、MA’、A’B、BD、DC’、C’C及びCJで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分CJ上の点は除く)、
前記線分PLは、
座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
で表わされ、
前記線分MA’は、
座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
前記線分A’Bは、
座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
前記線分DC’は、
座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
で表わされ、
前記線分C’Cは、
座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
で表わされ、かつ
前記線分JP、LM、BD及びCJが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、かつR410Aを基準とするCOP比が92.5%以上となるだけでなく、さらにRCLが40g/m3以上となる。
本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点P(55.8, 42.0, 2.2)、
点L(63.1, 31.9, 5.0)、
点M(60.3, 6.2, 33.5)、
点A’(30.6, 30.0, 39.4)、
点B(0.0, 58.7, 41.3)、
点F(0.0, 61.8, 38.2)及び
点T(35.8, 44.9, 19.3)
の7点をそれぞれ結ぶ線分PL、LM、MA’、A’B、BF、FT及びTPで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分BF上の点は除く)、
前記線分PLは、
座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
で表わされ、
前記線分MA’は、
座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
前記線分A’Bは、
座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
前記線分FTは、
座標(x, 0.0078x2-0.7501x+61.8, -0.0078x2-0.2499x+38.2)
で表わされ、
前記線分TPは、
座標(x, 0.0067x2-0.7607x+63.525, -0.0067x2-0.2393x+36.475)
で表わされ、かつ
前記線分LM及びBFが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、かつR410Aを基準とするCOP比が95%以上となるだけでなく、さらにRCLが40g/m3以上となる。
本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点P(55.8, 42.0, 2.2)、
点L(63.1, 31.9, 5.0)、
点Q(62.8, 29.6, 7.6) 及び
点R(49.8, 42.3, 7.9)
の4点をそれぞれ結ぶ線分PL、LQ、QR及びRPで囲まれる図形の範囲内又は前記線分上にあり、
前記線分PLは、
座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
で表わされ、
前記線分RPは、
座標(x, 0.0067x2-0.7607x+63.525, -0.0067x2-0.2393x+36.475)
で表わされ、かつ
前記線分LQ及びQRが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とするCOP比が95%以上となり、かつRCLが40g/m3以上となるだけでなく、さらに凝縮温度グライドが1℃以下となる。
本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点S(62.6, 28.3, 9.1)、
点M(60.3, 6.2, 33.5)、
点A’(30.6, 30.0, 39.4)、
点B(0.0, 58.7, 41.3)、
点F(0.0, 61.8, 38.2)及び
点T(35.8, 44.9, 19.3)
の6点をそれぞれ結ぶ線分SM、MA’、A’B、BF、FT、及びTSで囲まれる図形の範囲内又は前記線分上にあり、
前記線分MA’は、
座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
前記線分A’Bは、
座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
前記線分FTは、
座標(x, 0.0078x2-0.7501x+61.8, -0.0078x2-0.2499x+38.2)
で表わされ、
前記線分TSは、
座標(x, 0.0017x2-0.7869x+70.888, -0.0017x2-0.2131x+29.112)
で表わされ、かつ
前記線分SM及びBFが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、R410Aを基準とするCOP比が95%以上となり、かつRCLが40g/m3以上となるだけでなく、さらにR410Aを基準とする吐出圧力比が105%以下となる。
本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点d(87.6, 0.0, 12.4)、
点g(18.2, 55.1, 26.7)、
点h(56.7, 43.3, 0.0)及び
点O(100.0, 0.0, 0.0)
の4点をそれぞれ結ぶ線分Od、dg、gh及びhOで囲まれる図形の範囲内又は前記線分Od、dg及びgh上にあり(ただし、点O及びhは除く)、
前記線分dgは、
座標(0.0047y2-1.5177y+87.598, y, -0.0047y2+0.5177y+12.402)
で表わされ、
前記線分ghは、
座標(-0.0134z2-1.0825z+56.692, 0.0134z2+0.0825z+43.308, z)
で表わされ、かつ
前記線分hO及びOdが直線であれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が92.5%以上となり、かつR410Aを基準とするCOP比が92.5%以上となる。
本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点l(72.5, 10.2, 17.3)、
点g(18.2, 55.1, 26.7)、
点h(56.7, 43.3, 0.0)及び
点i(72.5, 27.5, 0.0)
の4点をそれぞれ結ぶ線分lg、gh、hi及びilで囲まれる図形の範囲内又は前記線分lg、gh及びil上にあり(ただし、点h及び点iは除く)、
前記線分lgは、
座標(0.0047y2-1.5177y+87.598, y, -0.0047y2+0.5177y+12.402)
で表わされ、
前記線分ghは、
座標(-0.0134z2-1.0825z+56.692, 0.0134z2+0.0825z+43.308, z)
で表わされ、かつ
前記線分hi及びilが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が92.5%以上となり、かつR410Aを基準とするCOP比が92.5%以上となるだけでなく、さらにASHRAEの規格で微燃性(2Lクラス)を示す。
本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点d(87.6, 0.0, 12.4)、
点e(31.1, 42.9, 26.0)、
点f(65.5, 34.5, 0.0)及び
点O(100.0, 0.0, 0.0)
の4点をそれぞれ結ぶ線分Od、de、ef及びfOで囲まれる図形の範囲内又は前記線分Od、de及びef上にあり(ただし、点O及び点fは除く)、
前記線分deは、
座標(0.0047y2-1.5177y+87.598, y, -0.0047y2+0.5177y+12.402)
で表わされ、
前記線分efは、
座標(-0.0064z2-1.1565z+65.501, 0.0064z2+0.1565z+34.499, z)
で表わされ、かつ
前記線分fO及びOdが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が93.5%以上となり、かつR410Aを基準とするCOP比が93.5%以上となる。
本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点l(72.5, 10.2, 17.3)、
点e(31.1, 42.9, 26.0)、
点f(65.5, 34.5, 0.0)及び
点i(72.5, 27.5, 0.0)
の4点をそれぞれ結ぶ線分le、ef、fi及びilで囲まれる図形の範囲内又は前記線分le、ef及びil上にあり(ただし、点f及び点iは除く)、
前記線分LEは、
座標(0.0047y2-1.5177y+87.598, y, -0.0047y2+0.5177y+12.402)
で表わされ、
前記線分efは、
座標(-0.0134z2-1.0825z+56.692, 0.0134z2+0.0825z+43.308, z)
で表わされ、かつ
前記線分fi及びilが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が93.5%以上となり、かつR410Aを基準とするCOP比が93.5%以上となるだけでなく、さらにASHRAEの規格で微燃性(2Lクラス)を示す。
本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点a(93.4, 0.0, 6.6)、
点b(55.6, 26.6, 17.8)、
点c(77.6, 22.4, 0.0)及び
点O(100.0, 0.0, 0.0)
の4点をそれぞれ結ぶ線分Oa、ab、bc及びcOで囲まれる図形の範囲内又は前記線分Oa、ab及びbc上にあり(ただし、点O及び点cは除く)、
前記線分abは、
座標(0.0052y2-1.5588y+93.385, y, -0.0052y2+0. 5588y+6.615)
で表わされ、
前記線分bcは、
座標(-0.0032z2-1.1791z+77.593, 0.0032z2+0.1791z+22.407, z)
で表わされ、かつ
前記線分cO及びOaが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が95%以上となり、かつR410Aを基準とするCOP比が95%以上となる。
本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点k(72.5, 14.1, 13.4)、
点b(55.6, 26.6, 17.8)及び
点j(72.5, 23.2, 4.3)
の3点をそれぞれ結ぶ線分kb、bj及びjkで囲まれる図形の範囲内又は前記線分上にあり、
前記線分kbは、
座標(0.0052y2-1.5588y+93.385, y, -0.0052y2+0. 5588y+6.615)
で表わされ、
前記線分bjは、
座標(-0.0032z2-1.1791z+77.593, 0.0032z2+0.1791z+22.407, z)
で表わされ、かつ
前記線分jkが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が95%以上となり、かつR410Aを基準とするCOP比が95%以上となるだけでなく、さらにASHRAEの規格で微燃性(2Lクラス)を示す。
本開示の冷媒Aは、上記の特性や効果を損なわない範囲内で、HFO-1132(E)、HFO-1123及びR1234yfに加えて、さらに他の追加的な冷媒を含有していてもよい。この点で、本開示の冷媒が、HFO-1132(E)、HFO-1123及びR1234yfの合計を、冷媒全体に対して99.5質量%以上含むことが好ましく、99.75質量%以上含むことがより好ましく、99.9質量%以上含むことがさらに好ましい。
また、本開示の冷媒Aは、HFO-1132(E)、HFO-1123及びR1234yfの合計を、冷媒全体に対して99.5質量%以上含むものであってよく、99.75質量%以上含むものであってもよく、さらに99.9質量%以上含むものであってもよい。
追加的な冷媒としては、特に限定されず、幅広く選択できる。混合冷媒は、追加的な冷媒として、一種を単独で含んでいてもよいし、二種以上を含んでいてもよい。
(冷媒Aの実施例)
以下に、冷媒Aの実施例を挙げてさらに詳細に説明する。ただし、冷媒Aは、これらの実施例に限定されるものではない。
R1234yf、及び、R410A(R32=50%/R125=50%)の混合物を含有する組成物のGWPは、IPCC(Intergovernmental Panel on Climate Change)第4次報告書の値に基づいて評価した。HFO-1132(E)のGWPは記載がないが、HFO-1132a(GWP=1以下)、HFO-1123(GWP=0.3,特許文献1に記載)から、そのGWPを1と想定した。R410A及びHFO-1132(E)、HFO-1123、R1234yfとの混合物を含有する組成物の冷凍能力は、National Institute of Science and Technology(NIST) Reference Fluid Thermodynamic and Transport Properties Database(Refprop 9.0)を使い、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
また、混合物のRCLは、HFO-1132(E)のLFL=4.7vol%、HFO-1123のLFL=10vol%、R1234yfのLFL=6.2vol%として、ASHRAE34-2013に基づいて求めた。
蒸発温度:5℃
凝縮温度:45℃
過熱度:5K
過冷却度:5K
圧縮機効率:70%
これらの値を、各混合冷媒についてのGWPと合わせて表1~34に示す。
Figure 0007212265000001
Figure 0007212265000002
Figure 0007212265000003
Figure 0007212265000004
Figure 0007212265000005
Figure 0007212265000006
Figure 0007212265000007
Figure 0007212265000008
Figure 0007212265000009
Figure 0007212265000010
Figure 0007212265000011
Figure 0007212265000012
Figure 0007212265000013
Figure 0007212265000014
Figure 0007212265000015
Figure 0007212265000016
Figure 0007212265000017
Figure 0007212265000018
Figure 0007212265000019
Figure 0007212265000020
Figure 0007212265000021
Figure 0007212265000022
Figure 0007212265000023
Figure 0007212265000024
Figure 0007212265000025
Figure 0007212265000026
Figure 0007212265000027
Figure 0007212265000028
Figure 0007212265000029
Figure 0007212265000030
Figure 0007212265000031
Figure 0007212265000032
Figure 0007212265000033
Figure 0007212265000034
これらの結果から、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点A(68.6, 0.0, 31.4)、
点A’(30.6, 30.0, 39.4)、
点B(0.0, 58.7, 41.3)、
点D(0.0, 80.4, 19.6)、
点C’(19.5, 70.5, 10.0)、
点C(32.9, 67.1, 0.0)及び
点O(100.0, 0.0, 0.0)
の7点をそれぞれ結ぶ線分AA’、A’B、BD、DC’、C’C、CO及びOAで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分CO上の点は除く)、
前記線分AA’は、
座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
前記線分A’Bは、
座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
前記線分DC’は、
座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
で表わされ、
前記線分C’Cは、
座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
で表わされ、かつ
前記線分BD、CO及びOAが直線である場合に、R410Aを基準とする冷凍能力比が85%以上となり、かつR410Aを基準とするCOP比が92.5%以上となることが判る。
線分AA’上の点は、点A、実施例1、及び点A’の3点を結ぶ近似曲線を最小二乗法により求めることにより決定した。
線分A’B上の点は、点A’、実施例3、及び点Bの3点を結ぶ近似曲線を最小二乗法により求めることにより決定した。
線分DC’上の点は、点D、実施例6、及び点C’の3点を結ぶ近似曲線を最小二乗法により求めることにより決定した。
線分C’C上の点は、点C’、実施例4、及び点Cの3点を結ぶ近似曲線を最小二乗法により求めることにより決定した。
また、同様に、座標(x,y,z)が、
点A(68.6, 0.0, 31.4)、
点A’(30.6, 30.0, 39.4)、
点B(0.0, 58.7, 41.3)、
点F(0.0, 61.8, 38.2)、
点T(35.8, 44.9, 19.3)、
点E(58.0, 42.0, 0.0)及び
点O(100.0, 0.0, 0.0)
の7点をそれぞれ結ぶ線分AA’、A’B、BF、FT、TE、EO及びOAで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分EO上の点は除く)、
前記線分AA’は、
座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
で表わされ、
前記線分A’Bは、
座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
で表わされ、
前記線分FTは、
座標(x, 0.0078x2-0.7501x+61.8, -0.0078x2-0.2499x+38.2)
で表わされ、
前記線分TEは、
座標(x, 0.0067x2-0.7607x+63.525, -0.0067x2-0.2393x+36.475)
で表わされ、かつ
前記線分BF、FO及びOAが直線である場合に、R410Aを基準とする冷凍能力比が85%以上となり、かつR410Aを基準とするCOP比が95%以上となることが判る。
線分FT上の点は、点T、E’、Fの3点を結ぶ近似曲線を最小二乗法により求めることにより決定した。
線分TE上の点は、点E,R,Tの3点を結ぶ近似曲線を最小二乗法により求めることにより決定した。
表1~34の結果から、HFO-1132(E)、HFO-1123及びR1234yfの混合冷媒においては、これらの総和が100質量%となる3成分組成図であって、点(0.0, 100.0, 0.0)及び点(0.0, 0.0, 100.0)を結ぶ線分を底辺とし、点(0.0, 100.0,0.0)を左側、点(0.0, 0.0, 100.0)を右側とする3成分組成図において、座標(x,y,z)が、
点L(63.1, 31.9, 5.0)及び
点M(60.3, 6.2, 33.5)
を結ぶ線分LMの上、又は当該線分の下側にある場合にRCLが40g/m3以上となることが明らかとなった。
また、表1~34の結果から、HFO-1132(E)、HFO-1123及びR1234yfの混合冷媒においては、これらの総和が100質量%となる3成分組成図であって、点(0.0, 100.0, 0.0)及び点(0.0, 0.0, 100.0)を結ぶ線分を底辺とし、点(0.0, 100.0, 0.0)を左側、点(0.0, 0.0, 100.0)を右側とする3成分組成図において、座標(x,y,z)が、
点Q(62.8, 29.6, 7.6) 及び
点R(49.8, 42.3, 7.9)
を結ぶ線分QRの上、又は当該線分の左側にある場合に温度グライドが1℃以下となることが明らかとなった。
また、表1~34の結果から、HFO-1132(E)、HFO-1123及びR1234yfの混合冷媒においては、これらの総和が100質量%となる3成分組成図であって、点(0.0, 100.0, 0.0)及び点(0.0, 0.0, 100.0)を結ぶ線分を底辺とし、点(0.0, 100.0, 0.0)を左側、点(0.0, 0.0, 100.0)を右側とする3成分組成図において、座標(x,y,z)が、
点S(62.6, 28.3, 9.1)及び
点T(35.8, 44.9, 19.3)
を結ぶ線分STの上、又は当該線分の右側にある場合にR410Aを基準とする吐出圧力比が105%以下となることが明らかとなった。
なお、これらの組成物において、R1234yfは燃焼性の低下や重合等の変質抑制に寄与しており、これを含むことが好ましい。
さらに、これらの各混合冷媒について、混合組成をWCF濃度としてANSI/ASHRAE34-2013規格に従い燃焼速度を測定した。燃焼速度が10 cm/s以下となるものは「2Lクラス(微燃性)」であるとした。
なお、燃焼速度試験は図1に示す装置を用いて、以下の通り行った。なお、図1において、901は試料セルを、902は高速カメラを、903はキセノンランプを、904はコリメートレンズを、905はコリメートレンズを、906はリングフィルターをそれぞれ示す。まず、使用した混合冷媒は99.5%またはそれ以上の純度とし、真空ゲージ上に空気の痕跡が見られなくなるまで凍結、ポンピング及び解凍のサイクルを繰り返すことにより脱気した。閉鎖法により燃焼速度を測定した。初期温度は周囲温度とした。点火は、試料セルの中心で電極間に電気的スパークを生じさせることにより行った。放電の持続時間は1.0~9.9msとし、点火エネルギーは典型的には約0.1~1.0Jであった。シュリーレン写真を使って炎の広がりを視覚化した。光を通す2つのアクリル窓を備えた円筒形容器(内径:155mm、長さ:198mm)を試料セルとして用い、光源としてはキセノンランプを用いた。炎のシュリーレン画像を高速デジタルビデオカメラで600fpsのフレーミング速度で記録し、PCに保存した。
また、WCFF濃度は、WCF濃度を初期濃度としてNIST Standard Reference Data Base Refleak Version 4.0により漏洩シミュレーションを行うことで求めた。
結果を表35及び表36に示す。
Figure 0007212265000035
Figure 0007212265000036
表35の結果から、HFO-1132(E)、HFO-1123及びR1234yfの混合冷媒においては、これらの総和を基準として、HFO-1132(E)を72.0質量%以下含む場合に、WCF微燃性と判断できることが明らかとなった。
表36の結果から、HFO-1132(E)、HFO-1123及びR1234yfの混合冷媒においては、これらの総和が100質量%となる3成分組成図であって、点(0.0, 100.0,0.0)及び点(0.0, 0.0, 100.0)を結ぶ線分を底辺とする3成分組成図において、座標(x,y,z)が、
点J(47.1, 52.9, 0.0)、
点P(55.8, 42.0, 2.2)、
点L(63.1,31.9,5.0)
点N(68.6, 16.3, 15.1)
点N’(65.0,7.7,27.3)及び
点K(61.3, 5.4, 33.3)
の6点をそれぞれ結ぶ線分JP、PN及びNKの上、又は当該線分の下側にある場合に、WCF微燃、及びWCFF微燃性と判断できることが明らかとなった。
ただし、前記線分PNは、
座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
で表わされ、
前記線分NKは、
座標(x, 0.2421x2-29.955x+931.91, -0.2421x2+28.955x-831.91)
で表わされる。
線分PN上の点は、点P、点L、点Nの3点を結ぶ近似曲線を最小二乗法により求めることにより決定した。
線分NK上の点は、点N、点N’、点Kの3点を結ぶ近似曲線を最小二乗法により求めることにより決定した。
(5-2)冷媒B
本開示の冷媒Bは、
トランス-1,2-ジフルオロエチレン(HFO-1132(E))及びトリフルオロエチレン(HFO-1123)の合計を、該冷媒の全体に対して99.5質量%以上含み、かつ、該冷媒が、HFO-1132(E)を、該冷媒の全体に対して62.0質量%~72.0質量%又は45.1質量%~47.1質量%含む、混合冷媒であるか、または、
HFO-1132(E)及びHFO-1123の合計を、該冷媒の全体に対して99.5質量%以上含み、かつ該冷媒が、HFO-1132(E)を、該冷媒の全体に対して45.1質量%~47.1質量%含む、混合冷媒である。
本開示の冷媒Bは、(1)R410Aと同等の成績係数を有すること、(2)R410Aと同等の冷凍能力を有すること、(3)GWPが十分に小さいこと、及び(4)ASHRAEの規格で微燃性(2Lクラス)であること、という、R410A代替冷媒として望ましい諸特性を有する。
本開示の冷媒Bは、HFO-1132(E)を72.0質量%以下含む混合冷媒であればWCF微燃となる。本開示の冷媒Bは、HFO-1132(E)を47.1%以下含む組成物であればWCF微燃及びWCFF微燃でASHRAE規格では微燃性冷媒である「2Lクラス」となり、取り扱いがさらに容易となる。
本開示の冷媒Bは、HFO-1132(E)を、62.0質量%以上含む場合、R410Aを基準とする成績係数比が95%以上でより優れたものとなり、かつHFO-1132(E)及び/又はHFO-1123の重合反応がより抑制され、安定性がより優れたものとなる。本開示の冷媒Bは、HFO-1132(E)を、45.1質量%以上含む場合、R410Aを基準とする成績係数比が93%以上でより優れたものとなり、かつHFO-1132(E)及び/又はHFO-1123の重合反応がより抑制され、安定性がより優れたものとなる。
本開示の冷媒Bは、上記の特性や効果を損なわない範囲内で、HFO-1132(E)及びHFO-1123に加えて、さらに他の追加的な冷媒を含有していてもよい。この点で、本開示の冷媒Bが、HFO-1132(E)及びHFO-1123の合計を、冷媒全体に対して99.75質量%以上含むことがより好ましく、99.9質量%以上含むことがさらに好ましい。
追加的な冷媒としては、特に限定されず、幅広く選択できる。混合冷媒は、追加的な冷媒として、一種を単独で含んでいてもよいし、二種以上を含んでいてもよい。
(冷媒Bの実施例)
以下に、冷媒Bの実施例を挙げてさらに詳細に説明する。ただし、冷媒Bは、これらの実施例に限定されるものではない。
HFO-1132(E)及びHFO-1123を、これらの総和を基準として表37及び表38にそれぞれ示した質量%(mass%)で混合した混合冷媒を調製した。
R410A(R32=50%/R125=50%)の混合物を含有する組成物のGWPは、IPCC(Intergovernmental Panel on Climate Change)第4次報告書の値に基づいて評価した。HFO-1132(E)のGWPは記載がないが、HFO-1132a(GWP=1以下)、HFO-1123(GWP=0.3,特許文献1に記載)から、そのGWPを1と想定した。R410A及びHFO-1132(E)とHFO-1123との混合物を含有する組成物の冷凍能力は、National Institute of Science and Technology(NIST) Reference Fluid Thermodynamic and Transport Properties Database(Refprop 9.0)を使い、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
蒸発温度5℃
凝縮温度45℃
過熱温度5K
過冷却温度5K
圧縮機効率70%
また、各混合物の組成をWCFとし、ASHRAE34-2013規格に従って装置(Equipment)、貯蔵(Storage)、輸送(Shipping)、漏洩(Leak)及び再充填(Recharge)の条件でNIST Standard Reference Data Base Refleak Version 4.0により漏洩シミュレーションを行い、最も燃えやすい分画(fraction)をWCFFとした。
また、これらの結果をもとに算出したGWP、COP及び冷凍能力を表1、表2に示す。なお、比COP及び比冷凍能力については、R410Aに対する割合を示す。
成績係数(COP)は、次式により求めた。
COP =(冷凍能力又は暖房能力)/消費電力量
また、燃焼性はANSI/ASHRAE34-2013規格に従い燃焼速度を測定した。燃焼速度がWCF及びWCFFともに10 cm/s以下となるものは「2Lクラス(微燃性)」であるとした。
燃焼速度試験は図1に示す装置を用いて、以下の通り行った。まず、使用した混合冷媒は99.5%またはそれ以上の純度とし、真空ゲージ上に空気の痕跡が見られなくなるまで凍結、ポンピング及び解凍のサイクルを繰り返すことにより脱気した。閉鎖法により燃焼速度を測定した。初期温度は周囲温度とした。点火は、試料セルの中心で電極間に電気的スパークを生じさせることにより行った。放電の持続時間は1.0~9.9msとし、点火エネルギーは典型的には約0.1~1.0Jであった。シュリーレン写真を使って炎の広がりを視覚化した。光を通す2つのアクリル窓を備えた円筒形容器(内径:155mm、長さ:198mm)を試料セルとして用い、光源としてはキセノンランプを用いた。炎のシュリーレン画像を高速デジタルビデオカメラで600fpsのフレーミング速度で記録し、PCに保存した。
Figure 0007212265000037
Figure 0007212265000038
組成物が、HFO-1132(E)を、該組成物の全体に対して62.0質量%~72.0質量%含む場合に、GWP=1という低いGWPを持ちつつも安定で、かつ、WCF微燃を確保し、更に驚くべきことにR410Aと同等の性能を確保することができる。また、組成物が、HFO-1132(E)を、該組成物の全体に対して45.1質量%~47.1質量%含む場合に、GWP=1という低いGWPを持ちつつも安定で、かつ、WCFF微燃を確保し、更に驚くべきことにR410Aと同等の性能を確保することができる。
(5-3)冷媒C
本開示の冷媒Cは、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)、並びにジフルオロメタン(R32)を含む組成物であって、さらに以下の要件を満たす。本開示の冷媒Cは、R410Aと同等の冷凍能力及び成績係数を有し、かつGWPが十分に小さい、という、R410A代替冷媒として望ましい諸特性を有する。
要件:
本開示の冷媒Cは、HFO-1132(E)、HFO-1123及びR1234yf、並びにR32の、これらの総和を基準とする質量%をそれぞれx、y及びz、並びにaとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる3成分組成図において、座標(x,y,z)が、
0<a≦11.1のとき、
点G(0.026a2-1.7478a+72.0, -0.026a2+0.7478a+28.0, 0.0)、
点I(0.026a2-1.7478a+72.0, 0.0, -0.026a2+0.7478a+28.0)、
点A(0.0134a2-1.9681a+68.6, 0.0, -0.0134a2+0.9681a+31.4)、
点B(0.0, 0.0144a2-1.6377a+58.7, -0.0144a2+0.6377a+41.3)、
点D’(0.0, 0.0224a2+0.968a+75.4, -0.0224a2-1.968a+24.6)及び
点C(-0.2304a2-0.4062a+32.9, 0.2304a2-0.5938a+67.1, 0.0)
の6点をそれぞれ結ぶ直線GI、IA、AB、BD’、D’C及びCGで囲まれる図形の範囲内又は前記直線GI、AB及びD’C上にあり(ただし、点G、点I、点A、点B、点D’及び点Cは除く)、
11.1<a≦18.2のとき、
点G(0.02a2-1.6013a+71.105, -0.02a2+0.6013a+28.895, 0.0)、
点I(0.02a2-1.6013a+71.105, 0.0, -0.02a2+0.6013a+28.895)、
点A(0.0112a2-1.9337a+68.484, 0.0, -0.0112a2+0.9337a+31.516)、
点B(0.0, 0.0075a2-1.5156a+58.199, -0.0075a2+0.5156a+41.801)及び
点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にあり(ただし、点G、点I、点A、点B及び点Wは除く)、
18.2<a≦26.7のとき、
点G(0.0135a2-1.4068a+69.727, -0.0135a2+0.4068a+30.273, 0.0)、
点I(0.0135a2-1.4068a+69.727, 0.0, -0.0135a2+0.4068a+30.273)、
点A(0.0107a2-1.9142a+68.305, 0.0, -0.0107a2+0.9142a+31.695)、
点B(0.0, 0.009a2-1.6045a+59.318, -0.009a2+0.6045a+40.682)及び
点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にあり(ただし、点G、点I、点A、点B及び点Wは除く)、
26.7<a≦36.7のとき、
点G(0.0111a2-1.3152a+68.986, -0.0111a2+0.3152a+31.014, 0.0)、
点I(0.0111a2-1.3152a+68.986, 0.0, -0.0111a2+0.3152a+31.014)、
点A(0.0103a2-1.9225a+68.793, 0.0, -0.0103a2+0.9225a+31.207)、
点B(0.0, 0.0046a2-1.41a+57.286, -0.0046a2+0.41a+42.714)及び
点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にあり(ただし、点G、点I、点A、点B及び点Wは除く)、及び
36.7<a≦46.7のとき、
点G(0.0061a2-0.9918a+63.902, -0.0061a2-0.0082a+36.098, 0.0)、
点I(0.0061a2-0.9918a+63.902, 0.0, -0.0061a2+0.0082a+36.098)、
点A(0.0085a2-1.8102a+67.1, 0.0, -0.0085a2+0.8102a+32.9)、
点B(0.0, 0.0012a2-1.1659a+52.95, -0.0012a2+0.1659a+47.05)及び
点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にある(ただし、点G、点I、点A、点B及び点Wは除く)ものが含まれる。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、かつR410Aを基準とするCOP比が92.5%以上となり、さらにWCF微燃性となる。
本開示の冷媒Cは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる3成分組成図において、座標(x,y,z)が、
0<a≦11.1のとき、
点J(0.0049a2-0.9645a+47.1, -0.0049a2-0.0355a+52.9, 0.0)、
点K’(0.0514a2-2.4353a+61.7, -0.0323a2+0.4122a+5.9, -0.0191a2+1.0231a+32.4)、
点B(0.0, 0.0144a2-1.6377a+58.7, -0.0144a2+0.6377a+41.3)、
点D’(0.0, 0.0224a2+0.968a+75.4, -0.0224a2-1.968a+24.6)及び
点C(-0.2304a2-0.4062a+32.9, 0.2304a2-0.5938a+67.1, 0.0)
の5点をそれぞれ結ぶ直線JK’、K’B、BD’、D’C及びCJで囲まれる図形の範囲内又は前記直線JK’、K’B及びD’C上にあり(ただし、点J、点B、点D’及び点Cは除く)、
11.1<a≦18.2のとき、
点J(0.0243a2-1.4161a+49.725, -0.0243a2+0.4161a+50.275, 0.0)、
点K’(0.0341a2-2.1977a+61.187, -0.0236a2+0.34a+5.636, -0.0105a2+0.8577a+33.177)、
点B(0.0, 0.0075a2-1.5156a+58.199, -0.0075a2+0.5156a+41.801)及び
点W(0.0, 100.0-a, 0.0)
の4点をそれぞれ結ぶ直線JK’、K’B、BW及びWJで囲まれる図形の範囲内又は前記直線JK’及びK’B上にあり(ただし、点J、点B及び点Wは除く)、
18.2<a≦26.7のとき、
点J(0.0246a2-1.4476a+50.184, -0.0246a2+0.4476a+49.816, 0.0)、
点K’(0.0196a2-1.7863a+58.515, -0.0079a2-0.1136a+8.702, -0.0117a2+0.8999a+32.783)、
点B(0.0, 0.009a2-1.6045a+59.318, -0.009a2+0.6045a+40.682)及び
点W(0.0, 100.0-a, 0.0)
の4点をそれぞれ結ぶ直線JK’、K’B、BW及びWJで囲まれる図形の範囲内又は前記直線JK’及びK’B上にあり(ただし、点J、点B及び点Wは除く)、
26.7<a≦36.7のとき、
点J(0.0183a2-1.1399a+46.493, -0.0183a2+0.1399a+53.507, 0.0)、
点K’(-0.0051a2+0.0929a+25.95, 0.0, 0.0051a2-1.0929a+74.05)、
点A(0.0103a2-1.9225a+68.793, 0.0, -0.0103a2+0.9225a+31.207)、
点B(0.0, 0.0046a2-1.41a+57.286, -0.0046a2+0.41a+42.714)及び
点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線JK’、K’A、AB、BW及びWJで囲まれる図形の範囲内又は前記直線JK’、K'A及びAB上にあり(ただし、点J、点B及び点Wは除く)、及び
36.7<a≦46.7のとき、
点J(-0.0134a2+1.0956a+7.13, 0.0134a2-2.0956a+92.87, 0.0)、
点K’(-1.892a+29.443, 0.0, 0.892a+70.557)、
点A(0.0085a2-1.8102a+67.1, 0.0, -0.0085a2+0.8102a+32.9)、
点B(0.0, 0.0012a2-1.1659a+52.95, -0.0012a2+0.1659a+47.05)及び
点W(0.0, 100.0-a, 0.0)
の5点をそれぞれ結ぶ直線JK’、K’A、AB、BW及びWJで囲まれる図形の範囲内又は前記直線JK’、K'A及びAB上にある(ただし、点J、点B及び点Wは除く)ものが含まれる。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、かつR410Aを基準とするCOP比が92.5%以上となるだけでなく、さらにWCF微燃及びWCFF微燃でASHRAE規格では微燃性冷媒である「2Lクラス」を示す。
本開示の冷媒Cは、HFO-1132(E)、HFO-1123及びR1234yfに加えて、さらにR32を含む場合、HFO-1132(E)、HFO-1123及びR1234yf並びにR32の、これらの総和を基準とする質量%をそれぞれx、y及びz並びにaとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる3成分組成図において、座標(x,y,z)が、
0<a≦10.0のとき、
点a(0.02a2-2.46a+93.4, 0, -0.02a2+2.46a+6.6)、
点b’(-0.008a2-1.38a+56, 0.018a2-0.53a+26.3, -0.01a2+1.91a+17.7)、
点c(-0.016a2+1.02a+77.6, 0.016a2-1.02a+22.4, 0)及び
点o(100.0-a, 0.0, 0.0)
の4点をそれぞれ結ぶ直線で囲まれる図形の範囲内又は前記直線oa、ab’及びb’c上にあり(ただし、点o及び点cは除く)、
10.0<a≦16.5のとき、
点a(0.0244a2-2.5695a+94.056, 0, -0.0244a2+2.5695a+5.944)、
点b’(0.1161a2-1.9959a+59.749, 0.014a2-0.3399a+24.8, -0.1301a2+2.3358a+15.451)、
点c(-0.0161a2+1.02a+77.6, 0.0161a2-1.02a+22.4, 0)及び
点o(100.0-a, 0.0, 0.0)
の4点をそれぞれ結ぶ直線で囲まれる図形の範囲内又は前記直線oa、ab’及びb’c上にあり(ただし、点o及び点cは除く)、又は
16.5<a≦21.8のとき、
点a(0.0161a2-2.3535a+92.742, 0, -0.0161a2+2.3535a+7.258)、
点b’(-0.0435a2-0.0435a+50.406, -0.0304a2+1.8991a-0.0661, 0.0739a2-1.8556a+49.6601)、
点c(-0.0161a2+0.9959a+77.851, 0.0161a2-0.9959a+22.149, 0)及び
点o(100.0-a, 0.0, 0.0)
の4点をそれぞれ結ぶ直線で囲まれる図形の範囲内又は前記直線oa、ab’及びb’c上にあるものとすることができる(ただし、点o及び点cは除く)。なお、点b’は、前記3成分組成図において、R410Aを基準とする冷凍能力比が95%となり、かつR410Aを基準とするCOP比が95%となる点を点bとすると、R410Aを基準とするCOP比が95%となる点を結ぶ近似直線と、直線abとの交点である。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が95%以上となり、かつR410Aを基準とするCOP比が95%以上となる。
本開示の冷媒Cは、上記の特性や効果を損なわない範囲内で、HFO-1132(E)、HFO-1123及びR1234yf並びにR32に加えて、さらに他の追加的な冷媒を含有していてもよい。この点で、本開示の冷媒が、HFO-1132(E)、HFO-1123及びR1234yf並びにR32の合計を、冷媒全体に対して99.5質量%以上含むことが好ましく、99.75質量%以上含むことがより好ましく、99.9質量%以上含むことがさらに好ましい。
また、本開示の冷媒Cは、HFO-1132(E)、HFO-1123及びR1234yf並びにR32の合計を、冷媒全体に対して99.5質量%以上含むものであってよく、99.75質量%以上含むものであってもよく、さらに99.9質量%以上含むものであってもよい。
追加的な冷媒としては、特に限定されず、幅広く選択できる。混合冷媒は、追加的な冷媒として、一種を単独で含んでいてもよいし、二種以上を含んでいてもよい。
(冷媒Cの実施例)
以下に、冷媒Cの実施例を挙げてさらに詳細に説明する。ただし、冷媒Cは、これらの実施例に限定されるものではない。
HFO-1132(E)、HFO-1123及びR1234yf、並びにR32を、これらの総和を基準として、表39~96にそれぞれ示した質量%で混合した混合冷媒を調製した。
R410A(R32=50%/R125=50%)の混合物を含有する組成物のGWPは、IPCC(Intergovernmental Panel on Climate Change)第4次報告書の値に基づいて評価した。HFO-1132(E)のGWPは記載がないが、HFO-1132a(GWP=1以下)、HFO-1123(GWP=0.3,特許文献1に記載)から、そのGWPを1と想定した。R410A及びHFO-1132(E)とHFO-1123との混合物を含有する組成物の冷凍能力は、National Institute of Science and Technology(NIST) Reference Fluid Thermodynamic and Transport Properties Database(Refprop 9.0)を使い、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
これらの各混合冷媒について、R410を基準とするCOP比及び冷凍能力比をそれぞれ求めた。計算条件は以下の通りとした。
蒸発温度:5℃
凝縮温度:45℃
過熱度:5K
過冷却度;5K
圧縮機効率70%
これらの値を、各混合冷媒についてのGWPと合わせて表39~96に示す。なお、比COP及び比冷凍能力については、R410Aに対する割合を示す。
成績係数(COP)は、次式により求めた。
COP =(冷凍能力又は暖房能力)/消費電力量
Figure 0007212265000039
Figure 0007212265000040
Figure 0007212265000041
Figure 0007212265000042
Figure 0007212265000043
Figure 0007212265000044
Figure 0007212265000045
Figure 0007212265000046
Figure 0007212265000047
Figure 0007212265000048
Figure 0007212265000049
Figure 0007212265000050
Figure 0007212265000051
Figure 0007212265000052
Figure 0007212265000053
Figure 0007212265000054
Figure 0007212265000055
Figure 0007212265000056
Figure 0007212265000057
Figure 0007212265000058
Figure 0007212265000059
Figure 0007212265000060
Figure 0007212265000061
Figure 0007212265000062
Figure 0007212265000063
Figure 0007212265000064
Figure 0007212265000065
Figure 0007212265000066
Figure 0007212265000067
Figure 0007212265000068
Figure 0007212265000069
Figure 0007212265000070
Figure 0007212265000071
Figure 0007212265000072
Figure 0007212265000073
Figure 0007212265000074
Figure 0007212265000075
Figure 0007212265000076
Figure 0007212265000077
Figure 0007212265000078
Figure 0007212265000079
Figure 0007212265000080
Figure 0007212265000081
Figure 0007212265000082
Figure 0007212265000083
Figure 0007212265000084
Figure 0007212265000085
Figure 0007212265000086
Figure 0007212265000087
Figure 0007212265000088
Figure 0007212265000089
Figure 0007212265000090
Figure 0007212265000091
Figure 0007212265000092
Figure 0007212265000093
Figure 0007212265000094
Figure 0007212265000095
Figure 0007212265000096
これらの結果から、HFO-1132(E)、HFO-1123及びR1234yf、並びにR32の、これらの総和を基準とする質量%をそれぞれx、y及びz、並びにaとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる、点(0.0, 100.0-a, 0.0)と点(0.0, 0.0, 100,0-a)とを結ぶ直線を底辺とし、かつ点(0.0, 100.0-a, 0.0)が左側となる3成分組成図において、座標(x,y,z)が、
0<a≦11.1のとき、
点A(0.0134a2-1.9681a+68.6, 0.0, -0.0134a2+0.9681a+31.4)と
点B(0.0, 0.0144a2-1.6377a+58.7, -0.0144a2+0.6377a+41.3)と
を結ぶ直線ABの線上又は左側、
11.1<a≦18.2のとき、
