US20200392389A1 - Refrigeration cycle apparatus - Google Patents

Refrigeration cycle apparatus Download PDF

Info

Publication number
US20200392389A1
US20200392389A1 US16/954,631 US201816954631A US2020392389A1 US 20200392389 A1 US20200392389 A1 US 20200392389A1 US 201816954631 A US201816954631 A US 201816954631A US 2020392389 A1 US2020392389 A1 US 2020392389A1
Authority
US
United States
Prior art keywords
point
hfo
refrigerant
coordinates
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/954,631
Inventor
Mitsushi Itano
Daisuke Karube
Yuuki YOTSUMOTO
Kazuhiro Takahashi
Yuzo Komatsu
Shun OHKUBO
Tatsuya TAKAKUWA
Tetsushi TSUDA
Takeo Abe
Yumi Toda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2018/037483 external-priority patent/WO2019123782A1/en
Priority claimed from PCT/JP2018/038746 external-priority patent/WO2019123804A1/en
Priority claimed from PCT/JP2018/038747 external-priority patent/WO2019123805A1/en
Priority claimed from PCT/JP2018/038748 external-priority patent/WO2019123806A1/en
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority claimed from PCT/JP2018/042027 external-priority patent/WO2019123897A1/en
Assigned to DAIKIN INDUSTRIES, LTD. reassignment DAIKIN INDUSTRIES, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TODA, YUMI, ABE, TAKEO, TSUDA, Tetsushi, TAKAKUWA, Tatsuya, OHKUBO, Shun, KOMATSU, YUZO, TAKAHASHI, KAZUHIRO, YOTSUMOTO, Yuuki, ITANO, MITSUSHI, KARUBE, DAISUKE
Priority to US16/913,358 priority Critical patent/US20200332164A1/en
Publication of US20200392389A1 publication Critical patent/US20200392389A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M131/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing halogen
    • C10M131/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing halogen containing carbon, hydrogen and halogen only
    • C10M131/04Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing halogen containing carbon, hydrogen and halogen only aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/02Specified values of viscosity or viscosity index
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • F24F1/24Cooling of electric components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/32Refrigerant piping for connecting the separate outdoor units to indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/34Protection means thereof, e.g. covers for refrigerant pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/38Fan details of outdoor units, e.g. bell-mouth shaped inlets or fan mountings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/044Systems in which all treatment is given in the central station, i.e. all-air systems
    • F24F3/048Systems in which all treatment is given in the central station, i.e. all-air systems with temperature control at constant rate of air-flow
    • F24F3/052Multiple duct systems, e.g. systems in which hot and cold air are supplied by separate circuits from the central station to mixing chambers in the spaces to be conditioned
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/0018Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters using electric energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/026Compressor arrangements of motor-compressor units with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/08Arrangements for cooling or ventilating by gaseous cooling medium circulating wholly within the machine casing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/106Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/122Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/128Perfluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/22All components of a mixture being fluoro compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/24Only one single fluoro component present
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/40Replacement mixtures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/40Replacement mixtures
    • C09K2205/43Type R22
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/02Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
    • C10M2211/022Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/05Cost reduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/07Exceeding a certain pressure value in a refrigeration component or cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/05Refrigerant levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present disclosure relates to a refrigeration cycle apparatus.
  • R410A has been frequently used as a refrigerant in refrigeration cycle apparatuses such as air conditioners.
  • R410A is a two-component mixed refrigerant of difluoromethane (CH 2 F 2 ; HFC-32 or R32) and pentafluoroethane (C 2 HF 5 ; HFC-125 or R125), which is a pseudo-azeotropic composition.
  • R410A has a global warming potential (GWP) of 2088. From the viewpoint of increasing concern for global warming, R32 having a lower GWP of 675 has been more frequently used in recent years.
  • GWP global warming potential
  • PTL 1 International Publication No. 2015/1416778 proposes various low-GWP mixture refrigerants as alternatives to R410A.
  • a refrigeration cycle apparatus comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil.
  • the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).
  • this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition.
  • good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) and a coefficient of performance (COP) equal to those of R410A is used.
  • a refrigerant having a refrigeration capacity may also be referred to as a cooling capacity or a capacity
  • COP coefficient of performance
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to the first aspect, wherein
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to the first aspect, wherein
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to the first aspect, wherein
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to the first aspect, wherein
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to the first aspect, wherein
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to the first aspect, wherein
  • the line segments LQ and QR are straight lines.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to the first aspect, wherein
  • a refrigeration cycle apparatus comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
  • this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition.
  • good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a coefficient of performance (COP) and a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.
  • COP coefficient of performance
  • Class 2L the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers
  • a refrigeration cycle apparatus comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
  • this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition.
  • good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a coefficient of performance (COP) and a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.
  • COP coefficient of performance
  • Class 2L the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers
  • a refrigeration cycle apparatus comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
  • this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition.
  • good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) and a coefficient of performance (COP) equal to those of R410A is used.
  • a refrigerant having a refrigeration capacity may also be referred to as a cooling capacity or a capacity
  • COP coefficient of performance
  • a refrigeration cycle apparatus comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
  • each refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil
  • good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition.
  • good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) and a coefficient of performance (COP) equal to those of R410A is used.
  • a refrigerant having a refrigeration capacity may also be referred to as a cooling capacity or a capacity
  • COP coefficient of performance
  • a refrigeration cycle apparatus comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
  • this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition.
  • good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to that of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.
  • a refrigerant having a refrigeration capacity may also be referred to as a cooling capacity or a capacity
  • Class 2L the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers
  • a refrigeration cycle apparatus comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
  • this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition.
  • good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to that of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.
  • a refrigerant having a refrigeration capacity may also be referred to as a cooling capacity or a capacity
  • Class 2L the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers
  • a refrigeration cycle apparatus comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
  • this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition.
  • good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to that of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.
  • a refrigerant having a refrigeration capacity may also be referred to as a cooling capacity or a capacity
  • Class 2L the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers
  • a refrigeration cycle apparatus comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
  • this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition.
  • good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to that of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.
  • a refrigerant having a refrigeration capacity may also be referred to as a cooling capacity or a capacity
  • Class 2L the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers
  • a refrigeration cycle apparatus comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
  • this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition.
  • good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to that of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.
  • a refrigerant having a refrigeration capacity may also be referred to as a cooling capacity or a capacity
  • Class 2L the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers
  • a refrigeration cycle apparatus comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
  • this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition.
  • good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a coefficient of performance (COP) equal to that of R410A is used.
  • COP coefficient of performance
  • a refrigeration cycle apparatus comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
  • this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition.
  • good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a coefficient of performance (COP) equal to that of R410A is used.
  • COP coefficient of performance
  • a refrigeration cycle apparatus comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
  • this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition.
  • good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a coefficient of performance (COP) equal to that of R410A is used.
  • COP coefficient of performance
  • a refrigeration cycle apparatus comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
  • this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition.
  • good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a coefficient of performance (COP) equal to that of R410A is used.
  • COP coefficient of performance
  • a refrigeration cycle apparatus comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
  • this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition.
  • good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a coefficient of performance (COP) equal to that of R410A is used.
  • COP coefficient of performance
  • a refrigeration cycle apparatus comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
  • the line segments QB′′ and B′′D are straight lines. Since this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition. In this refrigeration cycle, good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a coefficient of performance (COP) equal to that of R410A is used.
  • COP coefficient of performance
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first aspect to the twenty-third aspect, wherein the refrigerating oil has a kinematic viscosity at 40° C. of 1 mm 2 /s or more and 750 mm 2 /s or less.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first aspect to the twenty-fourth aspect, wherein the refrigerating oil has a kinematic viscosity at 100° C. of 1 mm 2 /s or more and 100 mm 2 /s or less.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first aspect to the twenty-fifth aspect, wherein the refrigerating oil has a volume resistivity at 25° C. of 1.0 ⁇ 10 12 ⁇ cm or more.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first aspect to the twenty-sixth aspect, wherein the refrigerating oil has an acid number of 0.1 mgKOH/g or less.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first aspect to the twenty-seventh aspect, wherein the refrigerating oil has an ash content of 100 ppm or less.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first aspect to the twenty-eighth aspect, wherein the refrigerating oil has an aniline point of ⁇ 100° C. or higher and 0° C. or lower.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first aspect to the twenty-ninth aspect and includes a refrigerant circuit.
  • the refrigerant circuit includes a compressor, a condenser, a decompressing unit, and an evaporator connected to each other through a refrigerant pipe.
  • the working fluid for a refrigerating machine circulates through the refrigerant circuit.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first aspect to the thirtieth aspect, wherein a content of the refrigerating oil in the working fluid for a refrigerating machine is 5 mass % or more and 60 mass % or less.
  • a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first aspect to the thirty-first aspect, wherein the refrigerating oil contains at least one additive selected from an acid scavenger, an extreme pressure agent, an antioxidant, an antifoaming agent, an oiliness improver, a metal deactivator, an anti-wear agent, and a compatibilizer.
  • a content of the additive is 5 mass % or less relative to a mass of the refrigerating oil containing the additive.
  • FIG. 1 is a diagram illustrating an example of a refrigerant circuit included in a refrigeration cycle apparatus.
  • FIG. 2 is a schematic view of an instrument used for a flammability test.
  • FIG. 3 is a diagram showing points A to T and line segments that connect these points in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass %.
  • FIG. 4 is a diagram showing points A to C, D′, G, I, J, and K′, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100 ⁇ a) mass %.
  • FIG. 5 is a diagram showing points A to C, D′, G, I, J, and K′, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 92.9 mass % (the content of R32 is 7.1 mass %).
  • FIG. 6 is a diagram showing points A to C, D′, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 88.9 mass % (the content of R32 is 11.1 mass %).
  • FIG. 7 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 85.5 mass % (the content of R32 is 14.5 mass %).
  • FIG. 8 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 81.8 mass % (the content of R32 is 18.2 mass %).
  • FIG. 9 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 78.1 mass % (the content of R32 is 21.9 mass %).
  • FIG. 10 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 73.3 mass % (the content of R32 is 26.7 mass %).
  • FIG. 11 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 70.7 mass % (the content of R32 is 29.3 mass %).
  • FIG. 12 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 63.3 mass % (the content of R32 is 36.7 mass %).
  • FIG. 13 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 55.9 mass % (the content of R32 is 44.1 mass %).
  • FIG. 14 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 52.2 mass % (the content of R32 is 47.8 mass %).
  • FIG. 15 is a view showing points A to C, E, G, and I to W; and line segments that connect points A to C, E, G, and I to W in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass %.
  • FIG. 16 is a view showing points A to U; and line segments that connect the points in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass %.
  • a refrigeration cycle apparatus contains a refrigerant composition described in Section (4) below and a refrigerating oil.
  • a refrigerating oil can improve the lubricity in the refrigeration cycle apparatus and can also achieve efficient cycle performance by performing a refrigeration cycle such as a refrigeration cycle together with a refrigerant composition.
  • refrigerating oil examples include oxygen-containing synthetic oils (e.g., ester-type refrigerating oils and ether-type refrigerating oils) and hydrocarbon refrigerating oils.
  • oxygen-containing synthetic oils e.g., ester-type refrigerating oils and ether-type refrigerating oils
  • hydrocarbon refrigerating oils e.g
  • the kinematic viscosity of the refrigerating oil at 40° C. is preferably 1 mm 2 /s or more and 750 mm 2 /s or less and more preferably 1 mm 2 /s or more and 400 mm 2 /s or less from at least one of the viewpoints of suppressing the deterioration of the lubricity and the hermeticity of compressors, achieving sufficient miscibility with refrigerants under low-temperature conditions, suppressing the lubrication failure of compressors, and improving the heat exchange efficiency of evaporators.
  • the kinematic viscosity of the refrigerating oil at 100° C. may be, for example, 1 mm 2 /s or more and 100 mm 2 /s or less and is more preferably 1 mm 2 /s or more and 50 mm 2 /s or less.
  • the refrigerating oil preferably has an aniline point of ⁇ 100° C. or higher and 0° C. or lower.
  • aniline point herein refers to a numerical value indicating the solubility of, for example, a hydrocarbon solvent, that is, refers to a temperature at which when equal volumes of a sample (herein, refrigerating oil) and aniline are mixed with each other and cooled, turbidity appears because of their immiscibility (provided in JIS K 2256). Note that this value is a value of the refrigerating oil itself in a state in which the refrigerant is not dissolved.
  • the suitability of the refrigerating oil for the resin functional components can be improved. Specifically, if the aniline point is excessively low, the refrigerating oil readily infiltrates the bearings and the insulating materials, and thus the bearings and the like tend to swell. On the other hand, if the aniline point is excessively high, the refrigerating oil does not readily infiltrate the bearings and the insulating materials, and thus the bearings and the like tend to shrink.
  • the deformation of the bearings and the insulating materials due to swelling or shrinking can be prevented by using the refrigerating oil having an aniline point within the above-described predetermined range ( ⁇ 100° C. or higher and 0° C. or lower). If the bearings deform through swelling, the desired length of a gap at a sliding portion cannot be maintained. This may result in an increase in sliding resistance. If the bearings deform through shrinking, the hardness of the bearings increases, and consequently the bearings may be broken because of vibration of a compressor. In other words, the deformation of the bearings through shrinking may decrease the rigidity of the sliding portion.
  • the insulating materials e.g., insulating coating materials and insulating films
  • the insulating properties of the insulating materials deteriorate.
  • the insulating materials may also be broken as in the case of the bearings, which also deteriorates the insulating properties.
  • the refrigerating oil having an aniline point within the predetermined range is used as described above, the deformation of bearings and insulating materials due to swelling or shrinking can be suppressed, and thus such a problem can be avoided.
  • the refrigerating oil is used as a working fluid for a refrigerating machine by being mixed with a refrigerant composition.
  • the content of the refrigerating oil relative to the whole amount of working fluid for a refrigerating machine is preferably 5 mass % or more and 60 mass % or less and more preferably 10 mass % or more and 50 mass % or less.
  • An ester-type refrigerating oil or an ether-type refrigerating oil serving as an oxygen-containing synthetic oil is mainly constituted by carbon atoms and oxygen atoms.
  • an excessively low ratio (carbon/oxygen molar ratio) of carbon atoms to oxygen atoms increases the hygroscopicity, and an excessively high ratio of carbon atoms to oxygen atoms deteriorates the miscibility with a refrigerant. Therefore, the molar ratio is preferably 2 or more and 7.5 or less.
  • Examples of base oil components of the ester-type refrigerating oil include dibasic acid ester oils of a dibasic acid and a monohydric alcohol, polyol ester oils of a polyol and a fatty acid, complex ester oils of a polyol, a polybasic acid, and a monohydric alcohol (or a fatty acid), and polyol carbonate oils from the viewpoint of chemical stability.
  • the dibasic acid ester oil is preferably an ester of a dibasic acid such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, or terephthalic acid, in particular, a dibasic acid having 5 to 10 carbon atoms (e.g., glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, or sebacic acid) and a monohydric alcohol having a linear or branched alkyl group and having 1 to 15 carbon atoms (e.g., methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol,
  • dibasic acid ester oil examples include ditridecyl glutarate, di(2-ethylhexyl) adipate, diisodecyl adipate, ditridecyl adipate, and di(3-ethylhexyl) sebacate.
  • the polyol ester oil is an ester synthesized from a polyhydric alcohol and a fatty acid (carboxylic acid), and has a carbon/oxygen molar ratio of 2 or more and 7.5 or less, preferably 3.2 or more and 5.8 or less.
  • the polyhydric alcohol constituting the polyol ester oil is a diol (e.g., ethylene glycol, 1,3-propanediol, propylene glycol, 1,4-butanediol, 1,2-butanediol, 2-methyl-1,3-propanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 2-ethyl-2-methyl-1,3-propanediol, 1,7-heptanediol, 2-methyl-2-propyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 1, 8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, or 1,12-dodecanediol) or a polyol having
  • the number of carbon atoms is not limited, but is normally 1 to 24.
  • a linear fatty acid or a branched fatty acid is preferred.
  • the linear fatty acid include acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, octadecanoic acid, nonadecanoic acid, eicosanoic acid, oleic acid, linoleic acid, and linolenic acid.
  • the hydrocarbon group that bonds to a carboxy group may have only a saturated hydrocarbon or may have an unsaturated hydrocarbon.
  • Examples of the branched fatty acid include 2-methylpropionic acid, 2-methylbutanoic acid, 3-methylbutanoic acid, 2,2-dimethylpropionic acid, 2-methylpentanoic acid, 3-methylpentanoic acid, 4-methylpentanoic acid, 2,2-dimethylbutanoic acid, 2,3-dimethylbutanoic acid, 3,3-dimethylbutanoic acid, 2-methylhexanoic acid, 3-methylhexanoic acid, 4-methylhexanoic acid, 5-methylhexanoic acid, 2,2-dimethylpentanoic acid, 2,3-dimethylpentanoic acid, 2,4-dimethylpentanoic acid, 3,3-dimethylpentanoic acid, 3,4-dimethylpentanoic acid, 4,4-dimethylpentanoic acid, 2-ethy
  • One polyhydric alcohol may be used to constitute an ester or a mixture of two or more polyhydric alcohols may be used to constitute an ester.
  • the fatty acid constituting an ester may be a single component, or two or more fatty acids may constitute an ester.
  • the fatty acids may be individual fatty acids of the same type or may be two or more types of fatty acids as a mixture.
  • the polyol ester oil may have a free hydroxyl group.
  • the polyol ester oil is more preferably an ester of a hindered alcohol such as neopentyl glycol, trimethylolethane, trimethylolpropane, trimethylolbutane, di-(trimethylolpropane), tri-(trimethylolpropane), pentaerythritol, di-(pentaerythritol), or tri-(pentaerythritol); further preferably an ester of neopentyl glycol, trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol, or di-(pentaerythritol); and preferably an ester of neopentyl glycol, trimethylolpropane, pentaerythritol, di-(pentaerythritol), or the like and a fatty acid having 2 to 20 carbon atoms.
  • a hindered alcohol such
  • the fatty acid constituting such a polyhydric alcohol fatty acid ester may be only a fatty acid having a linear alkyl group or may be selected from fatty acids having a branched structure.
  • a mixed ester of linear and branched fatty acids may be employed.
  • two or more fatty acids selected from the above fatty acids may be used to constitute an ester.
  • the molar ratio of a linear fatty acid having 4 to 6 carbon atoms and a branched fatty acid having 7 to 9 carbon atoms is 15:85 to 90:10, preferably 15:85 to 85:15, more preferably 20:80 to 80:20, further preferably 25:75 to 75:25, and most preferably 30:70 to 70:30.
  • the total content of the linear fatty acid having 4 to 6 carbon atoms and the branched fatty acid having 7 to 9 carbon atoms relative to the whole amount of fatty acid constituting the polyhydric alcohol fatty acid ester is preferably 20 mol % or more.
  • the fatty acid preferably has such a composition that both of sufficient miscibility with a refrigerant and viscosity required as a refrigerating oil are achieved.
  • the content of a fatty acid herein refers to a value relative to the whole amount of fatty acid constituting the polyhydric alcohol fatty acid ester contained in the refrigerating oil.
  • the refrigerating oil preferably contains an ester (hereafter referred to as a “polyhydric alcohol fatty acid ester (A)”) in which the molar ratio of the fatty acid having 4 to 6 carbon atoms and the branched fatty acid having 7 to 9 carbon atoms is 15:85 to 90:10, the fatty acid having 4 to 6 carbon atoms contains 2-methylpropionic acid, and the total content of the fatty acid having 4 to 6 carbon atoms and the branched fatty acid having 7 to 9 carbon atoms relative to the whole amount of fatty acid constituting the above ester is 20 mol % or more.
  • A polyhydric alcohol fatty acid ester
  • the polyhydric alcohol fatty acid ester (A) includes a complete ester in which all hydroxyl groups of a polyhydric alcohol are esterified, a partial ester in which some hydroxyl groups of a polyhydric alcohol are left without being esterified, and a mixture of a complete ester and a partial ester.
  • the hydroxyl value of the polyhydric alcohol fatty acid ester (A) is preferably 10 mgKOH/g or less, more preferably 5 mgKOH/g or less, and most preferably 3 mgKOH/g or less.
  • the molar ratio of the fatty acid having 4 to 6 carbon atoms and the branched fatty acid having 7 to 9 carbon atoms is 15:85 to 90:10, preferably 15:85 to 85:15, more preferably 20:80 to 80:20, further preferably 25:75 to 75:25, and most preferably 30:70 to 70:30.
  • the total content of the fatty acid having 4 to 6 carbon atoms and the branched fatty acid having 7 to 9 carbon atoms relative to the whole amount of fatty acid constituting the polyhydric alcohol fatty acid ester (A) is 20 mol % or more.
  • the content of a fatty acid refers to a value relative to the whole amount of fatty acid constituting the polyhydric alcohol fatty acid ester contained in the refrigerating oil.
  • fatty acid having 4 to 6 carbon atoms include butanoic acid, 2-methylpropionic acid, pentanoic acid, 2-methylbutanoic acid, 3-methylbutanoic acid, 2,2-dimethylpropionic acid, 2-methylpentanoic acid, 3-methylpentanoic acid, 4-methylpentanoic acid, 2,2-dimethylbutanoic acid, 2,3-dimethylbutanoic acid, 3,3-dimethylbutanoic acid, and hexanoic acid.
  • a fatty acid having a branched structure at an alkyl skeleton such as 2-methylpropionic acid, is preferred.
  • branched fatty acid having 7 to 9 carbon atoms include 2-methylhexanoic acid, 3-methylhexanoic acid, 4-methylhexanoic acid, 5-methylhexanoic acid, 2,2-dimethylpentanoic acid, 2,3-dimethylpentanoic acid, 2,4-dimethylpentanoic acid, 3,3-dimethylpentanoic acid, 3,4-dimethylpentanoic acid, 4,4-dimethylpentanoic acid, 2-ethylpentanoic acid, 3-ethylpentanoic acid, 1,1,2-trimethylbutanoic acid, 1,2,2-trimethylbutanoic acid, 1-ethyl-1-methylbutanoic acid, 1-ethyl-2-methylbutanoic acid, octanoic acid, 2-ethylhexanoic acid, 3-ethylhexanoic acid, 3,5-dimethylhexanoic acid, 2,4-d
  • the polyhydric alcohol fatty acid ester (A) may contain, as an acid constituent component, a fatty acid other than the fatty acid having 4 to 6 carbon atoms and the branched fatty acid having 7 to 9 carbon atoms as long as the molar ratio of the fatty acid having 4 to 6 carbon atoms and the branched fatty acid having 7 to 9 carbon atoms is 15:85 to 90:10 and the fatty acid having 4 to 6 carbon atoms contains 2-methylpropionic acid.
  • fatty acids other than the fatty acid having 4 to 6 carbon atoms and the branched fatty acid having 7 to 9 carbon atoms include fatty acids having 2 or 3 carbon atoms, such as acetic acid and propionic acid; linear fatty acids having 7 to 9 carbon atoms, such as heptanoic acid, octanoic acid, and nonanoic acid; and fatty acids having 10 to 20 carbon atoms, such as decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, octadecanoic acid, nonadecanoic acid, eicosanoic acid, and oleic acid.
  • fatty acids having 2 or 3 carbon atoms such as acetic acid and propionic acid
  • linear fatty acids having 7 to 9 carbon atoms such as hept
  • the total content of the fatty acid having 4 to 6 carbon atoms and the branched fatty acid having 7 to 9 carbon atoms relative to the whole amount of fatty acid constituting the polyhydric alcohol fatty acid ester (A) is preferably 20 mol % or more, more preferably 25 mol % or more, and further preferably 30 mol % or more.
  • the content is 20 mol % or more, sufficient miscibility with difluoromethane is achieved in the case where the difluoromethane is contained in the refrigerant composition.
  • a polyhydric alcohol fatty acid ester (A) containing, as acid constituent components, only 2-methylpropionic acid and 3,5,5-trimethylhexanoic acid is particularly preferred from the viewpoint of achieving both necessary viscosity and miscibility with difluoromethane in the case where the difluoromethane is contained in the refrigerant composition.
  • the polyhydric alcohol fatty acid ester may be a mixture of two or more esters having different molecular structures. In this case, individual molecules do not necessarily satisfy the above conditions as long as the whole fatty acid constituting a pentaerythritol fatty acid ester contained in the refrigerating oil satisfies the above conditions.
  • the polyhydric alcohol fatty acid ester (A) contains the fatty acid having 4 to 6 carbon atoms and the branched fatty acid having 7 to 9 carbon atoms as essential acid components constituting the ester and may optionally contain other fatty acids as constituent components.
  • the polyhydric alcohol fatty acid ester (A) may contain only two fatty acids as acid constituent components or three or more fatty acids having different structures as acid constituent components, but the polyhydric alcohol fatty acid ester preferably contains, as an acid constituent component, only a fatty acid whose carbon atom ( ⁇ -position carbon atom) adjacent to carbonyl carbon is not quaternary carbon.
  • the lubricity in the presence of difluoromethane in the case where the difluoromethane is contained in the refrigerant composition tends to be insufficient.
  • the polyhydric alcohol constituting the polyol ester according to this embodiment is preferably a polyhydric alcohol having 2 to 6 hydroxyl groups.
  • dihydric alcohol examples include ethylene glycol, 1,3-propanediol, propylene glycol, 1,4-butanediol, 1,2-butanediol, 2-methyl-1,3-propanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 2-ethyl-2-methyl-1,3-propanediol, 1,7-heptanediol, 2-methyl-2-propyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 1, 8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, and 1,12-dodecanediol.
  • trihydric or higher alcohol examples include polyhydric alcohols such as trimethylolethane, trimethylolpropane, trimethylolbutane, di-(trimethylolpropane), tri-(trimethylolpropane), pentaerythritol, di-(pentaerythritol), tri-(pentaerythritol), glycerol, polyglycerol (glycerol dimer or trimer), 1,3,5-pentanetriol, sorbitol, sorbitan, sorbitol glycerol condensates, adonitol, arabitol, xylitol, and mannitol; saccharides such as xylose, arabinose, ribose, rhamnose, glucose, fructose, galactose, mannose, sorbose, and cellobiose; and partially etherified products of the foregoing.
  • polyhydric alcohols such
  • an ester of a hindered alcohol such as neopentyl glycol, trimethylolethane, trimethylolpropane, trimethylolbutane, di-(trimethylolpropane), tri-(trimethylolpropane), pentaerythritol, di-(pentaerythritol), or tri-(pentaerythritol) is preferably used; an ester of neopentyl glycol, trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol, or di-(pentaerythritol) is more preferably used; and neopentyl glycol, trimethylolpropane, pentaerythritol, or di-(pentaerythritol) is further preferably used.
  • a hindered alcohol such as neopentyl glycol, trimethylolethane, trimethyl
  • a mixed ester of pentaerythritol, di-(pentaerythritol), or pentaerythritol and di-(pentaerythritol) is most preferably used.
  • Preferred examples of the acid constituent component constituting the polyhydric alcohol fatty acid ester (A) are as follows:
  • the content of the polyhydric alcohol fatty acid ester (A) is 50 mass % or more, preferably 60 mass % or more, more preferably 70 mass % or more, and further preferably 75 mass % or more relative to the whole amount of the refrigerating oil.
  • the refrigerating oil according to this embodiment may contain a lubricating base oil other than the polyhydric alcohol fatty acid ester (A) and additives as described later. However, if the content of the polyhydric alcohol fatty acid ester (A) is less than 50 mass %, necessary viscosity and miscibility cannot be achieved at high levels.
  • the polyhydric alcohol fatty acid ester (A) is mainly used as a base oil.
  • the base oil of the refrigerating oil according to this embodiment may be a polyhydric alcohol fatty acid ester (A) alone (i.e., the content of the polyhydric alcohol fatty acid ester (A) is 100 mass %).
  • a base oil other than the polyhydric alcohol fatty acid ester (A) may be further contained to the degree that the excellent performance of the polyhydric alcohol fatty acid ester (A) is not impaired.
  • Examples of the base oil other than the polyhydric alcohol fatty acid ester (A) include hydrocarbon oils such as mineral oils, olefin polymers, alkyldiphenylalkanes, alkylnaphthalenes, and alkylbenzenes; and esters other than the polyhydric alcohol fatty acid ester (A), such as polyol esters, complex esters, and alicyclic dicarboxylic acid esters, and oxygen-containing synthetic oils (hereafter, may be referred to as “other oxygen-containing synthetic oils”) such as polyglycols, polyvinyl ethers, ketones, polyphenyl ethers, silicones, polysiloxanes, and perfluoroethers.
  • hydrocarbon oils such as mineral oils, olefin polymers, alkyldiphenylalkanes, alkylnaphthalenes, and alkylbenzenes
  • esters other than the polyhydric alcohol fatty acid ester (A) such as polyol
  • the oxygen-containing synthetic oil is preferably an ester other than the polyhydric alcohol fatty acid ester (A), a polyglycol, or a polyvinyl ether and particularly preferably a polyol ester other than the polyhydric alcohol fatty acid ester (A).
  • the polyol ester other than the polyhydric alcohol fatty acid ester (A) is an ester of a fatty acid and a polyhydric alcohol such as neopentyl glycol, trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol, or dipentaerythritol and is particularly preferably an ester of neopentyl glycol and a fatty acid, an ester of pentaerythritol and a fatty acid, or an ester of dipentaerythritol and a fatty acid.
  • a polyhydric alcohol such as neopentyl glycol, trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol, or dipentaerythritol and is particularly preferably an ester of neopentyl glycol and a fatty acid, an ester of penta
  • the neopentyl glycol ester is preferably an ester of neopentyl glycol and a fatty acid having 5 to 9 carbon atoms.
  • Specific examples of the neopentyl glycol ester include neopentyl glycol di(3,5,5-trimethylhexanoate), neopentyl glycol di(2-ethylhexanoate), neopentyl glycol di(2-methylhexanoate), neopentyl glycol di(2-ethylpentanoate), an ester of neopentyl glycol and 2-methylhexanoic acid.2-ethylpentanoic acid, an ester of neopentyl glycol and 3-methylhexanoic acid.5-methylhexanoic acid, an ester of neopentyl glycol and 2-methylhexanoic acid.2-ethylhexanoic acid, an ester of
  • the pentaerythritol ester is preferably an ester of pentaerythritol and a fatty acid having 5 to 9 carbon atoms.
  • the pentaerythritol ester is, specifically, an ester of pentaerythritol and at least one fatty acid selected from pentanoic acid, 2-methylbutanoic acid, 3-methylbutanoic acid, hexanoic acid, 2-methylpentanoic acid, 2-ethylbutanoic acid, 2-ethylpentanoic acid, 2-methylhexanoic acid, 3,5,5-trimethylhexanoic acid, and 2-ethylhexanoic acid.
  • the dipentaerythritol ester is preferably an ester of dipentaerythritol and a fatty acid having 5 to 9 carbon atoms.
  • the dipentaerythritol ester is, specifically, an ester of dipentaerythritol and at least one fatty acid selected from pentanoic acid, 2-methylbutanoic acid, 3-methylbutanoic acid, hexanoic acid, 2-methylpentanoic acid, 2-ethylbutanoic acid, 2-ethylpentanoic acid, 2-methylhexanoic acid, 3,5,5-trimethylhexanoic acid, and 2-ethylhexanoic acid.
  • the content of the oxygen-containing synthetic oil other than the polyhydric alcohol fatty acid ester (A) is not limited as long as excellent lubricity and miscibility of the refrigerating oil according to this embodiment are not impaired.
  • the content of the polyol ester is preferably less than 50 mass %, more preferably 45 mass % or less, still more preferably 40 mass % or less, even more preferably 35 mass % or less, further preferably 30 mass % or less, and most preferably 25 mass % or less relative to the whole amount of the refrigerating oil.
  • the content of the oxygen-containing synthetic oil is preferably less than 50 mass %, more preferably 40 mass % or less, and further preferably 30 mass % or less relative to the whole amount of the refrigerating oil. If the content of the polyol ester other than the pentaerythritol fatty acid ester or the oxygen-containing synthetic oil is excessively high, the above-described effects are not sufficiently produced.
  • the polyol ester other than the polyhydric alcohol fatty acid ester (A) may be a partial ester in which some hydroxyl groups of a polyhydric alcohol are left without being esterified, a complete ester in which all hydroxyl groups are esterified, or a mixture of a partial ester and a complete ester.
  • the hydroxyl value is preferably 10 mgKOH/g or less, more preferably 5 mgKOH/g or less, and most preferably 3 mgKOH/g or less.
  • the refrigerating oil and the working fluid for a refrigerating machine contain a polyol ester other than the polyhydric alcohol fatty acid ester (A)
  • the polyol ester may contain one polyol ester having a single structure or a mixture of two or more polyol esters having different structures.
  • the polyol ester other than the polyhydric alcohol fatty acid ester (A) may be any of an ester of one fatty acid and one polyhydric alcohol, an ester of two or more fatty acids and one polyhydric alcohol, an ester of one fatty acid and two or more polyhydric alcohols, and an ester of two or more fatty acids and two or more polyhydric alcohols.
  • the refrigerating oil according to this embodiment may be constituted by only the polyhydric alcohol fatty acid ester (A) or by the polyhydric alcohol fatty acid ester (A) and other base oils.
  • the refrigerating oil may further contain various additives described later.
  • the working fluid for a refrigerating machine according to this embodiment may also further contain various additives.
  • the content of additives is expressed relative to the whole amount of the refrigerating oil, but the content of these components in the working fluid for a refrigerating machine is desirably determined so that the content is within the preferred range described later when expressed relative to the whole amount of the refrigerating oil.
  • At least one phosphorus compound selected from the group consisting of phosphoric acid esters, acidic phosphoric acid esters, thiophosphoric acid esters, amine salts of acidic phosphoric acid esters, chlorinated phosphoric acid esters, and phosphorous acid esters can be added.
  • These phosphorus compounds are esters of phosphoric acid or phosphorous acid and alkanol or polyether-type alcohol, or derivatives thereof.
  • the phosphoric acid ester examples include tributyl phosphate, tripentyl phosphate, trihexyl phosphate, triheptyl phosphate, trioctyl phosphate, trinonyl phosphate, tridecyl phosphate, triundecyl phosphate, tridodecyl phosphate, tritridecyl phosphate, tritetradecyl phosphate, tripentadecyl phosphate, trihexadecyl phosphate, triheptadecyl phosphate, trioctadecyl phosphate, trioleyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyldiphenyl phosphate, and xylenyldiphenyl phosphate.
  • Examples of the acidic phosphoric acid ester include monobutyl acid phosphate, monopentyl acid phosphate, monohexyl acid phosphate, monoheptyl acid phosphate, monooctyl acid phosphate, monononyl acid phosphate, monodecyl acid phosphate, monoundecyl acid phosphate, monododecyl acid phosphate, monotridecyl acid phosphate, monotetradecyl acid phosphate, monopentadecyl acid phosphate, monohexadecyl acid phosphate, monoheptadecyl acid phosphate, monooctadecyl acid phosphate, monooleyl acid phosphate, dibutyl acid phosphate, dipentyl acid phosphate, dihexyl acid phosphate, diheptyl acid phosphate, dioctyl acid phosphate, dinonyl acid phosphate, didecyl acid
  • thiophosphoric acid ester examples include tributyl phosphorothionate, tripentyl phosphorothionate, trihexyl phosphorothionate, triheptyl phosphorothionate, trioctyl phosphorothionate, trinonyl phosphorothionate, tridecyl phosphorothionate, triundecyl phosphorothionate, tridodecyl phosphorothionate, tritridecyl phosphorothionate, tritetradecyl phosphorothionate, tripentadecyl phosphorothionate, trihexadecyl phosphorothionate, triheptadecyl phosphorothionate, trioctadecyl phosphorothionate, trioleyl phosphorothionate, triphenyl phosphorothionate, tricresyl phosphorothionate, trixylenyl phosphorothionate
  • the amine salt of an acidic phosphoric acid ester is an amine salt of an acidic phosphoric acid ester and a primary, secondary, or tertiary amine that has a linear or branched alkyl group and that has 1 to 24 carbon atoms, preferably 5 to 18 carbon atoms.
  • the amine salt is a salt of an amine such as a linear or branched methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine, oleylamine, tetracosylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine, diheptylamine, dioctylamine, dinonylamine, didecylamine, diundecylamine
  • an amine such as a linear or branched methylamine, e
  • chlorinated phosphoric acid ester examples include tris(dichloropropyl) phosphate, tris(chloroethyl) phosphate, tris(chlorophenyl) phosphate, and polyoxyalkylene.bis[di(chloroaklyl)] phosphate.
  • Examples of the phosphorous acid ester include dibutyl phosphite, dipentyl phosphite, dihexyl phosphite, diheptyl phosphite, dioctyl phosphite, dinonyl phosphite, didecyl phosphite, diundecyl phosphite, didodecyl phosphite, dioleyl phosphite, diphenyl phosphite, dicresyl phosphite, tributyl phosphite, tripentyl phosphite, trihexyl phosphite, triheptyl phosphite, trioctyl phosphite, trinonyl phosphite, tridecyl phosphite, triundecyl phosphite, tridodec
  • the content of the phosphorus compound is not limited, but is preferably 0.01 to 5.0 mass % and more preferably 0.02 to 3.0 mass % relative to the whole amount of the refrigerating oil (relative to the total amount of the base oil and all the additives).
  • the above-described phosphorus compounds may be used alone or in combination of two or more.
  • the refrigerating oil and the working fluid for a refrigerating machine according to this embodiment may contain a terpene compound to further improve the thermal and chemical stability.
  • the “terpene compound” in the present invention refers to a compound obtained by polymerizing isoprene and a derivative thereof, and a dimer to an octamer of isoprene are preferably used.
  • terpene compound examples include monoterpenes such as geraniol, nerol, linalool, citral (including geranial), citronellol, menthol, limonene, terpinerol, carvone, ionone, thujone, camphor, and borneol; sesquiterpenes such as farnesene, farnesol, nerolidol, juvenile hormone, humulene, caryophyllene, elemene, cadinol, cadinene, and tutin; diterpenes such as geranylgeraniol, phytol, abietic acid, pimaragen, daphnetoxin, taxol, and pimaric acid; sesterterpenes such as geranylfarnesene; triterpenes such as squalene, limonin, camelliagenin, hopane, and lanosterol; and tetraterpene
  • the terpene compound is preferably monoterpene, sesquiterpene, or diterpene, more preferably sesquiterpene, and particularly preferably ⁇ -farnesene (3,7, 11-trimethyldodeca-1,3,6,10-tetraene) and/or ⁇ -farnesene (7,11-dimethyl-3-methylidenedodeca-1,6,10-triene).
  • the terpene compounds may be used alone or in combination of two or more.
  • the content of the terpene compound in the refrigerating oil according to this embodiment is not limited, but is preferably 0.001 to 10 mass %, more preferably 0.01 to 5 mass %, and further preferably 0.05 to 3 mass % relative to the whole amount of the refrigerating oil. If the content of the terpene compound is less than 0.001 mass %, an effect of improving the thermal and chemical stability tends to be insufficient. If the content is more than 10 mass %, the lubricity tends to be insufficient.
  • the content of the terpene compound in the working fluid for a refrigerating machine according to this embodiment is desirably determined so that the content is within the above preferred range when expressed relative to the whole amount of the refrigerating oil.
  • the refrigerating oil and the working fluid for a refrigerating machine may contain at least one epoxy compound selected from phenyl glycidyl ether-type epoxy compounds, alkyl glycidyl ether-type epoxy compounds, glycidyl ester-type epoxy compounds, allyloxirane compounds, alkyloxirane compounds, alicyclic epoxy compounds, epoxidized fatty acid monoesters, and epoxidized vegetable oils to further improve the thermal and chemical stability.
  • at least one epoxy compound selected from phenyl glycidyl ether-type epoxy compounds, alkyl glycidyl ether-type epoxy compounds, glycidyl ester-type epoxy compounds, allyloxirane compounds, alkyloxirane compounds, alicyclic epoxy compounds, epoxidized fatty acid monoesters, and epoxidized vegetable oils to further improve the thermal and chemical stability.
  • phenyl glycidyl ether-type epoxy compound examples include phenyl glycidyl ether and alkylphenyl glycidyl ethers.
  • the alkylphenyl glycidyl ether herein is an alkylphenyl glycidyl ether having 1 to 3 alkyl groups with 1 to 13 carbon atoms.
  • the alkylphenyl glycidyl ether is preferably an alkylphenyl glycidyl ether having one alkyl group with 4 to 10 carbon atoms, such as n-butylphenyl glycidyl ether, i-butylphenyl glycidyl ether, sec-butylphenyl glycidyl ether, tert-butylphenyl glycidyl ether, pentylphenyl glycidyl ether, hexylphenyl glycidyl ether, heptylphenyl glycidyl ether, octylphenyl glycidyl ether, nonylphenyl glycidyl ether, or decylphenyl glycidyl ether.
  • alkylphenyl glycidyl ether having one alkyl group with 4 to 10 carbon atoms, such
  • alkyl glycidyl ether-type epoxy compound examples include decyl glycidyl ether, undecyl glycidyl ether, dodecyl glycidyl ether, tridecyl glycidyl ether, tetradecyl glycidyl ether, 2-ethylhexyl glycidyl ether, neopentyl glycol diglycidyl ether, trimethylolpropane triglycidyl ether, pentaerythritol tetraglycidyl ether, 1,6-hexanediol diglycidyl ether, sorbitol polyglycidyl ether, polyalkylene glycol monoglycidyl ether, and polyalkylene glycol diglycidyl ether.
  • glycidyl ester-type epoxy compound examples include phenyl glycidyl ester, alkyl glycidyl esters, and alkenyl glycidyl esters.
  • Preferred examples of the glycidyl ester-type epoxy compound include glycidyl-2,2-dimethyloctanoate, glycidyl benzoate, glycidyl acrylate, and glycidyl methacrylate.
  • allyloxirane compound examples include 1,2-epoxystyrene and alkyl-1,2-epoxy styrenes.
  • alkyloxirane compound examples include 1,2-epoxybutane, 1,2-epoxypentane, 1,2-epoxyhexane, 1,2-epoxyheptane, 1,2-epoxyoctane, 1,2-epoxynonane, 1,2-epoxydecane, 1,2-epoxyundecane, 1,2-epoxydodecane, 1,2-epoxytridecane, 1,2-epoxytetradecane, 1,2-epoxypentadecane, 1,2-epoxyhexadecane, 1,2-epoxyheptadecane, 1,1,2-epoxyoctadecane, 2-epoxynonadecane, and 1,2-epoxyeicosane.
  • alicyclic epoxy compound examples include 1,2-epoxycyclohexane, 1,2-epoxycyclopentane, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, bis(3,4-epoxycyclohexylmethyl) adipate, exo-2,3-epoxynorbornane, bis(3,4-epoxy-6-methylcyclohexylmethyl) adipate, 2-(7-oxabicyclo[4.1.0]hept-3-yl)-spiro(1,3-dioxane-5,3′-[7]oxabicyclo[4.1.0]heptane, 4-(1′-methylepoxyethyl)-1,2-epoxy-2-methylcyclohexane, and 4-epoxyethyl-1,2-epoxycyclohexane.
  • epoxidized fatty acid monoester examples include esters of an epoxidized fatty acid having 12 to 20 carbon atoms and an alcohol having 1 to 8 carbon atoms, phenol, or an alkylphenol.
  • esters of an epoxidized fatty acid having 12 to 20 carbon atoms and an alcohol having 1 to 8 carbon atoms, phenol, or an alkylphenol are preferably used.
  • butyl, hexyl, benzyl, cyclohexyl, methoxyethyl, octyl, phenyl, and butyl phenyl esters of epoxystearic acid are preferably used.
  • epoxidized vegetable oil examples include epoxy compounds of vegetable oils such as soybean oil, linseed oil, and cottonseed oil.
  • epoxy compounds phenyl glycidyl ether-type epoxy compounds, alkyl glycidyl ether-type epoxy compounds, glycidyl ester-type epoxy compounds, and alicyclic epoxy compounds are preferred.
  • the content of the epoxy compound is not limited, but is preferably 0.01 to 5.0 mass % and more preferably 0.1 to 3.0 mass % relative to the whole amount of the refrigerating oil.
  • the above-described epoxy compounds may be used alone or in combination of two or more.
  • the kinematic viscosity of the refrigerating oil containing the polyhydric alcohol fatty acid ester (A) at 40° C. is preferably 20 to 80 mm 2 /s, more preferably 25 to 75 mm 2 /s, and most preferably 30 to 70 mm 2 /s.
  • the kinematic viscosity at 100° C. is preferably 2 to 20 mm 2 /s and more preferably 3 to 10 mm 2 /s.
  • the kinematic viscosity is more than or equal to the lower limit, the viscosity required as a refrigerating oil is easily achieved.
  • the kinematic viscosity is less than or equal to the upper limit, sufficient miscibility with difluoromethane in the case where the difluoromethane is contained as a refrigerant composition can be achieved.
  • the volume resistivity of the refrigerating oil containing the polyhydric alcohol fatty acid ester (A) is not limited, but is preferably 1.0 ⁇ 10 12 ⁇ cm or more, more preferably 1.0 ⁇ 10 13 ⁇ cm or more, and most preferably 1.0 ⁇ 10 14 ⁇ cm or more.
  • the volume resistivity refers to a value measured at 25° C. in conformity with JIS C 2101 “Testing methods of electrical insulating oils”.
  • the water content of the refrigerating oil containing the polyhydric alcohol fatty acid ester (A) is not limited, but is preferably 200 ppm or less, more preferably 100 ppm or less, and most preferably 50 ppm or less relative to the whole amount of the refrigerating oil.
  • the water content needs to be low from the viewpoints of the thermal and chemical stability of the refrigerating oil and the influence on electric insulation.
  • the acid number of the refrigerating oil containing the polyhydric alcohol fatty acid ester (A) is not limited, but is preferably 0.1 mgKOH/g or less and more preferably 0.05 mgKOH/g or less to prevent corrosion of metals used for refrigerating machines or pipes.
  • the acid number refers to an acid number measured in conformity with JIS K 2501 “Petroleum products and lubricants—Determination of neutralization number”.
  • the ash content of the refrigerating oil containing the polyhydric alcohol fatty acid ester (A) is not limited, but is preferably 100 ppm or less and more preferably 50 ppm or less to improve the thermal and chemical stability of the refrigerating oil and suppress the generation of sludge and the like.
  • the ash content refers to an ash content measured in conformity with JIS K 2272 “Crude oil and petroleum products—Determination of ash and sulfated ash”.
  • the complex ester oil is an ester of a fatty acid and a dibasic acid, and a monohydric alcohol and a polyol.
  • the above-described fatty acid, dibasic acid, monohydric alcohol, and polyol can be used.
  • fatty acid examples include the fatty acids mentioned in the polyol ester.
  • dibasic acid examples include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, and terephthalic acid.
  • polyol examples include the polyhydric alcohols in the polyol ester.
  • the complex ester is an ester of such a fatty acid, dibasic acid, and polyol, each of which may be constituted by a single component or a plurality of components.
  • the polyol carbonate oil is an ester of a carbonic acid and a polyol.
  • polyol examples include the above-described diols and polyols.
  • the polyol carbonate oil may be a ring-opened polymer of a cyclic alkylene carbonate.
  • the ether-type refrigerating oil is, for example, a polyvinyl ether oil or a polyoxyalkylene oil.
  • polyvinyl ether oil examples include polymers of a vinyl ether monomer, copolymers of a vinyl ether monomer and a hydrocarbon monomer having an olefinic double bond, and copolymers of a monomer having an olefinic double bond and a polyoxyalkylene chain and a vinyl ether monomer.
  • the carbon/oxygen molar ratio of the polyvinyl ether oil is preferably 2 or more and 7.5 or less and more preferably 2.5 or more and 5.8 or less. If the carbon/oxygen molar ratio is smaller than the above range, the hygroscopicity increases. If the carbon/oxygen molar ratio is larger than the above range, the miscibility deteriorates.
  • the weight-average molecular weight of the polyvinyl ether is preferably 200 or more and 3000 or less and more preferably 500 or more and 1500 or less.
  • the pour point of the polyvinyl ether oil is preferably ⁇ 30° C. or lower.
  • the surface tension of the polyvinyl ether oil at 20° C. is preferably 0.02 N/m or more and 0.04 N/m or less.
  • the density of the polyvinyl ether oil at 15° C. is preferably 0.8 g/cm 3 or more and 1.8 g/cm 3 or less.
  • the saturated water content of the polyvinyl ether oil at a temperature of 30° C. and a relative humidity of 90% is preferably 2000 ppm or more.
  • the refrigerating oil may contain polyvinyl ether as a main component.
  • the polyvinyl ether serving as a main component of the refrigerating oil has miscibility with HFO-1234yf.
  • HFO-1234yf is dissolved in the refrigerating oil to some extent.
  • the refrigerating oil has a pour point of ⁇ 30° C.
  • the flowability of the refrigerating oil is easily ensured even at positions at which the temperature of the refrigerant composition and the refrigerating oil is low in the refrigerant circuit.
  • the refrigerating oil has a surface tension at 20° C. of 0.04 N/m or less, the refrigerating oil discharged from a compressor does not readily form large droplets of oil that are not easily carried away by a refrigerant composition. Therefore, the refrigerating oil discharged from the compressor is dissolved in HFO-1234yf and is easily returned to the compressor together with HFO-1234yf.
  • the refrigerating oil has a kinematic viscosity at 40° C. of 30 mm 2 /s or more, an insufficient oil film strength due to excessively low kinematic viscosity is suppressed, and thus good lubricity is easily achieved.
  • the refrigerating oil has a surface tension at 20° C. of 0.02 N/m or more, the refrigerating oil does not readily form small droplets of oil in a gas refrigerant inside the compressor, which can suppress discharge of a large amount of refrigerating oil from the compressor. Therefore, a sufficient amount of refrigerating oil is easily stored in the compressor.
  • the refrigerating oil has a saturated water content at 30° C./90% RH of 2000 ppm or more, a relatively high hygroscopicity of the refrigerating oil can be achieved.
  • HFO-1234yf is contained as a refrigerant, water in HFO-1234yf can be captured by the refrigerating oil to some extent.
  • HFO-1234yf has a molecular structure that is easily altered or deteriorated because of the influence of water contained. Therefore, the hydroscopic effects of the refrigerating oil can suppress such deterioration.
  • the aniline point of the refrigerating oil is preferably set within a particular range in consideration of the adaptability with the resin functional component.
  • the aniline point of the refrigerating oil readily infiltrates bearings or the like, and the bearings or the like readily swell.
  • the aniline point is excessively high, the refrigerating oil does not readily infiltrate bearings or the like, and the bearings or the like readily shrink. Therefore, by setting the aniline point of the refrigerating oil within a particular range, the swelling or shrinking of the bearings or the like can be prevented.
  • the aniline point of the refrigerating oil is set within a particular range as described above, the deformation of the bearings or the like through swelling or shrinking is suppressed, and thus such a problem can be avoided.
  • the vinyl ether monomers may be used alone or in combination of two or more.
  • the hydrocarbon monomer having an olefinic double bond include ethylene, propylene, various butenes, various pentenes, various hexenes, various heptenes, various octenes, diisobutylene, triisobutylene, styrene, ⁇ -methylstyrene, and various alkyl-substituted styrenes.
  • the hydrocarbon monomers having an olefinic double bond may be used alone or in combination of two or more.
  • the polyvinyl ether copolymer may be a block copolymer or a random copolymer.
  • the polyvinyl ether oils may be used alone or in combination of two or more.
  • a polyvinyl ether oil preferably used has a structural unit represented by general formula (1) below.
  • R 1 , R 2 , and R 3 may be the same or different and each represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms
  • R 4 represents a divalent hydrocarbon group having 1 to 10 carbon atoms or an ether bond oxygen-containing divalent hydrocarbon group having 2 to 20 carbon atoms
  • R 5 represents a hydrocarbon group having 1 to 20 carbon atoms
  • m represents a number at which the average of m in the polyvinyl ether is 0 to 10
  • R 1 to R 5 may be the same or different in each of structural units, and when m represents 2 or more in one structural unit, a plurality of R 4 O may be the same or different.
  • At least one of R 1 , R 2 , and R 3 in the general formula (1) preferably represents a hydrogen atom. In particular, all of R 1 , R 2 , and R 3 preferably represent a hydrogen atom.
  • m preferably represents 0 or more and 10 or less, particularly preferably 0 or more and 5 or less, further preferably 0.
  • R 5 in the general formula (1) represents a hydrocarbon group having 1 to 20 carbon atoms.
  • hydrocarbon group examples include alkyl groups such as a methyl group, an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, various pentyl groups, various hexyl groups, various heptyl groups, and various octyl groups; cycloalkyl groups such as a cyclopentyl group, a cyclohexyl group, various methylcyclohexyl groups, various ethylcyclohexyl groups, and various dimethylcyclohexyl groups; aryl groups such as a phenyl group, various methylphenyl groups, various ethylphenyl groups, and various dimethylphenyl groups; and arylalkyl groups such as a benzyl group, various phenylethyl groups, and
  • alkyl groups the cycloalkyl groups, the phenyl group, the aryl groups, and the arylalkyl groups
  • alkyl groups in particular, alkyl groups having 1 to 5 carbon atoms are preferred.
  • the ratio of a polyvinyl ether oil with R 5 representing an alkyl group having 1 or 2 carbon atoms and a polyvinyl ether oil with R 5 representing an alkyl group having 3 or 4 carbon atoms is preferably 40%:60% to 100%:0%.
  • the polyvinyl ether oil according to this embodiment may be a homopolymer constituted by the same structural unit represented by the general formula (1) or a copolymer constituted by two or more structural units.
  • the copolymer may be a block copolymer or a random copolymer.
  • the polyvinyl ether oil according to this embodiment may be constituted by only the structural unit represented by the general formula (1) or may be a copolymer further including a structural unit represented by general formula (2) below.
  • the copolymer may be a block copolymer or a random copolymer.
  • R 6 to R 9 may be the same or different and each represent a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.
  • the vinyl ether monomer is, for example, a compound represented by general formula (3) below.
  • R 1 , R 2 , R 3 , R 4 , R 5 , and m have the same meaning as R 1 , R 2 , R 3 , R 4 , R 5 , and m in the general formula (1), respectively.
  • Examples of various polyvinyl ether compounds corresponding to the above polyvinyl ether compound include vinyl methyl ether; vinyl ethyl ether; vinyl-n-propyl ether; vinyl-isopropyl ether; vinyl-n-butyl ether; vinyl-isobutyl ether; vinyl-sec-butyl ether; vinyl-tert-butyl ether; vinyl-n-pentyl ether; vinyl-n-hexyl ether; vinyl-2-methoxyethyl ether; vinyl-2-ethoxyethyl ether; vinyl-2-methoxy-1-methylethyl ether; vinyl-2-methoxy-propyl ether; vinyl-3,6-dioxaheptyl ether; vinyl-3,6,9-trioxadecyl ether; vinyl-1,4-dimethyl-3,6-dioxaheptyl ether; vinyl-1,4,7-trimethyl-3,6,9-trioxadecy
  • the end of the polyvinyl ether compound having the structural unit represented by the general formula (1) can be converted into a desired structure by a method described in the present disclosure and a publicly known method.
  • Examples of the group introduced by conversion include saturated hydrocarbons, ethers, alcohols, ketones, amides, and nitriles.
  • the polyvinyl ether compound preferably has the following end structures.
  • R 11 , R 21 , and R 31 may be the same or different and each represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms
  • R 41 represents a divalent hydrocarbon group having 1 to 10 carbon atoms or an ether bond oxygen-containing divalent hydrocarbon group having 2 to 20 carbon atoms
  • R 51 represents a hydrocarbon group having 1 to 20 carbon atoms
  • m represents a number at which the average of m in the polyvinyl ether is 0 to 10
  • a plurality of R 41 O may be the same or different.
  • R 61 , R 71 , R 81 , and R 91 may be the same or different and each represent a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.
  • R 12 , R 22 , and R 32 may be the same or different and each represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms
  • R 42 represents a divalent hydrocarbon group having 1 to 10 carbon atoms or an ether bond oxygen-containing divalent hydrocarbon group having 2 to 20 carbon atoms
  • R 52 represents a hydrocarbon group having 1 to 20 carbon atoms
  • m represents a number at which the average of m in the polyvinyl ether is 0 to 10
  • a plurality of R 42 O may be the same or different.
  • R 62 , R 72 , R 82 , and R 92 may be the same or different and each represent a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.
  • R 13 , R 23 , and R 33 may be the same or different and each represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms.
  • the polyvinyl ether oil according to this embodiment can be produced by polymerizing the above-described monomer through, for example, radical polymerization, cationic polymerization, or radiation-induced polymerization. After completion of the polymerization reaction, a typical separation/purification method is performed when necessary to obtain a desired polyvinyl ether compound having a structural unit represented by the general formula (1).
  • the polyoxyalkylene oil is a polyoxyalkylene compound obtained by, for example, polymerizing an alkylene oxide having 2 to 4 carbon atoms (e.g., ethylene oxide or propylene oxide) using water or a hydroxyl group-containing compound as an initiator.
  • the hydroxyl group of the polyoxyalkylene compound may be etherified or esterified.
  • the polyoxyalkylene oil may contain an oxyalkylene unit of the same type or two or more oxyalkylene units in one molecule.
  • the polyoxyalkylene oil preferably contains at least an oxypropylene unit in one molecule.
  • the polyoxyalkylene oil is, for example, a compound represented by general formula (9) below.
  • 101 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an acyl group having 2 to 10 carbon atoms, or an aliphatic hydrocarbon group having 2 to 6 bonding sites and 1 to 10 carbon atoms
  • R 102 represents an alkylene group having 2 to 4 carbon atoms
  • R 103 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an acyl group having 2 to 10 carbon atoms
  • l represents an integer of 1 to 6
  • k represents a number at which the average of k ⁇ l is 6 to 80.
  • the alkyl group represented by R 101 and R 103 may be a linear, branched, or cyclic alkyl group.
  • Specific examples of the alkyl group include a methyl group, an ethyl group, a n-propyl group, an isopropyl group, various butyl groups, various pentyl groups, various hexyl groups, various heptyl groups, various octyl groups, various nonyl groups, various decyl groups, a cyclopentyl group, and a cyclohexyl group. If the number of carbon atoms of the alkyl group exceeds 10, the miscibility with a refrigerant deteriorates, which may cause phase separation.
  • the number of carbon atoms of the alkyl group is preferably 1 to 6.
  • the acyl group represented by R 101 and R 103 may have a linear, branched, or cyclic alkyl group moiety.
  • Specific examples of the alkyl group moiety of the acyl group include various groups having 1 to 9 carbon atoms that are mentioned as specific examples of the alkyl group. If the number of carbon atoms of the acyl group exceeds 10, the miscibility with a refrigerant deteriorates, which may cause phase separation.
  • the number of carbon atoms of the acyl group is preferably 2 to 6.
  • R 101 and R 103 each represent an alkyl group or an acyl group
  • R 101 and R 103 may be the same or different.
  • a plurality of R 103 in one molecule may be the same or different.
  • R 101 represents an aliphatic hydrocarbon group having 2 to 6 bonding sites and 1 to 10 carbon atoms
  • the aliphatic hydrocarbon group may be a linear group or a cyclic group.
  • the aliphatic hydrocarbon group having two bonding sites include an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group, a cyclopentylene group, and a cyclohexylene group.
  • Examples of the aliphatic hydrocarbon group having 3 to 6 bonding sites include residual groups obtained by removing hydroxyl groups from polyhydric alcohols such as trimethylolpropane, glycerol, pentaerythritol, sorbitol, 1,2,3-trihydroxycyclohexane, and 1,3,5-trihydroxycyclohexane.
  • the number of carbon atoms of the aliphatic hydrocarbon group exceeds 10, the miscibility with a refrigerant deteriorates, which may cause phase separation.
  • the number of carbon atoms is preferably 2 to 6.
  • R 102 in the general formula (9) represents an alkylene group having 2 to 4 carbon atoms.
  • the oxyalkylene group serving as a repeating unit include an oxyethylene group, an oxypropylene group, and an oxybutylene group.
  • the polyoxyalkylene oil may contain an oxyalkylene group of the same type or two or more oxyalkylene groups in one molecule, but preferably contains at least an oxypropylene unit in one molecule.
  • the content of the oxypropylene unit in the oxyalkylene unit is suitably 50 mol % or more.
  • 1 represents an integer of 1 to 6, which can be determined in accordance with the number of bonding sites of R 101 .
  • R 101 represents an alkyl group or an acyl group
  • l represents 1.
  • R 101 represents an aliphatic hydrocarbon group having 2, 3, 4, 5, and 6 bonding sites
  • l represents 2, 3, 4, 5, and 6, respectively.
  • l represents 1 or 2.
  • k preferably represents a number at which the average of k ⁇ l is 6 to 80.
  • a polyoxypropylene diol dimethyl ether represented by general formula (10) below and a poly(oxyethylene/oxypropylene) diol dimethyl ether represented by general formula (11) below are suitable from the viewpoints of economy and the above-described effects.
  • a polyoxypropylene diol monobutyl ether represented by general formula (12) below, a polyoxypropylene diol monomethyl ether represented by general formula (13) below, a poly(oxyethylene/oxypropylene) diol monomethyl ether represented by general formula (14) below, a poly(oxyethylene/oxypropylene) diol monobutyl ether represented by general formula (15) below, and a polyoxypropylene diol diacetate represented by general formula (16) below are suitable from the viewpoint of economy and the like.
  • i and j each represent 1 or more and the sum of i and j is 6 to 80.
  • i and j each represent 1 or more and the sum of i and j is 6 to 80.
  • i and j each represent 1 or more and the sum of i and j is 6 to 80.
  • the polyoxyalkylene oils may be used alone or in combination of two or more.
  • the hydrocarbon refrigerating oil that can be used is, for example, an alkylbenzene.
  • the alkylbenzene that can be used is a branched alkylbenzene synthesized from propylene polymer and benzene serving as raw materials using a catalyst such as hydrogen fluoride or a linear alkylbenzene synthesized from normal paraffin and benzene serving as raw materials using the same catalyst.
  • the number of carbon atoms of the alkyl group is preferably 1 to 30 and more preferably 4 to 20 from the viewpoint of achieving a viscosity appropriate as a lubricating base oil.
  • the number of alkyl groups in one molecule of the alkylbenzene is dependent on the number of carbon atoms of the alkyl group, but is preferably 1 to 4 and more preferably 1 to 3 to control the viscosity within the predetermined range.
  • the hydrocarbon refrigerating oil preferably circulates through a refrigeration cycle system together with a refrigerant.
  • the refrigerating oil is soluble with a refrigerant, for example, a refrigerating oil (e.g., a refrigerating oil disclosed in Japanese Patent No. 2803451) having low solubility can also be used as long as the refrigerating oil is capable of circulating through a refrigeration cycle system together with a refrigerant.
  • the refrigerating oil is required to have a low kinematic viscosity.
  • the kinematic viscosity of the hydrocarbon refrigerating oil at 40° C. is preferably 1 mm 2 /s or more and 50 mm 2 /s or less and more preferably 1 mm 2 /s or more and 25 mm 2 /s or less.
  • These refrigerating oils may be used alone or in combination of two or more.
  • the content of the hydrocarbon refrigerating oil in the working fluid for a refrigerating machine may be, for example, 10 parts by mass or more and 100 parts by mass or less and is more preferably 20 parts by mass or more and 50 parts by mass or less relative to 100 parts by mass of the refrigerant composition.
  • the refrigerating oil may contain one or two or more additives.
  • additives examples include an acid scavenger, an extreme pressure agent, an antioxidant, an antifoaming agent, an oiliness improver, a metal deactivator such as a copper deactivator, an anti-wear agent, and a compatibilizer.
  • Examples of the acid scavenger that can be used include epoxy compounds such as phenyl glycidyl ether, alkyl glycidyl ether, alkylene glycol glycidyl ether, cyclohexene oxide, ⁇ -olefin oxide, and epoxidized soybean oil; and carbodiimides.
  • epoxy compounds such as phenyl glycidyl ether, alkyl glycidyl ether, alkylene glycol glycidyl ether, cyclohexene oxide, ⁇ -olefin oxide, and epoxidized soybean oil
  • carbodiimides Among them, phenyl glycidyl ether, alkyl glycidyl ether, alkylene glycol glycidyl ether, cyclohexene oxide, and ⁇ -olefin oxide are preferred from the viewpoint of miscibility.
  • the alkyl group of the alkyl glycidyl ether and the alkylene group of the alkylene glycol glycidyl ether may have a branched structure.
  • the number of carbon atoms may be 3 or more and 30 or less, and is more preferably 4 or more and 24 or less and further preferably 6 or more and 16 or less.
  • the total number of carbon atoms of the ⁇ -olefin oxide may be 4 or more and 50 or less, and is more preferably 4 or more and 24 or less and further preferably 6 or more and 16 or less.
  • the acid scavengers may be used alone or in combination of two or more.
  • the extreme pressure agent may contain, for example, a phosphoric acid ester.
  • a phosphoric acid ester examples include phosphoric acid esters, phosphorous acid esters, acidic phosphoric acid esters, and acidic phosphorous acid esters.
  • the extreme pressure agent may contain an amine salt of a phosphoric acid ester, a phosphorous acid ester, an acidic phosphoric acid ester, or an acidic phosphorous acid ester.
  • Examples of the phosphoric acid ester include triaryl phosphates, trialkyl phosphates, trialkylaryl phosphates, triarylalkyl phosphates, and trialkenyl phosphates.
  • Specific examples of the phosphoric acid ester include triphenyl phosphate, tricresyl phosphate, benzyl diphenyl phosphate, ethyl diphenyl phosphate, tributyl phosphate, ethyl dibutyl phosphate, cresyl diphenyl phosphate, dicresyl phenyl phosphate, ethylphenyl diphenyl phosphate, diethylphenyl phenyl phosphate, propylphenyl diphenyl phosphate, dipropylphenyl phenyl phosphate, triethylphenyl phosphate, tripropylphenyl phosphate, butylphenyl diphenyl
  • the phosphorous acid ester examples include triethyl phosphite, tributyl phosphite, triphenyl phosphite, tricresyl phosphite, tri(nonylphenyl) phosphite, tri(2-ethylhexyl) phosphite, tridecyl phosphite, trilauryl phosphite, triisooctyl phosphite, diphenylisodecyl phosphite, tristearyl phosphite, and trioleyl phosphite.
  • the acidic phosphoric acid ester examples include 2-ethylhexyl acid phosphate, ethyl acid phosphate, butyl acid phosphate, oleyl acid phosphate, tetracosyl acid phosphate, isodecyl acid phosphate, lauryl acid phosphate, tridecyl acid phosphate, stearyl acid phosphate, and isostearyl acid phosphate.
  • the acidic phosphorous acid ester examples include dibutyl hydrogen phosphite, dilauryl hydrogen phosphite, dioleyl hydrogen phosphite, distearyl hydrogen phosphite, and diphenyl hydrogen phosphite.
  • the phosphoric acid esters oleyl acid phosphate and stearyl acid phosphate are suitably used.
  • amines used for amine salts of phosphoric acid esters, phosphorous acid esters, acidic phosphoric acid esters, or acidic phosphorous acid esters specific examples include butylamine, pentylamine, hexylamine, cyclohexylamine, octylamine, laurylamine, stearylamine, oleylamine, and benzylamine.
  • di-substituted amines include dibutylamine, dipentylamine, dihexylamine, dicyclohexylamine, dioctylamine, dilaurylamine, di stearylamine, dioleylamine, dibenzylamine, stearyl.monoethanolamine, decyl.monoethanolamine, hexyl.monopropanolamine, benzyl.monoethanolamine, phenyl.monoethanolamine, and tolyl.monopropanolamine.
  • tri-substituted amines include tributylamine, tripentylamine, trihexylamine, tricyclohexylamine, trioctylamine, trilaurylamine, tristearylamine, trioleylamine, tribenzylamine, dioleyl.monoethanolamine, dilauryl.monopropanolamine, dioctyl.monoethanolamine, dihexyl.monopropanolamine, dibutyl.monopropanolamine, oleyl.diethanolamine, stearyl.dipropanolamine, lauryl.diethanolamine, octyl.dipropanolamine, butyl.diethanolamine, benzyl.diethanolamine, phenyl.diethanolamine, tolyl.dipropanolamine, xylyl.diethanolamine, triethanolamine, and tripropanolamine.
  • extreme pressure agents other than the above-described extreme pressure agents include extreme pressure agents based on organosulfur compounds such as monosulfides, polysulfides, sulfoxides, sulfones, thiosulfinates, sulfurized fats and oils, thiocarbonates, thiophenes, thiazoles, and methanesulfonates; extreme pressure agents based on thiophosphoric acid esters such as thiophosphoric acid triesters; extreme pressure agents based on esters such as higher fatty acids, hydroxyaryl fatty acids, polyhydric alcohol esters, and acrylic acid esters; extreme pressure agents based on organochlorine compounds such as chlorinated hydrocarbons, e.g., chlorinated paraffin and chlorinated carboxylic acid derivatives; extreme pressure agents based on fluoroorganic compounds such as fluorinated aliphatic carboxylic acids, fluorinated ethylene resins, fluorinated alkylpolysiloxanes, and
  • the antioxidant that can be used is, for example, a phenol-based antioxidant or an amine-based antioxidant.
  • phenol-based antioxidant examples include 2,6-di-tert-butyl-4-methylphenol (DBPC), 2,6-di-tert-butyl-4-ethylphenol, 2,2′-methylenebis(4-methyl-6-tert-butylphenol), 2,4-dimethyl-6-tert-butylphenol, 2,6-di-tert-butylphenol, di-tert-butyl-p-cresol, and bisphenol A.
  • amine-based antioxidant examples include N,N′-diisopropyl-p-phenylenediamine, N,N′-di-sec-butyl-p-phenylenediamine, phenyl- ⁇ -naphthylamine, N,N′-di-phenyl-p-phenylenediamine, and N,N-di(2-naphthyl)-p-phenylenediamine.
  • An oxygen scavenger that captures oxygen can also be used as the antioxidant.
  • the antifoaming agent that can be used is, for example, a silicon compound.
  • the oiliness improver that can be used is, for example, a higher alcohol or a fatty acid.
  • the metal deactivator such as a copper deactivator that can be used is, for example, benzotriazole or a derivative thereof.
  • the anti-wear agent that can be used is, for example, zinc dithiophosphate.
  • the compatibilizer is not limited, and can be appropriately selected from commonly used compatibilizers.
  • the compatibilizers may be used alone or in combination of two or more.
  • Examples of the compatibilizer include polyoxyalkylene glycol ethers, amides, nitriles, ketones, chlorocarbons, esters, lactones, aryl ethers, fluoroethers, and 1,1,1-trifluoroalkanes.
  • the compatibilizer is particularly preferably a polyoxyalkylene glycol ether.
  • the refrigerating oil may optionally contain, for example, a load-bearing additive, a chlorine scavenger, a detergent dispersant, a viscosity index improver, a heat resistance improver, a stabilizer, a corrosion inhibitor, a pour-point depressant, and an anticorrosive.
  • a load-bearing additive for example, a chlorine scavenger, a detergent dispersant, a viscosity index improver, a heat resistance improver, a stabilizer, a corrosion inhibitor, a pour-point depressant, and an anticorrosive.
  • the content of each additive in the refrigerating oil may be 0.01 mass % or more and 5 mass % or less and is preferably 0.05 mass % or more and 3 mass % or less.
  • the content of the additive in the working fluid for a refrigerating machine constituted by the refrigerant composition and the refrigerating oil is preferably 5 mass % or less and more preferably 3 mass % or less.
  • the refrigerating oil preferably has a chlorine concentration of 50 ppm or less and preferably has a sulfur concentration of 50 ppm or less.
  • FIG. 1 illustrates an example of a refrigerant circuit 10 included in an air conditioner 1 that is a refrigeration cycle apparatus.
  • the air conditioner 1 is an apparatus used for indoor cooling and/or heating through a vapor-compression refrigeration cycle operation.
  • the air conditioner 1 mainly includes an outdoor unit 2 , an indoor unit 3 , and a liquid-side connection pipe 9 and a gas-side connection pipe 8 that each connect the outdoor unit 2 and the indoor unit 3 .
  • the refrigerant circuit 10 included in the air conditioner 1 includes a compressor 4 , an outdoor heat exchanger 5 , an expansion valve 6 , and an indoor heat exchanger 7 , which are connected to one another through the liquid-side connection pipe 9 , the gas-side connection pipe 8 , and other refrigerant pipes to constitute a compression refrigerant circuit.