点A(0.0112a2-1.9337a+68.484, 0.0, -0.0112a2+0.9337a+31.516)と
点B(0.0, 0.0075a2-1.5156a+58.199, -0.0075a2+0.5156a+41.801)と
を結ぶ直線ABの線上又は左側、
18.2<a≦26.7のとき、
点A(0.0107a2-1.9142a+68.305, 0.0, -0.0107a2+0.9142a+31.695)と
点B(0.0, 0.009a2-1.6045a+59.318, -0.009a2+0.6045a+40.682)と
を結ぶ直線ABの線上又は左側、
26.7<a≦36.7のとき、
点A(0.0103a2-1.9225a+68.793, 0.0, -0.0103a2+0.9225a+31.207)と
点B(0.0, 0.0046a2-1.41a+57.286, -0.0046a2+0.41a+42.714)と
を結ぶ直線ABの線上又は左側、並びに
36.7<a≦46.7のとき、
点A(0.0085a2-1.8102a+67.1, 0.0, -0.0085a2+0.8102a+32.9)と
点B(0.0, 0.0012a2-1.1659a+52.95, -0.0012a2+0.1659a+47.05)と
を結ぶ直線ABの線上又は左側にある場合に、R410Aを基準とする冷凍能力比が85%以上となることが判る。なお、実際の冷凍能力比85%の点は、図3に示す点A、点Bを結ぶ1234yf側に広がった曲線となる。従って、直線ABの線上又は左側にある場合に、R410Aを基準とする冷凍能力比が85%以上となる。
同様に、上記3成分組成図において、座標(x,y,z)が、
0<a≦11.1のとき、
点D’(0.0, 0.0224a2+0.968a+75.4, -0.0224a2-1.968a+24.6)と
点C(-0.2304a2-0.4062a+32.9, 0.2304a2-0.5938a+67.1, 0.0)と
を結ぶ直線D’Cの線上又は右側にある場合に、また、
11.1<a≦46.7のとき、
全ての領域内にある場合に、R410Aを基準とするCOP比が92.5%以上となることが判る。
なお、図3においてCOP比が92.5%以上となるのは曲線CDであるが、図3ではR1234yf濃度が5質量%、10質量%のときにCOP比が92.5%となる点(26.6, 68.4,5),(19.5, 70.5, 10)、及び点C(32.9, 67.1, 0.0)の3点を結ぶ近似直線を求め、HFO-1132(E)濃度が0.0質量%との交点D’(0, 75.4, 24.6)と点Cを結ぶ直線を線分D’Cとした。また、図4では、COP比が92.5%となる点C(18.4, 74.5,0)、点(13.9, 76.5, 2.5)、点(8.7, 79.2, 5)を結ぶ近似曲線から同様にD’(0, 83.4, 9.5)を求め、点Cと結ぶ直線をD’Cとした。
また、各混合物の組成をWCFとし、ASHRAE34-2013規格に従って装置(Equipment)、貯蔵(Storage)、輸送(Shipping)、漏洩(Leak)及び再充填(Recharge)の条件でNIST Standard Reference Data Base Refleak Version 4.0により漏洩シミュレーションを行い、最も燃えやすい分画(fraction)をWCFFとした。また、燃焼性はANSI/ASHRAE34-2013規格に従い燃焼速度を測定した。燃焼速度がWCF及びWCFFともに10 cm/s以下となるものは「2Lクラス(微燃性)」であるとした。
なお、燃焼速度試験は図1に示す装置を用いて、以下の通り行った。まず、使用した混合冷媒は99.5%またはそれ以上の純度とし、真空ゲージ上に空気の痕跡が見られなくなるまで凍結、ポンピング及び解凍のサイクルを繰り返すことにより脱気した。閉鎖法により燃焼速度を測定した。初期温度は周囲温度とした。点火は、試料セルの中心で電極間に電気的スパークを生じさせることにより行った。放電の持続時間は1.0~9.9msとし、点火エネルギーは典型的には約0.1~1.0Jであった。シュリーレン写真を使って炎の広がりを視覚化した。光を通す2つのアクリル窓を備えた円筒形容器(内径:155mm、長さ:198mm)を試料セルとして用い、光源としてはキセノンランプを用いた。炎のシュリーレン画像を高速デジタルビデオカメラで600fpsのフレーミング速度で記録し、PCに保存した。
結果を表97~104に示す。
Figure 0007212265000097
Figure 0007212265000098
Figure 0007212265000099
Figure 0007212265000100
Figure 0007212265000101
Figure 0007212265000102
Figure 0007212265000103
Figure 0007212265000104
表97~100の結果から、HFO-1132(E)、HFO-1123及びR1234yf、並びにR32の混合冷媒においては、HFO-1132(E)、HFO-1123及びR1234yf、並びにR32の、これらの総和を基準とする質量%をそれぞれx、y及びz、並びにaとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる、点(0.0,100.0-a, 0.0)と点(0.0, 0.0, 100,0-a)とを結ぶ直線を底辺とする3成分組成図において、
0<a≦11.1のとき、
点G(0.026a2-1.7478a+72.0, -0.026a2+0.7478a+28.0, 0.0)と
点I(0.026a2-1.7478a+72.0, 0.0, -0.026a2+0.7478a+28.0)と
を結ぶ直線GIの線上又は下、
11.1<a≦18.2のとき、
点G(0.02a2-1.6013a+71.105, -0.02a2+0.6013a+28.895, 0.0)と
点I(0.02a2-1.6013a+71.105, 0.0, -0.02a2+0.6013a+28.895)と
を結ぶ直線GIの線上又は下、
18.2<a≦26.7のとき、
点G(0.0135a2-1.4068a+69.727, -0.0135a2+0.4068a+30.273, 0.0)と
点I(0.0135a2-1.4068a+69.727, 0.0, -0.0135a2+0.4068a+30.273)と
を結ぶ直線GIの線上又は下、
26.7<a≦36.7のとき、
点G(0.0111a2-1.3152a+68.986, -0.0111a2+0.3152a+31.014, 0.0)と
点I(0.0111a2-1.3152a+68.986, 0.0, -0.0111a2+0.3152a+31.014)と
を結ぶ直線GIの線上又は下、及び
36.7<a≦46.7のとき、
点G(0.0061a2-0.9918a+63.902, -0.0061a2-0.0082a+36.098,0.0)と
点I(0.0061a2-0.9918a+63.902, 0.0, -0.0061a2-0.0082a+36.098)と
を結ぶ直線GIの線上又は下にある場合に、WCF微燃性と判断できることが明らかとなった。なお、点G(表105)及びI(表106)は、計算により以下の5範囲毎に三点ずつを求め、これらの近似式を求めた。
Figure 0007212265000105
Figure 0007212265000106
表101~104の結果から、HFO-1132(E)、HFO-1123及びR1234yf、並びにR32の混合冷媒においては、HFO-1132(E)、HFO-1123及びR1234yf、並びにR32の、これらの総和を基準とする質量%をそれぞれx、y及びz、並びにaとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる、点(0.0,100.0-a, 0.0)と点(0.0, 0.0, 100,0-a)とを結ぶ直線を底辺とする3成分組成図において、
0<a≦11.1のとき、
点J(0.0049a2-0.9645a+47.1, -0.0049a2-0.0355a+52.9, 0.0)と
点K’(0.0514a2-2.4353a+61.7, -0.0323a2+0.4122a+5.9, -0.0191a2+1.0231a+32.4)と
を結ぶ直線JK’の線上又は下、
11.1<a≦18.2のとき、
点J(0.0243a2-1.4161a+49.725, -0.0243a2+0.4161a+50.275, 0.0)と
点K’(0.0341a2-2.1977a+61.187, -0.0236a2+0.34a+5.636, -0.0105a2+0.8577a+33.177)と
を結ぶ直線JK’の線上又は下、
18.2<a≦26.7のとき、
点J(0.0246a2-1.4476a+50.184, -0.0246a2+0.4476a+49.816, 0.0)と
点K’(0.0196a2-1.7863a+58.515, -0.0079a2-0.1136a+8.702, -0.0117a2+0.8999a+32.783)とを結ぶ直線JK’の線上又は下、
26.7<a≦36.7のとき、
点J(0.0183a2-1.1399a+46.493, -0.0183a2+0.1399a+53.507, 0.0)と
点K’(-0.0051a2+0.0929a+25.95, 0.0, 0.0051a2-1.0929a+74.05)と
を結ぶ直線JK’の線上又は下、及び
36.7<a≦46.7のとき、
点J(-0.0134a2+1.0956a+7.13, 0.0134a2-2.0956a+92.87, 0.0)と
点K’(-1.892a+29.443, 0.0, 0.892a+70.557)と
を結ぶ直線JK’の線上又は下にある場合に、WCFF微燃性と判断でき、ASHRAE規格の燃焼性分類で「2L(微燃性)」になることが明らかとなった。
なお、実際のWCFF微燃の点は、図3に示す点J、点K’(直線AB上)を結ぶHFO-1132(E)側に広がった曲線となる。従って、直線JK’の線上又は下側にある場合にはWCFF微燃性となる。
なお、点J(表107)及びK’(表108)は、計算により以下の5範囲毎に三点ずつを求め、これらの近似式を求めた。
Figure 0007212265000107
Figure 0007212265000108
なお、図3~13は、それぞれ、順に、R32含有割合a(質量%)が、0質量%、7.1質量%、11.1質量%、14.5質量%、18.2質量%、21.9質量%、26.7質量%、29.3質量%、36.7質量%、44.1質量%及び47.8質量%の場合の組成を表わしている。
点A、B、C、D’は、近似計算によりそれぞれ以下のようにして求めた。
点Aは、HFO-1123含有割合が0質量%であり、かつR410Aを基準とする冷凍能力比が85%となる点である。点Aについて、計算により以下の5範囲毎に三点ずつを求め、これらの近似式を求めた(表109)。
Figure 0007212265000109
点Bは、HFO-1132(E)含有割合が0質量%であり、かつR410Aを基準とする冷凍能力比が85%となる点である。点Bについて、計算により以下の5範囲毎に三点ずつを求め、これらの近似式を求めた(表110)。
Figure 0007212265000110
点D’は、HFO-1132(E)含有割合が0質量%であり、かつR410Aを基準とするCOP比が95.5%となる点である。点D’について、計算により以下の三点ずつを求め、これらの近似式を求めた(表111)。
Figure 0007212265000111
点Cは、R1234yf含有割合が0質量%であり、かつR410Aを基準とするCOP比が95.5%となる点である。点Cについて、計算により以下の三点ずつを求め、これらの近似式を求めた(表112)。
Figure 0007212265000112
(5-4)冷媒D
本開示の冷媒Dは、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、ジフルオロメタン(R32)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)を含む混合冷媒である。
本開示の冷媒Dは、R410Aと同等の冷却能力を有し、GWPが十分に小さく、かつASHRAEの規格で微燃性(2Lクラス)である、という、R410A代替冷媒として望ましい諸特性を有する。
本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点I(72.0, 0.0, 28.0)、
点J(48.5, 18.3, 33.2)、
点N(27.7, 18.2, 54.1)及び
点E(58.3, 0.0, 41.7)
の4点をそれぞれ結ぶ線分IJ、JN、NE、及びEIで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分EI上にある点は除く)、
前記線分IJは、
座標(0.0236y2-1.7616y+72.0, y, -0.0236y2+0.7616y+28.0)
で表わされ、
前記線分NEは、
座標(0.012y2-1.9003y+58.3, y, -0.012y2+0.9003y+41.7)
で表わされ、かつ
前記線分JN及びEIが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が80%以上となり、GWPが125以下となり、かつWCF微燃となる。
本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点M(52.6, 0.0, 47.4)、
点M’(39.2, 5.0, 55.8)、
点N(27.7, 18.2, 54.1)、
点V(11.0, 18.1, 70.9)及び
点G(39.6, 0.0, 60.4)
の5点をそれぞれ結ぶ線分MM’、M’N、NV、VG、及びGMで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分GM上にある点は除く)、
前記線分MM’は、
座標(x, 0.132x2-3.34x+52.6, -0.132x2+2.34x+47.4)
で表わされ、
前記線分M’Nは、
座標(0.0313y2-1.4551y+43.824, y, -0.0313y2+0.4551y+56.176)
で表わされ、
前記線分VGは、
座標(0.0123y2-1.8033y+39.6, y, -0.0123y2+0.8033y+60.4)
で表わされ、かつ
前記線分NV及びGMが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が70%以上となり、GWPが125以下となり、かつASHRAE微燃となる。
本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点O(22.6, 36.8, 40.6)、
点N(27.7, 18.2, 54.1)及び
点U(3.9, 36.7, 59.4)
の3点をそれぞれ結ぶ線分ON、NU及びUOで囲まれる図形の範囲内又は前記線分上にあり、
前記線分ONは、
座標(0.0072y2-0.6701y+37.512, y, -0.0072y2-0.3299y+62.488)
で表わされ、
前記線分NUは、
座標(0.0083y2-1.7403y+56.635, y, -0.0083y2+0.7403y+43.365)
で表わされ、かつ
前記線分UOが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が80%以上となり、GWPが250以下となり、かつASHRAE微燃となる。
本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点Q(44.6, 23.0, 32.4)、
点R(25.5, 36.8, 37.7)、
点T(8.6, 51.6, 39.8)、
点L(28.9, 51.7, 19.4)及び
点K(35.6, 36.8, 27.6)
の5点をそれぞれ結ぶ線分QR、RT、TL、LK及びKQで囲まれる図形の範囲内又は前記線分上にあり、
前記線分QRは、
座標(0.0099y2-1.975y+84.765, y, -0.0099y2+0.975y+15.235)
で表わされ、
前記線分RTは、
座標(0.082y2-1.8683y+83.126, y, -0.082y2+0.8683y+16.874)
で表わされ、
前記線分LKは、
座標(0.0049y2-0.8842y+61.488, y, -0.0049y2-0.1158y+38.512)
で表わされ、
前記線分KQは、
座標(0.0095y2-1.2222y+67.676, y, -0.0095y2+0.2222y+32.324)
で表わされ、かつ
前記線分TLが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が92.5%以上となり、GWPが350以下となり、かつWCF微燃となる。
本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準と
する質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの
総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点P(20.5, 51.7, 27.8)、
点S(21.9, 39.7, 38.4)及び
点T(8.6, 51.6, 39.8)
の3点をそれぞれ結ぶ線分PS、ST及びTPで囲まれる図形の範囲内又は前記線分上にあり、
前記線分PSは、
座標(0.0064y2-0.7103y+40.1, y, -0.0064y2-0.2897y+59.9)
で表わされ、
前記線分STは、
座標(0.082y2-1.8683y+83.126, y, -0.082y2+0.8683y+16.874)
で表わされ、かつ
前記線分TPが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が92.5%以上となり、GWPが350以下となり、かつASHRAE微燃となる。
本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点a(71.1, 0.0, 28.9)、
点c(36.5, 18.2, 45.3)、
点f(47.6, 18.3, 34.1)及び
点d(72.0, 0.0, 28.0)
の4点をそれぞれ結ぶ線分ac、cf、fd、及びdaで囲まれる図形の範囲内又は前記線分上にあり、
前記線分acは、
座標(0.0181y2-2.2288y+71.096, y, -0.0181y2+1.2288y+28.904)
で表わされ、
前記線分fdは、
座標(0.02y2-1.7y+72, y, -0.02y2+0.7y+28)
で表わされ、かつ
前記線分cf及びdaが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、GWPが125以下となり、かつASHRAEの規格で微燃性(2Lクラス)となる。
本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点a(71.1, 0.0, 28.9)、
点b(42.6, 14.5, 42.9)、
点e(51.4, 14.6, 34.0)及び
点d(72.0, 0.0, 28.0)
の4点をそれぞれ結ぶ線分ab、be、ed、及びdaで囲まれる図形の範囲内又は前記線分上にあり、
前記線分abは、
座標(0.0181y2-2.2288y+71.096, y, -0.0181y2+1.2288y+28.904)
で表わされ、
前記線分edは、
座標(0.02y2-1.7y+72, y, -0.02y2+0.7y+28)
で表わされ、かつ
前記線分be及びdaが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、GWPが100以下となり、かつASHRAEの規格で微燃性(2Lクラス)となる。
本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点g(77.5, 6.9, 15.6)、
点iI(55.1, 18.3, 26.6)及び
点j(77.5. 18.4, 4.1)
の3点をそれぞれ結ぶ線分gi、ij及びjkで囲まれる図形の範囲内又は前記線分上にあり、
前記線分giは、
座標(0.02y2-2.4583y+93.396, y, -0.02y2+1.4583y+6.604)
で表わされ、かつ
前記線分ij及びjkが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が95%以上となり、GWPが100以下となり、かつ重合や分解などの変化を起こしにくく、安定性に優れている。
本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点g(77.5, 6.9, 15.6)、
点h(61.8, 14.6, 23.6)及び
点k(77.5, 14.6, 7.9)
の3点をそれぞれ結ぶ線分gh、hk及びkgで囲まれる図形の範囲内又は前記線分上にあり、
前記線分ghは、
座標(0.02y2-2.4583y+93.396, y, -0.02y2+1.4583y+6.604)
で表わされ、かつ
前記線分hk及びkgが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が95%以上となり、GWPが100以下となり、かつ重合や分解などの変化を起こしにくく、安定性に優れている。
本開示の冷媒Dは、上記の特性や効果を損なわない範囲内で、HFO-1132(E)、R32及びR1234yfに加えて、さらに他の追加的な冷媒を含有していてもよい。この点で、本開示の冷媒Dが、HFO-1132(E)、R32及びR1234yfの合計を、冷媒全体に対して99.5質量%以上含むことが好ましく、99.75質量%以上含むことがより好ましく、99.9質量%以上含むことがさらに好ましい。
追加的な冷媒としては、特に限定されず、幅広く選択できる。混合冷媒は、追加的な冷媒として、一種を単独で含んでいてもよいし、二種以上を含んでいてもよい。
(冷媒Dの実施例)
以下に、冷媒Dの実施例を挙げてさらに詳細に説明する。ただし、冷媒Dは、これらの実施例に限定されるものではない。
HFO-1132(E)、R32及びR1234yfの各混合冷媒の組成をWCFとし、ASHRAE34-2013規格に従って装置(Equipment)、貯蔵(Storage)、輸送(Shipping)、漏洩(Leak)及び再充填(Recharge)の条件でNIST Standard Reference Data Base Refleak Version 4.0により漏洩シミュレーションを行い、最も燃えやすい分画(fraction)をWCFFとした。
なお、燃焼速度試験は図1に示す装置を用いて、以下の通り行った。まず、使用した混合冷媒は99.5%またはそれ以上の純度とし、真空ゲージ上に空気の痕跡が見られなくなるまで凍結、ポンピング及び解凍のサイクルを繰り返すことにより脱気した。閉鎖法により燃焼速度を測定した。初期温度は周囲温度とした。点火は、試料セルの中心で電極間に電気的スパークを生じさせることにより行った。放電の持続時間は1.0~9.9msとし、点火エネルギーは典型的には約0.1~1.0Jであった。シュリーレン写真を使って炎の広がりを視覚化した。光を通す2つのアクリル窓を備えた円筒形容器(内径:155mm、長さ:198mm)を試料セルとして用い、光源としてはキセノンランプを用いた。炎のシュリーレン画像を高速デジタルビデオカメラで600fpsのフレーミング速度で記録し、PCに保存した。結果を表113~115に示す。
Figure 0007212265000113
Figure 0007212265000114
Figure 0007212265000115
これらの結果から、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる図14の3成分組成図において、座標(x,y,z)が、点I、点J、点K及び点Lをそれぞれ結ぶ線分上又は該線分よりも下側にある場合、WCF微燃となることが判る。
また、これらの結果から、図14の3成分組成図において、上記座標(x,y,z)が、点M、点M’、点W、点J、点N及び点Pをそれぞれ結ぶ線分上又は該線分よりも下側にある場合、ASHRAE微燃となることが判る。
HFO-1132(E)、R32及びR1234yfを、これらの総和を基準として、表116~144にそれぞれ示した質量%で混合した混合冷媒を調製した。表116~144の各混合冷媒について、R410を基準とする成績係数[Coefficient of Performance(COP)]比及び冷凍能力比をそれぞれ求めた。計算条件は以下の通りとした。
蒸発温度:5℃
凝縮温度:45℃
過熱度:5K
過冷却度;5K
圧縮機効率70%
これらの値を、各混合冷媒についてのGWPと合わせて表116~144に示す。
Figure 0007212265000116
Figure 0007212265000117
Figure 0007212265000118
Figure 0007212265000119
Figure 0007212265000120
Figure 0007212265000121
Figure 0007212265000122
Figure 0007212265000123
Figure 0007212265000124
Figure 0007212265000125
Figure 0007212265000126
Figure 0007212265000127
Figure 0007212265000128
Figure 0007212265000129
Figure 0007212265000130
Figure 0007212265000131
Figure 0007212265000132
Figure 0007212265000133
Figure 0007212265000134
Figure 0007212265000135
Figure 0007212265000136
Figure 0007212265000137
Figure 0007212265000138
Figure 0007212265000139
Figure 0007212265000140
Figure 0007212265000141
Figure 0007212265000142
Figure 0007212265000143
Figure 0007212265000144
これらの結果から、本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点I(72.0, 0.0, 28.0)、
点J(48.5, 18.3, 33.2)、
点N(27.7, 18.2, 54.1)及び
点E(58.3, 0.0, 41.7)
の4点をそれぞれ結ぶ線分IJ、JN、NE、及びEIで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分EI上にある点は除く)、
前記線分IJは、
座標(0.0236y2-1.7616y+72.0, y, -0.0236y2+0.7616y+28.0)
で表わされ、
前記線分NEは、
座標(0.012y2-1.9003y+58.3, y, -0.012y2+0.9003y+41.7)
で表わされ、かつ
前記線分JN及びEIが直線である場合、R410Aを基準とする冷凍能力比が80%以上となり、GWPが125以下となり、かつWCF微燃となることが判る。
また、本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点M(52.6, 0.0, 47.4)、
点M’(39.2, 5.0, 55.8)、
点N(27.7, 18.2, 54.1)、
点V(11.0, 18.1, 70.9)及び
点G(39.6, 0.0, 60.4)
の5点をそれぞれ結ぶ線分MM’、M’N、NV、VG、及びGMで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分GM上にある点は除く)、
前記線分MM’は、
座標(x, 0.132x2-3.34x+52.6, -0.132x2+2.34x+47.4)
で表わされ、
前記線分M’Nは、
座標(0.0313y2-1.4551y+43.824, y, -0.0313y2+0.4551y+56.176)
で表わされ、
前記線分VGは、
座標(0.0123y2-1.8033y+39.6, y, -0.0123y2+0.8033y+60.4)
で表わされ、かつ
前記線分NV及びGMが直線である場合、R410Aを基準とする冷凍能力比が70%以上となり、GWPが125以下となり、かつASHRAE微燃となることが判る。
さらに、本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点O(22.6, 36.8, 40.6)、
点N(27.7, 18.2, 54.1)及び
点U(3.9, 36.7, 59.4)
の3点をそれぞれ結ぶ線分ON、NU及びUOで囲まれる図形の範囲内又は前記線分上にあり、
前記線分ONは、
座標(0.0072y2-0.6701y+37.512, y, -0.0072y2-0.3299y+62.488)
で表わされ、
前記線分NUは、
座標(0.0083y2-1.7403y+56.635, y, -0.0083y2+0.7403y+43.365)
で表わされ、かつ
前記線分UOが直線である場合、R410Aを基準とする冷凍能力比が80%以上となり、GWPが250以下となり、かつASHRAE微燃となることが判る。
また、本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点Q(44.6, 23.0, 32.4)、
点R(25.5, 36.8, 37.7)、
点T(8.6, 51.6, 39.8)、
点L(28.9, 51.7, 19.4)及び
点K(35.6, 36.8, 27.6)
の5点をそれぞれ結ぶ線分QR、RT、TL、LK及びKQで囲まれる図形の範囲内又は前記線分上にあり、
前記線分QRは、
座標(0.0099y2-1.975y+84.765, y, -0.0099y2+0.975y+15.235)
で表わされ、
前記線分RTは、
座標(0.082y2-1.8683y+83.126, y, -0.082y2+0.8683y+16.874)
で表わされ、
前記線分LKは、
座標(0.0049y2-0.8842y+61.488, y, -0.0049y2-0.1158y+38.512)
で表わされ、
前記線分KQは、
座標(0.0095y2-1.2222y+67.676, y, -0.0095y2+0.2222y+32.324)
で表わされ、かつ
前記線分TLが直線である場合、R410Aを基準とする冷凍能力比が92.5%以上となり、GWPが350以下となり、かつWCF微燃となることが判る。
さらに、本開示の冷媒Dは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点P(20.5, 51.7, 27.8)、
点S(21.9, 39.7, 38.4)及び
点T(8.6, 51.6, 39.8)
の3点をそれぞれ結ぶ線分PS、ST及びTPで囲まれる図形の範囲内又は前記線分上にあり、
前記線分PSは、
座標(0.0064y2-0.7103y+40.1, y, -0.0064y2-0.2897y+59.9)
で表わされ、
前記線分STは、
座標(0.082y2-1.8683y+83.126, y, -0.082y2+0.8683y+16.874)
で表わされ、かつ
前記線分TPが直線である場合、R410Aを基準とする冷凍能力比が92.5%以上となり、GWPが350以下となり、かつASHRAE微燃となることが判る。
(5-5)冷媒E
本開示の冷媒Eは、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及びジフルオロメタン(R32)を含む混合冷媒である。
本開示の冷媒Eは、R410Aと同等の成績係数を有し、かつGWPが十分に小さい、という、R410A代替冷媒として望ましい諸特性を有する。
本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点I(72.0, 28,0, 0.0)
点K(48.4, 33.2, 18.4)
点B’(0.0, 81.6, 18.4)
点H(0.0, 84.2, 15.8)
点R(23.1, 67.4, 9.5)及び
点G(38.5, 61.5, 0.0)
の6点をそれぞれ結ぶ線分IK、KB’、B’H、HR、RG及びGIで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分B’H及びGI上の点を除く)、
前記線分IKは、
座標(0.025z2-1.7429z+72.00, -0.025z2+0.7429z+28.0, z)
で表わされ、
前記線分HRは、
座標(-0.3123z2+4.234z+11.06, 0.3123z2-5.234z+88.94, z)
で表わされ、
前記線分RGは、
座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
で表わされ、かつ
前記線分KB’及びGIが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、WCF微燃であり、R410Aを基準とするCOP比が93%以上となり、かつGWPが125以下となる。
本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点I(72.0, 28,0, 0.0)
点J(57.7, 32.8, 9.5)
点R(23.1, 67.4, 9.5)及び
点G(38.5, 61.5, 0.0)
の4点をそれぞれ結ぶ線分IJ、JR、RG及びGIで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分GI上の点を除く)、
前記線分IJは、
座標(0.025z2-1.7429z+72.0, -0.025z2+0.7429z+28.0, z)
で表わされ、かつ
前記線分RGは、
座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
で表わされ、
前記線分JR及びGIが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、WCF微燃であり、R410Aを基準とするCOP比が93%以上となり、かつGWPが125以下となる。
本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点M(47.1, 52.9, 0.0)
点P(31.8, 49.8, 18.4)
点B’(0.0, 81.6, 18.4)
点H(0.0, 84.2, 15.8)
点R(23.1, 67.4, 9.5)及び
点G(38.5, 61.5, 0.0)
の6点をそれぞれ結ぶ線分MP、PB’、B’H、HR、RG及びGMで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分B’H及びGM上の点を除く)、
前記線分MPは、
座標(0.0083z2-0.984z+47.1,-0.0083z2-0.016z+52.9, z)
で表わされ、
前記線分HRは、
座標(-0.3123z2+4.234z+11.06, 0.3123z2-5.234z+88.94, z)
で表わされ、
前記線分RGは、
座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
で表わされ、かつ
前記線分PB’及びGMが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、ASHRAE微燃であり、R410Aを基準とするCOP比が93%以上となり、かつGWPが125以下となる。
本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点M(47.1, 52.9, 0.0)
点N(38.5, 52.1, 9.5)
点R(23.1, 67.4, 9.5)及び
点G(38.5, 61.5, 0.0)
の4点をそれぞれ結ぶ線分MN、NR、RG及びGMで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分GM上の点を除く)、
前記線分MNは、
座標(0.0083z2-0.984z+47.1,-0.0083z2-0.016z+52.9, z)
で表わされ、かつ
前記線分RGは、
座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)
で表わされ、
前記線分JR及びGIが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、ASHRAE微燃であり、R410Aを基準とするCOP比が93%以上となり、かつGWPが65以下となる。
本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点P(31.8, 49.8, 18.4)
点S(25.4, 56.2, 18.4)及び
点T(34.8, 51.0, 14.2)
の3点をそれぞれ結ぶ線分PS、ST及びTPで囲まれる図形の範囲内又は前記線分上にあり、
前記線分STは、
座標(-0.0982z2+0.9622z+40.931, 0.0982z2-1.9622z+59.069, z)
で表わされ、かつ
前記線分TPは、
座標(0.0083z2-0.984z+47.1,-0.0083z2-0.016z+52.9, z)
で表わされ、
前記線分PSが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、ASHRAE微燃であり、R410Aを基準とするCOP比が94.5%以上となり、かつGWPが125以下となる。
本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点Q(28.6, 34.4, 37.0)
点B’’(0.0, 63.0, 37.0)
点D(0.0, 67.0, 33.0)及び
点U(28.7, 41.2, 30.1)
の4点をそれぞれ結ぶ線分QB’’、B’’D、DU及びUQで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分B’’D上の点を除く)、
前記線分DUは、
座標(-3.4962z2+210.71z-3146.1, 3.4962z2-211.71z+3246.1, z)で表わされ、かつ
前記線分UQは、
座標(0.0135z2-0.9181z+44.133, -0.0135z2-0.0819z+55.867, z)で表わされ、
前記線分QB’’及びB’’Dが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、ASHRAE微燃であり、R410Aを基準とするCOP比が96%以上となり、かつGWPが250以下となる。
本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点O(100.0, 0.0, 0.0)、
点c’(56.7, 43.3, 0.0)、
点d’(52.2, 38.3, 9.5)、
点e’(41.8, 39.8, 18.4)及び
点a’(81.6, 0.0, 18.4)
の5点をそれぞれ結ぶ線分Oc’、c’d’、d’e’、e’a’及びa’Oで囲まれる図形の範囲内又は前記線分c’d’、d’e’及びe’a’上にあり(ただし、点c’及びa’を除く)、
前記線分c’d’は、
座標(-0.0297z2-0.1915z+56.7, 0.0297z2+1.1915z+43.3, z)
で表わされ、
前記線分d’e’は、
座標(-0.0535z2+0.3229z+53.957, 0.0535z2+0.6771z+46.043, z)で表わされ、かつ
前記線分Oc’、e’a’及びa’Oが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とするCOP比が92.5%以上となり、かつGWPが125以下となる。
本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点O(100.0, 0.0, 0.0)、
点c(77.7, 22.3, 0.0)、
点d(76.3, 14.2, 9.5)、
点e(72.2, 9.4, 18.4)及び
点a’(81.6, 0.0, 18.4)
の5点をそれぞれ結ぶ線分Oc、cd、de、ea’及びa’Oで囲まれる図形の範囲内又は前記線分cd、de及びea’上にあり(ただし、点c及びa’を除く)、
前記線分cdeは、
座標(-0.017z2+0.0148z+77.684, 0.017z2+0.9852z+22.316, z)で表わされ、かつ
前記線分Oc、ea’及びa’Oが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とするCOP比が95%以上となり、かつGWPが125以下となる。
本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点O(100.0, 0.0, 0.0)、
点c’(56.7, 43.3, 0.0)、
点d’(52.2, 38.3, 9.5)及び
点a(90.5, 0.0, 9.5)
の5点をそれぞれ結ぶ線分Oc’、c’d’、d’a及びaOで囲まれる図形の範囲内又は前記線分c’d’及びd’a上にあり(ただし、点c’及びaを除く)、
前記線分c’d’は、
座標(-0.0297z2-0.1915z+56.7, 0.0297z2+1.1915z+43.3, z)で表わされ、かつ
前記線分Oc’、d’a及びaOが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とするCOP比が93.5%以上となり、かつGWPが65以下となる。
本開示の冷媒Eは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点O(100.0, 0.0, 0.0)、
点c(77.7, 22.3, 0.0)、
点d(76.3, 14.2, 9.5)、
点a(90.5, 0.0, 9.5)
の5点をそれぞれ結ぶ線分Oc、cd、da及びaOで囲まれる図形の範囲内又は前記線分cd及びda上にあり(ただし、点c及びaを除く)、
前記線分CDは、
座標(-0.017z2+0.0148z+77.684, 0.017z2+0.9852z+22.316, z)で表わされ、かつ
前記線分Oc、da及びaOが直線であるものであれば好ましい。本開示の冷媒は、上記要件が満たされる場合、R410Aを基準とするCOP比が95%以上となり、かつGWPが65以下となる。
本開示の冷媒Eは、上記の特性や効果を損なわない範囲内で、HFO-1132(E)、HFO-1123及びR32に加えて、さらに他の追加的な冷媒を含有していてもよい。この点で、本開示の冷媒Eが、HFO-1132(E)、HFO-1123及びR32の合計を、冷媒全体に対して99.5質量%以上含むことが好ましく、99.75質量%以上含むことがより好ましく、99.9質量%以上含むことがさらに好ましい。
追加的な冷媒としては、特に限定されず、幅広く選択できる。混合冷媒は、追加的な冷媒として、一種を単独で含んでいてもよいし、二種以上を含んでいてもよい。
(冷媒Eの実施例)
以下に、冷媒Eの実施例を挙げてさらに詳細に説明する。ただし、冷媒Eは、これらの実施例に限定されるものではない。
HFO-1132(E)、HFO-1123及びR32を、これらの総和を基準として、表145及び表146にそれぞれ示した質量%で混合した混合冷媒を調製した。各混合物の組成をWCFとし、ASHRAE34-2013規格に従って装置(Equipment)、貯蔵(Storage)、輸送(Shipping)、漏洩(Leak)及び再充填(Recharge)の条件でNational Institute of Science and Technology (NIST) Standard Reference Data Base Refleak Version 4.0により漏洩シミュレーションを行い、最も燃えやすい分画(fraction)をWCFFとした。
これらの各混合冷媒について、ANSI/ASHRAE34-2013規格に従い燃焼速度を測定した。WCF組成、及びWCFF組成の燃焼速度が10 cm/s以下となるものはASHRAEの燃焼性分類で「2Lクラス(微燃性)」に相当する。
なお、燃焼速度試験は図1に示す装置を用いて、以下の通り行った。まず、使用した混合冷媒は99.5%またはそれ以上の純度とし、真空ゲージ上に空気の痕跡が見られなくなるまで凍結、ポンピング及び解凍のサイクルを繰り返すことにより脱気した。閉鎖法により燃焼速度を測定した。初期温度は周囲温度とした。点火は、試料セルの中心で電極間に電気的スパークを生じさせることにより行った。放電の持続時間は1.0~9.9msとし、点火エネルギーは典型的には約0.1~1.0Jであった。シュリーレン写真を使って炎の広がりを視覚化した。光を通す2つのアクリル窓を備えた円筒形容器(内径:155mm、長さ:198mm)を試料セルとして用い、光源としてはキセノンランプを用いた。炎のシュリーレン画像を高速デジタルビデオカメラで600fpsのフレーミング速度で記録し、PCに保存した。
結果を表145及び表146に示す。
Figure 0007212265000145
Figure 0007212265000146
表145の結果から、HFO-1132(E)、HFO-1123及びR32の混合冷媒においては、これらの総和が100質量%となる3成分組成図であって、点(0.0, 100.0, 0.0)及び点(0.0, 0.0, 100.0)を結ぶ線分を底辺とし、点(0.0, 100.0, 0.0)を左側、点(0.0, 0.0, 100.0)を右側とする3成分組成図において、座標(x,y,z)が、
点I(72.0, 28,0, 0.0)
点K(48.4, 33.2, 18.4)及び
点L(35.5, 27.5, 37.0)
の3点をそれぞれ結ぶ線分IK及びKLの上、又は当該線分の下側にあり、
前記線分IKは、
座標(0.025z2-1.7429z+72.00, -0.025z2+0.7429z+28.00, z)で表わされ、かつ
前記線分KLは、
座標(0.0098z2-1.238z+67.852, -0.0098z2+0.238z+32.148, z)で表わされる場合にWCF微燃と判断できることが明らかとなった。
線分IK上の点は、I(72.0, 28,0, 0.0)、J(57.7, 32.8, 9.5)、K(48.4, 33.2, 18.4)の3点から最小二乗法により近似曲線x=0.025z2-1.7429z+72.00を求め、座標(x=0.025z2-1.7429z+72.00, y=100-z-x=-0.00922z2+0.2114z+32.443, z)を求めた。
以下同様に線分KL上の点は、K(48.4, 33.2, 18.4)、実施例10(41.1, 31.2, 27.7)、L(35.5, 27.5, 37.0)の3点から最小二乗法により近似曲線を求め、座標を定めた。
表146の結果から、HFO-1132(E)、HFO-1123及びR32の混合冷媒においては、これらの総和が100質量%となる3成分組成図であって、点(0.0, 100.0, 0.0)及び点(0.0, 0.0, 100.0)を結ぶ線分を底辺とし、点(0.0, 100.0, 0.0)を左側、点(0.0, 0.0, 100.0)を右側とする3成分組成図において、座標(x,y,z)が、
点M(47.1, 52.9, 0.0)、
点P(31.8, 49.8, 18.4)及び
点Q(28.6, 34.4, 37.0)
の3点をそれぞれ結ぶ線分MP及びPQの上、又は当該線分の下側にある場合にASHRAE微燃と判断できることが明らかとなった。ただし、前記線分MPは、座標(0.0083z2-0.984z+47.1, -0.0083z2-0.016z+52.9,z)で表わされ、前記線分PQは、座標(0.0135z2-0.9181z+44.133, -0.0135z2-0.0819z+55.867,z)で表わされる。
線分MP上の点は、点M,N,Pの3点から最小二乗法により近似曲線を求め、線分PQ上の点は点P,U,Qの3点から最小二乗法により近似曲線を求め、座標を定めた。
また、R410A(R32=50%/R125=50%)の混合物を含有する組成物のGWPは、IPCC(Intergovernmental Panel on Climate Change)第4次報告書の値に基づいて評価した。HFO-1132(E)のGWPは記載がないが、HFO-1132a(GWP=1以下)、HFO-1123(GWP=0.3,特許文献1に記載)から、そのGWPを1と想定した。R410A及びHFO-1132(E)とHFO-1123との混合物を含有する組成物の冷凍能力は、National Institute of Science and Technology(NIST) Reference Fluid Thermodynamic and Transport Properties Database(Refprop 9.0)を使い、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。これらの各混合冷媒について、R410を基準とするCOP比及び冷凍能力[Refrigeration Capacity(Cooling Capacity又はCapacityと表記されることもある)]比をそれぞれ求めた。計算条件は以下の通りとした。
蒸発温度:5℃
凝縮温度:45℃
過熱度:5K
過冷却度;5K
圧縮機効率70%
これらの値を、各混合冷媒についてのGWPと合わせて表147~166に示す。
Figure 0007212265000147
Figure 0007212265000148
Figure 0007212265000149
Figure 0007212265000150
Figure 0007212265000151
Figure 0007212265000152
Figure 0007212265000153