  • the air conditioner 1 includes a microcomputer, a memory, and the like and also includes a control unit configured to drive and control various actuators.
  • a working fluid for a refrigerating machine containing the refrigerant composition serving as a refrigerant and the refrigerating oil is enclosed in the refrigerant circuit 10 .
  • the indoor unit 3 is disposed on an indoor ceiling surface or wall surface.
  • the indoor unit 3 is connected to the outdoor unit 2 through the liquid-side connection pipe 9 and the gas-side connection pipe 8 and constitutes a part of the refrigerant circuit 10 .
  • the refrigerant circuit 10 may include a plurality of indoor units 3 connected in parallel.
  • the indoor unit 3 includes the indoor heat exchanger 7 and an indoor fan 13 .
  • the indoor heat exchanger 7 is not limited, and is constituted by, for example, a heat transfer tube and many fins.
  • the indoor heat exchanger 7 functions as a refrigerant evaporator during cooling operation to cool indoor air and functions as a refrigerant condenser during heating operation to heat indoor air.
  • the indoor fan 13 sucks indoor air into the indoor unit 3 to cause heat exchange with the refrigerant in the indoor heat exchanger 7 and then generates air flow supplied to the interior as supply air.
  • the indoor fan 13 includes an indoor fan motor.
  • the outdoor unit 2 is disposed outdoors and connected to the indoor unit 3 through the liquid-side connection pipe 9 and the gas-side connection pipe 8 .
  • the outdoor unit 2 includes, for example, the compressor 4 , the outdoor heat exchanger 5 , an outdoor fan 12 , the expansion valve 6 , an accumulator 11 , a four-way switching valve 10 , a liquid-side shutoff valve 14 , and a gas-side shutoff valve 15 .
  • the compressor 4 is, for example, a positive-displacement compressor driven by a compressor motor.
  • the compressor motor may be driven by, for example, receiving power supply through an inverter device (not illustrated).
  • the outdoor heat exchanger 5 is not limited, and is constituted by, for example, a heat transfer tube and many fins.
  • the outdoor heat exchanger 5 functions as a refrigerant condenser during cooling operation and functions as a refrigerant evaporator during heating operation.
  • the outdoor fan 12 sucks outdoor air into the outdoor unit 2 to cause heat exchange with the refrigerant in the outdoor heat exchanger 5 and then generates air flow discharged outdoors.
  • the outdoor fan 12 includes an outdoor fan motor.
  • the expansion valve 6 can control the pressure of a refrigerant passing therethrough by adjusting the valve opening degree.
  • the accumulator 11 is disposed on the suction side of the compressor 4 between the four-way switching valve 10 and the compressor 4 and separates a liquid refrigerant and a gaseous refrigerant from each other.
  • the four-way switching valve 10 can switch the connection state between a cooling operation connection state in which the discharge side of the compressor 4 and the outdoor heat exchanger 5 are connected while the downstream side of the accumulator 11 and the gas-side shutoff valve 15 are connected and a heating operation connection state in which the discharge side of the compressor 4 and the gas-side shutoff valve 15 are connected while the downstream side of the accumulator 11 and the outdoor heat exchanger 5 are connected.
  • the liquid-side shutoff valve 14 and the gas-side shutoff valve 15 are valves disposed at connecting ports with outside apparatuses and pipes (specifically, the liquid-side connection pipe 9 and the gas-side connection pipe 8 ).
  • the four-way switching valve 10 is in a cooling operation connection state during cooling operation.
  • a high-temperature and high-pressure refrigerant discharged from the compressor 4 is condensed at the outdoor heat exchanger 5 that functions as a refrigerant condenser, decompressed when passing through the expansion valve 6 , and supplied to the gas side of the indoor unit 3 through the liquid-side connection pipe 9 .
  • the refrigerant that has been supplied to the indoor unit 3 is evaporated at the indoor heat exchanger 7 that functions as a refrigerant evaporator and sucked into the compressor 4 through the gas-side connection pipe 8 and the accumulator 11 of the outdoor unit 2 .
  • the four-way switching valve 10 is in a heating operation connection state during heating operation.
  • a high-temperature and high-pressure refrigerant discharged from the compressor 4 is sent to the gas side of the indoor unit 3 through the gas-side connection pipe 8 .
  • the refrigerant that has been sent to the indoor unit 3 is condensed at the indoor heat exchanger 7 that functions as a refrigerant condenser and sent to the expansion valve 6 of the outdoor unit 2 through the liquid-side connection pipe 9 .
  • the refrigerant decompressed when passing through the expansion valve 6 is evaporated at the outdoor heat exchanger 5 that functions as a refrigerant evaporator and sucked into the compressor 4 through the accumulator 11 .
  • the refrigeration cycle apparatus is not limited.
  • Examples of the refrigeration cycle apparatus include cooling apparatuses of room air conditioners, package air conditioners, refrigerators, car air conditioners, water heaters, dehumidifiers, freezers, cold stores, vending machines, showcases, chemical plants, and the like.
  • the refrigeration cycle apparatus is preferably used in a refrigerating machine including a hermetic compressor.
  • Each of the refrigerating oils according to this embodiment can be used for any of, for example, reciprocating compressors, rotary compressors, and centrifugal compressors.
  • the refrigerating oil according to this embodiment is used as a working fluid for a refrigerating machine obtained by being mixed with the refrigerant composition.
  • refrigerant includes at least compounds that are specified in ISO 817 (International Organization for Standardization), and that are given a refrigerant number (ASHRAE number) representing the type of refrigerant with “R” at the beginning; and further includes refrigerants that have properties equivalent to those of such refrigerants, even though a refrigerant number is not yet given.
  • refrigerants are broadly divided into fluorocarbon compounds and non-fluorocarbon compounds in terms of the structure of the compounds. Fluorocarbon compounds include chlorofluorocarbons (CFC), hydrochlorofluorocarbons (HCFC), and hydrofluorocarbons (HFC).
  • Non-fluorocarbon compounds include propane (R290), propylene (R1270), butane (R600), isobutane (R600a), carbon dioxide (R744), ammonia (R717), and the like.
  • propane R290
  • propylene R1270
  • butane R600
  • isobutane R600a
  • carbon dioxide R744
  • ammonia R717
  • refrigerant includes a mixture of a plurality of refrigerants.
  • the phase “refrigerant composition” includes a refrigerant itself (including a mixture of refrigerants) and other components, and is distinguished from a refrigerant itself (including a mixture of refrigerants).
  • the “refrigerant composition” includes a composition that can be used to obtain the working fluid for a refrigerating machine by mixing at least with a refrigerating oil.
  • the phase “working fluid for a refrigerating machine” includes a composition including a refrigerant and a refrigerating oil, and is distinguished from the “refrigerant composition”.
  • the phase “working fluid for a refrigerating machine” may be referred to as a “refrigeration oil-containing working fluid”.
  • phase “composition comprising a refrigerant” can be used as a phase including at least those three embodiments of “refrigerant”, “refrigerant composition”, and “working fluid for a refrigerating machine (refrigeration oil-containing working fluid)”.
  • the first type of “alternative” means that equipment designed for operation using the first refrigerant can be operated using the second refrigerant under optimum conditions, optionally with changes of only a few parts (at least one of the following: refrigeration oil, gasket, packing, expansion valve, dryer, and other parts) and equipment adjustment.
  • this type of alternative means that the same equipment is operated with an alternative refrigerant.
  • Embodiments of this type of “alternative” include “drop-in alternative,” “nearly drop-in alternative,” and “retrofit,” in the order in which the extent of changes and adjustment necessary for replacing the first refrigerant with the second refrigerant is smaller.
  • alterative also includes a second type of “alternative,” which means that equipment designed for operation using the second refrigerant is operated for the same use as the existing use with the first refrigerant by using the second refrigerant. This type of alternative means that the same use is achieved with an alternative refrigerant.
  • refrigerating machine refers to machines in general that draw heat from an object or space to make its temperature lower than the temperature of ambient air, and maintain a low temperature.
  • refrigerating machines refer to conversion machines that gain energy from the outside to do work, and that perform energy conversion, in order to transfer heat from where the temperature is lower to where the temperature is higher.
  • a refrigerant having a “WCF lower flammability” means that the most flammable composition (worst case of formulation for flammability: WCF) has a burning velocity of 10 cm/s or less according to the US ANSI/ASHRAE Standard 34-2013.
  • a refrigerant having “ASHRAE lower flammability” means that the burning velocity of WCF is 10 cm/s or less, that the most flammable fraction composition (worst case of fractionation for flammability: WCFF), which is specified by performing a leakage test during storage, shipping, or use based on ANSI/ASHRAE 34-2013 using WCF, has a burning velocity of 10 cm/s or less, and that flammability classification according to the US ANSI/ASHRAE Standard 34-2013 is determined to classified as be “Class 2L.”
  • a refrigerant having an “RCL of x % or more” means that the refrigerant has a refrigerant concentration limit (RCL), calculated in accordance with the US ANSI/ASHRAE Standard 34-2013, of x % or more.
  • RCL refers to a concentration limit in the air in consideration of safety factors.
  • RCL is an index for reducing the risk of acute toxicity, suffocation, and flammability in a closed space where humans are present.
  • RCL is determined in accordance with the ASHRAE Standard.
  • RCL is the lowest concentration among the acute toxicity exposure limit (ATEL), the oxygen deprivation limit (ODL), and the flammable concentration limit (FCL), which are respectively calculated in accordance with sections 7.1.1, 7.1.2, and 7.1.3 of the ASHRAE Standard.
  • ATEL acute toxicity exposure limit
  • ODL oxygen deprivation limit
  • FCL flammable concentration limit
  • temperature glide refers to an absolute value of the difference between the initial temperature and the end temperature in the phase change process of a refrigerant composition of the present disclosure in the heat exchanger of a refrigerant system.
  • the refrigerant according to the present disclosure can be preferably used as a working fluid in a refrigerating machine.
  • composition according to the present disclosure is suitable for use as an alternative refrigerant for HFC refrigerant such as R410A, R407C and R404 etc, or HCFC refrigerant such as R22 etc.
  • the refrigerant composition according to the present disclosure comprises at least the refrigerant according to the present disclosure, and can be used for the same use as the refrigerant according to the present disclosure. Moreover, the refrigerant composition according to the present disclosure can be further mixed with at least a refrigeration oil to thereby obtain a working fluid for a refrigerating machine.
  • the refrigerant composition according to the present disclosure further comprises at least one other component in addition to the refrigerant according to the present disclosure.
  • the refrigerant composition according to the present disclosure may comprise at least one of the following other components, if necessary.
  • the refrigerant composition according to the present disclosure when used as a working fluid in a refrigerating machine, it is generally used as a mixture with at least a refrigeration oil. Therefore, it is preferable that the refrigerant composition according to the present disclosure does not substantially comprise a refrigeration oil.
  • the content of the refrigeration oil based on the entire refrigerant composition is preferably 0 to 1 mass %, and more preferably 0 to 0.1 mass %.
  • the refrigerant composition according to the present disclosure may contain a small amount of water.
  • the water content of the refrigerant composition is preferably 0.1 mass % or less based on the entire refrigerant.
  • a small amount of water contained in the refrigerant composition stabilizes double bonds in the molecules of unsaturated fluorocarbon compounds that can be present in the refrigerant, and makes it less likely that the unsaturated fluorocarbon compounds will be oxidized, thus increasing the stability of the refrigerant composition.
  • a tracer is added to the refrigerant composition according to the present disclosure at a detectable concentration such that when the refrigerant composition has been diluted, contaminated, or undergone other changes, the tracer can trace the changes.
  • the refrigerant composition according to the present disclosure may comprise a single tracer, or two or more tracers.
  • the tracer is not limited, and can be suitably selected from commonly used tracers.
  • a compound that cannot be an impurity inevitably mixed in the refrigerant of the present disclosure is selected as the tracer.
  • tracers examples include hydrofluorocarbons, hydrochlorofluorocarbons, chlorofluorocarbons, hydrochlorocarbons, fluorocarbons, deuterated hydrocarbons, deuterated hydrofluorocarbons, perfluorocarbons, fluoroethers, brominated compounds, iodinated compounds, alcohols, aldehydes, ketones, and nitrous oxide (N 2 O).
  • the tracer is particularly preferably a hydrofluorocarbon, a hydrochlorofluorocarbon, a chlorofluorocarbon, a fluorocarbon, a hydrochlorocarbon, a fluorocarbon, or a fluoroether.
  • FC-14 (tetrafluoromethane, CF 4 ) HCC-40 (chloromethane, CH 3 Cl) HFC-23 (trifluoromethane, CHF 3 ) HFC-41 (fluoromethane, CH 3 Cl) HFC-125 (pentafluoroethane, CF 3 CHF 2 ) HFC-134a (1,1,1,2-tetrafluoroethane, CF 3 CH 2 F) HFC-134 (1,1,2,2-tetrafluoroethane, CHF 2 CHF 2 ) HFC-143a (1,1,1-trifluoroethane, CF 3 CH 3 ) HFC-143 (1,1,2-trifluoroethane, CHF 2 CH 2 F) HFC-152a (1,1-difluoroethane, CHF 2 CH 3 ) HFC-152 (1,2-difluoroethane, CH 2 FCH 2 F) HFC-161 (fluoroethane, CH 3 CH 2 F)
  • the tracer compound may be present in the refrigerant composition at a total concentration of about 10 parts per million (ppm) to about 1000 ppm.
  • the tracer compound is present in the refrigerant composition at a total concentration of about 30 ppm to about 500 ppm, and most preferably, the tracer compound is present at a total concentration of about 50 ppm to about 300 ppm.
  • the refrigerant composition according to the present disclosure may comprise a single ultraviolet fluorescent dye, or two or more ultraviolet fluorescent dyes.
  • the ultraviolet fluorescent dye is not limited, and can be suitably selected from commonly used ultraviolet fluorescent dyes.
  • ultraviolet fluorescent dyes examples include naphthalimide, coumarin, anthracene, phenanthrene, xanthene, thioxanthene, naphthoxanthene, fluorescein, and derivatives thereof.
  • the ultraviolet fluorescent dye is particularly preferably either naphthalimide or coumarin, or both.
  • the refrigerant composition according to the present disclosure may comprise a single stabilizer, or two or more stabilizers.
  • the stabilizer is not limited, and can be suitably selected from commonly used stabilizers.
  • stabilizers examples include nitro compounds, ethers, and amines.
  • nitro compounds include aliphatic nitro compounds, such as nitromethane and nitroethane; and aromatic nitro compounds, such as nitro benzene and nitro styrene.
  • ethers examples include 1,4-dioxane.
  • amines examples include 2,2,3,3,3-pentafluoropropylamine and diphenylamine.
  • stabilizers also include butylhydroxyxylene and benzotriazole.
  • the content of the stabilizer is not limited. Generally, the content of the stabilizer is preferably 0.01 to 5 mass %, and more preferably 0.05 to 2 mass %, based on the entire refrigerant.
  • the refrigerant composition according to the present disclosure may comprise a single polymerization inhibitor, or two or more polymerization inhibitors.
  • the polymerization inhibitor is not limited, and can be suitably selected from commonly used polymerization inhibitors.
  • polymerization inhibitors examples include 4-methoxy-1-naphthol, hydroquinone, hydroquinone methyl ether, dimethyl-t-butylphenol, 2,6-di-tert-butyl-p-cresol, and benzotriazole.
  • the content of the polymerization inhibitor is not limited. Generally, the content of the polymerization inhibitor is preferably 0.01 to 5 mass %, and more preferably 0.05 to 2 mass %, based on the entire refrigerant.
  • the refrigeration oil-containing working fluid according to the present disclosure comprises at least the refrigerant or refrigerant composition according to the present disclosure and a refrigeration oil, for use as a working fluid in a refrigerating machine.
  • the refrigeration oil-containing working fluid according to the present disclosure is obtained by mixing a refrigeration oil used in a compressor of a refrigerating machine with the refrigerant or the refrigerant composition.
  • the refrigeration oil-containing working fluid generally comprises 10 to 50 mass % of refrigeration oil.
  • Refrigerating oil As the refrigeration oil contained in the refrigeration oil-containing working fluid, one kind of the refrigeration oil described in the column of (2) Refrigerating oil may be contained alone, or two or more kinds thereof may be contained.
  • the refrigerating oil may contain the additives described in the column of (2-3) Additive.working fluid for a refrigerating machineworking fluid for a refrigerating machineworking fluid for a refrigerating machineworking fluid for a refrigerating machineworking fluid for a refrigerating machine
  • each description of the following refrigerant A, refrigerant B, refrigerant C, refrigerant D, and refrigerant E is each independent.
  • the alphabet which shows a point or a line segment, the number of an Examples, and the number of a comparative examples are all independent of each other among the refrigerant A, the refrigerant B, the refrigerant C, the refrigerant D, and the refrigerant E.
  • the first embodiment of the refrigerant A and the first embodiment of the refrigerant B are different embodiment from each other.
  • the refrigerant A according to the present disclosure is a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).
  • the refrigerant A according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant, i.e., a refrigerating capacity and a coefficient of performance that are equivalent to those of R410A, and a sufficiently low GWP.
  • the refrigerant A according to the present disclosure is a composition comprising HFO-1132(E) and R1234yf, and optionally further comprising HFO-1123, and may further satisfy the following requirements.
  • This refrigerant also has various properties desirable as an alternative refrigerant for R410A; i.e., it has a refrigerating capacity and a coefficient of performance that are equivalent to those of R410A, and a sufficiently low GWP.
  • Preferable refrigerant A is as follows:
  • the line segment AA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3,
  • the line segment DC′ is represented by coordinates (x, 0.0082x 2 ⁇ 0.6671x+80.4, ⁇ 0.0082x 2 ⁇ 0.3329x+19.6),
  • the line segment C′C is represented by coordinates (x, 0.0067x 2 ⁇ 0.6034x+79.729, ⁇ 0.0067x 2 ⁇ 0.3966x+20.271), and
  • the line segments BD, CO, and OA are straight lines.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A.
  • the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within a figure surrounded by line segments GI, IA, AA′, A′B, BD, DC′, C′C, and CG that connect the following 8 points:
  • point G (72.0, 28.0, 0.0), point I (72.0, 0.0, 28.0), point A (68.6, 0.0, 31.4), point A′ (30.6, 30.0, 39.4), point B (0.0, 58.7, 41.3), point D (0.0, 80.4, 19.6), point C′ (19.5, 70.5, 10.0), and point C (32.9, 67.1, 0.0), or on the above line segments (excluding the points on the line segment CG);
  • the line segment AA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3),
  • the line segment DC′ is represented by coordinates (x, 0.0082x 2 ⁇ 0.6671x+80.4, ⁇ 0.0082x 2 ⁇ 0.3329x+19.6),
  • the line segment C′C is represented by coordinates (x, 0.0067x 2 ⁇ 0.6034x+79.729, ⁇ 0.0067x 2 ⁇ 0.3966x+20.271), and
  • the line segments GI, IA, BD, and CG are straight lines.
  • the refrigerant A according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A; furthermore, the refrigerant A has a WCF lower flammability according to the ASHRAE Standard (the WCF composition has a burning velocity of 10 cm/s or less).
  • the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PN, NK, KA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
  • point J (47.1, 52.9, 0.0), point P (55.8, 42.0, 2.2), point N (68.6, 16.3, 15.1), point K (61.3, 5.4, 33.3), point A′ (30.6, 30.0, 39.4), point B (0.0, 58.7, 41.3), point D (0.0, 80.4, 19.6), point C′ (19.5, 70.5, 10.0), and point C (32.9, 67.1, 0.0), or on the above line segments (excluding the points on the line segment CJ);
  • the line segment PN is represented by coordinates (x, ⁇ 0.1135x 2 +12.112x ⁇ 280.43, 0.1135x 2 ⁇ 13.112x+380.43),
  • the line segment NK is represented by coordinates (x, 0.2421x 2 ⁇ 29.955x+931.91, ⁇ 0.2421x 2 +28.955x ⁇ 831.91),
  • the line segment KA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3),
  • the line segment DC′ is represented by coordinates (x, 0.0082x 2 ⁇ 0.6671x+80.4, ⁇ 0.0082x 2 ⁇ 0.3329x+19.6),
  • the line segment C′C is represented by coordinates (x, 0.0067x 2 ⁇ 0.6034x+79.729, ⁇ 0.0067x 2 ⁇ 0.3966x+20.271), and
  • the line segments JP, BD, and CG are straight lines.
  • the refrigerant A according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A; furthermore, the refrigerant exhibits a lower flammability (Class 2L) according to the ASHRAE Standard (the WCF composition and the WCFF composition have a burning velocity of 10 cm/s or less).
  • the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PL, LM, MA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
  • point J (47.1, 52.9, 0.0), point P (55.8, 42.0, 2.2), point L (63.1, 31.9, 5.0), point M (60.3, 6.2, 33.5), point A′ (30.6, 30.0, 39.4), point B (0.0, 58.7, 41.3), point D (0.0, 80.4, 19.6), point C′ (19.5, 70.5, 10.0), and point (32.9, 67.1, 0.0), or on the above line segments (excluding the points on the line segment CJ);
  • the line segment PL is represented by coordinates (x, ⁇ 0.1135x 2 +12.112x ⁇ 280.43, 0.1135x 2 ⁇ 13.112x+380.43),
  • the line segment MA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3),
  • the line segment DC′ is represented by coordinates (x, 0.0082x 2 ⁇ 0.6671x+80.4, ⁇ 0.0082x 2 ⁇ 0.3329x+19.6),
  • the line segment C′C is represented by coordinates (x, 0.0067x 2 ⁇ 0.6034x+79.729, ⁇ 0.0067x 2 ⁇ 0.3966x+20.271), and
  • the line segments JP, LM, BD, and CG are straight lines.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A; furthermore, the refrigerant has an RCL of 40 g/m 3 or more.
  • the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LM, MA′, A′B, BF, FT, and TP that connect the following 7 points:
  • point P (55.8, 42.0, 2.2), point L (63.1, 31.9, 5.0), point M (60.3, 6.2, 33.5), point A′ (30.6, 30.0, 39.4), point B (0.0, 58.7, 41.3), point F (0.0, 61.8, 38.2), and point T (35.8, 44.9, 19.3), or on the above line segments (excluding the points on the line segment BF);
  • the line segment PL is represented by coordinates (x, ⁇ 0.1135x 2 +12.112x ⁇ 280.43, 0.1135x 2 ⁇ 13.112x+380.43),
  • the line segment MA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3),
  • the line segment FT is represented by coordinates (x, 0.0078x 2 ⁇ 0.7501x+61.8, ⁇ 0.0078x 2 ⁇ 0.2499x+38.2),
  • the line segment TP is represented by coordinates (x, 0.00672x 2 ⁇ 0.7607x+63.525, ⁇ 0.00672x 2 ⁇ 0.2393x+36.475), and
  • the line segments LM and BF are straight lines.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 95% or more relative to that of R410A; furthermore, the refrigerant has an RCL of 40 g/m 3 or more.
  • the refrigerant A according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LQ, QR, and RP that connect the following 4 points:
  • point P (55.8, 42.0, 2.2), point L (63.1, 31.9, 5.0), point Q (62.8, 29.6, 7.6), and point R (49.8, 42.3, 7.9), or on the above line segments;
  • the line segment PL is represented by coordinates (x, ⁇ 0.1135x 2 +12.112x ⁇ 280.43, 0.1135x 2 ⁇ 13.112x+380.43),
  • the line segment RP is represented by coordinates (x, 0.00672x 2 ⁇ 0.7607x+63.525, ⁇ 0.00672x 2 ⁇ 0.2393x+36.475), and
  • the line segments LQ and QR are straight lines.
  • the refrigerant according to the present disclosure has a COP of 95% or more relative to that of R410A, and an RCL of 40 g/m 3 or more, furthermore, the refrigerant has a condensation temperature glide of 1° C. or less.
  • the refrigerant A according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments SM, MA′, A′B, BF, FT, and TS that connect the following 6 points:
  • the line segment MA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3),
  • the line segment FT is represented by coordinates (x, 0.0078x 2 ⁇ 0.7501x+61.8, ⁇ 0.0078x 2 ⁇ 0.2499x+38.2),
  • the line segment TS is represented by coordinates (x, ⁇ 0.0017x 2 ⁇ 0.7869x+70.888, ⁇ 0.0017x 2 ⁇ 0.2131x+29.112), and
  • the line segments SM and BF are straight lines.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, a COP of 95% or more relative to that of R410A, and an RCL of 40 g/m 3 or more furthermore, the refrigerant has a discharge pressure of 105% or more relative to that of R410A.
  • the refrigerant A according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments Od, dg, gh, and hO that connect the following 4 points:
  • point d (87.6, 0.0, 12.4), point g (18.2, 55.1, 26.7), point h (56.7, 43.3, 0.0), and point o (100.0, 0.0, 0.0), or on the line segments Od, dg, gh, and hO (excluding the points O and h);
  • the line segment dg is represented by coordinates (0.0047y 2 ⁇ 1.5177y+87.598, y, ⁇ 0.0047y 2 +0.5177y+12.402),
  • the line segment gh is represented by coordinates ( ⁇ 0.0134z 2 ⁇ 1.0825z+56.692, 0.0134z 2 +0.0825z+43.308, z), and
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A.
  • the refrigerant A according to the present disclosure is preferably a refrigerant wherein
  • point l (72.5, 10.2, 17.3), point g (18.2, 55.1, 26.7), point h (56.7, 43.3, 0.0), and point i (72.5, 27.5, 0.0) or on the line segments lg, gh, and il (excluding the points h and i);
  • the line segment lg is represented by coordinates (0.0047y 2 ⁇ 1.5177y+87.598, y, ⁇ 0.0047y 2 +0.5177y+12.402),
  • the line gh is represented by coordinates ( ⁇ 0.0134z 2 ⁇ 1.0825z+56.692, 0.0134z 2 +0.0825z+43.308, z), and
  • the line segments hi and il are straight lines.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A; furthermore, the refrigerant has a lower flammability (Class 2L) according to the ASHRAE Standard.
  • the refrigerant A according to the present disclosure is preferably a refrigerant wherein
  • point d (87.6, 0.0, 12.4), point e (31.1, 42.9, 26.0), point f (65.5, 34.5, 0.0), and point O (100.0, 0.0, 0.0), or on the line segments Od, de, and ef (excluding the points O and f);
  • the line segment de is represented by coordinates (0.0047y 2 ⁇ 1.5177y+87.598, y, ⁇ 0.0047y 2 +0.5177y+12.402),
  • the line segment ef is represented by coordinates ( ⁇ 0.0064z 2 ⁇ 1.1565z+65.501, 0.0064z 2 +0.1565z+34.499, z), and
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 93.5% or more relative to that of R410A, and a COP ratio of 93.5% or more relative to that of R410A.
  • the refrigerant A according to the present disclosure is preferably a refrigerant wherein
  • point l (72.5, 10.2, 17.3), point e (31.1, 42.9, 26.0), point f (65.5, 34.5, 0.0), and point i (72.5, 27.5, 0.0), or on the line segments le, ef, and il (excluding the points f and i);
  • the line segment le is represented by coordinates (0.0047y 2 ⁇ 1.5177y+87.598, y, ⁇ 0.0047y 2 +0.5177y+12.402),
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 93.5% or more relative to that of R410A, and a COP ratio of 93.5% or more relative to that of R410A; furthermore, the refrigerant has a lower flammability (Class 2L) according to the ASHRAE Standard.
  • the refrigerant A according to the present disclosure is preferably a refrigerant wherein
  • point a (93.4, 0.0, 6.6), point b (55.6, 26.6, 17.8), point c (77.6, 22.4, 0.0), and point O (100.0, 0.0, 0.0), or on the line segments Oa, ab, and bc (excluding the points O and c);
  • the line segment ab is represented by coordinates (0.0052y 2 ⁇ 1.5588y+93.385, y, ⁇ 0.0052y 2 +0.5588y+6.615),
  • the line segment be is represented by coordinates ( ⁇ 0.0032z 2 ⁇ 1.1791z+77.593, 0.0032z 2 +0.1791z+22.407, z), and
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to that of R410A, and a COP ratio of 95% or more relative to that of R410A.
  • the refrigerant A according to the present disclosure is preferably a refrigerant wherein
  • point k (72.5, 14.1, 13.4), point b (55.6, 26.6, 17.8), and point j (72.5, 23.2, 4.3), or on the line segments kb, bj, and jk;
  • the line segment kb is represented by coordinates (0.0052y 2 ⁇ 1.5588y+93.385, y, and ⁇ 0.0052y 2 +0.5588y+6.615),
  • the line segment bj is represented by coordinates ( ⁇ 0.0032z 2 ⁇ 1.1791z+77.593, 0.0032z 2 +0.1791z+22.407, z), and
  • the line segment jk is a straight line.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to that of R410A, and a COP ratio of 95% or more relative to that of R410A; furthermore, the refrigerant has a lower flammability (Class 2L) according to the ASHRAE Standard.
  • the refrigerant according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), HFO-1123, and R1234yf, as long as the above properties and effects are not impaired.
  • the refrigerant according to the present disclosure preferably comprises HFO-1132(E), HFO-1123, and R1234yf in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and still more preferably 99.9 mass % or more, based on the entire refrigerant.
  • the refrigerant according to the present disclosure may comprise HFO-1132(E), HFO-1123, and R1234yf in a total amount of 99.5 mass % or more, 99.75 mass % or more, or 99.9 mass % or more, based on the entire refrigerant.
  • Additional refrigerants are not particularly limited and can be widely selected.
  • the mixed refrigerant may contain one additional refrigerant, or two or more additional refrigerants.
  • refrigerant A is not limited to the Examples.
  • the GWP of R1234yf and a composition consisting of a mixed refrigerant R410A was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report.
  • the refrigerating capacity of R410A and compositions each comprising a mixture of HFO-1132(E), HFO-1123, and R1234yf was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.
  • the RCL of the mixture was calculated with the LFL of HFO-1132(E) being 4.7 vol. %, the LFL of HFO-1123 being 10 vol. %, and the LFL of R1234yf being 6.2 vol. %, in accordance with the ASHRAE Standard 34-2013.
  • Tables 1 to 34 show these values together with the GWP of each mixed refrigerant.
  • Example Example Example Example 13 14 15 16 17 18 19 Item Unit L M Q R S S′ T HFO-1132(E) mass % 63.1 60.3 62.8 49.8 62.6 50.0 35.8 HFO-1123 mass % 31.9 6.2 29.6 42.3 28.3 35.8 44.9 R1234yf mass % 5.0 33.5 7.6 7.9 9.1 14.2 19.3 GWP 1 2 1 1 1 1 2 COP ratio % (relative 96.1 99.4 96.4 95.0 96.6 95.8 95.0 to 410A) Refrigerating % (relative 101.6 85.0 100.2 101.7 99.4 98.1 96.7 capacity ratio to 410A) Condensation ° C.
  • Example Example 10 20 21 Item Unit G H I HFO-1132(E) mass % 72.0 72.0 72.0 HFO-1123 mass % 28.0 14.0 0.0 R1234yf mass % 0.0 14.0 28.0 GWP — 1 1 2 COP ratio % (relative to 96.6 98.2 99.9 410A) Refrigerating % (relative to 103.1 95.1 86.6 capacity ratio 410A) Condensation glide ° C. 0.46 1.27 1.71 Discharge pressure % (relative to 108.4 98.7 88.6 410A) RCL g/m 3 37.4 37.0 36.6
  • Example Example Example Example Example Item Unit 39 40 41 42 43 44 45 HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 HFO-1123 mass % 70.0 60.0 50.0 40.0 30.0 20.0 10.0 R1234yf mass % 20.0 20.0 20.0 20.0 20.0 20.0 20.0 GWP — 2 2 2 2 2 2 2 2 COP ratio % (relative 93.0 93.7 94.5 95.5 96.5 97.6 98.7 to 410A) Refrigerating % (relative 97.7 97.4 96.8 95.9 94.7 93.4 91.9 capacity ratio to4 10A) Condensation ° C.
  • Example Example Example Example Item Unit 53 54 55 56 57 58 HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0 HFO-1123 mass % 60.0 50.0 40.0 30.0 20.0 10.0 R1234yf mass % 30.0 30.0 30.0 30.0 30.0 30.0 30.0 GWP — 2 2 2 2 2 2 COP ratio % (relative to 94.3 95.0 95.9 96.8 97.8 98.9 410A) Refrigerating % (relative to 91.9 91.5 90.8 89.9 88.7 87.3 capacity ratio 410A) Condensation glide ° C. 3.46 3.43 3.35 3.18 2.90 2.47 Discharge % (relative to 101.6 100.1 98.2 95.9 93.3 90.6 pressure 410A) RCL g/m 3 68.7 60.2 53.5 48.2 43.9 40.2
  • Example Example Item Unit 226 227 HFO-1132(E) mass % 34.0 36.0 HFO-1123 mass % 28.0 26.0 R1234yf mass % 38.0 38.0 GWP — 2 2 COP ratio % (relative to 97.4 97.6 410A) Refrigerating % (relative to 85.6 85.3 capacity ratio 410A) Condensation glide ° C. 4.18 4.11 Discharge pressure % (relative to 91.0 90.6 410A) RCL g/m 3 50.9 49.8
  • the line segment AA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503)
  • the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3
  • the line segment DC′ is represented by coordinates (x, 0.0082x 2 ⁇ 0.6671x+80.4, ⁇ 0.0082x 2 ⁇ 0.3329x+19.6)
  • the line segment C′C is represented by coordinates (x, 0.00
  • the point on the line segment AA′ was determined by obtaining an approximate curve connecting point A, Example 1, and point A′ by the least square method.
  • the point on the line segment A′B was determined by obtaining an approximate curve connecting point A′, Example 3, and point B by the least square method.
  • the point on the line segment DC′ was determined by obtaining an approximate curve connecting point D, Example 6, and point C′ by the least square method.
  • the point on the line segment C′C was determined by obtaining an approximate curve connecting point C′, Example 4, and point C by the least square method.
  • the line segment AA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503)
  • the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3)
  • the line segment FT is represented by coordinates (x, 0.0078x 2 ⁇ 0.7501x+61.8, ⁇ 0.0078x 2 ⁇ 0.2499x+38.2)
  • the line segment TE is represented by coordinates (x, 0.0067
  • the point on the line segment FT was determined by obtaining an approximate curve connecting three points, i.e., points T, E′, and F, by the least square method.
  • the point on the line segment TE was determined by obtaining an approximate curve connecting three points, i.e., points E, R, and T, by the least square method.
  • the composition preferably contains R1234yf.
  • a burning velocity test was performed using the apparatus shown in FIG. 2 in the following manner.
  • reference numeral 901 refers to a sample cell
  • 902 refers to a high-speed camera
  • 903 refers to a xenon lamp
  • 904 refers to a collimating lens
  • 905 refers to a collimating lens
  • 906 refers to a ring filter.
  • the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge.
  • the burning velocity was measured by the closed method.
  • the initial temperature was ambient temperature.
  • Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell.
  • the duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J.
  • the spread of the flame was visualized using schlieren photographs.
  • a cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source.
  • Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.
  • Each WCFF concentration was obtained by using the WCF concentration as the initial concentration and performing a leak simulation using NIST Standard Reference Database REFLEAK Version 4.0.
  • Tables 36 clearly indicate that in a ternary composition diagram of a mixed refrigerant of HFO-1132(E), HFO-1123, and R1234yf in which their sum is 100 mass %, and a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base,
  • the refrigerant can be determined to have a WCF lower flammability, and a WCFF lower flammability.
  • the line segment PN is represented by coordinates (x, ⁇ 0.1135x 2 +12.112x ⁇ 280.43, 0.1135x 2 ⁇ 13.112x+380.43), and the line segment NK is represented by coordinates (x, 0.2421x 2 ⁇ 29.955x+931.91, ⁇ 0.2421x 2 +28.955x ⁇ 831.91).
  • the point on the line segment PN was determined by obtaining an approximate curve connecting three points, i.e., points P, L, and N, by the least square method.
  • the point on the line segment NK was determined by obtaining an approximate curve connecting three points, i.e., points N, N′, and K, by the least square method.
  • the refrigerant B according to the present disclosure is
  • a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)) and trifluoroethylene (HFO-1123) in a total amount of 99.5 mass % or more based on the entire refrigerant, and the refrigerant comprising 62.0 mass % to 72.0 mass % or 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire refrigerant, or
  • a mixed refrigerant comprising HFO-1132(E) and HFO-1123 in a total amount of 99.5 mass % or more based on the entire refrigerant, and the refrigerant comprising 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire refrigerant.
  • the refrigerant B according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant, i.e., (1) a coefficient of performance equivalent to that of R410A, (2) a refrigerating capacity equivalent to that of R410A, (3) a sufficiently low GWP, and (4) a lower flammability (Class 2L) according to the ASHRAE standard.
  • the refrigerant B according to the present disclosure is a mixed refrigerant comprising 72.0 mass % or less of HFO-1132(E), it has WCF lower flammability.
  • the refrigerant B according to the present disclosure is a composition comprising 47.1% or less of HFO-1132(E), it has WCF lower flammability and WCFF lower flammability, and is determined to be “Class 2L,” which is a lower flammable refrigerant according to the ASHRAE standard, and which is further easier to handle.
  • the refrigerant B according to the present disclosure comprises 62.0 mass % or more of HFO-1132(E), it becomes superior with a coefficient of performance of 95% or more relative to that of R410A, the polymerization reaction of HFO-1132(E) and/or HFO-1123 is further suppressed, and the stability is further improved.
  • the refrigerant B according to the present disclosure comprises 45.1 mass % or more of HFO-1132(E), it becomes superior with a coefficient of performance of 93% or more relative to that of R410A, the polymerization reaction of HFO-1132(E) and/or HFO-1123 is further suppressed, and the stability is further improved.
  • the refrigerant B according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E) and HFO-1123, as long as the above properties and effects are not impaired.
  • the refrigerant according to the present disclosure preferably comprises HFO-1132(E) and HFO-1123 in a total amount of 99.75 mass % or more, and more preferably 99.9 mass % or more, based on the entire refrigerant.
  • additional refrigerants are not limited, and can be selected from a wide range of refrigerants.
  • the mixed refrigerant may comprise a single additional refrigerant, or two or more additional refrigerants.
  • refrigerant B is not limited to the Examples.
  • compositions each comprising a mixture of R410A were evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report.
  • the refrigerating capacity of compositions each comprising R410A and a mixture of HFO-1132(E) and HFO-1123 was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.
  • composition of each mixture was defined as WCF.
  • a leak simulation was performed using NIST Standard Reference Data Base Refleak Version 4.0 under the conditions of Equipment, Storage, Shipping, Leak, and Recharge according to the ASHRAE Standard 34-2013.
  • the most flammable fraction was defined as WCFF.
  • Tables 1 and 2 show GWP, COP, and refrigerating capacity, which were calculated based on these results.
  • the COP and refrigerating capacity are ratios relative to R410A.
  • the coefficient of performance (COP) was determined by the following formula.
  • the burning velocity was measured according to the ANSI/ASHRAE Standard 34-2013. Both WCF and WCFF having a burning velocity of 10 cm/s or less were determined to be “Class 2L (lower flammability).”
  • a burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner.
  • the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge.
  • the burning velocity was measured by the closed method.
  • the initial temperature was ambient temperature.
  • Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell.
  • the duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J.
  • the spread of the flame was visualized using schlieren photographs.
  • a cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source.
  • Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.
  • the refrigerant C according to the present disclosure is a composition comprising trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32), and satisfies the following requirements.
  • the refrigerant C according to the present disclosure has various properties that are desirable as an alternative refrigerant for R410A; i.e. it has a coefficient of performance and a refrigerating capacity that are equivalent to those of R410A, and a sufficiently low GWP.
  • Preferable refrigerant C is as follows:
  • HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum is respectively represented by x, y, z, and a,
  • point G (0.026a 2 ⁇ 1.7478a+72.0, ⁇ 0.026a 2 +0.7478a+28.0, 0.0), point I (0.026a 2 ⁇ 1.7478a+72.0, 0.0, ⁇ 0.026a 2 +0.7478a+28.0), point A (0.0134a 2 ⁇ 1.9681a+68.6, 0.0, ⁇ 0.0134a 2 +0.9681a+31.4), point B (0.0, 0.0144a 2 ⁇ 1.6377a+58.7, ⁇ 0.0144a 2 +0.6377a+41.3), point D′ (0.0, 0.0224a 2 +0.968a+75.4, ⁇ 0.0224a 2 ⁇ 1.968a+24.6), and point C ( ⁇ 0.2304a 2 ⁇ 0.4062a+32.9, 0.2304a 2 ⁇ 0.5938a+67.1, 0.0), or on the straight lines GI, AB, and D′C (excluding point G, point I, point A, point B, point D′, and point C);
  • coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
  • point G (0.02a 2 ⁇ 1.6013a+71.105, ⁇ 0.02a 2 +0.6013a+28.895, 0.0)
  • point I (0.02a 2 ⁇ 1.6013a+71.105, 0.0, ⁇ 0.02a 2 +0.6013a+28.895)
  • point A (0.0112a 2 ⁇ 1.9337a+68.484, 0.0, ⁇ 0.0112a 2 +0.9337a+31.516)
  • point B (0.0, 0.0075a 2 ⁇ 1.5156a+58.199, ⁇ 0.0075a 2 +0.5156a+41.801)
  • point W (0.0, 100.0 ⁇ a, 0.0), or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);
  • coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
  • point G (0.0135a 2 ⁇ 1.4068a+69.727, ⁇ 0.0135a 2 +0.4068a+30.273, 0.0)
  • point I (0.0135a 2 ⁇ 1.4068a+69.727, 0.0, ⁇ 0.0135a 2 +0.4068a+30.273)
  • point A (0.0107a 2 ⁇ 1.9142a+68.305, 0.0, ⁇ 0.0107a 2 +0.9142a+31.695)
  • point B (0.0, 0.009a 2 ⁇ 1.6045a+59.318, ⁇ 0.009a 2 +0.6045a+40.682)
  • point W (0.0, 100.0 ⁇ a, 0.0), or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);
  • coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
  • point G (0.0111a 2 ⁇ 1.3152a+68.986, ⁇ 0.0111a 2 +0.3152a+31.014, 0.0)
  • point I (0.0111a 2 ⁇ 1.3152a+68.986, 0.0, ⁇ 0.0111a 2 +0.3152a+31.014)
  • point A (0.0103a 2 ⁇ 1.9225a+68.793, 0.0, ⁇ 0.0103a 2 +0.9225a+31.207)
  • point B 0.0, 0.0046a 2 ⁇ 1.41a+57.286, ⁇ 0.0046a 2 +0.41a+42.714) and point W (0.0, 100.0 ⁇ a, 0.0), or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W); and
  • coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
  • point G (0.0061a 2 ⁇ 0.9918a+63.902, ⁇ 0.0061a 2 ⁇ 0.0082a+36.098, 0.0)
  • point I (0.0061a 2 ⁇ 0.9918a+63.902, 0.0, ⁇ 0.0061a 2 ⁇ 0.0082a+36.098)
  • point A (0.0085a 2 ⁇ 1.8102a+67.1, 0.0, ⁇ 0.0085a 2 +0.8102a+32.9)
  • point B 0.0, 0.0012a 2 ⁇ 1.1659a+52.95, ⁇ 0.0012a 2 +0.1659a+47.05
  • point W (0.0, 100.0 ⁇ a, 0.0), or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W).
  • the refrigerant according to the present disclosure satisfies the above requirements, it has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A, and further ensures a WCF lower flammability.
  • the refrigerant C according to the present disclosure is preferably a refrigerant wherein
  • point J (0.0049a 2 ⁇ 0.9645a+47.1, ⁇ 0.0049a 2 ⁇ 0.0355a+52.9, 0.0)
  • point K′ (0.0514a 2 ⁇ 2.4353a+61.7, ⁇ 0.0323a 2 +0.4122a+5.9, ⁇ 0.0191a 2 +1.0231a+32.4)
  • point B (0.0, 0.0144a 2 ⁇ 1.6377a+58.7, ⁇ 0.0144a 2 +0.6377a+41.3)
  • point D′ (0.0, 0.0224a 2 +0.968a+75.4, ⁇ 0.0224a 2 ⁇ 1.968a+24.6)
  • point C ( ⁇ 0.2304a 2 ⁇ 0.4062a+32.9, 0.2304a 2 ⁇ 0.5938a+67.1, 0.0), or on the straight lines JK′, K′B, and D′C (excluding point J, point B, point D′, and point C);
  • coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
  • point J (0.0243a 2 ⁇ 1.4161a+49.725, ⁇ 0.0243a 2 +0.4161a+50.275, 0.0)
  • point K′ (0.0341a 2 ⁇ 2.1977a+61.187, ⁇ 0.0236a 2 +0.34a+5.636, ⁇ 0.0105a 2 +0.8577a+33.177)
  • point B (0.0, 0.0075a 2 ⁇ 1.5156a+58.199, ⁇ 0.0075a 2 +0.5156a+41.801) and point W (0.0, 100.0 ⁇ a, 0.0), or on the straight lines JK′ and K′B (excluding point J, point B, and point W);
  • coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
  • point J (0.0246a 2 ⁇ 1.4476a+50.184, ⁇ 0.0246a 2 +0.4476a+49.816, 0.0)
  • point K′ (0.0196a 2 ⁇ 1.7863a+58.515, ⁇ 0.0079a 2 ⁇ 0.1136a+8.702, ⁇ 0.0117a 2 +0.8999a+32.783)
  • point B (0.0, 0.009a 2 ⁇ 1.6045a+59.318, ⁇ 0.009a 2 +0.6045a+40.682) and point W (0.0, 100.0 ⁇ a, 0.0), or on the straight lines JK′ and K′B (excluding point J, point B, and point W);
  • coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
  • point J (0.0183a 2 ⁇ 1.1399a+46.493, ⁇ 0.0183a 2 +0.1399a+53.507, 0.0)
  • point K′ ( ⁇ 0.0051a 2 +0.0929a+25.95, 0.0, 0.0051a 2 ⁇ 1.0929a+74.05)
  • point A (0.0103a 2 ⁇ 1.9225a+68.793, 0.0, ⁇ 0.0103a 2 +0.9225a+31.207)
  • point B (0.0, 0.0046a 2 ⁇ 1.41a+57.286, ⁇ 0.0046a 2 +0.41a+42.714)
  • point W (0.0, 100.0 ⁇ a, 0.0), or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W); and
  • coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
  • point J ( ⁇ 0.0134a 2 +1.0956a+7.13, 0.0134a 2 ⁇ 2.0956a+92.87, 0.0)
  • point K′ ( ⁇ 1.892a+29.443, 0.0, 0.892a+70.557)
  • point A (0.0085a 2 ⁇ 1.8102a+67.1, 0.0, ⁇ 0.0085a 2 +0.8102a+32.9)
  • point B (0.0, 0.0012a 2 ⁇ 1.1659a+52.95, ⁇ 0.0012a 2 +0.1659a+47.05)
  • point W (0.0, 100.0 ⁇ a, 0.0), or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W).
  • the refrigerant according to the present disclosure When the refrigerant according to the present disclosure satisfies the above requirements, it has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A. Additionally, the refrigerant has a WCF lower flammability and a WCFF lower flammability, and is classified as “Class 2L,” which is a lower flammable refrigerant according to the ASHRAE standard.
  • the refrigerant may be a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum is respectively represented by x, y, z, and a,
  • point a (0.02a 2 ⁇ 2.46a+93.4, 0, ⁇ 0.02a 2 +2.46a+6.6)
  • point b′ ( ⁇ 0.008a 2 ⁇ 1.38a+56, 0.018a 2 ⁇ 0.53a+26.3, ⁇ 0.01a 2 +1.91a+17.7)
  • point c ( ⁇ 0.016a 2 +1.02a+77.6, 0.016a 2 ⁇ 1.02a+22.4, 0)
  • point o (100.0 ⁇ a, 0.0, 0.0) or on the straight lines oa, ab′, and b′c (excluding point o and point c);
  • point a (0.0244a 2 ⁇ 2.5695a+94.056, 0, ⁇ 0.0244a 2 +2.5695a+5.944), point b′ (0.1161a 2 ⁇ 1.9959a+59.749, 0.014a 2 ⁇ 0.3399a+24.8, ⁇ 0.1301a 2 +2.3358a+15.451), point c ( ⁇ 0.0161a 2 +1.02a+77.6, 0.0161a 2 ⁇ 1.02a+22.4, 0), and point o (100.0 ⁇ a, 0.0, 0.0), or on the straight lines oa, ab′, and b′c (excluding point o and point c); or
  • point a (0.0161a 2 ⁇ 2.3535a+92.742, 0, ⁇ 0.0161a 2 +2.3535a+7.258), point b′ ( ⁇ 0.0435a 2 ⁇ 0.0435a+50.406, 0.0304a 2 +1.8991a ⁇ 0.0661, 0.0739a 2 ⁇ 1.8556a+49.6601), point c ( ⁇ 0.0161a 2 +0.9959a+77.851, 0.0161a 2 ⁇ 0.9959a+22.149, 0), and point o (100.0 ⁇ a, 0.0, 0.0), or on the straight lines oa, ab′, and b′c (excluding point o and point c).
  • point b in the ternary composition diagram is defined as a point where a refrigerating capacity ratio of 95% relative to that of R410A and a COP ratio of 95% relative to that of R410A are both achieved
  • point b′ is the intersection of straight line ab and an approximate line formed by connecting the points where the COP ratio relative to that of R410A is 95%.
  • the refrigerant according to the present disclosure meets the above requirements, the refrigerant has a refrigerating capacity ratio of 95% or more relative to that of R410A, and a COP ratio of 95% or more relative to that of R410A.
  • the refrigerant C according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), HFO-1123, R1234yf, and R32 as long as the above properties and effects are not impaired.
  • the refrigerant according to the present disclosure preferably comprises HFO-1132(E), HFO-1123, R1234yf, and R32 in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and still more preferably 99.9 mass % or more, based on the entire refrigerant.
  • the refrigerant C according to the present disclosure may comprise HFO-1132(E), HFO-1123, R1234yf, and R32 in a total amount of 99.5 mass % or more, 99.75 mass % or more, or 99.9 mass % or more, based on the entire refrigerant.
  • Additional refrigerants are not particularly limited and can be widely selected.
  • the mixed refrigerant may contain one additional refrigerant, or two or more additional refrigerants.
  • refrigerant C is not limited to the Examples.
  • compositions each comprising a mixture of R410A were evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report.
  • the refrigerating capacity of compositions each comprising R410A and a mixture of HFO-1132(E) and HFO-1123 was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.
  • Tables 39 to 96 show the resulting values together with the GWP of each mixed refrigerant.
  • the COP and refrigerating capacity are ratios relative to R410A.
  • the coefficient of performance (COP) was determined by the following formula.
  • HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum is respectively represented by x, y, z, and a, in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100 ⁇ a) mass %, a straight line connecting a point (0.0, 100.0 ⁇ a, 0.0) and a point (0.0, 0.0, 100.0 ⁇ a) is the base, and the point (0.0, 100.0 ⁇ a, 0.0) is on the left side, if 0 ⁇ a ⁇ 11.1, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0134a 2 ⁇ 1.9681a+68.6, 0.0, ⁇ 0.0134a 2 +0.9681a+31.4) and point B (0.0, 0.0144a 2 ⁇ 1.6377a+58.7, ⁇ 0.0144a 2
  • coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0112a 2 ⁇ 1.9337a+68.484, 0.0, ⁇ 0.0112a 2 +0.9337a+31.516) and point B (0.0, 0.0075a 2 ⁇ 1.5156a+58.199, ⁇ 0.0075a 2 +0.5156a+41.801);
  • coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0107a 2 ⁇ 1.9142a+68.305, 0.0, ⁇ 0.0107a 2 +0.9142a+31.695) and point B (0.0, 0.009a 2 ⁇ 1.6045a+59.318, ⁇ 0.009a 2 +0.6045a+40.682);
  • coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0103a 2 ⁇ 1.9225a+68.793, 0.0, ⁇ 0.0103a 2 +0.9225a+31.207) and point B (0.0, 0.0046a 2 ⁇ 1.41a+57.286, ⁇ 0.0046a 2 +0.41a+42.714); and
  • coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0085a 2 ⁇ 1.8102a+67.1, 0.0, ⁇ 0.0085a 2 +0.8102a+32.9) and point B (0.0, 0.0012a 2 ⁇ 1.1659a+52.95, ⁇ 0.0012a 2 +0.1659a+47.05).
  • the COP ratio of 92.5% or more forms a curved line CD.
  • D′C a straight line that connects point C and point D′ (0, 75.4, 24.6)
  • point D′(0, 83.4, 9.5) was similarly obtained from an approximate curve formed by connecting point C (18.4, 74.5, 0) and points (13.9, 76.5, 2.5) (8.7, 79.2, 5) where the COP ratio is 92.5%, and a straight line that connects point C and point D′ was defined as the straight line D′C.
  • composition of each mixture was defined as WCF.
  • a leak simulation was performed using NIST Standard Reference Database REFLEAK Version 4.0 under the conditions of Equipment, Storage, Shipping, Leak, and Recharge according to the ASHRAE Standard 34-2013.
  • the most flammable fraction was defined as WCFF.
  • the burning velocity was measured according to the ANSI/ASHRAE Standard 34-2013. Both WCF and WCFF having a burning velocity of 10 cm/s or less were determined to be classified as “Class 2L (lower flammability).”
  • a burning velocity test was performed using the apparatus shown in FIG. 2 in the following manner.
  • the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge.
  • the burning velocity was measured by the closed method.
  • the initial temperature was ambient temperature.
  • Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell.
  • the duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J.
  • the spread of the flame was visualized using schlieren photographs.
  • a cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source.
  • Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.
  • coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.02a 2 ⁇ 1.6013a+71.105, ⁇ 0.02a 2 +0.6013a+28.895, 0.0) and point I (0.02a 2 ⁇ 1.6013a+71.105, 0.0, ⁇ 0.02a 2 +0.6013a+28.895); if 18.2 ⁇ a ⁇ 26.7, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.0135a 2 ⁇ 1.4068a+69.727, ⁇ 0.0135a 2 +0.4068a+30.273, 0.0) and point I (0.0135a 2 ⁇ 1.4068a+69.727, 0.0, ⁇ 0.0135a 2 +0.4068a+30.273); if 26.7 ⁇ a ⁇ 36.7, coordinates (x,y,z)
  • FIGS. 4 to 14 show compositions whose R32 content a (mass %) is 0 mass %, 7.1 mass %, 11.1 mass %, 14.5 mass %, 18.2 mass %, 21.9 mass %, 26.7 mass %, 29.3 mass %, 36.7 mass %, 44.1 mass %, and 47.8 mass %, respectively.
  • Points A, B, C, and D′ were obtained in the following manner according to approximate calculation.
  • Point A is a point where the content of HFO-1123 is 0 mass %, and a refrigerating capacity ratio of 85% relative to that of R410A is achieved. Three points corresponding to point A were obtained in each of the following five ranges by calculation, and their approximate expressions were obtained (Table 109).
  • Point B is a point where the content of HFO-1132(E) is 0 mass %, and a refrigerating capacity ratio of 85% relative to that of R410A is achieved.
  • Point D′ is a point where the content of HFO-1132(E) is 0 mass %, and a COP ratio of 95.5% relative to that of R410A is achieved.
  • Point C is a point where the content of R1234yf is 0 mass %, and a COP ratio of 95.5% relative to that of R410A is achieved.
  • the refrigerant D is a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).
  • the refrigerant D according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant; i.e., a refrigerating capacity equivalent to that of R410A, a sufficiently low GWP, and a lower flammability (Class 2L) according to the ASHRAE standard.
  • the refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • the line segment IJ is represented by coordinates (0.0236y 2 ⁇ 1.7616y+72.0, y, ⁇ 0.0236y 2 +0.7616y+28.0);
  • the line segment NE is represented by coordinates (0.012y 2 ⁇ 1.9003y+58.3, y, ⁇ 0.012y 2 +0.9003y+41.7);
  • the line segments JN and EI are straight lines.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 125 or less, and a WCF lower flammability.
  • the refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • point M (52.6, 0.0, 47.4), point M′ (39.2, 5.0, 55.8), point N (27.7, 18.2, 54.1), point V (11.0, 18.1, 70.9), and point G (39.6, 0.0, 60.4), or on these line segments (excluding the points on the line segment GM);
  • the line segment MM′ is represented by coordinates (0.132y 2 ⁇ 3.34y+52.6, y, ⁇ 0.132y 2 +2.34y+47.4);
  • the line segment M′N is represented by coordinates (0.0596y 2 ⁇ 2.2541y+48.98, y, ⁇ 0.0596y 2 +1.2541y+51.02);
  • the line segment VG is represented by coordinates (0.0123y 2 ⁇ 1.8033y+39.6, y, ⁇ 0.0123y 2 +0.8033y+60.4);
  • the line segments NV and GM are straight lines.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 70% or more relative to R410A, a GWP of 125 or less, and an ASHRAE lower flammability.
  • the refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • the line segment ON is represented by coordinates (0.0072y 2 ⁇ 0.6701y+37.512, y, ⁇ 0.0072y 2 ⁇ 0.3299y+62.488);
  • the line segment NU is represented by coordinates (0.0083y 2 ⁇ 1.7403y+56.635, y, ⁇ 0.0083y 2 +0.7403y+43.365);
  • the line segment UO is a straight line.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 250 or less, and an ASHRAE lower flammability.
  • the refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • point Q (44.6, 23.0, 32.4), point R (25.5, 36.8, 37.7), point T (8.6, 51.6, 39.8), point L (28.9, 51.7, 19.4), and point K (35.6, 36.8, 27.6), or on these line segments;
  • the line segment QR is represented by coordinates (0.0099y 2 ⁇ 1.975y+84.765, y, ⁇ 0.0099y 2 +0.975y+15.235);
  • the line segment RT is represented by coordinates (0.0082y 2 ⁇ 1.8683y+83.126, y, ⁇ 0.0082y 2 +0.8683y+16.874);
  • the line segment LK is represented by coordinates (0.0049y 2 ⁇ 0.8842y+61.488, y, ⁇ 0.0049y 2 ⁇ 0.1158y+38.512);
  • the line segment KQ is represented by coordinates (0.0095y 2 ⁇ 1.2222y+67.676, y, ⁇ 0.0095y 2 +0.2222y+32.324);
  • the line segment TL is a straight line.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and a WCF lower flammability.
  • the refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • point P (20.5, 51.7, 27.8), point S (21.9, 39.7, 38.4), and point T (8.6, 51.6, 39.8), or on these line segments;
  • the line segment PS is represented by coordinates (0.0064y 2 ⁇ 0.7103y+40.1, y, ⁇ 0.0064y 2 ⁇ 0.2897y+59.9);
  • the line segment ST is represented by coordinates (0.0082y 2 ⁇ 1.8683y+83.126, y, ⁇ 0.0082y 2 +0.8683y+16.874);
  • the line segment TP is a straight line.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and an ASHRAE lower flammability.
  • the refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • point a (71.1, 0.0, 28.9), point c (36.5, 18.2, 45.3), point f (47.6, 18.3, 34.1), and point d (72.0, 0.0, 28.0), or on these line segments;
  • the line segment ac is represented by coordinates (0.0181y 2 ⁇ 2.2288y+71.096, y, ⁇ 0.0181y 2 +1.2288y+28.904);
  • the line segment fd is represented by coordinates (0.02y 2 ⁇ 1.7y+72, y, ⁇ 0.02y 2 +0.7y+28);
  • the line segments cf and da are straight lines.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to R410A, a GWP of 125 or less, and a lower flammability (Class 2L) according to the ASHRAE standard.
  • the refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • point a (71.1, 0.0, 28.9), point b (42.6, 14.5, 42.9), point e (51.4, 14.6, 34.0), and point d (72.0, 0.0, 28.0), or on these line segments;
  • the line segment ab is represented by coordinates (0.0181y 2 ⁇ 2.2288y+71.096, y, ⁇ 0.0181y 2 +1.2288y+28.904);
  • the line segment ed is represented by coordinates (0.02y 2 ⁇ 1.7y+72, y, ⁇ 0.02y 2 +0.7y+28);
  • the line segments be and da are straight lines.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to R410A, a GWP of 100 or less, and a lower flammability (Class 2L) according to the ASHRAE standard.
  • the refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • the line segment gi is represented by coordinates (0.02y 2 ⁇ 2.4583y+93.396, y, ⁇ 0.02y 2 +1.4583y+6.604);
  • the line segments ij and jg are straight lines.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to R410A and a GWP of 100 or less, undergoes fewer or no changes such as polymerization or decomposition, and also has excellent stability.
  • the refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • the line segment gh is represented by coordinates (0.02y 2 ⁇ 2.4583y+93.396, y, ⁇ 0.02y 2 +1.4583y+6.604);
  • the line segments hk and kg are straight lines.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to R410A and a GWP of 100 or less, undergoes fewer or no changes such as polymerization or decomposition, and also has excellent stability.
  • the refrigerant D according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), R32, and R1234yf, as long as the above properties and effects are not impaired.
  • the refrigerant according to the present disclosure preferably comprises HFO-1132(E), R32, and R1234yf in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and still more preferably 99.9 mass % or more based on the entire refrigerant.
  • additional refrigerants are not limited, and can be selected from a wide range of refrigerants.
  • the mixed refrigerant may comprise a single additional refrigerant, or two or more additional refrigerants.
  • refrigerant D is not limited to the Examples.
  • composition of each mixed refrigerant of HFO-1132(E), R32, and R1234yf was defined as WCF.
  • a leak simulation was performed using the NIST Standard Reference Database REFLEAK Version 4.0 under the conditions of Equipment, Storage, Shipping, Leak, and Recharge according to the ASHRAE Standard 34-2013.
  • the most flammable fraction was defined as WCFF.
  • a burning velocity test was performed using the apparatus shown in FIG. 2 in the following manner.
  • the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge.
  • the burning velocity was measured by the closed method.
  • the initial temperature was ambient temperature.
  • Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell.
  • the duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J.
  • the spread of the flame was visualized using schlieren photographs.
  • a cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source.
  • Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC. Tables 113 to 115 show the results.
  • Example 25 Item Unit O 24 P WCF HFO-1132 (E) Mass % 22.6 21.2 20.5 HFO-1123 Mass % 36.8 44.2 51.7 R1234yf Mass % 40.6 34.6 27.8 Leak condition that Storage, Storage, Storage, results in WCFF Shipping, Shipping, Shipping, ⁇ 40° C., ⁇ 40° C., ⁇ 40° C., 0% release, 0% release, 0% release, on the gas on the gas on the gas phase side phase side phase side WCFF HFO-1132 (E) Mass % 31.4 29.2 27.1 HFO-1123 Mass % 45.7 51.1 56.4 R1234yf Mass % 23.0 19.7 16.5 Burning Velocity cm/s 8 or less 8 or less 8 or less (WCF) Burning Velocity cm/s 10 10 10 (WCFF)
  • Tables 116 to 144 show these values together with the GWP of each mixed refrigerant.
  • Example 1 A B A′ B′ A′′ B′′ HFO-1132(E) Mass % R410A 81.6 0.0 63.1 0.0 48.2 0.0 R32 Mass % 18.4 18.1 36.9 36.7 51.8 51.5 R1234yf Mass % 0.0 81.9 0.0 63.3 0.0 48.5 GWP — 2088 125 125 250 250 350 350 COP Ratio %(relative to 100 98.7 103.6 98.7 102.3 99.2 102.2 R410A) Refrigerating %(relative to 100 105.3 62.5 109.9 77.5 112.1 87.3 Capacity Ratio R410A)
  • Example 10 Item Unit E Example 5 N Example 7 U G Example 9 V HFO-1132(E) Mass % 58.3 40.5 27.7 14.9 3.9 39.6 22.8 11.0 R32 Mass % 0.0 10.0 18.2 27.6 36.7 0.0 10.0 18.1 R1234yf Mass % 41.7 49.5 54.1 57.5 59.4 60.4 67.2 70.9 GWP — 2 70 125 189 250 3 70 125 COP Ratio %(relative to 100.3 100.3 100.7 101.2 101.9 101.4 101.8 102.3 R410A) Refrigerating Capacity %(relative to 80.0 80.0 80.0 80.0 80.0 80.0 70.0 70.0 70.0 Ratio R410A)
  • Example 21 Item Unit M
  • Example 18 W Example 20
  • Example 22 HFO-1132(E) Mass % 52.6 39.2 32.4 29.3 27.7 24.5
  • 18.2 27.6 R1234yf Mass % 47.4 55.8 57.6 56.2 54.1 47.9
  • GWP — 2 36 70 100 125 188 COP Ratio %(relative to 100.5 100.9 100.9 100.8 100.7 100.4
  • R410A Refrigerating Capacity %(relative to 77.1 74.8 75.6 77.8 80.0 85.5 Ratio R410A)
  • Example Example 23 Example 25 26 Item Unit O 24 P S HFO-1132(E) Mass % 22.6 21.2 20.5 21.9 R32 Mass % 36.8 44.2 51.7 39.7 R1234yf Mass % 40.6 34.6 27.8 38.4 GWP — 250 300 350 270 COP Ratio % (relative to 100.4 100.5 100.6 100.4 R410A) Refrigerating % (relative to 91.0 95.0 99.1 92.5 Capacity Ratio R410A)
  • Example 79 Example 80
  • Example 82 Example 83
  • Example 84 Example 85
  • Example 86 HFO-1132(E) Mass % 39.0 42.0 30.0 33.0 36.0 26.0 29.0 32.0
  • R1234yf Mass % 58.0 55.0 64.0 61.0 58.0 65.0 62.0 59.0
  • GWP 23 23 43 43 43 43 64 64 63 COP Ratio % (relative to 101.1 100.9 101.5 101.3 101.0 101.6 101.3 101.1 R410A) Refrigerating % (relative to 72.7 74.4 70.5 72.2 73.9 71.0 72.8 74.5 Capacity R410A) Ratio
  • Example Example Item Unit Example 95
  • Example 96 Example 97
  • Example 98 Example 99 100 101 102 HFO-1132(E) Mass % 28.0 12.0 15.0 18.0 21.0 24.0 27.0 25.0 R32 Mass % 15.0 18.0 18.0 18.0 18.0 18.0 21.0 R1234yf Mass % 57.0 70.0 67.0 64.0 61.0 58.0 55.0 54.0 GWP — 104 124 124 124 124 124 124 144 COP Ratio % (relative to 100.9 102.2 101.9 101.6 101.3 101.0 100.7 100.7 R410A) Refrigerating % (relative to 77.5 70.5 72.4 74.2 76.0 77.7 79.4 80.7 Capacity R410A) Ratio
  • Example Example Item Unit Example 103 104 105 106 Example 107 Example 108 Example 109 Example 110 HFO-1132(E) Mass % 21.0 24.0 17.0 20.0 23.0 13.0 16.0 19.0 R32 Mass % 24.0 24.0 27.0 27.0 27.0 30.0 30.0 R1234yf Mass % 55.0 52.0 56.0 53.0 50.0 57.0 54.0 51.0 GWP — 164 164 185 185 184 205 205 205 COP Ratio % (relative to 100.9 100.6 101.1 100.8 100.6 101.3 101.0 100.8 R410A) Refrigerating % (relative to 80.8 82.5 80.8 82.5 84.2 80.7 82.5 84.2 Capacity R410A) Ratio
  • Example Example Item Unit Example 111
  • Example 112 Example 113
  • Example 114 115 116 117
  • Example 118 HFO-1132(E) Mass % 22.0 9.0 12.0 15.0 18.0 21.0 8.0 12.0
  • R32 Mass % 30.0 33.0 33.0 33.0 33.0 33.0 36.0 36.0
  • R1234yf Mass % 48.0 58.0 55.0 52.0 49.0 46.0 56.0 52.0
  • Ratio % (relative to 100.5 101.6 101.3
  • Refrigerating % (relative to 85.9 80.5 82.3 84.1 85.8 87.5 82.0 84.4 Capacity
  • Example Example Item Unit Example 120
  • Example 125 Example 126 HFO-1132(E) Mass % 15.0 18.0 21.0 42.0 39.0 34.0 37.0 30.0
  • R1234yf Mass % 49.0 46.0 43.0 33.0 33.0 35.0 32.0 36.0
  • Ratio % (relative to 101.0 100.7 100.5 99.5 99.5 99.8 99.6 99.9
  • Refrigerating % (relative to 86.2 87.9 89.6 92.7 93.4 93.0 94.5 93.0 Capacity R410A)
  • Example 152 HFO-1132(E) Mass % 25.0 28.0 R32 Mass % 49.0 49.0 R1234yf Mass % 26.0 23.0 GWP — 332 332 COP Ratio % (relative to 100.3 100.1 R410A) Refrigerating % (relative to 99.8 101.3 Capacity Ratio R410A)
  • the line segment IJ is represented by coordinates (0.0236y 2 ⁇ 1.7616y+72.0, y, ⁇ 0.0236y 2 +0.7616y+28.0),
  • the line segment NE is represented by coordinates (0.012y 2 ⁇ 1.9003y+58.3, y, ⁇ 0.012y 2 +0.9003y+41.7), and
  • the refrigerant D has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 125 or less, and a WCF lower flammability.
  • point M (52.6, 0.0, 47.4), point M′ (39.2, 5.0, 55.8), point N (27.7, 18.2, 54.1), point V (11.0, 18.1, 70.9), and point G (39.6, 0.0, 60.4), or on these line segments (excluding the points on the line segment GM),
  • the line segment MM′ is represented by coordinates (0.132y 2 ⁇ 3.34y+52.6, y, ⁇ 0.132y 2 +2.34y+47.4)
  • the line segment M′N is represented by coordinates (0.0596y 2 ⁇ 2.2541y+48.98, y, ⁇ 0.0596y 2 +1.2541y+51.02),
  • the line segment VG is represented by coordinates (0.0123y 2 ⁇ 1.8033y+39.6, y, ⁇ 0.0123y 2 +0.8033y+60.4), and
  • the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 70% or more relative to R410A, a GWP of 125 or less, and an ASHRAE lower flammability.
  • the line segment ON is represented by coordinates (0.0072y 2 ⁇ 0.6701y+37.512, y, ⁇ 0.0072y 2 ⁇ 0.3299y+62.488),
  • the line segment NU is represented by coordinates (0.0083y 2 ⁇ 1.7403y+56.635, y, ⁇ 0.0083y 2 +0.7403y+43.365), and
  • the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 250 or less, and an ASHRAE lower flammability.
  • point Q (44.6, 23.0, 32.4), point R (25.5, 36.8, 37.7), point T (8.6, 51.6, 39.8), point L (28.9, 51.7, 19.4), and point K (35.6, 36.8, 27.6), or on these line segments,
  • the line segment QR is represented by coordinates (0.0099y 2 ⁇ 1.975y+84.765, y, ⁇ 0.0099y 2 +0.975y+15.235),
  • the line segment RT is represented by coordinates (0.0082y 2 ⁇ 1.8683y+83.126, y, ⁇ 0.0082y 2 +0.8683y+16.874),
  • the line segment LK is represented by coordinates (0.0049y 2 ⁇ 0.8842y+61.488, y, ⁇ 0.0049y 2 ⁇ 0.1158y+38.512),
  • the line segment KQ is represented by coordinates (0.0095y 2 ⁇ 1.2222y+67.676, y, ⁇ 0.0095y 2 +0.2222y+32.324), and
  • the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and a WCF lower flammability.
  • the line segment PS is represented by coordinates (0.0064y 2 ⁇ 0.7103y+40.1, y, ⁇ 0.0064y 2 ⁇ 0.2897y+59.9),
  • the line segment ST is represented by coordinates (0.0082y 2 ⁇ 1.8683y+83.126, y, ⁇ 0.0082y 2 +0.8683y+16.874), and
  • the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and an ASHRAE lower flammability.
  • the refrigerant E is a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32).
  • the refrigerant E according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant, i.e., a coefficient of performance equivalent to that of R410A and a sufficiently low GWP.
  • the refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • point I (72.0, 28.0, 0.0), point K (48.4, 33.2, 18.4), point B′ (0.0, 81.6, 18.4), point H (0.0, 84.2, 15.8), point R (23.1, 67.4, 9.5), and point G (38.5, 61.5, 0.0), or on these line segments (excluding the points on the line segments B′H and GI);
  • the line segment IK is represented by coordinates (0.025z 2 ⁇ 1.7429z+72.00, ⁇ 0.025z 2 +0.7429z+28.0, z),
  • the line segment HR is represented by coordinates ( ⁇ 0.3123z 2 +4.234z+11.06, 0.3123z 2 ⁇ 5.234z+88.94, z),
  • the line segment RG is represented by coordinates ( ⁇ 0.0491z 2 ⁇ 1.1544z+38.5, 0.0491z 2 +0.1544z+61.5, z), and
  • the line segments KB′ and GI are straight lines.
  • the refrigerant according to the present disclosure has WCF lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 125 or less.
  • the refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • point I (72.0, 28.0, 0.0), point J (57.7, 32.8, 9.5), point R (23.1, 67.4, 9.5), and point G (38.5, 61.5, 0.0), or on these line segments (excluding the points on the line segment GI);
  • the line segment IJ is represented by coordinates (0.025z 2 ⁇ 1.7429z+72.0, ⁇ 0.025z 2 +0.7429z+28.0, z),
  • the line segment RG is represented by coordinates ( ⁇ 0.0491z 2 ⁇ 1.1544z+38.5, 0.0491z 2 +0.1544z+61.5, z), and
  • the line segments JR and GI are straight lines.
  • the refrigerant according to the present disclosure has WCF lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 125 or less.
  • the refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • point M (47.1, 52.9, 0.0), point P (31.8, 49.8, 18.4), point B′ (0.0, 81.6, 18.4), point H (0.0, 84.2, 15.8), point R (23.1, 67.4, 9.5), and point G (38.5, 61.5, 0.0), or on these line segments (excluding the points on the line segments B′H and GM);
  • the line segment MP is represented by coordinates (0.0083z 2 ⁇ 0.984z+47.1, ⁇ 0.0083z 2 ⁇ 0.016z+52.9, z),
  • the line segment HR is represented by coordinates ( ⁇ 0.3123z 2 +4.234z+11.06, 0.3123z 2 ⁇ 5.234z+88.94, z),
  • the line segment RG is represented by coordinates ( ⁇ 0.0491z 2 ⁇ 1.1544z+38.5, 0.0491z 2 +0.1544z+61.5, z), and
  • the line segments PB′ and GM are straight lines.
  • the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 125 or less.
  • the refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • point M (47.1, 52.9, 0.0), point N (38.5, 52.1, 9.5), point R (23.1, 67.4, 9.5), and point G (38.5, 61.5, 0.0), or on these line segments (excluding the points on the line segment GM);
  • the line segment MN is represented by coordinates (0.0083z 2 ⁇ 0.984z+47.1, ⁇ 0.0083z 2 ⁇ 0.016z+52.9, z),
  • the line segment RG is represented by coordinates ( ⁇ 0.0491z 2 ⁇ 1.1544z+38.5, 0.0491z 2 +0.1544z+61.5, z),
  • the line segments NR and GM are straight lines.
  • the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 65 or less.
  • the refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • point P (31.8, 49.8, 18.4), point S (25.4, 56.2, 18.4), and point T (34.8, 51.0, 14.2), or on these line segments;
  • the line segment ST is represented by coordinates ( ⁇ 0.0982z 2 +0.9622z+40.931, 0.0982z 2 ⁇ 1.9622z+59.069, z),
  • the line segment TP is represented by coordinates (0.0083z 2 ⁇ 0.984z+47.1, ⁇ 0.0083z 2 ⁇ 0.016z+52.9, z), and
  • the line segment PS is a straight line.
  • the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 94.5% or more relative to that of R410A, and a GWP of 125 or less.
  • the refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • point Q (28.6, 34.4, 37.0), point B′′ (0.0, 63.0, 37.0), point D (0.0, 67.0, 33.0), and point U (28.7, 41.2, 30.1), or on these line segments (excluding the points on the line segment B′′D);
  • the line segment DU is represented by coordinates ( ⁇ 3.4962z 2 +210.71z ⁇ 3146.1, 3.4962z 2 ⁇ 211.71z+3246.1, z),
  • the line segment UQ is represented by coordinates (0.0135z 2 ⁇ 0.9181z+44.133, ⁇ 0.0135z 2 ⁇ 0.0819z+55.867, z), and
  • the line segments QB′′ and B′′D are straight lines.
  • the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 96% or more relative to that of R410A, and a GWP of 250 or less.
  • the refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • point O (100.0, 0.0, 0.0), point c′ (56.7, 43.3, 0.0), point d′ (52.2, 38.3, 9.5), point e′ (41.8, 39.8, 18.4), and point a′ (81.6, 0.0, 18.4), or on the line segments c′d′, d′e′, and e′a′ (excluding the points c′ and a′);
  • the line segment c′d′ is represented by coordinates ( ⁇ 0.0297z 2 ⁇ 0.1915z+56.7, 0.0297z 2 +1.1915z+43.3, z),
  • the line segment d′e′ is represented by coordinates ( ⁇ 0.0535z 2 +0.3229z+53.957, 0.0535z 2 +0.6771z+46.043, z), and
  • the refrigerant according to the present disclosure has a COP ratio of 92.5% or more relative to that of R410A, and a GWP of 125 or less.
  • the refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • point O (100.0, 0.0, 0.0), point c (77.7, 22.3, 0.0), point d (76.3, 14.2, 9.5), point e (72.2, 9.4, 18.4), and point a′ (81.6, 0.0, 18.4), or on the line segments cd, de, and ea′ (excluding the points c and a′);
  • the line segment cde is represented by coordinates ( ⁇ 0.017z 2 +0.0148z+77.684, 0.017z 2 +0.9852z+22.316, z), and
  • the refrigerant according to the present disclosure has a COP ratio of 95% or more relative to that of R410A, and a GWP of 125 or less.
  • the refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • point O (100.0, 0.0, 0.0), point c′ (56.7, 43.3, 0.0), point d′ (52.2, 38.3, 9.5), and point a (90.5, 0.0, 9.5), or on the line segments c′d′ and d′a (excluding the points c′ and a);
  • the line segment c′d′ is represented by coordinates ( ⁇ 0.0297z 2 ⁇ 0.1915z+56.7, 0.0297z 2 +1.1915z+43.3, z), and
  • the refrigerant according to the present disclosure has a COP ratio of 93.5% or more relative to that of R410A, and a GWP of 65 or less.
  • the refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • point O (100.0, 0.0, 0.0), point c (77.7, 22.3, 0.0), point d (76.3, 14.2, 9.5), and point a (90.5, 0.0, 9.5), or on the line segments cd and da (excluding the points c and a);
  • the refrigerant according to the present disclosure has a COP ratio of 95% or more relative to that of R410A, and a GWP of 65 or less.
  • the refrigerant E according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), HFO-1123, and R32, as long as the above properties and effects are not impaired.
  • the refrigerant according to the present disclosure preferably comprises HFO-1132(E), HFO-1123, and R32 in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and even more preferably 99.9 mass % or more, based on the entire refrigerant.
  • additional refrigerants are not limited, and can be selected from a wide range of refrigerants.
  • the mixed refrigerant may comprise a single additional refrigerant, or two or more additional refrigerants.
  • refrigerant E is not limited to the Examples.
  • composition of each mixture was defined as WCF.
  • a leak simulation was performed using National Institute of Science and Technology (NIST) Standard Reference Data Base Refleak Version 4.0 under the conditions for equipment, storage, shipping, leak, and recharge according to the ASHRAE Standard 34-2013.
  • the most flammable fraction was defined as WCFF.
  • the burning velocity was measured according to the ANSI/ASHRAE Standard 34-2013.
  • the burning velocities of the WCF composition and the WCFF composition are 10 cm/s or less, the flammability of such a refrigerant is classified as Class 2L (lower flammability) in the ASHRAE flammability classification.
  • a burning velocity test was performed using the apparatus shown in FIG. 2 in the following manner.
  • the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge.
  • the burning velocity was measured by the closed method.
  • the initial temperature was ambient temperature.
  • Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell.
  • the duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J.
  • the spread of the flame was visualized using schlieren photographs.
  • a cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source.
  • Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.
  • Table 1 indicate that in a ternary composition diagram of a mixed refrigerant of HFO-1132(E), HFO-1123, and R32 in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on or below line segments IK and KL that connect the following 3 points:
  • the line segment IK is represented by coordinates (0.025z 2 ⁇ 1.7429z+72.00, ⁇ 0.025z 2 +0.7429z+28.00, z)
  • the line segment KL is represented by coordinates (0.0098z 2 ⁇ 1.238z+67.852, ⁇ 0.0098z 2 +0.238z+32.148, z)
  • Table 146 indicate that in a ternary composition diagram of a mixed refrigerant of HFO-1132(E), HFO-1123, and R32 in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on or below line segments MP and PQ that connect the following 3 points:
  • the line segment MP is represented by coordinates (0.0083z 2 ⁇ 0.984z+47.1, ⁇ 0.0083z 2 ⁇ 0.016z+52.9, z), and the line segment PQ is represented by coordinates
  • an approximate curve was obtained from three points, i.e., points M, N, and P, by using the least-square method to determine coordinates.
  • an approximate curve was obtained from three points, i.e., points P, U, and Q, by using the least-square method to determine coordinates.
  • compositions each comprising a mixture of R410A were evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report.
  • the refrigerating capacity of compositions each comprising R410A and a mixture of HFO-1132(E) and HFO-1123 was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.
  • the COP ratio and the refrigerating capacity (which may be referred to as “cooling capacity” or “capacity”) ratio relative to those of R410 of the mixed refrigerants were determined.
  • the conditions for calculation were as described below.
  • Tables 147 to 166 show these values together with the GWP of each mixed refrigerant.
  • Example 11 Item Unit O C 10 U 2 D HFO-1132(E) mass % 100.0 50.0 41.1 28.7 15.2 0.0 HFO-1123 mass % 0.0 31.6 34.6 41.2 52.7 67.0 R32 mass % 0.0 18.4 24.3 30.1 32.1 33.0 GWP — 1 125 165 204 217 228 COP ratio % (relative 99.7 96.0 96.0 96.0 96.0 to R410A) Refrigerating % (relative 98.3 109.9 111.7 113.5 114.8 115.4 capacity ratio to R410A)
  • the refrigerant has a GWP of 250 or less.
  • the refrigerant has a GWP of 125 or less.
  • the refrigerant has a GWP of 65 or less.
  • the refrigerant has a COP ratio of 96% or more relative to that of R410A.
  • the line segment CU is represented by coordinates ( ⁇ 0.0538z 2 +0.7888z+53.701, 0.0538z 2 ⁇ 1.7888z+46.299, z), and the line segment UD is represented by coordinates
  • the points on the line segment CU are determined from three points, i.e., point C, Comparative Example 10, and point U, by using the least-square method.
  • the points on the line segment UD are determined from three points, i.e., point U, Example 2, and point D, by using the least-square method.
  • the refrigerant has a COP ratio of 94.5% or more relative to that of R410A.
  • the line segment ET is represented by coordinates ( ⁇ 0.0547z 2 ⁇ 0.5327z+53.4, 0.0547z 2 ⁇ 0.4673z+46.6, z), and the line segment TF is represented by coordinates
  • the points on the line segment ET are determined from three points, i.e., point E, Example 2, and point T, by using the least-square method.
  • the points on the line segment TF are determined from three points, i.e., points T, S, and F, by using the least-square method.
  • the refrigerant has a COP ratio of 93% or more relative to that of R410A.
  • the line segment GR is represented by coordinates ( ⁇ 0.0491z 2 ⁇ 1.1544z+38.5, 0.0491z 2 +0.1544z+61.5, z), and the line segment RH is represented by coordinates
  • the points on the line segment GR are determined from three points, i.e., point G, Example 5, and point R, by using the least-square method.
  • the points on the line segment RH are determined from three points, i.e., point R, Example 7, and point H, by using the least-square method.