Figure 0007212265000154
Figure 0007212265000155
Figure 0007212265000156
Figure 0007212265000157
Figure 0007212265000158
Figure 0007212265000159
Figure 0007212265000160
Figure 0007212265000161
Figure 0007212265000162
Figure 0007212265000163
Figure 0007212265000164
Figure 0007212265000165
Figure 0007212265000166
これらの結果から、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となり、点(0.0, 100.0, 0.0)と点(0.0, 0.0, 100.0)とを結ぶ線分を底辺とし、点(0.0, 100.0, 0.0)を左側とする3成分組成図において、座標(x,y,z)が、
点O(100.0, 0.0, 0.0)、
点A’’(63.0, 0.0, 37.0)、
点B’’(0.0, 63.0, 37.0)及び
点(0.0, 100.0, 0.0)
の4点をそれぞれ結ぶ線分で囲まれる図形の範囲内又は前記線分上にある場合、GWPが250以下となることが判る。
また、同様に、座標(x,y,z)が、
点O(100.0, 0.0, 0.0)、
点A’(81.6, 0.0, 18.4)、
点B’(0.0, 81.6, 18.4)及び
点(0.0, 100.0, 0.0)
の4点をそれぞれ結ぶ線分で囲まれる図形の範囲内又は前記線分上にある場合、GWPが125以下となることが判る。
また、同様に、座標(x,y,z)が、
点O(100.0, 0.0, 0.0)、
点A(90.5, 0.0, 9.5)、
点B(0.0, 90.5, 9.5)及び
点(0.0, 100.0, 0.0)
の4点をそれぞれ結ぶ線分で囲まれる図形の範囲内又は前記線分上にある場合、GWPが65以下となることが判る。
また、同様に、座標(x,y,z)が、
点C(50.0, 31.6, 18.4)、
点U(28.7, 41.2, 30.1)及び
点D(52.2, 38.3, 9.5)
の3点をそれぞれ結ぶ線分の左側又は前記線分上にある場合、R410Aを基準とするCOP比が96%以上となることが判る。ただし、前記線分CUは、座標(-0.0538z2+0.7888z+53.701, 0.0538z2-1.7888z+46.299, z)前記線分UDは、座標(-3.4962z2+210.71z-3146.1, 3.4962z2-211.71z+3246.1, z)で表わされる。
線分CU上の点は、点C,比較例10,点Uの3点から最小二乗法にて求められる。
線分UD上の点は、点U,実施例2, Dの3点から最小二乗法にて求められる。
また、同様に、座標(x,y,z)が、
点E(55.2, 44.8, 0.0)と、
点T(34.8, 51.0, 14.2)
点F(0.0, 76.7, 23.3)と
の3点をそれぞれ結ぶ線分の左側又は前記線分上にある場合、R410Aを基準とするCOP比が94.5%以上となることが判る。ただし、前記線分ETは、座標(-0.0547z2-0.5327z+53.4, 0.0547z2-0.4673z+46.6, z)前記線分TFは、座標(-0.0982z2+0.9622z+40.931, 0.0982z2-1.9622z+59.069, z)で表わされる。線分ET上の点は、点E,実施例2,Tの3点から最小二乗法にて求められる。
線分TG上の点は、点T,S,Fの3点から最小二乗法にて求められる。
また、同様に、座標(x,y,z)が、
点G(0.0, 76.7, 23.3)、
点R(21.0, 69.5, 9.5)及び
点H(0.0, 85.9, 14.1)
の3点をそれぞれ結ぶ線分の左側又は前記線分上にある場合、R410Aを基準とするCOP比が93%以上となることが判る。ただし、前記線分GRは、座標(-0.0491z2-1.1544z+38.5, 0.0491z2+0.1544z+61.5, z)で表わされ、かつ前記線分RHは、座標(-0.3123z2+4.234z+11.06, 0.3123z2-5.234z+88.94, z)で表わされる。
線分GR上の点は、点G,実施例5、点Rの3点から最小二乗法にて求められる。
線分RH上の点は、点R,実施例7,点Hの3点から最小二乗法にて求められる。
一方、比較例8、9、13、15、17及び18等に示されるようにR32を含まない場合、二重結合を持つHFO-1132(E)及びHFO-1123の濃度が相対的に高くなり、冷媒化合物において分解等の変質や重合を招くため、好ましくない。
(6)第1実施形態
以下、冷媒回路の概略構成図である図16、概略制御ブロック構成図である図17を参照しつつ、第1実施形態に係る冷凍サイクル装置としての空気調和装置1について説明する。
空気調和装置1は、蒸気圧縮式の冷凍サイクルを行うことで、対象空間の空気を調和させる装置である。
空気調和装置1は、主として、室外ユニット20と、室内ユニット30と、室外ユニット20と室内ユニット30を接続する液側冷媒連絡配管6およびガス側冷媒連絡配管5と、入力装置および出力装置としての図示しないリモコンと、空気調和装置1の動作を制御するコントローラ7と、を有している。
空気調和装置1では、冷媒回路10内に封入された冷媒が、圧縮され、冷却又は凝縮され、減圧され、加熱又は蒸発された後に、再び圧縮される、という冷凍サイクルが行われる。本実施形態では、冷媒回路10には、蒸気圧縮式の冷凍サイクルを行うための冷媒が充填されている。当該冷媒は、1,2-ジフルオロエチレンを含む混合冷媒であり、上述した冷媒A~Eのいずれかを用いることができる。また、冷媒回路10には、当該混合冷媒と共に、冷凍機油が充填されている。
(6-1)室外ユニット20
室外ユニット20は、液側冷媒連絡配管6およびガス側冷媒連絡配管5を介して室内ユニット30と接続されており、冷媒回路10の一部を構成している。室外ユニット20は、主として、圧縮機21と、四路切換弁22と、室外熱交換器23と、室外膨張弁24と、室外ファン25と、液側閉鎖弁29と、ガス側閉鎖弁28と、を有している。
圧縮機21は、冷凍サイクルにおける低圧の冷媒を高圧になるまで圧縮する機器である。ここでは、圧縮機21として、ロータリ式やスクロール式等の容積式の圧縮要素(図示省略)が圧縮機モータによって回転駆動される密閉式構造の圧縮機が使用されている。圧縮機モータは、容量を変化させるためのものであり、インバータにより運転周波数の制御が可能である。なお、圧縮機21には、吸入側において、図示しない付属アキュムレータが設けられている(なお、当該付属アキュムレータの内容積は、後述する低圧レシーバ、中間圧レシーバ、高圧レシーバのそれぞれより小さく、好ましくは半分以下である)。
四路切換弁22は、接続状態を切り換えることで、圧縮機21の吐出側と室外熱交換器23とを接続しつつ圧縮機21の吸入側とガス側閉鎖弁28とを接続する冷房運転接続状態と、圧縮機21の吐出側とガス側閉鎖弁28とを接続しつつ圧縮機21の吸入側と室外熱交換器23とを接続する暖房運転接続状態と、を切り換えることができる。
室外熱交換器23は、冷房運転時には冷凍サイクルにおける高圧の冷媒の凝縮器として機能し、暖房運転時には冷凍サイクルにおける低圧の冷媒の蒸発器として機能する熱交換器である。
室外ファン25は、室外ユニット20内に室外の空気を吸入して、室外熱交換器23において冷媒と熱交換させた後に、外部に排出するための空気流れを生じさせる。室外ファン25は、室外ファンモータによって回転駆動される。
室外膨張弁24は、室外熱交換器23の液側端部と液側閉鎖弁29との間に設けられている。室外膨張弁24は、キャピラリーチューブ又は感温筒と共に用いられる機械式膨張弁であってもよいが、制御により弁開度を調節可能な電動膨張弁であることが好ましい。
液側閉鎖弁29は、室外ユニット20における液側冷媒連絡配管6との接続部分に配置された手動弁である。
ガス側閉鎖弁28は、室外ユニット20におけるとガス側冷媒連絡配管5との接続部分に配置された手動弁である。
室外ユニット20は、室外ユニット20を構成する各部の動作を制御する室外ユニット制御部27を有している。室外ユニット制御部27は、CPUやメモリ等を含むマイクロコンピュータを有している。室外ユニット制御部27は、各室内ユニット30の室内ユニット制御部34と通信線を介して接続されており、制御信号等の送受信を行う。
室外ユニット20には、吐出圧力センサ61、吐出温度センサ62、吸入圧力センサ63、吸入温度センサ64、室外熱交温度センサ65、外気温度センサ66等が設けられている。これらの各センサは、室外ユニット制御部27と電気的に接続されており、室外ユニット制御部27に対して検出信号を送信する。吐出圧力センサ61は、圧縮機21の吐出側と四路切換弁22の接続ポートの1つとを接続する吐出配管を流れる冷媒の圧力を検出する。吐出温度センサ62は、吐出配管を流れる冷媒の温度を検出する。吸入圧力センサ63は、圧縮機21の吸入側と四路切換弁22の接続ポートの1つとを接続する吸入配管を流れる冷媒の圧力を検出する。吸入温度センサ64は、吸入配管を流れる冷媒の温度を検出する。室外熱交温度センサ65は、室外熱交換器23のうち四路切換弁22が接続されている側とは反対側である液側の出口を流れる冷媒の温度を検出する。外気温度センサ66は、室外熱交換器23を通過する前の屋外の空気温度を検出する。
(6-2)室内ユニット30
室内ユニット30は、対象空間である室内の壁面や天井等に設置されている。室内ユニット30は、液側冷媒連絡配管6およびガス側冷媒連絡配管5を介して室外ユニット20と接続されており、冷媒回路10の一部を構成している。
室内ユニット30は、室内熱交換器31と、室内ファン32と、を有している。
室内熱交換器31は、液側が、液側冷媒連絡配管6と接続され、ガス側端が、ガス側冷媒連絡配管5とを接続されている。室内熱交換器31は、冷房運転時には冷凍サイクルにおける低圧の冷媒の蒸発器として機能し、暖房運転時には冷凍サイクルにおける高圧の冷媒の凝縮器として機能する熱交換器である。
室内ファン32は、室内ユニット30内に室内の空気を吸入して、室内熱交換器31において冷媒と熱交換させた後に、外部に排出するための空気流れを生じさせる。室内ファン32は、室内ファンモータによって回転駆動される。
また、室内ユニット30は、室内ユニット30を構成する各部の動作を制御する室内ユニット制御部34を有している。室内ユニット制御部34は、CPUやメモリ等を含むマイクロコンピュータを有している。室内ユニット制御部34は、室外ユニット制御部27と通信線を介して接続されており、制御信号等の送受信を行う。
室内ユニット30には、室内液側熱交温度センサ71、室内空気温度センサ72等が設けられている。これらの各センサは、室内ユニット制御部34と電気的に接続されており、室内ユニット制御部34に対して検出信号を送信する。室内液側熱交温度センサ71は、室内熱交換器31のうち四路切換弁22が接続されている側とは反対側である液側の出口を流れる冷媒の温度を検出する。室内空気温度センサ72は、室内熱交換器31を通過する前の室内の空気温度を検出する。
(6-3)コントローラ7の詳細
空気調和装置1では、室外ユニット制御部27と室内ユニット制御部34が通信線を介して接続されることで、空気調和装置1の動作を制御するコントローラ7が構成されている。
コントローラ7は、主として、CPU(中央演算処理装置)と、ROMやRAM等のメモリを有している。なお、コントローラ7による各種処理や制御は、室外ユニット制御部27および/又は室内ユニット制御部34に含まれる各部が一体的に機能することによって実現されている。
(6-4)運転モード
以下、運転モードについて説明する。
運転モードとしては、冷房運転モードと暖房運転モードとが設けられている。
コントローラ7は、リモコン等から受け付けた指示に基づいて、冷房運転モードか暖房運転モードかを判断し、実行する。
(6-4-1)冷房運転モード
空気調和装置1では、冷房運転モードでは、四路切換弁22の接続状態を圧縮機21の吐出側と室外熱交換器23とを接続しつつ圧縮機21の吸入側とガス側閉鎖弁28とを接続する冷房運転接続状態とし、冷媒回路10に充填されている冷媒を、主として、圧縮機21、室外熱交換器23、室外膨張弁24、室内熱交換器31の順に循環させる。
より具体的には、冷房運転モードが開始されると、冷媒回路10内において、冷媒が圧縮機21に吸入されて圧縮された後に吐出される。
圧縮機21では、室内ユニット30で要求される冷却負荷に応じた容量制御が行われる。当該容量制御は、特に限定されず、例えば、空気調和装置1が室内の空気温度が設定温度を満たすように制御される場合には、吐出温度(吐出温度センサ62の検出温度)が、設定温度と室内温度(室内空気温度センサ72の検出温度)との差分に応じた値となるように、圧縮機21の運転周波数を制御する。
圧縮機21から吐出されたガス冷媒は、四路切換弁22を経て、室外熱交換器23のガス側端に流入する。
室外熱交換器23のガス側端に流入したガス冷媒は、室外熱交換器23において、室外ファン25によって供給される室外側空気と熱交換を行って凝縮し、液冷媒となって室外熱交換器23の液側端から流出する。
室外熱交換器23の液側端から流出した冷媒は、室外膨張弁24を通過する際に減圧される。なお、室外膨張弁24は、例えば、圧縮機21に吸入される冷媒の過熱度が所定の過熱度目標値となるように制御される。ここで、圧縮機21の吸入冷媒の過熱度は、例えば、吸入圧力(吸入圧力センサ63の検出圧力)に相当する飽和温度を、吸入温度(吸入温度センサ62の検出温度)から差し引くことにより求めることができる。なお、室外膨張弁24の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
室外膨張弁24で減圧された冷媒は、液側閉鎖弁29および液側冷媒連絡配管6を経て、室内ユニット30に流入する。
室内ユニット30に流入した冷媒は、室内熱交換器31に流入し、室内熱交換器31において、室内ファン32によって供給される室内空気と熱交換を行って蒸発し、ガス冷媒となって室内熱交換器31のガス側端から流出する。室内熱交換器31のガス側端から流出したガス冷媒は、ガス側冷媒連絡配管5に流れていく。
ガス側冷媒連絡配管5を流れた冷媒は、ガス側閉鎖弁28、四路切換弁22を経て、再び、圧縮機21に吸入される。
(6-4-2)暖房運転モード
空気調和装置1では、暖房運転モードでは、四路切換弁22の接続状態を圧縮機21の吐出側とガス側閉鎖弁28とを接続しつつ圧縮機21の吸入側と室外熱交換器23とを接続する暖房運転接続状態とし、冷媒回路10に充填されている冷媒を、主として、圧縮機21、室内熱交換器31、室外膨張弁24、室外熱交換器23の順に循環させる。
より具体的には、暖房運転モードが開始されると、冷媒回路10内において、冷媒が圧縮機21に吸入されて圧縮された後に吐出される。
圧縮機21では、室内ユニット30で要求される暖房負荷に応じた容量制御が行われる。当該容量制御は、特に限定されず、例えば、空気調和装置1が室内の空気温度が設定温度を満たすように制御される場合には、吐出温度(吐出温度センサ62の検出温度)が、設定温度と室内温度(室内空気温度センサ72の検出温度)との差分に応じた値となるように、圧縮機21の運転周波数を制御する。
圧縮機21から吐出されたガス冷媒は、四路切換弁22およびガス側冷媒連絡配管5を流れた後、室内ユニット30に流入する。
室内ユニット30に流入した冷媒は、室内熱交換器31のガス側端に流入し、室内熱交換器31において、室内ファン32によって供給される室内空気と熱交換を行って凝縮し、気液二相状態の冷媒または液冷媒となって室内熱交換器31の液側端から流出する。室内熱交換器31の液側端から流出した冷媒は、液側冷媒連絡配管6に流れていく。
液側冷媒連絡配管6を流れた冷媒は、室外ユニット20に流入し、液側閉鎖弁29を通過し、室外膨張弁24において冷凍サイクルにおける低圧になるまで減圧される。なお、室外膨張弁24は、例えば、圧縮機21に吸入される冷媒の過熱度が所定の過熱度目標値となるように制御される。なお、室外膨張弁24の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
室外膨張弁24で減圧された冷媒は、室外熱交換器23の液側端に流入する。
室外熱交換器23の液側端から流入した冷媒は、室外熱交換器23において、室外ファン25によって供給される室外空気と熱交換を行って蒸発し、ガス冷媒となって室外熱交換器23のガス側端から流出する。
室外熱交換器23のガス側端から流出した冷媒は、四路切換弁22を経て、再び、圧縮機21に吸入される。
(6-5)第1実施形態の特徴
空気調和装置1では、1,2-ジフルオロエチレンを含む冷媒を用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
(7)第2実施形態
以下、冷媒回路の概略構成図である図18、概略制御ブロック構成図である図19を参照しつつ、第2実施形態に係る冷凍サイクル装置としての空気調和装置1aについて説明する。なお、以下では、第1実施形態の空気調和装置1との違いを主に説明する。
(7-1)空気調和装置1aの概略構成
空気調和装置1aは、上記第1実施形態の空気調和装置1とは、室外ユニット20が低圧レシーバ41を備えている点で異なっている。
低圧レシーバ41は、圧縮機21の吸入側と四路切換弁22の接続ポートの1つとの間に設けられており、冷媒回路10における余剰冷媒を液冷媒として貯留することが可能な冷媒容器である。なお、本実施形態では、吸入圧力センサ63及び吸入温度センサ64は、低圧レシーバ41と圧縮機21の吸入側との間を流れる冷媒を対象として検出するように設けられている。また、圧縮機21には、図示しない付属のアキュムレータが設けられており、低圧レシーバ41は、当該付属のアキュムレータの下流側に接続されている。
(7-2)冷房運転モード
空気調和装置1aでは、冷房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の蒸発温度が、設定温度と室内温度(室内空気温度センサ72の検出温度)との差分に応じて定まる目標蒸発温度になるように、運転周波数が容量制御される。なお、蒸発温度は、特に限定されないが、例えば、吸入圧力センサ63の検出圧力に相当する冷媒の飽和温度として把握してもよい。
圧縮機21から吐出されたガス冷媒は、四路切換弁22、室外熱交換器23、室外膨張弁24の順に流れる。
ここで、室外膨張弁24は、例えば、室外熱交換器23の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、室外熱交換器23の液側出口を流れる冷媒の過冷却度は、特に限定されないが、例えば、室外熱交温度センサ65の検出温度から、冷媒回路10の高圧(吐出圧力センサ61の検出圧力)に相当する冷媒の飽和温度を差し引くことにより求めることができる。なお、室外膨張弁24の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
室外膨張弁24で減圧された冷媒は、液側閉鎖弁29、液側冷媒連絡配管6を介して室内ユニット30に流入し、室内熱交換器31において蒸発し、ガス側冷媒連絡配管5に流れていく。ガス側冷媒連絡配管5を流れた冷媒は、ガス側閉鎖弁28、四路切換弁22、低圧レシーバ41を経て、再び、圧縮機21に吸入される。なお、低圧レシーバ41では、室内熱交換器31において蒸発しきれなかった液冷媒が余剰冷媒として貯留される。
(7-3)暖房運転モード
空気調和装置1aでは、暖房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の凝縮温度が、設定温度と室内温度(室内空気温度センサ72の検出温度)との差分に応じて定まる目標凝縮温度になるように、運転周波数が容量制御される。なお、凝縮温度は、特に限定されないが、例えば、吐出圧力センサ61の検出圧力に相当する冷媒の飽和温度として把握してもよい。
圧縮機21から吐出されたガス冷媒は、四路切換弁22、ガス側冷媒連絡配管5を流れた後、室内ユニット30の室内熱交換器31のガス側端に流入し、室内熱交換器31において凝縮する。室内熱交換器31の液側端から流出した冷媒は、液側冷媒連絡配管6を経て、室外ユニット20に流入し、液側閉鎖弁29を通過して、室外膨張弁24において冷凍サイクルにおける低圧になるまで減圧される。なお、室外膨張弁24は、例えば、室内熱交換器31の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、室内熱交換器31の液側出口を流れる冷媒の過冷却度は、特に限定されないが、例えば、室内液側熱交温度センサ71の検出温度から、冷媒回路10の高圧(吐出圧力センサ61の検出圧力)に相当する冷媒の飽和温度を差し引くことにより求めることができる。なお、室外膨張弁24の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
室外膨張弁24で減圧された冷媒は、室外熱交換器23において蒸発し、四路切換弁22、低圧レシーバ41を経て、再び、圧縮機21に吸入される。なお、低圧レシーバ41では、室外熱交換器23において蒸発しきれなかった液冷媒が余剰冷媒として貯留される。
(7-4)第2実施形態の特徴
空気調和装置1aでは、1,2-ジフルオロエチレンを含む冷媒を用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
また、空気調和装置1aでは、低圧レシーバ41を設けることにより、圧縮機21に吸入される冷媒の過熱度が所定値以上となることが確保される制御(室外膨張弁24の制御)を行わなくても、液圧縮が生じることを抑制させることが可能になっている。このため、室外膨張弁24の制御としては、凝縮器として機能させる場合の室外熱交換器23(凝縮器として機能させる場合の室内熱交換器31も同様)について、出口を流れる冷媒の過冷却度を十分に確保するように制御させることが可能になっている。
(8)第3実施形態
以下、冷媒回路の概略構成図である図20、概略制御ブロック構成図である図21を参照しつつ、第3実施形態に係る冷凍サイクル装置としての空気調和装置1bについて説明する。なお、以下では、第2実施形態の空気調和装置1aとの違いを主に説明する。
(8-1)空気調和装置1bの概略構成
空気調和装置1bは、上記第2実施形態の空気調和装置1aとは、複数の室内ユニットが並列に設けられている点、および、各室内ユニットにおいて室内熱交換器の液冷媒側に室内膨張弁が設けられている点で異なっている。
空気調和装置1bは、互いに並列に接続された第1室内ユニット30と第2室内ユニット35とを有している。第1室内ユニット30は、上記実施形態と同様に、第1室内熱交換器31、第1室内ファン32を有しており、第1室内熱交換器31の液冷媒側において第1室内膨張弁33が設けられている。第1室内膨張弁33は、弁開度を調節可能な電動膨張弁であることが好ましい。第1室内ユニット30には、上記実施形態と同様に、第1室内ユニット制御部34と、第1室内ユニット制御部34に対して電気的に接続された第1室内液側熱交温度センサ71、第1室内空気温度センサ72が設けられており、さらに、第1室内ガス側熱交温度センサ73等が設けられている。第1室内液側熱交温度センサ71は、第1室内熱交換器31の液冷媒側の出口を流れる冷媒の温度を検出する。第1室内ガス側熱交温度センサ73は、第1室内熱交換器31のガス冷媒側の出口を流れる冷媒の温度を検出する。第2室内ユニット35は、第1室内ユニット30と同様に、第2室内熱交換器36、第2室内ファン37を有しており、第2室内熱交換器36の液冷媒側において第2室内膨張弁38が設けられている。第2室内膨張弁38は、弁開度を調節可能な電動膨張弁であることが好ましい。第2室内ユニット35には、第1室内ユニット30と同様に、第2室内ユニット制御部39と、第2室内ユニット制御部39に対して電気的に接続された第2室内液側熱交温度センサ75、第2室内空気温度センサ76、および、第2室内ガス側熱交温度センサ77が設けられている。
また、空気調和装置1bは、上記第2実施形態の空気調和装置1aとは、室外ユニットにおいて、室外膨張弁24が設けられていない点、および、バイパス膨張弁49を有するバイパス配管40が設けられている点で異なっている。
バイパス配管40は、室外熱交換器23の液冷媒側の出口から液側閉鎖弁29まで延びる冷媒配管と、四路切換弁22の接続ポートの1つから低圧レシーバ41まで延びる冷媒配管と、を接続する冷媒配管である。バイパス膨張弁49は、弁開度を調節可能な電動膨張弁であることが好ましい。なお、バイパス配管40には、開度調節可能な電動膨張弁が設けられたものに限られず、例えば、キャピラリーチューブと開閉可能な電磁弁を有したものであってもよい。
(8-2)冷房運転モード
空気調和装置1bでは、冷房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の蒸発温度が目標蒸発温度になるように、運転周波数が容量制御される。ここで、目標蒸発温度は、各室内ユニット30、35において設定温度と室内温度との差分が最も大きいもの(負荷が最も大きな室内ユニット)に応じて定めることが好ましい。なお、蒸発温度は、特に限定されないが、例えば、吸入圧力センサ63の検出圧力に相当する冷媒の飽和温度として把握することができる。
圧縮機21から吐出されたガス冷媒は、四路切換弁22を介して、室外熱交換器23において凝縮する。室外熱交換器23を流れた冷媒は、液側閉鎖弁29、液側冷媒連絡配管6を介して、第1室内ユニット30および第2室内ユニット35に送られる。
ここで、第1室内ユニット30では、第1室内膨張弁33は、例えば、第1室内熱交換器31のガス側出口を流れる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第1室内熱交換器31のガス側出口を流れる冷媒の過熱度は、特に限定されないが、例えば、第1室内ガス側熱交温度センサ73の検出温度から、冷媒回路10の低圧(吸入圧力センサ63の検出圧力)に相当する冷媒の飽和温度を差し引くことにより求めることができる。また、第2室内ユニット35の第2室内膨張弁38も、第1室内膨張弁33と同様に、例えば、第2室内熱交換器36のガス側出口を流れる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第2室内熱交換器36のガス側出口を流れる冷媒の過熱度についても、特に限定されないが、例えば、第2室内ガス側熱交温度センサ77の検出温度から、冷媒回路10の低圧(吸入圧力センサ63の検出圧力)に相当する冷媒の飽和温度を差し引くことにより求めることができる。また、第1室内膨張弁33と第2室内膨張弁38は、いずれも、吸入温度センサ64の検出温度から吸入圧力センサ63の検出圧力に相当する冷媒の飽和温度を差し引くことで得られる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御されてもよい。さらに、第1室内膨張弁33および第2室内膨張弁38の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
第1室内膨張弁33で減圧された冷媒は第1室内熱交換器31において蒸発し、第2室内膨張弁38で減圧された冷媒は第2室内熱交換器36において蒸発し、合流した後、ガス側冷媒連絡配管5に流れていく。ガス側冷媒連絡配管5を流れた冷媒は、ガス側閉鎖弁28、四路切換弁22、低圧レシーバ41を経て、再び、圧縮機21に吸入される。なお、低圧レシーバ41では、第1室内熱交換器31および第2室内熱交換器において蒸発しきれなかった液冷媒が余剰冷媒として貯留される。なお、バイパス配管40のバイパス膨張弁49は、凝縮器として機能する室外熱交換器23の内部の冷媒量が過剰であることに関する所定条件を満たした場合に開けられるまたは弁開度が上げられる制御が行われる。バイパス膨張弁49の開度制御としては、特に限定されないが、例えば、凝縮圧力(例えば、吐出圧力センサ61の検出圧力)が所定値以上である場合に、開けるまたは開度が上げられる制御であってもよいし、通過流量を増大させるように所定の時間間隔で開状態と閉状態とを切り換える制御であってもよい。
(8-3)暖房運転モード
空気調和装置1bでは、暖房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の凝縮温度が、目標凝縮温度になるように、運転周波数が容量制御される。ここで、目標凝縮温度は、各室内ユニット30、35において設定温度と室内温度との差分が最も大きいもの(負荷が最も大きな室内ユニット)に応じて定めることが好ましい。なお、凝縮温度は、特に限定されないが、例えば、吐出圧力センサ61の検出圧力に相当する冷媒の飽和温度として把握してもよい。
圧縮機21から吐出されたガス冷媒は、四路切換弁22、ガス側冷媒連絡配管5を流れた後、一部の冷媒が、第1室内ユニット30の第1室内熱交換器31のガス側端に流入し、第1室内熱交換器31において凝縮し、他の一部の冷媒が、第2室内ユニット35の第2室内熱交換器36のガス側端に流入し、第2室内熱交換器36において凝縮する。
なお、第1室内ユニット30の第1室内膨張弁33は、第1室内熱交換器31の液側を流れる冷媒の過冷却度が所定の目標値になる等の所定条件を満たすように、弁開度が制御される。第2室内ユニット35の第2室内膨張弁38についても同様に、第2室内熱交換器36の液側を流れる冷媒の過冷却度が所定の目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第1室内熱交換器31の液側を流れる冷媒の過冷却度は、第1室内液側熱交温度センサ71の検出温度から、冷媒回路10における高圧(吐出圧力センサ61の検出圧力)に相当する冷媒の飽和温度を差し引くことで求めることができる。また、第2室内熱交換器36の液側を流れる冷媒の過冷却度についても同様に、第2室内液側熱交温度センサ75の検出温度から、冷媒回路10における高圧(吐出圧力センサ61の検出圧力)に相当する冷媒の飽和温度を差し引くことで求めることができる。
第1室内膨張弁33で減圧された冷媒および第2室内膨張弁38で減圧された冷媒は、合流し、液側冷媒連絡配管6、液側閉鎖弁29を通過した後、室外熱交換器23において蒸発し、四路切換弁22、低圧レシーバ41を経て、再び、圧縮機21に吸入される。なお、低圧レシーバ41では、室外熱交換器23において蒸発しきれなかった液冷媒が余剰冷媒として貯留される。なお、暖房運転時には、特に限定されないが、バイパス配管40のバイパス膨張弁49は、例えば、全閉状態に維持されていてもよい。
(8-4)第3実施形態の特徴
空気調和装置1bでは、1,2-ジフルオロエチレンを含む冷媒を用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
また、空気調和装置1bでは、低圧レシーバ41を設けることにより、圧縮機21における液圧縮を抑制することができている。また、冷房運転時には、第1室内膨張弁33、第2室内膨張弁38を過熱度制御することで、暖房運転時には、第1室内膨張弁33、第2室内膨張弁38を過冷却度制御することで、第1室内熱交換器31、第2室内熱交換器36における能力を十分に発揮させやすい。
(9)第4実施形態
以下、冷媒回路の概略構成図である図22、概略制御ブロック構成図である図23を参照しつつ、第4実施形態に係る冷凍サイクル装置としての空気調和装置1cについて説明する。なお、以下では、第2実施形態の空気調和装置1aとの違いを主に説明する。
(9-1)空気調和装置1cの概略構成
空気調和装置1cは、上記第2実施形態の空気調和装置1aとは、室外ユニット20が低圧レシーバ41を備えていない点、高圧レシーバ42を備えている点、室外ブリッジ回路26を備えている点で異なっている。
また、室内ユニット30は、室内熱交換器31の液側を流れる冷媒温度を検出する室内液側熱交温度センサ71と、室内の空気温度を検出する室内空気温度センサ72と、室内熱交換器31のガス側を流れる冷媒温度を検出する室内ガス側熱交温度センサ73と、を有している。
室外ブリッジ回路26は、室外熱交換器23の液側と液側閉鎖弁29との間に設けられており、4つの接続箇所および各接続箇所の間に設けられた逆止弁を有している。室外ブリッジ回路26が有する4つの接続箇所のうち、室外熱交換器23の液側に接続される箇所と液側閉鎖弁29に接続される箇所以外の2箇所からは、それぞれ高圧レシーバ42まで延びた冷媒配管が接続されている。また、これらの冷媒配管のうち、高圧レシーバ42の内部空間のうちのガス領域から延びだしている冷媒配管には、途中に室外膨張弁24が設けられている。
(9-2)冷房運転モード
空気調和装置1cでは、冷房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の蒸発温度が、設定温度と室内温度(室内空気温度センサ72の検出温度)との差分に応じて定まる目標蒸発温度になるように、運転周波数が容量制御される。なお、蒸発温度は、特に限定されないが、例えば、室内液側熱交温度センサ71の検出温度として把握してもよいし、吸入圧力センサ63の検出圧力に相当する冷媒の飽和温度として把握してもよい。
圧縮機21から吐出されたガス冷媒は、四路切換弁22を介して、室外熱交換器23において凝縮する。室外熱交換器23を流れた冷媒は、室外ブリッジ回路26の一部を介して、高圧レシーバ42に流入する。なお、高圧レシーバ42では、冷媒回路10における余剰冷媒が液冷媒として貯留される。高圧レシーバ42のガス領域から流出したガス冷媒は、室外膨張弁24において減圧される。
ここで、室外膨張弁24は、例えば、室内熱交換器31のガス側出口を流れる冷媒の過熱度または圧縮機21の吸入側を流れる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、室内熱交換器31のガス側出口を流れる冷媒の過熱度は、特に限定されないが、例えば、室内ガス側熱交温度センサ73の検出温度から、冷媒回路10の低圧(吸入圧力センサ63の検出圧力)に相当する冷媒の飽和温度を差し引くことにより求めてもよい。また、圧縮機21の吸入側を流れる冷媒の過熱度は、吸入温度センサ64の検出温度から、吸入圧力センサ63の検出圧力に相当する冷媒の飽和温度を差し引くことにより求めてもよい。なお、室外膨張弁24の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
室外膨張弁24で減圧された冷媒は、室外ブリッジ回路26の他の一部を流れ、液側閉鎖弁29、液側冷媒連絡配管6を介して室内ユニット30に流入し、室内熱交換器31において蒸発する。室内熱交換器31を流れた冷媒は、ガス側冷媒連絡配管5、ガス側閉鎖弁28、四路切換弁22を経て、再び、圧縮機21に吸入される。
(9-3)暖房運転モード
空気調和装置1cでは、暖房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の凝縮温度が、設定温度と室内温度(室内空気温度センサ72の検出温度)との差分に応じて定まる目標凝縮温度になるように、運転周波数が容量制御される。なお、凝縮温度は、特に限定されないが、例えば、吐出圧力センサ61の検出圧力に相当する冷媒の飽和温度として把握してもよい。
圧縮機21から吐出されたガス冷媒は、四路切換弁22、ガス側冷媒連絡配管5を流れた後、室内ユニット30の室内熱交換器31のガス側端に流入し、室内熱交換器31において凝縮する。室内熱交換器31の液側端から流出した冷媒は、液側冷媒連絡配管6を経て、室外ユニット20に流入し、液側閉鎖弁29を通過して、室外ブリッジ回路26の一部を流れ、高圧レシーバ42に流入する。なお、高圧レシーバ42では、冷媒回路10における余剰冷媒が液冷媒として貯留される。高圧レシーバ42のガス領域から流出したガス冷媒は、室外膨張弁24において冷凍サイクルにおける低圧になるまで減圧される。
なお、室外膨張弁24は、例えば、圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、圧縮機21の吸入側を流れる冷媒の過熱度は、特に限定されないが、例えば、吸入温度センサ64の検出温度から、吸入圧力センサ63の検出圧力に相当する冷媒の飽和温度を差し引いて求めることができる。なお、室外膨張弁24の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
室外膨張弁24で減圧された冷媒は、室外ブリッジ回路26の他の一部を流れ、室外熱交換器23において蒸発し、四路切換弁22を経て、再び、圧縮機21に吸入される。
(9-4)第4実施形態の特徴
空気調和装置1cでは、1,2-ジフルオロエチレンを含む冷媒を用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
また、空気調和装置1cでは、高圧レシーバ42を設けることにより、冷媒回路10における余剰冷媒を貯留することが可能になる。
(10)第5実施形態
以下、冷媒回路の概略構成図である図24、概略制御ブロック構成図である図25を参照しつつ、第5実施形態に係る冷凍サイクル装置としての空気調和装置1dについて説明する。なお、以下では、第4実施形態の空気調和装置1cとの違いを主に説明する。
(10-1)空気調和装置1dの概略構成
空気調和装置1dは、上記第4実施形態の空気調和装置1cとは、複数の室内ユニットが並列に設けられている点、および、各室内ユニットにおいて室内熱交換器の液冷媒側に室内膨張弁が設けられている点で異なっている。
空気調和装置1dは、互いに並列に接続された第1室内ユニット30と第2室内ユニット35とを有している。第1室内ユニット30は、上記実施形態と同様に、第1室内熱交換器31、第1室内ファン32を有しており、第1室内熱交換器31の液冷媒側において第1室内膨張弁33が設けられている。第1室内膨張弁33は、弁開度を調節可能な電動膨張弁であることが好ましい。第1室内ユニット30には、上記実施形態と同様に、第1室内ユニット制御部34と、第1室内ユニット制御部34に対して電気的に接続された第1室内液側熱交温度センサ71、第1室内空気温度センサ72、第1室内ガス側熱交温度センサ73等が設けられている。第1室内液側熱交温度センサ71は、第1室内熱交換器31の液冷媒側の出口を流れる冷媒の温度を検出する。第1室内ガス側熱交温度センサ73は、第1室内熱交換器31のガス冷媒側の出口を流れる冷媒の温度を検出する。第2室内ユニット35は、第1室内ユニット30と同様に、第2室内熱交換器36、第2室内ファン37を有しており、第2室内熱交換器36の液冷媒側において第2室内膨張弁38が設けられている。第2室内膨張弁38は、弁開度を調節可能な電動膨張弁であることが好ましい。第2室内ユニット35には、第1室内ユニット30と同様に、第2室内ユニット制御部39と、第2室内ユニット制御部39に対して電気的に接続された第2室内液側熱交温度センサ75、第2室内空気温度センサ76、第2室内ガス側熱交温度センサ77が設けられている。
(10-2)冷房運転モード
空気調和装置1cでは、冷房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の蒸発温度が目標蒸発温度になるように、運転周波数が容量制御される。ここで、目標蒸発温度は、各室内ユニット30、35において設定温度と室内温度との差分が最も大きいもの(負荷が最も大きな室内ユニット)に応じて定めることが好ましい。
圧縮機21から吐出されたガス冷媒は、四路切換弁22を介して、室外熱交換器23において凝縮する。室外熱交換器23を流れた冷媒は、室外ブリッジ回路26の一部を介して、高圧レシーバ42に流入する。なお、高圧レシーバ42では、冷媒回路10における余剰冷媒が液冷媒として貯留される。高圧レシーバ42のガス領域から流出したガス冷媒は、室外膨張弁24において減圧される。ここで、冷房運転時は、室外膨張弁24は、例えば、弁開度が全開状態となるように制御される。
室外膨張弁24を通過した冷媒は、室外ブリッジ回路26の他の一部を流れ、液側閉鎖弁29、液側冷媒連絡配管6を介して第1室内ユニット30および第2室内ユニット35に流入する。
第1室内ユニット30に流入した冷媒は、第1室内膨張弁33において減圧される。第1室内膨張弁33は、第1室内熱交換器31のガス側出口を流れる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第1室内熱交換器31のガス側出口を流れる冷媒の過熱度は、特に限定されないが、例えば、第1室内ガス側熱交温度センサ73の検出温度から、冷媒回路10の低圧(吸入圧力センサ63の検出圧力)に相当する冷媒の飽和温度を差し引くことにより求めてもよい。同様に、第2室内ユニット35に流入した冷媒は、第2室内膨張弁38において減圧される。第2室内膨張弁38は、第2室内熱交換器36のガス側出口を流れる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第2室内熱交換器36のガス側出口を流れる冷媒の過熱度は、特に限定されないが、例えば、第2室内ガス側熱交温度センサ77の検出温度から、冷媒回路10の低圧(吸入圧力センサ63の検出圧力)に相当する冷媒の飽和温度を差し引くことにより求めてもよい。また、第1室内膨張弁33と第2室内膨張弁38は、いずれも、吸入温度センサ64の検出温度から吸入圧力センサ63の検出圧力に相当する冷媒の飽和温度を差し引くことで得られる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御されてもよい。さらに、第1室内膨張弁33および第2室内膨張弁38の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
第1室内熱交換器31において蒸発した冷媒と、第2室内熱交換器36において蒸発した冷媒とは、合流した後、ガス側冷媒連絡配管5、ガス側閉鎖弁28、四路切換弁22を経て、再び、圧縮機21に吸入される。
(10-3)暖房運転モード
空気調和装置1cでは、暖房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の凝縮温度が、目標凝縮温度になるように、運転周波数が容量制御される。ここで、目標凝縮温度は、各室内ユニット30、35において設定温度と室内温度との差分が最も大きいもの(負荷が最も大きな室内ユニット)に応じて定めることが好ましい。なお、凝縮温度は、特に限定されないが、例えば、吐出圧力センサ61の検出圧力に相当する冷媒の飽和温度として把握してもよい。
圧縮機21から吐出されたガス冷媒は、四路切換弁22、ガス側冷媒連絡配管5を流れた後、第1室内ユニット30および第2室内ユニット35にそれぞれ流入する。
第1室内ユニット30の第1室内熱交換器31に流入したガス冷媒は、第1室内熱交換器31において凝縮する。第1室内熱交換器31を流れた冷媒は、第1室内膨張弁33において減圧される。第1室内膨張弁33は、第1室内熱交換器31の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。第1室内熱交換器31の液側出口を流れる冷媒の過冷却度は、例えば、第1室内液側熱交温度センサ71の検出温度から、吐出圧力センサ61の検出圧力に相当する冷媒の飽和温度を差し引くことで求めることができる。
第2室内ユニット35の第2室内熱交換器36に流入したガス冷媒は、同様に、第2室内熱交換器36において凝縮する。第2室内熱交換器36を流れた冷媒は、第2室内膨張弁38において減圧される。第2室内膨張弁38は、第2室内熱交換器36の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。第2室内熱交換器36の液側出口を流れる冷媒の過冷却度は、例えば、第2室内液側熱交温度センサ75の検出温度から、吐出圧力センサ61の検出圧力に相当する冷媒の飽和温度を差し引くことで求めることができる。
第1室内熱交換器31の液側端から流出した冷媒および第2室内熱交換器36の液側端から流出した冷媒は、合流した後、液側冷媒連絡配管6を経て、室外ユニット20に流入する。
室外ユニット20に流入した冷媒は、液側閉鎖弁29を通過して、室外ブリッジ回路26の一部を流れ、高圧レシーバ42に流入する。なお、高圧レシーバ42では、冷媒回路10における余剰冷媒が液冷媒として貯留される。高圧レシーバ42のガス領域から流出したガス冷媒は、室外膨張弁24において冷凍サイクルにおける低圧になるまで減圧される。すなわち、暖房運転時は、高圧レシーバ42は、擬似的な中間圧冷媒が貯留されることとなる。
なお、室外膨張弁24は、例えば、圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、圧縮機21が吸入する冷媒の過熱度は、特に限定されないが、例えば、吸入温度センサ64の検出温度から、吸入圧力センサ63の検出圧力に相当する冷媒の飽和温度を差し引いて求めることができる。なお、室外膨張弁24の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
室外膨張弁24で減圧された冷媒は、室外ブリッジ回路26の他の一部を流れ、室外熱交換器23において蒸発し、四路切換弁22を経て、再び、圧縮機21に吸入される。
(10-4)第5実施形態の特徴
空気調和装置1dでは、1,2-ジフルオロエチレンを含む冷媒を用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
また、空気調和装置1dでは、高圧レシーバ42を設けることにより、冷媒回路10における余剰冷媒を貯留することが可能になる。
なお、暖房運転時において、室外膨張弁24の弁開度が過熱度制御されることにより圧縮機21の信頼性が確保されるため、第1室内膨張弁33および第2室内膨張弁38については、第1室内熱交換器31および第2室内熱交換器36における能力を十分に発揮させるように、過冷却度制御を行うことが可能となっている。
(11)第6実施形態
以下、冷媒回路の概略構成図である図26、概略制御ブロック構成図である図27を参照しつつ、第6実施形態に係る冷凍サイクル装置としての空気調和装置1eについて説明する。なお、以下では、第2実施形態の空気調和装置1aとの違いを主に説明する。
(11-1)空気調和装置1eの概略構成
空気調和装置1eは、上記第2実施形態の空気調和装置1aとは、室外ユニット20が低圧レシーバ41を有していない点、中間圧レシーバ43を有している点、室外膨張弁24を有していない点、第1室外膨張弁44および第2室外膨張弁45を有している点で異なっている。
中間圧レシーバ43は、冷媒回路10における室外熱交換器23の液側から液側閉鎖弁29までの間に設けられており、冷媒回路10における余剰冷媒を液冷媒として貯留することが可能な冷媒容器である。
第1室外膨張弁44は、室外熱交換器23の液側から中間圧レシーバ43まで延びる冷媒配管の途中に設けられている。第2室外膨張弁45は、中間圧レシーバ43から液側閉鎖弁29まで延びる冷媒配管の途中に設けられている。第1室外膨張弁44および第2室外膨張弁45は、いずれも、弁開度を調節可能な電動膨張弁であることが好ましい。
(11-2)冷房運転モード
空気調和装置1eでは、冷房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の蒸発温度が、設定温度と室内温度(室内空気温度センサ72の検出温度)との差分に応じて定まる目標蒸発温度になるように、運転周波数が容量制御される。
圧縮機21から吐出されたガス冷媒は、四路切換弁22を通過した後、室外熱交換器23において凝縮する。室外熱交換器23を流れた冷媒は、第1室外膨張弁44において、冷凍サイクルにおける中間圧力まで減圧される。
ここで、第1室外膨張弁44は、例えば、室外熱交換器23の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。
第1室外膨張弁44において減圧された冷媒は、中間圧レシーバ43に流入する。中間圧レシーバ43では、冷媒回路10における余剰冷媒が液冷媒として貯留される。中間圧レシーバ43を通過した冷媒は、第2室外膨張弁45において、冷凍サイクルの低圧まで減圧される。
ここで、第2室外膨張弁45は、例えば、室内熱交換器31のガス側を流れる冷媒の過熱度または圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第2室外膨張弁45の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
第2室外膨張弁45において冷凍サイクルの低圧まで減圧された冷媒は、液側閉鎖弁29、液側冷媒連絡配管6を介して室内ユニット30に流入し、室内熱交換器31において蒸発する。室内熱交換器31を流れた冷媒は、ガス側冷媒連絡配管5を流れた後、ガス側閉鎖弁28、四路切換弁22を経て、再び、圧縮機21に吸入される。
(11-3)暖房運転モード
空気調和装置1eでは、暖房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の凝縮温度が、設定温度と室内温度(室内空気温度センサ72の検出温度)との差分に応じて定まる目標凝縮温度になるように、運転周波数が容量制御される。
圧縮機21から吐出されたガス冷媒は、四路切換弁22、ガス側冷媒連絡配管5を流れた後、室内ユニット30の室内熱交換器31のガス側端に流入し、室内熱交換器31において凝縮する。室内熱交換器31の液側端から流出した冷媒は、液側冷媒連絡配管6を経て、室外ユニット20に流入し、液側閉鎖弁29を通過して、第2室外膨張弁45において冷凍サイクルにおける中間圧になるまで減圧される。
ここで、第2室外膨張弁45は、例えば、室内熱交換器31の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。
第2室外膨張弁45において減圧された冷媒は、中間圧レシーバ43に流入する。中間圧レシーバ43では、冷媒回路10における余剰冷媒が液冷媒として貯留される。中間圧レシーバ43を通過した冷媒は、第1室外膨張弁44において、冷凍サイクルの低圧まで減圧される。
ここで、第1室外膨張弁44は、例えば、圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第1室外膨張弁44の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