Abstract

There is provided a refrigeration cycle apparatus in which good lubricity can be achieved when a refrigeration cycle is performed using a refrigerant having a sufficiently low GWP. The refrigeration cycle apparatus contains a refrigerating oil and a refrigerant composition containing a refrigerant containing trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).

Description

    TECHNICAL FIELD
  • The present disclosure relates to a refrigeration cycle apparatus.
  • BACKGROUND ART
  • In the related art, R410A has been frequently used as a refrigerant in refrigeration cycle apparatuses such as air conditioners. R410A is a two-component mixed refrigerant of difluoromethane (CH2F2; HFC-32 or R32) and pentafluoroethane (C2HF5; HFC-125 or R125), which is a pseudo-azeotropic composition.
  • However, R410A has a global warming potential (GWP) of 2088. From the viewpoint of increasing concern for global warming, R32 having a lower GWP of 675 has been more frequently used in recent years.
  • Therefore, for example, PTL 1 (International Publication No. 2015/141678) proposes various low-GWP mixture refrigerants as alternatives to R410A.
  • SUMMARY OF THE INVENTION Technical Problem
  • However, it has not been studied that good lubricity in a refrigeration cycle apparatus is achieved when a refrigeration cycle is performed using a refrigerant having a sufficiently low GWP.
  • In view of the foregoing, it is an object of the present disclosure to provide a refrigeration cycle apparatus in which good lubricity can be achieved when a refrigeration cycle is performed using a refrigerant having a sufficiently low GWP.
  • Solution to Problem
  • A refrigeration cycle apparatus according to a first aspect comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil. The refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).
  • Since this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition. In this refrigeration cycle, good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) and a coefficient of performance (COP) equal to those of R410A is used.
  • A refrigeration cycle apparatus according to a second aspect is the refrigeration cycle apparatus according to the first aspect, wherein
      • when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments AA′, A′B, BD, DC′, C′C, CO, and OA that connect the following 7 points:
        point A (68.6, 0.0, 31.4),
        point A′ (30.6, 30.0, 39.4),
        point B (0.0, 58.7, 41.3),
        point D (0.0, 80.4, 19.6),
        point C′ (19.5, 70.5, 10.0),
        point C (32.9, 67.1, 0.0), and
        point O (100.0, 0.0, 0.0),
        or on the above line segments (excluding the points on the line segments BD, CO, and OA);
      • the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
      • the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
      • the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
      • the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
      • the line segments BD, CO, and OA are straight lines.
  • A refrigeration cycle apparatus according to a third aspect is the refrigeration cycle apparatus according to the first aspect, wherein
      • when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments GI, IA, AA′, A′B, BD, DC′, C′C, and CG that connect the following 8 points:
        point G (72.0, 28.0, 0.0),
        point I (72.0, 0.0, 28.0),
        point A (68.6, 0.0, 31.4),
        point A′ (30.6, 30.0, 39.4),
        point B (0.0, 58.7, 41.3),
        point D (0.0, 80.4, 19.6),
        point C′ (19.5, 70.5, 10.0), and
        point C (32.9, 67.1, 0.0),
        or on the above line segments (excluding the points on the line segments IA, BD, and CG);
      • the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
      • the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
      • the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
      • the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
      • the line segments GI, IA, BD, and CG are straight lines.
  • A refrigeration cycle apparatus according to a fourth aspect is the refrigeration cycle apparatus according to the first aspect, wherein
      • when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PN, NK, KA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
        point J (47.1, 52.9, 0.0),
        point P (55.8, 42.0, 2.2),
        point N (68.6, 16.3, 15.1),
        point K (61.3, 5.4, 33.3),
        point A′ (30.6, 30.0, 39.4),
        point B (0.0, 58.7, 41.3),
        point D (0.0, 80.4, 19.6),
        point C′ (19.5, 70.5, 10.0), and
        point C (32.9, 67.1, 0.0),
        or on the above line segments (excluding the points on the line segments BD and CJ);
      • the line segment PN is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
      • the line segment NK is represented by coordinates (x, 0.2421x2−29.955x+931.91, −0.2421x2+28.955x−831.91),
      • the line segment KA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
      • the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
      • the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
      • the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
      • the line segments JP, BD, and CG are straight lines.
  • A refrigeration cycle apparatus according to a fifth aspect is the refrigeration cycle apparatus according to the first aspect, wherein
      • when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PL, LM, MA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
        point J (47.1, 52.9, 0.0),
        point P (55.8, 42.0, 2.2),
        point L (63.1, 31.9, 5.0),
        point M (60.3, 6.2, 33.5),
        point A′ (30.6, 30.0, 39.4),
        point B (0.0, 58.7, 41.3),
        point D (0.0, 80.4, 19.6),
        point C′ (19.5, 70.5, 10.0), and
        point C (32.9, 67.1, 0.0),
        or on the above line segments (excluding the points on the line segments BD and CJ);
      • the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43)
      • the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
      • the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
      • the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
      • the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
      • the line segments JP, LM, BD, and CG are straight lines.
  • A refrigeration cycle apparatus according to a sixth aspect is the refrigeration cycle apparatus according to the first aspect, wherein
      • when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LM, MA′, A′B, BF, FT, and TP that connect the following 7 points:
        point P (55.8, 42.0, 2.2),
        point L (63.1, 31.9, 5.0),
        point M (60.3, 6.2, 33.5),
        point A′ (30.6, 30.0, 39.4),
        point B (0.0, 58.7, 41.3),
        point F (0.0, 61.8, 38.2), and
        point T (35.8, 44.9, 19.3),
        or on the above line segments (excluding the points on the line segment BF);
      • the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
      • the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
      • the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
      • the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2),
      • the line segment TP is represented by coordinates (x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and
      • the line segments LM and BF are straight lines.
  • A refrigeration cycle apparatus according to a seventh aspect is the refrigeration cycle apparatus according to the first aspect, wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LQ, QR, and RP that connect the following 4 points:
    point P (55.8, 42.0, 2.2),
    point L (63.1, 31.9, 5.0),
    point Q (62.8, 29.6, 7.6), and
    point R (49.8, 42.3, 7.9),
    or on the above line segments;
      • the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
      • the line segment RP is represented by coordinates (x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and
  • the line segments LQ and QR are straight lines.
  • A refrigeration cycle apparatus according to an eighth aspect is the refrigeration cycle apparatus according to the first aspect, wherein
      • when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments SM, MA′, A′B, BF, FT, and TS that connect the following 6 points:
        point S (62.6, 28.3, 9.1),
        point M (60.3, 6.2, 33.5),
        point A′ (30.6, 30.0, 39.4),
        point B (0.0, 58.7, 41.3),
        point F (0.0, 61.8, 38.2), and
        point T (35.8, 44.9, 19.3),
        or on the above line segments,
      • the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
      • the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
      • the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2),
      • the line segment TS is represented by coordinates (x, −0.0017x2−0.7869x+70.888, −0.0017x2−0.2131x+29.112), and
      • the line segments SM and BF are straight lines.
  • A refrigeration cycle apparatus according to a ninth aspect comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
      • wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)) and trifluoroethylene (HFO-1123) in a total amount of 99.5 mass % or more based on the entire refrigerant, and
      • the refrigerant comprises 62.0 mass % to 72.0 mass % of HFO-1132(E) based on the entire refrigerant.
  • Since this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition. In this refrigeration cycle, good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a coefficient of performance (COP) and a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.
  • A refrigeration cycle apparatus according to a tenth aspect comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
      • wherein the refrigerant comprises HFO-1132(E) and HFO-1123 in a total amount of 99.5 mass % or more based on the entire refrigerant, and
      • the refrigerant comprises 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire refrigerant.
  • Since this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition. In this refrigeration cycle, good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a coefficient of performance (COP) and a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.
  • A refrigeration cycle apparatus according to an eleventh aspect comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
      • wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32),
        wherein
      • when the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum in the refrigerant is respectively represented by x, y, z, and a,
      • if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass % are within the range of a figure surrounded by straight lines GI, IA, AB, BD′, D′C, and CG that connect the following 6 points:
        point G (0.026a2−1.7478a+72.0, −0.026a2+0.7478a+28.0, 0.0),
        point I (0.026a2−1.7478a+72.0, 0.0, −0.026a2+0.7478a+28.0),
        point A (0.0134a2−1.9681a+68.6, 0.0, −0.0134a2+0.9681a+31.4),
        point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3),
        point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6), and
        point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0),
        or on the straight lines GI, AB, and D′C (excluding point G, point I, point A, point B, point D′, and point C);
      • if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
        point G (0.02a2−1.6013a+71.105, −0.02a2+0.6013a+28.895, 0.0),
        point I (0.02a2−1.6013a+71.105, 0.0, −0.02a2+0.6013a+28.895),
        point A (0.0112a2−1.9337a+68.484, 0.0, −0.0112a2+0.9337a+31.516),
        point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801), and
        point W (0.0, 100.0−a, 0.0),
        or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);
      • if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
        point G (0.0135a2−1.4068a+69.727, −0.0135a2+0.4068a+30.273, 0.0),
        point I (0.0135a2−1.4068a+69.727, 0.0, −0.0135a2+0.4068a+30.273),
        point A (0.0107a2−1.9142a+68.305, 0.0, −0.0107a2+0.9142a+31.695),
        point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682), and
        point W (0.0, 100.0−a, 0.0),
        or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);
      • if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
        point G (0.0111a2−1.3152a+68.986, −0.0111a2+0.3152a+31.014, 0.0),
        point I (0.0111a2−1.3152a+68.986, 0.0, −0.0111a2+0.3152a+31.014),
        point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207),
        point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714), and
        point W (0.0, 100.0−a, 0.0),
        or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);
        and
      • if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
        point G (0.0061a2−0.9918a+63.902, −0.0061a2−0.0082a+36.098, 0.0),
        point I (0.0061a2−0.9918a+63.902, 0.0, −0.0061a2−0.0082a+36.098),
        point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9),
        point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05), and
        point W (0.0, 100.0−a, 0.0),
        or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W).
  • Since this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition. In this refrigeration cycle, good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) and a coefficient of performance (COP) equal to those of R410A is used.
  • A refrigeration cycle apparatus according to a twelfth aspect comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
      • wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32),
        wherein
      • when the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum in the refrigerant is respectively represented by x, y, z, and a,
      • if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass % are within the range of a figure surrounded by straight lines JK′, K′B, BD′, D′C, and CJ that connect the following 5 points:
        point J (0.0049a2−0.9645a+47.1, −0.0049a2−0.0355a+52.9, 0.0),
        point K′ (0.0514a2−2.4353a+61.7, −0.0323a2+0.4122a+5.9, −0.0191a2+1.0231a+32.4),
        point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3),
        point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6), and
        point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0),
        or on the straight lines JK′, K′B, and D′C (excluding point J, point B, point D′, and point C);
      • if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
        point J (0.0243a2−1.4161a+49.725, −0.0243a2+0.4161a+50.275, 0.0),
        point K′ (0.0341a2−2.1977a+61.187, −0.0236a2+0.34a+5.636,−0.0105a2+0.8577a+33.177),
        point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801), and
        point W (0.0, 100.0−a, 0.0),
        or on the straight lines JK′ and K′B (excluding point J, point B, and point W);
      • if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
        point J (0.0246a2−1.4476a+50.184, −0.0246a2+0.4476a+49.816, 0.0),
        point K′ (0.0196a2−1.7863a+58.515, −0.0079a2−0.1136a+8.702, −0.0117a2+0.8999a+32.783),
        point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682), and
        point W (0.0, 100.0−a, 0.0),
        or on the straight lines JK′ and K′B (excluding point J, point B, and point W);
      • if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
        point J (0.0183a2−1.1399a+46.493, −0.0183a2+0.1399a+53.507, 0.0),
        point K′ (−0.0051a2+0.0929a+25.95, 0.0, 0.0051a2−1.0929a+74.05),
        point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207),
        point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714), and
        point W (0.0, 100.0−a, 0.0),
        or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W); and
      • if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
        point J (−0.0134a2+1.0956a+7.13, 0.0134a2−2.0956a+92.87, 0.0),
        point K′ (−1.892a+29.443, 0.0, 0.892a+70.557),
        point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9),
        point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05), and
        point W (0.0, 100.0−a, 0.0),
        or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W).
  • Since each refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition. In this refrigeration cycle, good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) and a coefficient of performance (COP) equal to those of R410A is used.
  • A refrigeration cycle apparatus according to a thirteenth aspect comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
      • wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf),
        wherein
      • when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments IJ, JN, NE, and EI that connect the following 4 points:
        point I (72.0, 0.0, 28.0),
        point J (48.5, 18.3, 33.2),
        point N (27.7, 18.2, 54.1), and
        point E (58.3, 0.0, 41.7),
        or on these line segments (excluding the points on the line segment EI;
      • the line segment IJ is represented by coordinates (0.0236y2−1.7616y+72.0, y, −0.0236y2+0.7616y+28.0);
      • the line segment NE is represented by coordinates (0.012y2−1.9003y+58.3, y, −0.012y2+0.9003y+41.7); and
      • the line segments JN and EI are straight lines.
  • Since this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition. In this refrigeration cycle, good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to that of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.
  • A refrigeration cycle apparatus according to a fourteenth aspect comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
      • wherein the refrigerant comprises HFO-1132(E), R32, and R1234yf,
        wherein
      • when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments MM′, M′N, NV, VG, and GM that connect the following 5 points:
        point M (52.6, 0.0, 47.4),
        point M′(39.2, 5.0, 55.8),
        point N (27.7, 18.2, 54.1),
        point V (11.0, 18.1, 70.9), and
        point G (39.6, 0.0, 60.4),
        or on these line segments (excluding the points on the line segment GM);
      • the line segment MM′ is represented by coordinates (0.132y2−3.34y+52.6, y, −0.132y2+2.34y+47.4);
      • the line segment M′N is represented by coordinates (0.0596y2−2.2541y+48.98, y, −0.0596y2+1.2541y+51.02);
      • the line segment VG is represented by coordinates (0.0123y2−1.8033y+39.6, y, −0.0123y2+0.8033y+60.4); and
      • the line segments NV and GM are straight lines.
  • Since this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition. In this refrigeration cycle, good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to that of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.
  • A refrigeration cycle apparatus according to a fifteenth aspect comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
      • wherein the refrigerant comprises HFO-1132(E), R32, and R1234yf,
        wherein
      • when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ON, NU, and UO that connect the following 3 points:
        point O (22.6, 36.8, 40.6),
        point N (27.7, 18.2, 54.1), and
        point U (3.9, 36.7, 59.4),
        or on these line segments;
      • the line segment ON is represented by coordinates (0.0072y2−0.6701y+37.512, y, −0.0072y2−0.3299y+62.488);
      • the line segment NU is represented by coordinates (0.0083y2−1.7403y+56.635, y, −0.0083y2+0.7403y+43.365); and
      • the line segment UO is a straight line.
  • Since this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition. In this refrigeration cycle, good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to that of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.
  • A refrigeration cycle apparatus according to a sixteenth aspect comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
      • wherein the refrigerant comprises HFO-1132(E), R32, and R1234yf,
        wherein
      • when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments QR, RT, TL, LK, and KQ that connect the following 5 points:
        point Q (44.6, 23.0, 32.4),
        point R (25.5, 36.8, 37.7),
        point T (8.6, 51.6, 39.8),
        point L (28.9, 51.7, 19.4), and
        point K (35.6, 36.8, 27.6),
        or on these line segments;
      • the line segment QR is represented by coordinates (0.0099y2−1.975y+84.765, y, −0.0099y2+0.975y+15.235);
      • the line segment RT is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874);
      • the line segment LK is represented by coordinates (0.0049y2−0.8842y+61.488, y, −0.0049y2−0.1158y+38.512);
      • the line segment KQ is represented by coordinates (0.0095y2−1.2222y+67.676, y, −0.0095y2+0.2222y+32.324); and
      • the line segment TL is a straight line.
  • Since this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition. In this refrigeration cycle, good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to that of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.
  • A refrigeration cycle apparatus according to a seventeenth aspect comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
      • wherein the refrigerant comprises HFO-1132(E), R32, and R1234yf, wherein
      • when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:
        point P (20.5, 51.7, 27.8),
        point S (21.9, 39.7, 38.4), and
        point T (8.6, 51.6, 39.8),
        or on these line segments;
      • the line segment PS is represented by coordinates (0.0064y2−0.7103y+40.1, y, −0.0064y2−0.2897y+59.9);
      • the line segment ST is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874); and
      • the line segment TP is a straight line.
  • Since this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition. In this refrigeration cycle, good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to that of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.
  • A refrigeration cycle apparatus according to an eighteenth aspect comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
      • wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
        wherein
      • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IK, KB′, B′H, HR, RG, and GI that connect the following 6 points:
        point I (72.0, 28.0, 0.0),
        point K (48.4, 33.2, 18.4),
        point B′ (0.0, 81.6, 18.4),
        point H (0.0, 84.2, 15.8),
        point R (23.1, 67.4, 9.5), and
        point G (38.5, 61.5, 0.0),
        or on these line segments (excluding the points on the line segments B′H and GI);
      • the line segment IK is represented by coordinates (0.025z2−1.7429z+72.00, −0.025z2+0.7429z+28.0, z),
      • the line segment HR is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z),
      • the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
      • the line segments KB′ and GI are straight lines.
  • Since this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition. In this refrigeration cycle, good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a coefficient of performance (COP) equal to that of R410A is used.
  • A refrigeration cycle apparatus according to a nineteenth aspect comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
      • wherein the refrigerant comprises HFO-1132(E), HFO-1123, and R32,
        wherein
      • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IJ, JR, RG, and GI that connect the following 4 points:
        point I (72.0, 28.0, 0.0),
        point J (57.7, 32.8, 9.5),
        point R (23.1, 67.4, 9.5), and
        point G (38.5, 61.5, 0.0),
        or on these line segments (excluding the points on the line segment GI);
      • the line segment IJ is represented by coordinates (0.025z2−1.7429z+72.0, −0.025z2+0.7429z+28.0, z),
      • the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
      • the line segments JR and GI are straight lines.
  • Since this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition. In this refrigeration cycle, good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a coefficient of performance (COP) equal to that of R410A is used.
  • A refrigeration cycle apparatus according to a twentieth aspect comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
      • wherein the refrigerant comprises HFO-1132(E), HFO-1123, and R32,
        wherein
      • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MP, PB′, B′H, HR, RG, and GM that connect the following 6 points:
        point M (47.1, 52.9, 0.0),
        point P (31.8, 49.8, 18.4),
        point B′ (0.0, 81.6, 18.4),
        point H (0.0, 84.2, 15.8),
        point R (23.1, 67.4, 9.5), and
        point G (38.5, 61.5, 0.0),
        or on these line segments (excluding the points on the line segments B′H and GM);
      • the line segment MP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z),
      • the line segment HR is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z),
      • the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
      • the line segments PB′ and GM are straight lines.
  • Since this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition. In this refrigeration cycle, good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a coefficient of performance (COP) equal to that of R410A is used.
  • A refrigeration cycle apparatus according to a twenty-first aspect comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
      • wherein the refrigerant comprises HFO-1132(E), HFO-1123, and R32,
        wherein
      • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MN, NR, RG, and GM that connect the following 4 points:
        point M (47.1, 52.9, 0.0),
        point N (38.5, 52.1, 9.5),
        point R (23.1, 67.4, 9.5), and
        point G (38.5, 61.5, 0.0),
        or on these line segments (excluding the points on the line segment GM);
      • the line segment MN is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z),
      • the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
      • the line segments JR and GI are straight lines.
  • Since this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition. In this refrigeration cycle, good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a coefficient of performance (COP) equal to that of R410A is used.
  • A refrigeration cycle apparatus according to a twenty-second aspect comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
      • wherein the refrigerant comprises HFO-1132(E), HFO-1123, and R32,
        wherein
      • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:
        point P (31.8, 49.8, 18.4),
        point S (25.4, 56.2, 18.4), and
        point T (34.8, 51.0, 14.2),
        or on these line segments;
      • the line segment ST is represented by coordinates (−0.0982z2+0.9622z+40.931, 0.0982z2−1.9622z+59.069, z), the line segment TP is represented by coordinates
      • (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z), and
      • the line segment PS is a straight line.
  • Since this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition. In this refrigeration cycle, good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a coefficient of performance (COP) equal to that of R410A is used.
  • A refrigeration cycle apparatus according to a twenty-third aspect comprises a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
      • wherein the refrigerant comprises HFO-1132(E), HFO-1123, and R32,
        wherein
      • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments QB″, B″D, DU, and UQ that connect the following 4 points:
        point Q (28.6, 34.4, 37.0),
        point B″ (0.0, 63.0, 37.0),
        point D (0.0, 67.0, 33.0), and
        point U (28.7, 41.2, 30.1),
        or on these line segments (excluding the points on the line segment B″D);
      • the line segment DU is represented by coordinates (−3.4962z2+210.71z−3146.1, 3.4962z2−211.71z+3246.1, z),
      • the line segment UQ is represented by coordinates (0.0135z2−0.9181z+44.133, −0.0135z2−0.0819z+55.867, z), and
  • the line segments QB″ and B″D are straight lines. Since this refrigeration cycle apparatus contains a refrigerant having a sufficiently low GWP and a refrigerating oil, good lubricity in the refrigeration cycle apparatus can be achieved when a refrigeration cycle is performed using the above refrigerant composition. In this refrigeration cycle, good lubricity in the refrigeration cycle apparatus can also be achieved when a refrigerant having a coefficient of performance (COP) equal to that of R410A is used.
  • A refrigeration cycle apparatus according to a twenty-fourth aspect is the refrigeration cycle apparatus according to any one of the first aspect to the twenty-third aspect, wherein the refrigerating oil has a kinematic viscosity at 40° C. of 1 mm2/s or more and 750 mm2/s or less.
  • A refrigeration cycle apparatus according to a twenty-fifth aspect is the refrigeration cycle apparatus according to any one of the first aspect to the twenty-fourth aspect, wherein the refrigerating oil has a kinematic viscosity at 100° C. of 1 mm2/s or more and 100 mm2/s or less.
  • A refrigeration cycle apparatus according to a twenty-sixth aspect is the refrigeration cycle apparatus according to any one of the first aspect to the twenty-fifth aspect, wherein the refrigerating oil has a volume resistivity at 25° C. of 1.0×1012 Ω·cm or more.
  • A refrigeration cycle apparatus according to a twenty-seventh aspect is the refrigeration cycle apparatus according to any one of the first aspect to the twenty-sixth aspect, wherein the refrigerating oil has an acid number of 0.1 mgKOH/g or less.
  • A refrigeration cycle apparatus according to a twenty-eighth aspect is the refrigeration cycle apparatus according to any one of the first aspect to the twenty-seventh aspect, wherein the refrigerating oil has an ash content of 100 ppm or less.
  • A refrigeration cycle apparatus according to a twenty-ninth aspect is the refrigeration cycle apparatus according to any one of the first aspect to the twenty-eighth aspect, wherein the refrigerating oil has an aniline point of −100° C. or higher and 0° C. or lower.
  • A refrigeration cycle apparatus according to a thirtieth aspect is the refrigeration cycle apparatus according to any one of the first aspect to the twenty-ninth aspect and includes a refrigerant circuit. The refrigerant circuit includes a compressor, a condenser, a decompressing unit, and an evaporator connected to each other through a refrigerant pipe. The working fluid for a refrigerating machine circulates through the refrigerant circuit.
  • A refrigeration cycle apparatus according to a thirty-first aspect is the refrigeration cycle apparatus according to any one of the first aspect to the thirtieth aspect, wherein a content of the refrigerating oil in the working fluid for a refrigerating machine is 5 mass % or more and 60 mass % or less.
  • A refrigeration cycle apparatus according to a thirty-second aspect is the refrigeration cycle apparatus according to any one of the first aspect to the thirty-first aspect, wherein the refrigerating oil contains at least one additive selected from an acid scavenger, an extreme pressure agent, an antioxidant, an antifoaming agent, an oiliness improver, a metal deactivator, an anti-wear agent, and a compatibilizer. A content of the additive is 5 mass % or less relative to a mass of the refrigerating oil containing the additive.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagram illustrating an example of a refrigerant circuit included in a refrigeration cycle apparatus.
  • FIG. 2 is a schematic view of an instrument used for a flammability test.
  • FIG. 3 is a diagram showing points A to T and line segments that connect these points in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass %.
  • FIG. 4 is a diagram showing points A to C, D′, G, I, J, and K′, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass %.
  • FIG. 5 is a diagram showing points A to C, D′, G, I, J, and K′, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 92.9 mass % (the content of R32 is 7.1 mass %).
  • FIG. 6 is a diagram showing points A to C, D′, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 88.9 mass % (the content of R32 is 11.1 mass %).
  • FIG. 7 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 85.5 mass % (the content of R32 is 14.5 mass %).
  • FIG. 8 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 81.8 mass % (the content of R32 is 18.2 mass %).
  • FIG. 9 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 78.1 mass % (the content of R32 is 21.9 mass %).
  • FIG. 10 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 73.3 mass % (the content of R32 is 26.7 mass %).
  • FIG. 11 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 70.7 mass % (the content of R32 is 29.3 mass %).
  • FIG. 12 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 63.3 mass % (the content of R32 is 36.7 mass %).
  • FIG. 13 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 55.9 mass % (the content of R32 is 44.1 mass %).
  • FIG. 14 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 52.2 mass % (the content of R32 is 47.8 mass %).
  • FIG. 15 is a view showing points A to C, E, G, and I to W; and line segments that connect points A to C, E, G, and I to W in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass %.
  • FIG. 16 is a view showing points A to U; and line segments that connect the points in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass %.
  • DESCRIPTION OF EMBODIMENTS (1) Refrigeration Cycle Apparatus
  • A refrigeration cycle apparatus contains a refrigerant composition described in Section (4) below and a refrigerating oil.
  • (2) Refrigerating Machine Oil
  • A refrigerating oil can improve the lubricity in the refrigeration cycle apparatus and can also achieve efficient cycle performance by performing a refrigeration cycle such as a refrigeration cycle together with a refrigerant composition.
  • Examples of the refrigerating oil include oxygen-containing synthetic oils (e.g., ester-type refrigerating oils and ether-type refrigerating oils) and hydrocarbon refrigerating oils. In particular, ester-type refrigerating oils and ether-type refrigerating oils are preferred from the viewpoint of miscibility with refrigerants or refrigerant compositions. The refrigerating oils may be used alone or in combination of two or more.
  • The kinematic viscosity of the refrigerating oil at 40° C. is preferably 1 mm2/s or more and 750 mm2/s or less and more preferably 1 mm2/s or more and 400 mm2/s or less from at least one of the viewpoints of suppressing the deterioration of the lubricity and the hermeticity of compressors, achieving sufficient miscibility with refrigerants under low-temperature conditions, suppressing the lubrication failure of compressors, and improving the heat exchange efficiency of evaporators. Herein, the kinematic viscosity of the refrigerating oil at 100° C. may be, for example, 1 mm2/s or more and 100 mm2/s or less and is more preferably 1 mm2/s or more and 50 mm2/s or less.
  • The refrigerating oil preferably has an aniline point of −100° C. or higher and 0° C. or lower. The term “aniline point” herein refers to a numerical value indicating the solubility of, for example, a hydrocarbon solvent, that is, refers to a temperature at which when equal volumes of a sample (herein, refrigerating oil) and aniline are mixed with each other and cooled, turbidity appears because of their immiscibility (provided in JIS K 2256). Note that this value is a value of the refrigerating oil itself in a state in which the refrigerant is not dissolved. By using a refrigerating oil having such an aniline point, for example, even when bearings constituting resin functional components and insulating materials for electric motors are used at positions in contact with the refrigerating oil, the suitability of the refrigerating oil for the resin functional components can be improved. Specifically, if the aniline point is excessively low, the refrigerating oil readily infiltrates the bearings and the insulating materials, and thus the bearings and the like tend to swell. On the other hand, if the aniline point is excessively high, the refrigerating oil does not readily infiltrate the bearings and the insulating materials, and thus the bearings and the like tend to shrink. Accordingly, the deformation of the bearings and the insulating materials due to swelling or shrinking can be prevented by using the refrigerating oil having an aniline point within the above-described predetermined range (−100° C. or higher and 0° C. or lower). If the bearings deform through swelling, the desired length of a gap at a sliding portion cannot be maintained. This may result in an increase in sliding resistance. If the bearings deform through shrinking, the hardness of the bearings increases, and consequently the bearings may be broken because of vibration of a compressor. In other words, the deformation of the bearings through shrinking may decrease the rigidity of the sliding portion. Furthermore, if the insulating materials (e.g., insulating coating materials and insulating films) of electric motors deform through swelling, the insulating properties of the insulating materials deteriorate. If the insulating materials deform through shrinking, the insulating materials may also be broken as in the case of the bearings, which also deteriorates the insulating properties. In contrast, when the refrigerating oil having an aniline point within the predetermined range is used as described above, the deformation of bearings and insulating materials due to swelling or shrinking can be suppressed, and thus such a problem can be avoided.
  • The refrigerating oil is used as a working fluid for a refrigerating machine by being mixed with a refrigerant composition. The content of the refrigerating oil relative to the whole amount of working fluid for a refrigerating machine is preferably 5 mass % or more and 60 mass % or less and more preferably 10 mass % or more and 50 mass % or less.
  • (2-1) Oxygen-Containing Synthetic Oil
  • An ester-type refrigerating oil or an ether-type refrigerating oil serving as an oxygen-containing synthetic oil is mainly constituted by carbon atoms and oxygen atoms. In the ester-type refrigerating oil or the ether-type refrigerating oil, an excessively low ratio (carbon/oxygen molar ratio) of carbon atoms to oxygen atoms increases the hygroscopicity, and an excessively high ratio of carbon atoms to oxygen atoms deteriorates the miscibility with a refrigerant. Therefore, the molar ratio is preferably 2 or more and 7.5 or less.
  • (2-1-1) Ester-Type Refrigerating Oil
  • Examples of base oil components of the ester-type refrigerating oil include dibasic acid ester oils of a dibasic acid and a monohydric alcohol, polyol ester oils of a polyol and a fatty acid, complex ester oils of a polyol, a polybasic acid, and a monohydric alcohol (or a fatty acid), and polyol carbonate oils from the viewpoint of chemical stability.
  • (Dibasic Acid Ester Oil)
  • The dibasic acid ester oil is preferably an ester of a dibasic acid such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, or terephthalic acid, in particular, a dibasic acid having 5 to 10 carbon atoms (e.g., glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, or sebacic acid) and a monohydric alcohol having a linear or branched alkyl group and having 1 to 15 carbon atoms (e.g., methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol, or pentadecanol). Specific examples of the dibasic acid ester oil include ditridecyl glutarate, di(2-ethylhexyl) adipate, diisodecyl adipate, ditridecyl adipate, and di(3-ethylhexyl) sebacate.
  • (Polyol Ester Oil)
  • The polyol ester oil is an ester synthesized from a polyhydric alcohol and a fatty acid (carboxylic acid), and has a carbon/oxygen molar ratio of 2 or more and 7.5 or less, preferably 3.2 or more and 5.8 or less.
  • The polyhydric alcohol constituting the polyol ester oil is a diol (e.g., ethylene glycol, 1,3-propanediol, propylene glycol, 1,4-butanediol, 1,2-butanediol, 2-methyl-1,3-propanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 2-ethyl-2-methyl-1,3-propanediol, 1,7-heptanediol, 2-methyl-2-propyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 1, 8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, or 1,12-dodecanediol) or a polyol having 3 to 20 hydroxyl groups (trimethylolethane, trimethylolpropane, trimethylolbutane, di-(trimethylolpropane), tri-(trimethylolpropane), pentaerythritol, di-(pentaerythritol), tri-(pentaerythritol), glycerol, polyglycerol (glycerol dimer or trimer), 1,3,5-pentanetriol, sorbitol, sorbitan, a sorbitol-glycerol condensate, a polyhydric alcohol such as adonitol, arabitol, xylitol, or mannitol, a saccharide such as xylose, arabinose, ribose, rhamnose, glucose, fructose, galactose, mannose, sorbose, cellobiose, maltose, isomaltose, trehalose, sucrose, raffinose, gentianose, or melezitose, or a partially etherified product of the foregoing). One or two or more polyhydric alcohols may constitute an ester.
  • For the fatty acid constituting the polyol ester, the number of carbon atoms is not limited, but is normally 1 to 24. A linear fatty acid or a branched fatty acid is preferred. Examples of the linear fatty acid include acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, octadecanoic acid, nonadecanoic acid, eicosanoic acid, oleic acid, linoleic acid, and linolenic acid. The hydrocarbon group that bonds to a carboxy group may have only a saturated hydrocarbon or may have an unsaturated hydrocarbon. Examples of the branched fatty acid include 2-methylpropionic acid, 2-methylbutanoic acid, 3-methylbutanoic acid, 2,2-dimethylpropionic acid, 2-methylpentanoic acid, 3-methylpentanoic acid, 4-methylpentanoic acid, 2,2-dimethylbutanoic acid, 2,3-dimethylbutanoic acid, 3,3-dimethylbutanoic acid, 2-methylhexanoic acid, 3-methylhexanoic acid, 4-methylhexanoic acid, 5-methylhexanoic acid, 2,2-dimethylpentanoic acid, 2,3-dimethylpentanoic acid, 2,4-dimethylpentanoic acid, 3,3-dimethylpentanoic acid, 3,4-dimethylpentanoic acid, 4,4-dimethylpentanoic acid, 2-ethylpentanoic acid, 3-ethylpentanoic acid, 2,2,3-trimethylbutanoic acid, 2,3, 3-trimethylbutanoic acid, 2-ethyl-2-methylbutanoic acid, 2-ethyl-3-methylbutanoic acid, 2-methylheptanoic acid, 3-methylheptanoic acid, 4-methylheptanoic acid, 5-methylheptanoic acid, 6-methylheptanoic acid, 2-ethylhexanoic acid, 3-ethylhexanoic acid, 4-ethylhexanoic acid, 2,2-dimethylhexanoic acid, 2,3-dimethylhexanoic acid, 2,4-dimethylhexanoic acid, 2,5-dimethylhexanoic acid, 3, 3-dimethylhexanoic acid, 3,4-dimethylhexanoic acid, 3,5-dimethylhexanoic acid, 4,4-dimethylhexanoic acid, 4, 5-dimethylhexanoic acid, 5,5-dimethylhexanoic acid, 2-propylpentanoic acid, 2-methyloctanoic acid, 3-methyloctanoic acid, 4-methyloctanoic acid, 5-methyloctanoic acid, 6-methyloctanoic acid, 7-methyloctanoic acid, 2,2-dimethylheptanoic acid, 2,3-dimethylheptanoic acid, 2,4-dimethylheptanoic acid, 2,5-dimethylheptanoic acid, 2, 6-dimethylheptanoic acid, 3, 3-dimethylheptanoic acid, 3,4-dimethylheptanoic acid, 3, 5-dimethylheptanoic acid, 3, 6-dimethylheptanoic acid, 4,4-dimethylheptanoic acid, 4,5-dimethylheptanoic acid, 4, 6-dimethylheptanoic acid, 5,5-dimethylheptanoic acid, 5, 6-dimethylheptanoic acid, 6, 6-dimethylheptanoic acid, 2-methyl-2-ethylhexanoic acid, 2-methyl-3-ethylhexanoic acid, 2-methyl-4-ethylhexanoic acid, 3-methyl-2-ethylhexanoic acid, 3-methyl-3-ethylhexanoic acid, 3-methyl-4-ethylhexanoic acid, 4-methyl-2-ethylhexanoic acid, 4-methyl-3-ethylhexanoic acid, 4-methyl-4-ethylhexanoic acid, 5-methyl-2-ethylhexanoic acid, 5-methyl-3-ethylhexanoic acid, 5-methyl-4-ethylhexanoic acid, 2-ethylheptanoic acid, 3-methyloctanoic acid, 3,5,5-trimethylhexanoic acid, 2-ethyl-2,3,3-trimethylbutyric acid, 2,2,4,4-tetramethylpentanoic acid, 2,2,3,3-tetramethylpentanoic acid, 2,2,3,4-tetramethylpentanoic acid, and 2,2-diisopropylpropanoic acid. One or two or more fatty acids selected from the foregoing may constitute an ester.
  • One polyhydric alcohol may be used to constitute an ester or a mixture of two or more polyhydric alcohols may be used to constitute an ester. The fatty acid constituting an ester may be a single component, or two or more fatty acids may constitute an ester. The fatty acids may be individual fatty acids of the same type or may be two or more types of fatty acids as a mixture. The polyol ester oil may have a free hydroxyl group.
  • Specifically, the polyol ester oil is more preferably an ester of a hindered alcohol such as neopentyl glycol, trimethylolethane, trimethylolpropane, trimethylolbutane, di-(trimethylolpropane), tri-(trimethylolpropane), pentaerythritol, di-(pentaerythritol), or tri-(pentaerythritol); further preferably an ester of neopentyl glycol, trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol, or di-(pentaerythritol); and preferably an ester of neopentyl glycol, trimethylolpropane, pentaerythritol, di-(pentaerythritol), or the like and a fatty acid having 2 to 20 carbon atoms.
  • The fatty acid constituting such a polyhydric alcohol fatty acid ester may be only a fatty acid having a linear alkyl group or may be selected from fatty acids having a branched structure. A mixed ester of linear and branched fatty acids may be employed. Furthermore, two or more fatty acids selected from the above fatty acids may be used to constitute an ester.
  • Specifically, for example, in the case of a mixed ester of linear and branched fatty acids, the molar ratio of a linear fatty acid having 4 to 6 carbon atoms and a branched fatty acid having 7 to 9 carbon atoms is 15:85 to 90:10, preferably 15:85 to 85:15, more preferably 20:80 to 80:20, further preferably 25:75 to 75:25, and most preferably 30:70 to 70:30. The total content of the linear fatty acid having 4 to 6 carbon atoms and the branched fatty acid having 7 to 9 carbon atoms relative to the whole amount of fatty acid constituting the polyhydric alcohol fatty acid ester is preferably 20 mol % or more. The fatty acid preferably has such a composition that both of sufficient miscibility with a refrigerant and viscosity required as a refrigerating oil are achieved. The content of a fatty acid herein refers to a value relative to the whole amount of fatty acid constituting the polyhydric alcohol fatty acid ester contained in the refrigerating oil.
  • In particular, the refrigerating oil preferably contains an ester (hereafter referred to as a “polyhydric alcohol fatty acid ester (A)”) in which the molar ratio of the fatty acid having 4 to 6 carbon atoms and the branched fatty acid having 7 to 9 carbon atoms is 15:85 to 90:10, the fatty acid having 4 to 6 carbon atoms contains 2-methylpropionic acid, and the total content of the fatty acid having 4 to 6 carbon atoms and the branched fatty acid having 7 to 9 carbon atoms relative to the whole amount of fatty acid constituting the above ester is 20 mol % or more.
  • The polyhydric alcohol fatty acid ester (A) includes a complete ester in which all hydroxyl groups of a polyhydric alcohol are esterified, a partial ester in which some hydroxyl groups of a polyhydric alcohol are left without being esterified, and a mixture of a complete ester and a partial ester. The hydroxyl value of the polyhydric alcohol fatty acid ester (A) is preferably 10 mgKOH/g or less, more preferably 5 mgKOH/g or less, and most preferably 3 mgKOH/g or less.
  • For the fatty acid constituting the polyhydric alcohol fatty acid ester (A), the molar ratio of the fatty acid having 4 to 6 carbon atoms and the branched fatty acid having 7 to 9 carbon atoms is 15:85 to 90:10, preferably 15:85 to 85:15, more preferably 20:80 to 80:20, further preferably 25:75 to 75:25, and most preferably 30:70 to 70:30. The total content of the fatty acid having 4 to 6 carbon atoms and the branched fatty acid having 7 to 9 carbon atoms relative to the whole amount of fatty acid constituting the polyhydric alcohol fatty acid ester (A) is 20 mol % or more. In the case where the above conditions for the composition of the fatty acid are not satisfied, if difluoromethane is contained in the refrigerant composition, both of sufficient miscibility with the difluoromethane and viscosity required as a refrigerating oil are not easily achieved at high levels. The content of a fatty acid refers to a value relative to the whole amount of fatty acid constituting the polyhydric alcohol fatty acid ester contained in the refrigerating oil.
  • Specific examples of the fatty acid having 4 to 6 carbon atoms include butanoic acid, 2-methylpropionic acid, pentanoic acid, 2-methylbutanoic acid, 3-methylbutanoic acid, 2,2-dimethylpropionic acid, 2-methylpentanoic acid, 3-methylpentanoic acid, 4-methylpentanoic acid, 2,2-dimethylbutanoic acid, 2,3-dimethylbutanoic acid, 3,3-dimethylbutanoic acid, and hexanoic acid. Among them, a fatty acid having a branched structure at an alkyl skeleton, such as 2-methylpropionic acid, is preferred.
  • Specific examples of the branched fatty acid having 7 to 9 carbon atoms include 2-methylhexanoic acid, 3-methylhexanoic acid, 4-methylhexanoic acid, 5-methylhexanoic acid, 2,2-dimethylpentanoic acid, 2,3-dimethylpentanoic acid, 2,4-dimethylpentanoic acid, 3,3-dimethylpentanoic acid, 3,4-dimethylpentanoic acid, 4,4-dimethylpentanoic acid, 2-ethylpentanoic acid, 3-ethylpentanoic acid, 1,1,2-trimethylbutanoic acid, 1,2,2-trimethylbutanoic acid, 1-ethyl-1-methylbutanoic acid, 1-ethyl-2-methylbutanoic acid, octanoic acid, 2-ethylhexanoic acid, 3-ethylhexanoic acid, 3,5-dimethylhexanoic acid, 2,4-dimethylhexanoic acid, 3,4-dimethylhexanoic acid, 4,5-dimethylhexanoic acid, 2,2-dimethylhexanoic acid, 2-methylheptanoic acid, 3-methylheptanoic acid, 4-methylheptanoic acid, 5-methylheptanoic acid, 6-methylheptanoic acid, 2-propylpentanoic acid, nonanoic acid, 2,2-dimethylheptanoic acid, 2-methyloctanoic acid, 2-ethylheptanoic acid, 3-methyloctanoic acid, 3,5,5-trimethylhexanoic acid, 2-ethyl-2,3,3-trimethylbutyric acid, 2,2,4,4-tetramethylpentanoic acid, 2,2,3,3-tetramethylpentanoic acid, 2,2,3,4-tetramethylpentanoic acid, and 2,2-diisopropylpropanoic acid.
  • The polyhydric alcohol fatty acid ester (A) may contain, as an acid constituent component, a fatty acid other than the fatty acid having 4 to 6 carbon atoms and the branched fatty acid having 7 to 9 carbon atoms as long as the molar ratio of the fatty acid having 4 to 6 carbon atoms and the branched fatty acid having 7 to 9 carbon atoms is 15:85 to 90:10 and the fatty acid having 4 to 6 carbon atoms contains 2-methylpropionic acid.
  • Specific examples of the fatty acid other than the fatty acid having 4 to 6 carbon atoms and the branched fatty acid having 7 to 9 carbon atoms include fatty acids having 2 or 3 carbon atoms, such as acetic acid and propionic acid; linear fatty acids having 7 to 9 carbon atoms, such as heptanoic acid, octanoic acid, and nonanoic acid; and fatty acids having 10 to 20 carbon atoms, such as decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, octadecanoic acid, nonadecanoic acid, eicosanoic acid, and oleic acid.
  • When the fatty acid having 4 to 6 carbon atoms and the branched fatty acid having 7 to 9 carbon atoms are used in combination with fatty acids other than these fatty acids, the total content of the fatty acid having 4 to 6 carbon atoms and the branched fatty acid having 7 to 9 carbon atoms relative to the whole amount of fatty acid constituting the polyhydric alcohol fatty acid ester (A) is preferably 20 mol % or more, more preferably 25 mol % or more, and further preferably 30 mol % or more. When the content is 20 mol % or more, sufficient miscibility with difluoromethane is achieved in the case where the difluoromethane is contained in the refrigerant composition.
  • A polyhydric alcohol fatty acid ester (A) containing, as acid constituent components, only 2-methylpropionic acid and 3,5,5-trimethylhexanoic acid is particularly preferred from the viewpoint of achieving both necessary viscosity and miscibility with difluoromethane in the case where the difluoromethane is contained in the refrigerant composition.
  • The polyhydric alcohol fatty acid ester may be a mixture of two or more esters having different molecular structures. In this case, individual molecules do not necessarily satisfy the above conditions as long as the whole fatty acid constituting a pentaerythritol fatty acid ester contained in the refrigerating oil satisfies the above conditions.
  • As described above, the polyhydric alcohol fatty acid ester (A) contains the fatty acid having 4 to 6 carbon atoms and the branched fatty acid having 7 to 9 carbon atoms as essential acid components constituting the ester and may optionally contain other fatty acids as constituent components. In other words, the polyhydric alcohol fatty acid ester (A) may contain only two fatty acids as acid constituent components or three or more fatty acids having different structures as acid constituent components, but the polyhydric alcohol fatty acid ester preferably contains, as an acid constituent component, only a fatty acid whose carbon atom (α-position carbon atom) adjacent to carbonyl carbon is not quaternary carbon. If the fatty acid constituting the polyhydric alcohol fatty acid ester contains a fatty acid whose α-position carbon atom is quaternary carbon, the lubricity in the presence of difluoromethane in the case where the difluoromethane is contained in the refrigerant composition tends to be insufficient.
  • The polyhydric alcohol constituting the polyol ester according to this embodiment is preferably a polyhydric alcohol having 2 to 6 hydroxyl groups.
  • Specific examples of the dihydric alcohol (diol) include ethylene glycol, 1,3-propanediol, propylene glycol, 1,4-butanediol, 1,2-butanediol, 2-methyl-1,3-propanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 2-ethyl-2-methyl-1,3-propanediol, 1,7-heptanediol, 2-methyl-2-propyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 1, 8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, and 1,12-dodecanediol. Specific examples of the trihydric or higher alcohol include polyhydric alcohols such as trimethylolethane, trimethylolpropane, trimethylolbutane, di-(trimethylolpropane), tri-(trimethylolpropane), pentaerythritol, di-(pentaerythritol), tri-(pentaerythritol), glycerol, polyglycerol (glycerol dimer or trimer), 1,3,5-pentanetriol, sorbitol, sorbitan, sorbitol glycerol condensates, adonitol, arabitol, xylitol, and mannitol; saccharides such as xylose, arabinose, ribose, rhamnose, glucose, fructose, galactose, mannose, sorbose, and cellobiose; and partially etherified products of the foregoing. Among them, in terms of better hydrolysis stability, an ester of a hindered alcohol such as neopentyl glycol, trimethylolethane, trimethylolpropane, trimethylolbutane, di-(trimethylolpropane), tri-(trimethylolpropane), pentaerythritol, di-(pentaerythritol), or tri-(pentaerythritol) is preferably used; an ester of neopentyl glycol, trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol, or di-(pentaerythritol) is more preferably used; and neopentyl glycol, trimethylolpropane, pentaerythritol, or di-(pentaerythritol) is further preferably used. In terms of excellent miscibility with a refrigerant and excellent hydrolysis stability, a mixed ester of pentaerythritol, di-(pentaerythritol), or pentaerythritol and di-(pentaerythritol) is most preferably used.
  • Preferred examples of the acid constituent component constituting the polyhydric alcohol fatty acid ester (A) are as follows:
  • (i) a combination of 1 to 13 acids selected from butanoic acid, 2-methylpropionic acid, pentanoic acid, 2-methylbutanoic acid, 3-methylbutanoic acid, 2,2-dimethylpropionic acid, 2-methylpentanoic acid, 3-methylpentanoic acid, 4-methylpentanoic acid, 2,2-dimethylbutanoic acid, 2,3-dimethylbutanoic acid, 3,3-dimethylbutanoic acid, and hexanoic acid and 1 to 13 acids selected from 2-methylhexanoic acid, 3-methylhexanoic acid, 4-methylhexanoic acid, 5-methylhexanoic acid, 2,2-dimethylpentanoic acid, 2,3-dimethylpentanoic acid, 2,4-dimethylpentanoic acid, 3,3-dimethylpentanoic acid, 3,4-dimethylpentanoic acid, 4,4-dimethylpentanoic acid, 2-ethylpentanoic acid, 3-ethylpentanoic acid, and 2-ethyl-3-methylbutanoic acid;
    (ii) a combination of 1 to 13 acids selected from butanoic acid, 2-methylpropionic acid, pentanoic acid, 2-methylbutanoic acid, 3-methylbutanoic acid, 2,2-dimethylpropionic acid, 2-methylpentanoic acid, 3-methylpentanoic acid, 4-methylpentanoic acid, 2,2-dimethylbutanoic acid, 2,3-dimethylbutanoic acid, 3,3-dimethylbutanoic acid, and hexanoic acid and 1 to 25 acids selected from 2-methylheptanoic acid, 3-methylheptanoic acid, 4-methylheptanoic acid, 5-methylheptanoic acid, 6-methylheptanoic acid, 2,2-dimethylhexanoic acid, 3,3-dimethylhexanoic acid, 4,4-dimethylhexanoic acid, 5,5-dimethylhexanoic acid, 2,3-dimethylhexanoic acid, 2,4-dimethylhexanoic acid, 2,5-dimethylhexanoic acid, 3,4-dimethylhexanoic acid, 3,5-dimethylhexanoic acid, 4,5-dimethylhexanoic acid, 2,2,3-trimethylpentanoic acid, 2,3,3-trimethylpentanoic acid, 2,4,4-trimethylpentanoic acid, 3,4,4-trimethylpentanoic acid, 2-ethylhexanoic acid, 3-ethylhexanoic acid, 2-propylpentanoic acid, 2-methyl-2-ethylpentanoic acid, 2-methyl-3-ethylpentanoic acid, and 3-methyl-3-ethylpentanoic acid; and
    (iii) a combination of 1 to 13 acids selected from butanoic acid, 2-methylpropionic acid, pentanoic acid, 2-methylbutanoic acid, 3-methylbutanoic acid, 2,2-dimethylpropionic acid, 2-methylpentanoic acid, 3-methylpentanoic acid, 4-methylpentanoic acid, 2,2-dimethylbutanoic acid, 2,3-dimethylbutanoic acid, 3,3-dimethylbutanoic acid, and hexanoic acid and 1 to 50 acids selected from 2-methyloctanoic acid, 3-methyloctanoic acid, 4-methyloctanoic acid, 5-methyloctanoic acid, 6-methyloctanoic acid, 7-methyloctanoic acid, 8-methyloctanoic acid, 2,2-dimethylheptanoic acid, 3,3-dimethylheptanoic acid, 4,4-dimethylheptanoic acid, 5,5-dimethylheptanoic acid, 6,6-dimethylheptanoic acid, 2,3-dimethylheptanoic acid, 2,4-dimethylheptanoic acid, 2,5-dimethylheptanoic acid, 2, 6-dimethylheptanoic acid, 3,4-dimethylheptanoic acid, 3,5-dimethylheptanoic acid, 3,6-dimethylheptanoic acid, 4,5-dimethylheptanoic acid, 4,6-dimethylheptanoic acid, 2-ethylheptanoic acid, 3-ethylheptanoic acid, 4-ethylheptanoic acid, 5-ethylheptanoic acid, 2-propylhexanoic acid, 3-propylhexanoic acid, 2-butylpentanoic acid, 2,2,3-trimethylhexanoic acid, 2,2,3-trimethylhexanoic acid, 2,2,4-trimethylhexanoic acid, 2,2,5-trimethylhexanoic acid, 2,3,4-trimethylhexanoic acid, 2,3,5-trimethylhexanoic acid, 3,3,4-trimethylhexanoic acid, 3,3,5-trimethylhexanoic acid, 3,5,5-trimethylhexanoic acid, 4,4,5-trimethylhexanoic acid, 4,5,5-trimethylhexanoic acid, 2,2,3,3-tetramethylpentanoic acid, 2,2,3,4-tetramethylpentanoic acid, 2,2,4,4-tetramethylpentanoic acid, 2,3,4,4-tetramethylpentanoic acid, 3,3,4,4-tetramethylpentanoic acid, 2,2-diethylpentanoic acid, 2,3-diethylpentanoic acid, 3,3-diethylpentanoic acid, 2-ethyl-2,3,3-trimethylbutyric acid, 3-ethyl-2,2,3-trimethylbutyric acid, and 2,2-diisopropylpropionic acid.
  • Further preferred examples of the acid constituent component constituting the polyhydric alcohol fatty acid ester are as follows:
  • (i) a combination of 2-methylpropionic acid and 1 to 13 acids selected from 2-methylhexanoic acid, 3-methylhexanoic acid, 4-methylhexanoic acid, 5-methylhexanoic acid, 2,2-dimethylpentanoic acid, 2,3-dimethylpentanoic acid, 2,4-dimethylpentanoic acid, 3,3-dimethylpentanoic acid, 3,4-dimethylpentanoic acid, 4,4-dimethylpentanoic acid, 2-ethylpentanoic acid, 3-ethylpentanoic acid, and 2-ethyl-3-methylbutanoic acid;
    (ii) a combination of 2-methylpropionic acid and 1 to 25 acids selected from 2-methylheptanoic acid, 3-methylheptanoic acid, 4-methylheptanoic acid, 5-methylheptanoic acid, 6-methylheptanoic acid, 2,2-dimethylhexanoic acid, 3,3-dimethylhexanoic acid, 4,4-dimethylhexanoic acid, 5,5-dimethylhexanoic acid, 2,3-dimethylhexanoic acid, 2,4-dimethylhexanoic acid, 2,5-dimethylhexanoic acid, 3,4-dimethylhexanoic acid, 3,5-dimethylhexanoic acid, 4,5-dimethylhexanoic acid, 2,2,3-trimethylpentanoic acid, 2,3,3-trimethylpentanoic acid, 2,4,4-trimethylpentanoic acid, 3,4,4-trimethylpentanoic acid, 2-ethylhexanoic acid, 3-ethylhexanoic acid, 2-propylpentanoic acid, 2-methyl-2-ethylpentanoic acid, 2-methyl-3-ethylpentanoic acid, and 3-methyl-3-ethylpentanoic acid; and
    (iii) a combination of 2-methylpropionic acid and 1 to 50 acids selected from 2-methyloctanoic acid, 3-methyloctanoic acid, 4-methyloctanoic acid, 5-methyloctanoic acid, 6-methyloctanoic acid, 7-methyloctanoic acid, 8-methyloctanoic acid, 2,2-dimethylheptanoic acid, 3,3-dimethylheptanoic acid, 4,4-dimethylheptanoic acid, 5,5-dimethylheptanoic acid, 6,6-dimethylheptanoic acid, 2,3-dimethylheptanoic acid, 2,4-dimethylheptanoic acid, 2,5-dimethylheptanoic acid, 2,6-dimethylheptanoic acid, 3,4-dimethylheptanoic acid, 3,5-dimethylheptanoic acid, 3,6-dimethylheptanoic acid, 4,5-dimethylheptanoic acid, 4,6-dimethylheptanoic acid, 2-ethylheptanoic acid, 3-ethylheptanoic acid, 4-ethylheptanoic acid, 5-ethylheptanoic acid, 2-propylhexanoic acid, 3-propylhexanoic acid, 2-butylpentanoic acid, 2,2,3-trimethylhexanoic acid, 2,2,3-trimethylhexanoic acid, 2,2,4-trimethylhexanoic acid, 2,2,5-trimethylhexanoic acid, 2,3,4-trimethylhexanoic acid, 2,3,5-trimethylhexanoic acid, 3,3,4-trimethylhexanoic acid, 3,3,5-trimethylhexanoic acid, 3,5,5-trimethylhexanoic acid, 4,4,5-trimethylhexanoic acid, 4,5,5-trimethylhexanoic acid, 2,2,3,3-tetramethylpentanoic acid, 2,2,3,4-tetramethylpentanoic acid, 2,2,4,4-tetramethylpentanoic acid, 2,3,4,4-tetramethylpentanoic acid, 3,3,4,4-tetramethylpentanoic acid, 2,2-diethylpentanoic acid, 2,3-diethylpentanoic acid, 3,3-diethylpentanoic acid, 2-ethyl-2,3,3-trimethylbutyric acid, 3-ethyl-2,2,3-trimethylbutyric acid, and 2,2-diisopropylpropionic acid.
  • The content of the polyhydric alcohol fatty acid ester (A) is 50 mass % or more, preferably 60 mass % or more, more preferably 70 mass % or more, and further preferably 75 mass % or more relative to the whole amount of the refrigerating oil. The refrigerating oil according to this embodiment may contain a lubricating base oil other than the polyhydric alcohol fatty acid ester (A) and additives as described later. However, if the content of the polyhydric alcohol fatty acid ester (A) is less than 50 mass %, necessary viscosity and miscibility cannot be achieved at high levels.
  • In the refrigerating oil according to this embodiment, the polyhydric alcohol fatty acid ester (A) is mainly used as a base oil. The base oil of the refrigerating oil according to this embodiment may be a polyhydric alcohol fatty acid ester (A) alone (i.e., the content of the polyhydric alcohol fatty acid ester (A) is 100 mass %). However, in addition to the polyhydric alcohol fatty acid ester (A), a base oil other than the polyhydric alcohol fatty acid ester (A) may be further contained to the degree that the excellent performance of the polyhydric alcohol fatty acid ester (A) is not impaired. Examples of the base oil other than the polyhydric alcohol fatty acid ester (A) include hydrocarbon oils such as mineral oils, olefin polymers, alkyldiphenylalkanes, alkylnaphthalenes, and alkylbenzenes; and esters other than the polyhydric alcohol fatty acid ester (A), such as polyol esters, complex esters, and alicyclic dicarboxylic acid esters, and oxygen-containing synthetic oils (hereafter, may be referred to as “other oxygen-containing synthetic oils”) such as polyglycols, polyvinyl ethers, ketones, polyphenyl ethers, silicones, polysiloxanes, and perfluoroethers.
  • Among them, the oxygen-containing synthetic oil is preferably an ester other than the polyhydric alcohol fatty acid ester (A), a polyglycol, or a polyvinyl ether and particularly preferably a polyol ester other than the polyhydric alcohol fatty acid ester (A). The polyol ester other than the polyhydric alcohol fatty acid ester (A) is an ester of a fatty acid and a polyhydric alcohol such as neopentyl glycol, trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol, or dipentaerythritol and is particularly preferably an ester of neopentyl glycol and a fatty acid, an ester of pentaerythritol and a fatty acid, or an ester of dipentaerythritol and a fatty acid.
  • The neopentyl glycol ester is preferably an ester of neopentyl glycol and a fatty acid having 5 to 9 carbon atoms. Specific examples of the neopentyl glycol ester include neopentyl glycol di(3,5,5-trimethylhexanoate), neopentyl glycol di(2-ethylhexanoate), neopentyl glycol di(2-methylhexanoate), neopentyl glycol di(2-ethylpentanoate), an ester of neopentyl glycol and 2-methylhexanoic acid.2-ethylpentanoic acid, an ester of neopentyl glycol and 3-methylhexanoic acid.5-methylhexanoic acid, an ester of neopentyl glycol and 2-methylhexanoic acid.2-ethylhexanoic acid, an ester of neopentyl glycol and 3,5-dimethylhexanoic acid.4,5-dimethylhexanoic acid.3,4-dimethylhexanoic acid, neopentyl glycol dipentanoate, neopentyl glycol di(2-ethylbutanoate), neopentyl glycol di(2-methylpentanoate), neopentyl glycol di(2-methylbutanoate), and neopentyl glycol di(3-methylbutanoate).
  • The pentaerythritol ester is preferably an ester of pentaerythritol and a fatty acid having 5 to 9 carbon atoms. The pentaerythritol ester is, specifically, an ester of pentaerythritol and at least one fatty acid selected from pentanoic acid, 2-methylbutanoic acid, 3-methylbutanoic acid, hexanoic acid, 2-methylpentanoic acid, 2-ethylbutanoic acid, 2-ethylpentanoic acid, 2-methylhexanoic acid, 3,5,5-trimethylhexanoic acid, and 2-ethylhexanoic acid.
  • The dipentaerythritol ester is preferably an ester of dipentaerythritol and a fatty acid having 5 to 9 carbon atoms. The dipentaerythritol ester is, specifically, an ester of dipentaerythritol and at least one fatty acid selected from pentanoic acid, 2-methylbutanoic acid, 3-methylbutanoic acid, hexanoic acid, 2-methylpentanoic acid, 2-ethylbutanoic acid, 2-ethylpentanoic acid, 2-methylhexanoic acid, 3,5,5-trimethylhexanoic acid, and 2-ethylhexanoic acid.
  • When the refrigerating oil according to this embodiment contains an oxygen-containing synthetic oil other than the polyhydric alcohol fatty acid ester (A), the content of the oxygen-containing synthetic oil other than the polyhydric alcohol fatty acid ester (A) is not limited as long as excellent lubricity and miscibility of the refrigerating oil according to this embodiment are not impaired. When a polyol ester other than the polyhydric alcohol fatty acid ester (A) is contained, the content of the polyol ester is preferably less than 50 mass %, more preferably 45 mass % or less, still more preferably 40 mass % or less, even more preferably 35 mass % or less, further preferably 30 mass % or less, and most preferably 25 mass % or less relative to the whole amount of the refrigerating oil. When an oxygen-containing synthetic oil other than the polyol ester is contained, the content of the oxygen-containing synthetic oil is preferably less than 50 mass %, more preferably 40 mass % or less, and further preferably 30 mass % or less relative to the whole amount of the refrigerating oil. If the content of the polyol ester other than the pentaerythritol fatty acid ester or the oxygen-containing synthetic oil is excessively high, the above-described effects are not sufficiently produced.
  • The polyol ester other than the polyhydric alcohol fatty acid ester (A) may be a partial ester in which some hydroxyl groups of a polyhydric alcohol are left without being esterified, a complete ester in which all hydroxyl groups are esterified, or a mixture of a partial ester and a complete ester. The hydroxyl value is preferably 10 mgKOH/g or less, more preferably 5 mgKOH/g or less, and most preferably 3 mgKOH/g or less.
  • When the refrigerating oil and the working fluid for a refrigerating machine according to this embodiment contain a polyol ester other than the polyhydric alcohol fatty acid ester (A), the polyol ester may contain one polyol ester having a single structure or a mixture of two or more polyol esters having different structures.
  • The polyol ester other than the polyhydric alcohol fatty acid ester (A) may be any of an ester of one fatty acid and one polyhydric alcohol, an ester of two or more fatty acids and one polyhydric alcohol, an ester of one fatty acid and two or more polyhydric alcohols, and an ester of two or more fatty acids and two or more polyhydric alcohols.
  • The refrigerating oil according to this embodiment may be constituted by only the polyhydric alcohol fatty acid ester (A) or by the polyhydric alcohol fatty acid ester (A) and other base oils. The refrigerating oil may further contain various additives described later. The working fluid for a refrigerating machine according to this embodiment may also further contain various additives. In the following description, the content of additives is expressed relative to the whole amount of the refrigerating oil, but the content of these components in the working fluid for a refrigerating machine is desirably determined so that the content is within the preferred range described later when expressed relative to the whole amount of the refrigerating oil.
  • To further improve the abrasion resistance and load resistance of the refrigerating oil and the working fluid for a refrigerating machine according to this embodiment, at least one phosphorus compound selected from the group consisting of phosphoric acid esters, acidic phosphoric acid esters, thiophosphoric acid esters, amine salts of acidic phosphoric acid esters, chlorinated phosphoric acid esters, and phosphorous acid esters can be added. These phosphorus compounds are esters of phosphoric acid or phosphorous acid and alkanol or polyether-type alcohol, or derivatives thereof.
  • Specific examples of the phosphoric acid ester include tributyl phosphate, tripentyl phosphate, trihexyl phosphate, triheptyl phosphate, trioctyl phosphate, trinonyl phosphate, tridecyl phosphate, triundecyl phosphate, tridodecyl phosphate, tritridecyl phosphate, tritetradecyl phosphate, tripentadecyl phosphate, trihexadecyl phosphate, triheptadecyl phosphate, trioctadecyl phosphate, trioleyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyldiphenyl phosphate, and xylenyldiphenyl phosphate.
  • Examples of the acidic phosphoric acid ester include monobutyl acid phosphate, monopentyl acid phosphate, monohexyl acid phosphate, monoheptyl acid phosphate, monooctyl acid phosphate, monononyl acid phosphate, monodecyl acid phosphate, monoundecyl acid phosphate, monododecyl acid phosphate, monotridecyl acid phosphate, monotetradecyl acid phosphate, monopentadecyl acid phosphate, monohexadecyl acid phosphate, monoheptadecyl acid phosphate, monooctadecyl acid phosphate, monooleyl acid phosphate, dibutyl acid phosphate, dipentyl acid phosphate, dihexyl acid phosphate, diheptyl acid phosphate, dioctyl acid phosphate, dinonyl acid phosphate, didecyl acid phosphate, diundecyl acid phosphate, didodecyl acid phosphate, ditridecyl acid phosphate, ditetradecyl acid phosphate, dipentadecyl acid phosphate, dihexadecyl acid phosphate, diheptadecyl acid phosphate, dioctadecyl acid phosphate, and dioleyl acid phosphate.
  • Examples of the thiophosphoric acid ester include tributyl phosphorothionate, tripentyl phosphorothionate, trihexyl phosphorothionate, triheptyl phosphorothionate, trioctyl phosphorothionate, trinonyl phosphorothionate, tridecyl phosphorothionate, triundecyl phosphorothionate, tridodecyl phosphorothionate, tritridecyl phosphorothionate, tritetradecyl phosphorothionate, tripentadecyl phosphorothionate, trihexadecyl phosphorothionate, triheptadecyl phosphorothionate, trioctadecyl phosphorothionate, trioleyl phosphorothionate, triphenyl phosphorothionate, tricresyl phosphorothionate, trixylenyl phosphorothionate, cresyldiphenyl phosphorothionate, and xylenyldiphenyl phosphorothionate.
  • The amine salt of an acidic phosphoric acid ester is an amine salt of an acidic phosphoric acid ester and a primary, secondary, or tertiary amine that has a linear or branched alkyl group and that has 1 to 24 carbon atoms, preferably 5 to 18 carbon atoms.
  • For the amine constituting the amine salt of an acidic phosphoric acid ester, the amine salt is a salt of an amine such as a linear or branched methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine, oleylamine, tetracosylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine, diheptylamine, dioctylamine, dinonylamine, didecylamine, diundecylamine, didodecylamine, ditridecylamine, ditetradecylamine, dipentadecylamine, dihexadecylamine, diheptadecylamine, dioctadecylamine, dioleylamine, ditetracosylamine, trimethylamine, triethylamine, tripropylamine, tributylamine, tripentylamine, trihexylamine, triheptylamine, trioctylamine, trinonylamine, tridecylamine, triundecylamine, tridodecylamine, tritridecylamine, tritetradecylamine, tripentadecyl amine, trihexadecylamine, triheptadecylamine, trioctadecylamine, trioleylamine, or tritetracosylamine. The amine may be a single compound or a mixture of two or more compounds.
  • Examples of the chlorinated phosphoric acid ester include tris(dichloropropyl) phosphate, tris(chloroethyl) phosphate, tris(chlorophenyl) phosphate, and polyoxyalkylene.bis[di(chloroaklyl)] phosphate. Examples of the phosphorous acid ester include dibutyl phosphite, dipentyl phosphite, dihexyl phosphite, diheptyl phosphite, dioctyl phosphite, dinonyl phosphite, didecyl phosphite, diundecyl phosphite, didodecyl phosphite, dioleyl phosphite, diphenyl phosphite, dicresyl phosphite, tributyl phosphite, tripentyl phosphite, trihexyl phosphite, triheptyl phosphite, trioctyl phosphite, trinonyl phosphite, tridecyl phosphite, triundecyl phosphite, tridodecyl phosphite, trioleyl phosphite, triphenyl phosphite, and tricresyl phosphite. Mixtures of these compounds can also be used.
  • When the refrigerating oil and the working fluid for a refrigerating machine according to this embodiment contain the above-described phosphorus compound, the content of the phosphorus compound is not limited, but is preferably 0.01 to 5.0 mass % and more preferably 0.02 to 3.0 mass % relative to the whole amount of the refrigerating oil (relative to the total amount of the base oil and all the additives). The above-described phosphorus compounds may be used alone or in combination of two or more.
  • The refrigerating oil and the working fluid for a refrigerating machine according to this embodiment may contain a terpene compound to further improve the thermal and chemical stability. The “terpene compound” in the present invention refers to a compound obtained by polymerizing isoprene and a derivative thereof, and a dimer to an octamer of isoprene are preferably used. Specific examples of the terpene compound include monoterpenes such as geraniol, nerol, linalool, citral (including geranial), citronellol, menthol, limonene, terpinerol, carvone, ionone, thujone, camphor, and borneol; sesquiterpenes such as farnesene, farnesol, nerolidol, juvenile hormone, humulene, caryophyllene, elemene, cadinol, cadinene, and tutin; diterpenes such as geranylgeraniol, phytol, abietic acid, pimaragen, daphnetoxin, taxol, and pimaric acid; sesterterpenes such as geranylfarnesene; triterpenes such as squalene, limonin, camelliagenin, hopane, and lanosterol; and tetraterpenes such as carotenoid.
  • Among these terpene compounds, the terpene compound is preferably monoterpene, sesquiterpene, or diterpene, more preferably sesquiterpene, and particularly preferably α-farnesene (3,7, 11-trimethyldodeca-1,3,6,10-tetraene) and/or β-farnesene (7,11-dimethyl-3-methylidenedodeca-1,6,10-triene). In the present invention, the terpene compounds may be used alone or in combination of two or more.
  • The content of the terpene compound in the refrigerating oil according to this embodiment is not limited, but is preferably 0.001 to 10 mass %, more preferably 0.01 to 5 mass %, and further preferably 0.05 to 3 mass % relative to the whole amount of the refrigerating oil. If the content of the terpene compound is less than 0.001 mass %, an effect of improving the thermal and chemical stability tends to be insufficient. If the content is more than 10 mass %, the lubricity tends to be insufficient. The content of the terpene compound in the working fluid for a refrigerating machine according to this embodiment is desirably determined so that the content is within the above preferred range when expressed relative to the whole amount of the refrigerating oil.
  • The refrigerating oil and the working fluid for a refrigerating machine according to this embodiment may contain at least one epoxy compound selected from phenyl glycidyl ether-type epoxy compounds, alkyl glycidyl ether-type epoxy compounds, glycidyl ester-type epoxy compounds, allyloxirane compounds, alkyloxirane compounds, alicyclic epoxy compounds, epoxidized fatty acid monoesters, and epoxidized vegetable oils to further improve the thermal and chemical stability.
  • Specific examples of the phenyl glycidyl ether-type epoxy compound include phenyl glycidyl ether and alkylphenyl glycidyl ethers. The alkylphenyl glycidyl ether herein is an alkylphenyl glycidyl ether having 1 to 3 alkyl groups with 1 to 13 carbon atoms. In particular, the alkylphenyl glycidyl ether is preferably an alkylphenyl glycidyl ether having one alkyl group with 4 to 10 carbon atoms, such as n-butylphenyl glycidyl ether, i-butylphenyl glycidyl ether, sec-butylphenyl glycidyl ether, tert-butylphenyl glycidyl ether, pentylphenyl glycidyl ether, hexylphenyl glycidyl ether, heptylphenyl glycidyl ether, octylphenyl glycidyl ether, nonylphenyl glycidyl ether, or decylphenyl glycidyl ether.
  • Specific examples of the alkyl glycidyl ether-type epoxy compound include decyl glycidyl ether, undecyl glycidyl ether, dodecyl glycidyl ether, tridecyl glycidyl ether, tetradecyl glycidyl ether, 2-ethylhexyl glycidyl ether, neopentyl glycol diglycidyl ether, trimethylolpropane triglycidyl ether, pentaerythritol tetraglycidyl ether, 1,6-hexanediol diglycidyl ether, sorbitol polyglycidyl ether, polyalkylene glycol monoglycidyl ether, and polyalkylene glycol diglycidyl ether.
  • Specific examples of the glycidyl ester-type epoxy compound include phenyl glycidyl ester, alkyl glycidyl esters, and alkenyl glycidyl esters. Preferred examples of the glycidyl ester-type epoxy compound include glycidyl-2,2-dimethyloctanoate, glycidyl benzoate, glycidyl acrylate, and glycidyl methacrylate.
  • Specific examples of the allyloxirane compound include 1,2-epoxystyrene and alkyl-1,2-epoxy styrenes.
  • Specific examples of the alkyloxirane compound include 1,2-epoxybutane, 1,2-epoxypentane, 1,2-epoxyhexane, 1,2-epoxyheptane, 1,2-epoxyoctane, 1,2-epoxynonane, 1,2-epoxydecane, 1,2-epoxyundecane, 1,2-epoxydodecane, 1,2-epoxytridecane, 1,2-epoxytetradecane, 1,2-epoxypentadecane, 1,2-epoxyhexadecane, 1,2-epoxyheptadecane, 1,1,2-epoxyoctadecane, 2-epoxynonadecane, and 1,2-epoxyeicosane.
  • Specific examples of the alicyclic epoxy compound include 1,2-epoxycyclohexane, 1,2-epoxycyclopentane, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, bis(3,4-epoxycyclohexylmethyl) adipate, exo-2,3-epoxynorbornane, bis(3,4-epoxy-6-methylcyclohexylmethyl) adipate, 2-(7-oxabicyclo[4.1.0]hept-3-yl)-spiro(1,3-dioxane-5,3′-[7]oxabicyclo[4.1.0]heptane, 4-(1′-methylepoxyethyl)-1,2-epoxy-2-methylcyclohexane, and 4-epoxyethyl-1,2-epoxycyclohexane.
  • Specific examples of the epoxidized fatty acid monoester include esters of an epoxidized fatty acid having 12 to 20 carbon atoms and an alcohol having 1 to 8 carbon atoms, phenol, or an alkylphenol. In particular, butyl, hexyl, benzyl, cyclohexyl, methoxyethyl, octyl, phenyl, and butyl phenyl esters of epoxystearic acid are preferably used.
  • Specific examples of the epoxidized vegetable oil include epoxy compounds of vegetable oils such as soybean oil, linseed oil, and cottonseed oil.
  • Among these epoxy compounds, phenyl glycidyl ether-type epoxy compounds, alkyl glycidyl ether-type epoxy compounds, glycidyl ester-type epoxy compounds, and alicyclic epoxy compounds are preferred.
  • When the refrigerating oil and the working fluid for a refrigerating machine according to this embodiment contain the above-described epoxy compound, the content of the epoxy compound is not limited, but is preferably 0.01 to 5.0 mass % and more preferably 0.1 to 3.0 mass % relative to the whole amount of the refrigerating oil. The above-described epoxy compounds may be used alone or in combination of two or more.
  • The kinematic viscosity of the refrigerating oil containing the polyhydric alcohol fatty acid ester (A) at 40° C. is preferably 20 to 80 mm2/s, more preferably 25 to 75 mm2/s, and most preferably 30 to 70 mm2/s. The kinematic viscosity at 100° C. is preferably 2 to 20 mm2/s and more preferably 3 to 10 mm2/s. When the kinematic viscosity is more than or equal to the lower limit, the viscosity required as a refrigerating oil is easily achieved. On the other hand, when the kinematic viscosity is less than or equal to the upper limit, sufficient miscibility with difluoromethane in the case where the difluoromethane is contained as a refrigerant composition can be achieved.
  • The volume resistivity of the refrigerating oil containing the polyhydric alcohol fatty acid ester (A) is not limited, but is preferably 1.0×1012 Ω·cm or more, more preferably 1.0×1013 Ω·cm or more, and most preferably 1.0×1014 Ω·cm or more. In particular, when the refrigerating oil is used for sealed refrigerating machines, high electric insulation tends to be required. The volume resistivity refers to a value measured at 25° C. in conformity with JIS C 2101 “Testing methods of electrical insulating oils”.
  • The water content of the refrigerating oil containing the polyhydric alcohol fatty acid ester (A) is not limited, but is preferably 200 ppm or less, more preferably 100 ppm or less, and most preferably 50 ppm or less relative to the whole amount of the refrigerating oil. In particular, when the refrigerating oil is used for sealed refrigerating machines, the water content needs to be low from the viewpoints of the thermal and chemical stability of the refrigerating oil and the influence on electric insulation.
  • The acid number of the refrigerating oil containing the polyhydric alcohol fatty acid ester (A) is not limited, but is preferably 0.1 mgKOH/g or less and more preferably 0.05 mgKOH/g or less to prevent corrosion of metals used for refrigerating machines or pipes. In the present invention, the acid number refers to an acid number measured in conformity with JIS K 2501 “Petroleum products and lubricants—Determination of neutralization number”.
  • The ash content of the refrigerating oil containing the polyhydric alcohol fatty acid ester (A) is not limited, but is preferably 100 ppm or less and more preferably 50 ppm or less to improve the thermal and chemical stability of the refrigerating oil and suppress the generation of sludge and the like. The ash content refers to an ash content measured in conformity with JIS K 2272 “Crude oil and petroleum products—Determination of ash and sulfated ash”.
  • (Complex Ester Oil)
  • The complex ester oil is an ester of a fatty acid and a dibasic acid, and a monohydric alcohol and a polyol. The above-described fatty acid, dibasic acid, monohydric alcohol, and polyol can be used.
  • Examples of the fatty acid include the fatty acids mentioned in the polyol ester.
  • Examples of the dibasic acid include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, and terephthalic acid.
  • Examples of the polyol include the polyhydric alcohols in the polyol ester. The complex ester is an ester of such a fatty acid, dibasic acid, and polyol, each of which may be constituted by a single component or a plurality of components.
  • (Polyol Carbonate Oil)
  • The polyol carbonate oil is an ester of a carbonic acid and a polyol.
  • Examples of the polyol include the above-described diols and polyols.
  • The polyol carbonate oil may be a ring-opened polymer of a cyclic alkylene carbonate.
  • (2-1-2) Ether-Type Refrigerating Oil
  • The ether-type refrigerating oil is, for example, a polyvinyl ether oil or a polyoxyalkylene oil.
  • (Polyvinyl Ether Oil)
  • Examples of the polyvinyl ether oil include polymers of a vinyl ether monomer, copolymers of a vinyl ether monomer and a hydrocarbon monomer having an olefinic double bond, and copolymers of a monomer having an olefinic double bond and a polyoxyalkylene chain and a vinyl ether monomer.
  • The carbon/oxygen molar ratio of the polyvinyl ether oil is preferably 2 or more and 7.5 or less and more preferably 2.5 or more and 5.8 or less. If the carbon/oxygen molar ratio is smaller than the above range, the hygroscopicity increases. If the carbon/oxygen molar ratio is larger than the above range, the miscibility deteriorates. The weight-average molecular weight of the polyvinyl ether is preferably 200 or more and 3000 or less and more preferably 500 or more and 1500 or less.
  • The pour point of the polyvinyl ether oil is preferably −30° C. or lower. The surface tension of the polyvinyl ether oil at 20° C. is preferably 0.02 N/m or more and 0.04 N/m or less. The density of the polyvinyl ether oil at 15° C. is preferably 0.8 g/cm3 or more and 1.8 g/cm3 or less. The saturated water content of the polyvinyl ether oil at a temperature of 30° C. and a relative humidity of 90% is preferably 2000 ppm or more.
  • The refrigerating oil may contain polyvinyl ether as a main component. In the case where HFO-1234yf is contained as a refrigerant, the polyvinyl ether serving as a main component of the refrigerating oil has miscibility with HFO-1234yf. When the refrigerating oil has a kinematic viscosity at 40° C. of 400 mm2/s or less, HFO-1234yf is dissolved in the refrigerating oil to some extent. When the refrigerating oil has a pour point of −30° C. or lower, the flowability of the refrigerating oil is easily ensured even at positions at which the temperature of the refrigerant composition and the refrigerating oil is low in the refrigerant circuit. When the refrigerating oil has a surface tension at 20° C. of 0.04 N/m or less, the refrigerating oil discharged from a compressor does not readily form large droplets of oil that are not easily carried away by a refrigerant composition. Therefore, the refrigerating oil discharged from the compressor is dissolved in HFO-1234yf and is easily returned to the compressor together with HFO-1234yf.
  • When the refrigerating oil has a kinematic viscosity at 40° C. of 30 mm2/s or more, an insufficient oil film strength due to excessively low kinematic viscosity is suppressed, and thus good lubricity is easily achieved. When the refrigerating oil has a surface tension at 20° C. of 0.02 N/m or more, the refrigerating oil does not readily form small droplets of oil in a gas refrigerant inside the compressor, which can suppress discharge of a large amount of refrigerating oil from the compressor. Therefore, a sufficient amount of refrigerating oil is easily stored in the compressor.
  • When the refrigerating oil has a saturated water content at 30° C./90% RH of 2000 ppm or more, a relatively high hygroscopicity of the refrigerating oil can be achieved. Thus, when HFO-1234yf is contained as a refrigerant, water in HFO-1234yf can be captured by the refrigerating oil to some extent. HFO-1234yf has a molecular structure that is easily altered or deteriorated because of the influence of water contained. Therefore, the hydroscopic effects of the refrigerating oil can suppress such deterioration.
  • Furthermore, when a particular resin functional component is disposed in the sealing portion or sliding portion that is in contact with a refrigerant flowing through the refrigerant circuit and the resin functional component is formed of any of polytetrafluoroethylene, polyphenylene sulfide, phenolic resin, polyamide resin, chloroprene rubber, silicon rubber, hydrogenated nitrile rubber, fluororubber, and hydrin rubber, the aniline point of the refrigerating oil is preferably set within a particular range in consideration of the adaptability with the resin functional component. By setting the aniline point in such a manner, for example, the adaptability of bearings constituting the resin functional component with the refrigerating oil is improved. Specifically, if the aniline point is excessively low, the refrigerating oil readily infiltrates bearings or the like, and the bearings or the like readily swell. On the other hand, if the aniline point is excessively high, the refrigerating oil does not readily infiltrate bearings or the like, and the bearings or the like readily shrink. Therefore, by setting the aniline point of the refrigerating oil within a particular range, the swelling or shrinking of the bearings or the like can be prevented. Herein, for example, if each of the bearings or the like deforms through swelling or shrinking, the desired length of a gap at a sliding portion cannot be maintained. This may increase the sliding resistance or decrease the rigidity of the sliding portion. However, when the aniline point of the refrigerating oil is set within a particular range as described above, the deformation of the bearings or the like through swelling or shrinking is suppressed, and thus such a problem can be avoided.
  • The vinyl ether monomers may be used alone or in combination of two or more. Examples of the hydrocarbon monomer having an olefinic double bond include ethylene, propylene, various butenes, various pentenes, various hexenes, various heptenes, various octenes, diisobutylene, triisobutylene, styrene, α-methylstyrene, and various alkyl-substituted styrenes. The hydrocarbon monomers having an olefinic double bond may be used alone or in combination of two or more.
  • The polyvinyl ether copolymer may be a block copolymer or a random copolymer. The polyvinyl ether oils may be used alone or in combination of two or more.
  • A polyvinyl ether oil preferably used has a structural unit represented by general formula (1) below.
  • Figure US20200392389A1-20201217-C00001
  • (In the formula, R1, R2, and R3 may be the same or different and each represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, R4 represents a divalent hydrocarbon group having 1 to 10 carbon atoms or an ether bond oxygen-containing divalent hydrocarbon group having 2 to 20 carbon atoms, R5 represents a hydrocarbon group having 1 to 20 carbon atoms, m represents a number at which the average of m in the polyvinyl ether is 0 to 10, R1 to R5 may be the same or different in each of structural units, and when m represents 2 or more in one structural unit, a plurality of R4O may be the same or different.)
  • At least one of R1, R2, and R3 in the general formula (1) preferably represents a hydrogen atom. In particular, all of R1, R2, and R3 preferably represent a hydrogen atom. In the general formula (1), m preferably represents 0 or more and 10 or less, particularly preferably 0 or more and 5 or less, further preferably 0. R5 in the general formula (1) represents a hydrocarbon group having 1 to 20 carbon atoms. Specific examples of the hydrocarbon group include alkyl groups such as a methyl group, an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, various pentyl groups, various hexyl groups, various heptyl groups, and various octyl groups; cycloalkyl groups such as a cyclopentyl group, a cyclohexyl group, various methylcyclohexyl groups, various ethylcyclohexyl groups, and various dimethylcyclohexyl groups; aryl groups such as a phenyl group, various methylphenyl groups, various ethylphenyl groups, and various dimethylphenyl groups; and arylalkyl groups such as a benzyl group, various phenylethyl groups, and various methylbenzyl groups. Among the alkyl groups, the cycloalkyl groups, the phenyl group, the aryl groups, and the arylalkyl groups, alkyl groups, in particular, alkyl groups having 1 to 5 carbon atoms are preferred. For the polyvinyl ether oil contained, the ratio of a polyvinyl ether oil with R5 representing an alkyl group having 1 or 2 carbon atoms and a polyvinyl ether oil with R5 representing an alkyl group having 3 or 4 carbon atoms is preferably 40%:60% to 100%:0%.
  • The polyvinyl ether oil according to this embodiment may be a homopolymer constituted by the same structural unit represented by the general formula (1) or a copolymer constituted by two or more structural units. The copolymer may be a block copolymer or a random copolymer.
  • The polyvinyl ether oil according to this embodiment may be constituted by only the structural unit represented by the general formula (1) or may be a copolymer further including a structural unit represented by general formula (2) below. In this case, the copolymer may be a block copolymer or a random copolymer.
  • Figure US20200392389A1-20201217-C00002
  • (In the formula, R6 to R9 may be the same or different and each represent a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.)
  • The vinyl ether monomer is, for example, a compound represented by general formula (3) below.
  • Figure US20200392389A1-20201217-C00003
  • (In the formula, R1, R2, R3, R4, R5, and m have the same meaning as R1, R2, R3, R4, R5, and m in the general formula (1), respectively.)
  • Examples of various polyvinyl ether compounds corresponding to the above polyvinyl ether compound include vinyl methyl ether; vinyl ethyl ether; vinyl-n-propyl ether; vinyl-isopropyl ether; vinyl-n-butyl ether; vinyl-isobutyl ether; vinyl-sec-butyl ether; vinyl-tert-butyl ether; vinyl-n-pentyl ether; vinyl-n-hexyl ether; vinyl-2-methoxyethyl ether; vinyl-2-ethoxyethyl ether; vinyl-2-methoxy-1-methylethyl ether; vinyl-2-methoxy-propyl ether; vinyl-3,6-dioxaheptyl ether; vinyl-3,6,9-trioxadecyl ether; vinyl-1,4-dimethyl-3,6-dioxaheptyl ether; vinyl-1,4,7-trimethyl-3,6,9-trioxadecyl ether; vinyl-2,6-dioxa-4-heptyl ether; vinyl-2,6,9-trioxa-4-decyl ether; 1-methoxypropene; 1-ethoxypropene; 1-n-propoxypropene; 1-isopropoxypropene; 1-n-butoxypropene; 1-isobutoxypropene; 1-sec-butoxypropene; 1-tert-butoxypropene; 2-methoxypropene; 2-ethoxypropene; 2-n-propoxypropene; 2-isopropoxypropene; 2-n-butoxypropene; 2-isobutoxypropene; 2-sec-butoxypropene; 2-tert-butoxypropene; 1-methoxy-1-butene; 1-ethoxy-1-butene; 1-n-propoxy-1-butene; 1-isopropoxy-1-butene; 1-n-butoxy-1-butene; 1-isobutoxy-1-butene; 1-sec-butoxy-1-butene; 1-tert-butoxy-1-butene; 2-methoxy-1-butene; 2-ethoxy-1-butene; 2-n-propoxy-1-butene; 2-isopropoxy-1-butene; 2-n-butoxy-1-butene; 2-isobutoxy-1-butene; 2-sec-butoxy-1-butene; 2-tert-butoxy-1-butene; 2-methoxy-2-butene; 2-ethoxy-2-butene; 2-n-propoxy-2-butene; 2-isopropoxy-2-butene; 2-n-butoxy-2-butene; 2-isobutoxy-2-butene; 2-sec-butoxy-2-butene; and 2-tert-butoxy-2-butene. These vinyl ether monomers can be produced by a publicly known method.
  • The end of the polyvinyl ether compound having the structural unit represented by the general formula (1) can be converted into a desired structure by a method described in the present disclosure and a publicly known method. Examples of the group introduced by conversion include saturated hydrocarbons, ethers, alcohols, ketones, amides, and nitriles.
  • The polyvinyl ether compound preferably has the following end structures.
  • Figure US20200392389A1-20201217-C00004
  • (In the formula, R11, R21, and R31 may be the same or different and each represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, R41 represents a divalent hydrocarbon group having 1 to 10 carbon atoms or an ether bond oxygen-containing divalent hydrocarbon group having 2 to 20 carbon atoms, R51 represents a hydrocarbon group having 1 to 20 carbon atoms, m represents a number at which the average of m in the polyvinyl ether is 0 to 10, and when m represents 2 or more, a plurality of R41O may be the same or different.)
  • Figure US20200392389A1-20201217-C00005
  • (In the formula, R61, R71, R81, and R91 may be the same or different and each represent a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.)
  • Figure US20200392389A1-20201217-C00006
  • (In the formula, R12, R22, and R32 may be the same or different and each represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, R42 represents a divalent hydrocarbon group having 1 to 10 carbon atoms or an ether bond oxygen-containing divalent hydrocarbon group having 2 to 20 carbon atoms, R52 represents a hydrocarbon group having 1 to 20 carbon atoms, m represents a number at which the average of m in the polyvinyl ether is 0 to 10, and when m represents 2 or more, a plurality of R42O may be the same or different.)
  • Figure US20200392389A1-20201217-C00007
  • (In the formula, R62, R72, R82, and R92 may be the same or different and each represent a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.)
  • Figure US20200392389A1-20201217-C00008
  • (In the formula, R13, R23, and R33 may be the same or different and each represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms.)
  • The polyvinyl ether oil according to this embodiment can be produced by polymerizing the above-described monomer through, for example, radical polymerization, cationic polymerization, or radiation-induced polymerization. After completion of the polymerization reaction, a typical separation/purification method is performed when necessary to obtain a desired polyvinyl ether compound having a structural unit represented by the general formula (1).
  • (Polyoxyalkylene Oil)
  • The polyoxyalkylene oil is a polyoxyalkylene compound obtained by, for example, polymerizing an alkylene oxide having 2 to 4 carbon atoms (e.g., ethylene oxide or propylene oxide) using water or a hydroxyl group-containing compound as an initiator. The hydroxyl group of the polyoxyalkylene compound may be etherified or esterified. The polyoxyalkylene oil may contain an oxyalkylene unit of the same type or two or more oxyalkylene units in one molecule. The polyoxyalkylene oil preferably contains at least an oxypropylene unit in one molecule.
  • Specifically, the polyoxyalkylene oil is, for example, a compound represented by general formula (9) below.