第1室外膨張弁44で減圧された冷媒は、室外熱交換器23において蒸発し、四路切換弁22を経て、再び、圧縮機21に吸入される。
(11-4)第6実施形態の特徴
空気調和装置1eでは、1,2-ジフルオロエチレンを含む冷媒を用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
また、空気調和装置1eでは、中間圧レシーバ43を設けることにより、冷媒回路10における余剰冷媒を貯留させることが可能になっている。また、冷房運転時においては、第1室外膨張弁44を過冷却度制御させることにより、室外熱交換器23の能力を十分に発揮させやすく、暖房運転時においては、第2室外膨張弁45を過冷却度制御させることにより、室内熱交換器31の能力を十分に発揮させやすくすることが可能になっている。
(12)第7実施形態
以下、冷媒回路の概略構成図である図28、概略制御ブロック構成図である図29を参照しつつ、第7実施形態に係る冷凍サイクル装置としての空気調和装置1fについて説明する。なお、以下では、第6実施形態の空気調和装置1eとの違いを主に説明する。
(12-1)空気調和装置1fの概略構成
空気調和装置1fは、上記第6実施形態の空気調和装置1eとは、室外ユニット20が互いに並列に配置された第1室外熱交換器23aおよび第2室外熱交換器23bを有している点、第1室外熱交換器23aの液冷媒側に第1分岐室外膨張弁24aを有し、第2室外熱交換器23bの液冷媒側に第2分岐室外膨張弁24bを有している点で異なっている。なお、第1分岐室外膨張弁24aおよび第2分岐室外膨張弁24bは、弁開度を調節可能な電動膨張弁であることが好ましい。
また、空気調和装置1fは、上記第6実施形態の空気調和装置1eとは、複数の室内ユニットが並列に設けられている点、および、各室内ユニットにおいて室内熱交換器の液冷媒側に室内膨張弁が設けられている点で異なっている。
空気調和装置1fは、互いに並列に接続された第1室内ユニット30と第2室内ユニット35とを有している。第1室内ユニット30は、上記実施形態と同様に、第1室内熱交換器31、第1室内ファン32を有しており、第1室内熱交換器31の液冷媒側において第1室内膨張弁33が設けられている。第1室内膨張弁33は、弁開度を調節可能な電動膨張弁であることが好ましい。第1室内ユニット30には、上記実施形態と同様に、第1室内ユニット制御部34と、第1室内ユニット制御部34に対して電気的に接続された第1室内液側熱交温度センサ71、第1室内空気温度センサ72、第1室内ガス側熱交温度センサ73等が設けられている。第1室内液側熱交温度センサ71は、第1室内熱交換器31の液冷媒側の出口を流れる冷媒の温度を検出する。第1室内ガス側熱交温度センサ73は、第1室内熱交換器31のガス冷媒側の出口を流れる冷媒の温度を検出する。第2室内ユニット35は、第1室内ユニット30と同様に、第2室内熱交換器36、第2室内ファン37を有しており、第2室内熱交換器36の液冷媒側において第2室内膨張弁38が設けられている。第2室内膨張弁38は、弁開度を調節可能な電動膨張弁であることが好ましい。第2室内ユニット35には、第1室内ユニット30と同様に、第2室内ユニット制御部39と、第2室内ユニット制御部39に対して電気的に接続された第2室内液側熱交温度センサ75、第2室内空気温度センサ76、第2室内ガス側熱交温度センサ77が設けられている。
(12-2)冷房運転モード
空気調和装置1fでは、冷房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の蒸発温度が目標蒸発温度になるように、運転周波数が容量制御される。ここで、目標蒸発温度は、各室内ユニット30、35において設定温度と室内温度との差分が最も大きいもの(負荷が最も大きな室内ユニット)に応じて定めることが好ましい。
圧縮機21から吐出されたガス冷媒は、四路切換弁22を通過した後、第1室外熱交換器23aと第2室外熱交換器23bとに分岐して流れ、第1室外熱交換器23aと第2室外熱交換器23bのそれぞれにおいて凝縮する。第1室外熱交換器23aを流れた冷媒は、第1分岐室外膨張弁24aにおいて、冷凍サイクルにおける中間圧力まで減圧される。また、第2室外熱交換器23bを流れた冷媒は、第2分岐室外膨張弁24bにおいて、冷凍サイクルにおける中間圧力まで減圧される。
ここで、第1分岐室外膨張弁24aおよび第2分岐室外膨張弁24bは、例えば、いずれも全開状態となるように制御してもよい。
また、第1室外熱交換器23aと第2室外熱交換器23bとにおいて、構造上または冷媒配管の接続上、冷媒の流れやすさにおいて違いが生じている場合には、第1室外熱交換器23aの液側出口を流れる冷媒の過冷却度が共通目標値になる等の所定条件を満たすように第1分岐室外膨張弁24aの弁開度を制御し、第2室外熱交換器23bの液側出口を流れる冷媒の過冷却度が同じ共通目標値になる等の所定条件を満たすように第2分岐室外膨張弁24bの弁開度を制御してもよい。この制御により、第1室外熱交換器23aと第2室外熱交換器23bとの間の冷媒の偏流を小さく抑えることが可能になる。
第1分岐室外膨張弁24aを通過した冷媒および第2分岐室外膨張弁24bを通過した冷媒は、合流した後に、中間圧レシーバ43に流入する。中間圧レシーバ43では、冷媒回路10における余剰冷媒が液冷媒として貯留される。中間圧レシーバ43を通過した冷媒は、液側閉鎖弁29、液側冷媒連絡配管6を流れて、第1室内ユニット31および第2室内ユニット35にそれぞれ流入する。
第1室内ユニット31に流入した冷媒は、第1室内膨張弁33において、冷凍サイクルの低圧まで減圧される。また、第2室内ユニット35に流入した冷媒は、第2室内膨張弁38において、冷凍サイクルの低圧まで減圧される。
ここで、第1室内膨張弁33は、例えば、第1室内熱交換器31のガス側を流れる冷媒の過熱度または圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。また、第2室内膨張弁38も、同様に、例えば、第2室内熱交換器36のガス側を流れる冷媒の過熱度または圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第1室内膨張弁33および第2室内膨張弁38の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
第1室内膨張弁33において減圧された冷媒は、第1室内熱交換器31において蒸発し、第2室内膨張弁38において減圧された冷媒は、第2室内熱交換器36において蒸発し、合流した後、ガス側冷媒連絡配管5、ガス側閉鎖弁28、四路切換弁22を経て、再び、圧縮機21に吸入される。
(12-3)暖房運転モード
空気調和装置1fでは、暖房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の凝縮温度が、目標凝縮温度になるように、運転周波数が容量制御される。ここで、目標凝縮温度は、各室内ユニット30、35において設定温度と室内温度との差分が最も大きいもの(負荷が最も大きな室内ユニット)に応じて定めることが好ましい。
圧縮機21から吐出されたガス冷媒は、四路切換弁22、ガス側冷媒連絡配管5を流れた後、第1室内ユニット30と第2室内ユニット35にそれぞれ流入する。
第1室内ユニット30に流入した冷媒は、第1室内熱交換器31において凝縮し、第2室内ユニット35に流入した冷媒は、第2室内熱交換器36において凝縮する。
第1室内熱交換器31の液側端から流出した冷媒は、第1室内膨張弁33において、冷凍サイクルの中間圧となるまで減圧される。第2室内熱交換器36の液側端から流出した冷媒も、同様に、第2室内膨張弁38において、冷凍サイクルの中間圧となるまで減圧される。
ここで、第1室内膨張弁33は、例えば、第1室内熱交換器31の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。また、第2室内膨張弁38についても同様に、例えば、第2室内熱交換器36の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。
第1室内膨張弁33を通過した冷媒と第2室内膨張弁38を通過した冷媒は、合流した後、液側冷媒連絡配管6を経て、室外ユニット20に流入する。
室外ユニット20に流入した冷媒は、液側閉鎖弁29を通過して、中間圧レシーバ43に送られる。中間圧レシーバ43では、冷媒回路10における余剰冷媒が液冷媒として貯留される。中間圧レシーバ43を通過した冷媒は、第1分岐室外膨張弁24aと第2分岐室外膨張弁24bとに分離して流れる。
第1分岐室外膨張弁24aは、通過する冷媒を、冷凍サイクルの低圧となるまで減圧する。第2分岐室外膨張弁24bも同様に、通過する冷媒を、冷凍サイクルの低圧となるまで減圧する。
ここで、第1分岐室外膨張弁24aおよび第2分岐室外膨張弁24bは、例えば、圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第1分岐室外膨張弁24aおよび第2分岐室外膨張弁24bの弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
第1分岐室外膨張弁24aで減圧された冷媒は、第1室外熱交換器23aにおいて蒸発し、第2分岐室外膨張弁24bで減圧された冷媒は、第2室外熱交換器23bにおいて蒸発し、合流した後、四路切換弁22を経て、再び、圧縮機21に吸入される。
(12-4)第7実施形態の特徴
空気調和装置1fでは、1,2-ジフルオロエチレンを含む冷媒を用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
また、空気調和装置1fでは、中間圧レシーバ43を設けることにより、冷媒回路10における余剰冷媒を貯留させることが可能になっている。また、暖房運転時においては、第1室内膨張弁33と第2室内膨張弁38を過冷却度制御させることにより、室内熱交換器31の能力を十分に発揮させやすくすることが可能になっている。
(13)第8実施形態
以下、冷媒回路の概略構成図である図30、概略制御ブロック構成図である図31を参照しつつ、第8実施形態に係る冷凍サイクル装置としての空気調和装置1gについて説明する。なお、以下では、第3実施形態の空気調和装置1bとの違いを主に説明する。
(13-1)空気調和装置1gの概略構成
空気調和装置1gは、上記第3実施形態の空気調和装置1bとは、バイパス膨張弁49を有するバイパス配管40が設けられていない点、過冷却熱交換器47が設けられている点、過冷却配管46が設けられている点、第1室外膨張弁44および第2室外膨張弁45が設けられている点、過冷却温度センサ67が設けられている点において異なっている。
第1室外膨張弁44は、冷媒回路10における室外熱交換器23の液側出口から液側閉鎖弁29までの間に設けられている。第2室外膨張弁45は、冷媒回路10における第1室外膨張弁44から液側閉鎖弁29までの間に設けられている。第1室外膨張弁44と第2室外膨張弁45とは、いずれも、弁開度を調節可能な電動膨張弁であることが好ましい。
過冷却配管46は、冷媒回路10において、第1室外膨張弁44から第2室外膨張弁45までの間の分岐部分から分岐しており、四路切換弁22の接続ポートの1つから低圧レシーバ41に至るまでの間の合流箇所に合流するように設けられている。過冷却配管46には、過冷却膨張弁48が設けられている。過冷却膨張弁48は、弁開度を調節可能な電動膨張弁であることが好ましい。
過冷却熱交換器47は、冷媒回路10において第1室外膨張弁44から第2室外膨張弁45までの間の部分を流れる冷媒と、過冷却配管46において過冷却膨張弁48の合流箇所側を流れる冷媒と、の間で熱交換を行わせる熱交換器である。本実施形態では、過冷却熱交換器47は、第1室外膨張弁44から第2室外膨張弁45までの間の部分であって、過冷却配管46の分岐部分よりも第2室外膨張弁45側に設けられている。
過冷却温度センサ67は、冷媒回路10において第1室外膨張弁44から第2室外膨張弁45までの間の部分のうち、過冷却熱交換器47よりも第2室外膨張弁45側を流れる冷媒の温度を検出する温度センサである。
(13-2)冷房運転モード
空気調和装置1gでは、冷房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の蒸発温度が目標蒸発温度になるように、運転周波数が容量制御される。ここで、目標蒸発温度は、各室内ユニット30、35において設定温度と室内温度との差分が最も大きいもの(負荷が最も大きな室内ユニット)に応じて定めることが好ましい。
圧縮機21から吐出されたガス冷媒は、四路切換弁22を介して、室外熱交換器23において凝縮する。室外熱交換器23を流れた冷媒は、第1室外膨張弁44を通過する。なお、この場合には、第1室外膨張弁44は、全開状態となるように制御されている。
第1室外膨張弁44を通過した冷媒は、一部が第2室外膨張弁45側に向けて流れ、他の一部が、過冷却配管46に分岐して流れる。過冷却配管46に分岐して流れた冷媒は、過冷却膨張弁48において減圧される。過冷却熱交換器47では、第1室外膨張弁44から第2室外膨張弁45側に向けて流れる冷媒と、過冷却膨張弁48において減圧された過冷却配管46を流れる冷媒と、が熱交換される。過冷却配管46を流れる冷媒は、過冷却熱交換器47での熱交換を終えた後、四路切換弁22の接続ポートの1つから低圧レシーバ41に至るまでの間の合流箇所に合流するように流れる。第1室外膨張弁44から第2室外膨張弁45側に向けて流れる冷媒は、過冷却熱交換器47での熱交換を終えた後、第2室外膨張弁45において減圧される。
以上において、第2室外膨張弁45は、室外熱交換器23の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように制御される。
また、過冷却膨張弁48の弁開度は、冷媒回路10のうち、第2室外膨張弁45から液側冷媒連絡配管6を介して第1室内膨張弁33および第2室内膨張弁38に至るまでの部分の全てが液状態の冷媒で満たされることがないように、少なくとも第1室内膨張弁33および第2室内膨張弁38に到達する冷媒が気液二相状態となるように制御される。例えば、過冷却膨張弁48の弁開度は、第1室外膨張弁44から第2室外膨張弁45側に向けて流れる冷媒であって過冷却熱交換器47を通過した冷媒の比エンタルピーが、モリエル線図において冷凍サイクルの低圧と飽和液腺とが交わる箇所の比エンタルピーよりも大きくなるように制御されることが好ましい。ここで、コントローラ7は、冷媒に対応するモリエル線図のデータを予め保持しておき、上記過冷却熱交換器47を通過した冷媒の比エンタルピーを、吐出圧力センサ61の検出圧力、過冷却温度センサ67の検出温度と、当該冷媒に対応するモリエル線図のデータと、を用いて過冷却膨張弁48の弁開度を制御してもよい。なお、過冷却膨張弁48の弁開度は、第1室外膨張弁44から第2室外膨張弁45側に向けて流れる冷媒であって過冷却熱交換器47を通過した冷媒の温度(過冷却温度センサ67の検出温度)が、目標値になる等の所定条件を満たすように制御されることがより好ましい。
第2室外膨張弁45において減圧された冷媒は、液側閉鎖弁29、液側冷媒連絡配管6を介して、第1室内ユニット30および第2室内ユニット35に送られる。
ここで、第1室内ユニット30では、第1室内膨張弁33は、例えば、第1室内熱交換器31のガス側出口を流れる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。また、第2室内ユニット35の第2室内膨張弁38も、第1室内膨張弁33と同様に、例えば、第2室内熱交換器36のガス側出口を流れる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。また、第1室内膨張弁33と第2室内膨張弁38は、いずれも、吸入温度センサ64の検出温度から吸入圧力センサ63の検出圧力に相当する冷媒の飽和温度を差し引くことで得られる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御されてもよい。さらに、第1室内膨張弁33および第2室内膨張弁38の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
第1室内膨張弁33で減圧された冷媒は第1室内熱交換器31において蒸発し、第2室内膨張弁38で減圧された冷媒は第2室内熱交換器36において蒸発し、合流した後、ガス側冷媒連絡配管5に流れていく。ガス側冷媒連絡配管5を流れた冷媒は、ガス側閉鎖弁28、四路切換弁22を経て、過冷却配管46を流れた冷媒と合流する。合流した冷媒は、低圧レシーバ41を経て、再び、圧縮機21に吸入される。なお、低圧レシーバ41では、第1室内熱交換器31、第2室内熱交換器、過冷却熱交換器47において蒸発しきれなかった液冷媒が余剰冷媒として貯留される。
(13-3)暖房運転モード
空気調和装置1gでは、暖房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の凝縮温度が、目標凝縮温度になるように、運転周波数が容量制御される。ここで、目標凝縮温度は、各室内ユニット30、35において設定温度と室内温度との差分が最も大きいもの(負荷が最も大きな室内ユニット)に応じて定めることが好ましい。
圧縮機21から吐出されたガス冷媒は、四路切換弁22、ガス側冷媒連絡配管5を流れた後、一部の冷媒が、第1室内ユニット30の第1室内熱交換器31のガス側端に流入し、第1室内熱交換器31において凝縮し、他の一部の冷媒が、第2室内ユニット35の第2室内熱交換器36のガス側端に流入し、第2室内熱交換器36において凝縮する。
なお、第1室内ユニット30の第1室内膨張弁33は、第1室内熱交換器31の液側を流れる冷媒の過冷却度が所定の目標値になる等の所定条件を満たすように、弁開度が制御される。第2室内ユニット35の第2室内膨張弁38についても同様に、第2室内熱交換器36の液側を流れる冷媒の過冷却度が所定の目標値になる等の所定条件を満たすように、弁開度が制御される。
第1室内膨張弁33で減圧された冷媒および第2室内膨張弁38で減圧された冷媒は、合流し、液側冷媒連絡配管6を流れて、室外ユニット20に流入する。
室外ユニット20の液側閉鎖弁29を通過した冷媒は、全開状態に制御された第2室外膨張弁45を通過し、過冷却熱交換器47において、過冷却配管46を流れる冷媒と熱交換する。第2室外膨張弁45を通過して過冷却熱交換器47を通過した冷媒は、一部が過冷却配管46に分岐され、他の一部が第1室外膨張弁44に送られる。過冷却配管46に分岐して流れた冷媒は、過冷却膨張弁48において減圧された後、四路切換弁22の接続ポートの1つと低圧レシーバ41との間の合流箇所において、各室内ユニット30、35から流れてきた冷媒と合流する。また、過冷却熱交換器47から第1室外膨張弁44に向けて流れてきた冷媒は、第1室外膨張弁44において減圧され、室外熱交換器23に流入する。
ここで、第1室外膨張弁44は、例えば、圧縮機21の吸入側を流れる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第1室外膨張弁44の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
また、過冷却膨張弁48は、圧縮機21の吸入側を流れる冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、過冷却膨張弁48の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。また、暖房運転時においては、過冷却配管46に冷媒が流れないように、過冷却膨張弁48を全閉状態に制御してもよい。
第1室外膨張弁44で減圧された冷媒は、室外熱交換器23において蒸発し、四路切換弁22を経て、過冷却配管46を流れた冷媒と合流する。合流した冷媒は、低圧レシーバ41を経て、再び、圧縮機21に吸入される。なお、低圧レシーバ41では、室外熱交換器23、過冷却熱交換器47において蒸発しきれなかった液冷媒が余剰冷媒として貯留される。
(13-4)第8実施形態の特徴
空気調和装置1gでは、1,2-ジフルオロエチレンを含む冷媒を用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
また、空気調和装置1gでは、低圧レシーバ41を設けることにより、圧縮機21における液圧縮を抑制することができている。また、冷房運転時には、第1室内膨張弁33、第2室内膨張弁38を過熱度制御することで、暖房運転時には、第1室内膨張弁33、第2室内膨張弁38を過冷却度制御することで、第1室内熱交換器31、第2室内熱交換器36における能力を十分に発揮させやすい。
さらに、空気調和装置1gでは、冷房運転時において、第2室外膨張弁45を通過して、液側冷媒連絡配管6を経て、第1室内膨張弁33、第2室内膨張弁38に至るまでの配管内部の空間を、液状態で満たすのではなく、少なくとも一部において気液二相状態の冷媒が存在するように制御されている。このため、第2室外膨張弁45から第1室内膨張弁33および第2室内膨張弁38に至るまでの配管内部の空間が全て液冷媒で満たされている場合と比べて、当該箇所の冷媒密度を低下させることができる。このため、冷媒回路10に封入されている冷媒の量を少なく抑えて、冷凍サイクルを行うことが可能になっている。したがって、仮に、冷媒回路10から冷媒が漏洩することがあったとしても、漏洩冷媒量を少なく抑えることが可能になっている。
(14)第9実施形態
以下、冷媒回路の概略構成図である図32、概略制御ブロック構成図である図33を参照しつつ、第9実施形態に係る冷凍サイクル装置としての空気調和装置1hについて説明する。なお、以下では、第6実施形態の空気調和装置1eとの違いを主に説明する。
(14-1)空気調和装置1hの概略構成
空気調和装置1hは、上記第6実施形態の空気調和装置1eとは、吸入冷媒加熱部50を有している点で異なっている。
吸入冷媒加熱部50は、四路切換弁22の接続ポートの1つから圧縮機21の吸入側に向けて延びる冷媒配管の一部が中間圧レシーバ43内に位置する部分により構成されている。この吸入冷媒加熱部50では、四路切換弁22の接続ポートの1つから圧縮機21の吸入側に向けて延びる冷媒配管を流れる冷媒と、中間圧レシーバ43内に存在している冷媒とは、冷媒同士は混ざり合うことなく、互いに熱交換を行う。
(14-2)冷房運転モード
空気調和装置1hでは、冷房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の蒸発温度が、設定温度と室内温度(室内空気温度センサ72の検出温度)との差分に応じて定まる目標蒸発温度になるように、運転周波数が容量制御される。
圧縮機21から吐出されたガス冷媒は、四路切換弁22を通過した後、室外熱交換器23において凝縮する。室外熱交換器23を流れた冷媒は、第1室外膨張弁44において、冷凍サイクルにおける中間圧力まで減圧される。
ここで、第1室外膨張弁44は、例えば、室外熱交換器23の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。
第1室外膨張弁44において減圧された冷媒は、中間圧レシーバ43に流入する。中間圧レシーバ43では、冷媒回路10における余剰冷媒が液冷媒として貯留される。ここで、中間圧レシーバ43に流入した冷媒は、吸入冷媒加熱部50における圧縮機21の吸入側を流れる冷媒との熱交換により、冷却される。中間圧レシーバ43内の吸入冷媒加熱部50において冷却された冷媒は、第2室外膨張弁45において、冷凍サイクルの低圧まで減圧される。
ここで、第2室外膨張弁45は、例えば、室内熱交換器31のガス側を流れる冷媒の過熱度または圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第2室外膨張弁45の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
第2室外膨張弁45において冷凍サイクルの低圧まで減圧された冷媒は、液側閉鎖弁29、液側冷媒連絡配管6を介して室内ユニット30に流入し、室内熱交換器31において蒸発する。室内熱交換器31を流れた冷媒は、ガス側冷媒連絡配管5を流れた後、ガス側閉鎖弁28、四路切換弁22を経て、中間圧レシーバ43の内部を通過する冷媒配管内を流れる。中間圧レシーバ43の内部を通過する冷媒配管内を流れる冷媒は、中間圧レシーバ43内の吸入冷媒加熱部50において中間圧レシーバ43に貯留されている冷媒と熱交換を行うことで加熱され、再び、圧縮機21に吸入される。
(14-3)暖房運転モード
空気調和装置1hでは、暖房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の凝縮温度が、設定温度と室内温度(室内空気温度センサ72の検出温度)との差分に応じて定まる目標凝縮温度になるように、運転周波数が容量制御される。
圧縮機21から吐出されたガス冷媒は、四路切換弁22、ガス側冷媒連絡配管5を流れた後、室内ユニット30の室内熱交換器31のガス側端に流入し、室内熱交換器31において凝縮する。室内熱交換器31の液側端から流出した冷媒は、液側冷媒連絡配管6を経て、室外ユニット20に流入し、液側閉鎖弁29を通過して、第2室外膨張弁45において冷凍サイクルにおける中間圧になるまで減圧される。
ここで、第2室外膨張弁45は、例えば、室内熱交換器31の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。
第2室外膨張弁45において減圧された冷媒は、中間圧レシーバ43に流入する。中間圧レシーバ43では、冷媒回路10における余剰冷媒が液冷媒として貯留される。ここで、中間圧レシーバ43に流入した冷媒は、吸入冷媒加熱部50における圧縮機21の吸入側を流れる冷媒との熱交換により、冷却される。中間圧レシーバ43内の吸入冷媒加熱部50において冷却された冷媒は、第1室外膨張弁44において、冷凍サイクルの低圧まで減圧される。
ここで、第1室外膨張弁44は、例えば、圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第1室外膨張弁44の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
第1室外膨張弁44で減圧された冷媒は、室外熱交換器23において蒸発し、四路切換弁22を経て、中間圧レシーバ43の内部を通過する冷媒配管内を流れる。中間圧レシーバ43の内部を通過する冷媒配管内を流れる冷媒は、中間圧レシーバ43内の吸入冷媒加熱部50において中間圧レシーバ43に貯留されている冷媒と熱交換を行うことで加熱され、再び、圧縮機21に吸入される。
(14-4)第9実施形態の特徴
空気調和装置1hでは、1,2-ジフルオロエチレンを含む冷媒を用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
また、空気調和装置1hでは、中間圧レシーバ43を設けることにより、冷媒回路10における余剰冷媒を貯留させることが可能になっている。また、冷房運転時においては、第1室外膨張弁44を過冷却度制御させることにより、室外熱交換器23の能力を十分に発揮させやすく、暖房運転時においては、第2室外膨張弁45を過冷却度制御させることにより、室内熱交換器31の能力を十分に発揮させやすくすることが可能になっている。
さらに、吸入冷媒加熱部50が設けられていることで、圧縮機21に吸入される冷媒が加熱され、圧縮機21における液圧縮が抑制されるため、冷房運転において冷媒の蒸発器として機能する室内熱交換器31の出口を流れる冷媒の過熱度が小さい値となるように制御させることが可能になる。また、暖房運転においても同様に、冷媒の蒸発器として機能する室外熱交換器23の出口を流れる冷媒の過熱度が小さい値となるように制御させることが可能になる。これにより、冷房運転と暖房運転のいずれにおいても、冷媒として非共沸混合冷媒が用いられることで蒸発器内において温度グライドが生じる場合であっても、蒸発器として機能させる熱交換器において十分に能力を発揮させることができる。
(15)第10実施形態
以下、冷媒回路の概略構成図である図34、概略制御ブロック構成図である図35を参照しつつ、第10実施形態に係る冷凍サイクル装置としての空気調和装置1iについて説明する。なお、以下では、第9実施形態の空気調和装置1hとの違いを主に説明する。
(15-1)空気調和装置1iの概略構成
空気調和装置1iは、上記第9実施形態の空気調和装置1hとは、第1室外膨張弁44と第2室外膨張弁45が設けられておらず、室外膨張弁24が設けられている点、複数の室内ユニット(第1室内ユニット30と第2室内ユニット35)が並列に設けられている点、および、各室内ユニットにおいて室内熱交換器の液冷媒側に室内膨張弁が設けられている点で異なっている。
室外膨張弁24は、室外熱交換器23の液側の出口から中間圧レシーバ43に至るまで延びている冷媒配管の途中に設けられている。室外膨張弁24は、弁開度を調節可能な電動膨張弁であることが好ましい。
第1室内ユニット30は、上記実施形態と同様に、第1室内熱交換器31、第1室内ファン32を有しており、第1室内熱交換器31の液冷媒側において第1室内膨張弁33が設けられている。第1室内膨張弁33は、弁開度を調節可能な電動膨張弁であることが好ましい。第1室内ユニット30には、上記実施形態と同様に、第1室内ユニット制御部34と、第1室内ユニット制御部34に対して電気的に接続された第1室内液側熱交温度センサ71、第1室内空気温度センサ72、第1室内ガス側熱交温度センサ73等が設けられている。第2室内ユニット35は、第1室内ユニット30と同様に、第2室内熱交換器36、第2室内ファン37を有しており、第2室内熱交換器36の液冷媒側において第2室内膨張弁38が設けられている。第2室内膨張弁38は、弁開度を調節可能な電動膨張弁であることが好ましい。第2室内ユニット35には、第1室内ユニット30と同様に、第2室内ユニット制御部39と、第2室内ユニット制御部39に対して電気的に接続された第2室内液側熱交温度センサ75、第2室内空気温度センサ76、第2室内ガス側熱交温度センサ77が設けられている。
(15-2)冷房運転モード
空気調和装置1iでは、冷房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の蒸発温度が目標蒸発温度になるように、運転周波数が容量制御される。ここで、目標蒸発温度は、各室内ユニット30、35において設定温度と室内温度との差分が最も大きいもの(負荷が最も大きな室内ユニット)に応じて定めることが好ましい。
圧縮機21から吐出されたガス冷媒は、四路切換弁22を通過した後、室外熱交換器23において凝縮する。室外熱交換器23を流れた冷媒は、全開状態に制御された室外膨張弁24を通過する。
室外膨張弁24を通過した冷媒は、中間圧レシーバ43に流入する。中間圧レシーバ43では、冷媒回路10における余剰冷媒が液冷媒として貯留される。ここで、中間圧レシーバ43に流入した冷媒は、吸入冷媒加熱部50における圧縮機21の吸入側を流れる冷媒との熱交換により、冷却される。中間圧レシーバ43内の吸入冷媒加熱部50において冷却された冷媒は、液側閉鎖弁29、液側冷媒連絡配管6を介して、第1室内ユニット30および第2室内ユニット35にそれぞれ流入する。
第1室内ユニット31に流入した冷媒は、第1室内膨張弁33において、冷凍サイクルの低圧まで減圧される。また、第2室内ユニット35に流入した冷媒は、第2室内膨張弁38において、冷凍サイクルの低圧まで減圧される。
ここで、第1室内膨張弁33は、例えば、第1室内熱交換器31のガス側を流れる冷媒の過熱度または圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。また、第2室内膨張弁38も、同様に、例えば、第2室内熱交換器36のガス側を流れる冷媒の過熱度または圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。
第1室内膨張弁33において減圧された冷媒は、第1室内熱交換器31において蒸発し、第2室内膨張弁38において減圧された冷媒は、第2室内熱交換器36において蒸発し、合流した後、ガス側冷媒連絡配管5を流れ、ガス側閉鎖弁28、四路切換弁22を経て、中間圧レシーバ43の内部を通過する冷媒配管内を流れる。中間圧レシーバ43の内部を通過する冷媒配管内を流れる冷媒は、中間圧レシーバ43内の吸入冷媒加熱部50において中間圧レシーバ43に貯留されている冷媒と熱交換を行うことで加熱され、再び、圧縮機21に吸入される。
(15-3)暖房運転モード
空気調和装置1iでは、暖房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の凝縮温度が、目標凝縮温度になるように、運転周波数が容量制御される。ここで、目標凝縮温度は、各室内ユニット30、35において設定温度と室内温度との差分が最も大きいもの(負荷が最も大きな室内ユニット)に応じて定めることが好ましい。
圧縮機21から吐出されたガス冷媒は、四路切換弁22、ガス側冷媒連絡配管5を流れた後、第1室内ユニット30と第2室内ユニット35にそれぞれ流入する。
第1室内ユニット30に流入した冷媒は、第1室内熱交換器31において凝縮し、第2室内ユニット35に流入した冷媒は、第2室内熱交換器36において凝縮する。
第1室内熱交換器31の液側端から流出した冷媒は、第1室内膨張弁33において、冷凍サイクルの中間圧となるまで減圧される。第2室内熱交換器36の液側端から流出した冷媒も、同様に、第2室内膨張弁38において、冷凍サイクルの中間圧となるまで減圧される。
ここで、第1室内膨張弁33は、例えば、第1室内熱交換器31の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。また、第2室内膨張弁38についても同様に、例えば、第2室内熱交換器36の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。
第1室内膨張弁33を通過した冷媒と第2室内膨張弁38を通過した冷媒は、合流した後、液側冷媒連絡配管6を経て、室外ユニット20に流入する。
室外ユニット20に流入した冷媒は、液側閉鎖弁29を通過して、中間圧レシーバ43に流入する。中間圧レシーバ43では、冷媒回路10における余剰冷媒が液冷媒として貯留される。ここで、中間圧レシーバ43に流入した冷媒は、吸入冷媒加熱部50における圧縮機21の吸入側を流れる冷媒との熱交換により、冷却される。中間圧レシーバ43内の吸入冷媒加熱部50において冷却された冷媒は、室外膨張弁24において、冷凍サイクルの低圧まで減圧される。
ここで、室外膨張弁24は、例えば、圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、室外膨張弁24の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
室外膨張弁24で減圧された冷媒は、室外熱交換器23において蒸発し、四路切換弁22を経て、中間圧レシーバ43の内部を通過する冷媒配管内を流れる。中間圧レシーバ43の内部を通過する冷媒配管内を流れる冷媒は、中間圧レシーバ43内の吸入冷媒加熱部50において中間圧レシーバ43に貯留されている冷媒と熱交換を行うことで加熱され、再び、圧縮機21に吸入される。
(15-4)第10実施形態の特徴
空気調和装置1iでは、1,2-ジフルオロエチレンを含む冷媒を用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
また、空気調和装置1iでは、中間圧レシーバ43を設けることにより、冷媒回路10における余剰冷媒を貯留させることが可能になっている。また、暖房運転時においては、第2室外膨張弁45を過冷却度制御させることにより、室内熱交換器31の能力を十分に発揮させやすくすることが可能になっている。
さらに、吸入冷媒加熱部50が設けられていることで、圧縮機21に吸入される冷媒が加熱され、圧縮機21における液圧縮が抑制されるため、冷房運転において冷媒の蒸発器として機能する室内熱交換器31の出口を流れる冷媒の過熱度が小さい値となるように制御させることが可能になる。また、暖房運転においても同様に、冷媒の蒸発器として機能する室外熱交換器23の出口を流れる冷媒の過熱度が小さい値となるように制御させることが可能になる。これにより、冷房運転と暖房運転のいずれにおいても、冷媒として非共沸混合冷媒が用いられることで蒸発器内において温度グライドが生じる場合であっても、蒸発器として機能させる熱交換器において十分に能力を発揮させることができる。
(16)第11実施形態
以下、冷媒回路の概略構成図である図36、概略制御ブロック構成図である図37を参照しつつ、第11実施形態に係る冷凍サイクル装置としての空気調和装置1jについて説明する。なお、以下では、第9実施形態の空気調和装置1hとの違いを主に説明する。
(16-1)空気調和装置1jの概略構成
空気調和装置1jは、上記第9実施形態の空気調和装置1hとは、吸入冷媒加熱部50が設けられておらず、内部熱交換器51が設けられている点で異なっている。
内部熱交換器51は、第1室外膨張弁44と第2室外膨張弁45との間を流れる冷媒と、四路切換弁22の接続ポートの1つから圧縮機21の吸入側に向けて延びる冷媒配管を流れる冷媒と、の間で熱交換を行わせる熱交換器である。
(16-2)冷房運転モード
空気調和装置1jでは、冷房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の蒸発温度が、設定温度と室内温度(室内空気温度センサ72の検出温度)との差分に応じて定まる目標蒸発温度になるように、運転周波数が容量制御される。
圧縮機21から吐出されたガス冷媒は、四路切換弁22を通過した後、室外熱交換器23において凝縮する。室外熱交換器23を流れた冷媒は、全開状態に制御された第1室外膨張弁44を通過する。第1室外膨張弁44を通過した冷媒は、内部熱交換器51において冷却され、第2室外膨張弁45において冷凍サイクルの低圧まで減圧される。
ここで、第2室外膨張弁45は、例えば、室内熱交換器31のガス側を流れる冷媒の過熱度または圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第2室外膨張弁45の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
第2室外膨張弁45において冷凍サイクルの低圧まで減圧された冷媒は、液側閉鎖弁29、液側冷媒連絡配管6を介して室内ユニット30に流入し、室内熱交換器31において蒸発する。室内熱交換器31を流れた冷媒は、ガス側冷媒連絡配管5を流れた後、ガス側閉鎖弁28、四路切換弁22を経て、内部熱交換器51において加熱され、再び、圧縮機21に吸入される。
(16-3)暖房運転モード
空気調和装置1jでは、暖房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の凝縮温度が、設定温度と室内温度(室内空気温度センサ72の検出温度)との差分に応じて定まる目標凝縮温度になるように、運転周波数が容量制御される。
圧縮機21から吐出されたガス冷媒は、四路切換弁22、ガス側冷媒連絡配管5を流れた後、室内ユニット30の室内熱交換器31のガス側端に流入し、室内熱交換器31において凝縮する。室内熱交換器31の液側端から流出した冷媒は、液側冷媒連絡配管6を経て、室外ユニット20に流入し、液側閉鎖弁29を通過して、全開状態に制御された第2室外膨張弁45を通過する。第2室外膨張弁45を通過した冷媒は、内部熱交換器51において冷却され、第1室外膨張弁44において冷凍サイクルにおける中間圧になるまで減圧される。
ここで、第1室外膨張弁44は、例えば、圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、第1室外膨張弁44の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
第1室外膨張弁44で減圧された冷媒は、室外熱交換器23において蒸発し、四路切換弁22を経て、内部熱交換器51において加熱され、再び、圧縮機21に吸入される。
(16-4)第11実施形態の特徴
空気調和装置1jでは、1,2-ジフルオロエチレンを含む冷媒を用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
また、空気調和装置1jでは、内部熱交換器51が設けられていることで、圧縮機21に吸入される冷媒が加熱され、圧縮機21における液圧縮が抑制されるため、冷房運転において冷媒の蒸発器として機能する室内熱交換器31の出口を流れる冷媒の過熱度が小さい値となるように制御させることが可能になる。また、暖房運転においても同様に、冷媒の蒸発器として機能する室外熱交換器23の出口を流れる冷媒の過熱度が小さい値となるように制御させることが可能になる。これにより、冷房運転と暖房運転のいずれにおいても、冷媒として非共沸混合冷媒が用いられることで蒸発器内において温度グライドが生じる場合であっても、蒸発器として機能させる熱交換器において十分に能力を発揮させることができる。
(17)第12実施形態
以下、冷媒回路の概略構成図である図38、概略制御ブロック構成図である図39を参照しつつ、第12実施形態に係る冷凍サイクル装置としての空気調和装置1kについて説明する。なお、以下では、第10実施形態の空気調和装置1jとの違いを主に説明する。
(17-1)空気調和装置1kの概略構成
空気調和装置1kは、上記第10実施形態の空気調和装置1jとは、第1室外膨張弁44と第2室外膨張弁45が設けられておらず、室外膨張弁24が設けられている点、複数の室内ユニット(第1室内ユニット30と第2室内ユニット35)が並列に設けられている点、および、各室内ユニットにおいて室内熱交換器の液冷媒側に室内膨張弁が設けられている点で異なっている。
室外膨張弁24は、内部熱交換器51から液側閉鎖弁29まで延びる冷媒配管の途中に設けられている。室外膨張弁24は、弁開度を調節可能な電動膨張弁であることが好ましい。
第1室内ユニット30は、上記実施形態と同様に、第1室内熱交換器31、第1室内ファン32を有しており、第1室内熱交換器31の液冷媒側において第1室内膨張弁33が設けられている。第1室内膨張弁33は、弁開度を調節可能な電動膨張弁であることが好ましい。第1室内ユニット30には、上記実施形態と同様に、第1室内ユニット制御部34と、第1室内ユニット制御部34に対して電気的に接続された第1室内液側熱交温度センサ71、第1室内空気温度センサ72、第1室内ガス側熱交温度センサ73等が設けられている。第2室内ユニット35は、第1室内ユニット30と同様に、第2室内熱交換器36、第2室内ファン37を有しており、第2室内熱交換器36の液冷媒側において第2室内膨張弁38が設けられている。第2室内膨張弁38は、弁開度を調節可能な電動膨張弁であることが好ましい。第2室内ユニット35には、第1室内ユニット30と同様に、第2室内ユニット制御部39と、第2室内ユニット制御部39に対して電気的に接続された第2室内液側熱交温度センサ75、第2室内空気温度センサ76、第2室内ガス側熱交温度センサ77が設けられている。
(17-2)冷房運転モード
空気調和装置1kでは、冷房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の蒸発温度が目標蒸発温度になるように、運転周波数が容量制御される。ここで、目標蒸発温度は、各室内ユニット30、35において設定温度と室内温度との差分が最も大きいもの(負荷が最も大きな室内ユニット)に応じて定めることが好ましい。
圧縮機21から吐出されたガス冷媒は、四路切換弁22を通過した後、室外熱交換器23において凝縮する。室外熱交換器23を流れた冷媒は、内部熱交換器51において冷却され、全開状態に制御された室外膨張弁24を通過し、液側閉鎖弁29、液側閉鎖弁29、液側冷媒連絡配管6を介して第1室内ユニット30および第2室内ユニット35にそれぞれ流入する。
第1室内ユニット31に流入した冷媒は、第1室内膨張弁33において、冷凍サイクルの低圧まで減圧される。また、第2室内ユニット35に流入した冷媒は、第2室内膨張弁38において、冷凍サイクルの低圧まで減圧される。
ここで、第1室内膨張弁33は、例えば、第1室内熱交換器31のガス側を流れる冷媒の過熱度または圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。また、第2室内膨張弁38も、同様に、例えば、第2室内熱交換器36のガス側を流れる冷媒の過熱度または圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。
第1室内膨張弁33において減圧された冷媒は、第1室内熱交換器31において蒸発し、第2室内膨張弁38において減圧された冷媒は、第2室内熱交換器36において蒸発し、合流した後、ガス側冷媒連絡配管5を流れ、ガス側閉鎖弁28、四路切換弁22を経て、内部熱交換器51において加熱され、再び、圧縮機21に吸入される。
(17-3)暖房運転モード
空気調和装置1kでは、暖房運転モードでは、圧縮機21は、例えば、冷媒回路10における冷媒の凝縮温度が、目標凝縮温度になるように、運転周波数が容量制御される。ここで、目標凝縮温度は、各室内ユニット30、35において設定温度と室内温度との差分が最も大きいもの(負荷が最も大きな室内ユニット)に応じて定めることが好ましい。
圧縮機21から吐出されたガス冷媒は、四路切換弁22、ガス側冷媒連絡配管5を流れた後、第1室内ユニット30と第2室内ユニット35にそれぞれ流入する。
第1室内ユニット30に流入した冷媒は、第1室内熱交換器31において凝縮し、第2室内ユニット35に流入した冷媒は、第2室内熱交換器36において凝縮する。
第1室内熱交換器31の液側端から流出した冷媒は、第1室内膨張弁33において、冷凍サイクルの中間圧となるまで減圧される。第2室内熱交換器36の液側端から流出した冷媒も、同様に、第2室内膨張弁38において、冷凍サイクルの中間圧となるまで減圧される。
ここで、第1室内膨張弁33は、例えば、第1室内熱交換器31の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。また、第2室内膨張弁38についても同様に、例えば、第2室内熱交換器36の液側出口を流れる冷媒の過冷却度が目標値になる等の所定条件を満たすように、弁開度が制御される。
第1室内膨張弁33を通過した冷媒と第2室内膨張弁38を通過した冷媒は、合流した後、液側冷媒連絡配管6を経て、室外ユニット20に流入する。
室外ユニット20に流入した冷媒は、液側閉鎖弁29を通過して、室外膨張弁24において、冷凍サイクルの低圧まで減圧される。
ここで、室外膨張弁24は、例えば、圧縮機21が吸入する冷媒の過熱度が目標値になる等の所定条件を満たすように、弁開度が制御される。なお、室外膨張弁24の弁開度制御の手法は、特に限定されず、例えば、圧縮機21から吐出される冷媒の吐出温度が所定温度となるように制御されてもよいし、圧縮機21から吐出される冷媒の過熱度が所定条件を満たすように制御されてもよい。
室外膨張弁24で減圧された冷媒は、室外熱交換器23において蒸発し、四路切換弁22を経て、内部熱交換器51において加熱され、再び、圧縮機21に吸入される。
(17-4)第12実施形態の特徴
空気調和装置1kでは、1,2-ジフルオロエチレンを含む冷媒を用いた冷凍サイクルを行うことができるため、GWPの小さい冷媒を用いて冷凍サイクルを行うことが可能になっている。
また、空気調和装置1kでは、暖房運転時においては、第1室内膨張弁33、第2室内膨張弁38を過冷却度制御させることにより、第1室内熱交換器31および第2室内熱交換器36の能力を十分に発揮させやすくすることが可能になっている。
さらに、空気調和装置1kには、内部熱交換器51が設けられていることで、圧縮機21に吸入される冷媒が加熱され、圧縮機21における液圧縮が抑制されるため、冷房運転において冷媒の蒸発器として機能する第1室内熱交換器31や第2室内熱交換器36の出口を流れる冷媒の過熱度が小さい値となるように制御させることが可能になる。また、暖房運転においても同様に、冷媒の蒸発器として機能する室外熱交換器23の出口を流れる冷媒の過熱度が小さい値となるように制御させることが可能になる。これにより、冷房運転と暖房運転のいずれにおいても、冷媒として非共沸混合冷媒が用いられることで蒸発器内において温度グライドが生じる場合であっても、蒸発器として機能させる熱交換器において十分に能力を発揮させることができる。
以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
1、1a~1m 空気調和装置(冷凍サイクル装置)
7 コントローラ(制御部)
10 冷媒回路
20 室外ユニット
21 圧縮機
23 室外熱交換器(凝縮器、蒸発器)
24 室外膨張弁(減圧部)
25 室外ファン
26 室内ブリッジ回路
27 室外ユニット制御部(制御部)
30 室内ユニット、第1室内ユニット
31 室内熱交換器、第1室内熱交換器(蒸発器、凝縮器)
32 室内ファン、第1室内ファン
33 室内膨張弁、第1室内膨張弁(減圧部)
34 室内ユニット制御部、第1室内ユニット制御部(制御部)
35 第2室内ユニット
36 第2室内熱交換器(蒸発器、凝縮器)
37 第2室内ファン
38 第2室内膨張弁(減圧部)
39 第2室内ユニット制御部(制御部)
40 バイパス配管
41 低圧レシーバ
42 高圧レシーバ
43 中間圧レシーバ
44 第1室外膨張弁(減圧部、第1減圧部)
45 第2室外膨張弁(減圧部、第2減圧部)
46 過冷却配管
47 過冷却熱交換器
48 過冷却膨張弁
49 バイパス膨張弁
50 吸入冷媒加熱部(冷媒熱交換部)
51 内部熱交換器(冷媒熱交換部)
53 室外ブリッジ回路
54 室内ブリッジ回路、第1室内ブリッジ回路
55 第2室内ブリッジ回路
61 吐出圧力センサ
62 吐出温度センサ
63 吸入圧力センサ
64 吸入温度センサ
65 室外熱交温度センサ
66 外気温度センサ
67 過冷却温度センサ
71 室内液側熱交温度センサ、第1室内液側熱交温度センサ
72 室内空気温度センサ、第1室内空気温度センサ
73 室内ガス側熱交温度センサ、第1室内ガス側熱交温度センサ
75 第2室内液側熱交温度センサ
76 第2室内空気温度センサ
77 第2室内ガス側熱交温度センサ
81 室内流入側熱交温度センサ、第1室内流入側熱交温度センサ
83 室内流出側熱交温度センサ、第1室内流出側熱交温度センサ
85 第2室内流入側熱交温度センサ
87 第2室内流出側熱交温度センサ
国際公開第2015/141678号