  • R101—[(OR102)k—OR103]l  (9)
  • (In the formula, 101 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an acyl group having 2 to 10 carbon atoms, or an aliphatic hydrocarbon group having 2 to 6 bonding sites and 1 to 10 carbon atoms, R102 represents an alkylene group having 2 to 4 carbon atoms, R103 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an acyl group having 2 to 10 carbon atoms, l represents an integer of 1 to 6, and k represents a number at which the average of k×l is 6 to 80.)
  • In the general formula (9), the alkyl group represented by R101 and R103 may be a linear, branched, or cyclic alkyl group. Specific examples of the alkyl group include a methyl group, an ethyl group, a n-propyl group, an isopropyl group, various butyl groups, various pentyl groups, various hexyl groups, various heptyl groups, various octyl groups, various nonyl groups, various decyl groups, a cyclopentyl group, and a cyclohexyl group. If the number of carbon atoms of the alkyl group exceeds 10, the miscibility with a refrigerant deteriorates, which may cause phase separation. The number of carbon atoms of the alkyl group is preferably 1 to 6.
  • The acyl group represented by R101 and R103 may have a linear, branched, or cyclic alkyl group moiety. Specific examples of the alkyl group moiety of the acyl group include various groups having 1 to 9 carbon atoms that are mentioned as specific examples of the alkyl group. If the number of carbon atoms of the acyl group exceeds 10, the miscibility with a refrigerant deteriorates, which may cause phase separation. The number of carbon atoms of the acyl group is preferably 2 to 6.
  • When R101 and R103 each represent an alkyl group or an acyl group, R101 and R103 may be the same or different.
  • Furthermore, when 1 represents 2 or more, a plurality of R103 in one molecule may be the same or different.
  • When R101 represents an aliphatic hydrocarbon group having 2 to 6 bonding sites and 1 to 10 carbon atoms, the aliphatic hydrocarbon group may be a linear group or a cyclic group. Examples of the aliphatic hydrocarbon group having two bonding sites include an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group, a cyclopentylene group, and a cyclohexylene group. Examples of the aliphatic hydrocarbon group having 3 to 6 bonding sites include residual groups obtained by removing hydroxyl groups from polyhydric alcohols such as trimethylolpropane, glycerol, pentaerythritol, sorbitol, 1,2,3-trihydroxycyclohexane, and 1,3,5-trihydroxycyclohexane.
  • If the number of carbon atoms of the aliphatic hydrocarbon group exceeds 10, the miscibility with a refrigerant deteriorates, which may cause phase separation. The number of carbon atoms is preferably 2 to 6.
  • R102 in the general formula (9) represents an alkylene group having 2 to 4 carbon atoms. Examples of the oxyalkylene group serving as a repeating unit include an oxyethylene group, an oxypropylene group, and an oxybutylene group. The polyoxyalkylene oil may contain an oxyalkylene group of the same type or two or more oxyalkylene groups in one molecule, but preferably contains at least an oxypropylene unit in one molecule. In particular, the content of the oxypropylene unit in the oxyalkylene unit is suitably 50 mol % or more.
  • In the general formula (9), 1 represents an integer of 1 to 6, which can be determined in accordance with the number of bonding sites of R101. For example, when R101 represents an alkyl group or an acyl group, l represents 1. When R101 represents an aliphatic hydrocarbon group having 2, 3, 4, 5, and 6 bonding sites, l represents 2, 3, 4, 5, and 6, respectively. Preferably, l represents 1 or 2. Furthermore, k preferably represents a number at which the average of k×l is 6 to 80.
  • For the structure of the polyoxyalkylene oil, a polyoxypropylene diol dimethyl ether represented by general formula (10) below and a poly(oxyethylene/oxypropylene) diol dimethyl ether represented by general formula (11) below are suitable from the viewpoints of economy and the above-described effects. Furthermore, a polyoxypropylene diol monobutyl ether represented by general formula (12) below, a polyoxypropylene diol monomethyl ether represented by general formula (13) below, a poly(oxyethylene/oxypropylene) diol monomethyl ether represented by general formula (14) below, a poly(oxyethylene/oxypropylene) diol monobutyl ether represented by general formula (15) below, and a polyoxypropylene diol diacetate represented by general formula (16) below are suitable from the viewpoint of economy and the like.

  • CH3O—(C3H6O)h—CH3  (10)
  • (In the formula, h represents 6 to 80.)

  • CH3O—(C2H4O)i—(C3H6O)j—CH3  (11)
  • (In the formula, i and j each represent 1 or more and the sum of i and j is 6 to 80.)

  • C4H9O—(C3H6O)h—H  (12)
  • (In the formula, h represents 6 to 80.)

  • CH3O—(C3H6O)h—H  (13)
  • (In the formula, h represents 6 to 80.)

  • CH3O—(C2H4O)i—(C3H6O)j—H  (14)
  • (In the formula, i and j each represent 1 or more and the sum of i and j is 6 to 80.)

  • C4H9O—(C2H4O)i—(C3H6O)j—H  (15)
  • (In the formula, i and j each represent 1 or more and the sum of i and j is 6 to 80.)

  • CH3COO—(C3H6O)h—COCH3  (16)
  • (In the formula, h represents 6 to 80.)
  • The polyoxyalkylene oils may be used alone or in combination of two or more.
  • (2-2) Hydrocarbon Refrigerating Oil
  • The hydrocarbon refrigerating oil that can be used is, for example, an alkylbenzene.
  • The alkylbenzene that can be used is a branched alkylbenzene synthesized from propylene polymer and benzene serving as raw materials using a catalyst such as hydrogen fluoride or a linear alkylbenzene synthesized from normal paraffin and benzene serving as raw materials using the same catalyst. The number of carbon atoms of the alkyl group is preferably 1 to 30 and more preferably 4 to 20 from the viewpoint of achieving a viscosity appropriate as a lubricating base oil. The number of alkyl groups in one molecule of the alkylbenzene is dependent on the number of carbon atoms of the alkyl group, but is preferably 1 to 4 and more preferably 1 to 3 to control the viscosity within the predetermined range.
  • The hydrocarbon refrigerating oil preferably circulates through a refrigeration cycle system together with a refrigerant. Although it is most preferable that the refrigerating oil is soluble with a refrigerant, for example, a refrigerating oil (e.g., a refrigerating oil disclosed in Japanese Patent No. 2803451) having low solubility can also be used as long as the refrigerating oil is capable of circulating through a refrigeration cycle system together with a refrigerant. To allow the refrigerating oil to circulate through a refrigeration cycle system, the refrigerating oil is required to have a low kinematic viscosity. The kinematic viscosity of the hydrocarbon refrigerating oil at 40° C. is preferably 1 mm2/s or more and 50 mm2/s or less and more preferably 1 mm2/s or more and 25 mm2/s or less.
  • These refrigerating oils may be used alone or in combination of two or more.
  • The content of the hydrocarbon refrigerating oil in the working fluid for a refrigerating machine may be, for example, 10 parts by mass or more and 100 parts by mass or less and is more preferably 20 parts by mass or more and 50 parts by mass or less relative to 100 parts by mass of the refrigerant composition.
  • (2-3) Additive
  • The refrigerating oil may contain one or two or more additives.
  • Examples of the additives include an acid scavenger, an extreme pressure agent, an antioxidant, an antifoaming agent, an oiliness improver, a metal deactivator such as a copper deactivator, an anti-wear agent, and a compatibilizer.
  • Examples of the acid scavenger that can be used include epoxy compounds such as phenyl glycidyl ether, alkyl glycidyl ether, alkylene glycol glycidyl ether, cyclohexene oxide, α-olefin oxide, and epoxidized soybean oil; and carbodiimides. Among them, phenyl glycidyl ether, alkyl glycidyl ether, alkylene glycol glycidyl ether, cyclohexene oxide, and α-olefin oxide are preferred from the viewpoint of miscibility. The alkyl group of the alkyl glycidyl ether and the alkylene group of the alkylene glycol glycidyl ether may have a branched structure. The number of carbon atoms may be 3 or more and 30 or less, and is more preferably 4 or more and 24 or less and further preferably 6 or more and 16 or less. The total number of carbon atoms of the α-olefin oxide may be 4 or more and 50 or less, and is more preferably 4 or more and 24 or less and further preferably 6 or more and 16 or less. The acid scavengers may be used alone or in combination of two or more.
  • The extreme pressure agent may contain, for example, a phosphoric acid ester. Examples of the phosphoric acid ester that can be used include phosphoric acid esters, phosphorous acid esters, acidic phosphoric acid esters, and acidic phosphorous acid esters. The extreme pressure agent may contain an amine salt of a phosphoric acid ester, a phosphorous acid ester, an acidic phosphoric acid ester, or an acidic phosphorous acid ester.
  • Examples of the phosphoric acid ester include triaryl phosphates, trialkyl phosphates, trialkylaryl phosphates, triarylalkyl phosphates, and trialkenyl phosphates. Specific examples of the phosphoric acid ester include triphenyl phosphate, tricresyl phosphate, benzyl diphenyl phosphate, ethyl diphenyl phosphate, tributyl phosphate, ethyl dibutyl phosphate, cresyl diphenyl phosphate, dicresyl phenyl phosphate, ethylphenyl diphenyl phosphate, diethylphenyl phenyl phosphate, propylphenyl diphenyl phosphate, dipropylphenyl phenyl phosphate, triethylphenyl phosphate, tripropylphenyl phosphate, butylphenyl diphenyl phosphate, dibutylphenyl phenyl phosphate, tributylphenyl phosphate, trihexyl phosphate, tri(2-ethylhexyl) phosphate, tridecyl phosphate, trilauryl phosphate, trimyristyl phosphate, tripalmityl phosphate, tristearyl phosphate, and trioleyl phosphate.
  • Specific examples of the phosphorous acid ester include triethyl phosphite, tributyl phosphite, triphenyl phosphite, tricresyl phosphite, tri(nonylphenyl) phosphite, tri(2-ethylhexyl) phosphite, tridecyl phosphite, trilauryl phosphite, triisooctyl phosphite, diphenylisodecyl phosphite, tristearyl phosphite, and trioleyl phosphite.
  • Specific examples of the acidic phosphoric acid ester include 2-ethylhexyl acid phosphate, ethyl acid phosphate, butyl acid phosphate, oleyl acid phosphate, tetracosyl acid phosphate, isodecyl acid phosphate, lauryl acid phosphate, tridecyl acid phosphate, stearyl acid phosphate, and isostearyl acid phosphate.
  • Specific examples of the acidic phosphorous acid ester include dibutyl hydrogen phosphite, dilauryl hydrogen phosphite, dioleyl hydrogen phosphite, distearyl hydrogen phosphite, and diphenyl hydrogen phosphite. Among the phosphoric acid esters, oleyl acid phosphate and stearyl acid phosphate are suitably used.
  • Among amines used for amine salts of phosphoric acid esters, phosphorous acid esters, acidic phosphoric acid esters, or acidic phosphorous acid esters, specific examples of mono-substituted amines include butylamine, pentylamine, hexylamine, cyclohexylamine, octylamine, laurylamine, stearylamine, oleylamine, and benzylamine. Specific examples of di-substituted amines include dibutylamine, dipentylamine, dihexylamine, dicyclohexylamine, dioctylamine, dilaurylamine, di stearylamine, dioleylamine, dibenzylamine, stearyl.monoethanolamine, decyl.monoethanolamine, hexyl.monopropanolamine, benzyl.monoethanolamine, phenyl.monoethanolamine, and tolyl.monopropanolamine. Specific examples of tri-substituted amines include tributylamine, tripentylamine, trihexylamine, tricyclohexylamine, trioctylamine, trilaurylamine, tristearylamine, trioleylamine, tribenzylamine, dioleyl.monoethanolamine, dilauryl.monopropanolamine, dioctyl.monoethanolamine, dihexyl.monopropanolamine, dibutyl.monopropanolamine, oleyl.diethanolamine, stearyl.dipropanolamine, lauryl.diethanolamine, octyl.dipropanolamine, butyl.diethanolamine, benzyl.diethanolamine, phenyl.diethanolamine, tolyl.dipropanolamine, xylyl.diethanolamine, triethanolamine, and tripropanolamine.
  • Examples of extreme pressure agents other than the above-described extreme pressure agents include extreme pressure agents based on organosulfur compounds such as monosulfides, polysulfides, sulfoxides, sulfones, thiosulfinates, sulfurized fats and oils, thiocarbonates, thiophenes, thiazoles, and methanesulfonates; extreme pressure agents based on thiophosphoric acid esters such as thiophosphoric acid triesters; extreme pressure agents based on esters such as higher fatty acids, hydroxyaryl fatty acids, polyhydric alcohol esters, and acrylic acid esters; extreme pressure agents based on organochlorine compounds such as chlorinated hydrocarbons, e.g., chlorinated paraffin and chlorinated carboxylic acid derivatives; extreme pressure agents based on fluoroorganic compounds such as fluorinated aliphatic carboxylic acids, fluorinated ethylene resins, fluorinated alkylpolysiloxanes, and fluorinated graphites; extreme pressure agents based on alcohols such as higher alcohols; and extreme pressure agents based on metal compounds such as naphthenic acid salts (e.g., lead naphthenate), fatty acid salts (e.g., lead fatty acid), thiophosphoric acid salts (e.g., zinc dialkyldithiophosphate), thiocarbamic acid salts, organomolybdenum compounds, organotin compounds, organogermanium compounds, and boric acid esters.
  • The antioxidant that can be used is, for example, a phenol-based antioxidant or an amine-based antioxidant. Examples of the phenol-based antioxidant include 2,6-di-tert-butyl-4-methylphenol (DBPC), 2,6-di-tert-butyl-4-ethylphenol, 2,2′-methylenebis(4-methyl-6-tert-butylphenol), 2,4-dimethyl-6-tert-butylphenol, 2,6-di-tert-butylphenol, di-tert-butyl-p-cresol, and bisphenol A. Examples of the amine-based antioxidant include N,N′-diisopropyl-p-phenylenediamine, N,N′-di-sec-butyl-p-phenylenediamine, phenyl-α-naphthylamine, N,N′-di-phenyl-p-phenylenediamine, and N,N-di(2-naphthyl)-p-phenylenediamine. An oxygen scavenger that captures oxygen can also be used as the antioxidant.
  • The antifoaming agent that can be used is, for example, a silicon compound.
  • The oiliness improver that can be used is, for example, a higher alcohol or a fatty acid.
  • The metal deactivator such as a copper deactivator that can be used is, for example, benzotriazole or a derivative thereof.
  • The anti-wear agent that can be used is, for example, zinc dithiophosphate.
  • The compatibilizer is not limited, and can be appropriately selected from commonly used compatibilizers. The compatibilizers may be used alone or in combination of two or more. Examples of the compatibilizer include polyoxyalkylene glycol ethers, amides, nitriles, ketones, chlorocarbons, esters, lactones, aryl ethers, fluoroethers, and 1,1,1-trifluoroalkanes. The compatibilizer is particularly preferably a polyoxyalkylene glycol ether.
  • The refrigerating oil may optionally contain, for example, a load-bearing additive, a chlorine scavenger, a detergent dispersant, a viscosity index improver, a heat resistance improver, a stabilizer, a corrosion inhibitor, a pour-point depressant, and an anticorrosive.
  • The content of each additive in the refrigerating oil may be 0.01 mass % or more and 5 mass % or less and is preferably 0.05 mass % or more and 3 mass % or less. The content of the additive in the working fluid for a refrigerating machine constituted by the refrigerant composition and the refrigerating oil is preferably 5 mass % or less and more preferably 3 mass % or less.
  • The refrigerating oil preferably has a chlorine concentration of 50 ppm or less and preferably has a sulfur concentration of 50 ppm or less.
  • (3) Refrigerant Circuit
  • FIG. 1 illustrates an example of a refrigerant circuit 10 included in an air conditioner 1 that is a refrigeration cycle apparatus.
  • The air conditioner 1 is an apparatus used for indoor cooling and/or heating through a vapor-compression refrigeration cycle operation. The air conditioner 1 mainly includes an outdoor unit 2, an indoor unit 3, and a liquid-side connection pipe 9 and a gas-side connection pipe 8 that each connect the outdoor unit 2 and the indoor unit 3.
  • The refrigerant circuit 10 included in the air conditioner 1 includes a compressor 4, an outdoor heat exchanger 5, an expansion valve 6, and an indoor heat exchanger 7, which are connected to one another through the liquid-side connection pipe 9, the gas-side connection pipe 8, and other refrigerant pipes to constitute a compression refrigerant circuit. The air conditioner 1 includes a microcomputer, a memory, and the like and also includes a control unit configured to drive and control various actuators.
  • A working fluid for a refrigerating machine containing the refrigerant composition serving as a refrigerant and the refrigerating oil is enclosed in the refrigerant circuit 10.
  • (3-1) Indoor Unit
  • The indoor unit 3 is disposed on an indoor ceiling surface or wall surface. The indoor unit 3 is connected to the outdoor unit 2 through the liquid-side connection pipe 9 and the gas-side connection pipe 8 and constitutes a part of the refrigerant circuit 10. The refrigerant circuit 10 may include a plurality of indoor units 3 connected in parallel.
  • The indoor unit 3 includes the indoor heat exchanger 7 and an indoor fan 13.
  • The indoor heat exchanger 7 is not limited, and is constituted by, for example, a heat transfer tube and many fins. The indoor heat exchanger 7 functions as a refrigerant evaporator during cooling operation to cool indoor air and functions as a refrigerant condenser during heating operation to heat indoor air.
  • The indoor fan 13 sucks indoor air into the indoor unit 3 to cause heat exchange with the refrigerant in the indoor heat exchanger 7 and then generates air flow supplied to the interior as supply air. The indoor fan 13 includes an indoor fan motor.
  • (3-2) Outdoor Unit
  • The outdoor unit 2 is disposed outdoors and connected to the indoor unit 3 through the liquid-side connection pipe 9 and the gas-side connection pipe 8.
  • The outdoor unit 2 includes, for example, the compressor 4, the outdoor heat exchanger 5, an outdoor fan 12, the expansion valve 6, an accumulator 11, a four-way switching valve 10, a liquid-side shutoff valve 14, and a gas-side shutoff valve 15.
  • The compressor 4 is, for example, a positive-displacement compressor driven by a compressor motor. The compressor motor may be driven by, for example, receiving power supply through an inverter device (not illustrated).
  • The outdoor heat exchanger 5 is not limited, and is constituted by, for example, a heat transfer tube and many fins. The outdoor heat exchanger 5 functions as a refrigerant condenser during cooling operation and functions as a refrigerant evaporator during heating operation.
  • The outdoor fan 12 sucks outdoor air into the outdoor unit 2 to cause heat exchange with the refrigerant in the outdoor heat exchanger 5 and then generates air flow discharged outdoors. The outdoor fan 12 includes an outdoor fan motor.
  • The expansion valve 6 can control the pressure of a refrigerant passing therethrough by adjusting the valve opening degree.
  • The accumulator 11 is disposed on the suction side of the compressor 4 between the four-way switching valve 10 and the compressor 4 and separates a liquid refrigerant and a gaseous refrigerant from each other.
  • The four-way switching valve 10 can switch the connection state between a cooling operation connection state in which the discharge side of the compressor 4 and the outdoor heat exchanger 5 are connected while the downstream side of the accumulator 11 and the gas-side shutoff valve 15 are connected and a heating operation connection state in which the discharge side of the compressor 4 and the gas-side shutoff valve 15 are connected while the downstream side of the accumulator 11 and the outdoor heat exchanger 5 are connected.
  • The liquid-side shutoff valve 14 and the gas-side shutoff valve 15 are valves disposed at connecting ports with outside apparatuses and pipes (specifically, the liquid-side connection pipe 9 and the gas-side connection pipe 8).
  • (3-3) Refrigeration Cycle
  • In the air conditioner 1, the four-way switching valve 10 is in a cooling operation connection state during cooling operation. A high-temperature and high-pressure refrigerant discharged from the compressor 4 is condensed at the outdoor heat exchanger 5 that functions as a refrigerant condenser, decompressed when passing through the expansion valve 6, and supplied to the gas side of the indoor unit 3 through the liquid-side connection pipe 9. The refrigerant that has been supplied to the indoor unit 3 is evaporated at the indoor heat exchanger 7 that functions as a refrigerant evaporator and sucked into the compressor 4 through the gas-side connection pipe 8 and the accumulator 11 of the outdoor unit 2.
  • In the air conditioner 1, the four-way switching valve 10 is in a heating operation connection state during heating operation. A high-temperature and high-pressure refrigerant discharged from the compressor 4 is sent to the gas side of the indoor unit 3 through the gas-side connection pipe 8. The refrigerant that has been sent to the indoor unit 3 is condensed at the indoor heat exchanger 7 that functions as a refrigerant condenser and sent to the expansion valve 6 of the outdoor unit 2 through the liquid-side connection pipe 9. The refrigerant decompressed when passing through the expansion valve 6 is evaporated at the outdoor heat exchanger 5 that functions as a refrigerant evaporator and sucked into the compressor 4 through the accumulator 11.
  • The refrigeration cycle apparatus is not limited. Examples of the refrigeration cycle apparatus include cooling apparatuses of room air conditioners, package air conditioners, refrigerators, car air conditioners, water heaters, dehumidifiers, freezers, cold stores, vending machines, showcases, chemical plants, and the like. In particular, the refrigeration cycle apparatus is preferably used in a refrigerating machine including a hermetic compressor. Each of the refrigerating oils according to this embodiment can be used for any of, for example, reciprocating compressors, rotary compressors, and centrifugal compressors. In these refrigerating machines, the refrigerating oil according to this embodiment is used as a working fluid for a refrigerating machine obtained by being mixed with the refrigerant composition. (4) Refrigerant and Refrigerant composition
  • (4-1) Definition of Terms
  • In the present specification, the term “refrigerant” includes at least compounds that are specified in ISO 817 (International Organization for Standardization), and that are given a refrigerant number (ASHRAE number) representing the type of refrigerant with “R” at the beginning; and further includes refrigerants that have properties equivalent to those of such refrigerants, even though a refrigerant number is not yet given. Refrigerants are broadly divided into fluorocarbon compounds and non-fluorocarbon compounds in terms of the structure of the compounds. Fluorocarbon compounds include chlorofluorocarbons (CFC), hydrochlorofluorocarbons (HCFC), and hydrofluorocarbons (HFC). Non-fluorocarbon compounds include propane (R290), propylene (R1270), butane (R600), isobutane (R600a), carbon dioxide (R744), ammonia (R717), and the like. Note that the term “refrigerant” includes a mixture of a plurality of refrigerants.
  • In the present specification, the phase “refrigerant composition” includes a refrigerant itself (including a mixture of refrigerants) and other components, and is distinguished from a refrigerant itself (including a mixture of refrigerants). The “refrigerant composition” includes a composition that can be used to obtain the working fluid for a refrigerating machine by mixing at least with a refrigerating oil.
  • In the present specification, the phase “working fluid for a refrigerating machine” includes a composition including a refrigerant and a refrigerating oil, and is distinguished from the “refrigerant composition”. The phase “working fluid for a refrigerating machine” may be referred to as a “refrigeration oil-containing working fluid”.
  • It should be noted that the phase “composition comprising a refrigerant” can be used as a phase including at least those three embodiments of “refrigerant”, “refrigerant composition”, and “working fluid for a refrigerating machine (refrigeration oil-containing working fluid)”.
  • In the present specification, when the term “alternative” is used in a context in which the first refrigerant is replaced with the second refrigerant, the first type of “alternative” means that equipment designed for operation using the first refrigerant can be operated using the second refrigerant under optimum conditions, optionally with changes of only a few parts (at least one of the following: refrigeration oil, gasket, packing, expansion valve, dryer, and other parts) and equipment adjustment. In other words, this type of alternative means that the same equipment is operated with an alternative refrigerant. Embodiments of this type of “alternative” include “drop-in alternative,” “nearly drop-in alternative,” and “retrofit,” in the order in which the extent of changes and adjustment necessary for replacing the first refrigerant with the second refrigerant is smaller.
  • The term “alternative” also includes a second type of “alternative,” which means that equipment designed for operation using the second refrigerant is operated for the same use as the existing use with the first refrigerant by using the second refrigerant. This type of alternative means that the same use is achieved with an alternative refrigerant.
  • In the present specification, the term “refrigerating machine” refers to machines in general that draw heat from an object or space to make its temperature lower than the temperature of ambient air, and maintain a low temperature. In other words, refrigerating machines refer to conversion machines that gain energy from the outside to do work, and that perform energy conversion, in order to transfer heat from where the temperature is lower to where the temperature is higher.
  • In the present specification, a refrigerant having a “WCF lower flammability” means that the most flammable composition (worst case of formulation for flammability: WCF) has a burning velocity of 10 cm/s or less according to the US ANSI/ASHRAE Standard 34-2013. Further, in the present specification, a refrigerant having “ASHRAE lower flammability” means that the burning velocity of WCF is 10 cm/s or less, that the most flammable fraction composition (worst case of fractionation for flammability: WCFF), which is specified by performing a leakage test during storage, shipping, or use based on ANSI/ASHRAE 34-2013 using WCF, has a burning velocity of 10 cm/s or less, and that flammability classification according to the US ANSI/ASHRAE Standard 34-2013 is determined to classified as be “Class 2L.”
  • In the present specification, a refrigerant having an “RCL of x % or more” means that the refrigerant has a refrigerant concentration limit (RCL), calculated in accordance with the US ANSI/ASHRAE Standard 34-2013, of x % or more. RCL refers to a concentration limit in the air in consideration of safety factors. RCL is an index for reducing the risk of acute toxicity, suffocation, and flammability in a closed space where humans are present. RCL is determined in accordance with the ASHRAE Standard. More specifically, RCL is the lowest concentration among the acute toxicity exposure limit (ATEL), the oxygen deprivation limit (ODL), and the flammable concentration limit (FCL), which are respectively calculated in accordance with sections 7.1.1, 7.1.2, and 7.1.3 of the ASHRAE Standard.
  • In the present specification, temperature glide refers to an absolute value of the difference between the initial temperature and the end temperature in the phase change process of a refrigerant composition of the present disclosure in the heat exchanger of a refrigerant system.
  • (4-2) Use of Refrigerant
  • The refrigerant according to the present disclosure can be preferably used as a working fluid in a refrigerating machine.
  • The composition according to the present disclosure is suitable for use as an alternative refrigerant for HFC refrigerant such as R410A, R407C and R404 etc, or HCFC refrigerant such as R22 etc.
  • (4-3) Refrigerant Composition
  • The refrigerant composition according to the present disclosure comprises at least the refrigerant according to the present disclosure, and can be used for the same use as the refrigerant according to the present disclosure. Moreover, the refrigerant composition according to the present disclosure can be further mixed with at least a refrigeration oil to thereby obtain a working fluid for a refrigerating machine.
  • The refrigerant composition according to the present disclosure further comprises at least one other component in addition to the refrigerant according to the present disclosure. The refrigerant composition according to the present disclosure may comprise at least one of the following other components, if necessary. As described above, when the refrigerant composition according to the present disclosure is used as a working fluid in a refrigerating machine, it is generally used as a mixture with at least a refrigeration oil. Therefore, it is preferable that the refrigerant composition according to the present disclosure does not substantially comprise a refrigeration oil. Specifically, in the refrigerant composition according to the present disclosure, the content of the refrigeration oil based on the entire refrigerant composition is preferably 0 to 1 mass %, and more preferably 0 to 0.1 mass %.
  • (4-3-1) Water
  • The refrigerant composition according to the present disclosure may contain a small amount of water. The water content of the refrigerant composition is preferably 0.1 mass % or less based on the entire refrigerant. A small amount of water contained in the refrigerant composition stabilizes double bonds in the molecules of unsaturated fluorocarbon compounds that can be present in the refrigerant, and makes it less likely that the unsaturated fluorocarbon compounds will be oxidized, thus increasing the stability of the refrigerant composition.
  • (4-3-2) Tracer
  • A tracer is added to the refrigerant composition according to the present disclosure at a detectable concentration such that when the refrigerant composition has been diluted, contaminated, or undergone other changes, the tracer can trace the changes.
  • The refrigerant composition according to the present disclosure may comprise a single tracer, or two or more tracers.
  • The tracer is not limited, and can be suitably selected from commonly used tracers. Preferably, a compound that cannot be an impurity inevitably mixed in the refrigerant of the present disclosure is selected as the tracer.
  • Examples of tracers include hydrofluorocarbons, hydrochlorofluorocarbons, chlorofluorocarbons, hydrochlorocarbons, fluorocarbons, deuterated hydrocarbons, deuterated hydrofluorocarbons, perfluorocarbons, fluoroethers, brominated compounds, iodinated compounds, alcohols, aldehydes, ketones, and nitrous oxide (N2O). The tracer is particularly preferably a hydrofluorocarbon, a hydrochlorofluorocarbon, a chlorofluorocarbon, a fluorocarbon, a hydrochlorocarbon, a fluorocarbon, or a fluoroether.
  • The following compounds are preferable as the tracer.
  • FC-14 (tetrafluoromethane, CF4)
    HCC-40 (chloromethane, CH3Cl)
    HFC-23 (trifluoromethane, CHF3)
    HFC-41 (fluoromethane, CH3Cl)
    HFC-125 (pentafluoroethane, CF3CHF2)
    HFC-134a (1,1,1,2-tetrafluoroethane, CF3CH2F)
    HFC-134 (1,1,2,2-tetrafluoroethane, CHF2CHF2)
    HFC-143a (1,1,1-trifluoroethane, CF3CH3)
    HFC-143 (1,1,2-trifluoroethane, CHF2CH2F)
    HFC-152a (1,1-difluoroethane, CHF2CH3)
    HFC-152 (1,2-difluoroethane, CH2FCH2F)
    HFC-161 (fluoroethane, CH3CH2F)
    HFC-245fa (1,1,1,3,3-pentafluoropropane, CF3CH2CHF2)
    HFC-236fa (1,1,1,3,3,3-hexafluoropropane, CF3CH2CF3)
    HFC-236ea (1,1,1,2,3,3-hexafluoropropane, CF3CHFCHF2)
    HFC-227ea (1,1,1,2,3,3,3-heptafluoropropane, CF3CHFCF3)
    HCFC-22 (chlorodifluoromethane, CHClF2)
    HCFC-31 (chlorofluoromethane, CH2ClF)
    CFC-1113 (chlorotrifluoroethylene, CF2═CClF)
    HFE-125 (trifluoromethyl-difluoromethyl ether, CF3OCHF2)
    HFE-134a (trifluoromethyl-fluoromethyl ether, CF3OCH2F)
    HFE-143a (trifluoromethyl-methyl ether, CF3OCH3)
    HFE-227ea (trifluoromethyl-tetrafluoroethyl ether, CF3OCHFCF3)
    HFE-236fa (trifluoromethyl-trifluoroethyl ether, CF3OCH2CF3)
  • The tracer compound may be present in the refrigerant composition at a total concentration of about 10 parts per million (ppm) to about 1000 ppm. Preferably, the tracer compound is present in the refrigerant composition at a total concentration of about 30 ppm to about 500 ppm, and most preferably, the tracer compound is present at a total concentration of about 50 ppm to about 300 ppm.
  • (4-3-3) Ultraviolet Fluorescent Dye
  • The refrigerant composition according to the present disclosure may comprise a single ultraviolet fluorescent dye, or two or more ultraviolet fluorescent dyes.
  • The ultraviolet fluorescent dye is not limited, and can be suitably selected from commonly used ultraviolet fluorescent dyes.
  • Examples of ultraviolet fluorescent dyes include naphthalimide, coumarin, anthracene, phenanthrene, xanthene, thioxanthene, naphthoxanthene, fluorescein, and derivatives thereof. The ultraviolet fluorescent dye is particularly preferably either naphthalimide or coumarin, or both.
  • (4-3-4) Stabilizer
  • The refrigerant composition according to the present disclosure may comprise a single stabilizer, or two or more stabilizers.
  • The stabilizer is not limited, and can be suitably selected from commonly used stabilizers.
  • Examples of stabilizers include nitro compounds, ethers, and amines.
  • Examples of nitro compounds include aliphatic nitro compounds, such as nitromethane and nitroethane; and aromatic nitro compounds, such as nitro benzene and nitro styrene.
  • Examples of ethers include 1,4-dioxane.
  • Examples of amines include 2,2,3,3,3-pentafluoropropylamine and diphenylamine.
  • Examples of stabilizers also include butylhydroxyxylene and benzotriazole.
  • The content of the stabilizer is not limited. Generally, the content of the stabilizer is preferably 0.01 to 5 mass %, and more preferably 0.05 to 2 mass %, based on the entire refrigerant.
  • (4-3-5) Polymerization Inhibitor
  • The refrigerant composition according to the present disclosure may comprise a single polymerization inhibitor, or two or more polymerization inhibitors.
  • The polymerization inhibitor is not limited, and can be suitably selected from commonly used polymerization inhibitors.
  • Examples of polymerization inhibitors include 4-methoxy-1-naphthol, hydroquinone, hydroquinone methyl ether, dimethyl-t-butylphenol, 2,6-di-tert-butyl-p-cresol, and benzotriazole.
  • The content of the polymerization inhibitor is not limited. Generally, the content of the polymerization inhibitor is preferably 0.01 to 5 mass %, and more preferably 0.05 to 2 mass %, based on the entire refrigerant.
  • (4-4) Refrigeration Oil—Containing Working Fluid
  • The refrigeration oil-containing working fluid according to the present disclosure comprises at least the refrigerant or refrigerant composition according to the present disclosure and a refrigeration oil, for use as a working fluid in a refrigerating machine. Specifically, the refrigeration oil-containing working fluid according to the present disclosure is obtained by mixing a refrigeration oil used in a compressor of a refrigerating machine with the refrigerant or the refrigerant composition. The refrigeration oil-containing working fluid generally comprises 10 to 50 mass % of refrigeration oil.
  • As the refrigeration oil contained in the refrigeration oil-containing working fluid, one kind of the refrigeration oil described in the column of (2) Refrigerating oil may be contained alone, or two or more kinds thereof may be contained. The refrigerating oil may contain the additives described in the column of (2-3) Additive.working fluid for a refrigerating machineworking fluid for a refrigerating machineworking fluid for a refrigerating machineworking fluid for a refrigerating machine
  • Hereinafter, the refrigerants A to E, which are the refrigerants used in the present embodiment, will be described in detail.
  • In addition, each description of the following refrigerant A, refrigerant B, refrigerant C, refrigerant D, and refrigerant E is each independent. The alphabet which shows a point or a line segment, the number of an Examples, and the number of a comparative examples are all independent of each other among the refrigerant A, the refrigerant B, the refrigerant C, the refrigerant D, and the refrigerant E. For example, the first embodiment of the refrigerant A and the first embodiment of the refrigerant B are different embodiment from each other.
  • (5-1) Refrigerant A
  • The refrigerant A according to the present disclosure is a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).
  • The refrigerant A according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant, i.e., a refrigerating capacity and a coefficient of performance that are equivalent to those of R410A, and a sufficiently low GWP.
  • The refrigerant A according to the present disclosure is a composition comprising HFO-1132(E) and R1234yf, and optionally further comprising HFO-1123, and may further satisfy the following requirements. This refrigerant also has various properties desirable as an alternative refrigerant for R410A; i.e., it has a refrigerating capacity and a coefficient of performance that are equivalent to those of R410A, and a sufficiently low GWP.
  • Requirements
  • Preferable refrigerant A is as follows:
  • When the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments AA′, A′B, BD, DC′,
  • C′C, CO, and OA that connect the following 7 points:
    point A (68.6, 0.0, 31.4),
    point A′ (30.6, 30.0, 39.4),
    point B (0.0, 58.7, 41.3),
    point D (0.0, 80.4, 19.6),
    point C′ (19.5, 70.5, 10.0),
    point C (32.9, 67.1, 0.0), and
    point O (100.0, 0.0, 0.0),
    or on the above line segments (excluding the points on the line CO);
  • the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3,
  • the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
  • the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
  • the line segments BD, CO, and OA are straight lines.
  • When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A.
  • When the mass % of HFO-1132(E), HFO-1123, and R1234yf, based on their sum in the refrigerant A according to the present disclosure is respectively represented by x, y, and z, the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within a figure surrounded by line segments GI, IA, AA′, A′B, BD, DC′, C′C, and CG that connect the following 8 points:
  • point G (72.0, 28.0, 0.0),
    point I (72.0, 0.0, 28.0),
    point A (68.6, 0.0, 31.4),
    point A′ (30.6, 30.0, 39.4),
    point B (0.0, 58.7, 41.3),
    point D (0.0, 80.4, 19.6),
    point C′ (19.5, 70.5, 10.0), and
    point C (32.9, 67.1, 0.0),
    or on the above line segments (excluding the points on the line segment CG);
  • the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
  • the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
  • the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
  • the line segments GI, IA, BD, and CG are straight lines.
  • When the requirements above are satisfied, the refrigerant A according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A; furthermore, the refrigerant A has a WCF lower flammability according to the ASHRAE Standard (the WCF composition has a burning velocity of 10 cm/s or less).
  • When the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant according to the present disclosure is respectively represented by x, y, and z, the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PN, NK, KA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
  • point J (47.1, 52.9, 0.0),
    point P (55.8, 42.0, 2.2),
    point N (68.6, 16.3, 15.1),
    point K (61.3, 5.4, 33.3),
    point A′ (30.6, 30.0, 39.4),
    point B (0.0, 58.7, 41.3),
    point D (0.0, 80.4, 19.6),
    point C′ (19.5, 70.5, 10.0), and
    point C (32.9, 67.1, 0.0),
    or on the above line segments (excluding the points on the line segment CJ);
  • the line segment PN is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
  • the line segment NK is represented by coordinates (x, 0.2421x2−29.955x+931.91, −0.2421x2+28.955x−831.91),
  • the line segment KA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
  • the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
  • the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
  • the line segments JP, BD, and CG are straight lines.
  • When the requirements above are satisfied, the refrigerant A according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A; furthermore, the refrigerant exhibits a lower flammability (Class 2L) according to the ASHRAE Standard (the WCF composition and the WCFF composition have a burning velocity of 10 cm/s or less).
  • When the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant according to the present disclosure is respectively represented by x, y, and z, the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PL, LM, MA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
  • point J (47.1, 52.9, 0.0),
    point P (55.8, 42.0, 2.2),
    point L (63.1, 31.9, 5.0),
    point M (60.3, 6.2, 33.5),
    point A′ (30.6, 30.0, 39.4),
    point B (0.0, 58.7, 41.3),
    point D (0.0, 80.4, 19.6),
    point C′ (19.5, 70.5, 10.0), and
    point (32.9, 67.1, 0.0),
    or on the above line segments (excluding the points on the line segment CJ);
  • the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
  • the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
  • the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
  • the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
  • the line segments JP, LM, BD, and CG are straight lines.
  • When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A; furthermore, the refrigerant has an RCL of 40 g/m3 or more.
  • When the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant A according to the present disclosure is respectively represented by x, y, and z, the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LM, MA′, A′B, BF, FT, and TP that connect the following 7 points:
  • point P (55.8, 42.0, 2.2),
    point L (63.1, 31.9, 5.0),
    point M (60.3, 6.2, 33.5),
    point A′ (30.6, 30.0, 39.4),
    point B (0.0, 58.7, 41.3),
    point F (0.0, 61.8, 38.2), and
    point T (35.8, 44.9, 19.3),
    or on the above line segments (excluding the points on the line segment BF);
  • the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
  • the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
  • the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2),
  • the line segment TP is represented by coordinates (x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and
  • the line segments LM and BF are straight lines.
  • When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 95% or more relative to that of R410A; furthermore, the refrigerant has an RCL of 40 g/m3 or more.
  • The refrigerant A according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LQ, QR, and RP that connect the following 4 points:
  • point P (55.8, 42.0, 2.2),
    point L (63.1, 31.9, 5.0),
    point Q (62.8, 29.6, 7.6), and
    point R (49.8, 42.3, 7.9),
    or on the above line segments;
  • the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
  • the line segment RP is represented by coordinates (x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and
  • the line segments LQ and QR are straight lines.
  • When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP of 95% or more relative to that of R410A, and an RCL of 40 g/m3 or more, furthermore, the refrigerant has a condensation temperature glide of 1° C. or less.
  • The refrigerant A according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments SM, MA′, A′B, BF, FT, and TS that connect the following 6 points:
  • point S (62.6, 28.3, 9.1),
    point M (60.3, 6.2, 33.5),
    point A′(30.6, 30.0, 39.4),
    point B (0.0, 58.7, 41.3),
    point F (0.0, 61.8, 38.2), and
    point T (35.8, 44.9, 19.3),
    or on the above line segments,
  • the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
  • the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2),
  • the line segment TS is represented by coordinates (x, −0.0017x2−0.7869x+70.888, −0.0017x2−0.2131x+29.112), and
  • the line segments SM and BF are straight lines.
  • When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, a COP of 95% or more relative to that of R410A, and an RCL of 40 g/m3 or more furthermore, the refrigerant has a discharge pressure of 105% or more relative to that of R410A.
  • The refrigerant A according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments Od, dg, gh, and hO that connect the following 4 points:
  • point d (87.6, 0.0, 12.4),
    point g (18.2, 55.1, 26.7),
    point h (56.7, 43.3, 0.0), and
    point o (100.0, 0.0, 0.0),
    or on the line segments Od, dg, gh, and hO (excluding the points O and h);
  • the line segment dg is represented by coordinates (0.0047y2−1.5177y+87.598, y, −0.0047y2+0.5177y+12.402),
  • the line segment gh is represented by coordinates (−0.0134z2−1.0825z+56.692, 0.0134z2+0.0825z+43.308, z), and
  • the line segments hO and Od are straight lines.
  • When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A.
  • The refrigerant A according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R1234yf, based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments lg, gh, hi, and it that connect the following 4 points:
  • point l (72.5, 10.2, 17.3),
    point g (18.2, 55.1, 26.7),
    point h (56.7, 43.3, 0.0), and
    point i (72.5, 27.5, 0.0) or
    on the line segments lg, gh, and il (excluding the points h and i);
  • the line segment lg is represented by coordinates (0.0047y2−1.5177y+87.598, y, −0.0047y2+0.5177y+12.402),
  • the line gh is represented by coordinates (−0.0134z2−1.0825z+56.692, 0.0134z2+0.0825z+43.308, z), and
  • the line segments hi and il are straight lines.
  • When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A; furthermore, the refrigerant has a lower flammability (Class 2L) according to the ASHRAE Standard.
  • The refrigerant A according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments Od, de, ef, and fO that connect the following 4 points:
  • point d (87.6, 0.0, 12.4),
    point e (31.1, 42.9, 26.0),
    point f (65.5, 34.5, 0.0), and
    point O (100.0, 0.0, 0.0),
    or on the line segments Od, de, and ef (excluding the points O and f);
  • the line segment de is represented by coordinates (0.0047y2−1.5177y+87.598, y, −0.0047y2+0.5177y+12.402),
  • the line segment ef is represented by coordinates (−0.0064z2−1.1565z+65.501, 0.0064z2+0.1565z+34.499, z), and
  • the line segments fO and Od are straight lines.
  • When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 93.5% or more relative to that of R410A, and a COP ratio of 93.5% or more relative to that of R410A.
  • The refrigerant A according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z,
  • coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments le, ef, fi, and il that connect the following 4 points:
  • point l (72.5, 10.2, 17.3),
    point e (31.1, 42.9, 26.0),
    point f (65.5, 34.5, 0.0), and
    point i (72.5, 27.5, 0.0),
    or on the line segments le, ef, and il (excluding the points f and i);
  • the line segment le is represented by coordinates (0.0047y2−1.5177y+87.598, y, −0.0047y2+0.5177y+12.402),
  • the line segment of is represented by coordinates (−0.0134z2−1.0825z+56.692, 0.0134z2+0.0825z+43.308, z), and
  • the line segments fi and it are straight lines.
  • When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 93.5% or more relative to that of R410A, and a COP ratio of 93.5% or more relative to that of R410A; furthermore, the refrigerant has a lower flammability (Class 2L) according to the ASHRAE Standard.
  • The refrigerant A according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z,
  • coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments Oa, ab, bc, and cO that connect the following 4 points:
  • point a (93.4, 0.0, 6.6),
    point b (55.6, 26.6, 17.8),
    point c (77.6, 22.4, 0.0), and
    point O (100.0, 0.0, 0.0),
    or on the line segments Oa, ab, and bc (excluding the points O and c);
  • the line segment ab is represented by coordinates (0.0052y2−1.5588y+93.385, y, −0.0052y2+0.5588y+6.615),
  • the line segment be is represented by coordinates (−0.0032z2−1.1791z+77.593, 0.0032z2+0.1791z+22.407, z), and
  • the line segments cO and Oa are straight lines.
  • When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to that of R410A, and a COP ratio of 95% or more relative to that of R410A.
  • The refrigerant A according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z,
  • coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments kb, bj, and jk that connect the following 3 points:
  • point k (72.5, 14.1, 13.4),
    point b (55.6, 26.6, 17.8), and
    point j (72.5, 23.2, 4.3),
    or on the line segments kb, bj, and jk;
  • the line segment kb is represented by coordinates (0.0052y2−1.5588y+93.385, y, and −0.0052y2+0.5588y+6.615),
  • the line segment bj is represented by coordinates (−0.0032z2−1.1791z+77.593, 0.0032z2+0.1791z+22.407, z), and
  • the line segment jk is a straight line.
  • When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to that of R410A, and a COP ratio of 95% or more relative to that of R410A; furthermore, the refrigerant has a lower flammability (Class 2L) according to the ASHRAE Standard.
  • The refrigerant according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), HFO-1123, and R1234yf, as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO-1132(E), HFO-1123, and R1234yf in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and still more preferably 99.9 mass % or more, based on the entire refrigerant.
  • The refrigerant according to the present disclosure may comprise HFO-1132(E), HFO-1123, and R1234yf in a total amount of 99.5 mass % or more, 99.75 mass % or more, or 99.9 mass % or more, based on the entire refrigerant.
  • Additional refrigerants are not particularly limited and can be widely selected. The mixed refrigerant may contain one additional refrigerant, or two or more additional refrigerants.
  • (Examples of Refrigerant A)
  • The present disclosure is described in more detail below with reference to Examples of refrigerant A. However, refrigerant A is not limited to the Examples.
  • The GWP of R1234yf and a composition consisting of a mixed refrigerant R410A (R32=50%/R125=50%) was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report. The GWP of HFO-1132(E), which was not stated therein, was assumed to be 1 from HFO-1132a (GWP=1 or less) and HFO-1123 (GWP=0.3, described in Patent Literature 1). The refrigerating capacity of R410A and compositions each comprising a mixture of HFO-1132(E), HFO-1123, and R1234yf was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.
  • Further, the RCL of the mixture was calculated with the LFL of HFO-1132(E) being 4.7 vol. %, the LFL of HFO-1123 being 10 vol. %, and the LFL of R1234yf being 6.2 vol. %, in accordance with the ASHRAE Standard 34-2013.
  • Evaporating temperature: 5° C.
    Condensation temperature: 45° C.
    Degree of superheating: 5 K
    Degree of subcooling: 5 K
    Compressor efficiency: 70%
  • Tables 1 to 34 show these values together with the GWP of each mixed refrigerant.
  • TABLE 1
    Comp. Comp. Example Comp.
    Comp. Ex. 2 Ex. 3 Example 2 Example Ex. 4
    Item Unit Ex. 1 O A 1 A′ 3 B
    HFO-1132(E) mass % R410A 100.0 68.6 49.0 30.6 14.1 0.0
    HFO-1123 mass % 0.0 0.0 14.9 30.0 44.8 58.7
    R1234yf mass % 0.0 31.4 36.1 39.4 41.1 41.3
    GWP 2088 1 2 2 2 2 2
    COP ratio % (relative
    to 410A) 100 99.7 100.0 98.6 97.3 96.3 95.5
    Refrigerating % (relative 100 98.3 85.0 85.0 85.0 85.0 85.0
    capacity ratio to 410A)
    Condensation ° C. 0.1 0.00 1.98 3.36 4.46 5.15 5.35
    glide
    Discharge % (relative 100.0 99.3 87.1 88.9 90.6 92.1 93.2
    pressure to 410A)
    RCL g/m3 30.7 37.5 44.0 52.7 64.0 78.6
  • TABLE 2
    Comp. Example Comp. Comp. Example Comp.
    Ex. 5 Example 5 Example Ex. 6 Ex. 7 7 Ex. 8
    Item Unit C 4 C′ 6 D E E′ F
    HFO-1132(E) mass % 32.9 26.6 19.5 10.9 0.0 58.0 23.4 0.0
    HFO-1123 mass % 67.1 68.4 70.5 74.1 80.4 42.0 48.5 61.8
    R1234yf mass % 0.0 5.0 10.0 15.0 19.6 0.0 28.1 38.2
    GWP 1 1 1 1 2 1 2 2
    COP ratio % 92.5 92.5 92.5 92.5 92.5 95.0 95.0 95.0
    (relative
    to 410A)
    Refrigerating % 107.4 105.2 102.9 100.5 97.9 105.0 92.5 86.9
    capacity ratio (relative
    to 410A)
    Condensation ° C. 0.16 0.52 0.94 1.42 1.90 0.42 3.16 4.80
    glide
    Discharge % 119.5 117.4 115.3 113.0 115.9 112.7 101.0 95.8
    pressure (relative
    to 410A)
    RCL g/m3 53.5 57.1 62.0 69.1 81.3 41.9 46.3 79.0
  • TABLE 3
    Comp. Example Example Example Example Example
    Ex. 9 8 9 10 11 12
    Item Unit J P L N N′ K
    HFO-1132(E) mass % 47.1 55.8 63.1 68.6 65.0 61.3
    HFO-1123 mass % 52.9 42.0 31.9 16.3 7.7 5.4
    R1234yf mass % 0.0 2.2 5.0 15.1 27.3 33.3
    GWP 1 1 1 1 2 2
    COP ratio % (relative to 93.8 95.0 96.1 97.9 99.1 99.5
    410A)
    Refrigerating % (relative to 106.2 104.1 101.6 95.0 88.2 85.0
    capacity ratio 410A)
    Condensation glide ° C. 0.31 0.57 0.81 1.41 2.11 2.51
    Discharge % (relative to 115.8 111.9 107.8 99.0 91.2 87.7
    pressure 410A)
    RCL g/m3 46.2 42.6 40.0 38.0 38.7 39.7
  • TABLE 4
    Example Example Example Example Example Example Example
    13 14 15 16 17 18 19
    Item Unit L M Q R S S′ T
    HFO-1132(E) mass % 63.1 60.3 62.8 49.8 62.6 50.0 35.8
    HFO-1123 mass % 31.9 6.2 29.6 42.3 28.3 35.8 44.9
    R1234yf mass % 5.0 33.5 7.6 7.9 9.1 14.2 19.3
    GWP 1 2 1 1 1 1 2
    COP ratio % (relative 96.1 99.4 96.4 95.0 96.6 95.8 95.0
    to 410A)
    Refrigerating % (relative 101.6 85.0 100.2 101.7 99.4 98.1 96.7
    capacity ratio to 410A)
    Condensation ° C. 0.81 2.58 1.00 1.00 1.10 1.55 2.07
    glide
    Discharge % (relative 107.8 87.9 106.0 109.6 105.0 105.0 105.0
    pressure to 410A)
    RCL g/m3 40.0 40.0 40.0 44.8 40.0 44.4 50.8
  • TABLE 5
    Comp. Ex. Example Example
    10 20 21
    Item Unit G H I
    HFO-1132(E) mass % 72.0 72.0 72.0
    HFO-1123 mass % 28.0 14.0 0.0
    R1234yf mass % 0.0 14.0 28.0
    GWP 1 1 2
    COP ratio % (relative to 96.6 98.2 99.9
    410A)
    Refrigerating % (relative to 103.1 95.1 86.6
    capacity ratio 410A)
    Condensation glide ° C. 0.46 1.27 1.71
    Discharge pressure % (relative to 108.4 98.7 88.6
    410A)
    RCL g/m3 37.4 37.0 36.6
  • TABLE 6
    Comp. Comp. Example Example Example Example Example Comp.
    Item Unit Ex. 11 Ex. 12 22 23 24 25 26 Ex. 13
    HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
    HFO-1123 mass % 85.0 75.0 65.0 55.0 45.0 35.0 25.0 15.0
    R1234yf mass % 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
    GWP 1 1 1 1 1 1 1 1
    COP ratio % (relative 91.4 92.0 92.8 93.7 94.7 95.8 96.9 98.0
    to 410A)
    Refrigerating % (relative 105.7 105.5 105.0 104.3 103.3 102.0 100.6 99.1
    capacity ratio to 410A)
    Condensation ° C. 0.40 0.46 0.55 0.66 0.75 0.80 0.79 0.67
    glide
    Discharge % (relative 120.1 118.7 116.7 114.3 111.6 108.7 105.6 102.5
    pressure to 410A)
    RCL g/m3 71.0 61.9 54.9 49.3 44.8 41.0 37.8 35.1
  • TABLE 7
    Comp. Example Example Example Example Example Example Comp.
    Item Unit Ex. 14 27 28 29 30 31 32 Ex. 15
    HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
    HFO-1123 mass % 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0
    R1234yf mass % 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
    GWP 1 1 1 1 1 1 1 1
    COP ratio % (relative 91.9 92.5 93.3 94.3 95.3 96.4 97.5 98.6
    to 410A)
    Refrigerating % (relative 103.2 102.9 102.4 101.5 100.5 99.2 97.8 96.2
    capacity ratio to 410A)
    Condensation ° C. 0.87 0.94 1.03 1.12 1.18 1.18 1.09 0.88
    glide
    Discharge % (relative 116.7 115.2 113.2 110.8 108.1 105.2 102.1 99.0
    pressure to 410A)
    RCL g/m3 70.5 61.6 54.6 49.1 44.6 40.8 37.7 35.0
  • TABLE 8
    Comp. Example Example Example Example Example Example Comp.
    Item Unit Ex. 16 33 34 35 36 37 38 Ex. 17
    HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
    HFO-1123 mass % 75.0 65.0 55.0 45.0 35.0 25.0 15.0 5.0
    R1234yf mass % 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0
    GWP 1 1 1 1 1 1 1 1
    COP ratio % (relative 92.4 93.1 93.9 94.8 95.9 97.0 98.1 99.2
    to 410A)
    Refrigerating % (relative 100.5 100.2 99.6 98.7 97.7 96.4 94.9 93.2
    capacity ratio to 410A)
    Condensation ° C. 1.41 1.49 1.56 1.62 1.63 1.55 1.37 1.05
    glide
    Discharge % (relative 113.1 111.6 109.6 107.2 104.5 101.6 98.6 95.5
    pressure to 410A)
    RCL g/m3 70.0 61.2 54.4 48.9 44.4 40.7 37.5 34.8
  • TABLE 9
    Example Example Example Example Example Example Example
    Item Unit 39 40 41 42 43 44 45
    HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0
    HFO-1123 mass % 70.0 60.0 50.0 40.0 30.0 20.0 10.0
    R1234yf mass % 20.0 20.0 20.0 20.0 20.0 20.0 20.0
    GWP 2 2 2 2 2 2 2
    COP ratio % (relative 93.0 93.7 94.5 95.5 96.5 97.6 98.7
    to 410A)
    Refrigerating % (relative 97.7 97.4 96.8 95.9 94.7 93.4 91.9
    capacity ratio to4 10A)
    Condensation ° C. 2.03 2.09 2.13 2.14 2.07 1.91 1.61
    glide
    Discharge % (relative 109.4 107.9 105.9 103.5 100.8 98.0 95.0
    pressure to 410A)
    RCL g/m3 69.6 60.9 54.1 48.7 44.2 40.5 37.4
  • TABLE 10
    Example Example Example Example Example Example Example
    Item Unit 46 47 48 49 50 51 52
    HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0
    HFO-1123 mass % 65.0 55.0 45.0 35.0 25.0 15.0 5.0
    R1234yf mass % 25.0 25.0 25.0 25.0 25.0 25.0 25.0
    GWP 2 2 2 2 2 2 2
    COP ratio % (relative 93.6 94.3 95.2 96.1 97.2 98.2 99.3
    to 410A)
    Refrigerating % (relative 94.8 94.5 93.8 92.9 91.8 90.4 88.8
    capacity ratio to 410A)
    Condensation ° C. 2.71 2.74 2.73 2.66 2.50 2.22 1.78
    glide
    Discharge % (relative 105.5 104.0 102.1 99.7 97.1 94.3 91.4
    pressure to 410A)
    RCL g/m3 69.1 60.5 53.8 48.4 44.0 40.4 37.3
  • TABLE 11
    Example Example Example Example Example Example
    Item Unit 53 54 55 56 57 58
    HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0
    HFO-1123 mass % 60.0 50.0 40.0 30.0 20.0 10.0
    R1234yf mass % 30.0 30.0 30.0 30.0 30.0 30.0
    GWP 2 2 2 2 2 2
    COP ratio % (relative to 94.3 95.0 95.9 96.8 97.8 98.9
    410A)
    Refrigerating % (relative to 91.9 91.5 90.8 89.9 88.7 87.3
    capacity ratio 410A)
    Condensation glide ° C. 3.46 3.43 3.35 3.18 2.90 2.47
    Discharge % (relative to 101.6 100.1 98.2 95.9 93.3 90.6
    pressure 410A)
    RCL g/m3 68.7 60.2 53.5 48.2 43.9 40.2
  • TABLE 12
    Example Example Example Example Example Comp.
    Item Unit 59 60 61 62 63 Ex. 18
    HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0
    HFO-1123 mass % 55.0 45.0 35.0 25.0 15.0 5.0
    R1234yf mass % 35.0 35.0 35.0 35.0 35.0 35.0
    GWP 2 2 2 2 2 2
    COP ratio % (relative to 95.0 95.8 96.6 97.5 98.5 99.6
    410A)
    Refrigerating % (relative to 88.9 88.5 87.8 86.8 85.6 84.1
    capacity ratio 410A)
    Condensation glide ° C. 4.24 4.15 3.96 3.67 3.24 2.64
    Discharge % (relative to 97.6 96.1 94.2 92.0 89.5 86.8
    pressure 410A)
    RCL g/m3 68.2 59.8 53.2 48.0 43.7 40.1
  • TABLE 13
    Comp. Ex. Comp. Ex. Comp. Ex.
    Item Unit Example 64 Example 65 19 20 21
    HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0
    HFO-1123 mass % 50.0 40.0 30.0 20.0 10.0
    R1234yf mass % 40.0 40.0 40.0 40.0 40.0
    GWP 2 2 2 2 2
    COP ratio % (relative to 95.9 96.6 97.4 98.3 99.2
    410A)
    Refrigerating % (relative to
    capacity ratio 410A) 85.8 85.4 84.7 83.6 82.4
    Condensation glide ° C. 5.05 4.85 4.55 4.10 3.50
    Discharge pressure % (relative to 93.5 92.1 90.3 88.1 85.6
    410A)
    RCL g/m3 67.8 59.5 53.0 47.8 43.5
  • TABLE 14
    Example Example Example Example Example Example Example Example
    Item Unit 66 67 68 69 70 71 72 73
    HFO-1132(E) mass % 54.0 56.0 58.0 62.0 52.0 54.0 56.0 58.0
    HFO-1123 mass % 41.0 39.0 37.0 33.0 41.0 39.0 37.0 35.0
    R1234yf mass % 5.0 5.0 5.0 5.0 7.0 7.0 7.0 7.0
    GWP 1 1 1 1 1 1 1 1
    COP ratio % (relative 95.1 95.3 95.6 96.0 95.1 95.4 95.6 95.8
    to 410A)
    Refrigerating % (relative 102.8 102.6 102.3 101.8 101.9 101.7 101.5 101.2
    capacity ratio to 410A)
    Condensation ° C. 0.78 0.79 0.80 0.81 0.93 0.94 0.95 0.95
    glide
    Discharge % (relative 110.5 109.9 109.3 108.1 109.7 109.1 108.5 107.9
    pressure to 410A)
    RCL g/m3 43.2 42.4 41.7 40.3 43.9 43.1 42.4 41.6
  • TABLE 15
    Example Example Example Example Example Example Example Example
    Item Unit 74 75 76 77 78 79 80 81
    HFO-1132(E) mass % 60.0 62.0 61.0 58.0 60.0 62.0 52.0 54.0
    HFO-1123 mass % 33.0 31.0 29.0 30.0 28.0 26.0 34.0 32.0
    R1234yf mass % 7.0 7.0 10.0 12.0 12.0 12.0 14.0 14.0
    GWP 1 1 1 1 1 1 1 1
    COP ratio % (relative 96.0 96.2 96.5 96.4 96.6 96.8 96.0 96.2
    to 410A)
    Refrigerating % (relative 100.9 100.7 99.1 98.4 98.1 97.8 98.0 97.7
    capacity ratio to 410A)
    Condensation ° C. 0.95 0.95 1.18 1.34 1.33 1.32 1.53 1.53
    glide
    Discharge % (relative 107.3 106.7 104.9 104.4 103.8 103.2 104.7 104.1
    pressure to 410A)
    RCL g/m3 40.9 40.3 40.5 41.5 40.8 40.1 43.6 42.9
  • TABLE 16
    Example Example Example Example Example Example Example Example
    Item Unit 82 83 84 85 86 87 88 89
    HFO-1132(E) mass % 56.0 58.0 60.0 48.0 50.0 52.0 54.0 56.0
    HFO-1123 mass % 30.0 28.0 26.0 36.0 34.0 32.0 30.0 28.0
    R1234yf mass % 14.0 14.0 14.0 16.0 16.0 16.0 16.0 16.0
    GWP 1 1 1 1 1 1 1 1
    COP ratio % (relative 96.4 96.6 96.9 95.8 96.0 96.2 96.4 96.7
    to 410A)
    Refrigerating % (relative 97.5 97.2 96.9 97.3 97.1 96.8 96.6 96.3
    capacity ratio to 410A)
    Condensation ° C. 1.51 1.50 1.48 1.72 1.72 1.71 1.69 1.67
    glide
    Discharge % (relative 103.5 102.9 102.3 104.3 103.8 103.2 102.7 102.1
    pressure to 410A)
    RCL g/m3 42.1 41.4 40.7 45.2 44.4 43.6 42.8 42.1
  • TABLE 17
    Example Example Example Example Example Example Example Example
    Item Unit 90 91 92 93 94 95 96 97
    HFO-1132(E) mass % 58.0 60.0 42.0 44.0 46.0 48.0 50.0 52.0
    HFO-1123 mass % 26.0 24.0 40.0 38.0 36.0 34.0 32.0 30.0
    R1234yf mass % 16.0 16.0 18.0 18.0 18.0 18.0 18.0 18.0
    GWP 1 1 2 2 2 2 2 2
    COP ratio % (relative 96.9 97.1 95.4 95.6 95.8 96.0 96.3 96.5
    to 410A)
    Refrigerating % (relative 96.1 95.8 96.8 96.6 96.4 96.2 95.9 95.7
    capacity ratio to 410A)
    Condensation ° C. 1.65 1.63 1.93 1.92 1.92 1.91 1.89 1.88
    glide
    Discharge % (relative 101.5 100.9 104.5 103.9 103.4 102.9 102.3 101.8
    pressure to 410A)
    RCL g/m3 41.4 40.7 47.8 46.9 46.0 45.1 44.3 43.5
  • TABLE 18
    Example Example Example Example Example Example Example Example
    Item Unit 98 99 100 101 102 103 104 105
    HFO-1132(E) mass % 54.0 56.0 58.0 60.0 36.0 38.0 42.0 44.0
    HFO-1123 mass % 28.0 26.0 24.0 22.0 44.0 42.0 38.0 36.0
    R1234yf mass % 18.0 18.0 18.0 18.0 20.0 20.0 20.0 20.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 96.7 96.9 97.1 97.3 95.1 95.3 95.7 95.9
    to 410A)
    Refrigerating % (relative 95.4 95.2 94.9 94.6 96.3 96.1 95.7 95.4
    capacity ratio to 410A)
    Condensation ° C. 1.86 1.83 1.80 1.77 2.14 2.14 2.13 2.12
    glide
    Discharge % (relative 101.2 100.6 100.0 99.5 104.5 104.0 103.0 102.5
    pressure to 410A)
    RCL g/m3 42.7 42.0 41.3 40.6 50.7 49.7 47.7 46.8
  • TABLE 19
    Example Example Example Example Example Example Example Example
    Item Unit 106 107 108 109 110 111 112 113
    HFO-1132(E) mass % 46.0 48.0 52.0 54.0 56.0 58.0 34.0 36.0
    HFO-1123 mass % 34.0 32.0 28.0 26.0 24.0 22.0 44.0 42.0
    R1234yf mass % 20.0 20.0 20.0 20.0 20.0 20.0 22.0 22.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 96.1 96.3 96.7 96.9 97.2 97.4 95.1 95.3
    to 410A)
    Refrigerating % (relative 95.2 95.0 94.5 94.2 94.0 93.7 95.3 95.1
    capacity ratio to 410A)
    Condensation ° C. 2.11 2.09 2.05 2.02 1.99 1.95 2.37 2.36
    glide
    Discharge % (relative 101.9 101.4 100.3 99.7 99.2 98.6 103.4 103.0
    pressure to 410A)
    RCL g/m3 45.9 45.0 43.4 42.7 41.9 41.2 51.7 50.6
  • TABLE 20
    Example Example Example Example Example Example Example Example
    Item Unit 114 115 116 117 118 119 120 121
    HFO-1132(E) mass % 38.0 40.0 42.0 44.0 46.0 48.0 50.0 52.0
    HFO-1123 mass % 40.0 38.0 36.0 34.0 32.0 30.0 28.0 26.0
    R1234yf mass % 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 95.5 95.7 95.9 96.1 96.4 96.6 96.8 97.0
    to 410A)
    Refrigerating % (relative 94.9 94.7 94.5 94.3 94.0 93.8 93.6 93.3
    capacity ratio to 410A)
    Condensation ° C. 2.36 2.35 2.33 2.32 2.30 2.27 2.25 2.21
    glide
    Discharge % (relative 102.5 102.0 101.5 101.0 100.4 99.9 99.4 98.8
    pressure to 410A)
    RCL g/m3 49.6 48.6 47.6 46.7 45.8 45.0 44.1 43.4
  • TABLE 21
    Example Example Example Example Example Example Example Example
    Item Unit 122 123 124 125 126 127 128 129
    HFO-1132(E) mass % 54.0 56.0 58.0 60.0 32.0 34.0 36.0 38.0
    HFO-1123 mass % 24.0 22.0 20.0 18.0 44.0 42.0 40.0 38.0
    R1234yf mass % 22.0 22.0 22.0 22.0 24.0 24.0 24.0 24.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 97.2 97.4 97.6 97.9 95.2 95.4 95.6 95.8
    to 410A)
    Refrigerating % (relative 93.0 92.8 92.5 92.2 94.3 94.1 93.9 93.7
    capacity ratio to 410A)
    Condensation ° C. 2.18 2.14 2.09 2.04 2.61 2.60 2.59 2.58
    glide
    Discharge % (relative 98.2 97.7 97.1 96.5 102.4 101.9 101.5 101.0
    pressure to 410A)
    RCL g/m3 42.6 41.9 41.2 40.5 52.7 51.6 50.5 49.5
  • TABLE 22
    Example Example Example Example Example Example Example Example
    Item Unit 130 131 132 133 134 135 136 137
    HFO-1132(E) mass % 40.0 42.0 44.0 46.0 48.0 50.0 52.0 54.0
    HFO-1123 mass % 36.0 34.0 32.0 30.0 28.0 26.0 24.0 22.0
    R1234yf mass % 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 96.0 96.2 96.4 96.6 96.8 97.0 97.2 97.5
    to 410A)
    Refrigerating % (relative 93.5 93.3 93.1 92.8 92.6 92.4 92.1 91.8
    capacity ratio to 410A)
    Condensation ° C. 2.56 2.54 2.51 2.49 2.45 2.42 2.38 2.33
    glide
    Discharge % (relative 100.5 100.0 99.5 98.9 98.4 97.9 97.3 96.8
    pressure to 410A)
    RCL g/m3 48.5 47.5 46.6 45.7 44.9 44.1 43.3 42.5
  • TABLE 23
    Example Example Example Example Example Example Example Example
    Item Unit 138 139 140 141 142 143 144 145
    HFO-1132(E) mass % 56.0 58.0 60.0 30.0 32.0 34.0 36.0 38.0
    HFO-1123 mass % 20.0 18.0 16.0 44.0 42.0 40.0 38.0 36.0
    R1234yf mass % 24.0 24.0 24.0 26.0 26.0 26.0 26.0 26.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 97.7 97.9 98.1 95.3 95.5 95.7 95.9 96.1
    to 410A)
    Refrigerating % (relative 91.6 91.3 91.0 93.2 93.1 92.9 92.7 92.5
    capacity ratio to 410A)
    Condensation ° C. 2.28 2.22 2.16 2.86 2.85 2.83 2.81 2.79
    glide
    Discharge % (relative 96.2 95.6 95.1 101.3 100.8 100.4 99.9 99.4
    pressure to 410A)
    RCL g/m3 41.8 41.1 40.4 53.7 52.6 51.5 50.4 49.4
  • TABLE 24
    Example Example Example Example Example Example Example Example
    Item Unit 146 147 148 149 150 151 152 153
    HFO-1132(E) mass % 40.0 42.0 44.0 46.0 48.0 50.0 52.0 54.0
    HFO-1123 mass % 34.0 32.0 30.0 28.0 26.0 24.0 22.0 20.0
    R1234yf mass % 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 96.3 96.5 96.7 96.9 97.1 97.3 97.5 97.7
    to 410A)
    Refrigerating % (relative 92.3 92.1 91.9 91.6 91.4 91.2 90.9 90.6
    capacity ratio to 410A)
    Condensation ° C. 2.77 2.74 2.71 2.67 2.63 2.59 2.53 2.48
    glide
    Discharge % (relative 99.0 98.5 97.9 97.4 96.9 96.4 95.8 95.3
    pressure to 410A)
    RCL g/m3 48.4 47.4 46.5 45.7 44.8 44.0 43.2 42.5
  • TABLE 25
    Example Example Example Example Example Example Example Example
    Item Unit 154 155 156 157 158 159 160 161
    HFO-1132(E) mass % 56.0 58.0 60.0 30.0 32.0 34.0 36.0 38.0
    HFO-1123 mass % 18.0 16.0 14.0 42.0 40.0 38.0 36.0 34.0
    R1234yf mass % 26.0 26.0 26.0 28.0 28.0 28.0 28.0 28.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 97.9 98.2 98.4 95.6 95.8 96.0 96.2 96.3
    to 410A)
    Refrigerating % (relative 90.3 90.1 89.8 92.1 91.9 91.7 91.5 91.3
    capacity ratio to 410A)
    Condensation ° C. 2.42 2.35 2.27 3.10 3.09 3.06 3.04 3.01
    glide
    Discharge % (relative 94.7 94.1 93.6 99.7 99.3 98.8 98.4 97.9
    pressure to 410A)
    RCL g/m3 41.7 41.0 40.3 53.6 52.5 51.4 50.3 49.3
  • TABLE 26
    Example Example Example Example Example Example Example Example
    Item Unit 162 163 164 165 166 167 168 169
    HFO-1132(E) mass % 40.0 42.0 44.0 46.0 48.0 50.0 52.0 54.0
    HFO-1123 mass % 32.0 30.0 28.0 26.0 24.0 22.0 20.0 18.0
    R1234yf mass % 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 96.5 96.7 96.9 97.2 97.4 97.6 97.8 98.0
    to 410A)
    Refrigerating % (relative 91.1 90.9 90.7 90.4 90.2 89.9 89.7 89.4
    capacity ratio to 410A)
    Condensation ° C. 2.98 2.94 2.90 2.85 2.80 2.75 2.68 2.62
    glide
    Discharge % (relative 97.4 96.9 96.4 95.9 95.4 94.9 94.3 93.8
    pressure to 410A)
    RCL g/m3 48.3 47.4 46.4 45.6 44.7 43.9 43.1 42.4
  • TABLE 27
    Example Example Example Example Example Example Example Example
    Item Unit 170 171 172 173 174 175 176 177
    HFO-1132(E) mass % 56.0 58.0 60.0 32.0 34.0 36.0 38.0 42.0
    HFO-1123 mass % 16.0 14.0 12.0 38.0 36.0 34.0 32.0 28.0
    R1234yf mass % 28.0 28.0 28.0 30.0 30.0 30.0 30.0 30.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 98.2 98.4 98.6 96.1 96.2 96.4 96.6 97.0
    to 410A)
    Refrigerating % (relative 89.1 88.8 88.5 90.7 90.5 90.3 90.1 89.7
    capacity ratio to 410A)
    Condensation ° C. 2.54 2.46 2.38 3.32 3.30 3.26 3.22 3.14
    glide
    Discharge % (relative 93.2 92.6 92.1 97.7 97.3 96.8 96.4 95.4
    pressure to 410A)
    RCL g/m3 41.7 41.0 40.3 52.4 51.3 50.2 49.2 47.3
  • TABLE 28
    Example Example Example Example Example Example Example Example
    Item Unit 178 179 180 181 182 183 184 185
    HFO-1132(E) mass % 44.0 46.0 48.0 50.0 52.0 54.0 56.0 58.0
    HFO-1123 mass % 26.0 24.0 22.0 20.0 18.0 16.0 14.0 12.0
    R1234yf mass % 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0
    GWP  2    2    2    2    2    2    2    2  
    COP ratio % (relative 97.2 97.4 97.6 97.8 98.0 98.3 98.5 98.7
    to 410A)
    Refrigerating % (relative 89.4 89.2 89.0 88.7 88.4 88.2 87.9 87.6
    capacity ratio to 410A)
    Condensation ° C.  3.08  3.03  2.97  2.90  2.83  2.75  2.66  2.57
    glide
    Discharge % (relative 94.9 94.4 93.9 93.3 92.8 92.3 91.7 91.1
    pressure to 410A)
    RCL g/m3 46.4 45.5 44.7 43.9 43.1 42.3 41.6 40.9
  • TABLE 29
    Example Example Example Example Example Example Example Example
    Item Unit 186 187 188 189 190 191 192 193
    HFO-1132(E) mass % 30.0 32.0 34.0 36.0 38.0 40.0 42.0 44.0
    HFO-1123 mass % 38.0 36.0 34.0 32.0 30.0 28.0 26.0 24.0
    R1234yf mass % 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0
    GWP  2    2    2    2    2    2    2    2  
    COP ratio % (relative 96.2 96.3 96.5 96.7 96.9 97.1 97.3 97.5
    to 410A)
    Refrigerating % (relative 89.6 89.5 89.3 89.1 88.9 88.7 88.4 88.2
    capacity ratio to 410A)
    Condensation ° C.  3.60  3.56  3.52  3.48  3.43  3.38  3.33  3.26
    glide
    Discharge % (relative 96.6 96.2 95.7 95.3 94.8 94.3 93.9 93.4
    pressure to 410A)
    RCL g/m3 53.4 52.3 51.2 50.1 49.1 48.1 47.2 46.3
  • TABLE 30
    Example Example Example Example Example Example Example Example
    Item Unit 194 195 196 197 198 199 200 201
    HFO-1132(E) mass % 46.0 48.0 50.0 52.0 54.0 56.0 58.0 60.0
    HFO-1123 mass % 22.0 20.0 18.0 16.0 14.0 12.0 10.0  8.0
    R1234yf mass % 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0
    GWP  2    2    2    2    2    2    2    2  
    COP ratio % (relative 97.7 97.9 98.1 98.3 98.5 98.7 98.9 99.2
    to 410A)
    Refrigerating % (relative 88.0 87.7 87.5 87.2 86.9 86.6 86.3 86.0
    capacity ratio to 410A)
    Condensation ° C.  3.20 3.12 3.04 2.96 2.87 2.77 2.66 2.55
    glide
    Discharge % (relative 92.8 92.3 91.8 91.3 90.7 90.2 89.6 89.1
    pressure to 410A)
    RCL g/m3 45.4 44.6 43.8 43.0 42.3 41.5 40.8 40.2
  • TABLE 31
    Example Example Example Example Example Example Example Example
    Item Unit 202 203 204 205 206 207 208 209
    HFO-1132(E) mass % 30.0 32.0 34.0 36.0 38.0 40.0 42.0 44.0
    HFO-1123 mass % 36.0 34.0 32.0 30.0 28.0 26.0 24.0 22.0
    R1234yf mass % 34.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0
    GWP  2    2    2    2    2    2    2    2  
    COP ratio % (relative 96.5 96.6 96.8 97.0 97.2 97.4 97.6 97.8
    to 410A)
    Refrigerating % (relative 88.4 88.2 88.0 87.8 87.6 87.4 87.2 87.0
    capacity ratio to 410A)
    Condensation ° C.  3.84  3.80  3.75  3.70  3.64  3.58  3.51  3.43
    glide
    Discharge % (relative 95.0 94.6 94.2 93.7 93.3 92.8 92.3 91.8
    pressure to 410A)
    RCL g/m3 53.3 52.2 51.1 50.0 49.0 48.0 47.1 46.2
  • TABLE 32
    Example Example Example Example Example Example Example Example
    Item Unit 210 211 212 213 214 215 216 217
    HFO-1132(E) mass % 46.0 48.0 50.0 52.0 54.0 30.0 32.0 34.0
    HFO-1123 mass % 20.0 18.0 16.0 14.0 12.0 34.0 32.0 30.0
    R1234yf mass % 34.0 34.0 34.0 34.0 34.0 36.0 36.0 36.0
    GWP  2    2    2    2    2    2    2    2  
    COP ratio % (relative 98.0 98.2 98.4 98.6 98.8 96.8 96.9 97.1
    to 410A)
    Refrigerating % (relative 86.7 86.5 86.2 85.9 85.6 87.2 87.0 86.8
    capacity ratio to 410A)
    Condensation ° C.  3.36  3.27  3.18  3.08  2.97  4.08  4.03  3.97
    glide
    Discharge % (relative 91.3 90.8 90.3 89.7 89.2 93.4 93.0 92.6
    pressure to 410A)
    RCL g/m3 45.3 44.5 43.7 42.9 42.2 53.2 52.1 51.0
  • TABLE 33
    Example Example Example Example Example Example Example Example
    Item Unit 218 219 220 221 222 223 224 225
    HFO-1132(E) mass % 36.0 38.0 40.0 42.0 44.0 46.0 30.0 32.0
    HFO-1123 mass % 28.0 26.0 24.0 22.0 20.0 18.0 32.0 30.0
    R1234yf mass % 36.0 36.0 36.0 36.0 36.0 36.0 38.0 38.0
    GWP  2    2    2    2    2    2    2    2  
    COP ratio % (relative 97.3 97.5 97.7 97.9 98.1 98.3 97.1 97.2
    to 410A)
    Refrigerating % (relative 86.6 86.4 86.2 85.9 85.7 85.5 85.9 85.7
    capacity ratio to 410A)
    Condensation ° C.  3.91  3.84  3.76  3.68  3.60  3.50  4.32  4.25
    glide
    Discharge % (relative 92.1 91.7 91.2 90.7 90.3 89.8 91.9 91.4
    pressure to 410A)
    RCL g/m3 49.9 48.9 47.9 47.0 46.1 45.3 53.1 52.0
  • TABLE 34
    Example Example
    Item Unit 226 227
    HFO-1132(E) mass % 34.0 36.0
    HFO-1123 mass % 28.0 26.0
    R1234yf mass % 38.0 38.0
    GWP 2 2
    COP ratio % (relative to 97.4 97.6
    410A)
    Refrigerating % (relative to 85.6 85.3
    capacity ratio 410A)
    Condensation glide ° C. 4.18 4.11
    Discharge pressure % (relative to 91.0 90.6
    410A)
    RCL g/m3 50.9 49.8
  • These results indicate that under the condition that the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments AA′, A′B, BD, DC′, C′C, CO, and OA that connect the following 7 points:
  • point A (68.6, 0.0, 31.4),
    point A′(30.6, 30.0, 39.4),
    point B (0.0, 58.7, 41.3),
    point D (0.0, 80.4, 19.6),
    point C′ (19.5, 70.5, 10.0),
    point C (32.9, 67.1, 0.0), and
    point O (100.0, 0.0, 0.0),
    or on the above line segments (excluding the points on the line segment CO);
    the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
    the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3,
    the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
    the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
    the line segments BD, CO, and OA are straight lines,
    the refrigerant has a refrigerating capacity ratio of 85% or more relative to that of R410A,
    and a COP of 92.5% or more relative to that of R410A.
  • The point on the line segment AA′ was determined by obtaining an approximate curve connecting point A, Example 1, and point A′ by the least square method.
  • The point on the line segment A′B was determined by obtaining an approximate curve connecting point A′, Example 3, and point B by the least square method.
  • The point on the line segment DC′ was determined by obtaining an approximate curve connecting point D, Example 6, and point C′ by the least square method.
  • The point on the line segment C′C was determined by obtaining an approximate curve connecting point C′, Example 4, and point C by the least square method.
  • Likewise, the results indicate that when coordinates (x,y,z) are within the range of a figure surrounded by line segments AA′, A′B, BF, FT, TE, EO, and OA that connect the following 7 points:
  • point A (68.6, 0.0, 31.4),
    point A′ (30.6, 30.0, 39.4),
    point B (0.0, 58.7, 41.3),
    point F (0.0, 61.8, 38.2),
    point T (35.8, 44.9, 19.3),
    point E (58.0, 42.0, 0.0) and
    point O (100.0, 0.0, 0.0),
    or on the above line segments (excluding the points on the line EO);
    the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
    the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
    the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2), and
    the line segment TE is represented by coordinates (x, 0.0067x2−0.7607x+63.525, −0.0067x2−0.2393x+36.475), and
    the line segments BF, FO, and OA are straight lines,
    the refrigerant has a refrigerating capacity ratio of 85% or more relative to that of R410A,
    and a COP of 95% or more relative to that of R410A.
  • The point on the line segment FT was determined by obtaining an approximate curve connecting three points, i.e., points T, E′, and F, by the least square method.
  • The point on the line segment TE was determined by obtaining an approximate curve connecting three points, i.e., points E, R, and T, by the least square method.
  • The results in Tables 1 to 34 clearly indicate that in a ternary composition diagram of the mixed refrigerant of HFO-1132(E), HFO-1123, and R1234yf in which the sum of these components is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on or below the line segment LM connecting point L (63.1, 31.9, 5.0) and point M (60.3, 6.2, 33.5), the refrigerant has an RCL of 40 g/m3 or more.
  • The results in Tables 1 to 34 clearly indicate that in a ternary composition diagram of the mixed refrigerant of HFO-1132(E), HFO-1123 and R1234yf in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on the line segment QR connecting point Q (62.8, 29.6, 7.6) and point R (49.8, 42.3, 7.9) or on the left side of the line segment, the refrigerant has a temperature glide of 1° C. or less.
  • The results in Tables 1 to 34 clearly indicate that in a ternary composition diagram of the mixed refrigerant of HFO-1132(E), HFO-1123, and R1234yf in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on the line segment ST connecting point S (62.6, 28.3, 9.1) and point T (35.8, 44.9, 19.3) or on the right side of the line segment, the refrigerant has a discharge pressure of 105% or less relative to that of 410A.
  • In these compositions, R1234yf contributes to reducing flammability, and suppressing deterioration of polymerization etc. Therefore, the composition preferably contains R1234yf.
  • Further, the burning velocity of these mixed refrigerants whose mixed formulations were adjusted to WCF concentrations was measured according to the ANSI/ASHRAE Standard 34-2013. Compositions having a burning velocity of 10 cm/s or less were determined to be classified as “Class 2L (lower flammability).”
  • A burning velocity test was performed using the apparatus shown in FIG. 2 in the following manner. In FIG. 2, reference numeral 901 refers to a sample cell, 902 refers to a high-speed camera, 903 refers to a xenon lamp, 904 refers to a collimating lens, 905 refers to a collimating lens, and 906 refers to a ring filter. First, the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge. The burning velocity was measured by the closed method. The initial temperature was ambient temperature. Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using schlieren photographs. A cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source. Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.
  • Each WCFF concentration was obtained by using the WCF concentration as the initial concentration and performing a leak simulation using NIST Standard Reference Database REFLEAK Version 4.0.
  • Tables 35 and 36 show the results.
  • TABLE 35
    Item Unit G H I
    WCF HFO-1132(E) mass % 72.0 72.0 72.0
    HFO-1123 mass % 28.0 9.6 0.0
    R1234yf mass % 0.0 18.4 28.0
    Burning velocity (WCF) cm/s 10 10 10
  • TABLE 36
    Item Unit J P L N N′ K
    WCF HFO- mass % 47.1 55.8 63.1 68.6 65.0 61.3
    1132 (E)
    HFO-1123 mass % 52.9 42.0 31.9 16.3  7.7  5.4
    R1234yf mass %  0.0  2.2  5.0 15.1 27.3 33.3
    Leak condition Storage/ Storage/ Storage/ Storage/ Storage/ Storage/
    that results Shipping Shipping Shipping Shipping Shipping Shipping
    in WCFF −40° C., −40° C., −40° C., −40° C., −40° C., −40° C.,
    92% 90% 90% 66% 12% 0%
    release, release, release, release, release, release,
    liquid liquid gas gas gas gas
    phase phase phase phase phase phase
    side side side side side side
    WCFF HFO-1132 mass % 72.0 72.0 72.0 72.0 72.0 72.0
  • The results in Table 35 clearly indicate that when a mixed refrigerant of HFO-1132(E), HFO-1123, and R1234yf contains HFO-1132(E) in a proportion of 72.0 mass % or less based on their sum, the refrigerant can be determined to have a WCF lower flammability.
  • The results in Tables 36 clearly indicate that in a ternary composition diagram of a mixed refrigerant of HFO-1132(E), HFO-1123, and R1234yf in which their sum is 100 mass %, and a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base,
  • when coordinates (x,y,z) are on or below the line segments JP, PN, and NK connecting the following 6 points:
    point J (47.1, 52.9, 0.0),
    point P (55.8, 42.0, 2.2),
    point L (63.1,31.9,5.0)
    point N (68.6, 16.3, 15.1)
    point N′ (65.0, 7.7, 27.3) and
    point K (61.3, 5.4, 33.3),
    the refrigerant can be determined to have a WCF lower flammability, and a WCFF lower flammability.
    In the diagram, the line segment PN is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
    and the line segment NK is represented by coordinates (x, 0.2421x2−29.955x+931.91, −0.2421x2+28.955x−831.91).
  • The point on the line segment PN was determined by obtaining an approximate curve connecting three points, i.e., points P, L, and N, by the least square method.
  • The point on the line segment NK was determined by obtaining an approximate curve connecting three points, i.e., points N, N′, and K, by the least square method.
  • (5-2) Refrigerant B
  • The refrigerant B according to the present disclosure is
  • a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)) and trifluoroethylene (HFO-1123) in a total amount of 99.5 mass % or more based on the entire refrigerant, and the refrigerant comprising 62.0 mass % to 72.0 mass % or 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire refrigerant, or
  • a mixed refrigerant comprising HFO-1132(E) and HFO-1123 in a total amount of 99.5 mass % or more based on the entire refrigerant, and the refrigerant comprising 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire refrigerant..
  • The refrigerant B according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant, i.e., (1) a coefficient of performance equivalent to that of R410A, (2) a refrigerating capacity equivalent to that of R410A, (3) a sufficiently low GWP, and (4) a lower flammability (Class 2L) according to the ASHRAE standard.
  • When the refrigerant B according to the present disclosure is a mixed refrigerant comprising 72.0 mass % or less of HFO-1132(E), it has WCF lower flammability. When the refrigerant B according to the present disclosure is a composition comprising 47.1% or less of HFO-1132(E), it has WCF lower flammability and WCFF lower flammability, and is determined to be “Class 2L,” which is a lower flammable refrigerant according to the ASHRAE standard, and which is further easier to handle.
  • When the refrigerant B according to the present disclosure comprises 62.0 mass % or more of HFO-1132(E), it becomes superior with a coefficient of performance of 95% or more relative to that of R410A, the polymerization reaction of HFO-1132(E) and/or HFO-1123 is further suppressed, and the stability is further improved. When the refrigerant B according to the present disclosure comprises 45.1 mass % or more of HFO-1132(E), it becomes superior with a coefficient of performance of 93% or more relative to that of R410A, the polymerization reaction of HFO-1132(E) and/or HFO-1123 is further suppressed, and the stability is further improved.
  • The refrigerant B according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E) and HFO-1123, as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO-1132(E) and HFO-1123 in a total amount of 99.75 mass % or more, and more preferably 99.9 mass % or more, based on the entire refrigerant.
  • Such additional refrigerants are not limited, and can be selected from a wide range of refrigerants. The mixed refrigerant may comprise a single additional refrigerant, or two or more additional refrigerants.
  • (Examples of Refrigerant B)
  • The present disclosure is described in more detail below with reference to Examples of refrigerant B. However, the refrigerant B is not limited to the Examples.
  • Mixed refrigerants were prepared by mixing HFO-1132(E) and HFO-1123 at mass % based on their sum shown in Tables 37 and 38.
  • The GWP of compositions each comprising a mixture of R410A (R32=50%/R125=50%) was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report. The GWP of HFO-1132(E), which was not stated therein, was assumed to be 1 from HFO-1132a (GWP=1 or less) and HFO-1123 (GWP=0.3, described in Patent Literature 1). The refrigerating capacity of compositions each comprising R410A and a mixture of HFO-1132(E) and HFO-1123 was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.
  • Evaporating temperature: 5° C.
    Condensation temperature: 45° C.
    Superheating temperature: 5 K
    Subcooling temperature: 5 K
    Compressor efficiency: 70%
  • The composition of each mixture was defined as WCF. A leak simulation was performed using NIST Standard Reference Data Base Refleak Version 4.0 under the conditions of Equipment, Storage, Shipping, Leak, and Recharge according to the ASHRAE Standard 34-2013. The most flammable fraction was defined as WCFF.
  • Tables 1 and 2 show GWP, COP, and refrigerating capacity, which were calculated based on these results. The COP and refrigerating capacity are ratios relative to R410A.
  • The coefficient of performance (COP) was determined by the following formula.

  • COP=(refrigerating capacity or heating capacity)/power consumption
  • For the flammability, the burning velocity was measured according to the ANSI/ASHRAE Standard 34-2013. Both WCF and WCFF having a burning velocity of 10 cm/s or less were determined to be “Class 2L (lower flammability).”
  • A burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner. First, the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge. The burning velocity was measured by the closed method. The initial temperature was ambient temperature. Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using schlieren photographs. A cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source. Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.
  • TABLE 37
    Comparative Comparative
    Example 1 Example 2 Comparative Example Example Example Example Example Comparative
    Item Unit R410A HFO-1132E Example 3 1 2 3 4 5 Example 4
    HFO-1132E mass % 100 80 72 70 68 65 62 60
    (WCF)
    HFO-1123 mass %  0 20 28 30 32 35 48 40
    (WCF)
    GWP 2088   1  1  1  1  1  1  1  1
    COP ratio % (relative 100    99.7   97.5   96.6   96.3   96.1   95.8   95.4   95.2
    to R410A)
    Refrigerating % (relative 100    98.3  101.9 103.1 103.4 103.8 104.1 104.5 104.8
    capacity ratio to R410A)
    Discharge Mpa 2.73 2.71    2.89    2.96    2.98    3.00    3.02    3.04    3.06
    pressure
    Burning cm/sec Non-  20 13 10  9  9  8 8 or 8 or
    velocity flammable less less
    (WCF)
  • TABLE 38
    Comparative
    Comparative Comparative Example Example Example Comparative Comparative Comparative Example 10
    Item Unit Example 5 Example 6 7 8 9 Example 7 Example 8 Example 9 HFO-1123
    HFO-1132E mass % 50 48 47.1 46.1 45.1 43 40 25 0
    (WCF)
    HFO-1123 mass % 50 52 52.9 53.9 54.9 57 60 75 100
    (WCF)
    GWP 1 1 1 1 1 1 1 1 1
    COP ratio % (relative 94.1 93.9 93.8 93.7 93.6 93.4 93.1 91.9 90.6
    to R410A)
    Refrigerating % (relative 105.9 106.1 106.2 106.3 106.4 106.6 106.9 107.9 108.0
    capacity to R410A)
    ratio
    Discharge Mpa 3.14 3.16 3.16 3.17 3.18 3.20 3.21 3.31 3.39
    pressure
    Leakage test Storage/ Storage/ Storage/ Storage/ Storage/ Storage/ Storage/ Storage/
    Shipping Shipping Shipping Shipping Shipping Shipping Shipping Shipping
    −40° C., −40° C., −40° C. −40° C. −40° C. −40° C. −40° C. −40° C.
    92% 92% 92% 92% 92% 92% 92% 92%
    release, release, release, release, release, release, release, release,
    liquid liquid liquid liquid liquid liquid liquid liquid
    phase phase phase phase phase phase phase phase
    side side side side side side side side
    HFO-1132E mass % 74 73 72 71 70 67 63 38
    (WCFF)
    HFO-1123 mass % 26 27 28 29 30 33 37 62
    (WCFF)
    Burning cm/sec 8 or less 8 or less 8 or less 8 or less 8 or less 8 or less 8 or less 8 or less 5
    velocity
    (WCF)
    Burning cm/sec 11 10.5 10.0 9.5 9.5 8.5 8 or less 8 or less
    velocity
    (WCFF)
    ASHRAE flammability 2 2 2L 2L 2L 2L 2L 2L 2L
    classification
  • The compositions each comprising 62.0 mass % to 72.0 mass % of HFO-1132(E) based on the entire composition are stable while having a low GWP (GWP=1), and they ensure WCF lower flammability. Further, surprisingly, they can ensure performance equivalent to that of R410A. Moreover, compositions each comprising 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire composition are stable while having a low GWP (GWP=1), and they ensure WCFF lower flammability. Further, surprisingly, they can ensure performance equivalent to that of R410A.
  • (5-3) Refrigerant C
  • The refrigerant C according to the present disclosure is a composition comprising trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32), and satisfies the following requirements. The refrigerant C according to the present disclosure has various properties that are desirable as an alternative refrigerant for R410A; i.e. it has a coefficient of performance and a refrigerating capacity that are equivalent to those of R410A, and a sufficiently low GWP.
  • Requirements
  • Preferable refrigerant C is as follows:
  • When the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum is respectively represented by x, y, z, and a,
  • if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass % are within the range of a figure surrounded by straight lines GI, IA, AB, BD′, D′C, and CG that connect the following 6 points:
  • point G (0.026a2−1.7478a+72.0, −0.026a2+0.7478a+28.0, 0.0),
    point I (0.026a2−1.7478a+72.0, 0.0, −0.026a2+0.7478a+28.0),
    point A (0.0134a2−1.9681a+68.6, 0.0, −0.0134a2+0.9681a+31.4),
    point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3),
    point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6), and
    point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0),
    or on the straight lines GI, AB, and D′C (excluding point G, point I, point A, point B, point D′, and point C);
  • if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
  • point G (0.02a2−1.6013a+71.105, −0.02a2+0.6013a+28.895, 0.0),
    point I (0.02a2−1.6013a+71.105, 0.0, −0.02a2+0.6013a+28.895),
    point A (0.0112a2−1.9337a+68.484, 0.0, −0.0112a2+0.9337a+31.516),
    point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801) and
    point W (0.0, 100.0−a, 0.0),
    or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);
  • if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
  • point G (0.0135a2−1.4068a+69.727, −0.0135a2+0.4068a+30.273, 0.0),
    point I (0.0135a2−1.4068a+69.727, 0.0, −0.0135a2+0.4068a+30.273),
    point A (0.0107a2−1.9142a+68.305, 0.0, −0.0107a2+0.9142a+31.695),
    point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682) and
    point W (0.0, 100.0−a, 0.0),
    or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);
  • if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
  • point G (0.0111a2−1.3152a+68.986, −0.0111a2+0.3152a+31.014, 0.0),
    point I (0.0111a2−1.3152a+68.986, 0.0, −0.0111a2+0.3152a+31.014),
    point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207),
    point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714) and
    point W (0.0, 100.0−a, 0.0),
    or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W); and
  • if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
  • point G (0.0061a2−0.9918a+63.902, −0.0061a2−0.0082a+36.098, 0.0),
    point I (0.0061a2−0.9918a+63.902, 0.0, −0.0061a2−0.0082a+36.098),
    point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9),
    point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05) and
    point W (0.0, 100.0−a, 0.0),
    or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W). When the refrigerant according to the present disclosure satisfies the above requirements, it has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A, and further ensures a WCF lower flammability.
  • The refrigerant C according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z,
  • if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass % are within the range of a figure surrounded by straight lines JK′, K′B, BD′, D′C, and CJ that connect the following 5 points:
  • point J (0.0049a2−0.9645a+47.1, −0.0049a2−0.0355a+52.9, 0.0),
    point K′ (0.0514a2−2.4353a+61.7, −0.0323a2+0.4122a+5.9, −0.0191a2+1.0231a+32.4),
    point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3),
    point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6), and
    point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0),
    or on the straight lines JK′, K′B, and D′C (excluding point J, point B, point D′, and point C);
  • if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
  • point J (0.0243a2−1.4161a+49.725, −0.0243a2+0.4161a+50.275, 0.0),
    point K′ (0.0341a2−2.1977a+61.187, −0.0236a2+0.34a+5.636,−0.0105a2+0.8577a+33.177),
    point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801) and
    point W (0.0, 100.0−a, 0.0),
    or on the straight lines JK′ and K′B (excluding point J, point B, and point W);
  • if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
  • point J (0.0246a2−1.4476a+50.184, −0.0246a2+0.4476a+49.816, 0.0),
    point K′ (0.0196a2−1.7863a+58.515, −0.0079a2−0.1136a+8.702, −0.0117a2+0.8999a+32.783),
    point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682) and
    point W (0.0, 100.0−a, 0.0),
    or on the straight lines JK′ and K′B (excluding point J, point B, and point W);
  • if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
  • point J (0.0183a2−1.1399a+46.493, −0.0183a2+0.1399a+53.507, 0.0),
    point K′ (−0.0051a2+0.0929a+25.95, 0.0, 0.0051a2−1.0929a+74.05),
    point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207),
    point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714) and
    point W (0.0, 100.0−a, 0.0),
    or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W); and
  • if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
  • point J (−0.0134a2+1.0956a+7.13, 0.0134a2−2.0956a+92.87, 0.0),
    point K′ (−1.892a+29.443, 0.0, 0.892a+70.557),
    point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9),
    point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05) and
    point W (0.0, 100.0−a, 0.0),
    or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W). When the refrigerant according to the present disclosure satisfies the above requirements, it has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A. Additionally, the refrigerant has a WCF lower flammability and a WCFF lower flammability, and is classified as “Class 2L,” which is a lower flammable refrigerant according to the ASHRAE standard.
  • When the refrigerant C according to the present disclosure further contains
  • R32 in addition to HFO-1132 (E), HFO-1123, and R1234yf, the refrigerant may be a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum is respectively represented by x, y, z, and a,
  • if 0<a≤10.0, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass % are within the range of a figure surrounded by straight lines that connect the following 4 points:
  • point a (0.02a2−2.46a+93.4, 0, −0.02a2+2.46a+6.6),
    point b′ (−0.008a2−1.38a+56, 0.018a2−0.53a+26.3, −0.01a2+1.91a+17.7),
    point c (−0.016a2+1.02a+77.6, 0.016a2−1.02a+22.4, 0), and
    point o (100.0−a, 0.0, 0.0)
    or on the straight lines oa, ab′, and b′c (excluding point o and point c);
  • if 10.0<a≤16.5, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines that connect the following 4 points:
  • point a (0.0244a2−2.5695a+94.056, 0, −0.0244a2+2.5695a+5.944),
    point b′ (0.1161a2−1.9959a+59.749, 0.014a2−0.3399a+24.8, −0.1301a2+2.3358a+15.451),
    point c (−0.0161a2+1.02a+77.6, 0.0161a2−1.02a+22.4, 0), and
    point o (100.0−a, 0.0, 0.0),
    or on the straight lines oa, ab′, and b′c (excluding point o and point c); or
  • if 16.5<a≤21.8, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines that connect the following 4 points:
  • point a (0.0161a2−2.3535a+92.742, 0, −0.0161a2+2.3535a+7.258),
    point b′ (−0.0435a2−0.0435a+50.406, 0.0304a2+1.8991a−0.0661, 0.0739a2−1.8556a+49.6601),
    point c (−0.0161a2+0.9959a+77.851, 0.0161a2−0.9959a+22.149, 0), and
    point o (100.0−a, 0.0, 0.0),
    or on the straight lines oa, ab′, and b′c (excluding point o and point c). Note that when point b in the ternary composition diagram is defined as a point where a refrigerating capacity ratio of 95% relative to that of R410A and a COP ratio of 95% relative to that of R410A are both achieved, point b′ is the intersection of straight line ab and an approximate line formed by connecting the points where the COP ratio relative to that of R410A is 95%. When the refrigerant according to the present disclosure meets the above requirements, the refrigerant has a refrigerating capacity ratio of 95% or more relative to that of R410A, and a COP ratio of 95% or more relative to that of R410A.
  • The refrigerant C according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), HFO-1123, R1234yf, and R32 as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO-1132(E), HFO-1123, R1234yf, and R32 in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and still more preferably 99.9 mass % or more, based on the entire refrigerant.
  • The refrigerant C according to the present disclosure may comprise HFO-1132(E), HFO-1123, R1234yf, and R32 in a total amount of 99.5 mass % or more, 99.75 mass % or more, or 99.9 mass % or more, based on the entire refrigerant.
  • Additional refrigerants are not particularly limited and can be widely selected. The mixed refrigerant may contain one additional refrigerant, or two or more additional refrigerants.
  • (Examples of Refrigerant C)
  • The present disclosure is described in more detail below with reference to Examples of refrigerant C. However, the refrigerant C is not limited to the Examples.
  • Mixed refrigerants were prepared by mixing HFO-1132(E), HFO-1123, R1234yf, and R32 at mass % based on their sum shown in Tables 39 to 96.
  • The GWP of compositions each comprising a mixture of R410A (R32=50%/R125=50%) was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report. The GWP of HFO-1132(E), which was not stated therein, was assumed to be 1 from HFO-1132a (GWP=1 or less) and HFO-1123 (GWP=0.3, described in Patent Literature 1). The refrigerating capacity of compositions each comprising R410A and a mixture of HFO-1132(E) and HFO-1123 was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.
  • For each of these mixed refrigerants, the COP ratio and the refrigerating capacity ratio relative to those of R410 were obtained. Calculation was conducted under the following conditions.
  • Evaporating temperature: 5° C.
  • Condensation temperature: 45° C.
  • Superheating temperature: 5 K
  • Subcooling temperature: 5 K
  • Compressor efficiency: 70%
  • Tables 39 to 96 show the resulting values together with the GWP of each mixed refrigerant. The COP and refrigerating capacity are ratios relative to R410A.
  • The coefficient of performance (COP) was determined by the following formula.