Claims (15)

  1. 圧縮機(21)と凝縮器(23、31、36)と減圧部(24、44、45、33、38)と蒸発器(31、36、23)とを有する冷媒回路(10)と、
    前記冷媒回路に封入された、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)を含み、かつHFO-1132(E)、HFO-1123及びR1234yfの合計を、冷媒全体に対して99.5質量%以上含む冷媒と、
    を備え
    前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
    点G(72.0, 28.0, 0.0)、
    点I(72.0, 0.0, 28.0)、
    点A(68.6, 0.0, 31.4)、
    点A’(30.6, 30.0, 39.4)、
    点B(0.0, 58.7, 41.3)、
    点D(0.0, 80.4, 19.6)、
    点C’(19.5,70.5,10.0) 及び
    点C(32.9, 67.1, 0.0)
    の8点をそれぞれ結ぶ線分GI、IA、AA’、A’B、BD、DC’、C’C及びCGで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分IA、BD及びCG上の点は除く)、
    前記線分AA’は、
    座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
    で表わされ、
    前記線分A’Bは、
    座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
    で表わされ、
    前記線分DC’は、
    座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
    で表わされ、
    前記線分C’Cは、
    座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
    で表わされ、かつ
    前記線分GI、IA、BD及びCGが直線である、
    凍サイクル装置(1、1a~1m)。
  2. 圧縮機(21)と凝縮器(23、31、36)と減圧部(24、44、45、33、38)と蒸発器(31、36、23)とを有する冷媒回路(10)と、
    前記冷媒回路に封入された、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)を含み、かつHFO-1132(E)、HFO-1123及びR1234yfの合計を、冷媒全体に対して99.5質量%以上含む冷媒と、
    を備え、
    前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
    点J(47.1, 52.9, 0.0)、
    点P(55.8, 42.0, 2.2)、
    点N(68.6, 16.3, 15.1)、
    点K(61.3, 5.4, 33.3)、
    点A’(30.6, 30.0, 39.4)、
    点B(0.0, 58.7, 41.3)、
    点D(0.0, 80.4, 19.6)、
    点C’(19.5,70.5,10.0) 及び
    点C(32.9, 67.1, 0.0)
    の9点をそれぞれ結ぶ線分JP、PN、NK、KA’、A’B、BD、DC’、C’C及びCJで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分BD及びCJ上の点は除く)、
    前記線分PNは、
    座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
    で表わされ、
    前記線分NKは、
    座標(x, 0.2421x2-29.955x+931.91, -0.2421x2+28.955x-831.91)
    で表わされ、
    前記線分KA’は、
    座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
    で表わされ、
    前記線分A’Bは、
    座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
    で表わされ、
    前記線分DC’は、
    座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
    で表わされ、
    前記線分C’Cは、
    座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
    で表わされ、かつ
    前記線分JP、BD及びCJが直線である、
    凍サイクル装置。
  3. 圧縮機(21)と凝縮器(23、31、36)と減圧部(24、44、45、33、38)と蒸発器(31、36、23)とを有する冷媒回路(10)と、
    前記冷媒回路に封入された、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)を含み、かつHFO-1132(E)、HFO-1123及びR1234yfの合計を、冷媒全体に対して99.5質量%以上含む冷媒と、
    を備え、
    前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
    点J(47.1, 52.9, 0.0)、
    点P(55.8, 42.0, 2.2)、
    点L(63.1, 31.9, 5.0)、
    点M(60.3, 6.2, 33.5)、
    点A’(30.6, 30.0, 39.4)、
    点B(0.0, 58.7, 41.3)、
    点D(0.0, 80.4, 19.6)、
    点C’(19.5,70.5,10.0) 及び
    点C(32.9, 67.1, 0.0)
    の9点をそれぞれ結ぶ線分JP、PL、LM、MA’、A’B、BD、DC’、C’C及びCJで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分BD及びCJ上の点は除く)、
    前記線分PLは、
    座標(x, -0.1135x2+12.112x-280.43, 0.1135x2-13.112x+380.43)
    で表わされ、
    前記線分MA’は、
    座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
    で表わされ、
    前記線分A’Bは、
    座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
    で表わされ、
    前記線分DC’は、
    座標(x, 0.0082x2-0.6671x+80.4, -0.0082x2-0.3329x+19.6)
    で表わされ、
    前記線分C’Cは、
    座標(x, 0.0067x2-0.6034x+79.729, -0.0067x2-0.3966x+20.271)
    で表わされ、かつ
    前記線分JP、LM、BD及びCJが直線である、
    凍サイクル装置。
  4. 圧縮機(21)と凝縮器(23、31、36)と減圧部(24、44、45、33、38)と蒸発器(31、36、23)とを有する冷媒回路(10)と、
    前記冷媒回路に封入された、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)を含み、かつHFO-1132(E)、HFO-1123及びR1234yfの合計を、冷媒全体に対して99.5質量%以上含む冷媒と、
    を備え、
    前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
    点S(62.6, 28.3, 9.1)、
    点M(60.3, 6.2, 33.5)、
    点A’(30.6, 30.0, 39.4)、
    点B(0.0, 58.7, 41.3)、
    点F(0.0, 61.8, 38.2)及び
    点T(35.8, 44.9, 19.3)
    の6点をそれぞれ結ぶ線分SM、MA’、A’B、BF、FT、及びTSで囲まれる図形の範囲内又は前記線分上にあり、
    前記線分MA’は、
    座標(x, 0.0016x2-0.9473x+57.497, -0.0016x2-0.0527x+42.503)
    で表わされ、
    前記線分A’Bは、
    座標(x, 0.0029x2-1.0268x+58.7, -0.0029x2+0.0268x+41.3)
    で表わされ、
    前記線分FTは、
    座標(x, 0.0078x2-0.7501x+61.8, -0.0078x2-0.2499x+38.2)
    で表わされ、
    前記線分TSは、
    座標(x, 0.0017x2-0.7869x+70.888, -0.0017x2-0.2131x+29.112)
    で表わされ、かつ
    前記線分SM及びBFが直線である、
    凍サイクル装置。
  5. 圧縮機(21)と凝縮器(23、31、36)と減圧部(24、44、45、33、38)と蒸発器(31、36、23)とを有する冷媒回路(10)と、
    前記冷媒回路に封入された、トランス-1,2-ジフルオロエチレン(HFO-1132(E))及びトリフルオロエチレン(HFO-1123)を含む冷媒と、
    を備え、
    前記冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))及びトリフルオロエチレン(HFO-1123)の合計を、該冷媒の全体に対して99.5質量%以上含み、かつ該冷媒が、HFO-1132(E)を、該冷媒の全体に対して62.0質量%~72.0質量%含む、
    凍サイクル装置。
  6. 圧縮機(21)と凝縮器(23、31、36)と減圧部(24、44、45、33、38)と蒸発器(31、36、23)とを有する冷媒回路(10)と、
    前記冷媒回路に封入された、トランス-1,2-ジフルオロエチレン(HFO-1132(E))及びトリフルオロエチレン(HFO-1123)を含む冷媒と、
    を備え、
    前記冷媒が、HFO-1132(E)及びHFO-1123の合計を、該冷媒の全体に対して99.5質量%以上含み、かつ該冷媒が、HFO-1132(E)を、該冷媒の全体に対して45.1質量%~47.1質量%含む、
    凍サイクル装置。
  7. 圧縮機(21)と凝縮器(23、31、36)と減圧部(24、44、45、33、38)と蒸発器(31、36、23)とを有する冷媒回路(10)と、
    前記冷媒回路に封入された、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)並びにジフルオロメタン(R32)を含む冷媒と、
    を備え、
    前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yf並びにR32の、これらの総和を基準とする質量%をそれぞれx、y及びz並びにaとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が(100-a)質量%となる3成分組成図において、座標(x,y,z)が、
    0<a≦11.1のとき、
    点G(0.026a2-1.7478a+72.0, -0.026a2+0.7478a+28.0, 0.0)、
    点I(0.026a2-1.7478a+72.0, 0.0, -0.026a2+0.7478a+28.0)、
    点A(0.0134a2-1.9681a+68.6, 0.0, -0.0134a2+0.9681a+31.4)、
    点B(0.0, 0.0144a2-1.6377a+58.7, -0.0144a2+0.6377a+41.3)、
    点D’(0.0, 0.0224a2+0.968a+75.4, -0.0224a2-1.968a+24.6)及び
    点C(-0.2304a2-0.4062a+32.9, 0.2304a2-0.5938a+67.1, 0.0)
    の6点をそれぞれ結ぶ直線GI、IA、AB、BD’、D’C及びCGで囲まれる図形の範囲内又は前記直線GI、AB及びD’C上にあり(ただし、点G、点I、点A、点B、点D’及び点Cは除く)、
    11.1<a≦18.2のとき、
    点G(0.02a2-1.6013a+71.105, -0.02a2+0.6013a+28.895, 0.0)、
    点I(0.02a2-1.6013a+71.105, 0.0, -0.02a2+0.6013a+28.895)、
    点A(0.0112a2-1.9337a+68.484, 0.0, -0.0112a2+0.9337a+31.516)、
    点B(0.0, 0.0075a2-1.5156a+58.199, -0.0075a2+0.5156a+41.801)及び
    点W(0.0, 100.0-a, 0.0)
    の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にあり(ただし、点G、点I、点A、点B及び点Wは除く)、
    18.2<a≦26.7のとき、
    点G(0.0135a2-1.4068a+69.727, -0.0135a2+0.4068a+30.273, 0.0)、
    点I(0.0135a2-1.4068a+69.727, 0.0, -0.0135a2+0.4068a+30.273)、
    点A(0.0107a2-1.9142a+68.305, 0.0, -0.0107a2+0.9142a+31.695)、
    点B(0.0, 0.009a2-1.6045a+59.318, -0.009a2+0.6045a+40.682)及び
    点W(0.0, 100.0-a, 0.0)
    の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にあり(ただし、点G、点I、点A、点B及び点Wは除く)、
    26.7<a≦36.7のとき、
    点G(0.0111a2-1.3152a+68.986, -0.0111a2+0.3152a+31.014, 0.0)、
    点I(0.0111a2-1.3152a+68.986, 0.0, -0.0111a2+0.3152a+31.014)、
    点A(0.0103a2-1.9225a+68.793, 0.0, -0.0103a2+0.9225a+31.207)、
    点B(0.0, 0.0046a2-1.41a+57.286, -0.0046a2+0.41a+42.714)及び
    点W(0.0, 100.0-a, 0.0)
    の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にあり(ただし、点G、点I、点A、点B及び点Wは除く)、及び
    36.7<a≦46.7のとき、
    点G(0.0061a2-0.9918a+63.902, -0.0061a2-0.0082a+36.098,0.0)、
    点I(0.0061a2-0.9918a+63.902, 0.0, -0.0061a2-0.0082a+36.098)、
    点A(0.0085a2-1.8102a+67.1, 0.0, -0.0085a2+0.8102a+32.9)、
    点B(0.0, 0.0012a2-1.1659a+52.95, -0.0012a2+0.1659a+47.05)及び
    点W(0.0, 100.0-a, 0.0)
    の5点をそれぞれ結ぶ直線GI、IA、AB、BW及びWGで囲まれる図形の範囲内又は前記直線GI及びAB上にある(ただし、点G、点I、点A、点B及び点Wは除く)、かつ
    HFO-1132(E)、HFO-1123及びR1234yf並びにR32の合計を、冷媒全体に対して99.5質量%以上含む、
    凍サイクル装置。
  8. 圧縮機(21)と凝縮器(23、31、36)と減圧部(24、44、45、33、38)と蒸発器(31、36、23)とを有する冷媒回路(10)と、
    前記冷媒回路に封入された、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、ジフルオロメタン(R32)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)を含み、かつHFO-1132(E)、R32及びR1234yfの合計を、前記冷媒全体に対して99.5質量%以上含む冷媒と、
    を備え、
    前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
    点I(72.0, 0.0, 28.0)、
    点J(48.5, 18.3, 33.2)、
    点N(27.7, 18.2, 54.1)及び
    点E(58.3, 0.0, 41.7)
    の4点をそれぞれ結ぶ線分IJ、JN、NE、及びEIで囲まれる図形の範囲内又は前記線分上にあり(ただし、線分EI上にある点は除く)、
    前記線分IJは、
    座標(0.0236y2-1.7616y+72.0, y, -0.0236y2+0.7616y+28.0)
    で表わされ、
    前記線分NEは、
    座標(0.012y2-1.9003y+58.3, y, -0.012y2+0.9003y+41.7)
    で表わされ、かつ
    前記線分JN及びEIが直線である、
    凍サイクル装置。
  9. 圧縮機(21)と凝縮器(23、31、36)と減圧部(24、44、45、33、38)と蒸発器(31、36、23)とを有する冷媒回路(10)と、
    前記冷媒回路に封入された、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、ジフルオロメタン(R32)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)を含み、かつHFO-1132(E)、R32及びR1234yfの合計を、前記冷媒全体に対して99.5質量%以上含む冷媒と、
    を備え、
    前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
    点O(22.6, 36.8, 40.6)、
    点N(27.7, 18.2, 54.1)及び
    点U(3.9, 36.7, 59.4)
    の3点をそれぞれ結ぶ線分ON、NU及びUOで囲まれる図形の範囲内又は前記線分上にあり、
    前記線分ONは、
    座標(0.0072y2-0.6701y+37.512, y, -0.0072y2-0.3299y+62.488)
    で表わされ、
    前記線分NUは、
    座標(0.0083y2-1.7403y+56.635, y, -0.0083y2+0.7403y+43.365)
    で表わされ、かつ
    前記線分UOが直線である、
    凍サイクル装置。
  10. 圧縮機(21)と凝縮器(23、31、36)と減圧部(24、44、45、33、38)と蒸発器(31、36、23)とを有する冷媒回路(10)と、
    前記冷媒回路に封入された、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、ジフルオロメタン(R32)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)を含み、かつHFO-1132(E)、R32及びR1234yfの合計を、前記冷媒全体に対して99.5質量%以上含む冷媒と、
    を備え、
    前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
    点Q(44.6, 23.0, 32.4)、
    点R(25.5, 36.8, 37.7)及び
    点K(35.6, 36.8, 27.6)
    点をそれぞれ結ぶ線分QR、RK及びKQで囲まれる図形の範囲内又は前記線分上にあり、
    前記線分QRは、
    座標(0.0099y2-1.975y+84.765, y, -0.0099y2+0.975y+15.235)
    で表わされ
    前記線分KQは、
    座標(0.0095y2-1.2222y+67.676, y, -0.0095y2+0.2222y+32.324)
    で表わされ、かつ
    前記線分RKが直線である、
    凍サイクル装置。
  11. 前記冷媒回路は、前記蒸発器から前記圧縮機の吸入側に向かう冷媒流路の途中に設けられた低圧レシーバ(41)をさらに有している、
    請求項1から10のいずれか1項に記載の冷凍サイクル装置(1a、1b、1g、1l、1m)。
  12. 前記冷媒回路は、前記凝縮器から前記蒸発器に向かう冷媒流路の途中に設けられた高圧レシーバ(42)をさらに有している、
    請求項1から11のいずれか1項に記載の冷凍サイクル装置(1c、1d)。
  13. 前記冷媒回路は、前記凝縮器から前記蒸発器に向かう冷媒流路の途中に設けられた第1減圧部(44)と第2減圧部(45)と中間圧レシーバ(43)とさらに有しており、
    前記中間圧レシーバは、前記凝縮器から前記蒸発器に向かう冷媒流路における前記第1減圧部と前記第2減圧部との間に設けられている、
    請求項1から12のいずれか1項に記載の冷凍サイクル装置(1e、1f、1h、1i)。
  14. 前記冷媒回路は、前記凝縮器から前記蒸発器に向かう冷媒流路の途中に設けられた第1減圧部(44)と第2減圧部(45)とをさらに有しており、
    前記第1減圧部を通過する冷媒の減圧程度と前記第2減圧部を通過する冷媒の減圧程度との両方を調節する制御部(7、27)をさらに備えた、
    請求項1から12のいずれか1項に記載の冷凍サイクル装置(1g)。
  15. 前記冷媒回路は、前記凝縮器から前記蒸発器に向かう冷媒と、前記蒸発器から前記圧縮機に向かう冷媒と、の間で熱交換を行わせる冷媒熱交換部(50、51)をさらに有している、
    請求項1から14のいずれか1項に記載の冷凍サイクル装置(1h、1i、1j、1k)。
JP2019560982A 2017-12-18 2018-12-10 冷凍サイクル装置 Active JP7212265B2 (ja)

Applications Claiming Priority (19)

Application Number Priority Date Filing Date Title
JP2017242183 2017-12-18
JP2017242185 2017-12-18
JP2017242187 2017-12-18
JP2017242185 2017-12-18
JP2017242187 2017-12-18
JP2017242186 2017-12-18
JP2017242186 2017-12-18
JP2017242183 2017-12-18
JPPCT/JP2018/037483 2018-10-05
PCT/JP2018/037483 WO2019123782A1 (ja) 2017-12-18 2018-10-05 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
PCT/JP2018/038749 WO2019123807A1 (ja) 2017-12-18 2018-10-17 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
JPPCT/JP2018/038746 2018-10-17
JPPCT/JP2018/038749 2018-10-17
JPPCT/JP2018/038748 2018-10-17
JPPCT/JP2018/038747 2018-10-17
PCT/JP2018/038748 WO2019123806A1 (ja) 2017-12-18 2018-10-17 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
PCT/JP2018/038747 WO2019123805A1 (ja) 2017-12-18 2018-10-17 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
PCT/JP2018/038746 WO2019123804A1 (ja) 2017-12-18 2018-10-17 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
PCT/JP2018/045290 WO2019124140A1 (ja) 2017-12-18 2018-12-10 冷凍サイクル装置

Publications (2)

Publication Number Publication Date
JPWO2019124140A1 JPWO2019124140A1 (ja) 2020-12-10
JP7212265B2 true JP7212265B2 (ja) 2023-01-25

Family

ID=66992715

Family Applications (22)

Application Number Title Priority Date Filing Date
JP2019560868A Active JP7269499B2 (ja) 2017-12-18 2018-11-13 冷凍サイクル装置
JP2019560869A Pending JPWO2019123898A1 (ja) 2017-12-18 2018-11-13 冷媒用または冷媒組成物用の冷凍機油、冷凍機油の使用方法、および、冷凍機油としての使用
JP2019560985A Withdrawn JPWO2019124146A1 (ja) 2017-12-18 2018-12-10 冷凍サイクル
JP2019560984A Pending JPWO2019124145A1 (ja) 2017-12-18 2018-12-10 空気調和機
JP2019560982A Active JP7212265B2 (ja) 2017-12-18 2018-12-10 冷凍サイクル装置
JP2019560980A Withdrawn JPWO2019124138A1 (ja) 2017-12-18 2018-12-10 空調ユニット
JP2019560981A Pending JPWO2019124139A1 (ja) 2017-12-18 2018-12-10 冷凍サイクル装置および冷凍サイクル装置における冷媒封入量の決定方法
JP2019561029A Active JP7231834B2 (ja) 2017-12-18 2018-12-13 温水製造装置
JP2019561028A Active JP7244763B2 (ja) 2017-12-18 2018-12-13 冷凍装置
JP2019561083A Withdrawn JPWO2019124326A1 (ja) 2017-12-18 2018-12-17 熱交換ユニット
JP2019561086A Active JP7284405B2 (ja) 2017-12-18 2018-12-17 冷凍サイクル装置
JP2019561084A Pending JPWO2019124327A1 (ja) 2017-12-18 2018-12-17 冷凍サイクル装置
JP2019561085A Pending JPWO2019124328A1 (ja) 2017-12-18 2018-12-17 熱源ユニットおよび冷凍サイクル装置
JP2019561087A Pending JPWO2019124330A1 (ja) 2017-12-18 2018-12-17 蓄熱装置
JP2019561108A Pending JPWO2019124361A1 (ja) 2017-12-18 2018-12-18 冷凍サイクル装置
JP2019561109A Pending JPWO2019124362A1 (ja) 2017-12-18 2018-12-18 冷凍サイクル装置
JP2019560513A Pending JPWO2019124409A1 (ja) 2017-12-18 2018-12-18 冷凍サイクル装置
JP2019561113A Pending JPWO2019124379A1 (ja) 2017-12-18 2018-12-18 冷凍サイクル装置
JP2019561127A Pending JPWO2019124398A1 (ja) 2017-12-18 2018-12-18 圧縮機
JP2019561107A Pending JPWO2019124360A1 (ja) 2017-12-18 2018-12-18 空気調和機
JP2019561114A Pending JPWO2019124380A1 (ja) 2017-12-18 2018-12-18 冷凍サイクル装置
JP2019561124A Active JP7303445B2 (ja) 2017-12-18 2018-12-18 空調機

Family Applications Before (4)

Application Number Title Priority Date Filing Date
JP2019560868A Active JP7269499B2 (ja) 2017-12-18 2018-11-13 冷凍サイクル装置
JP2019560869A Pending JPWO2019123898A1 (ja) 2017-12-18 2018-11-13 冷媒用または冷媒組成物用の冷凍機油、冷凍機油の使用方法、および、冷凍機油としての使用
JP2019560985A Withdrawn JPWO2019124146A1 (ja) 2017-12-18 2018-12-10 冷凍サイクル
JP2019560984A Pending JPWO2019124145A1 (ja) 2017-12-18 2018-12-10 空気調和機

Family Applications After (17)

Application Number Title Priority Date Filing Date
JP2019560980A Withdrawn JPWO2019124138A1 (ja) 2017-12-18 2018-12-10 空調ユニット
JP2019560981A Pending JPWO2019124139A1 (ja) 2017-12-18 2018-12-10 冷凍サイクル装置および冷凍サイクル装置における冷媒封入量の決定方法
JP2019561029A Active JP7231834B2 (ja) 2017-12-18 2018-12-13 温水製造装置
JP2019561028A Active JP7244763B2 (ja) 2017-12-18 2018-12-13 冷凍装置
JP2019561083A Withdrawn JPWO2019124326A1 (ja) 2017-12-18 2018-12-17 熱交換ユニット
JP2019561086A Active JP7284405B2 (ja) 2017-12-18 2018-12-17 冷凍サイクル装置
JP2019561084A Pending JPWO2019124327A1 (ja) 2017-12-18 2018-12-17 冷凍サイクル装置
JP2019561085A Pending JPWO2019124328A1 (ja) 2017-12-18 2018-12-17 熱源ユニットおよび冷凍サイクル装置
JP2019561087A Pending JPWO2019124330A1 (ja) 2017-12-18 2018-12-17 蓄熱装置
JP2019561108A Pending JPWO2019124361A1 (ja) 2017-12-18 2018-12-18 冷凍サイクル装置
JP2019561109A Pending JPWO2019124362A1 (ja) 2017-12-18 2018-12-18 冷凍サイクル装置
JP2019560513A Pending JPWO2019124409A1 (ja) 2017-12-18 2018-12-18 冷凍サイクル装置
JP2019561113A Pending JPWO2019124379A1 (ja) 2017-12-18 2018-12-18 冷凍サイクル装置
JP2019561127A Pending JPWO2019124398A1 (ja) 2017-12-18 2018-12-18 圧縮機
JP2019561107A Pending JPWO2019124360A1 (ja) 2017-12-18 2018-12-18 空気調和機
JP2019561114A Pending JPWO2019124380A1 (ja) 2017-12-18 2018-12-18 冷凍サイクル装置
JP2019561124A Active JP7303445B2 (ja) 2017-12-18 2018-12-18 空調機

Country Status (9)

Country Link
US (22) US20200339856A1 (ja)
EP (19) EP3730569A4 (ja)
JP (22) JP7269499B2 (ja)
KR (11) KR102655619B1 (ja)
CN (21) CN111511874A (ja)
AU (11) AU2018390660B2 (ja)
BR (10) BR112020011145A2 (ja)
PH (10) PH12020550899A1 (ja)
WO (1) WO2019124409A1 (ja)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10119738B2 (en) 2014-09-26 2018-11-06 Waterfurnace International Inc. Air conditioning system with vapor injection compressor
US11839062B2 (en) 2016-08-02 2023-12-05 Munters Corporation Active/passive cooling system
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus
EP3730582B1 (en) * 2017-12-18 2023-11-22 Daikin Industries, Ltd. Refrigerant-containing composition, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11820933B2 (en) * 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US20220389299A1 (en) * 2017-12-18 2022-12-08 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
CN111479894B (zh) * 2017-12-18 2021-09-17 大金工业株式会社 包含制冷剂的组合物、其用途、以及具有其的制冷机和该制冷机的运转方法
US20200339856A1 (en) 2017-12-18 2020-10-29 Daikin Industries, Ltd. Refrigerating oil for refrigerant or refrigerant composition, method for using refrigerating oil, and use of refrigerating oil
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
WO2020003341A1 (ja) * 2018-06-25 2020-01-02 三菱電機株式会社 ロータ、電動機、送風機および空気調和装置
US11592215B2 (en) 2018-08-29 2023-02-28 Waterfurnace International, Inc. Integrated demand water heating using a capacity modulated heat pump with desuperheater
WO2020255198A1 (ja) * 2019-06-17 2020-12-24 三菱電機株式会社 冷凍装置
EP3988864A4 (en) * 2019-06-19 2023-10-04 Daikin Industries, Ltd. COMPOSITION CONTAINING REFRIGERANT, USE THEREOF, REFRIGERATOR THEREOF, OPERATING METHOD FOR THIS REFRIGERATOR AND REFRIGERANT CYCLE DEVICE EQUIPPED THEREFROM
US20210003322A1 (en) * 2019-07-02 2021-01-07 Heatcraft Refrigeration Products Llc Cooling System
EP3879207B1 (en) * 2020-03-10 2023-09-06 Trane International Inc. Refrigeration apparatuses and operating method thereof
WO2021214822A1 (ja) * 2020-04-20 2021-10-28 三菱電機株式会社 中継機およびこれを備えた空気調和装置
CN111555480B (zh) * 2020-05-26 2021-04-30 安徽美芝精密制造有限公司 电机、压缩机和制冷设备
DE102020115275A1 (de) * 2020-06-09 2021-12-09 Stiebel Eltron Gmbh & Co. Kg Verfahren zum Betreiben einer Kompressionskälteanlage und Kompressionskälteanlage
CN112290783A (zh) * 2020-08-31 2021-01-29 海信(山东)空调有限公司 一种空调器和ipm模块自举电路预充电控制方法
JP7108208B2 (ja) * 2020-10-09 2022-07-28 ダイキン工業株式会社 冷媒を含む組成物、及び冷媒を含む組成物を安定化する方法
CN112396818B (zh) * 2020-11-12 2021-09-24 贵州电网有限责任公司 一种便携式移动检测终端
US11913672B2 (en) * 2020-12-21 2024-02-27 Goodman Global Group, Inc. Heating, ventilation, and air-conditioning system with dehumidification
JP7174278B2 (ja) * 2021-01-13 2022-11-17 ダイキン工業株式会社 空気調和装置、及び機能部品の交換方法
JP2022157501A (ja) * 2021-03-31 2022-10-14 ダイキン工業株式会社 自動車用冷凍サイクル装置
US11754316B2 (en) * 2021-04-26 2023-09-12 Villara Corporation Providing domestic hot water from conventional residential split system heat pumps
CN113432196B (zh) * 2021-06-21 2022-10-18 深圳市科信通信技术股份有限公司 空调系统
CN113294884B (zh) * 2021-06-21 2022-04-19 宁波奥克斯电气股份有限公司 一种制热控制方法、装置及空调器
US11984838B2 (en) * 2021-07-16 2024-05-14 Haier Us Appliance Solutions, Inc. Direct current load identification system
CN113864984B (zh) * 2021-10-19 2022-11-18 宁波奥克斯电气股份有限公司 空调器apf自动调试方法、装置、计算机设备及存储介质
CN114061143B (zh) * 2021-11-18 2023-05-30 深圳职业技术学院 直热式多功能热泵热水器
WO2023164101A1 (en) * 2022-02-25 2023-08-31 The Chemours Company Fc, Llc Compositions of hfo-1234yf, hfo-1132e, and hfc-152a and systems for using the compositions
KR102548607B1 (ko) * 2022-10-13 2023-06-28 지에스칼텍스 주식회사 폴리올 에스테르를 포함하는 베이스 오일 및 이를 포함하는 냉동기유 조성물
CN115888163B (zh) * 2022-11-22 2024-03-01 常州东立冷冻科技有限公司 一种组装式满液蒸发冷一体机
CN117111533B (zh) * 2023-10-09 2024-05-14 佛山市芯耀环保科技有限公司 一种制冰机的控制电路、pcb板及制冰机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115252A1 (ja) 2014-01-31 2015-08-06 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2015141678A1 (ja) 2014-03-18 2015-09-24 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2015186557A1 (ja) 2014-06-06 2015-12-10 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2015186670A1 (ja) 2014-06-06 2015-12-10 旭硝子株式会社 熱サイクルシステム用組成物および熱サイクルシステム
WO2016157538A1 (ja) 2015-04-03 2016-10-06 三菱電機株式会社 冷凍サイクル装置
JP2017067428A (ja) 2015-09-30 2017-04-06 ダイキン工業株式会社 冷凍装置
WO2017115636A1 (ja) 2015-12-28 2017-07-06 旭硝子株式会社 冷凍サイクル装置

Family Cites Families (268)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5190115A (ja) 1975-02-05 1976-08-07
FR2314456A1 (fr) * 1975-06-09 1977-01-07 Inst Francais Du Petrole Procede de production de froid
JPS5213025A (en) 1975-07-18 1977-02-01 Nissan Motor Co Ltd Torch ignition engine
JPS57198968A (en) 1981-05-29 1982-12-06 Hitachi Ltd Heat pump type refrigerator
JPS5939790A (ja) 1982-08-27 1984-03-05 Agency Of Ind Science & Technol 単結晶の製造方法
JPS6269066A (ja) 1985-09-24 1987-03-30 株式会社東芝 冷凍サイクル装置
JPS6369066A (ja) 1986-09-09 1988-03-29 Nec Corp 再書き込み不可媒体上のデ−タ修正方式
JPH024163A (ja) 1988-03-08 1990-01-09 Mitsubishi Electric Corp 電力用半導体素子の冷却装置
DE629687T1 (de) 1990-01-31 1995-12-14 Tonen Corp Ester als Schmiermittel für Haloalkangefriermittel.
JP2803451B2 (ja) 1991-07-12 1998-09-24 三菱電機株式会社 冷媒圧縮機及び冷蔵庫及び冷凍空調装置及び冷媒圧縮機の組立方法
JPH05149605A (ja) 1991-11-30 1993-06-15 Toshiba Corp 空気調和機
JPH05264070A (ja) 1992-03-17 1993-10-12 Mitsubishi Electric Corp 空気調和機の室外ユニット
JP3021947B2 (ja) 1992-03-24 2000-03-15 ダイキン工業株式会社 能力可変型空気調和装置の制御方法
JPH0719627A (ja) * 1993-06-30 1995-01-20 Daikin Ind Ltd 非共沸混合冷媒用の熱交換器
JPH07190571A (ja) * 1993-12-24 1995-07-28 Matsushita Electric Ind Co Ltd 非共沸混合冷媒を用いた冷凍装置
CA2191108C (en) 1994-05-23 1999-09-28 Nicholas E. Schnur Method for increasing the electrical resistivity of hindered polyol ester refrigerant lubricants
JPH08200273A (ja) 1995-01-30 1996-08-06 Sanyo Electric Co Ltd スクロール圧縮機
CN1083474C (zh) * 1995-10-24 2002-04-24 顾雏军 在热力循环中使用的改进的非共沸工作介质
JPH10309050A (ja) 1996-05-16 1998-11-17 Matsushita Electric Ind Co Ltd 圧縮機
JPH1046170A (ja) * 1996-08-06 1998-02-17 Kao Corp 冷凍機作動流体用組成物
JP3104642B2 (ja) 1997-04-25 2000-10-30 ダイキン工業株式会社 冷凍装置
JPH10318564A (ja) 1997-05-20 1998-12-04 Fujitsu General Ltd 空気調和機の室外機
JP3936027B2 (ja) * 1997-06-23 2007-06-27 松下電器産業株式会社 空気調和機
JPH11206001A (ja) 1998-01-07 1999-07-30 Meidensha Corp 電動機の保護装置
JPH11256358A (ja) 1998-03-09 1999-09-21 Sanyo Electric Co Ltd 熱交換器用耐食性銅パイプ
JP2000161805A (ja) * 1998-11-27 2000-06-16 Daikin Ind Ltd 冷凍装置
JP2000220877A (ja) 1999-01-29 2000-08-08 Daikin Ind Ltd 換気空調機
JP2000234767A (ja) 1999-02-10 2000-08-29 Mitsubishi Electric Corp 冷却装置及び空気調和機の冷却装置
JP2000304302A (ja) 1999-04-19 2000-11-02 Daikin Ind Ltd 空気調和装置
CN1238442A (zh) * 1999-05-08 1999-12-15 三菱电机株式会社 闭环制冷装置的一种压缩机及其装配方法
BR0011311A (pt) 1999-05-10 2002-02-26 New Japan Chem Co Ltd Ëleo lubrificante para refrigerador, fluido de operação para refrigerador e método para lubrificação de um refrigerador
JP4312894B2 (ja) 1999-09-09 2009-08-12 東芝キヤリア株式会社 空気調和機の室内ユニット
JP2001194016A (ja) 1999-10-18 2001-07-17 Daikin Ind Ltd 冷凍装置
JP3860942B2 (ja) * 1999-11-18 2006-12-20 株式会社ジャパンエナジー 冷凍装置用潤滑油組成物、作動流体及び冷凍装置
KR100327551B1 (ko) * 1999-12-27 2002-03-15 황한규 이중 증발기 구조를 가진 차량용 에어컨 장치
JP3763120B2 (ja) 2000-08-09 2006-04-05 三菱電機株式会社 空気調和装置
JP2002089978A (ja) 2000-09-11 2002-03-27 Daikin Ind Ltd ペア型の冷凍装置およびマルチ型の冷凍装置
JP3952769B2 (ja) * 2001-02-19 2007-08-01 株式会社デンソー ヒートポンプ式チラー
JP2002257366A (ja) * 2001-03-02 2002-09-11 Sekisui Chem Co Ltd 給湯暖房システム
JP2002272043A (ja) 2001-03-05 2002-09-20 Daikin Ind Ltd 回転式圧縮機、及びこの回転式圧縮機を備えた空気調和装置
JP3518518B2 (ja) * 2001-03-05 2004-04-12 松下電器産業株式会社 紙幣識別装置
JP4410957B2 (ja) * 2001-03-26 2010-02-10 株式会社ラブアース・テクノロジー ハイブリッド型給湯装置および方法
JP2003018776A (ja) 2001-03-30 2003-01-17 Sanyo Electric Co Ltd 誘導同期電動機
PT1750347E (pt) 2001-03-30 2011-08-01 Sanyo Electric Co Motor de indução síncrono
JP3885535B2 (ja) 2001-09-07 2007-02-21 株式会社デンソー 給湯装置
JP3690341B2 (ja) 2001-12-04 2005-08-31 ダイキン工業株式会社 ブラシレスdcモータ駆動方法およびその装置
TWI288519B (en) 2002-03-27 2007-10-11 Sanyo Electric Co Synchronous induction motor
JP2004028035A (ja) 2002-06-28 2004-01-29 Fujitsu General Ltd 密閉形圧縮機
JP3925383B2 (ja) 2002-10-11 2007-06-06 ダイキン工業株式会社 給湯装置、空調給湯システム、及び給湯システム
JP2004215406A (ja) 2002-12-28 2004-07-29 Daikin Ind Ltd 空気調和装置用モータ駆動装置
JP2004251535A (ja) 2003-02-20 2004-09-09 Aisin Seiki Co Ltd 空気調和機
JP2004361036A (ja) 2003-06-06 2004-12-24 Daikin Ind Ltd 空気調和装置
JP2005061711A (ja) * 2003-08-12 2005-03-10 Osaka Gas Co Ltd 排熱回収給湯装置
JP2005241045A (ja) 2004-02-24 2005-09-08 Sanyo Electric Co Ltd 空気調和装置
JP4759226B2 (ja) 2004-03-31 2011-08-31 株式会社コベルコ マテリアル銅管 拡管用工具およびそれを使用した拡管方法
WO2005100866A1 (ja) 2004-04-15 2005-10-27 Daikin Industries, Ltd. 空気調和機
JP4222273B2 (ja) * 2004-08-03 2009-02-12 パナソニック株式会社 ヒートポンプ給湯機
JP4555671B2 (ja) 2004-12-09 2010-10-06 東芝キヤリア株式会社 空気調和機
JP2006211824A (ja) 2005-01-28 2006-08-10 Mitsubishi Electric Corp 圧縮機
JP4591112B2 (ja) 2005-02-25 2010-12-01 株式会社日立製作所 永久磁石式回転機
ES2580080T3 (es) 2005-03-18 2016-08-19 Carrier Commercial Refrigeration, Inc. Intercambiador de calor de múltiples partes
JP2006313027A (ja) 2005-05-06 2006-11-16 Mitsubishi Electric Corp 換気空調装置
JP2007084481A (ja) * 2005-09-22 2007-04-05 Daikin Ind Ltd ペンタフルオロエタンの製造方法
JP3985834B2 (ja) 2005-11-07 2007-10-03 ダイキン工業株式会社 電装品アセンブリ、それを備えた空気調和装置の室外ユニット、及び空気調和装置
CN1987264A (zh) * 2005-12-22 2007-06-27 乐金电子(天津)电器有限公司 空调器
JP4893251B2 (ja) 2006-07-28 2012-03-07 パナソニック株式会社 マトリクスコンバータおよびそれを備えた装置
JP2008039305A (ja) * 2006-08-07 2008-02-21 Daikin Ind Ltd 建物において温水を循環させて暖房を行う温水循環暖房システムおよび蒸発器用散水装置
US8273928B2 (en) * 2006-08-24 2012-09-25 E I Du Pont De Nemours And Company Processes for separation of fluoroolefins from hydrogen fluoride by azeotropic distillation
JP4859694B2 (ja) 2007-02-02 2012-01-25 三菱重工業株式会社 多段圧縮機
US8672733B2 (en) 2007-02-06 2014-03-18 Nordyne Llc Ventilation airflow rate control
JP4840215B2 (ja) 2007-03-27 2011-12-21 株式会社日立製作所 永久磁石式回転電機及びそれを用いた圧縮機
JP2008286422A (ja) * 2007-05-15 2008-11-27 Panasonic Corp 冷蔵庫
JP2008295161A (ja) * 2007-05-23 2008-12-04 Daikin Ind Ltd 電力変換装置
JP2009063216A (ja) 2007-09-06 2009-03-26 Hitachi Appliances Inc 熱交換器およびそれを用いた空気調和機
JP5050763B2 (ja) * 2007-10-05 2012-10-17 パナソニック株式会社 給湯装置
JP2009092274A (ja) * 2007-10-05 2009-04-30 Hitachi Appliances Inc 空気調和機
JP5038105B2 (ja) * 2007-11-19 2012-10-03 パナソニック株式会社 弁装置およびそれを備える空気調和機
JP4738401B2 (ja) 2007-11-28 2011-08-03 三菱電機株式会社 空気調和機
JP2009150620A (ja) 2007-12-21 2009-07-09 Toshiba Carrier Corp 2元ヒートポンプ式空気調和装置
JP5130910B2 (ja) * 2007-12-28 2013-01-30 ダイキン工業株式会社 空気調和装置及び冷媒量判定方法
WO2009093345A1 (ja) 2008-01-25 2009-07-30 Mitsubishi Electric Corporation 誘導電動機及び密閉型圧縮機
WO2009105517A2 (en) * 2008-02-21 2009-08-27 E. I. Du Pont De Nemours And Company Azeotrope compositions comprising 3,3,3-trifluoropropene and hydrogen fluoride and processes for separation thereof
JP2009219268A (ja) * 2008-03-11 2009-09-24 Daikin Ind Ltd 電力変換装置
JP5407157B2 (ja) * 2008-03-18 2014-02-05 ダイキン工業株式会社 冷凍装置
JP4931848B2 (ja) * 2008-03-31 2012-05-16 三菱電機株式会社 ヒートポンプ式給湯用室外機
JP4471023B2 (ja) 2008-06-12 2010-06-02 ダイキン工業株式会社 空気調和機
ATE552319T1 (de) 2008-07-01 2012-04-15 Daikin Ind Ltd Kühlmittel mit difluormethan (hfc32), pentafluorethan (hfc125) und 2,3,3,3,- tetrafluorpropen (hfo1234yf)
JP4654423B2 (ja) * 2008-07-22 2011-03-23 独立行政法人産業技術総合研究所 電力変換装置
JP5128424B2 (ja) * 2008-09-10 2013-01-23 パナソニックヘルスケア株式会社 冷凍装置
JP2010071530A (ja) 2008-09-17 2010-04-02 Daikin Ind Ltd 空気調和装置
US20100082162A1 (en) 2008-09-29 2010-04-01 Actron Air Pty Limited Air conditioning system and method of control
JP2010121927A (ja) * 2008-10-22 2010-06-03 Panasonic Corp 冷却サイクル装置
JP2010103346A (ja) * 2008-10-24 2010-05-06 Daido Steel Co Ltd Ipm型集中巻モータ用磁石及びその製造方法、該磁石を用いたipm型集中巻モータ
JP2010119190A (ja) 2008-11-12 2010-05-27 Toyota Motor Corp 磁石埋め込み型モータ用ロータと磁石埋め込み型モータ
US20100122545A1 (en) 2008-11-19 2010-05-20 E. I. Du Pont De Nemours And Company Tetrafluoropropene compositions and uses thereof
JP2010164222A (ja) * 2009-01-14 2010-07-29 Panasonic Corp フィン付き熱交換器
JP5136495B2 (ja) 2009-03-27 2013-02-06 パナソニック株式会社 熱交換器
EP2420765B1 (en) * 2009-04-17 2018-10-24 Daikin Industries, Ltd. Heat source unit
JP2011004449A (ja) 2009-06-16 2011-01-06 Panasonic Corp マトリクスコンバータ回路
US9250001B2 (en) 2009-06-17 2016-02-02 Emerson Electric Co. Control of an expansion valve regulating refrigerant to an evaporator of a climate control system
JP2011043304A (ja) * 2009-08-24 2011-03-03 Hitachi Appliances Inc 空気調和機
JP5452138B2 (ja) * 2009-09-01 2014-03-26 三菱電機株式会社 冷凍空調装置
CN101649189B (zh) * 2009-09-04 2012-05-23 西安交通大学 一种含三氟碘甲烷的环保混合制冷剂
JP2011094841A (ja) 2009-10-28 2011-05-12 Daikin Industries Ltd 冷凍装置
JP5542423B2 (ja) 2009-12-22 2014-07-09 東芝産業機器システム株式会社 回転電機の回転子、および回転電機
JP2011202738A (ja) * 2010-03-25 2011-10-13 Toshiba Carrier Corp 空気調和機
JP2011252636A (ja) * 2010-06-01 2011-12-15 Panasonic Corp 温水暖房給湯装置
JP5388969B2 (ja) 2010-08-23 2014-01-15 三菱電機株式会社 熱交換器及びこの熱交換器が搭載された空気調和機
CN102401519B (zh) * 2010-09-16 2016-08-10 乐金电子(天津)电器有限公司 空调器的室外机
FR2964976B1 (fr) * 2010-09-20 2012-08-24 Arkema France Composition a base de 1,3,3,3-tetrafluoropropene
JP5595245B2 (ja) 2010-11-26 2014-09-24 三菱電機株式会社 冷凍装置
JP2012132637A (ja) * 2010-12-22 2012-07-12 Daikin Industries Ltd 空気調和装置の室外ユニット
JP5716408B2 (ja) 2011-01-18 2015-05-13 ダイキン工業株式会社 電力変換装置
JP5721480B2 (ja) * 2011-03-10 2015-05-20 三菱電機株式会社 冷凍サイクル装置
JP5821756B2 (ja) * 2011-04-21 2015-11-24 株式会社デンソー 冷凍サイクル装置
DE112012002154B4 (de) 2011-05-19 2022-06-30 AGC Inc. Arbeitsmedium und dessen Verwendung in einem Wärmekreisprozesssystem
WO2012157765A1 (ja) * 2011-05-19 2012-11-22 旭硝子株式会社 作動媒体および熱サイクルシステム
US9951962B2 (en) 2011-12-06 2018-04-24 Mitsubishi Electric Corporation Heat pump heating and hot-water system
JP6065429B2 (ja) 2011-12-08 2017-01-25 パナソニック株式会社 空気調和機
JP2013126281A (ja) * 2011-12-14 2013-06-24 Daikin Ind Ltd 界磁子の製造方法及び界磁子用の端板
JP5506770B2 (ja) 2011-12-16 2014-05-28 三菱電機株式会社 空気調和機
JP5881435B2 (ja) 2012-01-27 2016-03-09 三菱電機株式会社 熱交換器及びこれを備えた空気調和機
JP5867116B2 (ja) 2012-01-30 2016-02-24 ダイキン工業株式会社 冷凍装置の室外ユニット
JP6111520B2 (ja) * 2012-02-22 2017-04-12 ダイキン工業株式会社 電力変換装置
WO2013141323A1 (ja) 2012-03-23 2013-09-26 三菱重工オートモーティブサーマルシステムズ株式会社 モータおよびそれを用いた電動圧縮機
JP5536817B2 (ja) 2012-03-26 2014-07-02 日立アプライアンス株式会社 冷凍サイクル装置
JP2015111012A (ja) * 2012-03-26 2015-06-18 東芝キヤリア株式会社 冷凍サイクル装置
KR20130111186A (ko) * 2012-03-31 2013-10-10 (주)코스모테크놀로지 하이브리드형 급탕장치 및 그 제어방법
WO2013151043A1 (ja) * 2012-04-02 2013-10-10 東芝キヤリア株式会社 冷凍サイクル装置
JP5533926B2 (ja) 2012-04-16 2014-06-25 ダイキン工業株式会社 空気調和機
JP2015127593A (ja) * 2012-04-27 2015-07-09 東芝キヤリア株式会社 空気調和機の室外機
US20130283832A1 (en) * 2012-04-30 2013-10-31 Trane International Inc. Refrigeration system with purge using enrivonmentally-suitable chiller refrigerant
JP5500240B2 (ja) 2012-05-23 2014-05-21 ダイキン工業株式会社 冷凍装置
JP5516712B2 (ja) * 2012-05-28 2014-06-11 ダイキン工業株式会社 冷凍装置
JP5673612B2 (ja) * 2012-06-27 2015-02-18 三菱電機株式会社 冷凍サイクル装置
JP5805598B2 (ja) * 2012-09-12 2015-11-04 三菱電機株式会社 冷凍サイクル装置
JP5800994B2 (ja) 2012-09-21 2015-10-28 三菱電機株式会社 冷凍装置及びその制御方法
JP6044238B2 (ja) * 2012-09-28 2016-12-14 ダイキン工業株式会社 空気調和機
WO2014068655A1 (ja) 2012-10-30 2014-05-08 三菱電機株式会社 永久磁石埋込型電動機及びそれを備えた冷凍空調装置
JP5516695B2 (ja) 2012-10-31 2014-06-11 ダイキン工業株式会社 空気調和装置
CN103032996B (zh) * 2012-12-12 2015-03-11 宁波奥克斯电气有限公司 防止压缩机频繁启停的并联压缩机选配方法
JP5776746B2 (ja) 2013-01-29 2015-09-09 ダイキン工業株式会社 空気調和装置
CN108469126A (zh) 2013-01-31 2018-08-31 日立江森自控空调有限公司 室外机及采用该室外机的冷冻循环装置
JP2014152999A (ja) 2013-02-08 2014-08-25 Daikin Ind Ltd 空気調和機
WO2014128831A1 (ja) * 2013-02-19 2014-08-28 三菱電機株式会社 空気調和装置
EP2980508B1 (en) 2013-03-29 2018-01-17 Panasonic Healthcare Holdings Co., Ltd. Dual refrigeration device
JP6089912B2 (ja) 2013-04-17 2017-03-08 三菱電機株式会社 冷媒圧縮機
JP6384475B2 (ja) 2013-04-30 2018-09-05 Agc株式会社 熱サイクル用作動媒体
EP2993213B1 (en) * 2013-04-30 2020-07-15 AGC Inc. Composition containing trifluoroethylene
CN103363705B (zh) * 2013-05-28 2015-05-13 广东美的制冷设备有限公司 制冷系统、包括该制冷系统的制冷设备及其控制方法
JPWO2014203355A1 (ja) * 2013-06-19 2017-02-23 三菱電機株式会社 冷凍サイクル装置
WO2014203354A1 (ja) * 2013-06-19 2014-12-24 三菱電機株式会社 冷凍サイクル装置
WO2014203356A1 (ja) * 2013-06-19 2014-12-24 三菱電機株式会社 冷凍サイクル装置
GB2530915C (en) * 2013-06-19 2019-10-30 Mitsubishi Electric Corp Air-conditioning apparatus
BR112015031288B1 (pt) * 2013-07-12 2021-10-13 AGC Inc. Fluido de trabalho para ciclo térmico, composição para sistema de ciclo térmico e sistema de ciclo térmico
KR101525849B1 (ko) * 2013-07-16 2015-06-05 삼성전자 주식회사 압축기 및 이를 이용한 공기조화기
JP2015023721A (ja) * 2013-07-22 2015-02-02 ダイキン工業株式会社 回転子、モータおよび圧縮機
EP3029395A4 (en) * 2013-07-29 2017-03-08 Mitsubishi Electric Corporation Heat pump device
GB2516694B (en) * 2013-07-30 2016-09-07 Mexichem Amanco Holding Sa Heat transfer compositions
JP6225548B2 (ja) * 2013-08-08 2017-11-08 株式会社富士通ゼネラル 空気調和装置
JP2015055455A (ja) 2013-09-13 2015-03-23 三菱電機株式会社 室外機及び空気調和機
WO2015045354A1 (ja) * 2013-09-27 2015-04-02 パナソニックヘルスケア株式会社 冷凍装置
JP2015078789A (ja) 2013-10-16 2015-04-23 三菱電機株式会社 熱交換器および熱交換器を備えた空気調和装置
JP6118227B2 (ja) 2013-10-22 2017-04-19 株式会社日立産機システム 永久磁石回転電機およびそれを用いる圧縮機
WO2015071967A1 (ja) 2013-11-12 2015-05-21 三菱電機株式会社 冷凍装置
JP5661903B2 (ja) 2013-12-04 2015-01-28 三菱電機株式会社 圧縮機
CN105794087B (zh) 2013-12-05 2019-01-08 三菱电机株式会社 永久磁铁埋入式电动机、压缩机以及制冷空调装置
KR102135086B1 (ko) * 2013-12-10 2020-07-17 엘지전자 주식회사 모터 구동장치 및 이를 구비하는 공기조화기
JP2015114082A (ja) 2013-12-13 2015-06-22 ダイキン工業株式会社 冷媒配管接合体および冷媒配管接合体の製造方法
EP3100998B1 (en) * 2014-01-30 2020-02-26 AGC Inc. Method for producing trifluoroethylene
JP6252211B2 (ja) * 2014-02-03 2017-12-27 ダイキン工業株式会社 空調システム
JP6354616B2 (ja) * 2014-02-20 2018-07-11 旭硝子株式会社 熱サイクルシステム用組成物および熱サイクルシステム
JP6481680B2 (ja) 2014-02-20 2019-03-13 Agc株式会社 熱サイクル用作動媒体
WO2015125884A1 (ja) * 2014-02-20 2015-08-27 旭硝子株式会社 熱サイクルシステム用組成物および熱サイクルシステム
EP3812446B1 (en) * 2014-02-20 2023-06-28 Agc Inc. Composition for heat cycle system, and heat cycle system
EP3109301B1 (en) * 2014-02-20 2020-06-03 AGC Inc. Composition for heat cycle system, and heat cycle system
JP6375639B2 (ja) 2014-02-21 2018-08-22 ダイキン工業株式会社 空気調和装置
WO2015136979A1 (ja) 2014-03-14 2015-09-17 三菱電機株式会社 冷凍サイクル装置
CN106103992B (zh) 2014-03-14 2018-05-11 三菱电机株式会社 压缩机以及制冷循环装置
WO2015140827A1 (ja) 2014-03-17 2015-09-24 三菱電機株式会社 ヒートポンプ装置
JP6266089B2 (ja) * 2014-03-17 2018-01-24 三菱電機株式会社 空気調和装置
JP6293264B2 (ja) * 2014-03-17 2018-03-14 三菱電機株式会社 冷凍サイクル装置
JP6105511B2 (ja) * 2014-04-10 2017-03-29 三菱電機株式会社 ヒートポンプ装置
CN103940018A (zh) * 2014-05-06 2014-07-23 北京德能恒信科技有限公司 一种带有蒸发式冷凝器的热管空调一体机
JP5897062B2 (ja) 2014-05-08 2016-03-30 三菱電機株式会社 圧縮機用電動機及び圧縮機及び冷凍サイクル装置及び圧縮機用電動機の製造方法
JP2015218912A (ja) * 2014-05-14 2015-12-07 パナソニックIpマネジメント株式会社 空気調和装置及びそれに使用される負荷調整装置
JP2015218909A (ja) * 2014-05-14 2015-12-07 パナソニックIpマネジメント株式会社 冷凍サイクル装置およびそれを備えた温水生成装置
JP2016011423A (ja) 2014-06-06 2016-01-21 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
EP3153560A4 (en) * 2014-06-06 2018-01-10 Asahi Glass Company, Limited Working medium for heat cycle, composition for heat cycle system, and heat cycle system
WO2015186671A1 (ja) 2014-06-06 2015-12-10 旭硝子株式会社 熱サイクルシステム用組成物および熱サイクルシステム
JP2015229767A (ja) * 2014-06-06 2015-12-21 旭硝子株式会社 熱サイクル用作動媒体
JP2016001062A (ja) 2014-06-11 2016-01-07 パナソニックIpマネジメント株式会社 インバータ制御装置
JP6519909B2 (ja) 2014-07-18 2019-05-29 出光興産株式会社 冷凍機油組成物、及び冷凍装置
WO2016017460A1 (ja) * 2014-07-31 2016-02-04 三菱電機株式会社 冷媒分配器、熱交換器および冷凍サイクル装置
JP2016033426A (ja) * 2014-07-31 2016-03-10 日立アプライアンス株式会社 空気調和機
CN106574802A (zh) * 2014-08-12 2017-04-19 旭硝子株式会社 热循环系统
US10295236B2 (en) 2014-08-13 2019-05-21 Trane International Inc. Compressor heating system
JP6543450B2 (ja) * 2014-09-29 2019-07-10 Phcホールディングス株式会社 冷凍装置
EP3208555A4 (en) 2014-10-16 2018-05-30 Mitsubishi Electric Corporation Refrigeration cycle device
US9982904B2 (en) 2014-11-07 2018-05-29 Daikin Industries, Ltd. Air conditioning system
CN107112830B (zh) 2014-12-22 2019-05-10 三菱电机株式会社 旋转电机的转子
EP3492841A1 (en) 2014-12-26 2019-06-05 Daikin Industries, Ltd. Regenerative air conditioner
JP6028815B2 (ja) 2015-01-19 2016-11-24 ダイキン工業株式会社 空気調和装置の熱交換ユニット
CN107250315B (zh) 2015-02-09 2021-03-02 Agc株式会社 电动汽车用的空调用工作介质以及电动汽车用的空调用工作介质组合物
ES2732502T3 (es) * 2015-02-19 2019-11-22 Daikin Ind Ltd Composición que contiene una mezcla de hidrocarburos fluorados y método para producir la misma
CN106032955B (zh) * 2015-03-09 2020-06-16 大金工业株式会社 制冷剂回收单元及与该制冷剂回收单元连接的室外单元
JP2016174461A (ja) * 2015-03-17 2016-09-29 ダイキン工業株式会社 ロータ
JP6552851B2 (ja) * 2015-03-19 2019-07-31 三菱重工サーマルシステムズ株式会社 圧縮機駆動用モータおよびその冷却方法
CN204648544U (zh) * 2015-03-27 2015-09-16 中国建筑科学研究院 室内环境控制机组和系统以及建筑系统和被动式建筑物
WO2016182030A1 (ja) * 2015-05-14 2016-11-17 旭硝子株式会社 流体組成物、冷媒組成物および空気調和機
US10345023B2 (en) 2015-05-22 2019-07-09 Daikin Industries, Ltd. Temperature-adjusting fluid supply apparatus
JP6582236B2 (ja) 2015-06-11 2019-10-02 パナソニックIpマネジメント株式会社 冷凍サイクル装置
JP6604082B2 (ja) * 2015-08-07 2019-11-13 ダイキン工業株式会社 冷凍装置
CN107925284B (zh) 2015-08-21 2020-03-31 三菱电机株式会社 旋转电机以及空气调节装置
JP2017046430A (ja) 2015-08-26 2017-03-02 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド モータ制御装置、流体機械、空気調和機およびプログラム
CN107925285B (zh) 2015-09-01 2019-11-15 三菱电机株式会社 转子、旋转电机、电动压缩机及制冷空调装置
CN204943959U (zh) * 2015-09-01 2016-01-06 河北纳森空调有限公司 环保制冷剂r410a低温空气能热泵冷热水机组
JP2017053285A (ja) * 2015-09-10 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 圧縮機
JP6733145B2 (ja) 2015-09-30 2020-07-29 ダイキン工業株式会社 水熱交換器収容ユニット
CN205261858U (zh) * 2015-11-12 2016-05-25 珠海丽日帐篷有限公司 一种中大型整体式篷房用空调
WO2017119102A1 (ja) 2016-01-07 2017-07-13 三菱電機株式会社 永久磁石埋込型電動機、圧縮機及び冷凍空調装置
JP6762719B2 (ja) * 2016-01-08 2020-09-30 株式会社デンソーエアクール 熱交換器の製造方法
EP3404342A4 (en) 2016-01-12 2019-08-28 AGC Inc. COLD CIRCULATION DEVICE AND COLD CIRCULATION SYSTEM
WO2017131013A1 (ja) 2016-01-29 2017-08-03 旭硝子株式会社 冷凍サイクル装置
JP2017145975A (ja) * 2016-02-15 2017-08-24 三菱電機株式会社 冷凍サイクル装置、冷凍サイクル装置の製造方法、冷凍サイクル装置のドロップイン方法、及び、冷凍サイクル装置のリプレース方法
JP6922885B2 (ja) 2016-02-22 2021-08-18 Agc株式会社 圧縮機及び熱サイクルシステム
WO2017145826A1 (ja) * 2016-02-24 2017-08-31 旭硝子株式会社 冷凍サイクル装置
US9976759B2 (en) 2016-02-29 2018-05-22 Johnson Controls Technology Company Rain shield for a heat exchanger component
JP2017192190A (ja) * 2016-04-12 2017-10-19 日立ジョンソンコントロールズ空調株式会社 永久磁石モータ、及びそれを用いた圧縮機、空気調和機
US11131490B2 (en) * 2016-05-09 2021-09-28 Mitsubishi Electric Corporation Refrigeration device having condenser unit connected to compressor unit with on-site pipe interposed therebetween and remote from the compressor unit
JP6723354B2 (ja) 2016-06-27 2020-07-15 三菱電機株式会社 冷凍サイクル装置
AU2017302766B2 (en) 2016-07-28 2019-09-12 Daikin Industries, Ltd. Multi air conditioner
JP6731865B2 (ja) 2017-02-06 2020-07-29 日立ジョンソンコントロールズ空調株式会社 空気調和機の室外機、及び空気調和機、並びに空調管理方法
US11437877B2 (en) 2017-05-01 2022-09-06 Mitsubishi Electric Corporation Rotor, motor, compressor, and air conditioner
JP6551571B2 (ja) 2017-07-24 2019-07-31 ダイキン工業株式会社 冷媒組成物
AU2017431234B2 (en) 2017-09-05 2021-09-09 Mitsubishi Electric Corporation Consequent pole-type motor, electric motor, compressor, air blower, and air conditioner
US10933615B2 (en) * 2017-09-29 2021-03-02 Ube Industries, Ltd. Multilayer tubes
AR113699A1 (es) * 2017-11-30 2020-06-03 Lubrizol Corp Lubricante de éster aromático para uso con refrigerantes con bajo potencial de calentamiento global
US20200326100A1 (en) 2017-12-18 2020-10-15 Daikin Industries, Ltd. Warm-water generating apparatus
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
US20200363106A1 (en) 2017-12-18 2020-11-19 Daikin Industries, Ltd. Refrigeration cycle apparatus
US20200333054A1 (en) 2017-12-18 2020-10-22 Daikin Industries, Ltd. Compressor
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
US20200326110A1 (en) 2017-12-18 2020-10-15 Daikin Industries, Ltd. Compressor
US20200325375A1 (en) 2017-12-18 2020-10-15 Daikin Industries, Ltd. Refrigeration cycle apparatus and method of determining refrigerant enclosure amount in refrigeration cycle apparatus
US20200392387A1 (en) 2017-12-18 2020-12-17 Daikin Industries, Ltd. Air conditioner
US20200326103A1 (en) 2017-12-18 2020-10-15 Daikin Industries, Ltd. Refrigeration cycle
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus
JP6835258B2 (ja) 2017-12-18 2021-02-24 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
CN111479894B (zh) 2017-12-18 2021-09-17 大金工业株式会社 包含制冷剂的组合物、其用途、以及具有其的制冷机和该制冷机的运转方法
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US20200393178A1 (en) 2017-12-18 2020-12-17 Daikin Industries, Ltd. Refrigeration cycle apparatus
US20200347283A1 (en) 2017-12-18 2020-11-05 Daikin Industries, Ltd. Refrigerating oil for refrigerant or refrigerant composition, method for using refrigerating oil, and use of refrigerating oil
US20200332164A1 (en) 2017-12-18 2020-10-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US20200325376A1 (en) 2017-12-18 2020-10-15 Daikin Industries, Ltd. Refrigeration cycle apparatus
WO2019123805A1 (ja) 2017-12-18 2019-06-27 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
EP3730582B1 (en) 2017-12-18 2023-11-22 Daikin Industries, Ltd. Refrigerant-containing composition, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US20200392388A1 (en) 2017-12-18 2020-12-17 Daikin Industries, Ltd. Refrigerant-containing composition, use thereof and refrigerator comprising same, and method for operating said refrigerator
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US20200339856A1 (en) 2017-12-18 2020-10-29 Daikin Industries, Ltd. Refrigerating oil for refrigerant or refrigerant composition, method for using refrigerating oil, and use of refrigerating oil
US20200363112A1 (en) 2017-12-18 2020-11-19 Daikin Industries, Ltd. Air conditioner
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
US10982863B2 (en) 2018-04-10 2021-04-20 Carrier Corporation HVAC fan inlet
EP3862408B1 (en) 2018-10-01 2024-07-31 Agc Inc. Composition for heat cycle system, and heat cycle system
WO2020162401A1 (ja) 2019-02-05 2020-08-13 ダイキン工業株式会社 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115252A1 (ja) 2014-01-31 2015-08-06 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2015141678A1 (ja) 2014-03-18 2015-09-24 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2015186557A1 (ja) 2014-06-06 2015-12-10 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2015186670A1 (ja) 2014-06-06 2015-12-10 旭硝子株式会社 熱サイクルシステム用組成物および熱サイクルシステム
WO2016157538A1 (ja) 2015-04-03 2016-10-06 三菱電機株式会社 冷凍サイクル装置
JP2017067428A (ja) 2015-09-30 2017-04-06 ダイキン工業株式会社 冷凍装置
WO2017115636A1 (ja) 2015-12-28 2017-07-06 旭硝子株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
US20200332166A1 (en) 2020-10-22
AU2018387900A1 (en) 2020-07-23
CN111479898A (zh) 2020-07-31
AU2018388034A1 (en) 2020-07-09
JPWO2019124360A1 (ja) 2020-12-24
US20200333041A1 (en) 2020-10-22
CN111492186A (zh) 2020-08-04
EP3730868A4 (en) 2021-10-20
KR20200100740A (ko) 2020-08-26
CN111511874A (zh) 2020-08-07
US20200309411A1 (en) 2020-10-01
KR20200100718A (ko) 2020-08-26
KR20200100694A (ko) 2020-08-26
BR112020010676A2 (pt) 2020-11-10
US20210163804A1 (en) 2021-06-03
JPWO2019124330A1 (ja) 2021-01-21
US20200362215A1 (en) 2020-11-19
AU2018387884B2 (en) 2024-03-14
US20200340714A1 (en) 2020-10-29
EP3730865A4 (en) 2021-10-06
EP3730580A4 (en) 2021-10-13
CN111480038A (zh) 2020-07-31
US20200392389A1 (en) 2020-12-17
EP3730585A1 (en) 2020-10-28
CN111480040B (zh) 2022-06-21
US20200333049A1 (en) 2020-10-22
CN111480038B (zh) 2022-06-21
JPWO2019124362A1 (ja) 2021-01-21
CN111492031A (zh) 2020-08-04
BR112020010318A2 (pt) 2021-01-05
EP3730861A4 (en) 2021-09-29
JPWO2019124145A1 (ja) 2021-01-28
EP3730569A1 (en) 2020-10-28
US20210095897A1 (en) 2021-04-01
AU2018388050A1 (en) 2020-07-16
EP3730584A1 (en) 2020-10-28
PH12020550912A1 (en) 2021-05-10
KR102655619B1 (ko) 2024-04-09
EP3730866A1 (en) 2020-10-28
JP7244763B2 (ja) 2023-03-23
JPWO2019124398A1 (ja) 2021-01-14
AU2018391186A1 (en) 2020-07-16
CN111542580A (zh) 2020-08-14
EP3730861A1 (en) 2020-10-28
US20200309419A1 (en) 2020-10-01
EP3730871A1 (en) 2020-10-28
AU2018387985A1 (en) 2020-07-16
JPWO2019124328A1 (ja) 2020-12-24
CN111492189A (zh) 2020-08-04
CN111479910A (zh) 2020-07-31
AU2018390660B2 (en) 2023-01-05
PH12020550913A1 (en) 2021-05-17
US20200333051A1 (en) 2020-10-22
AU2018387983A1 (en) 2020-07-23
BR112020011168A2 (pt) 2020-11-17
BR112020009626A2 (pt) 2020-11-03
KR20200100688A (ko) 2020-08-26
EP3730569A4 (en) 2021-12-22
AU2018387884A1 (en) 2020-07-16
JP7284405B2 (ja) 2023-05-31
EP3730585A4 (en) 2021-10-20
JP7303445B2 (ja) 2023-07-05
JPWO2019124146A1 (ja) 2021-01-21
JP7269499B2 (ja) 2023-05-09
US20200339856A1 (en) 2020-10-29
JPWO2019124139A1 (ja) 2020-12-17
US20230097829A1 (en) 2023-03-30
PH12020550914A1 (en) 2021-05-10
JP7231834B2 (ja) 2023-03-02
PH12020550920A1 (en) 2021-05-31
EP3730866A4 (en) 2021-10-13
PH12020550915A1 (en) 2021-05-10
US20210003323A1 (en) 2021-01-07
EP3730576A4 (en) 2021-10-13
PH12020550919A1 (en) 2021-05-17
PH12020550917A1 (en) 2021-05-10
AU2018390660A1 (en) 2020-07-02
JPWO2019124326A1 (ja) 2021-02-04
JPWO2019124329A1 (ja) 2021-01-21
JPWO2019124230A1 (ja) 2021-01-07
CN111479896A (zh) 2020-07-31
KR20200100143A (ko) 2020-08-25
EP3730576A1 (en) 2020-10-28
KR20200100689A (ko) 2020-08-26
CN111492185A (zh) 2020-08-04
US20200393176A1 (en) 2020-12-17
AU2018391894A1 (en) 2020-07-16
BR112020010388A2 (pt) 2020-10-20
JPWO2019124327A1 (ja) 2021-01-21
EP3730867A4 (en) 2021-10-20
EP3730593A4 (en) 2021-10-27
CN111480039A (zh) 2020-07-31
US20200378662A1 (en) 2020-12-03
US11535781B2 (en) 2022-12-27
KR102706207B1 (ko) 2024-09-13
EP3730572A4 (en) 2021-09-29
JPWO2019123897A1 (ja) 2020-12-24
JPWO2019124395A1 (ja) 2020-12-17
KR102655073B1 (ko) 2024-04-08
JPWO2019124138A1 (ja) 2020-12-10
AU2018387883A1 (en) 2020-07-23
BR112020010468A2 (pt) 2020-11-24
EP3730870A1 (en) 2020-10-28
US20210164703A1 (en) 2021-06-03
JPWO2019124229A1 (ja) 2020-12-17
CN114838515A (zh) 2022-08-02
CN111527353B (zh) 2022-06-21
EP3730572A1 (en) 2020-10-28
EP3730867A1 (en) 2020-10-28
EP3730869A1 (en) 2020-10-28
EP3730570A1 (en) 2020-10-28
EP3730571A4 (en) 2021-10-06
JPWO2019124380A1 (ja) 2021-01-14
JPWO2019124361A1 (ja) 2021-01-14
AU2018391186B2 (en) 2024-06-20
BR112020011145A2 (pt) 2020-11-17
BR112020010607A2 (pt) 2020-11-10
US20210164701A1 (en) 2021-06-03
US20200309437A1 (en) 2020-10-01
EP3730584A4 (en) 2021-10-20
CN111492183A (zh) 2020-08-04
CN111492188A (zh) 2020-08-04
CN111492189B (zh) 2022-06-21
EP3730864A4 (en) 2021-09-29
US20200386459A1 (en) 2020-12-10
EP3730580A1 (en) 2020-10-28
KR102601975B1 (ko) 2023-11-14
JPWO2019124409A1 (ja) 2021-01-07
US20200393175A1 (en) 2020-12-17
CN111492033A (zh) 2020-08-04
EP3730871A4 (en) 2021-10-20
AU2018388034B2 (en) 2024-05-23
CN111479899B (zh) 2022-09-20
JPWO2019124379A1 (ja) 2021-01-14
JPWO2019124140A1 (ja) 2020-12-10
PH12020550918A1 (en) 2021-05-17
CN111480040A (zh) 2020-07-31
KR20200100716A (ko) 2020-08-26
US20210164698A1 (en) 2021-06-03
EP3730577A1 (en) 2020-10-28
KR102601018B1 (ko) 2023-11-10
JPWO2019123898A1 (ja) 2020-12-10
EP3730868A1 (en) 2020-10-28
KR20200100682A (ko) 2020-08-26
AU2018391876A1 (en) 2020-07-02
PH12020550899A1 (en) 2021-03-22
CN111480041A (zh) 2020-07-31
BR112020009389A2 (pt) 2020-11-03
KR20200100693A (ko) 2020-08-26
CN111479899A (zh) 2020-07-31
EP3730864A1 (en) 2020-10-28
AU2018391876B2 (en) 2023-01-05
EP3730571A1 (en) 2020-10-28
EP3730865A1 (en) 2020-10-28
CN111527178A (zh) 2020-08-11
EP3730869A4 (en) 2021-10-20
EP3730870A4 (en) 2021-10-27
CN111492185B (zh) 2022-06-17
EP3730570A4 (en) 2021-11-17
CN111480041B (zh) 2022-06-21
CN111492188B (zh) 2022-06-21
KR20200100681A (ko) 2020-08-26
CN111479897A (zh) 2020-07-31
EP3730577A4 (en) 2021-10-13
PH12020550911A1 (en) 2021-05-17
EP3730593A1 (en) 2020-10-28
WO2019124409A1 (ja) 2019-06-27
BR112020010413A2 (pt) 2020-11-24
CN111527353A (zh) 2020-08-11
KR20200101401A (ko) 2020-08-27

Similar Documents

Publication Publication Date Title
JP7212265B2 (ja) 冷凍サイクル装置
US20200393178A1 (en) Refrigeration cycle apparatus
US11506425B2 (en) Refrigeration cycle apparatus
US11435118B2 (en) Heat source unit and refrigeration cycle apparatus
US11820933B2 (en) Refrigeration cycle apparatus
US11549695B2 (en) Heat exchange unit
US20200325375A1 (en) Refrigeration cycle apparatus and method of determining refrigerant enclosure amount in refrigeration cycle apparatus
US20200325376A1 (en) Refrigeration cycle apparatus
WO2019124328A1 (ja) 熱源ユニットおよび冷凍サイクル装置
WO2019124140A1 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221226

R151 Written notification of patent or utility model registration

Ref document number: 7212265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151