  • COP=(refrigerating capacity or heating capacity)/power consumption
  • TABLE 39
    Comp. Comp. Comp. Comp. Comp. Comp. Comp. Ex.
    Comp. Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex. 7 Ex. 8 1
    Item Unit Ex. 1 A B C D′ G I J K′
    HFO-1132(E) Mass % R410A 68.6 0.0 32.9 0.0 72.0 2.0 47.1 61.7
    HFO-1123 Mass % 0.0 58.7 67.1 75.4 28.0 0.0 52.9 5.9
    R1234yf Mass % 31.4 41.3 0.0 24.6 0.0 28.0 0.0 32.4
    R32 Mass % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    GWP 2088 2 2 1 2 1 2 1 2
    COP ratio % (relative  100 100.0 95.5 92.5 93.1 96.6 99.9 93.8 99.4
    to R410A)
    Refrigerating % (relative  100 85.0 85.0 107.4 95.0 103.1 86.6 106.2 85.5
    capacity ratio to R410A)
  • TABLE 40
    Comp. Comp. Comp. Comp. Comp. Comp. Comp. Ex.
    Ex. 9 Ex. 10 Ex. 11 Ex. 12 Ex. 13 Ex. 14 Ex. 15 2
    Item Unit A B C D′ G I J K′
    HFO-1132 (E) Mass % 55.3 0.0 18.4 0.0 60.9 60.9 40.5 47.0
    HFO-1123 Mass % 0.0 47.8 74.5 83.4 32.0 0.0 52.4 7.2
    R1234yf Mass % 37.6 45.1 0.0 9.5 0.0 32.0 0.0 38.7
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 50 50 49 49 49 50 49 50
    COP ratio % (relative 99.8 96.9 92.5 92.5 95.9 99.6 94.0 99.2
    to R410A)
    Refrigerating % (relative 85.0 85.0 110.5 106.0 106.5 87.7 108.9 85.5
    capacity ratio to R410A)
  • TABLE 41
    Comp. Ex. Comp. Ex. Comp. Ex. Comp. Ex. Comp. Ex. Comp. Ex. Ex.
    16 17 18 19 20 21 3
    Item Unit A B C = D′ G I J K′
    NEO-1132(E) Mass % 48.4 0.0 0.0 55.8 55.8 37.0 41.0
    HFO-1123 Mass % 0.0 42.3 88.9 33.1 0.0 51.9 6.5
    R1234yf Mass % 40.5 46.6 0.0 0.0 33.1 0.0 41.4
    R32 Mass % 11.1 11.1 11.1 11.1 11.1 11.1 11.1
    GWP 77 77 76 76 77 76 77
    COP ratio % (relative 99.8 97.6 92.5 95.8 99.5 94.2 99.3
    to R410A)
    Refrigerating % (relative 85.0 85.0 112.0 108.0 88.6 110.2 85.4
    capacity ratio to R410A)
  • TABLE 42
    Comp. Ex. Comp. Ex. Comp. Ex. Comp. Ex. Comp. Ex. Ex.
    22 23 24 25 26 4
    Item Unit A B G I J K′
    HFO-1132(E) Mass % 42.8 0.0 52.1 52.1 34.3 36.5
    HFO-1123 Mass % 0.0 37.8 33.4 0.0 51.2 5.6
    R1234yf Mass % 42.7 47.7 0.0 33.4 0.0 43.4
    R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.55
    GWP 100 100 99 100 99 100
    COP ratio % (relative to 99.9 98.1 95.8 99.5 94.4 99.5
    R410A)
    Refrigerating capacity % (relative to 85.0 85.0 109.1 89.6 111.1 85.3
    ratio R410A)
  • TABLE 43
    Comp. Ex. Comp. Ex. Comp. Ex. Comp. Ex. Comp. Ex. Ex.
    27 28 29 30 31 5
    Item Unit A B G I J K′
    HFO-1132(E) Mass % 37.0 0.0 48.6 48.6 32.0 32.55
    HFO-1123 Mass % 0.0 33.1 33.2 0.0 49.8 4.0
    R1234yf Mass % 44.8 48.7 0.0 33.2 0.0 45.3
    R32 Mass % 18.2 18.2 18.2 18.2 18.2 18.2
    GWP 125 125 124 125 124 125
    COP ratio % (relative to
    R410A) 100.0 98.6 95.9 99.4 94.7 99.8
    Refrigerating capacity % (relative to
    ratio R410A) 85.0 85.0 110.1 90.8 111.9 85.2
  • TABLE 44
    Comp. Ex. Comp. Ex. Comp. Ex. Comp. Ex. Comp. Ex. Ex.
    32 33 34 35 36 6
    Item Unit A B G I J K'
    HFO-1132(E) Mass % 31.5 0.0 45.4 45.4 30.3 28.8
    HFO-1123 Mass % 0.0 28.5 32.7 0.0 47.8 2.4
    R1234yf Mass % 46.6 49.6 0.0 32.7 0.0 46.9
    R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9
    GWP 150 150 149 150 149 150
    COP ratio % (relative to 100.
    R410A) 100.2 99.1 96.0 99.4 95.1 0
    Refrigerating capacity % (relative to
    ratio R410A) 85.0 85.0 111.0 92.1 112.6 85.1
  • TABLE 45
    Comp. Ex. Comp. Ex. Comp. Ex. Comp. Ex. Comp. Ex. Comp. Ex.
    37 38 39 40 41 42
    Item Unit A B G I J K′
    HFO-1132(E) Mass % 24.8 0.0 41.8 41.8 29.1 24.8
    HFO-1123 Mass % 0.0 22.9 31.5 0.0 44.2 0.0
    R1234yf Mass % 48.5 50.4 0.0 31.5 0.0 48.5
    R32 Mass % 26.7 26.7 26.7 26.7 26.7 26.7
    GWP 182 182 181 182 181 182
    COP ratio % (relative to 100.4 99.8 96.3 99.4 95.6 100.4
    R410A)
    Refrigerating capacity % (relative to 85.0 85.0 111.9 93.8 113.2 85.0
    ratio R410A)
  • TABLE 46
    Comp. Ex. Comp. Ex. Comp. Ex. Comp. Ex. Comp. Ex. Comp. Ex.
    43 44 45 46 47 48
    Item Unit A B G I J K′
    HFO-1132(E) Mass % 21.3 0.0 40.0 40.0 28.8 24.3
    HFO-1123 Mass % 0.0 19.9 30.7 0.0 41.9 0.0
    R1234yf Mass % 49.4 50.8 0.0 30.7 0.0 46.4
    R32 Mass % 29.3 29.3 29.3 29.3 29.3 29.3
    GWP 200 200 198 199 198 200
    COP ratio % (relative to 100.6 100.1 96.6 99.5 96.1 100.4
    R410A)
    Refrigerating capacity % (relative to 85.0 85.0 112.4 94.8 113.6 86.7
    ratio R410A)
  • TABLE 47
    Comp. Ex. Comp. Ex. Comp. Ex. Comp. Ex. Comp. Ex. Comp. Ex.
    49 50 51 52 53 54
    Item Unit A B G I J K′
    HFO-1132(E) Mass % 12.1 0.0 35.7 35.7 29.3 22.5
    HFO-1123 Mass % 0.0 11.7 27.6 0.0 34.0 0.0
    R1234yf Mass % 51.2 51.6 0.0 27.6 0.0 40.8
    R32 Mass % 36.7 36.7 36.7 36.7 36.7 36.7
    GWP 250 250 248 249 248 250
    COP ratio % (relative to 101.2 101.0 96.4 99.6 97.0 100.4
    R410A)
    Refrigerating capacity % (relative to 85.0 85.0 113.2 97.6 113.9 90.9
    ratio R410A)
  • TABLE 48
    Comp. Ex. Comp. Ex. Comp. Ex. Comp. Ex. Comp. Ex. Comp. Ex.
    55 56 57 58 59 60
    Item Unit A B G I J K′
    HFO-1132(E) Mass % 3.8 0.0 32.0 32.0 29.4 21.1
    HFO-1123 Mass % 0.0 3.9 23.9 0.0 26.5 0.0
    R1234yf Mass % 52.1 52.0 0.0 23.9 0.0 34.8
    R32 Mass % 44.1 44.1 44.1 44.1 44.1 44.1
    GWP 300 300 298 299 298 299
    COP ratio % (relative to 101.8 101.8 97.9 99.8 97.8 100.5
    R410A)
    Refrigerating capacity % (relative to 85.0 85.0 113.7 100.4 113.9 94.9
    ratio R410A)
  • TABLE 49
    Comp. Ex. Comp. Ex. Comp. Ex. Comp. Ex. Comp. Ex.
    61 62 63 64 65
    Item Unit A = B G I J K′
    HFO-1132(E) Mass % 0.0 30.4 30.4 28.9 20.4
    HFO-1123 Mass % 0.0 21.8 0.0 23.3 0.0
    R1234yf Mass % 52.2 0.0 21.8 0.0 31.8
    R32 Mass % 47.8 47.8 47.8 47.8 47.8
    GWP 325 323 324 323 324
    COP ratio % (relative to 102.1 98.2 100.0 98.2 100.6
    R410A)
    Refrigerating capacity % (relative to 85.0 113.8 101.8 113.9 96.8
    ratio R410A)
  • TABLE 50
    Comp. Ex. Ex. Ex. Ex. Ex.
    Item Unit 66 Ex. 7 Ex. 8 Ex. 9 10 11 12 13
    HFO-1132(E) Mass % 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0
    HFO-1123 Mass % 82.9 77.9 72.9 67.9 62.9 57.9 52.9 47.9
    R1234yf Mass % 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 49 49 49 49 49 49 49 49
    COP ratio % (relative to 92.4 92.6 92.8 93.1 93.4 93.7 94.1 94.5
    R410A)
    Refrigerating capacity % (relative to 108.4 108.3 108.2 107.9 107.6 107.2 106.8 106.3
    ratio R410A)
  • TABLE 51
    Ex. Ex. Ex. Ex. Comp. Ex. Ex. Ex. Ex.
    Item Unit 14 15 16 17 67 18 19 20
    HFO-1132(E) Mass % 45.0 50.0 55.0 60.0 65.0 10.0 15.0 20.0
    HFO-1123 Mass % 42.9 37.9 32.9 27.9 22.9 72.9 67.9 62.9
    R1234yf Mass % 5.0 5.0 5.0 5.0 5.0 10.0 10.0 10.0
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 49 49 49 49 49 49 49 49
    COP ratio % (relative to 95.0 95.4 95.9 96.4 96.9 93.0 93.3 93.6
    R410A)
    Refrigerating capacity % (relative to 105.8 105.2 104.5 103.9 103.1 105.7 105.5 105.2
    ratio R410A)
  • TABLE 52
    Item Unit Ex. 21 Ex. 22 Ex. 23 Ex. 24 Ex. 25 Ex. 26 Ex. 27 Ex. 28
    HFO-1132(E) Mass % 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0
    HFO-1123 Mass % 57.9 52.9 47.9 42.9 37.9 32.9 27.9 22.9
    R1234yf Mass % 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 49 49 49 49 49 49 49 49
    COP ratio % (relative to R410A) 93.9 94.2 94.6 95.0 95.5 96.0 96.4 96.9
    Refrigerating capacity ratio % (relative to R410A) 104.9 104.5 104.1 103.6 103.0 102.4 101.7 101.0
  • TABLE 53
    Comp. Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex.
    Item Unit 68 29 30 31 32 33 34 35
    HFO-1132(E) Mass % 65.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0
    HFO-1123 Mass % 17.9 67.9 62.9 57.9 52.9 47.9 42.9 37.9
    R1234yf Mass % 10.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 49 49 49 49 49 49 49 49
    COP ratio % (relative to 97.4 93.5 93.8 94.1 94.4 94.8 95.2 95.6
    R410A)
    Refrigerating capacity % (relative to 100.3 102.9 102.7 102.5 102.1 101.7 101.2 100.7
    ratio R410A)
  • TABLE 54
    Ex. Ex. Ex. Ex. Comp. Ex. Ex. Ex. Ex.
    Item Unit 36 37 38 39 69 40 41 42
    HFO-1132(E) Mass % 45.0 50.0 55.0 60.0 65.0 10.0 15.0 20.0
    HFO-1123 Mass % 32.9 27.9 22.9 17.9 12.9 62.9 57.9 52.9
    R1234yf Mass % 15.0 15.0 15.0 15.0 15.0 20.0 20.0 20.0
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 49 49 49 49 49 49 49 49
    COP ratio % (relative to 96.0 96.5 97.0 97.5 98.0 94.0 94.3 94.6
    R410A)
    Refrigerating capacity % (relative to 100.1 99.5 98.9 98.1 97.4 100.1 99.9 99.6
    ratio R410A)
  • TABLE 55
    Item Unit Ex. 43 Ex. 44 Ex. 45 Ex. 46 Ex. 47 Ex. 48 Ex. 49 Ex. 50
    HFO-1132(E) Mass % 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0
    HFO-1123 Mass % 47.9 42.9 37.9 32.9 27.9 22.9 17.9 12.9
    R1234yf Mass % 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 49 49 49 49 49 49 49 49
    COP ratio % (relative to R410A) 95.0 95.3 95.7 96.2 96.6 97.1 97.6 98.1
    Refrigerating capacity ratio % (relative to R410A) 99.2 98.8 98.3 97.8 97.2 96.6 95.9 95.2
  • TABLE 56
    Comp. Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex.
    Item Unit 70 51 52 53 54 55 56 57
    HFO-1132(E) Mass % 65.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0
    HFO-1123 Mass % 7.9 57.9 52.9 47.9 42.9 37.9 32.9 27.9
    R1234yf Mass % 20.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 49 50 50 50 50 50 50 50
    COP ratio % (relative to 98.6 94.6 94.9 95.2 95.5 95.9 96.3 96.8
    R410A)
    Refrigerating capacity % (relative to 94.4 97.1 96.9 96.7 96.3 95.9 95.4 94.8
    ratio R410A)
  • TABLE 57
    Ex. Ex. Ex. Ex. Comp. Ex. Ex. Ex. Ex.
    Item Unit 58 59 60 61 71 62 63 64
    HFO-1132(E) Mass % 45.0 50.0 55.0 60.0 65.0 10.0 15.0 20.0
    HFO-1123 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    R1234yf Mass % 25.0 25.0 25.0 25.0 25.0 30.0 30.0 30.0
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 50 50 50 50 50 50 50 50
    COP ratio % (relative to 97.2 97.7 98.2 98.7 99.2 95.2 95.5 95.8
    R410A)
    Refrigerating capacity % (relative to 94.2 93.6 92.9 92.2 91.4 94.2 93.9 93.7
    ratio R410A)
  • TABLE 58
    Item Unit Ex. 65 Ex. 66 Ex. 67 Ex. 68 Ex. 69 Ex. 70 Ex. 71 Ex. 72
    HFO-1132(E) Mass % 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0
    HFO-1123 Mass % 37.9 32.9 27.9 22.9 17.9 12.9 7.9 2.9
    R1234yf Mass % 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 50 50 50 50 50 50 50 50
    COP ratio % (relative to R410A) 96.2 96.6 97.0 97.4 97.9 98.3 98.8 99.3
    Refrigerating capacity ratio % (relative to R410A) 93.3 92.9 92.4 91.8 91.2 90.5 89.8 89.1
  • TABLE 59
    Item Unit Ex. 73 Ex. 74 Ex. 75 Ex. 76 Ex. 77 Ex. 78 Ex. 79 Ex. 80
    HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0
    HFO-1123 Mass % 47.9 42.9 37.9 32.9 27.9 22.9 17.9 12.9
    R1234yf Mass % 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 50 50 50 50 50 50 50 50
    COP ratio % (relative to R410A) 95.9 96.2 96.5 96.9 97.2 97.7 98.1 98.5
    Refrigerating capacity ratio % (relative to R410A) 91.1 90.9 90.6 90.2 89.8 89.3 88.7 88.1
  • TABLE 60
    Item Unit Ex. 81 Ex. 82 Ex. 83 Ex. 84 Ex. 85 Ex. 86 Ex. 87 Ex. 88
    HFO-1132(E) Mass % 50.0 55.0 10.0 15.0 20.0 25.0 30.0 35.0
    HFO-1123 Mass % 7.9 2.9 42.9 37.9 32.9 27.9 22.9 17.9
    R1234yf Mass % 35.0 35.0 40.0 40.0 40.0 40.0 40.0 40.0
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 50 50 50 50 50 50 50 50
    COP ratio % (relative 99.0 99.4 96.6 96.9 97.2 97.6 98.0 98.4
    to R410A)
    Refrigerating % (relative 87.4 86.7 88.0 87.8 87.5 87.1 86.6 86.1
    capacity ratio to R410A)
  • TABLE 61
    Comp. Comp. Comp. Comp. Comp. Comp. Comp. Comp.
    Item Unit Ex. 72 Ex. 73 Ex. 74 Ex. 75 Ex. 76 Ex. 77 Ex. 78 Ex. 79
    HFO-1132(E) Mass % 40.0 45.0 50.0 10.0 15.0 20.0 25.0 30.0
    HFO-1123 Mass % 12.9 7.9 2.9 37.9 32.9 27.9 22.9 17.9
    R1234yf Mass % 40.0 40.0 40.0 45.0 45.0 45.0 45.0 45.0
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 50 50 50 50 50 50 50 50
    COP ratio % (relative 98.8 99.2 99.6 97.4 97.7 98.0 98.3 98.7
    to R410A)
    Refrigerating % (relative 85.5 84.9 84.2 84.9 84.6 84.3 83.9 83.5
    capacity ratio to R410A)
  • TABLE 62
    Comp. Comp. Comp.
    Item Unit Ex. 80 Ex. 81 Ex. 82
    HFO-1132(E) Mass % 35.0 40.0 45.0
    HFO-1123 Mass % 12.9 7.9 2.9
    R1234yf Mass % 45.0 45.0 45.0
    R32 Mass % 7.1 7.1 7.1
    GWP 50 50 50
    COP ratio % (relative to R410A) 99.1 99.5 99.9
    Refrigerating % (relative to R410A) 82.9 82.3 81.7
    capacity ratio
  • TABLE 63
    Item Unit Ex. 89 Ex. 90 Ex. 91 Ex. 92 Ex. 93 Ex. 94 Ex. 95 Ex. 96
    HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0
    HFO-1123 Mass % 70.5 65.5 60.5 55.5 50.5 45.5 40.5 35.5
    R1234yf Mass % 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
    R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
    GWP 99 99 99 99 99 99 99 99
    COP ratio % (relative 93.7 93.9 94.1 94.4 94.7 95.0 95.4 95.8
    to R410A)
    Refrigerating % (relative 110.2 110.0 109.7 109.3 108.9 108.4 107.9 107.3
    capacity ratio to R410A)
  • TABLE 64
    Item Unit Ex. 97 Comp. Ex. 83 Ex. 98 Ex. 99 Ex. 100 Ex. 101 Ex. 102 Ex. 103
    HFO-1132(E) Mass % 50.0 55.0 10.0 15.0 20.0 25.0 30.0 35.0
    HFO-1123 Mass % 30.5 25.5 65.5 60.5 55.5 50.5 45.5 40.5
    R1234yf Mass % 5.0 5.0 10.0 10.0 10.0 10.0 10.0 10.0
    R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
    GWP 99 99 99 99 99 99 99 99
    COP ratio % (relative 96.2 96.6 94.2 94.4 94.6 94.9 95.2 95.5
    to R410A)
    Refrigerating % (relative 106.6 106.0 107.5 107.3 107.0 106.6 106.1 105.6
    capacity ratio to R410A)
  • TABLE 65
    Item Unit Ex. 104 Ex. 105 Ex. 106 Comp. Ex. 84 Ex. 107 Ex. 108 Ex. 109 Ex. 110
    HFO-1132(E) Mass % 40.0 45.0 50.0 55.0 10.0 15.0 20.0 25.0
    HFO-1123 Mass % 35.5 30.5 25.5 20.5 60.5 55.5 50.5 45.5
    R1234yf Mass % 10.0 10.0 10.0 10.0 15.0 15.0 15.0 15.0
    R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
    GWP 99 99 99 99 99 99 99 99
    COP ratio % (relative 95.9 96.3 96.7 97.1 94.6 94.8 95.1 95.4
    to R410A)
    Refrigerating % (relative 105.1 104.5 103.8 103.1 104.7 104.5 104.1 103.7
    capacity ratio to R410A)
  • TABLE 66
    Item Unit Ex. 111 Ex. 112 Ex. 113 Ex. 114 Ex. 115 Comp. Ex. 85 Ex. 116 Ex. 117
    HFO-1132(E) Mass % 30.0 35.0 40.0 45.0 50.0 55.0 10.0 15.0
    HFO-1123 Mass % 40.5 35.5 30.5 25.5 20.5 15.5 55.5 50.5
    R1234yf Mass % 15.0 15.0 15.0 15.0 15.0 15.0 20.0 20.0
    R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
    GWP 99 99 99 99 99 99 99 99
    COP ratio % (relative 95.7 96.0 96.4 96.8 97.2 97.6 95.1 95.3
    to R410A)
    Refrigerating % (relative 103.3 102.8 102.2 101.6 101.0 100.3 101.8 101.6
    capacity ratio to R410A)
  • TABLE 67
    Item Unit Ex. 118 Ex. 119 Ex. 120 Ex. 121 Ex. 122 Ex. 123 Ex. 124 Comp. Ex. 86
    HFO-1132(E) Mass % 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0
    HFO-1123 Mass % 45.5 40.5 35.5 30.5 25.5 20.5 15.5 10.5
    R1234yf Mass % 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
    R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
    GWP 99 99 99 99 99 99 99 99
    COP ratio % (relative 95.6 95.9 96.2 96.5 96.9 97.3 97.7 98.2
    to R410A)
    Refrigerating % (relative 101.2 100.8 100.4 99.9 99.3 98.7 98.0 97.3
    capacity ratio to R410A)
  • TABLE 68
    Item Unit Ex. 125 Ex. 126 Ex. 127 Ex. 128 Ex. 129 Ex. 130 Ex. 131 Ex. 132
    HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0
    HFO-1123 Mass % 50.5 45.5 40.5 35.5 30.5 25.5 20.5 15.5
    R1234yf Mass % 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
    R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
    GWP 99 99 99 99 99 99 99 99
    COP ratio % (relative 95.6 95.9 96.1 96.4 96.7 97.1 97.5 97.9
    to R410A)
    Refrigerating % (relative 98.9 98.6 98.3 97.9 97.4 96.9 96.3 95.7
    capacity ratio to R410A)
  • TABLE 69
    Item Unit Ex. 133 Comp. Ex. 87 Ex. 134 Ex. 135 Ex. 136 Ex. 137 Ex. 138 Ex. 139
    HFO-1132(E) Mass % 50.0 55.0 10.0 15.0 20.0 25.0 30.0 35.0
    HFO-1123 Mass % 10.5 5.5 45.5 40.5 35.5 30.5 25.5 20.5
    R1234yf Mass % 25.0 25.0 30.0 30.0 30.0 30.0 30.0 30.0
    R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
    GWP 99 99 100 100 100 100 100 100
    COP ratio % (relative 98.3 98.7 96.2 96.4 96.7 97.0 97.3 97.7
    to R410A)
    Refrigerating % (relative 95.0 94.3 95.8 95.6 95.2 94.8 94.4 93.8
    capacity ratio to R410A)
  • TABLE 70
    Item Unit Ex. 140 Ex. 141 Ex. 142 Ex. 143 Ex. 144 Ex. 145 Ex. 146 Ex. 147
    HFO-1132(E) Mass % 40.0 45.0 50.0 10.0 15.0 20.0 25.0 30.0
    HFO-1123 Mass % 15.5 10.5 5.5 40.5 35.5 30.5 25.5 20.5
    R1234yf Mass % 30.0 30.0 30.0 35.0 35.0 35.0 35.0 35.0
    R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
    GWP 100 100 100 100 100 100 100 100
    COP ratio % (relative 98.1 98.5 98.9 96.8 97.0 97.3 97.6 97.9
    to R410A)
    Refrigerating % (relative 93.3 92.6 92.0 92.8 92.5 92.2 91.8 91.3
    capacity ratio to R410A)
  • TABLE 71
    Item Unit Ex. 148 Ex. 149 Ex. 150 Ex. 151 Ex. 152 Ex. 153 Ex. 154 Ex. 155
    HFO-1132(E) Mass % 35.0 40.0 45.0 10.0 15.0 20.0 25.0 30.0
    HFO-1123 Mass % 15.5 10.5 5.5 35.5 30.5 25.5 20.5 15.5
    R1234yf Mass % 35.0 35.0 35.0 40.0 40.0 40.0 40.0 40.0
    R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
    GWP 100 100 100 100 100 100 100 100
    COP ratio % (relative 98.3 98.7 99.1 97.4 97.7 98.0 98.3 98.6
    to R410A)
    Refrigerating % (relative 90.8 90.2 89.6 89.6 89.4 89.0 88.6 88.2
    capacity ratio to R410A)
  • TABLE 72
    Item Unit Ex. 156 Ex. 157 Ex. 158 Ex. 159 Ex. 160 Comp. Ex. 88 Comp. Ex. 89 Comp. Ex. 90
    HFO-1132(E) Mass % 35.0 40.0 10.0 15.0 20.0 25.0 30.0 35.0
    HFO-1123 Mass % 10.5 5.5 30.5 25.5 20.5 15.5 10.5 5.5
    R1234yf Mass % 40.0 40.0 45.0 45.0 45.0 45.0 45.0 45.0
    R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
    GWP 100 100 100 100 100 100 100 100
    COP ratio % (relative 98.9 99.3 98.1 98.4 98.7 98.9 99.3 99.6
    to R410A)
    Refrigerating % (relative 87.6 87.1 86.5 86.2 85.9 85.5 85.0 84.5
    capacity ratio to R410A)
  • TABLE 73
    Item Unit Comp. Ex. 91 Comp. Ex. 92 Comp. Ex. 93 Comp. Ex. 94 Comp. Ex. 95
    HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0
    HFO-1123 Mass % 25.5 20.5 15.5 10.5 5.5
    R1234yf Mass % 50.0 50.0 50.0 50.0 50.0
    R32 Mass % 14.5 14.5 14.5 14.5 14.5
    GWP 100 100 100 100 100
    COP ratio % (relative 98.9 99.1 99.4 99.7 100.0
    to R410A)
    Refrigerating % (relative 83.3 83.0 82.7 82.2 81.8
    capacity ratio to R410A)
  • TABLE 74
    Item Unit Ex. 161 Ex. 162 Ex. 163 Ex. 164 Ex. 165 Ex. 166 Ex. 167 Ex. 168
    HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0
    HFO-1123 Mass % 63.1 58.1 53.1 48.1 43.1 38.1 33.1 28.1
    R1234yf Mass % 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
    R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9
    GWP 149 149 149 149 149 149 149 149
    COP ratio % (relative 94.8 95.0 95.2 95.4 95.7 95.9 96.2 96.6
    to R410A)
    Refrigerating % (relative 111.5 111.2 110.9 110.5 110.0 109.5 108.9 108.3
    capacity ratio to R410A)
  • TABLE 75
    Item Unit Comp. Ex. 96 Ex. 169 Ex. 170 Ex. 171 Ex. 172 Ex. 173 Ex. 174 Ex. 175
    HFO-1132(E) Mass % 50.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0
    HFO-1123 Mass % 23.1 58.1 53.1 48.1 43.1 38.1 33.1 28.1
    R1234yf Mass % 5.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
    R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9
    GWP 149 149 149 149 149 149 149 149
    COP ratio % (relative 96.9 95.3 95.4 95.6 95.8 96.1 96.4 96.7
    to R410A)
    Refrigerating % (relative 107.7 108.7 108.5 108.1 107.7 107.2 106.7 106.1
    capacity ratio to R410A)
  • TABLE 76
    Ex. Comp. Ex. Ex. Ex. Ex. Ex. Ex. Ex.
    Item Unit 176 97 177 178 179 180 181 182
    HFO-1132(E) Mass % 45.0 50.0 10.0 15.0 20.0 25.0 30.0 35.0
    HFO-1123 Mass % 23.1 18.1 53.1 48.1 43.1 38.1 33.1 28.1
    R1234yf Mass % 10.0 10.0 15.0 15.0 15.0 15.0 15.0 15.0
    R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9
    GWP 149 149 149 149 149 149 149 149
    COP ratio % (relative to 97.0 97.4 95.7 95.9 96.1 96.3 96.6 96.9
    R410A)
    Refrigerating capacity % (relative to 105.5 104.9 105.9 105.6 105.3 104.8 104.4 103.8
    ratio R410A)
  • TABLE 77
    Ex. Ex. Comp. Ex. Ex. Ex. Ex. Ex. Ex.
    Item Unit 183 184 98 185 186 187 188 189
    HFO-1132(E) Mass % 40.0 45.0 50.0 10.0 15.0 20.0 25.0 30.0
    HFO-1123 Mass % 23.1 18.1 13.1 48.1 43.1 38.1 33.1 28.1
    R1234yf Mass % 15.0 15.0 15.0 20.0 20.0 20.0 20.0 20.0
    R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9
    GWP 149 149 149 149 149 149 149 149
    COP ratio % (relative to 97.2 97.5 97.9 96.1 96.3 96.5 96.8 97.1
    R410A)
    Refrigerating capacity % (relative to 103.3 102.6 102.0 103.0 102.7 102.3 101.9 101.4
    ratio R410A)
  • TABLE 78
    Ex. Ex. Ex. Comp. Ex. Ex. Ex. Ex. Ex.
    Item Unit 190 191 192 99 193 194 195 196
    HFO-1132(E) Mass % 35.0 40.0 45.0 50.0 10.0 15.0 20.0 25.0
    HFO-1123 Mass % 23.1 18.1 13.1 8.1 43.1 38.1 33.1 28.1
    R1234yf Mass % 20.0 20.0 20.0 20.0 25.0 25.0 25.0 25.0
    R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9
    GWP 149 149 149 149 149 149 149 149
    COP ratio % (relative to 97.4 97.7 98.0 98.4 96.6 96.8 97.0 97.3
    R410A)
    Refrigerating capacity % (relative to 100.9 100.3 99.7 99.1 100.0 99.7 99.4 98.9
    ratio R410A)
  • TABLE 79
    Ex. Ex. Ex. Ex. Comp. Ex. Ex. Ex. Ex.
    Item Unit 197 198 199 200 100 201 202 203
    HFO-1132(E) Mass % 30.0 35.0 40.0 45.0 50.0 10.0 15.0 20.0
    HFO-1123 Mass % 23.1 18.1 13.1 8.1 3.1 38.1 33.1 28.1
    R1234yf Mass % 25.0 25.0 25.0 25.0 25.0 30.0 30.0 30.0
    R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9
    GWP 149 149 149 149 149 150 150 150
    COP ratio % (relative to 97.6 97.9 98.2 98.5 98.9 97.1 97.3 97.6
    R410A)
    Refrigerating capacity % (relative to 98.5 97.9 97.4 96.8 96.1 97.0 96.7 96.3
    ratio R410A)
  • TABLE 80
    Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex.
    Item Unit 204 205 206 207 208 209 210 211
    HFO-1132(E) Mass % 25.0 30.0 35.0 40.0 45.0 10.0 15.0 20.0
    HFO-1123 Mass % 23.1 18.1 13.1 8.1 3.1 33.1 28.1 23.1
    R1234yf Mass % 30.0 30.0 30.0 30.0 30.0 35.0 35.0 35.0
    R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9
    GWP 150 150 150 150 150 150 150 150
    COP ratio % (relative to 97.8 98.1 98.4 98.7 99.1 97.7 97.9 98.1
    R410A)
    Refrigerating capacity % (relative to 95.9 95.4 94.9 94.4 93.8 93.9 93.6 93.3
    ratio R410A)
  • TABLE 81
    Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex.
    Item Unit 212 213 214 215 216 217 218 219
    HFO-1132(E) Mass % 25.0 30.0 35.0 40.0 10.0 15.0 20.0 25.0
    HFO-1123 Mass % 18.1 13.1 8.1 3.1 28.1 23.1 18.1 13.1
    R1234yf Mass % 35.0 35.0 35.0 35.0 40.0 40.0 40.0 40.0
    R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9
    GWP 150 150 150 150 150 150 150 150
    COP ratio % (relative to 98.4 98.7 99.0 99.3 98.3 98.5 98.7 99.0
    R410A)
    Refrigerating capacity % (relative to 92.9 92.4 91.9 91.3 90.8 90.5 90.2 89.7
    ratio R410A)
  • TABLE 82
    Ex. Ex. Ex. Ex. Ex. Ex. Ex. Comp. Ex.
    Item Unit 220 221 222 223 224 225 226 101
    HFO-1132(E) Mass % 30.0 35.0 10.0 15.0 20.0 25.0 30.0 10.0
    HFO-1123 Mass % 8.1 3.1 23.1 18.1 13.1 8.1 3.1 18.1
    R1234yf Mass % 40.0 40.0 45.0 45.0 45.0 45.0 45.0 50.0
    R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9
    GWP 150 150 150 150 150 150 150 150
    COP ratio % (relative to 99.3 99.6 98.9 99.1 99.3 99.6 99.9 99.6
    R410A)
    Refrigerating capacity % (relative to 89.3 88.8 87.6 87.3 87.0 86.6 86.2 84.4
    ratio R410A)
  • TABLE 83
    Comp. Comp. Comp.
    Item Unit Ex. 102 Ex. 103 Ex. 104
    HFO-1132(E) Mass % 15.0 20.0 25.0
    HFO-1123 Mass % 13.1 8.1 3.1
    R1234yf Mass % 50.0 50.0 50.0
    R32 Mass % 21.9 21.9 21.9
    GWP 150 150 150
    COP ratio % (relative to R410A) 99.8 100.0 100.2
    Refrigerating % (relative to R410A) 84.1 83.8 83.4
    capacity ratio
  • TABLE 83
    Ex. Ex. Ex. Ex. Ex. Ex. Ex. Comp. Ex.
    Item Unit 227 228 229 230 231 232 233 105
    HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0
    HFO-1123 Mass % 55.7 50.7 45.7 40.7 35.7 30.7 25.7 20.7
    R1234yf Mass % 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
    R32 Mass % 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3
    GWP 199 199 199 199 199 199 199 199
    COP ratio % (relative to 95.9 96.0 96.2 96.3 96.6 96.8 97.1 97.3
    R410A)
    Refrigerating capacity % (relative to 112.2 111.9 111.6 111.2 110.7 110.2 109.6 109.0
    ratio R410A)
  • TABLE 85
    Ex. Ex. Ex. Ex. Ex. Ex. Ex. Comp. Ex.
    Item Unit 234 235 236 237 238 239 240 106
    HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0
    HFO-1123 Mass % 50.7 45.7 40.7 35.7 30.7 25.7 20.7 15.7
    R1234yf Mass % 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
    R32 Mass % 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3
    GWP 199 199 199 199 199 199 199 199
    COP ratio % (relative to 96.3 96.4 96.6 96.8 97.0 97.2 97.5 97.8
    R410A)
    Refrigerating capacity % (relative to 109.4 109.2 108.8 108.4 107.9 107.4 106.8 106.2
    ratio R410A)
  • TABLE 86
    Ex. Ex. Ex. Ex. Ex. Ex. Ex. Comp. Ex.
    Item Unit 241 242 243 244 245 246 247 107
    HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0
    HFO-1123 Mass % 45.7 40.7 35.7 30.7 25.7 20.7 15.7 10.7
    R1234yf Mass % 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0
    R32 Mass % 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3
    GWP 199 199 199 199 199 199 199 199
    COP ratio % (relative to 96.7 96.8 97.0 97.2 97.4 97.7 97.9 98.2
    R410A)
    Refrigerating capacity % (relative to 106.6 106.3 106.0 105.5 105.1 104.5 104.0 103.4
    ratio R410A)
  • TABLE 87
    Ex. Ex. Ex. Ex. Ex. Ex. Ex. Comp. Ex.
    Item Unit 248 249 250 251 252 253 254 108
    HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0
    HFO-1123 Mass % 40.7 35.7 30.7 25.7 20.7 15.7 10.7 5.7
    R1234yf Mass % 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
    R32 Mass % 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3
    GWP 199 199 199 199 199 199 199 199
    COP ratio % (relative to 97.1 97.3 97.5 97.7 97.9 98.1 98.4 98.7
    R410A)
    Refrigerating capacity % (relative to 103.7 103.4 103.0 102.6 102.2 101.6 101.1 100.5
    ratio R410A)
  • TABLE 88
    Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex.
    Item Unit 255 256 257 258 259 260 261 262
    HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 40.0 10.0
    HFO-1123 Mass % 35.7 30.7 25.7 20.7 15.7 10.7 5.7 30.7
    R1234yf Mass % 25.0 25.0 25.0 25.0 25.0 25.0 25.0 30.0
    R32 Mass % 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3
    GWP 199 199 199 199 199 199 199 199
    COP ratio % (relative to 97.6 97.7 97.9 98.1 98.4 98.6 98.9 98.1
    R410A)
    Refrigerating capacity % (relative to 100.7 100.4 100.1 99.7 99.2 98.7 98.2 97.7
    ratio R410A)
  • TABLE 89
    Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex.
    Item Unit 263 264 265 266 267 268 269 270
    HFO-1132(E) Mass % 15.0 20.0 25.0 30.0 35.0 10.0 15.0 20.0
    HFO-1123 Mass % 25.7 20.7 15.7 10.7 5.7 25.7 20.7 15.7
    R1234yf Mass % 30.0 30.0 30.0 30.0 30.0 35.0 35.0 35.0
    R32 Mass % 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3
    GWP 199 199 199 199 199 200 200 200
    COP ratio % (relative to
    R410A) 98.2 98.4 98.6 98.9 99.1 98.6 98.7 98.9
    Refrigerating capacity % (relative to
    ratio R410A) 97.4 97.1 96.7 96.2 95.7 94.7 94.4 94.0
  • TABLE 90
    Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex.
    Item Unit 271 272 273 274 275 276 277 278
    HFO-1132(E) Mass % 25.0 30.0 10.0 15.0 20.0 25.0 10.0 15.0
    HFO-1123 Mass % 10.7 5.7 20.7 15.7 10.7 5.7 15.7 10.7
    R1234yf Mass % 35.0 35.0 40.0 40.0 40.0 40.0 45.0 45.0
    R32 Mass % 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3
    GWP 200 200 200 200 200 200 200 200
    COP ratio % (relative to 99.2 99.4 99.1 99.3 99.5 99.7 99.7 99.8
    R410A)
    Refrigerating capacity % (relative to 93.6 93.2 91.5 91.3 90.9 90.6 88.4 88.1
    ratio R410A)
  • TABLE 91
    Comp. Comp.
    Item Unit Ex. 279 Ex. 280 Ex. 109 Ex. 110
    HFO-1132(E) Mass % 20.0 10.0 15.0 10.0
    HFO-1123 Mass % 5.7 10.7 5.7 5.7
    R1234yf Mass % 45.0 50.0 50.0 55.0
    R32 Mass % 29.3 29.3 29.3 29.3
    GWP 200 200 200 200
    COP ratio % (relative to 100.0 100.3 100.4 100.9
    R410A)
    Refrigerating % (relative to 87.8 85.2 85.0 82.0
    capacity ratio R410A)
  • TABLE 92
    Ex. Ex. Ex. Ex. Ex. Comp. Ex. Ex. Ex.
    Item Unit 281 282 283 284 285 111 286 287
    HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 10.0 15.0
    HFO-1123 Mass % 40.9 35.9 30.9 25.9 20.9 15.9 35.9 30.9
    R1234yf Mass % 5.0 5.0 5.0 5.0 5.0 5.0 10.0 10.0
    R32 Mass % 44.1 44.1 44.1 44.1 44.1 44.1 44.1 44.1
    GWP 298 298 298 298 298 298 299 299
    COP ratio % (relative to 97.8 97.9 97.9 98.1 98.2 98.4 98.2 98.2
    R410A)
    Refrigerating capacity % (relative to 112.5 112.3 111.9 111.6 111.2 110.7 109.8 109.5
    ratio R410A)
  • TABLE 93
    Ex. Ex. Ex. Comp. Ex. Ex. Ex. Ex. Ex.
    Item Unit 288 289 290 112 291 292 293 294
    HFO-1132(E) Mass % 20.0 25.0 30.0 35.0 10.0 15.0 20.0 25.0
    HFO-1123 Mass % 25.9 20.9 15.9 10.9 30.9 25.9 20.9 15.9
    R1234yf Mass % 10.0 10.0 10.0 10.0 15.0 15.0 15.0 15.0
    R32 Mass % 44.1 44.1 44.1 44.1 44.1 44.1 44.1 44.1
    GWP 299 299 299 299 299 299 299 299
    COP ratio % (relative to 98.3 98.5 98.6 98.8 98.6 98.6 98.7 98.9
    R410A)
    Refrigerating capacity % (relative to 109.2 108.8 108.4 108.0 107.0 106.7 106.4 106.0
    ratio R410A)
  • TABLE 94
    Ex. Comp. Ex. Ex. Ex. Ex. Ex. Ex. Ex.
    Item Unit 295 113 296 297 298 299 300 301
    HFO-1132(E) Mass % 30.0 35.0 10.0 15.0 20.0 25.0 30.0 10.0
    HFO-1123 Mass % 10.9 5.9 25.9 20.9 15.9 10.9 5.9 20.9
    R1234yf Mass % 15.0 15.0 20.0 20.0 20.0 20.0 20.0 25.0
    R32 Mass % 44.1 44.1 44.1 44.1 44.1 44.1 44.1 44.1
    GWP 299 299 299 299 299 299 299 299
    COP ratio % (relative to 99.0 99.2 99.0 99.0 99.2 99.3 99.4 99.4
    R410A)
    Refrigerating capacity % (relative to 105.6 105.2 104.1 103.9 103.6 103.2 102.8 101.2
    ratio R410A)
  • TABLE 95
    Ex. Ex. Ex. Ex. Ex. Ex. Ex. Ex.
    Item Unit 302 303 304 305 306 307 308 309
    HFO-1132(E) Mass % 15.0 20.0 25.0 10.0 15.0 20.0 10.0 15.0
    HFO-1123 Mass % 15.9 10.9 5.9 15.9 10.9 5.9 10.9 5.9
    R1234yf Mass % 25.0 25.0 25.0 30.0 30.0 30.0 35.0 35.0
    R32 Mass % 44.1 44.1 44.1 44.1 44.1 44.1 44.1 44.1
    GWP 299 299 299 299 299 299 299 299
    COP ratio % (relative to 99.5 99.6 99.7 99.8 99.9 100.0 100.3 100.4
    R410A)
    Refrigerating capacity % (relative to 101.0 100.7 100.3 98.3 98.0 97.8 95.3 95.1
    ratio R410A)
  • TABLE 96
    Item Unit Ex. 400
    HFO-1132(E) Mass % 10.0
    HFO-1123 Mass % 5.9
    R1234yf Mass % 40.0
    R32 Mass % 44.1
    GWP 299
    COP ratio % (relative to R410A) 100.7
    Refrigerating capacity ratio % (relative to R410A) 92.3
  • The above results indicate that the refrigerating capacity ratio relative to R410A is 85% or more in the following cases:
  • When the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum is respectively represented by x, y, z, and a, in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass %, a straight line connecting a point (0.0, 100.0−a, 0.0) and a point (0.0, 0.0, 100.0−a) is the base, and the point (0.0, 100.0−a, 0.0) is on the left side, if 0<a≤11.1, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0134a2−1.9681a+68.6, 0.0, −0.0134a2+0.9681a+31.4) and point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3);
  • if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0112a2−1.9337a+68.484, 0.0, −0.0112a2+0.9337a+31.516) and point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801);
  • if 18.2a<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0107a2−1.9142a+68.305, 0.0, −0.0107a2+0.9142a+31.695) and point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682);
  • if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207) and point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714); and
  • if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9) and point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05).
  • Actual points having a refrigerating capacity ratio of 85% or more form a curved line that connects point A and point B in FIG. 4, and that extends toward the 1234 yf side. Accordingly, when coordinates are on, or on the left side of, the straight line AB, the refrigerating capacity ratio relative to R410A is 85% or more.
  • Similarly, it was also found that in the ternary composition diagram, if 0<a≤11.1, when coordinates (x,y,z) are on, or on the left side of, a straight line D′C that connects point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6) and point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0); or if 11.1<a≤46.7, when coordinates are in the entire region, the COP ratio relative to that of R410A is 92.5% or more.
  • In FIG. 4, the COP ratio of 92.5% or more forms a curved line CD. In FIG. 4, an approximate line formed by connecting three points: point C (32.9, 67.1, 0.0) and points (26.6, 68.4, 5) (19.5, 70.5, 10) where the COP ratio is 92.5% when the concentration of R1234yf is 5 mass % and 10 mass was obtained, and a straight line that connects point C and point D′ (0, 75.4, 24.6), which is the intersection of the approximate line and a point where the concentration of HFO-1132(E) is 0.0 mass % was defined as a line segment D′C. In FIG. 5, point D′(0, 83.4, 9.5) was similarly obtained from an approximate curve formed by connecting point C (18.4, 74.5, 0) and points (13.9, 76.5, 2.5) (8.7, 79.2, 5) where the COP ratio is 92.5%, and a straight line that connects point C and point D′ was defined as the straight line D′C.
  • The composition of each mixture was defined as WCF. A leak simulation was performed using NIST Standard Reference Database REFLEAK Version 4.0 under the conditions of Equipment, Storage, Shipping, Leak, and Recharge according to the ASHRAE Standard 34-2013. The most flammable fraction was defined as WCFF.
  • For the flammability, the burning velocity was measured according to the ANSI/ASHRAE Standard 34-2013. Both WCF and WCFF having a burning velocity of 10 cm/s or less were determined to be classified as “Class 2L (lower flammability).”
  • A burning velocity test was performed using the apparatus shown in FIG. 2 in the following manner. First, the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge. The burning velocity was measured by the closed method. The initial temperature was ambient temperature. Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using schlieren photographs. A cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source. Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.
  • The results are shown in Tables 97 to 104.
  • TABLE 97
    Comp. Comp. Comp. Comp. Comp. Comp.
    Ex. Ex. Ex. Ex. Ex. Ex.
    Item 6 13 19 24 29 34
    WC HFO-1132(E) Mass 72.0 60.9 55.8 52.1 48.6 45.4
    F %
    HFO-1123 Mass 28.0 32.0 33.1 33.4 33.2 32.7
    %
    R1234yf Mass 0.0 0.0 0.0 0 0 0
    %
    R32 Mass 0.0 7.1 11.1 14.5 18.2 21.9
    %
    Burning cm/s 10 10 10 10 10 10
    velocity
    (WCF)
  • TABLE 98
    Comp. Comp. Comp. Comp. Comp.
    Item Ex. 39 Ex. 45 Ex. 51 Ex. 57 Ex. 62
    WCF HFO- Mass % 41.8 40 35.7 32 30.4
    1132(E)
    HFO-1123 Mass % 31.5 30.7 23.6 23.9 21.8
    R1234yf Mass % 0 0 0 0 0
    R32 Mass % 26.7 29.3 36.7 44.1 47.8
    Burning velocity cm/s 10 10 10 10 10
    (WCF)
  • TABLE 99
    Comp. Comp. Comp. Comp. Comp. Comp.
    Ex. Ex. Ex. Ex. Ex. Ex.
    Item 7 14 20 25 30 35
    WC HFO-1132(E) Mass 72.0 60.9 55.8 52.1 48.6 45.4
    F %
    HFO-1123 Mass 0.0 0.0 0.0 0 0 0
    %
    R1234yf Mass 28.0 32.0 33.1 33.4 33.2 32.7
    %
    R32 Mass 0.0 7.1 11.1 14.5 18.2 21.9
    %
    Burning cm/s 10 10 10 10 10 10
    velocity
    (WCF)
  • TABLE 100
    Comp. Comp. Comp. Comp. Comp.
    Item Ex. 40 Ex. 46 Ex. 52 Ex. 58 Ex. 63
    WCF HFO- Mass % 41.8 40 35.7 32 30.4
    1132(E)
    HFO-1123 Mass % 0 0 0 0 0
    R1234yf Mass % 31.5 30.7 23.6 23.9 21.8
    R32 Mass % 26.7 29.3 36.7 44.1 47.8
    Burning cm/s 10 10 10 10 10
    velocity
    (WCF)
  • TABLE 101
    Item Comp. Ex. 8 Comp. Ex. 15 Comp. Ex. 21 Comp. Ex. 26 Comp. Ex. 31 Comp. Ex. 36
    WC HFO-1132 Mass % 47.1 40.5 37.0 34.3 32.0 30.3
    F (E)
    HFO-1123 Mass % 52.9 52.4 51.9 51.2 49.8 47.8
    R1234yf Mass % 0.0 0.0 0.0 0.0 0.0 0.0
    R32 Mass % 0.0 7.1 11.1 14.5 18.2 21.9
    Leak condition that results Storage/ Storage/ Storage/ Storage/ Storage/ Storage/
    in WCFF Shipping Shipping Shipping Shipping Shipping Shipping
    −40° C. −40° C. −40° C. −40° C. −40° C. −40° C.
    92% 92% 92% 92% 92% 92%
    release, release, release, release, release, release,
    liquid phase liquid phase liquid phase liquid phase liquid phase liquid phase
    side side side side side side
    WC HFO-1132 Mass % 72.0 62.4 56.2 50.6 45.1 40.0
    FF (E)
    HFO-1123 Mass % 28.0 31.6 33.0 33.4 32.5 30.5
    R1234yf Mass % 0.0 0.0 0.0 20.4 0.0 0.0
    R32 Mass % 0.0 50.9 10.8 16.0 22.4 29.5
    Burning velocity cm/s 8 or less 8 or less 8 or less 8 or less 8 or less 8 or less
    (WCF)
    Burning velocity cm/s 10 10 10 10 10 10
    (WCFF)
  • TABLE 102
    Item Comp. Ex. 41 Comp. Ex. 47 Comp. Ex. 53 Comp. Ex. 59 Comp. Ex. 64
    WCF HFO-1132(E) Mass 29.1 28.8 29.3 29.4 28.9
    %
    HFO-1123 Mass 44.2 41.9 34.0 26.5 23.3
    %
    R1234yf Mass 0.0 0.0 0.0 0.0 0.0
    %
    R32 Mass 26.7 29.3 36.7 44.1 47.8
    %
    Leak condition that results in Storage/ Storage/ Storage/ Storage/ Storage/
    WCFF Shipping Shipping Shipping Shipping Shipping
    −40° C. −40° C. −40° C. −40° C. −40° C.
    92% 92% 92% 90% 86%
    release, release, release, release, release,
    liquid phase liquid phase liquid phase gas phase side gas phase side
    side side side
    WCF HFO-1132(E) Mass 34.6 32.2 27.7 28.3 27.5
    F %
    HFO-1123 Mass 26.5 23.9 17.5 18.2 16.7
    %
    R1234yf Mass 0.0 0.0 0.0 0.0 0.0
    %
    R32 Mass 38.9 43.9 54.8 53.5 55.8
    %
    Burning velocity (WCF) cm/s 8 or less 8 or less 8.3 9.3 9.6
    Burning velocity cm/s 10 10 10 10 10
    (WCFF)
  • TABLE 103
    Comp. Ex. Comp. Ex. Comp. Ex. Comp. Ex. Comp. Ex. Comp. Ex.
    Item 9 16 22 27 32 37
    WCF HFO-1132(E) Mass 61.7 47.0 41.0 36.5 32.5 28.8
    %
    HFO-1123 Mass 5.9 7.2 6.5 5.6 4.0 2.4
    %
    R1234yf Mass 32.4 38.7 41.4 43.4 45.3 46.9
    %
    R32 Mass 0.0 7.1 11.1 14.5 18.2 21.9
    %
    Leak condition that results in Storage/ Storage/ Storage/ Storage/ Storage/ Storage/
    WCFF Shipping Shipping Shipping Shipping Shipping Shipping
    −40° C. −40° C. −40° C. −40° C. −40° C. −40° C.
    0% 0% 0% 92% 0% 0%
    release, release, release, release, release, release,
    gas phase gas phase gas phase liquid phase gas phase gas phase
    side side side side side side
    WCF HFO-1132(E) Mass 72.0 56.2 50.4 46.0 42.4 39.1
    F %
    HFO-1123 Mass 10.5 12.6 11.4 10.1 7.4 4.4
    %
    R1234yf Mass 17.5 20.4 21.8 22.9 24.3 25.7
    %
    R32 Mass 0.0 10.8 16.3 21.0 25.9 30.8
    %
    Burning velocity (WCF) cm/s 8 or less 8 or less 8 or less 8 or less 8 or less 8 or less
    Burning velocity (WCFF) cm/s 10 10 10 10 10 10
  • TABLE 104
    Item Comp. Ex. 42 Comp. Ex. 48 Comp. Ex. 54 Comp. Ex. 60 Comp. Ex. 65
    WCF HFO-1132(E) Mass 24.8 24.3 22.5 21.1 20.4
    %
    HFO-1123 Mass 0.0 0.0 0.0 0.0 0.0
    %
    R1234yf Mass 48.5 46.4 40.8 34.8 31.8
    %
    R32 Mass 26.7 29.3 36.7 44.1 47.8
    %
    Leak condition that results in Storage/ Storage/ Storage/ Storage/ Storage/
    WCFF Shipping Shipping Shipping Shipping Shipping
    −40° C. −40° C. −40° C. −40° C. −40° C.
    0% 0% 0% 0% 0%
    release, release, release, release, release,
    gas phase side gas phase side gas phase side gas phase side gas phase side
    WCF HFO-1132(E) Mass 35.3 34.3 31.3 29.1 28.1
    F %
    HFO-1123 Mass 0.0 0.0 0.0 0.0 0.0
    %
    R1234yf Mass 27.4 26.2 23.1 19.8 18.2
    %
    R32 Mass 37.3 39.6 45.6 51.1 53.7
    %
    Burning velocity (WCF) cm/s 8 or less 8 or less 8 or less 8 or less 8 or less
    Burning velocity cm/s 10 10 10 10 10
    (WCFF)
  • The results in Tables 97 to 100 indicate that the refrigerant has a WCF lower flammability in the following cases:
  • When the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum in the mixed refrigerant of HFO-1132(E), HFO-1123, R1234yf, and R32 is respectively represented by x, y, z, and a, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass % and a straight line connecting a point (0.0, 100.0−a, 0.0) and a point (0.0, 0.0, 100.0−a) is the base, if 0<a≤11.1, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.026a2−1.7478a+72.0, −0.026a2+0.7478a+28.0, 0.0) and point I (0.026a2−1.7478a+72.0, 0.0, −0.026a2+0.7478a+28.0);
  • if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.02a2−1.6013a+71.105, −0.02a2+0.6013a+28.895, 0.0) and point I (0.02a2−1.6013a+71.105, 0.0, −0.02a2+0.6013a+28.895); if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.0135a2−1.4068a+69.727, −0.0135a2+0.4068a+30.273, 0.0) and point I (0.0135a2−1.4068a+69.727, 0.0, −0.0135a2+0.4068a+30.273); if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.0111a2−1.3152a+68.986, −0.0111a2+0.3152a+31.014, 0.0) and point I (0.0111a2−1.3152a+68.986, 0.0, −0.0111a2+0.3152a+31.014); and if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.0061a2−0.9918a+63.902, −0.0061a2−0.0082a+36.098,0.0) and point I (0.0061a2−0.9918a+63.902, 0.0, −0.0061a2−0.0082a+36.098).
  • Three points corresponding to point G (Table 105) and point I (Table 106) were individually obtained in each of the following five ranges by calculation, and their approximate expressions were obtained.
  • TABLE 105
    Item 11.1 ≥ R32 > 0 18.2 ≥ R32 ≥ 11.1 26.7 ≥ R32 ≥ 18.2
    R32 0 7.1 11.1 11.1 14.5 18.2 18.2 21.9 26.7
    HFO-1132(E) 72.0 60.9 55.8 55.8 52.1 48.6 48.6 45.4 41.8
    HFO-1123 28.0 32.0 33.1 33.1 33.4 33.2 33.2 32.7 31.5
    R1234yf 0 0 0 0 0 0 0 0 0
    R32 a a a
    HFO-1132(E) 0.026a2 − 1.7478a + 72.0 0.02a2 − 1.6013a + 71.105 0.0135a2 − 1.4068a + 69.727
    Approximate
    expression
    HFO-1123 −0.026a2 + 0..7478a + 28.0 −0.02a2 + 0..6013a + 28.895 −0.0135a2 + 0.4068a + 30.273
    Approximate
    expression
    R1234yf
    0 0 0
    Approximate
    expression
    Item 36.7 ≥ R32 ≥ 26.7 46.7 ≥ R32 ≥ 36.7
    R32 26.7 29.3 36.7 36.7 44.1 47.8
    HFO-1132(E) 41.8 40.0 35.7 35.7 32.0 30.4
    HFO-1123 31.5 30.7 27.6 27.6 23.9 21.8
    R1234yf 0 0 0 0 0 0
    R32 a a
    HFO-1132(E) 0.0111a2 − 1.3152a + 68.986 0.0061a2 − 0.9918a + 63.902
    Approximate
    expression
    HFO-1123 −0.0111a2 + 0.3152a + 31.014 −0.0061a2 − 0.0082a + 36.098
    Approximate
    expression
    R1234yf
    0 0
    Approximate
    expression
  • TABLE 106
    Item 11.1 ≥ R32 > 0 18.2 ≥ R32 ≥ 11.1 26.7 ≥ R32 ≥ 18.2
    R32 0 7.1 11.1 11.1 14.5 18.2 18.2 21.9 26.7
    HFO-1132(E) 72.0 60.9 55.8 55.8 52.1 48.6 48.6 45.4 41.8
    HFO-1123 0 0 0 0 0 0 0 0 0
    R1234yf 28.0 32.0 33.1 33.1 33.4 33.2 33.2 32.7 31.5
    R32 a a a
    HFO-1132(E) 0.026a2 − 1.7478a + 72.0 0.02a2 − 1.6013a + 71.105 0.0135a2 − 1.4068a + 69.727
    Approximate
    expression
    HFO-1123 0 0 0
    Approximate
    expression
    R1234yf −0.026a2 + 0.7478a + 28.0 −0.02a2 + 0.6013a + 28.895 −0.0135a2 + 0.4068a + 30.273
    Approximate
    expression
    Item 36.7 ≥ R32 ≥ 26.7 46.7 ≥ R32 ≥ 36.7
    R32 26.7 29.3 36.7 36.7 44.1 47.8
    HFO-1132(E) 41.8 40.0 35.7 35.7 32.0 30.4
    HFO-1123 0 0 0 0 0 0
    R1234yf 31.5 30.7 23.6 23.6 23.5 21.8
    R32 x x
    HFO-1132(E) 0.0111a2 − 1.3152a + 68.986 0.0061a2 − 0.9918a + 63.902
    Approximate
    expression
    HFO-1123 0 0
    Approximate
    expression
    R1234yf −0.0111a2 + 0.3152a + 31.014 −0.0061a2 − 0.0082a + 36.098
    Approximate
    expression
  • The results in Tables 101 to 104 indicate that the refrigerant is determined to have a WCFF lower flammability, and the flammability classification according to the ASHRAE Standard is “2L (flammability)” in the following cases:
  • When the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum in the mixed refrigerant of HFO-1132(E), HFO-1123, R1234yf, and R32 is respectively represented by x, y, z, and a, in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass % and a straight line connecting a point (0.0, 100.0−a, 0.0) and a point (0.0, 0.0, 100.0−a) is the base, if 0<a≤11.1, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line JK′ that connects point J (0.0049a2−0.9645a+47.1, −0.0049a2−0.0355a+52.9, 0.0) and point K′(0.0514a2−2.4353a+61.7, −0.0323a2+0.4122a+5.9, −0.0191a2+1.0231a+32.4); if 11.1<a≤18.2, coordinates are on a straight line JK′ that connects point J (0.0243a2−1.4161a+49.725, −0.0243a2+0.4161a+50.275, 0.0) and point K′(0.0341a2−2.1977a+61.187, −0.0236a2+0.34a+5.636, −0.0105a2+0.8577a+33.177); if 18.2<a≤26.7, coordinates are on or below a straight line JK′ that connects point J (0.0246a2−1.4476a+50.184, −0.0246a2+0.4476a+49.816, 0.0) and point K′ (0.0196a2−1.7863a+58.515, −0.0079a2−0.1136a+8.702, −0.0117a2+0.8999a+32.783); if 26.7<a≤36.7, coordinates are on or below a straight line JK′ that connects point J (0.0183a2−1.1399a+46.493, −0.0183a2+0.1399a+53.507, 0.0) and point K′ (−0.0051a2+0.0929a+25.95, 0.0, 0.0051a2−1.0929a+74.05); and if 36.7<a≤46.7, coordinates are on or below a straight line JK′ that connects point J (−0.0134a2+1.0956a+7.13, 0.0134a2−2.0956a+92.87, 0.0) and point K′(−1.892a+29.443, 0.0, 0.892a+70.557).
  • Actual points having a WCFF lower flammability form a curved line that connects point J and point K′ (on the straight line AB) in FIG. 4 and extends toward the HFO-1132(E) side. Accordingly, when coordinates are on or below the straight line JK′, WCFF lower flammability is achieved.
  • Three points corresponding to point J (Table 107) and point K′ (Table 108) were individually obtained in each of the following five ranges by calculation, and their approximate expressions were obtained.
  • TABLE 107
    Item 11.1 ≥ R32 > 0 18.2 ≥ R32 ≥ 11.1 26.7 ≥ R32 ≥ 18.2
    R32 0 7.1 11.1 11.1 14.5 18.2 18.2 21.9 26.7
    HFO-1132(E) 47.1 40.5 37 37.0 34.3 32.0 32.0 30.3 29.1
    HFO-1123 52.9 52.4 51.9 51.9 51.2 49.8 49.8 47.8 44.2
    R1234yf 0 0 0 0 0 0 0 0 0
    R32 a a a
    HFO-1132(E) 0.0049a2 − 0.9645a + 47.1 0.0243a2 − 1.4161a + 49.725 0.0246a2 − 1.4476a + 50.184
    Approximate
    expression
    HFO-1123 −0.0049a2 − 0.0355a + 52.9 −0.0243a2 + 0.4161a + 50.275 −0.0246a2 + 0.4476a + 49.816
    Approximate
    expression
    R1234yf
    0 0 0
    Approximate
    expression
    Item 36.7 ≥ R32 ≥ 26.7 47.8 ≥ R32 ≥ 36.7
    R32 26.7 29.3 36.7 36.7 44.1 47.8
    HFO-1132(E) 29.1 28.8 29.3 29.3 29.4 28.9
    HFO-1123 44.2 41.9 34.0 34.0 26.5 23.3
    R1234yf 0 0 0 0 0 0
    R32 a a
    HFO-1132(E) 0.0183a2 − 1.1399a + 46.493 −0.0134a2 + 1.0956a + 7.13
    Approximate
    expression
    HFO-1123 −0.0183a2 + 0.1399a + 53.507 0.0134a2 − 2.0956a + 92.87
    Approximate
    expression
    R1234yf
    0 0
    Approximate
    expression
  • TABLE 108
    Item 11.1 ≥ R32 > 0 18.2 ≥ R32 ≥ 11.1 26.7 ≥ R32 ≥ 18.2
    R32 0 7.1 11.1 11.1 14.5 18.2 18.2 21.9 26.7
    HFO-1132(E) 61.7 47.0 41.0 41.0 36.5 32.5 32.5 28.8 24.8
    HFO-1123 5.9 7.2 6.5 6.5 5.6 4.0 4.0 2.4 0
    R1234yf 32.4 38.7 41.4 41.4 43.4 45.3 45.3 46.9 48.5
    R32 x x x
    HFO-1132(E) 0.0514a2 − 2.4353a + 61.7 0.0341a2 − 2.1977a + 61.187 0.0196a2 − 1.7863a + 58.515
    Approximate
    expression
    HFO-1123 −0.0323a2 + 0.4122a + 5.9 −0.0236a2 + 0.34a + 5.636 −0.0079a2 − 0.1136a + 8.702
    Approximate
    expression
    R1234yf −0.0191a2 + 1.0231a + 32.4 −0.0105a2 + 0.8577a + 33.177 −0.0117a2 + 0.8999a + 32.783
    Approximate
    expression
    Item 36.7 ≥ R32 ≥ 26.7 46.7 ≥ R32 ≥ 36.7
    R32 26.7 29.3 36.7 36.7 44.1 47.8
    HFO-1132(E) 24.8 24.3 22.5 22.5 21.1 20.4
    HFO-1123 0 0 0 0 0 0
    R1234yf 48.5 46.4 40.8 40.8 34.8 31.8
    R32 x x
    HFO-1132(E) −0.0051a2 + 0.0929a + 25.95 −1.892a + 29.443
    Approximate
    expression
    HFO-1123 0 0
    Approximate
    expression
    R1234yf 0.0051a2 − 1.0929a + 74.05 0.892a + 70.557
    Approximate
    expression
  • FIGS. 4 to 14 show compositions whose R32 content a (mass %) is 0 mass %, 7.1 mass %, 11.1 mass %, 14.5 mass %, 18.2 mass %, 21.9 mass %, 26.7 mass %, 29.3 mass %, 36.7 mass %, 44.1 mass %, and 47.8 mass %, respectively.
  • Points A, B, C, and D′ were obtained in the following manner according to approximate calculation.
  • Point A is a point where the content of HFO-1123 is 0 mass %, and a refrigerating capacity ratio of 85% relative to that of R410A is achieved. Three points corresponding to point A were obtained in each of the following five ranges by calculation, and their approximate expressions were obtained (Table 109).
  • TABLE 109
    Item 11.1 ≥ R32 > 0 18.2 ≥ R32 ≥ 11.1 26.7 ≥ R32 ≥ 18.2
    R32 0 7.1 11.1 11.1 14.5 18.2 18.2 21.9 26.7
    HFO-1132(E) 68.6 55.3 48.4 48.4 42.8 37 37 31.5 24.8
    HFO-1123 0 0 0 0 0 0 0 0 0
    R1234yf 31.4 37.6 40.5 40.5 42.7 44.8 44.8 46.6 48.5
    R32 a a a
    HFO-1132(E) 0.0134a2 − 1.9681a + 68.6 0.0112a2 − 1.9337a + 68.484 0.0107a2 − 1.9142a + 68.305
    Approximate
    expression
    HFO-1123 0 0 0
    Approximate
    expression
    R1234yf −0.0134a2 + 0.9681a + 31.4 −0.0112a2 + 0.9337a + 31.516 −0.0107a2 + 0.9142a + 31.695
    Approximate
    expression
    Item 36.7 ≥ R32 ≥ 26.7 46.7 ≥ R32 ≥ 36.7
    R32 26.7 29.3 36.7 36.7 44.1 47.8
    HFO-1132(E) 24.8 21.3 12.1 12.1 3.8 0
    HFO-1123 0 0 0 0 0 0
    R1234yf 48.5 49.4 51.2 51.2 52.1 52.2
    R32 a a
    HFO-1132(E) 0.0103a2 − 1.9225a + 68.793 0.0085a2 − 1.8102a + 67.1
    Approximate
    expression
    HFO-1123 0 0
    Approximate
    expression
    R1234yf −0.0103a2 + 0.9225a + 31..207 −0.0085a2 + 0.8102a + 32.9
    Approximate
    expression
  • Point B is a point where the content of HFO-1132(E) is 0 mass %, and a refrigerating capacity ratio of 85% relative to that of R410A is achieved.
  • Three points corresponding to point B were obtained in each of the following five ranges by calculation, and their approximate expressions were obtained (Table 110).
  • TABLE 110
    Item 11.1 ≥ R32 > 0 18.2 ≥ R32 ≥ 11.1 26.7 ≥ R32 ≥ 18.2
    R32 0 7.1 11.1 11.1 14.5 18.2 18.2 21.9 26.7
    HFO-1132(E) 0 0 0 0 0 0 0 0 0
    HFO-1123 58.7 47.8 42.3 42.3 37.8 33.1 33.1 28.5 22.9
    R1234yf 41.3 45.1 46.6 46.6 47.7 48.7 48.7 49.6 50.4
    R32 a a a
    HFO-1132(E) 0 0 0
    Approximate
    expression
    HFO-1123 0.0144a2 − 1.6377a + 58.7 0.0075a2 − 1.5156a + 58.199 0.009a2−1.6045a + 59.318
    Approximate
    expression
    R1234yf −0.0144a2 + 0.6377a + 41.3 −0.0075a2 + 0.5156a + 41.801 −0.009a2 + 0.6045a + 40.682
    Approximate
    expression
    Item 36.7 ≥ R32 ≥ 26.7 46.7 ≥ R32 ≥ 36.7
    R32 26.7 29.3 36.7 36.7 44.1 47.8
    HFO-1132(E) 0 0 0 0 0 0
    HFO-1123 22.9 19.9 11.7 11.8 3.9 0
    R1234yf 50.4 50.8 51.6 51.5 52.0 52.2
    R32 a a
    HFO-1132(E) 0 0
    Approximate
    expression
    HFO-1123 0.0046a2 − 1.41a + 57.286 0.0012a2 − 1.1659a + 52.95
    Approximate
    expression
    R1234yf −0.0046a2 + 0.41a + 42.714 −0.0012a2 + 0.1659a + 47.05
    Approximate
    expression
  • Point D′ is a point where the content of HFO-1132(E) is 0 mass %, and a COP ratio of 95.5% relative to that of R410A is achieved.
  • Three points corresponding to point D′ were obtained in each of the following by calculation, and their approximate expressions were obtained (Table 111).
  • TABLE 111
    Item 11.1 ≥ R32 > 0
    R32 0 7.1 11.1
    HFO-1132(E) 0 0 0
    HFO-1123 75.4 83.4 88.9
    R1234yf 24.6 9.5 0
    R32 a
    HFO-1132(E) 0
    Approximate
    expression
    HFO-1123   0.0224a2 + 0.968a + 75.4
    Approximate
    expression
    R1234yf −0.0224a2 − 1.968a + 24.6
    Approximate
    expression
  • Point C is a point where the content of R1234yf is 0 mass %, and a COP ratio of 95.5% relative to that of R410A is achieved.
  • Three points corresponding to point C were obtained in each of the following by calculation, and their approximate expressions were obtained (Table 112).
  • TABLE 112
    Item 11.1 ≥ R32 > 0
    R32 0 7.1 11.1
    HFO-1132(E) 32.9 18.4 0
    HFO-1123 67.1 74.5 88.9
    R1234yf 0 0 0
    R32 a
    HFO-1132(E) −0.2304a2 − 0.4062a + 32.9
    Approximate
    expression
    HFO-1123   0.2304a2 − 0.5938a + 67.1
    Approximate
    expression
    R1234yf
    0
    Approximate
    expression
  • (5-4) Refrigerant D
  • The refrigerant D according to the present disclosure is a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).
  • The refrigerant D according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant; i.e., a refrigerating capacity equivalent to that of R410A, a sufficiently low GWP, and a lower flammability (Class 2L) according to the ASHRAE standard.
  • The refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments IJ, JN, NE, and EI that connect the following 4 points:
  • point I (72.0, 0.0, 28.0),
    point J (48.5, 18.3, 33.2),
    point N (27.7, 18.2, 54.1), and
    point E (58.3, 0.0, 41.7),
    or on these line segments (excluding the points on the line segment EI);
  • the line segment IJ is represented by coordinates (0.0236y2−1.7616y+72.0, y, −0.0236y2+0.7616y+28.0);
  • the line segment NE is represented by coordinates (0.012y2−1.9003y+58.3, y, −0.012y2+0.9003y+41.7); and
  • the line segments JN and EI are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 125 or less, and a WCF lower flammability.
  • The refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments MM′, M′N, NV, VG, and GM that connect the following 5 points:
  • point M (52.6, 0.0, 47.4),
    point M′ (39.2, 5.0, 55.8),
    point N (27.7, 18.2, 54.1),
    point V (11.0, 18.1, 70.9), and
    point G (39.6, 0.0, 60.4),
    or on these line segments (excluding the points on the line segment GM);
  • the line segment MM′ is represented by coordinates (0.132y2−3.34y+52.6, y, −0.132y2+2.34y+47.4);
  • the line segment M′N is represented by coordinates (0.0596y2−2.2541y+48.98, y, −0.0596y2+1.2541y+51.02);
  • the line segment VG is represented by coordinates (0.0123y2−1.8033y+39.6, y, −0.0123y2+0.8033y+60.4); and
  • the line segments NV and GM are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 70% or more relative to R410A, a GWP of 125 or less, and an ASHRAE lower flammability.
  • The refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ON, NU, and UO that connect the following 3 points:
  • point O (22.6, 36.8, 40.6),
    point N (27.7, 18.2, 54.1), and
    point U (3.9, 36.7, 59.4),
    or on these line segments;
  • the line segment ON is represented by coordinates (0.0072y2−0.6701y+37.512, y, −0.0072y2−0.3299y+62.488);
  • the line segment NU is represented by coordinates (0.0083y2−1.7403y+56.635, y, −0.0083y2+0.7403y+43.365); and
  • the line segment UO is a straight line. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 250 or less, and an ASHRAE lower flammability.
  • The refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments QR, RT, TL, LK, and KQ that connect the following 5 points:
  • point Q (44.6, 23.0, 32.4),
    point R (25.5, 36.8, 37.7),
    point T (8.6, 51.6, 39.8),
    point L (28.9, 51.7, 19.4), and
    point K (35.6, 36.8, 27.6),
    or on these line segments;
  • the line segment QR is represented by coordinates (0.0099y2−1.975y+84.765, y, −0.0099y2+0.975y+15.235);
  • the line segment RT is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874);
  • the line segment LK is represented by coordinates (0.0049y2−0.8842y+61.488, y, −0.0049y2−0.1158y+38.512);
  • the line segment KQ is represented by coordinates (0.0095y2−1.2222y+67.676, y, −0.0095y2+0.2222y+32.324); and
  • the line segment TL is a straight line. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and a WCF lower flammability.
  • The refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:
  • point P (20.5, 51.7, 27.8),
    point S (21.9, 39.7, 38.4), and
    point T (8.6, 51.6, 39.8),
    or on these line segments;
  • the line segment PS is represented by coordinates (0.0064y2−0.7103y+40.1, y, −0.0064y2−0.2897y+59.9);
  • the line segment ST is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874); and
  • the line segment TP is a straight line. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and an ASHRAE lower flammability.
  • The refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ac, cf, fd, and da that connect the following 4 points:
  • point a (71.1, 0.0, 28.9),
    point c (36.5, 18.2, 45.3),
    point f (47.6, 18.3, 34.1), and
    point d (72.0, 0.0, 28.0),
    or on these line segments;
  • the line segment ac is represented by coordinates (0.0181y2−2.2288y+71.096, y, −0.0181y2+1.2288y+28.904);
  • the line segment fd is represented by coordinates (0.02y2−1.7y+72, y, −0.02y2+0.7y+28); and
  • the line segments cf and da are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to R410A, a GWP of 125 or less, and a lower flammability (Class 2L) according to the ASHRAE standard.
  • The refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ab, be, ed, and da that connect the following 4 points:
  • point a (71.1, 0.0, 28.9),
    point b (42.6, 14.5, 42.9),
    point e (51.4, 14.6, 34.0), and
    point d (72.0, 0.0, 28.0),
    or on these line segments;
  • the line segment ab is represented by coordinates (0.0181y2−2.2288y+71.096, y, −0.0181y2+1.2288y+28.904);
  • the line segment ed is represented by coordinates (0.02y2−1.7y+72, y, −0.02y2+0.7y+28); and
  • the line segments be and da are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to R410A, a GWP of 100 or less, and a lower flammability (Class 2L) according to the ASHRAE standard.
  • The refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments gi, ij, and jg that connect the following 3 points:
  • point g (77.5, 6.9, 15.6),
    point i (55.1, 18.3, 26.6), and
    point j (77.5. 18.4, 4.1),
    or on these line segments;
  • the line segment gi is represented by coordinates (0.02y2−2.4583y+93.396, y, −0.02y2+1.4583y+6.604); and
  • the line segments ij and jg are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to R410A and a GWP of 100 or less, undergoes fewer or no changes such as polymerization or decomposition, and also has excellent stability.
  • The refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments gh, hk, and kg that connect the following 3 points:
  • point g (77.5, 6.9, 15.6),
    point h (61.8, 14.6, 23.6), and
    point k (77.5, 14.6, 7.9),
    or on these line segments;
  • the line segment gh is represented by coordinates (0.02y2−2.4583y+93.396, y, −0.02y2+1.4583y+6.604); and
  • the line segments hk and kg are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to R410A and a GWP of 100 or less, undergoes fewer or no changes such as polymerization or decomposition, and also has excellent stability.
  • The refrigerant D according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), R32, and R1234yf, as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO-1132(E), R32, and R1234yf in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and still more preferably 99.9 mass % or more based on the entire refrigerant.
  • Such additional refrigerants are not limited, and can be selected from a wide range of refrigerants. The mixed refrigerant may comprise a single additional refrigerant, or two or more additional refrigerants.
  • (Examples of Refrigerant D)
  • The present disclosure is described in more detail below with reference to Examples of refrigerant D. However, the refrigerant D is not limited to the Examples.
  • The composition of each mixed refrigerant of HFO-1132(E), R32, and R1234yf was defined as WCF. A leak simulation was performed using the NIST Standard Reference Database REFLEAK Version 4.0 under the conditions of Equipment, Storage, Shipping, Leak, and Recharge according to the ASHRAE Standard 34-2013. The most flammable fraction was defined as WCFF.
  • A burning velocity test was performed using the apparatus shown in FIG. 2 in the following manner. First, the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge. The burning velocity was measured by the closed method. The initial temperature was ambient temperature. Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using schlieren photographs. A cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source. Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC. Tables 113 to 115 show the results.
  • TABLE 113
    Comparative Example Example Example
    Example 13 Example 12 Example 14 Example 16
    Item Unit I 11 J 13 K 15 L
    WCF HFO- Mass % 72 57.2 48.5 41.2 35.6 32 28.9
    1132
    (E)
    R32 Mass % 0 10 18.3 27.6 36.8 44.2 51.7
    R1234yf Mass % 28 32.8 33.2 31.2 27.6 23.8 19.4
    Burning Velocity cm/s 10 10 10 10 10 10 10
    (WCF)
  • TABLE 114
    Comparative Example Example
    Example 14 Example 19 Example 21 Example
    Item Unit M 18 W 20 N 22
    WCF HFO-1132 Mass % 52.6 39.2 32.4 29.3 27.7 24.6
    (E)
    R32 Mass % 0.0 5.0 10.0 14.5 18.2 27.6
    R1234yf Mass % 47.4 55.8 57.6 56.2 54.1 47.8
    Leak condition that Storage, Storage, Storage, Storage, Storage, Storage,
    results in WCFF Shipping, Shipping, Shipping, Shipping, Shipping, Shipping,
    −40° C., −40° C., −40° C., −40° C., −40° C., −40° C.,
    0% release, 0% 0% 0% 0% 0%
    on the gas release, on release, on release, on release, on release, on
    phase side the gas the gas the gas the gas the gas
    phase side phase side phase side phase side phase side
    WCF HFO-1132 Mass % 72.0 57.8 48.7 43.6 40.6 34.9
    (E)
    R32 Mass % 0.0 9.5 17.9 24.2 28.7 38.1
    R1234yf Mass % 28.0 32.7 33.4 32.2 30.7 27.0
    Burning Velocity cm/s 8 or less 8 or less 8 or less 8 or less 8 or less 8 or less
    (WCF)
    Burning Velocity cm/s 10 10 10 10 10 10
    (WCFF)
  • TABLE 115
    Example Example
    23 Example 25
    Item Unit O 24 P
    WCF HFO-1132 (E) Mass % 22.6 21.2 20.5
    HFO-1123 Mass % 36.8 44.2 51.7
    R1234yf Mass % 40.6 34.6 27.8
    Leak condition that Storage, Storage, Storage,
    results in WCFF Shipping, Shipping, Shipping,
    −40° C., −40° C., −40° C.,
    0% release, 0% release, 0% release,
    on the gas on the gas on the gas
    phase side phase side phase side
    WCFF HFO-1132 (E) Mass % 31.4 29.2 27.1
    HFO-1123 Mass % 45.7 51.1 56.4
    R1234yf Mass % 23.0 19.7 16.5
    Burning Velocity cm/s 8 or less 8 or less 8 or less
    (WCF)
    Burning Velocity cm/s 10 10 10
    (WCFF)
  • The results indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in the ternary composition diagram shown in FIG. 15 in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are on the line segment that connects point I, point J, point K, and point L, or below these line segments, the refrigerant has a WCF lower flammability.
  • The results also indicate that when coordinates (x,y,z) in the ternary composition diagram shown in FIG. 15 are on the line segments that connect point M, point M′, point W, point J, point N, and point P, or below these line segments, the refrigerant has an ASHRAE lower flammability.
  • Mixed refrigerants were prepared by mixing HFO-1132(E), R32, and R1234yf in amounts (mass %) shown in Tables 116 to 144 based on the sum of HFO-1132(E), R32, and R1234yf. The coefficient of performance (COP) ratio and the refrigerating capacity ratio relative to R410 of the mixed refrigerants shown in Tables 116 to 144 were determined. The conditions for calculation were as described below.
  • Evaporating temperature: 5° C.
  • Condensation temperature: 45° C.
  • Degree of superheating: 5 K
  • Degree of subcooling: 5 K
  • Compressor efficiency: 70%
  • Tables 116 to 144 show these values together with the GWP of each mixed refrigerant.
  • TABLE 116
    Comparative Comparative Comparative Comparative Comparative Comparative
    Comparative Example 2 Example 3 Example 4 Example 5 Example 6 Example 7
    Item Unit Example 1 A B A′ B′ A″ B″
    HFO-1132(E) Mass % R410A 81.6 0.0 63.1 0.0 48.2 0.0
    R32 Mass % 18.4 18.1 36.9 36.7 51.8 51.5
    R1234yf Mass % 0.0 81.9 0.0 63.3 0.0 48.5
    GWP 2088 125 125 250 250 350 350
    COP Ratio %(relative to 100 98.7 103.6 98.7 102.3 99.2 102.2
    R410A)
    Refrigerating %(relative to 100 105.3 62.5 109.9 77.5 112.1 87.3
    Capacity Ratio R410A)
  • TABLE 117
    Comparative Comparative
    Example 8 Comparative Example 10 Example 2 Example 4
    Item Unit C Example 9 C′ Example 1 R Example 3 T
    HFO-1132(E) Mass % 85.5 66.1 52.1 37.8 25.5 16.6 8.6
    R32 Mass % 0.0 10.0 18.2 27.6 36.8 44.2 51.6
    R1234yf Mass % 14.5 23.9 29.7 34.6 37.7 39.2 39.8
    GWP 1 69 125 188 250 300 350
    COP Ratio %(relative to 99.8 99.3 99.3 99.6 100.2 100.8 101.4
    R410A)
    Refrigerating Capacity %(relative to 92.5 92.5 92.5 92.5 92.5 92.5 92.5
    Ratio R410A)
  • TABLE 118
    Comparative Comparative
    Example 11 Example 6 Example 8 Example 12 Example 10
    Item Unit E Example 5 N Example 7 U G Example 9 V
    HFO-1132(E) Mass % 58.3 40.5 27.7 14.9 3.9 39.6 22.8 11.0
    R32 Mass % 0.0 10.0 18.2 27.6 36.7 0.0 10.0 18.1
    R1234yf Mass % 41.7 49.5 54.1 57.5 59.4 60.4 67.2 70.9
    GWP 2 70 125 189 250 3 70 125
    COP Ratio %(relative to 100.3 100.3 100.7 101.2 101.9 101.4 101.8 102.3
    R410A)
    Refrigerating Capacity %(relative to 80.0 80.0 80.0 80.0 80.0 70.0 70.0 70.0
    Ratio R410A)
  • TABLE 119
    Comparative Example Example Example Example
    Example 13 Example 12 Example 14 Example 16 17
    Item Unit I 11 J 13 K 15 L Q
    HFO-1132(E) Mass % 72.0 57.2 48.5 41.2 35.6 32.0 28.9 44.6
    R32 Mass % 0.0 10.0 18.3 27.6 36.8 44.2 51.7 23.0
    R1234yf Mass % 28.0 32.8 33.2 31.2 27.6 23.8 19.4 32.4
    GWP 2 69 125 188 250 300 350 157
    COP Ratio %(relative to 99.9 99.5 99.4 99.5 99.6 99.8 100.1 99.4
    R410A)
    Refrigerating %(relative to 86.6 88.4 90.9 94.2 97.7 100.5 103.3 92.5
    Capacity Ratio R410A)
  • TABLE 120
    Comparative
    Example 14 Example 19 Example 21
    Item Unit M Example 18 W Example 20 N Example 22
    HFO-1132(E) Mass % 52.6 39.2 32.4 29.3 27.7 24.5
    R32 Mass % 0.0 5.0 10.0 14.5 18.2 27.6
    R1234yf Mass % 47.4 55.8 57.6 56.2 54.1 47.9
    GWP 2 36 70 100 125 188
    COP Ratio %(relative to 100.5 100.9 100.9 100.8 100.7 100.4
    R410A)
    Refrigerating Capacity %(relative to 77.1 74.8 75.6 77.8 80.0 85.5
    Ratio R410A)
  • TABLE 121
    Example Example Example
    23 Example 25 26
    Item Unit O 24 P S
    HFO-1132(E) Mass % 22.6 21.2 20.5 21.9
    R32 Mass % 36.8 44.2 51.7 39.7
    R1234yf Mass % 40.6 34.6 27.8 38.4
    GWP 250 300 350 270
    COP Ratio % (relative to 100.4 100.5 100.6 100.4
    R410A)
    Refrigerating % (relative to 91.0 95.0 99.1 92.5
    Capacity Ratio R410A)
  • TABLE 122
    Comparative Comparative Comparative Comparative Example Example Comparative Comparative
    Item Unit Example 15 Example 16 Example 17 Example 18 27 28 Example 19 Example 20
    HFO-1132(E) Mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
    R32 Mass % 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
    R1234yf Mass % 85.0 75.0 65.0 55.0 45.0 35.0 25.0 15.0
    GWP 37 37 37 36 36 36 35 35
    COP Ratio %(relative to 103.4 102.6 101.6 100.8 100.2 99.8 99.6 99.4
    R410A)
    Refrigerating %(relative to 56.4 63.3 69.5 75.2 80.5 85.4 90.1 94.4
    Capacity Ratio R410A)
  • TABLE 123
    Comparative Comparative Example Comparative Example Comparative Comparative Comparative
    Item Unit Example 21 Example 22 29 Example 23 30 Example 24 Example 25 Example 26
    HFO-1132(E) Mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
    R32 Mass % 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
    R1234yf Mass % 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0
    GWP 71 71 70 70 70 69 69 69
    COP Ratio %(relative to 103.1 102.1 101.1 100.4 99.8 99.5 99.2 99.1
    R410A)
    Refrigerating %(relative to 61.8 68.3 74.3 79.7 84.9 89.7 94.2 98.4
    Capacity Ratio R410A)
  • TABLE 124
    Comparative Example Comparative Example Example Comparative Comparative Comparative
    Item Unit Example 27 31 Example 28 32 33 Example 29 Example 30 Example 31
    HFO-1132(E) Mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
    R32 Mass % 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0
    R1234yf Mass % 75.0 65.0 55.0 45.0 35.0 25.0 15.0 5.0
    GWP 104 104 104 103 103 103 103 102
    COP Ratio %(relative to 102.7 101.6 100.7 100.0 99.5 99.2 99.0 98.9
    R410A)
    Refrigerating %(relative to 66.6 72.9 78.6 84.0 89.0 93.7 98.1 102.2
    Capacity Ratio R410A)
  • TABLE 125
    Com- Com- Com- Com- Com- Com- Com- Com-
    parative parative parative parative parative parative parative parative
    Item Unit Example 32 Example 33 Example 34 Example 35 Example 36 Example 37 Example 38 Example 39
    HFO-1132(E) Mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 10.0
    R32 Mass % 20.0 20.0 20.0 20.0 20.0 20.0 20.0 25.0
    R1234yf Mass % 70.0 60.0 50.0 40.0 30.0 20.0 10.0 65.0
    GWP 138 138 137 137 137 136 136 171
    COP Ratio %(relative to 102.3 101.2 100.4 99.7 99.3 99.0 98.8 101.9
    R410A)
    Refrigerating %(relative to 71.0 77.1 82.7 88.0 92.9 97.5 101.7 75.0
    Capacity Ratio R410A)
  • TABLE 126
    Example Comparative Comparative Comparative Comparatie Comparative Comparative Example
    Item Unit 34 Example 40 Example 41 Example 42 Example 43 Example 44 Example 45 35
    HFO-1132(E) Mass % 20.0 30.0 40.0 50.0 60.0 70.0 10.0 20.0
    R32 Mass % 25.0 25.0 25.0 25.0 25.0 25.0 30.0 30.0
    R1234yf Mass % 55.0 45.0 35.0 25.0 15.0 5.0 60.0 50.0
    GWP 171 171 171 170 170 170 205 205
    COP Ratio %(relative to 100.9 100.1 99.6 99.2 98.9 98.7 101.6 100.7
    R410A)
    Refrigerating %(relative to 81.0 86.6 91.7 96.5 101.0 105.2 78.9 84.8
    Capacity Ratio R410A)
  • TABLE 127
    Comparative Comparative Comparatie Comparative Example Example Example Comparative
    Item Unit Example 46 Example 47 Example 48 Example 49 36 37 38 Example 50
    HFO-1132(E) Mass % 30.0 40.0 50.0 60.0 10.0 20.0 30.0 40.0
    R32 Mass % 30.0 30.0 30.0 30.0 35.0 35.0 35.0 35.0
    R1234yf Mass % 40.0 30.0 20.0 10.0 55.0 45.0 35.0 25.0
    GWP 204 204 204 204 239 238 238 238
    COP Ratio %(relative to 100.0 99.5 99.1 98.8 101.4 100.6 99.9 99.4
    R410A)
    Refrigerating %(relative to 90.2 95.3 100.0 104.4 82.5 88.3 93.7 98.6
    Capacity Ratio R410A)
  • TABLE 128
    Comparative Comparative Comparative Comparative Comparative Comparative Comparative
    Item Unit Example 51 Example 52 Example 53 Example 54 Example 39 Example 55 Example 56 Example 57
    HFO-1132(E) Mass % 50.0 60.0 10.0 20.0 30.0 40.0 50.0 10.0
    R32 Mass % 35.0 35.0 40.0 40.0 40.0 40.0 40.0 45.0
    R1234yf Mass % 15.0 5.0 50.0 40.0 30.0 20.0 10.0 45.0
    GWP 237 237 272 272 272 271 271 306
    COP Ratio % (relative to 99.0 98.8 101.3 100.6 99.9 99.4 99.0 101.3
    R410A)
    Refrigerating % (relative to 103.2 107.5 86.0 91.7 96.9 101.8 106.3 89.3
    Capacity R410A)
    Ratio
  • TABLE 129
    Comparative Comparative Comparative Comparative Comparative
    Item Unit Example 40 Example 41 Example 58 Example 59 Example 60 Example 42 Example 61 Example 62
    HFO-1132(E) Mass % 20.0 30.0 40.0 50.0 10.0 20.0 30.0 40.0
    R32 Mass % 45.0 45.0 45.0 45.0 50.0 50.0 50.0 50.0
    R1234yf Mass % 35.0 25.0 15.0 5.0 40.0 30.0 20.0 10.0
    GWP 305 305 305 304 339 339 339 338
    COP Ratio % (relative to 100.6 100.0 99.5 99.1 101.3 100.6 100.0 99.5
    R410A)
    Refrigerating % (relative to 94.9 100.0 104.7 109.2 92.4 97.8 102.9 107.5
    Capacity R410A)
    Ratio
  • TABLE 130
    Comparative Comparative Comparative Comparative
    Item Unit Example 63 Example 64 Example 65 Example 66 Example 43 Example 44 Example 45 Example 46
    HFO-1132(E) Mass % 10.0 20.0 30.0 40.0 56.0 59.0 62.0 65.0
    R32 Mass % 55.0 55.0 55.0 55.0 3.0 3.0 3.0 3.0
    R1234yf Mass % 35.0 25.0 15.0 5.0 41.0 38.0 35.0 32.0
    GWP 373 372 372 372 22 22 22 22
    COP Ratio % (relative to 101.4 100.7 100.1 99.6 100.1 100.0 99.9 99.8
    R410A)
    Refrigerating % (relative to 95.3 100.6 105.6 110.2 81.7 83.2 84.6 86.0
    Capacity R410A)
    Ratio
  • TABLE 131
    Item Unit Example 47 Example 48 Example 49 Example 50 Example 51 Example 52 Example 53 Example 54
    HFO-1132(E) Mass % 49.0 52.0 55.0 58.0 61.0 43.0 46.0 49.0
    R32 Mass % 6.0 6.0 6.0 6.0 6.0 9.0 9.0 9.0
    R1234yf Mass % 45.0 42.0 39.0 36.0 33.0 48.0 45.0 42.0
    GWP 43 43 43 43 42 63 63 63
    COP Ratio % (relative to 100.2 100.0 99.9 99.8 99.7 100.3 100.1 99.9
    R410A)
    Refrigerating % (relative to 80.9 82.4 83.9 85.4 86.8 80.4 82.0 83.5
    Capacity R410A)
    Ratio
  • TABLE 132
    Item Unit Example 55 Example 56 Example 57 Example 58 Example 59 Example 60 Example 61 Example 62
    HFO-1132(E) Mass % 52.0 55.0 58.0 38.0 41.0 44.0 47.0 50.0
    R32 Mass % 9.0 9.0 9.0 12.0 12.0 12.0 12.0 12.0
    R1234yf Mass % 39.0 36.0 33.0 50.0 47.0 44.0 41.0 38.0
    GWP 63 63 63 83 83 83 83 83
    COP Ratio % (relative to 99.8 99.7 99.6 100.3 100.1 100.0 99.8 99.7
    R410A)
    Refrigerating % (relative to 85.0 86.5 87.9 80.4 82.0 83.5 85.1 86.6
    Capacity R410A)
    Ratio
  • TABLE 133
    Item Unit Example 63 Example 64 Example 65 Example 66 Example 67 Example 68 Example 69 Example 70
    HFO-1132(E) Mass % 53.0 33.0 36.0 39.0 42.0 45.0 48.0 51.0
    R32 Mass % 12.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0
    R1234yf Mass % 35.0 52.0 49.0 46.0 43.0 40.0 37.0 34.0
    GWP 83 104 104 103 103 103 103 103
    COP Ratio % (relative to 99.6 100.5 100.3 100.1 99.9 99.7 99.6 99.5
    R10A)
    Refrigerating % (relative to 88.0 80.3 81.9 83.5 85.0 86.5 88.0 89.5
    Capacity R410A)
    Ratio
  • TABLE 134
    Item Unit Example 71 Example 72 Example 73 Example 74 Example 75 Example 76 Example 77 Example 78
    HFO-1132(E) Mass % 29.0 32.0 35.0 38.0 41.0 44.0 47.0 36.0
    R32 Mass % 18.0 18.0 18.0 18.0 18.0 18.0 18.0 3.0
    R1234yf Mass % 53.0 50.0 47.0 44.0 41.0 38.0 35.0 61.0
    GWP 124 124 124 124 124 123 123 23
    COP Ratio % (relative to 100.6 100.3 100.1 99.9 99.8 99.6 99.5 101.3
    R410A)
    Refrigerating % (relative to 80.6 82.2 83.8 85.4 86.9 88.4 89.9 71.0
    Capacity R410A)
    Ratio
  • TABLE 135
    Item Unit Example 79 Example 80 Example 81 Example 82 Example 83 Example 84 Example 85 Example 86
    HFO-1132(E) Mass % 39.0 42.0 30.0 33.0 36.0 26.0 29.0 32.0
    R32 Mass % 3.0 3.0 6.0 6.0 6.0 9.0 9.0 9.0
    R1234yf Mass % 58.0 55.0 64.0 61.0 58.0 65.0 62.0 59.0
    GWP 23 23 43 43 43 64 64 63
    COP Ratio % (relative to 101.1 100.9 101.5 101.3 101.0 101.6 101.3 101.1
    R410A)
    Refrigerating % (relative to 72.7 74.4 70.5 72.2 73.9 71.0 72.8 74.5
    Capacity R410A)
    Ratio
  • TABLE 136
    Item Unit Example 87 Example 88 Example 89 Example 90 Example 91 Example 92 Example 93 Example 94
    HFO-1132(E) Mass % 21.0 24.0 27.0 30.0 16.0 19.0 22.0 25.0
    R32 Mass % 12.0 12.0 12.0 12.0 15.0 15.0 15.0 15.0
    R1234yf Mass % 67.0 64.0 61.0 58.0 69.0 66.0 63.0 60.0
    GWP 84 84 84 84 104 104 104 104
    COP Ratio % (relative to 101.8 101.5 101.2 101.0 102.1 101.8 101.4 101.2
    R410A)
    Refrigerating % (relative to 70.8 72.6 74.3 76.0 70.4 72.3 74.0 75.8
    Capacity R410A)
    Ratio
  • TABLE 137
    Example Example Example
    Item Unit Example 95 Example 96 Example 97 Example 98 Example 99 100 101 102
    HFO-1132(E) Mass % 28.0 12.0 15.0 18.0 21.0 24.0 27.0 25.0
    R32 Mass % 15.0 18.0 18.0 18.0 18.0 18.0 18.0 21.0
    R1234yf Mass % 57.0 70.0 67.0 64.0 61.0 58.0 55.0 54.0
    GWP 104 124 124 124 124 124 124 144
    COP Ratio % (relative to 100.9 102.2 101.9 101.6 101.3 101.0 100.7 100.7
    R410A)
    Refrigerating % (relative to 77.5 70.5 72.4 74.2 76.0 77.7 79.4 80.7
    Capacity R410A)
    Ratio
  • TABLE 138
    Example Example Example
    Item Unit Example 103 104 105 106 Example 107 Example 108 Example 109 Example 110
    HFO-1132(E) Mass % 21.0 24.0 17.0 20.0 23.0 13.0 16.0 19.0
    R32 Mass % 24.0 24.0 27.0 27.0 27.0 30.0 30.0 30.0
    R1234yf Mass % 55.0 52.0 56.0 53.0 50.0 57.0 54.0 51.0
    GWP 164 164 185 185 184 205 205 205
    COP Ratio % (relative to 100.9 100.6 101.1 100.8 100.6 101.3 101.0 100.8
    R410A)
    Refrigerating % (relative to 80.8 82.5 80.8 82.5 84.2 80.7 82.5 84.2
    Capacity R410A)
    Ratio
  • TABLE 139
    Example Example Example
    Item Unit Example 111 Example 112 Example 113 Example 114 115 116 117 Example 118
    HFO-1132(E) Mass % 22.0 9.0 12.0 15.0 18.0 21.0 8.0 12.0
    R32 Mass % 30.0 33.0 33.0 33.0 33.0 33.0 36.0 36.0
    R1234yf Mass % 48.0 58.0 55.0 52.0 49.0 46.0 56.0 52.0
    GWP 205 225 225 225 225 225 245 245
    COP Ratio % (relative to 100.5 101.6 101.3 101.0 100.8 100.5 101.6 101.2
    R410A)
    Refrigerating % (relative to 85.9 80.5 82.3 84.1 85.8 87.5 82.0 84.4
    Capacity R410A)
    Ratio
  • TABLE 140
    Example Example Example
    Item Unit Example 119 Example 120 Example 121 122 123 124 Example 125 Example 126
    HFO-1132(E) Mass % 15.0 18.0 21.0 42.0 39.0 34.0 37.0 30.0
    R32 Mass % 36.0 36.0 36.0 25.0 28.0 31.0 31.0 34.0
    R1234yf Mass % 49.0 46.0 43.0 33.0 33.0 35.0 32.0 36.0
    GWP 245 245 245 170 191 211 211 231
    COP Ratio % (relative to 101.0 100.7 100.5 99.5 99.5 99.8 99.6 99.9
    R410A)
    Refrigerating % (relative to 86.2 87.9 89.6 92.7 93.4 93.0 94.5 93.0
    Capacity R410A)
    Ratio
  • TABLE 141
    Example Example Example Example Example
    Item Unit Example 127 Example 128 129 130 131 132 133 Example 134
    HFO-1132(E) Mass % 33.0 36.0 24.0 27.0 30.0 33.0 23.0 26.0
    R32 Mass % 34.0 34.0 37.0 37.0 37.0 37.0 40.0 40.0
    R1234yf Mass % 33.0 30.0 39.0 36.0 33.0 30.0 37.0 34.0
    GWP 231 231 252 251 251 251 272 272
    COP Ratio % (relative to 99.8 99.6 100.3 100.1 99.9 99.8 100.4 100.2
    R410A)
    Refrigerating % (relative to 94.5 96.0 91.9 93.4 95.0 96.5 93.3 94.9
    Capacity R410A)
    Ratio
  • TABLE 142
    Example Example Example Example Example
    Item Unit Example 135 136 Example 137 138 139 140 141 Example 142
    HFO-1132(E) Mass % 29.0 32.0 19.0 22.0 25.0 28.0 31.0 18.0
    R32 Mass % 40.0 40.0 43.0 43.0 43.0 43.0 43.0 46.0
    R1234yf Mass % 31.0 28.0 38.0 35.0 32.0 29.0 26.0 36.0
    GWP 272 271 292 292 292 292 292 312
    COP Ratio % (relative to 100.0 99.8 100.6 100.4 100.2 100.1 99.9 100.7
    R410A)
    Refrigerating % (relative to 96.4 97.9 93.1 94.7 96.2 97.8 99.3 94.4
    Capacity R410A)
    Ratio
  • TABLE 143
    Exam- Exam- Exam- Exam- Exam- Exam- Exam- Exam-
    Item Unit ple 143 ple 144 ple 145 ple 146 ple 147 ple 148 ple 149 ple 150
    HFO-1132(E) Mass % 21.0 23.0 26.0 29.0 13.0 16.0 19.0 22.0
    R32 Mass % 46.0 46.0 46.0 46.0 49.0 49.0 49.0 49.0
    R1234yf Mass % 33.0 31.0 28.0 25.0 38.0 35.0 32.0 29.0
    GWP 312 312 312 312 332 332 332 332
    COP Ratio % (relative to 100.5 100.4 100.2 100.0 101.1 100.9 100.7 100.5
    R410A)
    Refrigerating % (relative to 96.0 97.0 98.6 100.1 93.5 95.1 96.7 98.3
    Capacity R410A)
    Ratio
  • TABLE 144
    Item Unit Example 151 Example 152
    HFO-1132(E) Mass % 25.0 28.0
    R32 Mass % 49.0 49.0
    R1234yf Mass % 26.0 23.0
    GWP 332 332
    COP Ratio % (relative to 100.3 100.1
    R410A)
    Refrigerating % (relative to 99.8 101.3
    Capacity Ratio R410A)
  • The results also indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments IJ, JN, NE, and EI that connect the following 4 points:
  • point I (72.0, 0.0, 28.0),
    point J (48.5, 18.3, 33.2),
    point N (27.7, 18.2, 54.1), and
    point E (58.3, 0.0, 41.7),
    or on these line segments (excluding the points on the line segment EI),
  • the line segment IJ is represented by coordinates (0.0236y2−1.7616y+72.0, y, −0.0236y2+0.7616y+28.0),
  • the line segment NE is represented by coordinates (0.012y2−1.9003y+58.3, y, −0.012y2+0.9003y+41.7), and
  • the line segments JN and EI are straight lines, the refrigerant D has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 125 or less, and a WCF lower flammability.
  • The results also indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments MM′, M′N, NV, VG, and GM that connect the following 5 points:
  • point M (52.6, 0.0, 47.4),
    point M′ (39.2, 5.0, 55.8),
    point N (27.7, 18.2, 54.1),
    point V (11.0, 18.1, 70.9), and
    point G (39.6, 0.0, 60.4),
    or on these line segments (excluding the points on the line segment GM),
  • the line segment MM′ is represented by coordinates (0.132y2−3.34y+52.6, y, −0.132y2+2.34y+47.4),
  • the line segment M′N is represented by coordinates (0.0596y2−2.2541y+48.98, y, −0.0596y2+1.2541y+51.02),
  • the line segment VG is represented by coordinates (0.0123y2−1.8033y+39.6, y, −0.0123y2+0.8033y+60.4), and
  • the line segments NV and GM are straight lines, the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 70% or more relative to R410A, a GWP of 125 or less, and an ASHRAE lower flammability.
  • The results also indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ON, NU, and UO that connect the following 3 points:
  • point O (22.6, 36.8, 40.6),
    point N (27.7, 18.2, 54.1), and
    point U (3.9, 36.7, 59.4),
    or on these line segments,
  • the line segment ON is represented by coordinates (0.0072y2−0.6701y+37.512, y, −0.0072y2−0.3299y+62.488),
  • the line segment NU is represented by coordinates (0.0083y2−1.7403y+56.635, y, −0.0083y2+0.7403y+43.365), and
  • the line segment UO is a straight line, the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 250 or less, and an ASHRAE lower flammability.
  • The results also indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments QR, RT, TL, LK, and KQ that connect the following 5 points:
  • point Q (44.6, 23.0, 32.4),
    point R (25.5, 36.8, 37.7),
    point T (8.6, 51.6, 39.8),
    point L (28.9, 51.7, 19.4), and
    point K (35.6, 36.8, 27.6),
    or on these line segments,
  • the line segment QR is represented by coordinates (0.0099y2−1.975y+84.765, y, −0.0099y2+0.975y+15.235),
  • the line segment RT is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874),
  • the line segment LK is represented by coordinates (0.0049y2−0.8842y+61.488, y, −0.0049y2−0.1158y+38.512),
  • the line segment KQ is represented by coordinates (0.0095y2−1.2222y+67.676, y, −0.0095y2+0.2222y+32.324), and
  • the line segment TL is a straight line, the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and a WCF lower flammability.
  • The results further indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:
  • point P (20.5, 51.7, 27.8),
    point S (21.9, 39.7, 38.4), and
    point T (8.6, 51.6, 39.8),
    or on these line segments,
  • the line segment PS is represented by coordinates (0.0064y2−0.7103y+40.1, y, −0.0064y2−0.2897y+59.9),
  • the line segment ST is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874), and
  • the line segment TP is a straight line, the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and an ASHRAE lower flammability.
  • (5-5) Refrigerant E
  • The refrigerant E according to the present disclosure is a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32).
  • The refrigerant E according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant, i.e., a coefficient of performance equivalent to that of R410A and a sufficiently low GWP.
  • The refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IK, KB′, B′H, HR, RG, and GI that connect the following 6 points:
  • point I (72.0, 28.0, 0.0),
    point K (48.4, 33.2, 18.4),
    point B′ (0.0, 81.6, 18.4),
    point H (0.0, 84.2, 15.8),
    point R (23.1, 67.4, 9.5), and
    point G (38.5, 61.5, 0.0),
    or on these line segments (excluding the points on the line segments B′H and GI);
  • the line segment IK is represented by coordinates (0.025z2−1.7429z+72.00, −0.025z2+0.7429z+28.0, z),
  • the line segment HR is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z),
  • the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
  • the line segments KB′ and GI are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has WCF lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 125 or less.
  • The refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IJ, JR, RG, and GI that connect the following 4 points:
  • point I (72.0, 28.0, 0.0),
    point J (57.7, 32.8, 9.5),
    point R (23.1, 67.4, 9.5), and
    point G (38.5, 61.5, 0.0),
    or on these line segments (excluding the points on the line segment GI);
  • the line segment IJ is represented by coordinates (0.025z2−1.7429z+72.0, −0.025z2+0.7429z+28.0, z),
  • the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
  • the line segments JR and GI are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has WCF lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 125 or less.
  • The refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MP, PB′, B′H, HR, RG, and GM that connect the following 6 points:
  • point M (47.1, 52.9, 0.0),
    point P (31.8, 49.8, 18.4),
    point B′ (0.0, 81.6, 18.4),
    point H (0.0, 84.2, 15.8),
    point R (23.1, 67.4, 9.5), and
    point G (38.5, 61.5, 0.0),
    or on these line segments (excluding the points on the line segments B′H and GM);
  • the line segment MP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z),
  • the line segment HR is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z),
  • the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
  • the line segments PB′ and GM are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 125 or less.
  • The refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MN, NR, RG, and GM that connect the following 4 points:
  • point M (47.1, 52.9, 0.0),
    point N (38.5, 52.1, 9.5),
    point R (23.1, 67.4, 9.5), and
    point G (38.5, 61.5, 0.0),
    or on these line segments (excluding the points on the line segment GM);
  • the line segment MN is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z),
  • the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z),
  • the line segments NR and GM are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 65 or less.
  • The refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:
  • point P (31.8, 49.8, 18.4),
    point S (25.4, 56.2, 18.4), and
    point T (34.8, 51.0, 14.2),
    or on these line segments;
  • the line segment ST is represented by coordinates (−0.0982z2+0.9622z+40.931, 0.0982z2−1.9622z+59.069, z),
  • the line segment TP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z), and
  • the line segment PS is a straight line. When the requirements above are satisfied, the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 94.5% or more relative to that of R410A, and a GWP of 125 or less.
  • The refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments QB″, B″D, DU, and UQ that connect the following 4 points:
  • point Q (28.6, 34.4, 37.0),
    point B″ (0.0, 63.0, 37.0),
    point D (0.0, 67.0, 33.0), and
    point U (28.7, 41.2, 30.1),
    or on these line segments (excluding the points on the line segment B″D);
  • the line segment DU is represented by coordinates (−3.4962z2+210.71z−3146.1, 3.4962z2−211.71z+3246.1, z),
  • the line segment UQ is represented by coordinates (0.0135z2−0.9181z+44.133, −0.0135z2−0.0819z+55.867, z), and
  • the line segments QB″ and B″D are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 96% or more relative to that of R410A, and a GWP of 250 or less.
  • The refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc′, c′d′, d′e′, e′a′, and a′O that connect the following 5 points:
  • point O (100.0, 0.0, 0.0),
    point c′ (56.7, 43.3, 0.0),
    point d′ (52.2, 38.3, 9.5),
    point e′ (41.8, 39.8, 18.4), and
    point a′ (81.6, 0.0, 18.4),
    or on the line segments c′d′, d′e′, and e′a′ (excluding the points c′ and a′);
  • the line segment c′d′ is represented by coordinates (−0.0297z2−0.1915z+56.7, 0.0297z2+1.1915z+43.3, z),
  • the line segment d′e′ is represented by coordinates (−0.0535z2+0.3229z+53.957, 0.0535z2+0.6771z+46.043, z), and
  • the line segments Oc′, e′a′, and a′O are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP ratio of 92.5% or more relative to that of R410A, and a GWP of 125 or less.
  • The refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc, cd, de, ea′, and a′O that connect the following 5 points:
  • point O (100.0, 0.0, 0.0),
    point c (77.7, 22.3, 0.0),
    point d (76.3, 14.2, 9.5),
    point e (72.2, 9.4, 18.4), and
    point a′ (81.6, 0.0, 18.4),
    or on the line segments cd, de, and ea′ (excluding the points c and a′);
  • the line segment cde is represented by coordinates (−0.017z2+0.0148z+77.684, 0.017z2+0.9852z+22.316, z), and
  • the line segments Oc, ea′, and a′O are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP ratio of 95% or more relative to that of R410A, and a GWP of 125 or less.
  • The refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc′, c′d′, d′a, and aO that connect the following 5 points:
  • point O (100.0, 0.0, 0.0),
    point c′ (56.7, 43.3, 0.0),
    point d′ (52.2, 38.3, 9.5), and
    point a (90.5, 0.0, 9.5),
    or on the line segments c′d′ and d′a (excluding the points c′ and a);
  • the line segment c′d′ is represented by coordinates (−0.0297z2−0.1915z+56.7, 0.0297z2+1.1915z+43.3, z), and
  • the line segments Oc′, d′a, and aO are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP ratio of 93.5% or more relative to that of R410A, and a GWP of 65 or less.
  • The refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc, cd, da, and aO that connect the following 4 points:
  • point O (100.0, 0.0, 0.0),
    point c (77.7, 22.3, 0.0),
    point d (76.3, 14.2, 9.5), and
    point a (90.5, 0.0, 9.5),
    or on the line segments cd and da (excluding the points c and a);
      • the line segment cd is represented by coordinates (−0.017z2+0.0148z+77.684, 0.017z2+0.9852z+22.316, z), and
  • the line segments Oc, da, and aO are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP ratio of 95% or more relative to that of R410A, and a GWP of 65 or less.
  • The refrigerant E according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), HFO-1123, and R32, as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO-1132(E), HFO-1123, and R32 in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and even more preferably 99.9 mass % or more, based on the entire refrigerant.
  • Such additional refrigerants are not limited, and can be selected from a wide range of refrigerants. The mixed refrigerant may comprise a single additional refrigerant, or two or more additional refrigerants.
  • (Examples of Refrigerant E)
  • The present disclosure is described in more detail below with reference to Examples of refrigerant E. However, the refrigerant E is not limited to the Examples.
  • Mixed refrigerants were prepared by mixing HFO-1132(E), HFO-1123, and R32 at mass % based on their sum shown in Tables 145 and 146.
  • The composition of each mixture was defined as WCF. A leak simulation was performed using National Institute of Science and Technology (NIST) Standard Reference Data Base Refleak Version 4.0 under the conditions for equipment, storage, shipping, leak, and recharge according to the ASHRAE Standard 34-2013. The most flammable fraction was defined as WCFF.
  • For each mixed refrigerant, the burning velocity was measured according to the ANSI/ASHRAE Standard 34-2013. When the burning velocities of the WCF composition and the WCFF composition are 10 cm/s or less, the flammability of such a refrigerant is classified as Class 2L (lower flammability) in the ASHRAE flammability classification.
  • A burning velocity test was performed using the apparatus shown in FIG. 2 in the following manner. First, the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge. The burning velocity was measured by the closed method. The initial temperature was ambient temperature. Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using schlieren photographs. A cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source. Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.
  • Tables 145 and 146 show the results.
  • TABLE 145
    Item Unit I J K L
    WCF HFO-1132(E) mass % 72.0 57.7 48.4 35.5
    HFO-1123 mass % 28.0 32.8 33.2 27.5
    R32 mass % 0.0 9.5 18.4 37.0
    Burning velocity (WCF) cm/s 10 10 10 10
  • TABLE 146
    Item Unit M N T P U Q
    WCF HFO- mass 47.1 38.5 34.8 31.8 28.7 28.6
    1132(E) %
    HFO-1123 mass 52.9 52.1 51.0 49.8 41.2 34.4
    %
    R32 mass  0.0  9.5 14.2 18.4 30.1 37.0
    %
    Leak condition that Storage, Storage, Storage, Storage, Storage, Storage,
    results in WCFF Shipping, Shipping, Shipping, Shipping, Shipping, Shipping,
    −40° C., −40° C., −40° C., −40° C., −40° C., −40° C.,
    92%, 92%, 92%, 92%, 92%, 92%,
    release, release, release, release, release, release,
    on the liquid on the liquid on the liquid on the liquid on the liquid on the liquid
    phase side phase side phase side phase side phase side phase side
    WCFF HFO- mass 72.0 58.9 51.5 44.6 31.4 27.1
    1132(E) %
    HFO-1123 mass 28.0 32.4 33.1 32.6 23.2 18.3
    %
    R32 mass  0.0  8.7 15.4 22.8 45.4 54.6
    %
    Burning velocity cm/s 8 or less 8 or less 8 or less 8 or less 8 or less 8 or less
    (WCF)
    Burning velocity cm/s 10 10 10 10 10 10
    (WCFF)
  • The results in Table 1 indicate that in a ternary composition diagram of a mixed refrigerant of HFO-1132(E), HFO-1123, and R32 in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on or below line segments IK and KL that connect the following 3 points:
  • point I (72.0, 28.0, 0.0),
    point K (48.4, 33.2, 18.4), and
    point L (35.5, 27.5, 37.0);
    the line segment IK is represented by coordinates (0.025z2−1.7429z+72.00, −0.025z2+0.7429z+28.00, z), and
    the line segment KL is represented by coordinates (0.0098z2−1.238z+67.852, −0.0098z2+0.238z+32.148, z),
    it can be determined that the refrigerant has WCF lower flammability.
  • For the points on the line segment IK, an approximate curve (x=0.025z2−1.7429z+72.00) was obtained from three points, i.e., I (72.0, 28.0, 0.0), J (57.7, 32.8, 9.5), and K (48.4, 33.2, 18.4) by using the least-square method to determine coordinates (x=0.025z2−1.7429z+72.00, y=100−z−x=−0.00922z2+0.2114z+32.443, z).
  • Likewise, for the points on the line segment KL, an approximate curve was determined from three points, i.e., K (48.4, 33.2, 18.4), Example 10 (41.1, 31.2, 27.7), and L (35.5, 27.5, 37.0) by using the least-square method to determine coordinates.
  • The results in Table 146 indicate that in a ternary composition diagram of a mixed refrigerant of HFO-1132(E), HFO-1123, and R32 in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on or below line segments MP and PQ that connect the following 3 points:
  • point M (47.1, 52.9, 0.0),
    point P (31.8, 49.8, 18.4), and
    point Q (28.6, 34.4, 37.0),
    it can be determined that the refrigerant has ASHRAE lower flammability.
  • In the above, the line segment MP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z), and the line segment PQ is represented by coordinates
  • (0.0135z2−0.9181z+44.133, −0.0135z2−0.0819z+55.867, z).
  • For the points on the line segment MP, an approximate curve was obtained from three points, i.e., points M, N, and P, by using the least-square method to determine coordinates. For the points on the line segment PQ, an approximate curve was obtained from three points, i.e., points P, U, and Q, by using the least-square method to determine coordinates.
  • The GWP of compositions each comprising a mixture of R410A (R32=50%/R125=50%) was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report. The GWP of HFO-1132(E), which was not stated therein, was assumed to be 1 from HFO-1132a (GWP=1 or less) and HFO-1123 (GWP=0.3, described in Patent Literature 1). The refrigerating capacity of compositions each comprising R410A and a mixture of HFO-1132(E) and HFO-1123 was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.
  • The COP ratio and the refrigerating capacity (which may be referred to as “cooling capacity” or “capacity”) ratio relative to those of R410 of the mixed refrigerants were determined. The conditions for calculation were as described below.
  • Evaporating temperature: 5° C.
    Condensation temperature: 45° C.
    Degree of superheating: 5K
    Degree of subcooling: 5K
    Compressor efficiency: 70%
  • Tables 147 to 166 show these values together with the GWP of each mixed refrigerant.
  • TABLE 147
    Comparative Comparative Comparative Comparative Comparative Comparative
    Comparative Example Example Example Example Example Example
    Example 2 3 4 5 6 7
    Item Unit 1 A B A′ B′ A″ B″
    HFO- mass % R410A 90.5 0.0 81.6 0.0 63.0 0.0
    1132(E)
    HFO-1123 mass % 0.0 90.5 0.0 81.6 0.0 63.0
    R32 mass % 9.5 9.5 18.4 18.4 37.0 37.0
    GWP 2088 65 65 125 125 250 250
    COP ratio %  100 99.1 92.0 98.7 93.4 98.7 96.1
    (relative
    to
    R410A)
    Refrigerating %  100 102.2 111.6 105.3 113.7 110.0 115.4
    capacity (relative
    ratio to
    R410A)
  • TABLE 148
    Comparative Comparative Comparative
    Example Example Comparative Example Example
    8 9 Example 1 Example 11
    Item Unit O C 10 U 2 D
    HFO-1132(E) mass % 100.0 50.0 41.1 28.7 15.2 0.0
    HFO-1123 mass % 0.0 31.6 34.6 41.2 52.7 67.0
    R32 mass % 0.0 18.4 24.3 30.1 32.1 33.0
    GWP 1 125 165 204 217 228
    COP ratio % (relative 99.7 96.0 96.0 96.0 96.0 96.0
    to R410A)
    Refrigerating % (relative 98.3 109.9 111.7 113.5 114.8 115.4
    capacity ratio to R410A)
  • TABLE 149
    Comparative Comparative
    Example Comparative Example Example Example
    12 Example 3 4 14
    Item Unit E 13 T S F
    HFO-1132(E) mass % 53.4 43.4 34.8 25.4 0.0
    HFO-1123 mass % 46.6 47.1 51.0 56.2 74.1
    R32 mass % 0.0 9.5 14.2 18.4 25.9
    GWP 1 65 97 125 176
    COP ratio % (relative to 94.5 94.5 94.5 94.5 94.5
    R410A)
    Refrigerating % (relative to 105.6 109.2 110.8 112.3 114.8
    capacity ratio R410A)
  • TABLE 150
    Comparative Comparative
    Example Example Example
    15 Example 6 Example 16
    Item Unit G 5 R 7 H
    HFO-1132(E) mass % 38.5 31.5 23.1 16.9 0.0
    HFO-1123 mass % 61.5 63.5 67.4 71.1 84.2
    R32 mass % 0.0 5.0 9.5 12.0 15.8
    GWP 1 35 65 82 107
    COP ratio % (relative to 93.0 93.0 93.0 93.0 93.0
    R410A)
    Refrigerating % (relative to 107.0 109.1 110.9 111.9 113.2
    capacity ratio R410A)
  • TABLE 151
    Comparative Comparative
    Example Example Example Comparative Example
    17 8 9 Example 19
    Item Unit I J K 18 L
    HFO-1132(E) mass % 72.0 57.7 48.4 41.1 35.5
    HFO-1123 mass % 28.0 32.8 33.2 31.2 27.5
    R32 mass % 0.0 9.5 18.4 27.7 37.0
    GWP 1 65 125 188 250
    COP ratio % (relative to 96.6 95.8 95.9 96.4 97.1
    R410A)
    Refrigerating % (relative to 103.1 107.4 110.1 112.1 113.2
    capacity ratio R410A)
  • TABLE 152
    Compar-
    ative Ex- Ex- Ex- Ex-
    ample ample ample ample
    20 10 11 12
    Item Unit M N P Q
    HFO-1132(E) mass % 47.1 38.5 31.8 28.6
    HFO-1123 mass % 52.9 52.1 49.8 34.4
    R32 mass % 0.0 9.5 18.4 37.0
    GWP 1 65 125 250
    COP ratio % (relative to 93.9 94.1 94.7 96.9
    R410A)
    Refrigerating % (relative to 106.2 109.7 112.0 114.1
    capacity ratio R410A)
  • TABLE 153
    Comparative Comparative Comparative Exam- Exam- Exam- Comparative Comparative
    Item Unit Example 22 Example 23 Example 24 ple 14 ple 15 ple 16 Example 25 Example 26
    HFO- mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
    1132(E)
    HFO-1123 mass % 85.0 75.0 65.0 55.0 45.0 35.0 25.0 15.0
    R32 mass % 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
    GWP 35 35 35 35 35 35 35 35
    COP ratio % (relative to 91.7 92.2 92.9 93.7 94.6 95.6 96.7 97.7
    R410A)
    Refrigerating % (relative to 110.1 109.8 109.2 108.4 107.4 106.1 104.7 103.1
    capacity R410A)
    ratio
  • TABLE 154
    Comparative Comparative Comparative Exam- Exam- Exam- Comparative Comparative
    Item Unit Example 27 Example 28 Example 29 ple 17 ple 18 ple 19 Example 30 Example 31
    HFO- mass % 90.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0
    1132(E)
    HFO-1123 mass % 5.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0
    R32 mass % 5.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
    GWP 35 68 68 68 68 68 68 68
    COP ratio % (relative to 98.8 92.4 92.9 93.5 94.3 95.1 96.1 97.0
    R410A)
    Refrigerating % (relative to 101.4 111.7 111.3 110.6 109.6 108.5 107.2 105.7
    capacity R410A)
    ratio
  • TABLE 155
    Comparative Exam- Exam- Exam- Exam- Exam- Comparative Comparative
    Item Unit Example 32 ple 20 ple 21 ple 22 ple 23 ple 24 Example 33 Example 34
    HFO- mass % 80.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0
    1132(E)
    HFO-1123 mass % 10.0 75.0 65.0 55.0 45.0 35.0 25.0 15.0
    R32 mass % 10.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0
    GWP 68 102 102 102 102 102 102 102
    COP ratio % (relative to 98.0 93.1 93.6 94.2 94.9 95.6 96.5 97.4
    R410A)
    Refrigerating % (relative to 104.1 112.9 112.4 111.6 110.6 109.4 108.1 106.6
    capacity R410A)
    ratio
  • TABLE 156
    Comparative Comparative Comparative Comparative Comparative Comparative Comparative Comparative
    Item Unit Example 35 Example 36 Example 37 Example 38 Example 39 Example 40 Example 41 Example 42
    HFO- mass % 80.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0
    1132(E)
    HFO-1123 mass % 5.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0
    R32 mass % 15.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
    GWP 102 136 136 136 136 136 136 136
    COP ratio % (relative to 98.3 93.9 94.3 94.8 95.4 96.2 97.0 97.8
    R410A)
    Refrigerating % (relative to 105.0 113.8 113.2 112.4 111.4 110.2 108.8 107.3
    capacity R410A)
    ratio
  • TABLE 157
    Comparative Comparative Comparative Comparative Comparative Comparative Comparative Comparative
    Item Unit Example 43 Example 44 Example 45 Example 46 Example 47 Example 48 Example 49 Example 50
    HFO- mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 10.0
    1132(E)
    HFO-1123 mass % 65.0 55.0 45.0 35.0 25.0 15.0 5.0 60.0
    R32 mass % 25.0 25.0 25.0 25.0 25.0 25.0 25.0 30.0
    GWP 170 170 170 170 170 170 170 203
    COP ratio % (relative to 94.6 94.9 95.4 96.0 96.7 97.4 98.2 95.3
    R410A)
    Refrigerating % (relative to 114.1 113.8 113.0 111.9 110.7 109.4 107.9 114.8
    capacity R410A)
    ratio
  • TABLE 158
    Comparative Comparative Comparative Comparative Comparative Exam- Exam- Comparative
    Item Unit Example 51 Example 52 Example 53 Example 54 Example 55 ple 25 ple 26 Example 56
    HFO- mass % 20.0 30.0 40.0 50.0 60.0 10.0 20.0 30.0
    1132(E)
    HFO-1123 mass % 50.0 40.0 30.0 20.0 10.0 55.0 45.0 35.0
    R32 mass % 30.0 30.0 30.0 30.0 30.0 35.0 35.0 35.0
    GWP 203 203 203 203 203 237 237 237
    COP ratio % (relative to 95.6 96.0 96.6 97.2 97.9 96.0 96.3 96.6
    R410A)
    Refrigerating % (relative to 114.2 113.4 112.4 111.2 109.8 115.1 114.5 113.6
    capacity R410A)
    ratio
  • TABLE 159
    Comparative Comparative Comparative Comparative Comparative Comparative Comparative Comparative
    Item Unit Example 57 Example 58 Example 59 Example 60 Example 61 Example 62 Example 63 Example 64
    HFO- mass % 40.0 50.0 60.0 10.0 20.0 30.0 40.0 50.0
    1132(E)
    HFO-1123 mass % 25.0 15.0 5.0 50.0 40.0 30.0 20.0 10.0
    R32 mass % 35.0 35.0 35.0 40.0 40.0 40.0 40.0 40.0
    GWP 237 237 237 271 271 271 271 271
    COP ratio % (relative to 97.1 97.9 98.3 96.6 96.9 97.2 97.7 98.2
    R410A)
    Refrigerating % (relative to 112.6 111.5 110.2 115.1 114.6 113.8 112.8 111.7
    capacity R410A)
    ratio
  • TABLE 160
    Exam- Exam- Exam- Exam- Exam- Exam- Exam- Exam-
    Item Unit ple 27 ple 28 ple 29 ple 30 ple 31 ple 32 ple 33 ple 34
    HFO- mass % 38.0 40.0 42.0 44.0 35.0 37.0 39.0 41.0
    1132(E)
    HFO-1123 mass % 60.0 58.0 56.0 54.0 61.0 59.0 57.0 55.0
    R32 mass % 2.0 2.0 2.0 2.0 4.0 4.0 4.0 4.0
    GWP 14 14 14 14 28 28 28 28
    COP ratio % (relative to 93.2 93.4 93.6 93.7 93.2 93.3 93.5 93.7
    R410A)
    Refrigerating % (relative to 107.7 107.5 107.3 107.2 108.6 108.4 108.2 108.0
    capacity R410A)
    ratio
  • TABLE 161
    Exam- Exam- Exam- Exam- Exam- Exam- Exam- Exam-
    Item Unit ple 35 ple 36 ple 37 ple 38 ple 39 ple 40 ple 41 ple 42
    HFO- mass % 43.0 31.0 33.0 35.0 37.0 39.0 41.0 27.0
    1132(E)
    HFO-1123 mass % 53.0 63.0 61.0 59.0 57.0 55.0 53.0 65.0
    R32 mass % 4.0 6.0 6.0 6.0 6.0 6.0 6.0 8.0
    GWP 28 41 41 41 41 41 41 55
    COP ratio % (relative to 93.9 93.1 93.2 93.4 93.6 93.7 93.9 93.0
    R410A)
    Refrigerating % (relative to 107.8 109.5 109.3 109.1 109.0 108.8 108.6 110.3
    capacity R410A)
    ratio
  • TABLE 162
    Exam- Exam- Exam- Exam- Exam- Exam- Exam- Exam-
    Item Unit ple 43 ple 44 ple 45 ple 46 ple 47 ple 48 ple 49 ple 50
    HFO- mass % 29.0 31.0 33.0 35.0 37.0 39.0 32.0 32.0
    1132(E)
    HFO-1123 mass % 63.0 61.0 59.0 57.0 55.0 53.0 51.0 50.0
    R32 mass % 8.0 8.0 8.0 8.0 8.0 8.0 17.0 18.0
    GWP 55 55 55 55 55 55 116 122
    COP ratio % (relative to 93.2 93.3 93.5 93.6 93.8 94.0 94.5 94.7
    R410A)
    Refrigerating % (relative to 110.1 110.0 109.8 109.6 109.5 109.3 111.8 111.9
    capacity R410A)
    ratio
  • TABLE 163
    Exam- Exam- Exam- Exam- Exam- Exam- Exam- Exam-
    Item Unit ple 51 ple 52 ple 53 ple 54 ple 55 ple 56 ple 57 ple 58
    HFO- mass % 30.0 27.0 21.0 23.0 25.0 27.0 11.0 13.0
    1132(E)
    HFO-1123 mass % 52.0 42.0 46.0 44.0 42.0 40.0 54.0 52.0
    R32 mass % 18.0 31.0 33.0 33.0 33.0 33.0 35.0 35.0
    GWP 122 210 223 223 223 223 237 237
    COP ratio % (relative to 94.5 96.0 96.0 96.1 96.2 96.3 96.0 96.0
    R410A)
    Refrigerating % (relative to 112.1 113.7 114.3 114.2 114.0 113.8 115.0 114.9
    capacity R410A)
    ratio
  • TABLE 164
    Exam- Exam- Exam- Exam- Exam- Exam- Exam- Exam-
    Item Unit ple 59 ple 60 ple 61 ple 62 ple 63 ple 64 ple 65 ple 66
    HFO- mass % 15.0 17.0 19.0 21.0 23.0 25.0 27.0 11.0
    1132(E)
    HFO-1123 mass % 50.0 48.0 46.0 44.0 42.0 40.0 38.0 52.0
    R32 mass % 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0
    GWP 237 237 237 237 237 237 237 250
    COP ratio % (relative to 96.1 96.2 96.2 96.3 96.4 96.4 96.5 96.2
    R410A)
    Refrigerating % (relative to 114.8 114.7 114.5 114.4 114.2 114.1 113.9 115.1
    capacity R410A)
    ratio
  • TABLE 165
    Exam- Exam- Exam- Exam- Exam- Exam- Exam- Exam-
    Item Unit ple 67 ple 68 ple 69 ple 70 ple 71 ple 72 ple 73 ple 74
    HFO- mass % 13.0 15.0 17.0 15.0 17.0 19.0 21.0 23.0
    1132(E)
    HFO-1123 mass % 50.0 48.0 46.0 50.0 48.0 46.0 44.0 42.0
    R32 mass % 37.0 37.0 37.0 0.0 0.0 0.0 0.0 0.0
    GWP 250 250 250 237 237 237 237 237
    COP ratio % (relative to 96.3 96.4 96.4 96.1 96.2 96.2 96.3 96.4
    R410A)
    Refrigerating % (relative to 115.0 114.9 114.7 114.8 114.7 114.5 114.4 114.2
    capacity R410A)
    ratio
  • TABLE 166
    Exam- Exam- Exam- Exam- Exam- Exam- Exam- Exam-
    Item Unit ple 75 ple 76 ple 77 ple 78 ple 79 ple 80 ple 81 ple 82
    HFO- mass % 25.0 27.0 11.0 19.0 21.0 23.0 25.0 27.0
    1132(E)
    HFO-1123 mass % 40.0 38.0 52.0 44.0 42.0 40.0 38.0 36.0
    R32 mass % 0.0 0.0 0.0 37.0 37.0 37.0 37.0 37.0
    GWP 237 237 250 250 250 250 250 250
    COP ratio % (relative to 96.4 96.5 96.2 96.5 96.5 96.6 96.7 96.8
    R410A)
    Refrigerating % (relative to 114.1 113.9 115.1 114.6 114.5 114.3 114.1 114.0
    capacity R410A)
    ratio
  • The above results indicate that under the condition that the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, and the point (0.0, 100.0, 0.0) is on the left side are within the range of a figure surrounded by line segments that connect the following 4 points:
  • point O (100.0, 0.0, 0.0),
    point A″ (63.0, 0.0, 37.0),
    point B″ (0.0, 63.0, 37.0), and
    point (0.0, 100.0, 0.0),
    or on these line segments,
    the refrigerant has a GWP of 250 or less.
  • The results also indicate that when coordinates (x,y,z) are within the range of a figure surrounded by line segments that connect the following 4 points:
  • point O (100.0, 0.0, 0.0),
    point A′ (81.6, 0.0, 18.4),
    point B′ (0.0, 81.6, 18.4), and
    point (0.0, 100.0, 0.0),
    or on these line segments,
    the refrigerant has a GWP of 125 or less.
  • The results also indicate that when coordinates (x,y,z) are within the range of a figure surrounded by line segments that connect the following 4 points:
  • point O (100.0, 0.0, 0.0),
    point A (90.5, 0.0, 9.5),
    point B (0.0, 90.5, 9.5), and
    point (0.0, 100.0, 0.0),
    or on these line segments,
    the refrigerant has a GWP of 65 or less.
  • The results also indicate that when coordinates (x,y,z) are on the left side of line segments that connect the following 3 points:
  • point C (50.0, 31.6, 18.4),
    point U (28.7, 41.2, 30.1), and
    point D (52.2, 38.3, 9.5),
    or on these line segments,
    the refrigerant has a COP ratio of 96% or more relative to that of R410A.
  • In the above, the line segment CU is represented by coordinates (−0.0538z2+0.7888z+53.701, 0.0538z2−1.7888z+46.299, z), and the line segment UD is represented by coordinates
  • (−3.4962z2+210.71z−3146.1, 3.4962z2−211.71z+3246.1, z).
  • The points on the line segment CU are determined from three points, i.e., point C, Comparative Example 10, and point U, by using the least-square method.
  • The points on the line segment UD are determined from three points, i.e., point U, Example 2, and point D, by using the least-square method.
  • The results also indicate that when coordinates (x,y,z) are on the left side of line segments that connect the following 3 points:
  • point E (55.2, 44.8, 0.0),
    point T (34.8, 51.0, 14.2), and
    point F (0.0, 76.7, 23.3),
    or on these line segments,
    the refrigerant has a COP ratio of 94.5% or more relative to that of R410A.
  • In the above, the line segment ET is represented by coordinates (−0.0547z2−0.5327z+53.4, 0.0547z2−0.4673z+46.6, z), and the line segment TF is represented by coordinates
  • (−0.0982z2+0.9622z+40.931, 0.0982z2−1.9622z+59.069, z).
  • The points on the line segment ET are determined from three points, i.e., point E, Example 2, and point T, by using the least-square method.
  • The points on the line segment TF are determined from three points, i.e., points T, S, and F, by using the least-square method.
  • The results also indicate that when coordinates (x,y,z) are on the left side of line segments that connect the following 3 points:
  • point G (0.0, 76.7, 23.3),
    point R (21.0, 69.5, 9.5), and
    point H (0.0, 85.9, 14.1),
    or on these line segments,
    the refrigerant has a COP ratio of 93% or more relative to that of R410A.
  • In the above, the line segment GR is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and the line segment RH is represented by coordinates
  • (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z).
  • The points on the line segment GR are determined from three points, i.e., point G, Example 5, and point R, by using the least-square method.
  • The points on the line segment RH are determined from three points, i.e., point R, Example 7, and point H, by using the least-square method.
  • In contrast, as shown in, for example, Comparative Examples 8, 9, 13, 15, 17, and 18, when R32 is not contained, the concentrations of HFO-1132(E) and HFO-1123, which have a double bond, become relatively high; this undesirably leads to deterioration, such as decomposition, or polymerization in the refrigerant compound.
  • The embodiments of the present disclosure have been described, but it should be understood that configurations and details can be modified in various ways without departing from the spirit and scope of the present disclosure as defined in the claims.
  • REFERENCE SIGNS LIST
      • 1 air conditioner (refrigeration cycle apparatus)
      • 4 compressor
      • 5 outdoor heat exchanger (condenser, evaporator)
      • 6 expansion valve (decompressing unit)
      • 7 indoor heat exchanger (evaporator, condenser)
      • 10 refrigerant circuit
    CITATION LIST Patent Literature
    • [PTL 1] International Publication No. 2015/141678

Claims (32)

1. A refrigeration cycle apparatus comprising a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
wherein the refrigerant contains trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).
2. The refrigeration cycle apparatus according to claim 1,
wherein
when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments AA′, A′B, BD, DC′, C′C, CO, and OA that connect the following 7 points:
point A (68.6, 0.0, 31.4),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point D (0.0, 80.4, 19.6),
point C′ (19.5, 70.5, 10.0),
point C (32.9, 67.1, 0.0), and
point O (100.0, 0.0, 0.0),
or on the above line segments (excluding the points on the line segments BD, CO, and OA);
the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
the line segments BD, CO, and OA are straight lines.
3. The refrigeration cycle apparatus according to claim 1,
wherein
when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments GI, IA, AA′, A′B, BD, DC′, C′C, and CG that connect the following 8 points:
point G (72.0, 28.0, 0.0),
point I (72.0, 0.0, 28.0),
point A (68.6, 0.0, 31.4),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point D (0.0, 80.4, 19.6),
point C′ (19.5, 70.5, 10.0), and
point C (32.9, 67.1, 0.0),
or on the above line segments (excluding the points on the line segments IA, BD, and CG);
the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
the line segments GI, IA, BD, and CG are straight lines.
4. The refrigeration cycle apparatus according to claim 1,
wherein
when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PN, NK, KA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
point J (47.1, 52.9, 0.0),
point P (55.8, 42.0, 2.2),
point N (68.6, 16.3, 15.1),
point K (61.3, 5.4, 33.3),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point D (0.0, 80.4, 19.6),
point C′ (19.5, 70.5, 10.0), and
point C (32.9, 67.1, 0.0),
or on the above line segments (excluding the points on the line segments BD and CJ);
the line segment PN is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
the line segment NK is represented by coordinates (x, 0.2421x2−29.955x+931.91, −0.2421x2+28.955x−831.91),
the line segment KA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
the line segments JP, BD, and CG are straight lines.
5. The refrigeration cycle apparatus according to claim 1,
wherein
when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PL, LM, MA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
point J (47.1, 52.9, 0.0),
point P (55.8, 42.0, 2.2),
point L (63.1, 31.9, 5.0),
point M (60.3, 6.2, 33.5),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point D (0.0, 80.4, 19.6),
point C′ (19.5, 70.5, 10.0), and
point C (32.9, 67.1, 0.0),
or on the above line segments (excluding the points on the line segments BD and CJ);
the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43)
the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
the line segments JP, LM, BD, and CG are straight lines.
6. The refrigeration cycle apparatus according to claim 1,
wherein
when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LM, MA′, A′B, BF, FT, and TP that connect the following 7 points:
point P (55.8, 42.0, 2.2),
point L (63.1, 31.9, 5.0),
point M (60.3, 6.2, 33.5),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point F (0.0, 61.8, 38.2), and
point T (35.8, 44.9, 19.3),
or on the above line segments (excluding the points on the line segment BF);
the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2),
the line segment TP is represented by coordinates x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and
the line segments LM and BF are straight lines.
7. The refrigeration cycle apparatus according to claim 1,
wherein
when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LQ, QR, and RP that connect the following 4 points:
point P (55.8, 42.0, 2.2),
point L (63.1, 31.9, 5.0),
point Q (62.8, 29.6, 7.6), and
point R (49.8, 42.3, 7.9),
or on the above line segments;
the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
the line segment RP is represented by coordinates x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and
the line segments LQ and QR are straight lines.
8. The refrigeration cycle apparatus according to claim 1,
wherein
when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments SM, MA′, A′B, BF, FT, and TS that connect the following 6 points:
point S (62.6, 28.3, 9.1),
point M (60.3, 6.2, 33.5),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point F (0.0, 61.8, 38.2), and
point T (35.8, 44.9, 19.3),
or on the above line segments,
the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2),
the line segment TS is represented by coordinates x, −0.0017x2−0.7869x+70.888, −0.0017x2−0.2131x+29.112), and
the line segments SM and BF are straight lines.
9. A refrigeration cycle apparatus comprising a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)) and trifluoroethylene (HFO-1123) in a total amount of 99.5 mass % or more based on the entire refrigerant, and
the refrigerant comprises 62.0 mass % to 72.0 mass % of HFO-1132(E) based on the entire refrigerant.
10. A refrigeration cycle apparatus comprising a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)) and trifluoroethylene (HFO-1123) in a total amount of 99.5 mass % or more based on the entire refrigerant, and
the refrigerant comprises 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire refrigerant.
11. A refrigeration cycle apparatus comprising a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32),
wherein when the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum in the refrigerant is respectively represented by x, y, z, and a,
if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass % are within the range of a figure surrounded by straight lines GI, IA, AB, BD′, D′C, and CG that connect the following 6 points:
point G (0.026a2−1.7478a+72.0, −0.026a2+0.7478a+28.0, 0.0),
point I (0.026a2−1.7478a+72.0, 0.0, −0.026a2+0.7478a+28.0),
point A (0.0134a2−1.9681a+68.6, 0.0, −0.0134a2+0.9681a+31.4),
point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3),
point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6), and
point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0),
or on the straight lines GI, AB, and D′C (excluding point G, point I, point A, point B, point D′, and point C);
if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
point G (0.02a2−1.6013a+71.105, −0.02a2+0.6013a+28.895, 0.0),
point I (0.02a2−1.6013a+71.105, 0.0, −0.02a2+0.6013a+28.895),
point A (0.0112a2−1.9337a+68.484, 0.0, −0.0112a2+0.9337a+31.516),
point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801), and
point W (0.0, 100.0−a, 0.0),
or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);
if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
point G (0.0135a2−1.4068a+69.727, −0.0135a2+0.4068a+30.273, 0.0),
point I (0.0135a2−1.4068a+69.727, 0.0, −0.0135a2+0.4068a+30.273),
point A (0.0107a2−1.9142a+68.305, 0.0, −0.0107a2+0.9142a+31.695),
point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682), and
point W (0.0, 100.0−a, 0.0),
or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);
if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
point G (0.0111a2−1.3152a+68.986, −0.0111a2+0.3152a+31.014, 0.0),
point I (0.0111a2−1.3152a+68.986, 0.0, −0.0111a2+0.3152a+31.014),
point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207),
point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714), and
point W (0.0, 100.0−a, 0.0),
or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W); and
if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
point G (0.0061a2−0.9918a+63.902, −0.0061a2−0.0082a+36.098, 0.0),
point I (0.0061a2−0.9918a+63.902, 0.0, −0.0061a2−0.0082a+36.098),
point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9),
point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05), and
point W (0.0, 100.0−a, 0.0),
or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W).
12. A refrigeration cycle apparatus comprising a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32),
wherein
when the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum in the refrigerant is respectively represented by x, y, z, and a,
if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass % are within the range of a figure surrounded by straight lines JK′, K′B, BD′, D′C, and CJ that connect the following 5 points:
point J (0.0049a2−0.9645a+47.1, −0.0049a2−0.0355a+52.9, 0.0),
point K′ (0.0514a2−2.4353a+61.7, −0.0323a2+0.4122a+5.9, −0.0191a2+1.0231a+32.4),
point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3),
point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6), and
point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0),
or on the straight lines JK′, K′B, and D′C (excluding point J, point B, point D′, and point C);
if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
point J (0.0243a2−1.4161a+49.725, −0.0243a2+0.4161a+50.275, 0.0),
point K′ (0.0341a2−2.1977a+61.187, −0.0236a2+0.34a+5.636,−0.0105a2+0.8577a+33.177),
point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801), and
point W (0.0, 100.0−a, 0.0),
or on the straight lines JK′ and K′B (excluding point J, point B, and point W);
if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
point J (0.0246a2−1.4476a+50.184, −0.0246a2+0.4476a+49.816, 0.0),
point K′ (0.0196a2−1.7863a+58.515, −0.0079a2−0.1136a+8.702, −0.0117a2+0.8999a+32.783),
point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682), and
point W (0.0, 100.0−a, 0.0),
or on the straight lines JK′ and K′B (excluding point J, point B, and point W);
if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
point J (0.0183a2−1.1399a+46.493, −0.0183a2+0.1399a+53.507, 0.0),
point K′ (−0.0051a2+0.0929a+25.95, 0.0, 0.0051a2−1.0929a+74.05),
point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207),
point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714), and
point W (0.0, 100.0−a, 0.0),
or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W); and
if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
point J (−0.0134a2+1.0956a+7.13, 0.0134a2−2.0956a+92.87, 0.0),
point K′ (−1.892a+29.443, 0.0, 0.892a+70.557),
point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9),
point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05), and
point W (0.0, 100.0−a, 0.0),
or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W).
13. A refrigeration cycle apparatus comprising a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf),
wherein
when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments IJ, JN, NE, and EI that connect the following 4 points:
point I (72.0, 0.0, 28.0),
point J (48.5, 18.3, 33.2),
point N (27.7, 18.2, 54.1), and
point E (58.3, 0.0, 41.7),
or on these line segments (excluding the points on the line segment EI;
the line segment U is represented by coordinates (0.0236y2−1.7616y+72.0, y, −0.0236y2+0.7616y+28.0);
the line segment NE is represented by coordinates (0.012y2−1.9003y+58.3, y, −0.012y2+0.9003y+41.7); and
the line segments JN and EI are straight lines.
14. A refrigeration cycle apparatus comprising a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf),
wherein
when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments MM′, M′N, NV, VG, and GM that connect the following 5 points:
point M (52.6, 0.0, 47.4),
point M′(39.2, 5.0, 55.8),
point N (27.7, 18.2, 54.1),
point V (11.0, 18.1, 70.9), and
point G (39.6, 0.0, 60.4),
or on these line segments (excluding the points on the line segment GM);
the line segment MM′ is represented by coordinates 0.132y2−3.34y+52.6, y, −0.132y2+2.34y+47.4);
the line segment M′N is represented by coordinates 0.0596y2−2.2541y+48.98, y, −0.0596y2+1.2541y+51.02);
the line segment VG is represented by coordinates (0.0123y2−1.8033y+39.6, y, −0.0123y2+0.8033y+60.4); and
the line segments NV and GM are straight lines.
15. A refrigeration cycle apparatus comprising a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf),
wherein
when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ON, NU, and UO that connect the following 3 points:
point O (22.6, 36.8, 40.6),
point N (27.7, 18.2, 54.1), and
point U (3.9, 36.7, 59.4),
or on these line segments;
the line segment ON is represented by coordinates (0.0072y2−0.6701y+37.512, y, −0.0072y2−0.3299y+62.488);
the line segment NU is represented by coordinates (0.0083y2−1.7403y+56.635, y, −0.0083y2+0.7403y+43.365); and
the line segment UO is a straight line.
16. A refrigeration cycle apparatus comprising a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf),
wherein
when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments QR, RT, TL, LK, and KQ that connect the following 5 points:
point Q (44.6, 23.0, 32.4),
point R (25.5, 36.8, 37.7),
point T (8.6, 51.6, 39.8),
point L (28.9, 51.7, 19.4), and
point K (35.6, 36.8, 27.6),
or on these line segments;
the line segment QR is represented by coordinates (0.0099y2−1.975y+84.765, y, −0.0099y2+0.975y+15.235);
the line segment RT is represented by coordinates 0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874);
the line segment LK is represented by coordinates (0.0049y2−0.8842y+61.488, y, −0.0049y2−0.1158y+38.512);
the line segment KQ is represented by coordinates (0.0095y2−1.2222y+67.676, y, −0.0095y2+0.2222y+32.324); and
the line segment TL is a straight line.
17. A refrigeration cycle apparatus comprising a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf),
wherein
when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:
point P (20.5, 51.7, 27.8),
point S (21.9, 39.7, 38.4), and
point T (8.6, 51.6, 39.8),
or on these line segments;
the line segment PS is represented by coordinates (0.0064y2−0.7103y+40.1, y, −0.0064y2−0.2897y+59.9);
the line segment ST is represented by coordinates 0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874); and
the line segment TP is a straight line.
18. A refrigeration cycle apparatus comprising a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
wherein
when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IK, KB′, B′H, HR, RG, and GI that connect the following 6 points:
point I (72.0, 28.0, 0.0),
point K (48.4, 33.2, 18.4),
point B′ (0.0, 81.6, 18.4),
point H (0.0, 84.2, 15.8),
point R (23.1, 67.4, 9.5), and
point G (38.5, 61.5, 0.0),
or on these line segments (excluding the points on the line segments B′H and GI);
the line segment IK is represented by coordinates (0.025z2−1.7429z+72.00, −0.025z2+0.7429z+28.0, z),
the line segment HR is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z),
the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
the line segments KB′ and GI are straight lines.
19. A refrigeration cycle apparatus comprising a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
wherein
when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments U, JR, RG, and GI that connect the following 4 points:
point I (72.0, 28.0, 0.0),
point J (57.7, 32.8, 9.5),
point R (23.1, 67.4, 9.5), and
point G (38.5, 61.5, 0.0),
or on these line segments (excluding the points on the line segment GI);
the line segment U is represented by coordinates (0.025z2−1.7429z+72.0, −0.025z2+0.7429z+28.0, z),
the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
the line segments JR and GI are straight lines.
20. A refrigeration cycle apparatus comprising a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
wherein
when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MP, PB′, B′H, HR, RG, and GM that connect the following 6 points:
point M (47.1, 52.9, 0.0),
point P (31.8, 49.8, 18.4),
point B′ (0.0, 81.6, 18.4),
point H (0.0, 84.2, 15.8),
point R (23.1, 67.4, 9.5), and
point G (38.5, 61.5, 0.0),
or on these line segments (excluding the points on the line segments B′H and GM);
the line segment MP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z),
the line segment HR is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z),
the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
the line segments PB′ and GM are straight lines.
21. A refrigeration cycle apparatus comprising a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
wherein
when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MN, NR, RG, and GM that connect the following 4 points:
point M (47.1, 52.9, 0.0),
point N (38.5, 52.1, 9.5),
point R (23.1, 67.4, 9.5), and
point G (38.5, 61.5, 0.0),
or on these line segments (excluding the points on the line segment GM);
the line segment MN is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z),
the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
the line segments JR and GI are straight lines.
22. A refrigeration cycle apparatus comprising a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
wherein
when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:
point P (31.8, 49.8, 18.4),
point S (25.4, 56.2, 18.4), and
point T (34.8, 51.0, 14.2),
or on these line segments;
the line segment ST is represented by coordinates (−0.0982z2+0.9622z+40.931, 0.0982z2−1.9622z+59.069, z),
the line segment TP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z), and
the line segment PS is a straight line.
23. A refrigeration cycle apparatus comprising a working fluid for a refrigerating machine that contains a refrigerant composition containing a refrigerant and that contains a refrigerating oil,
wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
wherein
when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments QB″, B″D, DU, and UQ that connect the following 4 points:
point Q (28.6, 34.4, 37.0),
point B″ (0.0, 63.0, 37.0),
point D (0.0, 67.0, 33.0), and
point U (28.7, 41.2, 30.1),
or on these line segments (excluding the points on the line segment B″D);
the line segment DU is represented by coordinates (−3.4962z2+210.71z−3146.1, 3.4962z2−211.71z+3246.1, z),
the line segment UQ is represented by coordinates (0.0135z2−0.9181z+44.133, −0.0135z2−0.0819z+55.867, z), and
the line segments QB″ and B″D are straight lines.
24. The refrigeration cycle apparatus according to claim 1,
wherein the refrigerating oil has a kinematic viscosity at 40° C. of 1 mm2/s or more and 750 mm2/s or less.
25. The refrigeration cycle apparatus according to claim 1,
wherein the refrigerating oil has a kinematic viscosity at 100° C. of 1 mm2/s or more and 100 mm2/s or less.
26. The refrigeration cycle apparatus according to claim 1,
wherein the refrigerating oil has a volume resistivity at 25° C. of 1.0×1012 Ω·cm or more.
27. The refrigeration cycle apparatus according to claim 1,
wherein the refrigerating oil has an acid number of 0.1 mgKOH/g or less.
28. The refrigeration cycle apparatus according to claim 1,
wherein the refrigerating oil has an ash content of 100 ppm or less.
29. The refrigeration cycle apparatus according to claim 1,
wherein the refrigerating oil has an aniline point of −100° C. or higher and 0° C. or lower.
30. The refrigeration cycle apparatus according to claim 1, comprising:
a refrigerant circuit which includes a compressor, a condenser, a decompressing unit, and an evaporator connected to each other through a refrigerant pipe and through which the working fluid for a refrigerating machine circulates.
31. The refrigeration cycle apparatus according to claim 1,
wherein a content of the refrigerating oil in the working fluid for a refrigerating machine is 5 mass % or more and 60 mass % or less.
32. The refrigeration cycle apparatus according to claim 1,
wherein the refrigerating oil contains at least one additive selected from an acid scavenger, an extreme pressure agent, an antioxidant, an antifoaming agent, an oiliness improver, a metal deactivator, an anti-wear agent, and a compatibilizer, and
a content of the additive is 5 mass % or less relative to a mass of the refrigerating oil containing the additive.
US16/954,631 2017-12-18 2018-11-13 Refrigeration cycle apparatus Abandoned US20200392389A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/913,358 US20200332164A1 (en) 2017-12-18 2020-07-13 Refrigeration cycle apparatus

Applications Claiming Priority (19)

Application Number Priority Date Filing Date Title
JP2017242183 2017-12-18
JP2017242185 2017-12-18
JP2017-242186 2017-12-18
JP2017-242187 2017-12-18
JP2017242187 2017-12-18
JP2017-242185 2017-12-18
JP2017-242183 2017-12-18
JP2017242186 2017-12-18
PCT/JP2018/037483 WO2019123782A1 (en) 2017-12-18 2018-10-05 Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
JPPCT/JP2018/037483 2018-10-05
JPPCT/JP2018/038747 2018-10-17
JPPCT/JP2018/038749 2018-10-17
PCT/JP2018/038749 WO2019123807A1 (en) 2017-12-18 2018-10-17 Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
JPPCT/JP2018/038746 2018-10-17
PCT/JP2018/038746 WO2019123804A1 (en) 2017-12-18 2018-10-17 Refrigerant-containing composition, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
JPPCT/JP2018/038748 2018-10-17
PCT/JP2018/038747 WO2019123805A1 (en) 2017-12-18 2018-10-17 Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
PCT/JP2018/038748 WO2019123806A1 (en) 2017-12-18 2018-10-17 Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
PCT/JP2018/042027 WO2019123897A1 (en) 2017-12-18 2018-11-13 Refrigeration cycle device

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/042027 A-371-Of-International WO2019123897A1 (en) 2017-12-18 2018-11-13 Refrigeration cycle device
US16/911,816 Continuation-In-Part US20200347283A1 (en) 2017-12-18 2020-06-25 Refrigerating oil for refrigerant or refrigerant composition, method for using refrigerating oil, and use of refrigerating oil

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/913,358 Continuation-In-Part US20200332164A1 (en) 2017-12-18 2020-07-13 Refrigeration cycle apparatus
US17/358,406 Continuation-In-Part US20220389299A1 (en) 2017-12-18 2021-06-25 Refrigeration cycle apparatus

Publications (1)

Publication Number Publication Date
US20200392389A1 true US20200392389A1 (en) 2020-12-17

Family

ID=66992715

Family Applications (22)

Application Number Title Priority Date Filing Date
US16/954,651 Abandoned US20200339856A1 (en) 2017-12-18 2018-11-13 Refrigerating oil for refrigerant or refrigerant composition, method for using refrigerating oil, and use of refrigerating oil
US16/954,631 Abandoned US20200392389A1 (en) 2017-12-18 2018-11-13 Refrigeration cycle apparatus
US16/955,465 Abandoned US20210003323A1 (en) 2017-12-18 2018-12-10 Refrigeration cycle apparatus
US16/954,973 Abandoned US20200333051A1 (en) 2017-12-18 2018-12-10 Refrigeration cycle
US16/954,669 Abandoned US20210164703A1 (en) 2017-12-18 2018-12-10 Air-conditioning unit
US16/954,613 Abandoned US20200309437A1 (en) 2017-12-18 2018-12-10 Refrigeration cycle apparatus and method of determining refrigerant enclosure amount in refrigeration cycle apparatus
US16/954,956 Abandoned US20200378662A1 (en) 2017-12-18 2018-12-11 Air conditioning apparatus
US16/954,967 Abandoned US20200309411A1 (en) 2017-12-18 2018-12-13 Warm-water generating apparatus
US16/955,218 Abandoned US20200333049A1 (en) 2017-12-18 2018-12-13 Refrigeration apparatus
US16/772,927 Abandoned US20210163804A1 (en) 2017-12-18 2018-12-17 Refrigeration cycle apparatus
US16/954,718 Abandoned US20200386459A1 (en) 2017-12-18 2018-12-17 Heat exchange unit
US16/954,745 Abandoned US20210095897A1 (en) 2017-12-18 2018-12-17 Heat source unit and refrigeration cycle apparatus
US16/955,222 Abandoned US20200333041A1 (en) 2017-12-18 2018-12-17 Refrigeration cycle apparatus
US16/772,961 Abandoned US20210164701A1 (en) 2017-12-18 2018-12-18 Air conditioner
US16/772,953 Abandoned US20210164698A1 (en) 2017-12-18 2018-12-18 Air conditioner
US16/954,679 Abandoned US20200309419A1 (en) 2017-12-18 2018-12-18 Refrigeration cycle apparatus
US16/954,702 Abandoned US20200362215A1 (en) 2017-12-18 2018-12-18 Refrigeration cycle apparatus
US16/772,976 Abandoned US20200393175A1 (en) 2017-12-18 2018-12-18 Compressor
US16/955,565 Active US11535781B2 (en) 2017-12-18 2018-12-18 Refrigeration cycle apparatus
US16/955,207 Abandoned US20200340714A1 (en) 2017-12-18 2018-12-18 Refrigeration cycle apparatus
US16/772,986 Abandoned US20200393176A1 (en) 2017-12-18 2018-12-18 Compressor
US17/991,204 Abandoned US20230097829A1 (en) 2017-12-18 2022-11-21 Refrigeration cycle apparatus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/954,651 Abandoned US20200339856A1 (en) 2017-12-18 2018-11-13 Refrigerating oil for refrigerant or refrigerant composition, method for using refrigerating oil, and use of refrigerating oil

Family Applications After (20)

Application Number Title Priority Date Filing Date
US16/955,465 Abandoned US20210003323A1 (en) 2017-12-18 2018-12-10 Refrigeration cycle apparatus
US16/954,973 Abandoned US20200333051A1 (en) 2017-12-18 2018-12-10 Refrigeration cycle
US16/954,669 Abandoned US20210164703A1 (en) 2017-12-18 2018-12-10 Air-conditioning unit
US16/954,613 Abandoned US20200309437A1 (en) 2017-12-18 2018-12-10 Refrigeration cycle apparatus and method of determining refrigerant enclosure amount in refrigeration cycle apparatus
US16/954,956 Abandoned US20200378662A1 (en) 2017-12-18 2018-12-11 Air conditioning apparatus
US16/954,967 Abandoned US20200309411A1 (en) 2017-12-18 2018-12-13 Warm-water generating apparatus
US16/955,218 Abandoned US20200333049A1 (en) 2017-12-18 2018-12-13 Refrigeration apparatus
US16/772,927 Abandoned US20210163804A1 (en) 2017-12-18 2018-12-17 Refrigeration cycle apparatus
US16/954,718 Abandoned US20200386459A1 (en) 2017-12-18 2018-12-17 Heat exchange unit
US16/954,745 Abandoned US20210095897A1 (en) 2017-12-18 2018-12-17 Heat source unit and refrigeration cycle apparatus
US16/955,222 Abandoned US20200333041A1 (en) 2017-12-18 2018-12-17 Refrigeration cycle apparatus
US16/772,961 Abandoned US20210164701A1 (en) 2017-12-18 2018-12-18 Air conditioner
US16/772,953 Abandoned US20210164698A1 (en) 2017-12-18 2018-12-18 Air conditioner
US16/954,679 Abandoned US20200309419A1 (en) 2017-12-18 2018-12-18 Refrigeration cycle apparatus
US16/954,702 Abandoned US20200362215A1 (en) 2017-12-18 2018-12-18 Refrigeration cycle apparatus
US16/772,976 Abandoned US20200393175A1 (en) 2017-12-18 2018-12-18 Compressor
US16/955,565 Active US11535781B2 (en) 2017-12-18 2018-12-18 Refrigeration cycle apparatus
US16/955,207 Abandoned US20200340714A1 (en) 2017-12-18 2018-12-18 Refrigeration cycle apparatus
US16/772,986 Abandoned US20200393176A1 (en) 2017-12-18 2018-12-18 Compressor
US17/991,204 Abandoned US20230097829A1 (en) 2017-12-18 2022-11-21 Refrigeration cycle apparatus

Country Status (9)

Country Link
US (22) US20200339856A1 (en)
EP (19) EP3730569A4 (en)
JP (22) JP7269499B2 (en)
KR (9) KR20200100681A (en)
CN (21) CN111511874A (en)
AU (11) AU2018390660B2 (en)
BR (10) BR112020011145A2 (en)
PH (10) PH12020550899A1 (en)
WO (1) WO2019124409A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220389299A1 (en) * 2017-12-18 2022-12-08 Daikin Industries, Ltd. Refrigeration cycle apparatus

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10119738B2 (en) 2014-09-26 2018-11-06 Waterfurnace International Inc. Air conditioning system with vapor injection compressor
US11839062B2 (en) 2016-08-02 2023-12-05 Munters Corporation Active/passive cooling system
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
BR112020010634A2 (en) * 2017-12-18 2020-11-10 Daikin Industries, Ltd. composition comprising refrigerant, use of the same, refrigeration machine having the same, and method for operating said refrigeration machine
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
JP6835257B2 (en) * 2017-12-18 2021-02-24 ダイキン工業株式会社 A composition containing a refrigerant, its use, a refrigerator having it, and a method of operating the refrigerator.
EP3730569A4 (en) 2017-12-18 2021-12-22 Daikin Industries, Ltd. Refrigeration cycle device
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11820933B2 (en) * 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
WO2020003341A1 (en) * 2018-06-25 2020-01-02 三菱電機株式会社 Rotor, electric motor, fan, and air conditioner
US11592215B2 (en) 2018-08-29 2023-02-28 Waterfurnace International, Inc. Integrated demand water heating using a capacity modulated heat pump with desuperheater
WO2020255198A1 (en) * 2019-06-17 2020-12-24 三菱電機株式会社 Freezing apparatus
US20210003322A1 (en) * 2019-07-02 2021-01-07 Heatcraft Refrigeration Products Llc Cooling System
EP3879207B1 (en) * 2020-03-10 2023-09-06 Trane International Inc. Refrigeration apparatuses and operating method thereof
CN115398163B (en) * 2020-04-20 2023-11-10 三菱电机株式会社 Relay and air conditioner provided with same
CN111555480B (en) * 2020-05-26 2021-04-30 安徽美芝精密制造有限公司 Motor, compressor and refrigeration plant
DE102020115275A1 (en) * 2020-06-09 2021-12-09 Stiebel Eltron Gmbh & Co. Kg Method for operating a compression refrigeration system and compression refrigeration system
CN112290783A (en) * 2020-08-31 2021-01-29 海信(山东)空调有限公司 Air conditioner and IPM module bootstrap circuit pre-charging control method
JP7108208B2 (en) * 2020-10-09 2022-07-28 ダイキン工業株式会社 Compositions containing refrigerants and methods of stabilizing compositions containing refrigerants
CN112396818B (en) * 2020-11-12 2021-09-24 贵州电网有限责任公司 Portable mobile detection terminal
US11913672B2 (en) * 2020-12-21 2024-02-27 Goodman Global Group, Inc. Heating, ventilation, and air-conditioning system with dehumidification
JP7174278B2 (en) * 2021-01-13 2022-11-17 ダイキン工業株式会社 Air conditioner and method for replacing functional parts
US11754316B2 (en) * 2021-04-26 2023-09-12 Villara Corporation Providing domestic hot water from conventional residential split system heat pumps
CN113294884B (en) * 2021-06-21 2022-04-19 宁波奥克斯电气股份有限公司 Heating control method and device and air conditioner
CN113432196B (en) * 2021-06-21 2022-10-18 深圳市科信通信技术股份有限公司 Air conditioning system
US20230015422A1 (en) * 2021-07-16 2023-01-19 Haier Us Appliance Solutions, Inc. Direct current load identification system
CN113864984B (en) * 2021-10-19 2022-11-18 宁波奥克斯电气股份有限公司 APF automatic debugging method and device for air conditioner, computer equipment and storage medium
CN114061143B (en) * 2021-11-18 2023-05-30 深圳职业技术学院 Direct heating type multifunctional heat pump water heater
WO2023164101A1 (en) * 2022-02-25 2023-08-31 The Chemours Company Fc, Llc Compositions of hfo-1234yf, hfo-1132e, and hfc-152a and systems for using the compositions
KR102548607B1 (en) * 2022-10-13 2023-06-28 지에스칼텍스 주식회사 Base oil comprising polyol ester and refrigerating machine oil composition comprising the same
CN115888163B (en) * 2022-11-22 2024-03-01 常州东立冷冻科技有限公司 Assembled full liquid evaporation cold all-in-one
CN117111533A (en) * 2023-10-09 2023-11-24 佛山市芯耀环保科技有限公司 Control circuit of ice machine, PCB and ice machine

Family Cites Families (270)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5190115A (en) 1975-02-05 1976-08-07
FR2314456A1 (en) * 1975-06-09 1977-01-07 Inst Francais Du Petrole COLD PRODUCTION PROCESS
JPS5213025A (en) 1975-07-18 1977-02-01 Nissan Motor Co Ltd Torch ignition engine
JPS57198968A (en) 1981-05-29 1982-12-06 Hitachi Ltd Heat pump type refrigerator
JPS5939790A (en) 1982-08-27 1984-03-05 Agency Of Ind Science & Technol Production of single crystal
JPS6269066A (en) 1985-09-24 1987-03-30 株式会社東芝 Refrigeration cycle device
JPS6369066A (en) 1986-09-09 1988-03-29 Nec Corp Data correcting system on unrewritable medium
JPH024163A (en) 1988-03-08 1990-01-09 Mitsubishi Electric Corp Cooling device for semiconductor element for power
EP0629687A1 (en) 1990-01-31 1994-12-21 Tonen Corporation Esters as lubricants for a haloalkane refrigerant
JP2803451B2 (en) 1991-07-12 1998-09-24 三菱電機株式会社 Refrigerant compressor, refrigerator, refrigerating air conditioner, and method of assembling refrigerant compressor
JPH05149605A (en) 1991-11-30 1993-06-15 Toshiba Corp Air conditioner
JPH05264070A (en) 1992-03-17 1993-10-12 Mitsubishi Electric Corp Outdoor apparatus of air conditioner
JP3021947B2 (en) 1992-03-24 2000-03-15 ダイキン工業株式会社 Control method of variable capacity air conditioner
JPH0719627A (en) * 1993-06-30 1995-01-20 Daikin Ind Ltd Heat exchanger for non-azeotrope refrigerant
JPH07190571A (en) * 1993-12-24 1995-07-28 Matsushita Electric Ind Co Ltd Refrigerator using non-azeotropic mixture refrigerant
CA2191108C (en) 1994-05-23 1999-09-28 Nicholas E. Schnur Method for increasing the electrical resistivity of hindered polyol ester refrigerant lubricants
JPH08200273A (en) 1995-01-30 1996-08-06 Sanyo Electric Co Ltd Scroll compressor
CN1083474C (en) * 1995-10-24 2002-04-24 顾雏军 Improved non-azeotropic operating medium using in thermal circulation
JPH10309050A (en) 1996-05-16 1998-11-17 Matsushita Electric Ind Co Ltd Compressor
JPH1046170A (en) * 1996-08-06 1998-02-17 Kao Corp Working fluid composition for refrigerator
JP3104642B2 (en) 1997-04-25 2000-10-30 ダイキン工業株式会社 Refrigeration equipment
JPH10318564A (en) 1997-05-20 1998-12-04 Fujitsu General Ltd Outdoor unit for air conditioner
JP3936027B2 (en) * 1997-06-23 2007-06-27 松下電器産業株式会社 Air conditioner
JPH11206001A (en) 1998-01-07 1999-07-30 Meidensha Corp Protector for motor
JPH11256358A (en) 1998-03-09 1999-09-21 Sanyo Electric Co Ltd Corrosion resistance copper pipe for heat exchanger
JP2000161805A (en) * 1998-11-27 2000-06-16 Daikin Ind Ltd Refrigerating apparatus
JP2000220877A (en) 1999-01-29 2000-08-08 Daikin Ind Ltd Ventilating air conditioner
JP2000234767A (en) 1999-02-10 2000-08-29 Mitsubishi Electric Corp Cooling device and cooling device of air-conditioner
JP2000304302A (en) 1999-04-19 2000-11-02 Daikin Ind Ltd Air conditioner
CN1238442A (en) * 1999-05-08 1999-12-15 三菱电机株式会社 Compressor for closed-lorp refrigenation device and assembling method thereof
EP1225213A4 (en) 1999-05-10 2006-08-23 New Japan Chem Co Ltd Lubricating oil for refrigerator, hydraulic fluid composition for refrigerator and method for lubrication of refrigerator
JP4312894B2 (en) 1999-09-09 2009-08-12 東芝キヤリア株式会社 Air conditioner indoor unit
JP2001194016A (en) 1999-10-18 2001-07-17 Daikin Ind Ltd Freezing apparatus
JP3860942B2 (en) 1999-11-18 2006-12-20 株式会社ジャパンエナジー Lubricating oil composition for refrigeration equipment, working fluid and refrigeration equipment
JP3763120B2 (en) 2000-08-09 2006-04-05 三菱電機株式会社 Air conditioner
JP2002089978A (en) 2000-09-11 2002-03-27 Daikin Ind Ltd Paired refrigerating device and multiple refrigerating device
JP3952769B2 (en) * 2001-02-19 2007-08-01 株式会社デンソー Heat pump chiller
JP2002257366A (en) * 2001-03-02 2002-09-11 Sekisui Chem Co Ltd Hot water supplying/heating system
JP2002272043A (en) 2001-03-05 2002-09-20 Daikin Ind Ltd Rotary compressor and air-conditioner provided with the compressor
JP3518518B2 (en) * 2001-03-05 2004-04-12 松下電器産業株式会社 Banknote recognition device
JP4410957B2 (en) * 2001-03-26 2010-02-10 株式会社ラブアース・テクノロジー Hybrid water heater and method
ES2362171T3 (en) 2001-03-30 2011-06-29 Sanyo Electric Co., Ltd. SYNCHRONOUS INDUCTION MOTOR, MANUFACTURING PROCEDURE AND DRIVE UNIT FOR THE SAME, AND HERMETIC ELECTRIC COMPRESSOR.
JP2003018776A (en) 2001-03-30 2003-01-17 Sanyo Electric Co Ltd Synchronous induction motor
JP3885535B2 (en) 2001-09-07 2007-02-21 株式会社デンソー Water heater
JP3690341B2 (en) 2001-12-04 2005-08-31 ダイキン工業株式会社 Brushless DC motor driving method and apparatus
TWI288519B (en) 2002-03-27 2007-10-11 Sanyo Electric Co Synchronous induction motor
JP2004028035A (en) 2002-06-28 2004-01-29 Fujitsu General Ltd Enclosed compressor
JP3925383B2 (en) 2002-10-11 2007-06-06 ダイキン工業株式会社 Hot water supply device, air conditioning hot water supply system, and hot water supply system
JP2004215406A (en) 2002-12-28 2004-07-29 Daikin Ind Ltd Motor driver for air conditioner
JP2004251535A (en) 2003-02-20 2004-09-09 Aisin Seiki Co Ltd Air conditioner
JP2004361036A (en) 2003-06-06 2004-12-24 Daikin Ind Ltd Air conditioning system
JP2005061711A (en) * 2003-08-12 2005-03-10 Osaka Gas Co Ltd Exhaust heat recovering water heater
JP2005241045A (en) 2004-02-24 2005-09-08 Sanyo Electric Co Ltd Air conditioner
JP4759226B2 (en) 2004-03-31 2011-08-31 株式会社コベルコ マテリアル銅管 Tube expansion tool and tube expansion method using the same
WO2005100866A1 (en) 2004-04-15 2005-10-27 Daikin Industries, Ltd. Air conditioner
JP4222273B2 (en) * 2004-08-03 2009-02-12 パナソニック株式会社 Heat pump water heater
JP4555671B2 (en) 2004-12-09 2010-10-06 東芝キヤリア株式会社 Air conditioner
JP2006211824A (en) 2005-01-28 2006-08-10 Mitsubishi Electric Corp Compressor
JP4591112B2 (en) 2005-02-25 2010-12-01 株式会社日立製作所 Permanent magnet rotating machine
JP4705157B2 (en) 2005-03-18 2011-06-22 キャリア・コマーシャル・リフリージレーション・インコーポレーテッド Multi-element heat exchanger
JP2006313027A (en) 2005-05-06 2006-11-16 Mitsubishi Electric Corp Ventilation air conditioner
JP2007084481A (en) * 2005-09-22 2007-04-05 Daikin Ind Ltd Preparation method of pentafluoroethane
JP3985834B2 (en) 2005-11-07 2007-10-03 ダイキン工業株式会社 Electrical component assembly, outdoor unit of air conditioner including the same, and air conditioner
CN1987264A (en) * 2005-12-22 2007-06-27 乐金电子(天津)电器有限公司 Air conditioner
JP4893251B2 (en) 2006-07-28 2012-03-07 パナソニック株式会社 Matrix converter and device equipped with the same
JP2008039305A (en) * 2006-08-07 2008-02-21 Daikin Ind Ltd Hot water circulation heating system performing heating by circulating hot water in building and water spraying device for evaporator
PL2433921T3 (en) * 2006-08-24 2014-06-30 Du Pont Processes for separation of fluoroolefins from hydrogen fluoride by azeotropic distillation
JP4859694B2 (en) 2007-02-02 2012-01-25 三菱重工業株式会社 Multistage compressor
US8672733B2 (en) 2007-02-06 2014-03-18 Nordyne Llc Ventilation airflow rate control
JP4840215B2 (en) * 2007-03-27 2011-12-21 株式会社日立製作所 Permanent magnet type rotating electric machine and compressor using the same
JP2008286422A (en) * 2007-05-15 2008-11-27 Panasonic Corp Refrigerator
JP2008295161A (en) * 2007-05-23 2008-12-04 Daikin Ind Ltd Power conversion device
JP2009063216A (en) 2007-09-06 2009-03-26 Hitachi Appliances Inc Heat exchanger and air conditioner using the same
JP2009092274A (en) * 2007-10-05 2009-04-30 Hitachi Appliances Inc Air conditioner
JP5050763B2 (en) * 2007-10-05 2012-10-17 パナソニック株式会社 Water heater
JP5038105B2 (en) * 2007-11-19 2012-10-03 パナソニック株式会社 Valve device and air conditioner having the same
JP4738401B2 (en) 2007-11-28 2011-08-03 三菱電機株式会社 Air conditioner
JP2009150620A (en) 2007-12-21 2009-07-09 Toshiba Carrier Corp Dual heat pump type air conditioning system
JP5130910B2 (en) * 2007-12-28 2013-01-30 ダイキン工業株式会社 Air conditioner and refrigerant quantity determination method
MY154195A (en) 2008-01-25 2015-05-15 Mitsubishi Electric Corp Induction motor and hermetic compressor
EP2254851B1 (en) * 2008-02-21 2016-10-26 The Chemours Company FC, LLC Azeotrope compositions comprising 3,3,3-trifluoropropene and hydrogen fluoride and processes for separation thereof
JP2009219268A (en) * 2008-03-11 2009-09-24 Daikin Ind Ltd Power conversion apparatus
JP5407157B2 (en) * 2008-03-18 2014-02-05 ダイキン工業株式会社 Refrigeration equipment
JP4471023B2 (en) 2008-06-12 2010-06-02 ダイキン工業株式会社 Air conditioner
CN102083934B (en) * 2008-07-01 2013-06-12 大金工业株式会社 Refrigerant composition comprising difluoromethane (HFC32), pentafluoroethane (HFC125) and 2,3,3,3-tetrafluoropropene (HFO1234yf)
JP4654423B2 (en) 2008-07-22 2011-03-23 独立行政法人産業技術総合研究所 Power converter
JP5128424B2 (en) * 2008-09-10 2013-01-23 パナソニックヘルスケア株式会社 Refrigeration equipment
JP2010071530A (en) 2008-09-17 2010-04-02 Daikin Ind Ltd Air conditioner
US20100082162A1 (en) 2008-09-29 2010-04-01 Actron Air Pty Limited Air conditioning system and method of control
JP2010121927A (en) * 2008-10-22 2010-06-03 Panasonic Corp Cooling cycle device
JP2010103346A (en) 2008-10-24 2010-05-06 Daido Steel Co Ltd Magnet for ipm type concentrated winding motor and method of manufacturing the same, and ipm type concentrated winding motor using the magnet
JP2010119190A (en) 2008-11-12 2010-05-27 Toyota Motor Corp Rotor for magnet-embedded motors and magnet-embedded motor
US20100122545A1 (en) 2008-11-19 2010-05-20 E. I. Du Pont De Nemours And Company Tetrafluoropropene compositions and uses thereof
JP2010164222A (en) * 2009-01-14 2010-07-29 Panasonic Corp Finned heat exchanger
JP5136495B2 (en) 2009-03-27 2013-02-06 パナソニック株式会社 Heat exchanger
KR101336564B1 (en) * 2009-04-17 2013-12-03 다이킨 고교 가부시키가이샤 Heat source unit
JP2011004449A (en) 2009-06-16 2011-01-06 Panasonic Corp Matrix converter circuit
US9250001B2 (en) 2009-06-17 2016-02-02 Emerson Electric Co. Control of an expansion valve regulating refrigerant to an evaporator of a climate control system
JP2011043304A (en) * 2009-08-24 2011-03-03 Hitachi Appliances Inc Air conditioner
JP5452138B2 (en) * 2009-09-01 2014-03-26 三菱電機株式会社 Refrigeration air conditioner
CN101649189B (en) * 2009-09-04 2012-05-23 西安交通大学 Environmental mixed refrigerant with trifluoroiodomethane
JP2011094841A (en) 2009-10-28 2011-05-12 Daikin Industries Ltd Refrigerating device
JP5542423B2 (en) 2009-12-22 2014-07-09 東芝産業機器システム株式会社 Rotating electric machine rotor and rotating electric machine
JP2011202738A (en) * 2010-03-25 2011-10-13 Toshiba Carrier Corp Air conditioner
JP2011252636A (en) 2010-06-01 2011-12-15 Panasonic Corp Hot-water heating hot-water supply apparatus
JP5388969B2 (en) 2010-08-23 2014-01-15 三菱電機株式会社 Heat exchanger and air conditioner equipped with this heat exchanger
CN102401519B (en) * 2010-09-16 2016-08-10 乐金电子(天津)电器有限公司 The off-premises station of air-conditioner
FR2964976B1 (en) * 2010-09-20 2012-08-24 Arkema France COMPOSITION BASED ON 1,3,3,3-TETRAFLUOROPROPENE
JP5595245B2 (en) 2010-11-26 2014-09-24 三菱電機株式会社 Refrigeration equipment
JP2012132637A (en) 2010-12-22 2012-07-12 Daikin Industries Ltd Outdoor unit for air conditioner
JP5716408B2 (en) 2011-01-18 2015-05-13 ダイキン工業株式会社 Power converter
JP5721480B2 (en) * 2011-03-10 2015-05-20 三菱電機株式会社 Refrigeration cycle equipment
JP5821756B2 (en) * 2011-04-21 2015-11-24 株式会社デンソー Refrigeration cycle equipment
CN106085363A (en) 2011-05-19 2016-11-09 旭硝子株式会社 Working media and heat circulating system
DE112012002162T5 (en) 2011-05-19 2014-02-27 Asahi Glass Company, Limited Working medium and heat cycle process system
EP2789933B1 (en) 2011-12-06 2016-11-23 Mitsubishi Electric Corporation Heat pump type heating/hot-water supply system
JP6065429B2 (en) 2011-12-08 2017-01-25 パナソニック株式会社 Air conditioner
JP2013126281A (en) 2011-12-14 2013-06-24 Daikin Ind Ltd Method for manufacturing field element, and end plate for field element
JP5506770B2 (en) 2011-12-16 2014-05-28 三菱電機株式会社 Air conditioner
JP5881435B2 (en) 2012-01-27 2016-03-09 三菱電機株式会社 Heat exchanger and air conditioner equipped with the same
JP5867116B2 (en) 2012-01-30 2016-02-24 ダイキン工業株式会社 Refrigeration unit outdoor unit
JP6111520B2 (en) * 2012-02-22 2017-04-12 ダイキン工業株式会社 Power converter
WO2013141323A1 (en) 2012-03-23 2013-09-26 三菱重工オートモーティブサーマルシステムズ株式会社 Motor and electric compressor using same
JP5536817B2 (en) 2012-03-26 2014-07-02 日立アプライアンス株式会社 Refrigeration cycle equipment
JP2015111012A (en) 2012-03-26 2015-06-18 東芝キヤリア株式会社 Refrigeration cycle device
KR20130111186A (en) * 2012-03-31 2013-10-10 (주)코스모테크놀로지 Hybrid heating apparatus and method thereof
WO2013151043A1 (en) * 2012-04-02 2013-10-10 東芝キヤリア株式会社 Refrigeration cycle device
JP5533926B2 (en) 2012-04-16 2014-06-25 ダイキン工業株式会社 Air conditioner
JP2015127593A (en) * 2012-04-27 2015-07-09 東芝キヤリア株式会社 Outdoor unit of air conditioner
US20130283832A1 (en) * 2012-04-30 2013-10-31 Trane International Inc. Refrigeration system with purge using enrivonmentally-suitable chiller refrigerant
JP5500240B2 (en) * 2012-05-23 2014-05-21 ダイキン工業株式会社 Refrigeration equipment
JP5516712B2 (en) * 2012-05-28 2014-06-11 ダイキン工業株式会社 Refrigeration equipment
JP5673612B2 (en) * 2012-06-27 2015-02-18 三菱電機株式会社 Refrigeration cycle equipment
JP5805598B2 (en) * 2012-09-12 2015-11-04 三菱電機株式会社 Refrigeration cycle equipment
WO2014045400A1 (en) 2012-09-21 2014-03-27 三菱電機株式会社 Refrigeration device and method for controlling same
JP6044238B2 (en) * 2012-09-28 2016-12-14 ダイキン工業株式会社 Air conditioner
WO2014068655A1 (en) 2012-10-30 2014-05-08 三菱電機株式会社 Electric motor with embedded permanent magnet, and refrigeration and air conditioning equipment equipped with same
JP5516695B2 (en) 2012-10-31 2014-06-11 ダイキン工業株式会社 Air conditioner
CN103032996B (en) * 2012-12-12 2015-03-11 宁波奥克斯电气有限公司 Parallel compressor selection and configuration method for preventing compressor from being frequently started up and shut down
JP5776746B2 (en) 2013-01-29 2015-09-09 ダイキン工業株式会社 Air conditioner
WO2014118945A1 (en) * 2013-01-31 2014-08-07 日立アプライアンス株式会社 Refrigeration cycle device
JP2014152999A (en) 2013-02-08 2014-08-25 Daikin Ind Ltd Air conditioner
WO2014128831A1 (en) * 2013-02-19 2014-08-28 三菱電機株式会社 Air conditioning device
JP5927339B2 (en) 2013-03-29 2016-06-01 パナソニックヘルスケアホールディングス株式会社 Dual refrigeration equipment
JP6089912B2 (en) 2013-04-17 2017-03-08 三菱電機株式会社 Refrigerant compressor
CN105164228B (en) 2013-04-30 2019-06-11 Agc株式会社 Working medium for heat cycle
WO2014178352A1 (en) * 2013-04-30 2014-11-06 旭硝子株式会社 Composition containing trifluoroethylene
CN103363705B (en) * 2013-05-28 2015-05-13 广东美的制冷设备有限公司 Refrigeration system, refrigeration equipment comprising refrigeration system and control method of refrigeration equipment
JP6141429B2 (en) * 2013-06-19 2017-06-07 三菱電機株式会社 Air conditioner
EP3012555B1 (en) * 2013-06-19 2021-01-13 Mitsubishi Electric Corporation Refrigeration cycle device
WO2014203356A1 (en) * 2013-06-19 2014-12-24 三菱電機株式会社 Refrigeration cycle device
WO2014203354A1 (en) 2013-06-19 2014-12-24 三菱電機株式会社 Refrigeration cycle device
EP3020780B1 (en) 2013-07-12 2018-05-09 Asahi Glass Company, Limited Working fluid for heat cycle, composition for heat cycle system, and heat cycle system
KR101525849B1 (en) * 2013-07-16 2015-06-05 삼성전자 주식회사 Compressor and air conditioning apparatus using the same
JP2015023721A (en) 2013-07-22 2015-02-02 ダイキン工業株式会社 Rotor, motor and compressor
JP6282276B2 (en) * 2013-07-29 2018-02-21 三菱電機株式会社 Heat pump equipment
GB2516694B (en) * 2013-07-30 2016-09-07 Mexichem Amanco Holding Sa Heat transfer compositions
JP6225548B2 (en) * 2013-08-08 2017-11-08 株式会社富士通ゼネラル Air conditioner
JP2015055455A (en) 2013-09-13 2015-03-23 三菱電機株式会社 Outdoor unit and air conditioner
CN105579790B (en) * 2013-09-27 2017-04-05 松下健康医疗控股株式会社 Refrigerating plant
JP2015078789A (en) 2013-10-16 2015-04-23 三菱電機株式会社 Heat exchanger and air conditioning device including heat exchanger
JP6118227B2 (en) 2013-10-22 2017-04-19 株式会社日立産機システム Permanent magnet rotating electric machine and compressor using the same
EP3070417A4 (en) 2013-11-12 2017-09-27 Mitsubishi Electric Corporation Refrigeration system
JP5661903B2 (en) 2013-12-04 2015-01-28 三菱電機株式会社 Compressor
WO2015083274A1 (en) 2013-12-05 2015-06-11 三菱電機株式会社 Permanent magnet-embedded electric motor, compressor, and refrigerating and air-conditioning device
KR102135086B1 (en) * 2013-12-10 2020-07-17 엘지전자 주식회사 Motor driving device and air conditioner including the same
JP2015114082A (en) * 2013-12-13 2015-06-22 ダイキン工業株式会社 Refrigerant pipeline connection body and manufacturing method thereof
CN105939984B (en) * 2014-01-30 2020-08-14 Agc株式会社 Method for producing trifluoroethylene
JP6657957B2 (en) * 2014-01-31 2020-03-04 Agc株式会社 Working medium for heat cycle, composition for heat cycle system, and heat cycle system
JP6252211B2 (en) * 2014-02-03 2017-12-27 ダイキン工業株式会社 Air conditioning system
WO2015125883A1 (en) * 2014-02-20 2015-08-27 旭硝子株式会社 Composition for heat cycle system, and heat cycle system
JP6583261B2 (en) 2014-02-20 2019-10-02 Agc株式会社 Composition for thermal cycle system and thermal cycle system
WO2015125874A1 (en) 2014-02-20 2015-08-27 旭硝子株式会社 Working medium for thermal cycle
JP6354616B2 (en) * 2014-02-20 2018-07-11 旭硝子株式会社 Composition for thermal cycle system and thermal cycle system
BR112016018711B1 (en) * 2014-02-20 2021-02-17 AGC Inc. composition for thermal cycle system and thermal cycle system
JP6375639B2 (en) 2014-02-21 2018-08-22 ダイキン工業株式会社 Air conditioner
JP6293262B2 (en) 2014-03-14 2018-03-14 三菱電機株式会社 Compressor and refrigeration cycle apparatus
CZ2016565A3 (en) * 2014-03-14 2017-01-25 Mitsubishi Electric Corporation A cooling cyclical device
JP6266089B2 (en) * 2014-03-17 2018-01-24 三菱電機株式会社 Air conditioner
WO2015140884A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Refrigeration cycle apparatus
US20170121581A1 (en) 2014-03-17 2017-05-04 Asahi Glass Company, Limited Heat pump apparatus
EP3121242B1 (en) * 2014-03-18 2019-05-08 AGC Inc. Working fluid for heat cycle, composition for heat-cycle systems, and heat-cycle system
JP6105511B2 (en) * 2014-04-10 2017-03-29 三菱電機株式会社 Heat pump equipment
CN103940018A (en) * 2014-05-06 2014-07-23 北京德能恒信科技有限公司 Heat pipe air conditioner all-in-one machine with evaporative condenser
JP2015218909A (en) * 2014-05-14 2015-12-07 パナソニックIpマネジメント株式会社 Refrigeration cycle device and hot water generation device including the same
JP2015218912A (en) * 2014-05-14 2015-12-07 パナソニックIpマネジメント株式会社 Air conditioner and load adjustment device used for the same
JPWO2015186670A1 (en) * 2014-06-06 2017-04-20 旭硝子株式会社 Composition for thermal cycle system and thermal cycle system
CN106414654A (en) * 2014-06-06 2017-02-15 旭硝子株式会社 Working medium for heat cycle, composition for heat cycle system, and heat cycle system
JP2016011423A (en) * 2014-06-06 2016-01-21 旭硝子株式会社 Working medium for heat cycle, composition for heat cycle system and heat cycle system
JP2015229767A (en) 2014-06-06 2015-12-21 旭硝子株式会社 Actuation medium for heat cycle
EP3153567A4 (en) 2014-06-06 2018-01-10 Asahi Glass Company, Limited Composition for heat cycle system and heat cycle system
JPWO2015186558A1 (en) * 2014-06-06 2017-04-20 旭硝子株式会社 Working medium for heat cycle, composition for heat cycle system, and heat cycle system
JP2016001062A (en) 2014-06-11 2016-01-07 パナソニックIpマネジメント株式会社 Inverter control device
JP6519909B2 (en) * 2014-07-18 2019-05-29 出光興産株式会社 Refrigerating machine oil composition and refrigerating apparatus
JP2016033426A (en) * 2014-07-31 2016-03-10 日立アプライアンス株式会社 Air conditioner
WO2016017460A1 (en) * 2014-07-31 2016-02-04 三菱電機株式会社 Refrigerant distributor, heat exchanger, and refrigeration cycle apparatus
EP3182034A4 (en) * 2014-08-12 2018-03-21 Asahi Glass Company, Limited Heat cycle system
US10295236B2 (en) 2014-08-13 2019-05-21 Trane International Inc. Compressor heating system
JP6543450B2 (en) * 2014-09-29 2019-07-10 Phcホールディングス株式会社 Refrigeration system
EP3208555A4 (en) 2014-10-16 2018-05-30 Mitsubishi Electric Corporation Refrigeration cycle device
US9982904B2 (en) 2014-11-07 2018-05-29 Daikin Industries, Ltd. Air conditioning system
CN107112830B (en) 2014-12-22 2019-05-10 三菱电机株式会社 The rotor of rotating electric machine
US10539335B2 (en) 2014-12-26 2020-01-21 Daikin Industries, Ltd. Regenerative air conditioner
JP6028815B2 (en) 2015-01-19 2016-11-24 ダイキン工業株式会社 Heat exchange unit of air conditioner
SG11201706415VA (en) * 2015-02-19 2017-09-28 Daikin Ind Ltd Composition containing mixture of fluorinated hydrocarbons, and method for producing same
CN106032955B (en) * 2015-03-09 2020-06-16 大金工业株式会社 Refrigerant recovery unit and outdoor unit connected to the same
JP2016174461A (en) 2015-03-17 2016-09-29 ダイキン工業株式会社 Rotor
JP6552851B2 (en) * 2015-03-19 2019-07-31 三菱重工サーマルシステムズ株式会社 Compressor driving motor and cooling method thereof
CN204648544U (en) * 2015-03-27 2015-09-16 中国建筑科学研究院 Indoor environmental condition control unit and system and building system and passive type building
WO2016157538A1 (en) 2015-04-03 2016-10-06 三菱電機株式会社 Refrigeration cycle device
WO2016182030A1 (en) 2015-05-14 2016-11-17 旭硝子株式会社 Fluid composition, refrigerant composition, and air conditioner
CN107614980B (en) 2015-05-22 2018-12-14 大金工业株式会社 Fluid supply apparatus is used in temperature adjustment
JP6582236B2 (en) 2015-06-11 2019-10-02 パナソニックIpマネジメント株式会社 Refrigeration cycle equipment
JP6604082B2 (en) 2015-08-07 2019-11-13 ダイキン工業株式会社 Refrigeration equipment
GB2556245B (en) 2015-08-21 2021-07-28 Mitsubishi Electric Corp Rotary electric machine and air conditioning apparatus
JP2017046430A (en) 2015-08-26 2017-03-02 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Motor controller, fluid machinery, air conditioner, and program
US10594176B2 (en) 2015-09-01 2020-03-17 Mitsubishi Electric Corporation Rotor, rotating electric machine, electric compressor, and refrigeration/air-conditioning apparatus
CN204943959U (en) * 2015-09-01 2016-01-06 河北纳森空调有限公司 Environmental protection refrigerant R410A low-temperature air energy heat pump water chiller-heater unit
JP2017053285A (en) 2015-09-10 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Compressor
JP6274277B2 (en) 2015-09-30 2018-02-07 ダイキン工業株式会社 Refrigeration equipment
JP6733145B2 (en) 2015-09-30 2020-07-29 ダイキン工業株式会社 Water heat exchanger housing unit
CN205261858U (en) * 2015-11-12 2016-05-25 珠海丽日帐篷有限公司 Medium -and -large -sized integral covering or awning on a car, boat, etc. air conditioner for room
EP3399189A4 (en) 2015-12-28 2019-08-28 AGC Inc. Refrigeration cycle device
JP6169286B1 (en) 2016-01-07 2017-07-26 三菱電機株式会社 Permanent magnet embedded electric motor, compressor and refrigeration air conditioner
JP6762719B2 (en) 2016-01-08 2020-09-30 株式会社デンソーエアクール How to make a heat exchanger
JPWO2017122517A1 (en) 2016-01-12 2018-11-22 Agc株式会社 Refrigeration cycle apparatus and thermal cycle system
JPWO2017131013A1 (en) 2016-01-29 2018-11-22 Agc株式会社 Refrigeration cycle equipment
JP2017145975A (en) * 2016-02-15 2017-08-24 三菱電機株式会社 Refrigeration cycle device, process of manufacture of refrigeration cycle device, drop-in method for refrigeration cycle device, and replace method for refrigeration cycle device
EP3421798B1 (en) 2016-02-22 2020-11-11 Agc Inc. Compressor and heat cycle system
US9976759B2 (en) 2016-02-29 2018-05-22 Johnson Controls Technology Company Rain shield for a heat exchanger component
JP2017192190A (en) 2016-04-12 2017-10-19 日立ジョンソンコントロールズ空調株式会社 Permanent magnet motor, compressor and air conditioner using the same
US11131490B2 (en) * 2016-05-09 2021-09-28 Mitsubishi Electric Corporation Refrigeration device having condenser unit connected to compressor unit with on-site pipe interposed therebetween and remote from the compressor unit
ES2811851T3 (en) 2016-06-27 2021-03-15 Mitsubishi Electric Corp Refrigeration cycle device
AU2017302766B2 (en) 2016-07-28 2019-09-12 Daikin Industries, Ltd. Multi air conditioner
JP6731865B2 (en) 2017-02-06 2020-07-29 日立ジョンソンコントロールズ空調株式会社 Air conditioner outdoor unit, air conditioner, and air conditioning management method
JP6858845B2 (en) 2017-05-01 2021-04-14 三菱電機株式会社 Rotors, electric motors, compressors and air conditioners
JP6551571B2 (en) 2017-07-24 2019-07-31 ダイキン工業株式会社 Refrigerant composition
EP3681014B1 (en) 2017-09-05 2024-04-03 Mitsubishi Electric Corporation Consequent pole-type motor, electric motor, compressor, air blower, and air conditioner
US10933615B2 (en) * 2017-09-29 2021-03-02 Ube Industries, Ltd. Multilayer tubes
WO2019108720A1 (en) * 2017-11-30 2019-06-06 The Lubrizol Corporation Aromatic ester lubricant for use with low global warming potential refrigerants
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
EP3730569A4 (en) 2017-12-18 2021-12-22 Daikin Industries, Ltd. Refrigeration cycle device
US20200326103A1 (en) 2017-12-18 2020-10-15 Daikin Industries, Ltd. Refrigeration cycle
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US20200326100A1 (en) 2017-12-18 2020-10-15 Daikin Industries, Ltd. Warm-water generating apparatus
BR112020010634A2 (en) * 2017-12-18 2020-11-10 Daikin Industries, Ltd. composition comprising refrigerant, use of the same, refrigeration machine having the same, and method for operating said refrigeration machine
JP6835257B2 (en) 2017-12-18 2021-02-24 ダイキン工業株式会社 A composition containing a refrigerant, its use, a refrigerator having it, and a method of operating the refrigerator.
EP4246054A3 (en) 2017-12-18 2023-12-06 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US20200363106A1 (en) 2017-12-18 2020-11-19 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
US20200392387A1 (en) 2017-12-18 2020-12-17 Daikin Industries, Ltd. Air conditioner
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US20200325376A1 (en) 2017-12-18 2020-10-15 Daikin Industries, Ltd. Refrigeration cycle apparatus
US20200393178A1 (en) 2017-12-18 2020-12-17 Daikin Industries, Ltd. Refrigeration cycle apparatus
US20200363112A1 (en) 2017-12-18 2020-11-19 Daikin Industries, Ltd. Air conditioner
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US20200326110A1 (en) 2017-12-18 2020-10-15 Daikin Industries, Ltd. Compressor
US20200332164A1 (en) 2017-12-18 2020-10-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US20200333054A1 (en) 2017-12-18 2020-10-22 Daikin Industries, Ltd. Compressor
WO2019123805A1 (en) 2017-12-18 2019-06-27 ダイキン工業株式会社 Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US20200392388A1 (en) 2017-12-18 2020-12-17 Daikin Industries, Ltd. Refrigerant-containing composition, use thereof and refrigerator comprising same, and method for operating said refrigerator
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
US20200347283A1 (en) 2017-12-18 2020-11-05 Daikin Industries, Ltd. Refrigerating oil for refrigerant or refrigerant composition, method for using refrigerating oil, and use of refrigerating oil
US20200325375A1 (en) 2017-12-18 2020-10-15 Daikin Industries, Ltd. Refrigeration cycle apparatus and method of determining refrigerant enclosure amount in refrigeration cycle apparatus
US10982863B2 (en) 2018-04-10 2021-04-20 Carrier Corporation HVAC fan inlet
WO2020071380A1 (en) 2018-10-01 2020-04-09 Agc株式会社 Composition for heat cycle system, and heat cycle system
EP3922922A4 (en) 2019-02-05 2022-12-21 Daikin Industries, Ltd. Refrigerant-containing composition, and refrigerating method, refrigerating device operating method, and refrigerating device using said composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220389299A1 (en) * 2017-12-18 2022-12-08 Daikin Industries, Ltd. Refrigeration cycle apparatus

Also Published As

Publication number Publication date
US20200378662A1 (en) 2020-12-03
PH12020550913A1 (en) 2021-05-17
US20210164701A1 (en) 2021-06-03
EP3730580A1 (en) 2020-10-28
JPWO2019124138A1 (en) 2020-12-10
EP3730867A4 (en) 2021-10-20
EP3730570A4 (en) 2021-11-17
AU2018387900A1 (en) 2020-07-23
US20210164703A1 (en) 2021-06-03
KR20200101401A (en) 2020-08-27
PH12020550918A1 (en) 2021-05-17
PH12020550912A1 (en) 2021-05-10
CN111511874A (en) 2020-08-07
US20200362215A1 (en) 2020-11-19
JPWO2019123897A1 (en) 2020-12-24
JPWO2019124362A1 (en) 2021-01-21
US20200339856A1 (en) 2020-10-29
AU2018391894A1 (en) 2020-07-16
US20200393176A1 (en) 2020-12-17
BR112020009389A2 (en) 2020-11-03
CN111492188A (en) 2020-08-04
AU2018387985A1 (en) 2020-07-16
KR20200100689A (en) 2020-08-26
CN111492031A (en) 2020-08-04
KR102601975B1 (en) 2023-11-14
CN111479910A (en) 2020-07-31
CN111527178A (en) 2020-08-11
EP3730868A4 (en) 2021-10-20
AU2018391876B2 (en) 2023-01-05
EP3730571A1 (en) 2020-10-28
CN114838515A (en) 2022-08-02
US20210164698A1 (en) 2021-06-03
EP3730861A1 (en) 2020-10-28
EP3730867A1 (en) 2020-10-28
EP3730569A1 (en) 2020-10-28
PH12020550920A1 (en) 2021-05-31
EP3730585A1 (en) 2020-10-28
JPWO2019124326A1 (en) 2021-02-04
JPWO2019124361A1 (en) 2021-01-14
JPWO2019124229A1 (en) 2020-12-17
CN111480040B (en) 2022-06-21
EP3730593A4 (en) 2021-10-27
CN111479899A (en) 2020-07-31
EP3730864A1 (en) 2020-10-28
EP3730572A1 (en) 2020-10-28
KR20200100716A (en) 2020-08-26
AU2018391876A1 (en) 2020-07-02
JP7231834B2 (en) 2023-03-02
CN111492189A (en) 2020-08-04
CN111492185A (en) 2020-08-04
JP7303445B2 (en) 2023-07-05
CN111480039A (en) 2020-07-31
JPWO2019123898A1 (en) 2020-12-10
CN111542580A (en) 2020-08-14
AU2018387884B2 (en) 2024-03-14
EP3730866A1 (en) 2020-10-28
EP3730871A4 (en) 2021-10-20
US20200309419A1 (en) 2020-10-01
JPWO2019124140A1 (en) 2020-12-10
US20200333049A1 (en) 2020-10-22
AU2018387883A1 (en) 2020-07-23
US20200340714A1 (en) 2020-10-29
JPWO2019124409A1 (en) 2021-01-07
US20200393175A1 (en) 2020-12-17
EP3730861A4 (en) 2021-09-29
JP7284405B2 (en) 2023-05-31
US20200333041A1 (en) 2020-10-22
US20230097829A1 (en) 2023-03-30
EP3730580A4 (en) 2021-10-13
KR20200100143A (en) 2020-08-25
US11535781B2 (en) 2022-12-27
CN111527353B (en) 2022-06-21
CN111492033A (en) 2020-08-04
EP3730572A4 (en) 2021-09-29
KR20200100693A (en) 2020-08-26
AU2018391186A1 (en) 2020-07-16
US20200309411A1 (en) 2020-10-01
PH12020550915A1 (en) 2021-05-10
US20210003323A1 (en) 2021-01-07
CN111492183A (en) 2020-08-04
JPWO2019124330A1 (en) 2021-01-21
JPWO2019124380A1 (en) 2021-01-14
EP3730576A1 (en) 2020-10-28
AU2018387983A1 (en) 2020-07-23
BR112020011168A2 (en) 2020-11-17
PH12020550914A1 (en) 2021-05-10
BR112020011145A2 (en) 2020-11-17
EP3730870A1 (en) 2020-10-28
EP3730584A1 (en) 2020-10-28
EP3730864A4 (en) 2021-09-29
JPWO2019124145A1 (en) 2021-01-28
BR112020010676A2 (en) 2020-11-10
EP3730866A4 (en) 2021-10-13
KR20200100681A (en) 2020-08-26
KR20200100694A (en) 2020-08-26
CN111479899B (en) 2022-09-20
EP3730577A4 (en) 2021-10-13
BR112020010413A2 (en) 2020-11-24
CN111492185B (en) 2022-06-17
US20210163804A1 (en) 2021-06-03
BR112020010468A2 (en) 2020-11-24
CN111492189B (en) 2022-06-21
JPWO2019124139A1 (en) 2020-12-17
AU2018390660B2 (en) 2023-01-05
AU2018387884A1 (en) 2020-07-16
CN111479896A (en) 2020-07-31
EP3730577A1 (en) 2020-10-28
KR20200100740A (en) 2020-08-26
BR112020009626A2 (en) 2020-11-03
CN111480038A (en) 2020-07-31
JPWO2019124329A1 (en) 2021-01-21
EP3730569A4 (en) 2021-12-22
EP3730576A4 (en) 2021-10-13
WO2019124409A1 (en) 2019-06-27
AU2018388034A1 (en) 2020-07-09
EP3730570A1 (en) 2020-10-28
EP3730571A4 (en) 2021-10-06
EP3730868A1 (en) 2020-10-28
KR102601018B1 (en) 2023-11-10
JPWO2019124230A1 (en) 2021-01-07
CN111479898A (en) 2020-07-31
EP3730865A1 (en) 2020-10-28
US20210095897A1 (en) 2021-04-01
CN111480041B (en) 2022-06-21
KR20200100718A (en) 2020-08-26
JP7244763B2 (en) 2023-03-23
KR20200100682A (en) 2020-08-26
JPWO2019124327A1 (en) 2021-01-21
EP3730584A4 (en) 2021-10-20
US20200309437A1 (en) 2020-10-01
JP7269499B2 (en) 2023-05-09
BR112020010607A2 (en) 2020-11-10
JPWO2019124398A1 (en) 2021-01-14
JP7212265B2 (en) 2023-01-25
CN111480040A (en) 2020-07-31
AU2018390660A1 (en) 2020-07-02
US20200332166A1 (en) 2020-10-22
EP3730870A4 (en) 2021-10-27
CN111480041A (en) 2020-07-31
JPWO2019124395A1 (en) 2020-12-17
PH12020550911A1 (en) 2021-05-17
CN111492188B (en) 2022-06-21
JPWO2019124146A1 (en) 2021-01-21
PH12020550899A1 (en) 2021-03-22
AU2018388050A1 (en) 2020-07-16
BR112020010388A2 (en) 2020-10-20
PH12020550919A1 (en) 2021-05-17
EP3730585A4 (en) 2021-10-20
US20200333051A1 (en) 2020-10-22
JPWO2019124379A1 (en) 2021-01-14
KR20200100688A (en) 2020-08-26
JPWO2019124328A1 (en) 2020-12-24
BR112020010318A2 (en) 2021-01-05
US20200386459A1 (en) 2020-12-10
EP3730865A4 (en) 2021-10-06
EP3730869A1 (en) 2020-10-28
JPWO2019124360A1 (en) 2020-12-24
PH12020550917A1 (en) 2021-05-10
CN111527353A (en) 2020-08-11
EP3730869A4 (en) 2021-10-20
EP3730593A1 (en) 2020-10-28
CN111479897A (en) 2020-07-31
CN111492186A (en) 2020-08-04
CN111480038B (en) 2022-06-21
EP3730871A1 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
AU2018390660B2 (en) Refrigeration Cycle Apparatus
US20200347283A1 (en) Refrigerating oil for refrigerant or refrigerant composition, method for using refrigerating oil, and use of refrigerating oil
US20200332164A1 (en) Refrigeration cycle apparatus
JP7448851B2 (en) Refrigeration cycle equipment
US20220389299A1 (en) Refrigeration cycle apparatus
US11912922B2 (en) Refrigerant cycle apparatus
JP2023179585A (en) Refrigeration cycle device for automobile
US11920077B2 (en) Refrigeration cycle device for vehicle
US20220333032A1 (en) Refrigeration cycle apparatus, refrigerating machine oil and refrigerant leakage prevention agent
US20220120476A1 (en) Inside air-conditioning device
KR102655619B1 (en) refrigeration cycle device
WO2023058646A1 (en) Refrigeration cycle device for automobile
JP2023113463A (en) Refrigerant leakage detection/prevention agent
JPWO2020017521A1 (en) Refrigerant cycle device

Legal Events

Date Code Title Description
AS Assignment

Owner name: DAIKIN INDUSTRIES, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ITANO, MITSUSHI;KARUBE, DAISUKE;YOTSUMOTO, YUUKI;AND OTHERS;SIGNING DATES FROM 20190111 TO 20190125;REEL/FRAME:052964/0253

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION