US20210164701A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
US20210164701A1
US20210164701A1 US16/772,961 US201816772961A US2021164701A1 US 20210164701 A1 US20210164701 A1 US 20210164701A1 US 201816772961 A US201816772961 A US 201816772961A US 2021164701 A1 US2021164701 A1 US 2021164701A1
Authority
US
United States
Prior art keywords
point
hfo
coordinates
represented
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/772,961
Inventor
Keisuke Ohtsuka
Mitsushi Itano
Daisuke Karube
Yuuki YOTSUMOTO
Kazuhiro Takahashi
Yuzo Komatsu
Shun OHKUBO
Tatsuya TAKAKUWA
Tetsushi TSUDA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2018/037483 external-priority patent/WO2019123782A1/en
Priority claimed from PCT/JP2018/038748 external-priority patent/WO2019123806A1/en
Priority claimed from PCT/JP2018/038746 external-priority patent/WO2019123804A1/en
Priority claimed from PCT/JP2018/038747 external-priority patent/WO2019123805A1/en
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority claimed from PCT/JP2018/046628 external-priority patent/WO2019124396A1/en
Assigned to DAIKIN INDUSTRIES, LTD. reassignment DAIKIN INDUSTRIES, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OHTSUKA, KEISUKE, TSUDA, Tetsushi, TAKAKUWA, Tatsuya, KOMATSU, YUZO, TAKAHASHI, KAZUHIRO, ITANO, MITSUSHI, KARUBE, DAISUKE, OHKUBO, Shun, YOTSUMOTO, Yuuki
Publication of US20210164701A1 publication Critical patent/US20210164701A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M131/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing halogen
    • C10M131/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing halogen containing carbon, hydrogen and halogen only
    • C10M131/04Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing halogen containing carbon, hydrogen and halogen only aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/02Specified values of viscosity or viscosity index
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • F24F1/24Cooling of electric components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/32Refrigerant piping for connecting the separate outdoor units to indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/34Protection means thereof, e.g. covers for refrigerant pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/38Fan details of outdoor units, e.g. bell-mouth shaped inlets or fan mountings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/044Systems in which all treatment is given in the central station, i.e. all-air systems
    • F24F3/048Systems in which all treatment is given in the central station, i.e. all-air systems with temperature control at constant rate of air-flow
    • F24F3/052Multiple duct systems, e.g. systems in which hot and cold air are supplied by separate circuits from the central station to mixing chambers in the spaces to be conditioned
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/0018Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters using electric energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/026Compressor arrangements of motor-compressor units with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/08Arrangements for cooling or ventilating by gaseous cooling medium circulating wholly within the machine casing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/106Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/122Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/128Perfluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/22All components of a mixture being fluoro compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/24Only one single fluoro component present
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/40Replacement mixtures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/40Replacement mixtures
    • C09K2205/43Type R22
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/02Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
    • C10M2211/022Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/05Cost reduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/07Exceeding a certain pressure value in a refrigeration component or cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/05Refrigerant levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to an air conditioner that uses refrigerant with a low global warming potential (GWP).
  • GWP global warming potential
  • low-GWP refrigerant refrigerant with a low GWP (hereinafter referred to as low-GWP refrigerant) in air conditioners has been considered from the viewpoint of environmental protection.
  • a dominant example of low-GWP refrigerant is a refrigerant mixture containing 1,2-difluoroethylene.
  • An air conditioner includes a compressor that compresses a refrigerant mixture containing at least 1,2-difluoroethylene, a motor that drives the compressor, and a connection unit that causes power to be supplied from an alternating-current (AC) power source to the motor without frequency conversion.
  • AC alternating-current
  • the compressor can be driven without interposing a power conversion device between the AC power source and the motor.
  • the air conditioner that is environmentally friendly and has a relatively inexpensive configuration.
  • An air conditioner according to a second aspect is the air conditioner according to the first aspect, in which the connection unit directly applies an AC voltage of the AC power source between at least two terminals of the motor.
  • An air conditioner according to a third aspect is the air conditioner according to the first aspect or the second aspect, in which the AC power source is a single-phase power source.
  • An air conditioner according to a fourth aspect is the air conditioner according to any one of the first aspect to the third aspect, in which one terminal of the motor is connected in series to an activation circuit.
  • An air conditioner according to a fifth aspect is the air conditioner according to the fourth aspect, in which the activation circuit is a circuit in which a positive temperature coefficient thermistor and an operation capacitor are connected in parallel to each other.
  • the PTC thermistor self-heats and the resistance value thereof increases, and switching to an operation circuit substantially by the operation capacitor occurs.
  • the compressor enters a state of being capable of outputting a rated torque at appropriate timing.
  • An air conditioner according to a sixth aspect is the air conditioner according to the first aspect or the second aspect, in which the AC power source is a three-phase power source.
  • This air conditioner does not require an activation circuit and thus the cost is relatively low.
  • An air conditioner according to a seventh aspect is the air conditioner according to any one of the first aspect to the sixth aspect, in which the motor is an induction motor.
  • the motor is capable of high output with relatively low cost, and thus the efficiency of the air conditioner can be increased.
  • An air conditioner according to a eighth aspect is the air conditioner according to any of the first through seventh aspects, wherein, the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).
  • the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).
  • the compressor can be driven without interposing a power conversion device between the AC power source and the motor.
  • the air conditioner that is environmentally friendly and has a relatively inexpensive configuration can also be achieved when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) and a coefficient of performance (COP) equal to those of R410A is used.
  • An air conditioner according to a ninth aspect is the air conditioner according to the eighth aspect, wherein, when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments AA′, A′B, BD, DC′, C′C, CO, and OA that connect the following 7 points:
  • point A (68.6, 0.0, 31.4), point A′ (30.6, 30.0, 39.4), point B (0.0, 58.7, 41.3), point D (0.0, 80.4, 19.6), point C′ (19.5, 70.5, 10.0), point C (32.9, 67.1, 0.0), and point O (100.0, 0.0, 0.0), or on the above line segments (excluding the points on the line segments BD, CO, and OA);
  • the line segment AA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3),
  • the line segment DC′ is represented by coordinates (x, 0.0082x 2 ⁇ 0.6671x+80.4, ⁇ 0.0082x 2 ⁇ 0.3329x+19.6),
  • the line segment C′C is represented by coordinates (x, 0.0067x 2 ⁇ 0.6034x+79.729, ⁇ 0.0067x 2 ⁇ 0.3966x+20.271), and
  • the line segments BD, CO, and OA are straight lines.
  • An air conditioner according to a tenth aspect is the air conditioner according to the eighth aspect, wherein, when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments GI, IA, AA′, A′B, BD, DC′, C′C, and CG that connect the following 8 points:
  • point G (72.0, 28.0, 0.0), point I (72.0, 0.0, 28.0), point A (68.6, 0.0, 31.4), point A′ (30.6, 30.0, 39.4), point B (0.0, 58.7, 41.3), point D (0.0, 80.4, 19.6), point C′ (19.5, 70.5, 10.0), and point C (32.9, 67.1, 0.0), or on the above line segments (excluding the points on the line segments IA, BD, and CG);
  • the line segment AA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3),
  • the line segment DC′ is represented by coordinates (x, 0.0082x 2 ⁇ 0.6671x+80.4, ⁇ 0.0082x 2 ⁇ 0.3329x+19.6),
  • the line segment C′C is represented by coordinates (x, 0.0067x 2 ⁇ 0.6034x+79.729, ⁇ 0.0067x 2 ⁇ 0.3966x+20.271), and
  • the line segments GI, IA, BD, and CG are straight lines.
  • An air conditioner according to a eleventh aspect is the air conditioner according to the eighth aspect, wherein, when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PN, NK, KA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
  • point J (47.1, 52.9, 0.0), point P (55.8, 42.0, 2.2), point N (68.6, 16.3, 15.1), point K (61.3, 5.4, 33.3), point A′ (30.6, 30.0, 39.4), point B (0.0, 58.7, 41.3), point D (0.0, 80.4, 19.6), point C′ (19.5, 70.5, 10.0), and point C (32.9, 67.1, 0.0), or on the above line segments (excluding the points on the line segments BD and CJ);
  • the line segment PN is represented by coordinates (x, ⁇ 0.1135x 2 +12.112x ⁇ 280.43, 0.1135x 2 ⁇ 13.112x+380.43),
  • the line segment NK is represented by coordinates (x, 0.2421x 2 ⁇ 29.955x+931.91, ⁇ 0.2421x 2 +28.955x ⁇ 831.91),
  • the line segment KA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3),
  • the line segment DC′ is represented by coordinates (x, 0.0082x 2 ⁇ 0.6671x+80.4, ⁇ 0.0082x 2 ⁇ 0.3329x+19.6),
  • the line segment C′C is represented by coordinates (x, 0.0067x 2 ⁇ 0.6034x+79.729, ⁇ 0.0067x 2 ⁇ 0.3966x+20.271), and
  • the line segments JP, BD, and CG are straight lines.
  • An air conditioner according to a twelfth aspect is the air conditioner according to the eighth aspect, wherein, when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PL, LM, MA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
  • point J (47.1, 52.9, 0.0), point P (55.8, 42.0, 2.2), point L (63.1, 31.9, 5.0), point M (60.3, 6.2, 33.5), point A′ (30.6, 30.0, 39.4), point B (0.0, 58.7, 41.3), point D (0.0, 80.4, 19.6), point C′ (19.5, 70.5, 10.0), and point C (32.9, 67.1, 0.0), or on the above line segments (excluding the points on the line segments BD and CJ);
  • the line segment PL is represented by coordinates (x, ⁇ 0.1135x 2 +12.112x ⁇ 280.43, 0.1135x 2 ⁇ 13.112x+380.43)
  • the line segment MA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3),
  • the line segment DC′ is represented by coordinates (x, 0.0082x 2 ⁇ 0.6671x+80.4, ⁇ 0.0082x 2 ⁇ 0.3329x+19.6),
  • the line segment C′C is represented by coordinates (x, 0.0067x 2 ⁇ 0.6034x+79.729, ⁇ 0.0067x 2 ⁇ 0.3966x+20.271), and
  • the line segments JP, LM, BD, and CG are straight lines.
  • An air conditioner according to a thirteenth aspect is the air conditioner according to the eighth aspect, wherein, when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LM, MA′, A′B, BF, FT, and TP that connect the following 7 points:
  • point P (55.8, 42.0, 2.2), point L (63.1, 31.9, 5.0), point M (60.3, 6.2, 33.5), point A′ (30.6, 30.0, 39.4), point B (0.0, 58.7, 41.3), point F (0.0, 61.8, 38.2), and point T (35.8, 44.9, 19.3), or on the above line segments (excluding the points on the line segment BF);
  • the line segment PL is represented by coordinates (x, ⁇ 0.1135x 2 +12.112x ⁇ 280.43, 0.1135x 2 ⁇ 13.112x+380.43),
  • the line segment MA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3),
  • the line segment FT is represented by coordinates (x, 0.0078x 2 ⁇ 0.7501x+61.8, ⁇ 0.0078x 2 ⁇ 0.2499x+38.2),
  • the line segment TP is represented by coordinates (x, 0.00672x 2 ⁇ 0.7607x+63.525, ⁇ 0.00672x 2 ⁇ 0.2393x+36.475), and
  • the line segments LM and BF are straight lines.
  • An air conditioner according to a fourteenth aspect is the air conditioner according to the eighth aspect, wherein, when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LQ, QR, and RP that connect the following 4 points:
  • point P (55.8, 42.0, 2.2), point L (63.1, 31.9, 5.0), point Q (62.8, 29.6, 7.6), and point R (49.8, 42.3, 7.9), or on the above line segments;
  • the line segment PL is represented by coordinates (x, ⁇ 0.1135x 2 +12.112x ⁇ 280.43, 0.1135x 2 ⁇ 13.112x+380.43),
  • the line segment RP is represented by coordinates (x, 0.00672x 2 ⁇ 0.7607x+63.525, ⁇ 0.00672x 2 ⁇ 0.2393x+36.475), and
  • the line segments LQ and QR are straight lines.
  • An air conditioner according to a fifth aspect is the air conditioner according to the eighth aspect, wherein, when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments SM, MA′, A′B, BF, FT, and TS that connect the following 6 points:
  • point S (62.6, 28.3, 9.1), point M (60.3, 6.2, 33.5), point A′ (30.6, 30.0, 39.4), point B (0.0, 58.7, 41.3), point F (0.0, 61.8, 38.2), and point T (35.8, 44.9, 19.3), or on the above line segments,
  • the line segment MA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3),
  • the line segment FT is represented by coordinates (x, 0.0078x 2 ⁇ 0.7501x+61.8, ⁇ 0.0078x 2 ⁇ 0.2499x+38.2),
  • the line segment TS is represented by coordinates (x, ⁇ 0.0017x 2 ⁇ 0.7869x+70.888, ⁇ 0.0017x 2 ⁇ 0.2131x+29.112), and
  • the line segments SM and BF are straight lines.
  • An air conditioner according to a sixth aspect is the air conditioner according to any of the 1 through seventh aspects, wherein, the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)) and trifluoroethylene (HFO-1123) in a total amount of 99.5 mass % or more based on the entire refrigerant, and the refrigerant comprises 62.0 mass % to 72.0 mass % of HFO-1132(E) based on the entire refrigerant.
  • the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)) and trifluoroethylene (HFO-1123) in a total amount of 99.5 mass % or more based on the entire refrigerant, and the refrigerant comprises 62.0 mass % to 72.0 mass % of HFO-1132(E) based on the entire refrigerant.
  • the compressor can be driven without interposing a power conversion device between the AC power source and the motor.
  • the air conditioner that is environmentally friendly and has a relatively inexpensive configuration can also be achieved when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) and a coefficient of performance (COP) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.
  • An air conditioner according to a seventeenth aspect is the air conditioner according to any of the first through seventh aspects, wherein, the refrigerant comprises HFO-1132(E) and HFO-1123 in a total amount of 99.5 mass % or more based on the entire refrigerant, and
  • the refrigerant comprises 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire refrigerant.
  • the compressor can be driven without interposing a power conversion device between the AC power source and the motor.
  • the air conditioner that is environmentally friendly and has a relatively inexpensive configuration can also be achieved when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) and a coefficient of performance (COP) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.
  • An air conditioner according to a eighteenth aspect is the air conditioner according to any of the first through seventh aspects, wherein, the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32), wherein
  • point G (0.026a 2 ⁇ 1.7478a+72.0, ⁇ 0.026a 2 +0.7478a+28.0, 0.0), point I (0.026a 2 ⁇ 1.7478a+72.0, 0.0, ⁇ 0.026a 2 +0.7478a+28.0), point A (0.0134a 2 ⁇ 1.9681a+68.6, 0.0, ⁇ 0.0134a 2 +0.9681a+31.4), point B (0.0, 0.0144a 2 ⁇ 1.6377a+58.7, ⁇ 0.0144a 2 +0.6377a+41.3), point D′ (0.0, 0.0224a 2 +0.968a+75.4, ⁇ 0.0224a 2 ⁇ 1.968a+24.6), and point C ( ⁇ 0.2304a 2 ⁇ 0.4062a+32.9, 0.2304a 2 ⁇ 0.5938a+67.1, 0.0), or on the straight lines GI, AB, and D′C (excluding point G, point I, point A, point B, point D′, and point C);
  • coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
  • point G (0.02a 2 ⁇ 1.6013a+71.105, ⁇ 0.02a 2 +0.6013a+28.895, 0.0)
  • point I (0.02a 2 ⁇ 1.6013a+71.105, 0.0, ⁇ 0.02a 2 +0.6013a+28.895)
  • point A (0.0112a 2 ⁇ 1.9337a+68.484, 0.0, ⁇ 0.0112a 2 +0.9337a+31.516)
  • point B (0.0, 0.0075a 2 ⁇ 1.5156a+58.199, ⁇ 0.0075a 2 +0.5156a+41.801)
  • point W (0.0, 100.0 ⁇ a, 0.0), or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);
  • coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
  • point G (0.0135a 2 ⁇ 1.4068a+69.727, ⁇ 0.0135a 2 +0.4068a+30.273, 0.0)
  • point I (0.0135a 2 ⁇ 1.4068a+69.727, 0.0, ⁇ 0.0135a 2 +0.4068a+30.273)
  • point A (0.0107a 2 ⁇ 1.9142a+68.305, 0.0, ⁇ 0.0107a 2 +0.9142a+31.695)
  • point B (0.0, 0.009a 2 ⁇ 1.6045a+59.318, ⁇ 0.009a 2 +0.6045a+40.682)
  • point W (0.0, 100.0 ⁇ a, 0.0), or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);
  • coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
  • point G (0.0111a 2 ⁇ 1.3152a+68.986, ⁇ 0.0111a 2 +0.3152a+31.014, 0.0)
  • point I (0.0111a 2 ⁇ 1.3152a+68.986, 0.0, ⁇ 0.0111a 2 +0.3152a+31.014)
  • point A (0.0103a 2 ⁇ 1.9225a+68.793, 0.0, ⁇ 0.0103a 2 +0.9225a+31.207)
  • point B 0.0, 0.0046a 2 ⁇ 1.41a+57.286, ⁇ 0.0046a 2 +0.41a+42.714
  • point W (0.0, 100.0 ⁇ a, 0.0), or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W); and
  • coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
  • point G (0.0061a 2 ⁇ 0.9918a+63.902, ⁇ 0.0061a 2 ⁇ 0.0082a+36.098, 0.0)
  • point I (0.0061a 2 ⁇ 0.9918a+63.902, 0.0, ⁇ 0.0061a 2 ⁇ 0.0082a+36.098)
  • point A (0.0085a 2 ⁇ 1.8102a+67.1, 0.0, ⁇ 0.0085a 2 +0.8102a+32.9)
  • point B 0.0, 0.0012a 2 ⁇ 1.1659a+52.95, ⁇ 0.0012a 2 +0.1659a+47.05
  • point W (0.0, 100.0 ⁇ a, 0 . 0 ), or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W).
  • the compressor can be driven without interposing a power conversion device between the AC power source and the motor.
  • the air conditioner that is environmentally friendly and has a relatively inexpensive configuration can also be achieved when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) and a coefficient of performance (COP) equal to those of R410A is used.
  • An air conditioner according to a nineteenth aspect is the air conditioner according to any of the first through seventh aspects, wherein, the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32), wherein
  • point J (0.0049a 2 ⁇ 0.9645a+47.1, ⁇ 0.0049a 2 ⁇ 0.0355a+52.9, 0.0)
  • point K′ (0.0514a 2 ⁇ 2.4353a+61.7, ⁇ 0.0323a 2 +0.4122a+5.9, ⁇ 0.0191a 2 +1.0231a+32.4)
  • point B (0.0, 0.0144a 2 ⁇ 1.6377a+58.7, ⁇ 0.0144a 2 +0.6377a+41.3)
  • point D′ (0.0, 0.0224a 2 +0.968a+75.4, ⁇ 0.0224a 2 ⁇ 1.968a+24.6)
  • point C ( ⁇ 0.2304a 2 ⁇ 0.4062a+32.9, 0.2304a 2 ⁇ 0.5938a+67.1, 0.0), or on the straight lines JK′, K′B, and D′C (excluding point J, point B, point D′, and point C);
  • coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
  • point J (0.0243a 2 ⁇ 1.4161a+49.725, ⁇ 0.0243a 2 +0.4161a+50.275, 0.0)
  • point K′ (0.0341a 2 ⁇ 2.1977a+61.187, ⁇ 0.0236a 2 +0.34a+5.636, ⁇ 0.0105a 2 +0.8577a+33.177)
  • point B (0.0, 0.0075a 2 ⁇ 1.5156a+58.199, ⁇ 0.0075a 2 +0.5156a+41.801)
  • point W (0.0, 100.0 ⁇ a, 0.0), or on the straight lines JK′ and K′B (excluding point J, point B, and point W);
  • coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
  • point J (0.0246a 2 ⁇ 1.4476a+50.184, ⁇ 0.0246a 2 +0.4476a+49.816, 0.0)
  • point K′ (0.0196a 2 ⁇ 1.7863a+58.515, ⁇ 0.0079a 2 ⁇ 0.1136a+8.702, ⁇ 0.0117a 2 +0.8999a+32.783)
  • point B (0.0, 0.009a 2 ⁇ 1.6045a+59.318, ⁇ 0.009a 2 +0.6045a+40.682)
  • point W (0.0, 100.0 ⁇ a, 0.0), or on the straight lines JK′ and K′B (excluding point J, point B, and point W);
  • coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
  • point J (0.0183a 2 ⁇ 1.1399a+46.493, ⁇ 0.0183a 2 +0.1399a+53.507, 0.0)
  • point K′ ( ⁇ 0.0051a 2 +0.0929a+25.95, 0.0, 0.0051a 2 ⁇ 1.0929a+74.05)
  • point A (0.0103a 2 ⁇ 1.9225a+68.793, 0.0, ⁇ 0.0103a 2 +0.9225a+31.207)
  • point B (0.0, 0.0046a 2 ⁇ 1.41a+57.286, ⁇ 0.0046a 2 +0.41a+42.714), and point W (0.0, 100.0 ⁇ a, 0.0), or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W); and
  • coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
  • point J ( ⁇ 0.0134a 2 +1.0956a+7.13, 0.0134a 2 ⁇ 2.0956a+92.87, 0.0)
  • point K′ ( ⁇ 1.892a+29.443, 0.0, 0.892a+70.557)
  • point A (0.0085a 2 ⁇ 1.8102a+67.1, 0.0, ⁇ 0.0085a 2 +0.8102a+32.9)
  • point B (0.0, 0.0012a 2 ⁇ 1.1659a+52.95, ⁇ 0.0012a 2 +0.1659a+47.05)
  • point W (0.0, 100.0 ⁇ a, 0.0), or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W).
  • the compressor can be driven without interposing a power conversion device between the AC power source and the motor.
  • the air conditioner that is environmentally friendly and has a relatively inexpensive configuration can also be achieved when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) and a coefficient of performance (COP) equal to those of R410A is used.
  • An air conditioner according to a twentieth aspect is the air conditioner according to any of the first through seventh aspects, wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf),
  • HFO-1132(E) trans-1,2-difluoroethylene
  • R32 difluoromethane
  • R1234yf 2,3,3,3-tetrafluoro-1-propene
  • the line segment IJ is represented by coordinates (0.0236y 2 ⁇ 1.7616y+72.0, y, ⁇ 0.0236y 2 +0.7616y+28.0);
  • the line segment NE is represented by coordinates (0.012y 2 ⁇ 1.9003y+58.3, y, ⁇ 0.012y 2 +0.9003y+41.7);
  • the compressor can be driven without interposing a power conversion device between the AC power source and the motor.
  • the air conditioner that is environmentally friendly and has a relatively inexpensive configuration can also be achieved when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.
  • a refrigeration capacity may also be referred to as a cooling capacity or a capacity
  • An air conditioner according to a twenty-first aspect is the air conditioner according to any of the first through seventh aspects, wherein the refrigerant comprises HFO-1132(E), R32, and R1234yf,
  • point M (52.6, 0.0, 47.4), point M′ (39.2, 5.0, 55.8), point N (27.7, 18.2, 54.1), point V (11.0, 18.1, 70.9), and point G (39.6, 0.0, 60.4), or on these line segments (excluding the points on the line segment GM);
  • the line segment MM′ is represented by coordinates (0.132y 2 ⁇ 3.34y+52.6, y, ⁇ 0.132y 2 +2.34y+47.4);
  • the line segment M′N is represented by coordinates (0.0596y 2 ⁇ 2.2541y+48.98, y, ⁇ 0.0596y 2 +1.2541y+51.02);
  • the line segment VG is represented by coordinates (0.0123y 2 ⁇ 1.8033y+39.6, y, ⁇ 0.0123y 2 +0.8033y+60.4);
  • the line segments NV and GM are straight lines.
  • the compressor can be driven without interposing a power conversion device between the AC power source and the motor.
  • the air conditioner that is environmentally friendly and has a relatively inexpensive configuration can also be achieved when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.
  • a refrigeration capacity may also be referred to as a cooling capacity or a capacity
  • An air conditioner according to a twenty-second aspect is the air conditioner according to any of the first through seventh aspects, wherein the refrigerant comprises HFO-1132(E), R32, and R1234yf,
  • the line segment ON is represented by coordinates (0.0072y 2 ⁇ 0.6701y+37.512, y, ⁇ 0.0072y 2 ⁇ 0.3299y+62.488);
  • the line segment NU is represented by coordinates (0.0083y 2 ⁇ 1.7403y+56.635, y, ⁇ 0.0083y 2 +0.7403y+43.365);
  • the line segment UO is a straight line.
  • the compressor can be driven without interposing a power conversion device between the AC power source and the motor.
  • the air conditioner that is environmentally friendly and has a relatively inexpensive configuration can also be achieved when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.
  • a refrigeration capacity may also be referred to as a cooling capacity or a capacity
  • An air conditioner according to a twenty-third aspect is the air conditioner according to any of the first through seventh aspects, wherein the refrigerant comprises HFO-1132(E), R32, and R1234yf,
  • point Q (44.6, 23.0, 32.4), point R (25.5, 36.8, 37.7), point T (8.6, 51.6, 39.8), point L (28.9, 51.7, 19.4), and point K (35.6, 36.8, 27.6), or on these line segments;
  • the line segment QR is represented by coordinates (0.0099y 2 ⁇ 1.975y+84.765, y, ⁇ 0.0099y 2 +0.975y+15.235);
  • the line segment RT is represented by coordinates (0.0082y 2 ⁇ 1.8683y+83.126, y, ⁇ 0.0082y 2 +0.8683y+16.874);
  • the line segment LK is represented by coordinates (0.0049y 2 ⁇ 0.8842y+61.488, y, ⁇ 0.0049y 2 ⁇ 0.1158y+38.512);
  • the line segment KQ is represented by coordinates (0.0095y 2 ⁇ 1.2222y+67.676, y, ⁇ 0.0095y 2 +0.2222y+32.324);
  • the line segment TL is a straight line.
  • the compressor can be driven without interposing a power conversion device between the AC power source and the motor.
  • the air conditioner that is environmentally friendly and has a relatively inexpensive configuration can also be achieved when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.
  • a refrigeration capacity may also be referred to as a cooling capacity or a capacity
  • An air conditioner according to a twenty-fourth aspect is the air conditioner according to any of the first through seventh aspects, wherein the refrigerant comprises HFO-1132(E), R32, and R1234yf,
  • point P (20.5, 51.7, 27.8), point S (21.9, 39.7, 38.4), and point T (8.6, 51.6, 39.8), or on these line segments;
  • the line segment PS is represented by coordinates (0.0064y 2 ⁇ 0.7103y+40.1, y, ⁇ 0.0064y 2 ⁇ 0.2897y+59.9);
  • the line segment ST is represented by coordinates (0.0082y 2 ⁇ 1.8683y+83.126, y, ⁇ 0.0082y 2 +0.8683y+16.874);
  • the line segment TP is a straight line.
  • the compressor can be driven without interposing a power conversion device between the AC power source and the motor.
  • the air conditioner that is environmentally friendly and has a relatively inexpensive configuration can also be achieved when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.
  • a refrigeration capacity may also be referred to as a cooling capacity or a capacity
  • An air conditioner according to a fifth aspect is the air conditioner according to any of the first through seventh aspects, wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
  • point I (72.0, 28.0, 0.0), point K (48.4, 33.2, 18.4), point B′ (0.0, 81.6, 18.4), point H (0.0, 84.2, 15.8), point R (23.1, 67.4, 9.5), and point G (38.5, 61.5, 0.0), or on these line segments (excluding the points on the line segments B′H and GI);
  • the line segment IK is represented by coordinates (0.025z 2 ⁇ 1.7429z+72.00, ⁇ 0.025z 2 +0.7429z+28.0, z),
  • the line segment HR is represented by coordinates ( ⁇ 0.3123z 2 +4.234z+11.06, 0.3123z 2 ⁇ 5.234z+88.94, z),
  • the line segment RG is represented by coordinates ( ⁇ 0.0491z 2 ⁇ 1.1544z+38.5, 0.0491z 2 +0.1544z+61.5, z), and
  • the line segments KB′ and GI are straight lines.
  • the compressor can be driven without interposing a power conversion device between the AC power source and the motor.
  • the air conditioner that is environmentally friendly and has a relatively inexpensive configuration can also be achieved when a refrigerant having a sufficiently low GWP, and a coefficient of performance (COP) equal to that of R410A is used.
  • An air conditioner according to a twenty-sixth aspect is the air conditioner according to any of the first through seventh aspects, wherein the refrigerant comprises HFO-1132(E), HFO-1123, and R32,
  • point I (72.0, 28.0, 0.0), point J (57.7, 32.8, 9.5), point R (23.1, 67.4, 9.5), and point G (38.5, 61.5, 0.0), or on these line segments (excluding the points on the line segment GI);
  • the line segment IJ is represented by coordinates (0.025z 2 ⁇ 1.7429z+72.0, ⁇ 0.025z 2 +0.7429z+28.0, z),
  • the line segment RG is represented by coordinates ( ⁇ 0.0491z 2 ⁇ 1.1544z+38.5, 0.0491z 2 +0.1544z+61.5, z), and the line segments JR and GI are straight lines.
  • the compressor can be driven without interposing a power conversion device between the AC power source and the motor.
  • the air conditioner that is environmentally friendly and has a relatively inexpensive configuration can also be achieved when a refrigerant having a sufficiently low GWP, and a coefficient of performance (COP) equal to that of R410A is used.
  • An air conditioner according to a twenty-seventh aspect is the air conditioner according to any of the first through seventh aspects, wherein the refrigerant comprises HFO-1132(E), HFO-1123, and R32,
  • point M (47.1, 52.9, 0.0), point P (31.8, 49.8, 18.4), point B′ (0.0, 81.6, 18.4), point H (0.0, 84.2, 15.8), point R (23.1, 67.4, 9.5), and point G (38.5, 61.5, 0.0), or on these line segments (excluding the points on the line segments B′H and GM);
  • the line segment MP is represented by coordinates (0.0083z 2 ⁇ 0.984z+47.1, ⁇ 0.0083z 2 ⁇ 0.016z+52.9, z),
  • the line segment HR is represented by coordinates ( ⁇ 0.3123z 2 +4.234z+11.06, 0.3123z 2 ⁇ 5.234z+88.94, z),
  • the line segment RG is represented by coordinates ( ⁇ 0.0491z 2 ⁇ 1.1544z+38.5, 0.0491z 2 +0.1544z+61.5, z), and
  • the line segments PB′ and GM are straight lines.
  • the compressor can be driven without interposing a power conversion device between the AC power source and the motor.
  • the air conditioner that is environmentally friendly and has a relatively inexpensive configuration can also be achieved when a refrigerant having a sufficiently low GWP, and a coefficient of performance (COP) equal to that of R410A is used.
  • An air conditioner according to a twenty-eighth aspect is the air conditioner according to any of the first through seventh aspects, wherein the refrigerant comprises HFO-1132(E), HFO-1123, and R32,
  • point M (47.1, 52.9, 0.0), point N (38.5, 52.1, 9.5), point R (23.1, 67.4, 9.5), and point G (38.5, 61.5, 0.0), or on these line segments (excluding the points on the line segment GM);
  • the line segment MN is represented by coordinates (0.0083z 2 ⁇ 0.984z+47.1, ⁇ 0.0083z 2 ⁇ 0.016z+52.9, z),
  • the line segment RG is represented by coordinates ( ⁇ 0.0491z 2 ⁇ 1.1544z+38.5, 0.0491z 2 +0.1544z+61.5, z), and
  • the line segments JR and GI are straight lines.
  • the compressor can be driven without interposing a power conversion device between the AC power source and the motor.
  • the air conditioner that is environmentally friendly and has a relatively inexpensive configuration can also be achieved when a refrigerant having a sufficiently low GWP, and a coefficient of performance (COP) equal to that of R410A is used.
  • An air conditioner according to a twenty-ninth aspect is the air conditioner according to any of the first through seventh aspects, wherein the refrigerant comprises HFO-1132(E), HFO-1123, and R32,
  • point P (31.8, 49.8, 18.4), point S (25.4, 56.2, 18.4), and point T (34.8, 51.0, 14.2), or on these line segments;
  • the line segment ST is represented by coordinates ( ⁇ 0.0982z 2 +0.9622z+40.931, 0.0982z 2 ⁇ 1.9622z+59.069, z),
  • the line segment TP is represented by coordinates (0.0083z 2 ⁇ 0.984z+47.1, ⁇ 0.0083z 2 ⁇ 0.016z+52.9, z), and
  • the line segment PS is a straight line.
  • the compressor can be driven without interposing a power conversion device between the AC power source and the motor.
  • the air conditioner that is environmentally friendly and has a relatively inexpensive configuration can also be achieved when a refrigerant having a sufficiently low GWP, and a coefficient of performance (COP) equal to that of R410A is used.
  • An air conditioner according to a thirtieth aspect is the air conditioner according to any of the first through seventh aspects, wherein the refrigerant comprises HFO-1132(E), HFO-1123, and R32,
  • point Q (28.6, 34.4, 37.0), point B′′ (0.0, 63.0, 37.0), point D (0.0, 67.0, 33.0), and point U (28.7, 41.2, 30.1), or on these line segments (excluding the points on the line segment B′′D);
  • the line segment DU is represented by coordinates ( ⁇ 3.4962z 2 +210.71z ⁇ 3146.1, 3.4962z 2 ⁇ 211.71z+3246.1, z),
  • the line segment UQ is represented by coordinates (0.0135z 2 ⁇ 0.9181z+44.133, ⁇ 0.0135z 2 ⁇ 0.0819z+55.867, z), and
  • the compressor can be driven without interposing a power conversion device between the AC power source and the motor.
  • the air conditioner that is environmentally friendly and has a relatively inexpensive configuration can also be achieved when a refrigerant having a sufficiently low GWP, and a coefficient of performance (COP) equal to that of R410A is used.
  • FIG. 1 is a schematic view of an instrument used for a flammability test.
  • FIG. 2 is a diagram showing points A to T and line segments that connect these points in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass %.
  • FIG. 3 is a diagram showing points A to C, D′, G, I, J, and K′, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100 ⁇ a) mass %.
  • FIG. 4 is a diagram showing points A to C, D′, G, I, J, and K′, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 92.9 mass % (the content of R32 is 7.1 mass %).
  • FIG. 5 is a diagram showing points A to C, D′, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 88.9 mass % (the content of R32 is 11.1 mass %).
  • FIG. 6 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 85.5 mass % (the content of R32 is 14.5 mass %).
  • FIG. 7 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 81.8 mass % (the content of R32 is 18.2 mass %).
  • FIG. 8 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 78.1 mass % (the content of R32 is 21.9 mass %).
  • FIG. 9 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 73.3 mass % (the content of R32 is 26.7 mass %).
  • FIG. 10 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 70.7 mass % (the content of R32 is 29.3 mass %).
  • FIG. 11 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 63.3 mass % (the content of R32 is 36.7 mass %).
  • FIG. 12 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 55.9 mass % (the content of R32 is 44.1 mass %).
  • FIG. 13 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 52.2 mass % (the content of R32 is 47.8 mass %).
  • FIG. 14 is a view showing points A to C, E, G, and I to W; and line segments that connect points A to C, E, G, and I to W in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass %.
  • FIG. 15 is a view showing points A to U; and line segments that connect the points in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass %.
  • FIG. 16 is a configuration diagram of an air conditioner according to one embodiment of the present disclosure.
  • FIG. 17 is an operation circuit diagram of a motor of a compressor.
  • FIG. 18 is an operation circuit diagram of a motor of a compressor in an air conditioner according to a modification example.
  • refrigerant includes at least compounds that are specified in ISO 817 (International Organization for Standardization), and that are given a refrigerant number (ASHRAE number) representing the type of refrigerant with “R” at the beginning; and further includes refrigerants that have properties equivalent to those of such refrigerants, even though a refrigerant number is not yet given.
  • Refrigerants are broadly divided into fluorocarbon compounds and non-fluorocarbon compounds in terms of the structure of the compounds.
  • Fluorocarbon compounds include chlorofluorocarbons (CFC), hydrochlorofluorocarbons (HCFC), and hydrofluorocarbons (HFC).
  • Non-fluorocarbon compounds include propane (R290), propylene (R1270), butane (R600), isobutane (R600a), carbon dioxide (R744), ammonia (R717), and the like.
  • composition comprising a refrigerant at least includes (1) a refrigerant itself (including a mixture of refrigerants), (2) a composition that further comprises other components and that can be mixed with at least a refrigeration oil to obtain a working fluid for a refrigerating machine, and (3) a working fluid for a refrigerating machine containing a refrigeration oil.
  • the composition (2) is referred to as a “refrigerant composition” so as to distinguish it from a refrigerant itself (including a mixture of refrigerants).
  • the working fluid for a refrigerating machine (3) is referred to as a “refrigeration oil-containing working fluid” so as to distinguish it from the “refrigerant composition.”
  • the first type of “alternative” means that equipment designed for operation using the first refrigerant can be operated using the second refrigerant under optimum conditions, optionally with changes of only a few parts (at least one of the following: refrigeration oil, gasket, packing, expansion valve, dryer, and other parts) and equipment adjustment.
  • this type of alternative means that the same equipment is operated with an alternative refrigerant.
  • Embodiments of this type of “alternative” include “drop-in alternative,” “nearly drop-in alternative,” and “retrofit,” in the order in which the extent of changes and adjustment necessary for replacing the first refrigerant with the second refrigerant is smaller.
  • alterative also includes a second type of “alternative,” which means that equipment designed for operation using the second refrigerant is operated for the same use as the existing use with the first refrigerant by using the second refrigerant. This type of alternative means that the same use is achieved with an alternative refrigerant.
  • refrigerating machine refers to machines in general that draw heat from an object or space to make its temperature lower than the temperature of ambient air, and maintain a low temperature.
  • refrigerating machines refer to conversion machines that gain energy from the outside to do work, and that perform energy conversion, in order to transfer heat from where the temperature is lower to where the temperature is higher.
  • a refrigerant having a “WCF lower flammability” means that the most flammable composition (worst case of formulation for flammability: WCF) has a burning velocity of 10 cm/s or less according to the US ANSI/ASHRAE Standard 34-2013.
  • a refrigerant having “ASHRAE lower flammability” means that the burning velocity of WCF is 10 cm/s or less, that the most flammable fraction composition (worst case of fractionation for flammability: WCFF), which is specified by performing a leakage test during storage, shipping, or use based on ANSI/ASHRAE 34-2013 using WCF, has a burning velocity of 10 cm/s or less, and that flammability classification according to the US ANSI/ASHRAE Standard 34-2013 is determined to classified as be “Class 2L.”
  • a refrigerant having an “RCL of x % or more” means that the refrigerant has a refrigerant concentration limit (RCL), calculated in accordance with the US ANSI/ASHRAE Standard 34-2013, of x % or more.
  • RCL refers to a concentration limit in the air in consideration of safety factors.
  • RCL is an index for reducing the risk of acute toxicity, suffocation, and flammability in a closed space where humans are present.
  • RCL is determined in accordance with the ASHRAE Standard.
  • RCL is the lowest concentration among the acute toxicity exposure limit (ATEL), the oxygen deprivation limit (ODL), and the flammable concentration limit (FCL), which are respectively calculated in accordance with sections 7.1.1, 7.1.2, and 7.1.3 of the ASHRAE Standard.
  • ATEL acute toxicity exposure limit
  • ODL oxygen deprivation limit
  • FCL flammable concentration limit
  • temperature glide refers to an absolute value of the difference between the initial temperature and the end temperature in the phase change process of a composition containing the refrigerant of the present disclosure in the heat exchanger of a refrigerant system.
  • refrigerant A any one of various refrigerants such as refrigerant A, refrigerant B, refrigerant C, refrigerant D, and refrigerant E, details of these refrigerant are to be mentioned later, can be used as the refrigerant.
  • the refrigerant according to the present disclosure can be preferably used as a working fluid in a refrigerating machine.
  • composition according to the present disclosure is suitable for use as an alternative refrigerant for HFC refrigerant such as R410A, R407C and R404 etc, or HCFC refrigerant such as R22 etc.
  • the refrigerant composition according to the present disclosure comprises at least the refrigerant according to the present disclosure, and can be used for the same use as the refrigerant according to the present disclosure. Moreover, the refrigerant composition according to the present disclosure can be further mixed with at least a refrigeration oil to thereby obtain a working fluid for a refrigerating machine.
  • the refrigerant composition according to the present disclosure further comprises at least one other component in addition to the refrigerant according to the present disclosure.
  • the refrigerant composition according to the present disclosure may comprise at least one of the following other components, if necessary.
  • the refrigerant composition according to the present disclosure when used as a working fluid in a refrigerating machine, it is generally used as a mixture with at least a refrigeration oil. Therefore, it is preferable that the refrigerant composition according to the present disclosure does not substantially comprise a refrigeration oil.
  • the content of the refrigeration oil based on the entire refrigerant composition is preferably 0 to 1 mass %, and more preferably 0 to 0.1 mass %.
  • the refrigerant composition according to the present disclosure may contain a small amount of water.
  • the water content of the refrigerant composition is preferably 0.1 mass % or less based on the entire refrigerant.
  • a small amount of water contained in the refrigerant composition stabilizes double bonds in the molecules of unsaturated fluorocarbon compounds that can be present in the refrigerant, and makes it less likely that the unsaturated fluorocarbon compounds will be oxidized, thus increasing the stability of the refrigerant composition.
  • a tracer is added to the refrigerant composition according to the present disclosure at a detectable concentration such that when the refrigerant composition has been diluted, contaminated, or undergone other changes, the tracer can trace the changes.
  • the refrigerant composition according to the present disclosure may comprise a single tracer, or two or more tracers.
  • the tracer is not limited, and can be suitably selected from commonly used tracers.
  • a compound that cannot be an impurity inevitably mixed in the refrigerant of the present disclosure is selected as the tracer.
  • tracers examples include hydrofluorocarbons, hydrochlorofluorocarbons, chlorofluorocarbons, hydrochlorocarbons, fluorocarbons, deuterated hydrocarbons, deuterated hydrofluorocarbons, perfluorocarbons, fluoroethers, brominated compounds, iodinated compounds, alcohols, aldehydes, ketones, and nitrous oxide (N 2 O).
  • the tracer is particularly preferably a hydrofluorocarbon, a hydrochlorofluorocarbon, a chlorofluorocarbon, a fluorocarbon, a hydrochlorocarbon, a fluorocarbon, or a fluoroether.
  • FC-14 (tetrafluoromethane, CF 4 ) HCC-40 (chloromethane, CH 3 Cl) HFC-23 (trifluoromethane, CHF 3 ) HFC-41 (fluoromethane, CH 3 Cl) HFC-125 (pentafluoroethane, CF 3 CHF 2 ) HFC-134a (1,1,1,2-tetrafluoroethane, CF 3 CH 2 F) HFC-134 (1,1,2,2-tetrafluoroethane, CHF 2 CHF 2 ) HFC-143a (1,1,1-trifluoroethane, CF 3 CH 3 ) HFC-143 (1,1,2-trifluoroethane, CHF 2 CH 2 F) HFC-152a (1,1-difluoroethane, CHF 2 CH 3 ) HFC-152 (1,2-difluoroethane, CH 2 FCH 2 F) HFC-161 (fluoroethane, CH 3 CH 2 F)
  • the tracer compound may be present in the refrigerant composition at a total concentration of about 10 parts per million (ppm) to about 1000 ppm.
  • the tracer compound is present in the refrigerant composition at a total concentration of about 30 ppm to about 500 ppm, and most preferably, the tracer compound is present at a total concentration of about 50 ppm to about 300 ppm.
  • the refrigerant composition according to the present disclosure may comprise a single ultraviolet fluorescent dye, or two or more ultraviolet fluorescent dyes.
  • the ultraviolet fluorescent dye is not limited, and can be suitably selected from commonly used ultraviolet fluorescent dyes.
  • ultraviolet fluorescent dyes examples include naphthalimide, coumarin, anthracene, phenanthrene, xanthene, thioxanthene, naphthoxanthene, fluorescein, and derivatives thereof.
  • the ultraviolet fluorescent dye is particularly preferably either naphthalimide or coumarin, or both.
  • the refrigerant composition according to the present disclosure may comprise a single stabilizer, or two or more stabilizers.
  • the stabilizer is not limited, and can be suitably selected from commonly used stabilizers.
  • stabilizers examples include nitro compounds, ethers, and amines.
  • nitro compounds include aliphatic nitro compounds, such as nitromethane and nitroethane; and aromatic nitro compounds, such as nitro benzene and nitro styrene.
  • ethers examples include 1,4-dioxane.
  • amines examples include 2,2,3,3,3-pentafluoropropylamine and diphenylamine.
  • stabilizers also include butylhydroxyxylene and benzotriazole.
  • the content of the stabilizer is not limited. Generally, the content of the stabilizer is preferably 0.01 to 5 mass %, and more preferably 0.05 to 2 mass %, based on the entire refrigerant.
  • the refrigerant composition according to the present disclosure may comprise a single polymerization inhibitor, or two or more polymerization inhibitors.
  • the polymerization inhibitor is not limited, and can be suitably selected from commonly used polymerization inhibitors.
  • polymerization inhibitors examples include 4-methoxy-1-naphthol, hydroquinone, hydroquinone methyl ether, dimethyl-t-butylphenol, 2,6-di-tert-butyl-p-cresol, and benzotriazole.
  • the content of the polymerization inhibitor is not limited. Generally, the content of the polymerization inhibitor is preferably 0.01 to 5 mass %, and more preferably 0.05 to 2 mass %, based on the entire refrigerant.
  • the refrigeration oil-containing working fluid according to the present disclosure comprises at least the refrigerant or refrigerant composition according to the present disclosure and a refrigeration oil, for use as a working fluid in a refrigerating machine.
  • the refrigeration oil-containing working fluid according to the present disclosure is obtained by mixing a refrigeration oil used in a compressor of a refrigerating machine with the refrigerant or the refrigerant composition.
  • the refrigeration oil-containing working fluid generally comprises 10 to 50 mass % of refrigeration oil.
  • the refrigeration oil is not limited, and can be suitably selected from commonly used refrigeration oils.
  • refrigeration oils that are superior in the action of increasing the miscibility with the mixture and the stability of the mixture, for example, are suitably selected as necessary.
  • the base oil of the refrigeration oil is preferably, for example, at least one member selected from the group consisting of polyalkylene glycols (PAG), polyol esters (POE), and polyvinyl ethers (PVE).
  • PAG polyalkylene glycols
  • POE polyol esters
  • PVE polyvinyl ethers
  • the refrigeration oil may further contain additives in addition to the base oil.
  • the additive may be at least one member selected from the group consisting of antioxidants, extreme-pressure agents, acid scavengers, oxygen scavengers, copper deactivators, rust inhibitors, oil agents, and antifoaming agents.
  • a refrigeration oil with a kinematic viscosity of 5 to 400 cSt at 40° C. is preferable from the standpoint of lubrication.
  • the refrigeration oil-containing working fluid according to the present disclosure may further optionally contain at least one additive.
  • additives include compatibilizing agents described below.
  • the refrigeration oil-containing working fluid according to the present disclosure may comprise a single compatibilizing agent, or two or more compatibilizing agents.
  • the compatibilizing agent is not limited, and can be suitably selected from commonly used compatibilizing agents.
  • compatibilizing agents include polyoxyalkylene glycol ethers, amides, nitriles, ketones, chlorocarbons, esters, lactones, aryl ethers, fluoroethers, and 1,1,1-trifluoroalkanes.
  • the compatibilizing agent is particularly preferably a polyoxyalkylene glycol ether.
  • each description of the following refrigerant A, refrigerant B, refrigerant C, refrigerant D, and refrigerant E is each independent.
  • the alphabet which shows a point or a line segment, the number of an Examples, and the number of a comparative examples are all independent of each other among the refrigerant A, the refrigerant B, the refrigerant C, the refrigerant D, and the refrigerant E.
  • the first embodiment of the refrigerant A and the first embodiment of the refrigerant B are different embodiment from each other.
  • the refrigerant A according to the present disclosure is a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).
  • the refrigerant A according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant, i.e., a refrigerating capacity and a coefficient of performance that are equivalent to those of R410A, and a sufficiently low GWP.
  • the refrigerant A according to the present disclosure is a composition comprising HFO-1132(E) and R1234yf, and optionally further comprising HFO-1123, and may further satisfy the following requirements.
  • This refrigerant also has various properties desirable as an alternative refrigerant for R410A; i.e., it has a refrigerating capacity and a coefficient of performance that are equivalent to those of R410A, and a sufficiently low GWP.
  • Preferable refrigerant A is as follows:
  • point A (68.6, 0.0, 31.4), point A′ (30.6, 30.0, 39.4), point B (0.0, 58.7, 41.3), point D (0.0, 80.4, 19.6), point C′ (19.5, 70.5, 10.0), point C (32.9, 67.1, 0.0), and point O (100.0, 0.0, 0.0), or on the above line segments (excluding the points on the line CO);
  • the line segment AA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3,
  • the line segment DC′ is represented by coordinates (x, 0.0082x 2 ⁇ 0.6671x+80.4, ⁇ 0.0082x 2 ⁇ 0.3329x+19.6),
  • the line segment C′C is represented by coordinates (x, 0.0067x 2 ⁇ 0.6034x+79.729, ⁇ 0.0067x 2 ⁇ 0.3966x+20.271), and
  • the line segments BD, CO, and OA are straight lines.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A.
  • the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within a figure surrounded by line segments GI, IA, AA′, A′B, BD, DC′, C′C, and CG that connect the following 8 points:
  • point I (72.0, 0.0, 28.0), point A (68.6, 0.0, 31.4), point A′ (30.6, 30.0, 39.4), point B (0.0, 58.7, 41.3), point D (0.0, 80.4, 19.6), point C′ (19.5, 70.5, 10.0), and point C (32.9, 67.1, 0.0), or on the above line segments (excluding the points on the line segment CG);
  • the line segment AA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3),
  • the line segment DC′ is represented by coordinates (x, 0.0082x 2 ⁇ 0.6671x+80.4, ⁇ 0.0082x 2 ⁇ 0.3329x+19.6),
  • the line segment C′C is represented by coordinates (x, 0.0067x 2 ⁇ 0.6034x+79.729, ⁇ 0.0067x 2 ⁇ 0.3966x+20.271), and
  • the line segments GI, IA, BD, and CG are straight lines.
  • the refrigerant A according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A; furthermore, the refrigerant A has a WCF lower flammability according to the ASHRAE Standard (the WCF composition has a burning velocity of 10 cm/s or less).
  • the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PN, NK, KA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
  • point J (47.1, 52.9, 0.0), point P (55.8, 42.0, 2.2), point N (68.6, 16.3, 15.1), point K (61.3, 5.4, 33.3), point A′ (30.6, 30.0, 39.4), point B (0.0, 58.7, 41.3), point D (0.0, 80.4, 19.6), point C′ (19.5, 70.5, 10.0), and point C (32.9, 67.1, 0.0), or on the above line segments (excluding the points on the line segment CJ);
  • the line segment PN is represented by coordinates (x, ⁇ 0.1135x 2 +12.112x ⁇ 280.43, 0.1135x 2 ⁇ 13.112x+380.43),
  • the line segment NK is represented by coordinates (x, 0.2421x 2 ⁇ 29.955x+931.91, ⁇ 0.2421x 2 +28.955x ⁇ 831.91),
  • the line segment KA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3),
  • the line segment DC′ is represented by coordinates (x, 0.0082x 2 ⁇ 0.6671x+80.4, ⁇ 0.0082x 2 ⁇ 0.3329x+19.6),
  • the line segment C′C is represented by coordinates (x, 0.0067x 2 ⁇ 0.6034x+79.729, ⁇ 0.0067x 2 ⁇ 0.3966x+20.271), and
  • the line segments JP, BD, and CG are straight lines.
  • the refrigerant A according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A; furthermore, the refrigerant exhibits a lower flammability (Class 2L) according to the ASHRAE Standard (the WCF composition and the WCFF composition have a burning velocity of 10 cm/s or less).
  • the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PL, LM, MA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
  • point J (47.1, 52.9, 0.0), point P (55.8, 42.0, 2.2), point L (63.1, 31.9, 5.0), point M (60.3, 6.2, 33.5), point A′ (30.6, 30.0, 39.4), point B (0.0, 58.7, 41.3), point D (0.0, 80.4, 19.6), point C′ (19.5, 70.5, 10.0), and point (32.9, 67.1, 0.0), or on the above line segments (excluding the points on the line segment CJ);
  • the line segment PL is represented by coordinates (x, ⁇ 0.1135x 2 +12.112x ⁇ 280.43, 0.1135x 2 ⁇ 13.112x+380.43),
  • the line segment MA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3),
  • the line segment DC′ is represented by coordinates (x, 0.0082x 2 ⁇ 0.6671x+80.4, ⁇ 0.0082x 2 ⁇ 0.3329x+19.6),
  • the line segment C′C is represented by coordinates (x, 0.0067x 2 ⁇ 0.6034x+79.729, ⁇ 0.0067x 2 ⁇ 0.3966x+20.271), and
  • the line segments JP, LM, BD, and CG are straight lines.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A; furthermore, the refrigerant has an RCL of 40 g/m 3 or more.
  • the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LM, MA′, A′B, BF, FT, and TP that connect the following 7 points:
  • point P (55.8, 42.0, 2.2), point L (63.1, 31.9, 5.0), point M (60.3, 6.2, 33.5), point A′ (30.6, 30.0, 39.4), point B (0.0, 58.7, 41.3), point F (0.0, 61.8, 38.2), and point T (35.8, 44.9, 19.3), or on the above line segments (excluding the points on the line segment BF);
  • the line segment PL is represented by coordinates (x, ⁇ 0.1135x 2 +12.112x ⁇ 280.43, 0.1135x 2 ⁇ 13.112x+380.43),
  • the line segment MA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3),
  • the line segment FT is represented by coordinates (x, 0.0078x 2 ⁇ 0.7501x+61.8, ⁇ 0.0078x 2 ⁇ 0.2499x+38.2),
  • the line segment TP is represented by coordinates (x, 0.00672x 2 ⁇ 0.7607x+63.525, ⁇ 0.00672x 2 ⁇ 0.2393x+36.475), and
  • the line segments LM and BF are straight lines.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 95% or more relative to that of R410A; furthermore, the refrigerant has an RCL of 40 g/m 3 or more.
  • the refrigerant A according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LQ, QR, and RP that connect the following 4 points:
  • point P (55.8, 42.0, 2.2), point L (63.1, 31.9, 5.0), point Q (62.8, 29.6, 7.6), and point R (49.8, 42.3, 7.9), or on the above line segments;
  • the line segment PL is represented by coordinates (x, ⁇ 0.1135x 2 +12.112x ⁇ 280.43, 0.1135x 2 ⁇ 13.112x+380.43),
  • the line segment RP is represented by coordinates (x, 0.00672x 2 ⁇ 0.7607x+63.525, ⁇ 0.00672x 2 ⁇ 0.2393x+36.475), and
  • the line segments LQ and QR are straight lines.
  • the refrigerant according to the present disclosure has a COP of 95% or more relative to that of R410A, and an RCL of 40 g/m 3 or more, furthermore, the refrigerant has a condensation temperature glide of 1° C. or less.
  • the refrigerant A according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments SM, MA′, A′B, BF, FT, and TS that connect the following 6 points:
  • the line segment MA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3),
  • the line segment FT is represented by coordinates (x, 0.0078x 2 ⁇ 0.7501x+61.8, ⁇ 0.0078x 2 ⁇ 0.2499x+38.2),
  • the line segment TS is represented by coordinates (x, ⁇ 0.0017x 2 ⁇ 0.7869x+70.888, ⁇ 0.0017x 2 ⁇ 0.2131x+29.112), and
  • the line segments SM and BF are straight lines.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, a COP of 95% or more relative to that of R410A, and an RCL of 40 g/m 3 or more furthermore, the refrigerant has a discharge pressure of 105% or more relative to that of R410A.
  • the refrigerant A according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments Od, dg, gh, and hO that connect the following 4 points:
  • point d (87.6, 0.0, 12.4), point g (18.2, 55.1, 26.7), point h (56.7, 43.3, 0.0), and point o (100.0, 0.0, 0.0), or on the line segments Od, dg, gh, and hO (excluding the points O and h);
  • the line segment dg is represented by coordinates (0.0047y 2 ⁇ 1.5177y+87.598, y, ⁇ 0.0047y 2 +0.5177y+12.402),
  • the line segment gh is represented by coordinates ( ⁇ 0.0134z 2 ⁇ 1.0825z+56.692, 0.0134z 2 +0.0825z+43.308, z), and
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A.
  • the refrigerant A according to the present disclosure is preferably a refrigerant wherein
  • point l (72.5, 10.2, 17.3), point g (18.2, 55.1, 26.7), point h (56.7, 43.3, 0.0), and point i (72.5, 27.5, 0.0) or on the line segments lg, gh, and il (excluding the points h and i);
  • the line segment lg is represented by coordinates (0.0047y 2 ⁇ 1.5177y+87.598, y, ⁇ 0.0047y 2 +0.5177y+12.402),
  • the line gh is represented by coordinates ( ⁇ 0.0134z 2 ⁇ 1.0825z+56.692, 0.0134z 2 +0.0825z+43.308, z), and
  • the line segments hi and il are straight lines.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A; furthermore, the refrigerant has a lower flammability (Class 2L) according to the ASHRAE Standard.
  • the refrigerant A according to the present disclosure is preferably a refrigerant wherein
  • point d (87.6, 0.0, 12.4), point e (31.1, 42.9, 26.0), point f (65.5, 34.5, 0.0), and point O (100.0, 0.0, 0.0), or on the line segments Od, de, and ef (excluding the points O and f);
  • the line segment de is represented by coordinates (0.0047y 2 ⁇ 1.5177y+87.598, y, ⁇ 0.0047y 2 +0.5177y+12.402),
  • the line segment ef is represented by coordinates ( ⁇ 0.0064z 2 ⁇ 1.1565z+65.501, 0.0064z 2 +0.1565z+34.499, z), and
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 93.5% or more relative to that of R410A, and a COP ratio of 93.5% or more relative to that of R410A.
  • the refrigerant A according to the present disclosure is preferably a refrigerant wherein
  • point l (72.5, 10.2, 17.3), point e (31.1, 42.9, 26.0), point f (65.5, 34.5, 0.0), and point i (72.5, 27.5, 0.0), or on the line segments le, ef, and il (excluding the points f and i);
  • the line segment le is represented by coordinates (0.0047y 2 ⁇ 1.5177y+87.598, y, ⁇ 0.0047y 2 +0.5177y+12.402),
  • the line segment ef is represented by coordinates ( ⁇ 0.0134z 2 ⁇ 1.0825z+56.692, 0.0134z 2 +0.0825z+43.308, z), and
  • the line segments fi and il are straight lines.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 93.5% or more relative to that of R410A, and a COP ratio of 93.5% or more relative to that of R410A; furthermore, the refrigerant has a lower flammability (Class 2L) according to the ASHRAE Standard.
  • the refrigerant A according to the present disclosure is preferably a refrigerant wherein
  • point a (93.4, 0.0, 6.6), point b (55.6, 26.6, 17.8), point c (77.6, 22.4, 0.0), and point O (100.0, 0.0, 0.0), or on the line segments Oa, ab, and bc (excluding the points O and c);
  • the line segment ab is represented by coordinates (0.0052y 2 ⁇ 1.5588y+93.385, y, ⁇ 0.0052y 2 +0.5588y+6.615),
  • the line segment bc is represented by coordinates ( ⁇ 0.0032z 2 ⁇ 1.1791z+77.593, 0.0032z 2 +0.1791z+22.407, z), and
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to that of R410A, and a COP ratio of 95% or more relative to that of R410A.
  • the refrigerant A according to the present disclosure is preferably a refrigerant wherein
  • point k (72.5, 14.1, 13.4), point b (55.6, 26.6, 17.8), and point j (72.5, 23.2, 4.3), or on the line segments kb, bj, and jk;
  • the line segment kb is represented by coordinates (0.0052y 2 ⁇ 1.5588y+93.385, y, and ⁇ 0.0052y 2 +0.5588y+6.615),
  • the line segment bj is represented by coordinates ( ⁇ 0.0032z 2 ⁇ 1.1791z+77.593, 0.0032z 2 +0.1791z+22.407, z), and
  • the line segment jk is a straight line.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to that of R410A, and a COP ratio of 95% or more relative to that of R410A; furthermore, the refrigerant has a lower flammability (Class 2L) according to the ASHRAE Standard.
  • the refrigerant according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), HFO-1123, and R1234yf, as long as the above properties and effects are not impaired.
  • the refrigerant according to the present disclosure preferably comprises HFO-1132(E), HFO-1123, and R1234yf in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and still more preferably 99.9 mass % or more, based on the entire refrigerant.
  • the refrigerant according to the present disclosure may comprise HFO-1132(E), HFO-1123, and R1234yf in a total amount of 99.5 mass % or more, 99.75 mass % or more, or 99.9 mass % or more, based on the entire refrigerant.
  • Additional refrigerants are not particularly limited and can be widely selected.
  • the mixed refrigerant may contain one additional refrigerant, or two or more additional refrigerants.
  • refrigerant A is not limited to the Examples.
  • the GWP of R1234yf and a composition consisting of a mixed refrigerant R410A was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report.
  • the refrigerating capacity of R410A and compositions each comprising a mixture of HFO-1132(E), HFO-1123, and R1234yf was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.
  • the RCL of the mixture was calculated with the LFL of HFO-1132(E) being 4.7 vol. %, the LFL of HFO-1123 being 10 vol. %, and the LFL of R1234yf being 6.2 vol. %, in accordance with the ASHRAE Standard 34-2013.
  • Tables 1 to 34 show these values together with the GWP of each mixed refrigerant.
  • Example Example Example Ex. 10 20 21 Item Unit G H I HFO-1132(E) mass % 72.0 72.0 72.0 HFO-1123 mass % 28.0 14.0 0.0 R1234yf mass % 0.0 14.0 28.0 GWP — 1 1 2 COP ratio % (relative 96.6 98.2 99.9 to 410A) Refrigerating % (relative 103.1 95.1 86.6 capacity ratio to 410A) Condensation glide ° C. 0.46 1.27 1.71 Discharge pressure % (relative 108.4 98.7 88.6 to 410A) RCL g/m 3 37.4 37.0 36.6
  • Example Example Item Unit 226 227 HFO-1132(E) mass % 34.0 36.0 HFO-1123 mass % 28.0 26.0 R1234yf mass % 38.0 38.0 GWP — 2 2 COP ratio % (relative 97.4 97.6 to 410A) Refrigerating % (relative 85.6 85.3 capacity ratio to 410A) Condensation glide ° C. 4.18 4.11 Discharge pressure % (relative 91.0 90.6 to 410A) RCL g/m 3 50.9 49.8
  • the line segment AA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503)
  • the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3
  • the line segment DC′ is represented by coordinates (x, 0.0082x 2 ⁇ 0.6671x+80.4, ⁇ 0.0082x 2 ⁇ 0.3329x+19.6)
  • the line segment C′C is represented by coordinates (x, 0.00
  • the point on the line segment AA′ was determined by obtaining an approximate curve connecting point A, Example 1, and point A′ by the least square method.
  • the point on the line segment A′B was determined by obtaining an approximate curve connecting point A′, Example 3, and point B by the least square method.
  • the point on the line segment DC′ was determined by obtaining an approximate curve connecting point D, Example 6, and point C′ by the least square method.
  • the point on the line segment C′C was determined by obtaining an approximate curve connecting point C′, Example 4, and point C by the least square method.
  • the line segment AA′ is represented by coordinates (x, 0.0016x 2 ⁇ 0.9473x+57.497, ⁇ 0.0016x 2 ⁇ 0.0527x+42.503)
  • the line segment A′B is represented by coordinates (x, 0.0029x 2 ⁇ 1.0268x+58.7, ⁇ 0.0029x 2 +0.0268x+41.3)
  • the line segment FT is represented by coordinates (x, 0.0078x 2 ⁇ 0.7501x+61.8, ⁇ 0.0078x 2 ⁇ 0.2499x+38.2)
  • the line segment TE is represented by coordinates (x, 0.0067
  • the point on the line segment FT was determined by obtaining an approximate curve connecting three points, i.e., points T, E′, and F, by the least square method.
  • the point on the line segment TE was determined by obtaining an approximate curve connecting three points, i.e., points E, R, and T, by the least square method.
  • the composition preferably contains R1234yf.
  • a burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner.
  • reference numeral 901 refers to a sample cell
  • 902 refers to a high-speed camera
  • 903 refers to a xenon lamp
  • 904 refers to a collimating lens
  • 905 refers to a collimating lens
  • 906 refers to a ring filter.
  • the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge.
  • the burning velocity was measured by the closed method.
  • the initial temperature was ambient temperature.
  • Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell.
  • the duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J.
  • the spread of the flame was visualized using schlieren photographs.
  • a cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source.
  • Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.
  • Each WCFF concentration was obtained by using the WCF concentration as the initial concentration and performing a leak simulation using NIST Standard Reference Database REFLEAK Version 4.0.
  • Tables 36 clearly indicate that in a ternary composition diagram of a mixed refrigerant of HFO-1132(E), HFO-1123, and R1234yf in which their sum is 100 mass %, and a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base,
  • the refrigerant can be determined to have a WCF lower flammability, and a WCFF lower flammability.
  • the line segment PN is represented by coordinates (x, ⁇ 0.1135x 2 +12.112x ⁇ 280.43, 0.1135x 2 ⁇ 13.112x+380.43), and the line segment NK is represented by coordinates (x, 0.2421x 2 ⁇ 29.955x+931.91, ⁇ 0.2421x 2 +28.955x ⁇ 831.91).
  • the point on the line segment PN was determined by obtaining an approximate curve connecting three points, i.e., points P, L, and N, by the least square method.
  • the point on the line segment NK was determined by obtaining an approximate curve connecting three points, i.e., points N, N′, and K, by the least square method.
  • the refrigerant B according to the present disclosure is
  • a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)) and trifluoroethylene (HFO-1123) in a total amount of 99.5 mass % or more based on the entire refrigerant, and the refrigerant comprising 62.0 mass % to 72.0 mass % or 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire refrigerant, or
  • a mixed refrigerant comprising HFO-1132(E) and HFO-1123 in a total amount of 99.5 mass % or more based on the entire refrigerant, and the refrigerant comprising 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire refrigerant.
  • the refrigerant B according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant, i.e., (1) a coefficient of performance equivalent to that of R410A, (2) a refrigerating capacity equivalent to that of R410A, (3) a sufficiently low GWP, and (4) a lower flammability (Class 2L) according to the ASHRAE standard.
  • the refrigerant B according to the present disclosure is a mixed refrigerant comprising 72.0 mass % or less of HFO-1132(E), it has WCF lower flammability.
  • the refrigerant B according to the present disclosure is a composition comprising 47.1% or less of HFO-1132(E), it has WCF lower flammability and WCFF lower flammability, and is determined to be “Class 2L,” which is a lower flammable refrigerant according to the ASHRAE standard, and which is further easier to handle.
  • the refrigerant B according to the present disclosure comprises 62.0 mass % or more of HFO-1132(E), it becomes superior with a coefficient of performance of 95% or more relative to that of R410A, the polymerization reaction of HFO-1132(E) and/or HFO-1123 is further suppressed, and the stability is further improved.
  • the refrigerant B according to the present disclosure comprises 45.1 mass % or more of HFO-1132(E), it becomes superior with a coefficient of performance of 93% or more relative to that of R410A, the polymerization reaction of HFO-1132(E) and/or HFO-1123 is further suppressed, and the stability is further improved.
  • the refrigerant B according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E) and HFO-1123, as long as the above properties and effects are not impaired.
  • the refrigerant according to the present disclosure preferably comprises HFO-1132(E) and HFO-1123 in a total amount of 99.75 mass % or more, and more preferably 99.9 mass % or more, based on the entire refrigerant.
  • additional refrigerants are not limited, and can be selected from a wide range of refrigerants.
  • the mixed refrigerant may comprise a single additional refrigerant, or two or more additional refrigerants.
  • refrigerant B is not limited to the Examples.
  • the GWP of compositions each comprising a mixture of R410A was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report.
  • IPCC Intergovernmental Panel on Climate Change
  • compositions each comprising R410A and a mixture of HFO-1132(E) and HFO-1123 were determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.
  • composition of each mixture was defined as WCF.
  • a leak simulation was performed using NIST Standard Reference Data Base Refleak Version 4.0 under the conditions of Equipment, Storage, Shipping, Leak, and Recharge according to the ASHRAE Standard 34-2013.
  • the most flammable fraction was defined as WCFF.
  • Tables 1 and 2 show GWP, COP, and refrigerating capacity, which were calculated based on these results.
  • the COP and refrigerating capacity are ratios relative to R410A.
  • the coefficient of performance (COP) was determined by the following formula.
  • the burning velocity was measured according to the ANSI/ASHRAE Standard 34-2013. Both WCF and WCFF having a burning velocity of 10 cm/s or less were determined to be “Class 2L (lower flammability).”
  • a burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner.
  • the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge.
  • the burning velocity was measured by the closed method.
  • the initial temperature was ambient temperature.
  • Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell.
  • the duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J.
  • the spread of the flame was visualized using schlieren photographs.
  • a cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source.
  • Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.
  • the refrigerant C according to the present disclosure is a composition comprising trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32), and satisfies the following requirements.
  • the refrigerant C according to the present disclosure has various properties that are desirable as an alternative refrigerant for R410A; i.e. it has a coefficient of performance and a refrigerating capacity that are equivalent to those of R410A, and a sufficiently low GWP.
  • Preferable refrigerant C is as follows:
  • HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum is respectively represented by x, y, z, and a,
  • point G (0.026a 2 ⁇ 1.7478a+72.0, ⁇ 0.026a 2 +0.7478a+28.0, 0.0), point I (0.026a 2 ⁇ 1.7478a+72.0, 0.0, ⁇ 0.026a 2 +0.7478a+28.0), point A (0.0134a 2 ⁇ 1.9681a+68.6, 0.0, ⁇ 0.0134a 2 +0.9681a+31.4), point B (0.0, 0.0144a 2 ⁇ 1.6377a+58.7, ⁇ 0.0144a 2 +0.6377a+41.3), point D′ (0.0, 0.0224a 2 +0.968a+75.4, ⁇ 0.0224a 2 ⁇ 1.968a+24.6), and point C ( ⁇ 0.2304a 2 ⁇ 0.4062a+32.9, 0.2304a 2 ⁇ 0.5938a+67.1, 0.0), or on the straight lines GI, AB, and D′C (excluding point G, point I, point A, point B, point D′, and point C);
  • coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
  • point G (0.02a 2 ⁇ 1.6013a+71.105, ⁇ 0.02a 2 +0.6013a+28.895, 0.0)
  • point I (0.02a 2 ⁇ 1.6013a+71.105, 0.0, ⁇ 0.02a 2 +0.6013a+28.895)
  • point A (0.0112a 2 ⁇ 1.9337a+68.484, 0.0, ⁇ 0.0112a 2 +0.9337a+31.516)
  • point B (0.0, 0.0075a 2 ⁇ 1.5156a+58.199, ⁇ 0.0075a 2 +0.5156a+41.801)
  • point W (0.0, 100.0 ⁇ a, 0.0), or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);
  • coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
  • point G (0.0135a 2 ⁇ 1.4068a+69.727, ⁇ 0.0135a 2 +0.4068a+30.273, 0.0)
  • point I (0.0135a 2 ⁇ 1.4068a+69.727, 0.0, ⁇ 0.0135a 2 +0.4068a+30.273)
  • point A (0.0107a 2 ⁇ 1.9142a+68.305, 0.0, ⁇ 0.0107a 2 +0.9142a+31.695)
  • point B (0.0, 0.009a 2 ⁇ 1.6045a+59.318, ⁇ 0.009a 2 +0.6045a+40.682)
  • point W (0.0, 100.0 ⁇ a, 0.0), or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);
  • coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
  • point G (0.0111a 2 ⁇ 1.3152a+68.986, ⁇ 0.0111a 2 +0.3152a+31.014, 0.0)
  • point I (0.0111a 2 ⁇ 1.3152a+68.986, 0.0, ⁇ 0.0111a 2 +0.3152a+31.014)
  • point A (0.0103a 2 ⁇ 1.9225a+68.793, 0.0, ⁇ 0.0103a 2 +0.9225a+31.207)
  • point B 0.0, 0.0046a 2 ⁇ 1.41a+57.286, ⁇ 0.0046a 2 +0.41a+42.714) and point W (0.0, 100.0 ⁇ a, 0.0), or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W); and
  • coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
  • point G (0.0061a 2 ⁇ 0.9918a+63.902, ⁇ 0.0061a 2 ⁇ 0.0082a+36.098, 0.0)
  • point I (0.0061a 2 ⁇ 0.9918a+63.902, 0.0, ⁇ 0.0061a 2 ⁇ 0.0082a+36.098)
  • point A (0.0085a 2 ⁇ 1.8102a+67.1, 0.0, ⁇ 0.0085a 2 +0.8102a+32.9)
  • point B 0.0, 0.0012a 2 ⁇ 1.1659a+52.95, ⁇ 0.0012a 2 +0.1659a+47.05
  • point W (0.0, 100.0 ⁇ a, 0.0), or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W).
  • the refrigerant according to the present disclosure satisfies the above requirements, it has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A, and further ensures a WCF lower flammability.
  • the refrigerant C according to the present disclosure is preferably a refrigerant wherein
  • point J (0.0049a 2 ⁇ 0.9645a+47.1, ⁇ 0.0049a 2 ⁇ 0.0355a+52.9, 0.0)
  • point K′ (0.0514a 2 ⁇ 2.4353a+61.7, ⁇ 0.0323a 2 +0.4122a+5.9, ⁇ 0.0191a 2 +1.0231a+32.4)
  • point B (0.0, 0.0144a 2 ⁇ 1.6377a+58.7, ⁇ 0.0144a 2 +0.6377a+41.3)
  • point D′ (0.0, 0.0224a 2 +0.968a+75.4, ⁇ 0.0224a 2 ⁇ 1.968a+24.6)
  • point C ( ⁇ 0.2304a 2 ⁇ 0.4062a+32.9, 0.2304a 2 ⁇ 0.5938a+67.1, 0.0), or on the straight lines JK′, K′B, and D′C (excluding point J, point B, point D′, and point C);
  • coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
  • point J (0.0243a 2 ⁇ 1.4161a+49.725, ⁇ 0.0243a 2 +0.4161a+50.275, 0.0)
  • point K′ (0.0341a 2 ⁇ 2.1977a+61.187, ⁇ 0.0236a 2 +0.34a+5.636, ⁇ 0.0105a 2 +0.8577a+33.177)
  • point B (0.0, 0.0075a 2 ⁇ 1.5156a+58.199, ⁇ 0.0075a 2 +0.5156a+41.801) and point W (0.0, 100.0 ⁇ a, 0.0), or on the straight lines JK′ and K′B (excluding point J, point B, and point W);
  • coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
  • point J (0.0246a 2 ⁇ 1.4476a+50.184, ⁇ 0.0246a 2 +0.4476a+49.816, 0.0)
  • point K′ (0.0196a 2 ⁇ 1.7863a+58.515, ⁇ 0.0079a 2 ⁇ 0.1136a+8.702, ⁇ 0.0117a 2 +0.8999a+32.783)
  • point B (0.0, 0.009a 2 ⁇ 1.6045a+59.318, ⁇ 0.009a 2 +0.6045a+40.682) and point W (0.0, 100.0 ⁇ a, 0.0), or on the straight lines JK′ and K′B (excluding point J, point B, and point W);
  • coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
  • point J (0.0183a 2 ⁇ 1.1399a+46.493, ⁇ 0.0183a 2 +0.1399a+53.507, 0.0)
  • point K′ ( ⁇ 0.0051a 2 +0.0929a+25.95, 0.0, 0.0051a 2 ⁇ 1.0929a+74.05)
  • point A (0.0103a 2 ⁇ 1.9225a+68.793, 0.0, ⁇ 0.0103a 2 +0.9225a+31.207)
  • point B (0.0, 0.0046a 2 ⁇ 1.41a+57.286, ⁇ 0.0046a 2 +0.41a+42.714)
  • point W (0.0, 100.0 ⁇ a, 0.0), or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W); and
  • coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
  • point J ( ⁇ 0.0134a 2 +1.0956a+7.13, 0.0134a 2 ⁇ 2.0956a+92.87, 0.0)
  • point K′ ( ⁇ 1.892a+29.443, 0.0, 0.892a+70.557)
  • point A (0.0085a 2 ⁇ 1.8102a+67.1, 0.0, ⁇ 0.0085a 2 +0.8102a+32.9)
  • point B (0.0, 0.0012a 2 ⁇ 1.1659a+52.95, ⁇ 0.0012a 2 +0.1659a+47.05)
  • point W (0.0, 100.0 ⁇ a, 0.0), or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W).
  • the refrigerant according to the present disclosure When the refrigerant according to the present disclosure satisfies the above requirements, it has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A. Additionally, the refrigerant has a WCF lower flammability and a WCFF lower flammability, and is classified as “Class 2L,” which is a lower flammable refrigerant according to the ASHRAE standard.
  • the refrigerant C when the refrigerant C according to the present disclosure further contains R32 in addition to HFO-1132 (E), HFO-1123, and R1234yf, the refrigerant may be a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum is respectively represented by x, y, z, and a,
  • point a (0.02a 2 ⁇ 2.46a+93.4, 0, ⁇ 0.02a 2 +2.46a+6.6)
  • point b′ ( ⁇ 0.008a 2 ⁇ 1.38a+56, 0.018a 2 ⁇ 0.53a+26.3, ⁇ 0.01a 2 +1.91a+17.7)
  • point c ( ⁇ 0.016a 2 +1.02a+77.6, 0.016a 2 ⁇ 1.02a+22.4, 0)
  • point o (100.0 ⁇ a, 0.0, 0.0) or on the straight lines oa, ab′, and b′c (excluding point o and point c);
  • point a (0.0244a 2 ⁇ 2.5695a+94.056, 0, ⁇ 0.0244a 2 +2.5695a+5.944), point b′ (0.1161a 2 ⁇ 1.9959a+59.749, 0.014a 2 ⁇ 0.3399a+24.8, ⁇ 0.1301a 2 +2.3358a+15.451), point c ( ⁇ 0.0161a 2 +1.02a+77.6, 0.0161a 2 ⁇ 1.02a+22.4, 0), and point o (100.0 ⁇ a, 0.0, 0.0), or on the straight lines oa, ab′, and b′c (excluding point o and point c); or
  • point a (0.0161a 2 ⁇ 2.3535a+92.742, 0, ⁇ 0.0161a 2 +2.3535a+7.258), point b′ ( ⁇ 0.0435a 2 ⁇ 0.0435a+50.406, 0.0304a 2 +1.8991a ⁇ 0.0661, 0.0739a 2 ⁇ 1.8556a+49.6601), point c ( ⁇ 0.0161a 2 +0.9959a+77.851, 0.0161a 2 ⁇ 0.9959a+22.149, 0), and point o (100.0 ⁇ a, 0.0, 0.0), or on the straight lines oa, ab′, and b′c (excluding point o and point c).
  • point b in the ternary composition diagram is defined as a point where a refrigerating capacity ratio of 95% relative to that of R410A and a COP ratio of 95% relative to that of R410A are both achieved
  • point b′ is the intersection of straight line ab and an approximate line formed by connecting the points where the COP ratio relative to that of R410A is 95%.
  • the refrigerant according to the present disclosure meets the above requirements, the refrigerant has a refrigerating capacity ratio of 95% or more relative to that of R410A, and a COP ratio of 95% or more relative to that of R410A.
  • the refrigerant C according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), HFO-1123, R1234yf, and R32 as long as the above properties and effects are not impaired.
  • the refrigerant according to the present disclosure preferably comprises HFO-1132(E), HFO-1123, R1234yf, and R32 in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and still more preferably 99.9 mass % or more, based on the entire refrigerant.
  • the refrigerant C according to the present disclosure may comprise HFO-1132(E), HFO-1123, R1234yf, and R32 in a total amount of 99.5 mass % or more, 99.75 mass % or more, or 99.9 mass % or more, based on the entire refrigerant.
  • Additional refrigerants are not particularly limited and can be widely selected.
  • the mixed refrigerant may contain one additional refrigerant, or two or more additional refrigerants.
  • refrigerant C is not limited to the Examples.
  • the GWP of compositions each comprising a mixture of R410A was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report.
  • IPCC Intergovernmental Panel on Climate Change
  • compositions each comprising R410A and a mixture of HFO-1132(E) and HFO-1123 were determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.
  • Tables 39 to 96 show the resulting values together with the GWP of each mixed refrigerant.
  • the COP and refrigerating capacity are ratios relative to R410A.
  • the coefficient of performance (COP) was determined by the following formula.
  • HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum is respectively represented by x, y, z, and a, in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100 ⁇ a) mass %, a straight line connecting a point (0.0, 100.0 ⁇ a, 0.0) and a point (0.0, 0.0, 100.0 ⁇ a) is the base, and the point (0.0, 100.0 ⁇ a, 0.0) is on the left side, if 0 ⁇ a ⁇ 11.1, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0134a 2 ⁇ 1.9681a+68.6, 0.0, ⁇ 0.0134a 2 +0.9681a+31.4) and point B (0.0, 0.0144a 2 ⁇ 1.6377a+58.7, ⁇ 0.0144a 2
  • coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0112a 2 ⁇ 1.9337a+68.484, 0.0, ⁇ 0.0112a 2 +0.9337a+31.516) and point B (0.0, 0.0075a 2 ⁇ 1.5156a+58.199, ⁇ 0.0075a 2 +0.5156a+41.801);
  • coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0107a 2 ⁇ 1.9142a+68.305, 0.0, ⁇ 0.0107a 2 +0.9142a+31.695) and point B (0.0, 0.009a 2 ⁇ 1.6045a+59.318, ⁇ 0.009a 2 +0.6045a+40.682);
  • coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0103a 2 ⁇ 1.9225a+68.793, 0.0, ⁇ 0.0103a 2 +0.9225a+31.207) and point B (0.0, 0.0046a 2 ⁇ 1.41a+57.286, ⁇ 0.0046a 2 +0.41a+42.714); and
  • coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0085a 2 ⁇ 1.8102a+67.1, 0.0, ⁇ 0.0085a 2 +0.8102a+32.9) and point B (0.0, 0.0012a 2 ⁇ 1.1659a+52.95, ⁇ 0.0012a 2 +0.1659a+47.05).
  • the COP ratio of 92.5% or more forms a curved line CD.
  • D′C a straight line that connects point C and point D′ (0, 75.4, 24.6)
  • point D′(0, 83.4, 9.5) was similarly obtained from an approximate curve formed by connecting point C (18.4, 74.5, 0) and points (13.9, 76.5, 2.5) (8.7, 79.2, 5) where the COP ratio is 92.5%, and a straight line that connects point C and point D′ was defined as the straight line D′C.
  • composition of each mixture was defined as WCF.
  • a leak simulation was performed using NIST Standard Reference Database REFLEAK Version 4.0 under the conditions of Equipment, Storage, Shipping, Leak, and Recharge according to the ASHRAE Standard 34-2013.
  • the most flammable fraction was defined as WCFF.
  • the burning velocity was measured according to the ANSI/ASHRAE Standard 34-2013. Both WCF and WCFF having a burning velocity of 10 cm/s or less were determined to be classified as “Class 2L (lower flammability).”
  • a burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner.
  • the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge.
  • the burning velocity was measured by the closed method.
  • the initial temperature was ambient temperature.
  • Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell.
  • the duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J.
  • the spread of the flame was visualized using schlieren photographs.
  • a cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source.
  • Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.
  • coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.02a 2 ⁇ 1.6013a+71.105, ⁇ 0.02a 2 +0.6013a+28.895, 0.0) and point I (0.02a 2 ⁇ 1.6013a+71.105, 0.0, ⁇ 0.02a 2 +0.6013a+28.895); if 18.2 ⁇ a ⁇ 26.7, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.0135a 2 ⁇ 1.4068a+69.727, ⁇ 0.0135a 2 +0.4068a+30.273, 0.0) and point I (0.0135a 2 ⁇ 1.4068a+69.727, 0.0, ⁇ 0.0135a 2 +0.4068a+30.273); if 26.7 ⁇ a ⁇ 36.7, coordinates (x,y,z)
  • FIGS. 3 to 13 show compositions whose R32 content a (mass %) is 0 mass %, 7.1 mass %, 11.1 mass %, 14.5 mass %, 18.2 mass %, 21.9 mass %, 26.7 mass %, 29.3 mass %, 36.7 mass %, 44.1 mass %, and 47.8 mass %, respectively.
  • Points A, B, C, and D′ were obtained in the following manner according to approximate calculation.
  • Point A is a point where the content of HFO-1123 is 0 mass %, and a refrigerating capacity ratio of 85% relative to that of R410A is achieved. Three points corresponding to point A were obtained in each of the following five ranges by calculation, and their approximate expressions were obtained (Table 109).
  • Point B is a point where the content of HFO-1132(E) is 0 mass %, and a refrigerating capacity ratio of 85% relative to that of R410A is achieved.
  • Point D′ is a point where the content of HFO-1132(E) is 0 mass %, and a COP ratio of 95.5% relative to that of R410A is achieved.
  • Point C is a point where the content of R1234yf is 0 mass %, and a COP ratio of 95.5% relative to that of R410A is achieved.
  • the refrigerant D is a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).
  • the refrigerant D according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant; i.e., a refrigerating capacity equivalent to that of R410A, a sufficiently low GWP, and a lower flammability (Class 2L) according to the ASHRAE standard.
  • the refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • the line segment IJ is represented by coordinates (0.0236y 2 ⁇ 1.7616y+72.0, y, ⁇ 0.0236y 2 +0.7616y+28.0);
  • the line segment NE is represented by coordinates (0.012y 2 ⁇ 1.9003y+58.3, y, ⁇ 0.012y 2 +0.9003y+41.7);
  • the line segments JN and EI are straight lines.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 125 or less, and a WCF lower flammability.
  • the refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • point M (52.6, 0.0, 47.4), point M′ (39.2, 5.0, 55.8), point N (27.7, 18.2, 54.1), point V (11.0, 18.1, 70.9), and point G (39.6, 0.0, 60.4), or on these line segments (excluding the points on the line segment GM);
  • the line segment MM′ is represented by coordinates (0.132y 2 ⁇ 3.34y+52.6, y, ⁇ 0.132y 2 +2.34y+47.4);
  • the line segment M′N is represented by coordinates (0.0596y 2 ⁇ 2.2541y+48.98, y, ⁇ 0.0596y 2 +1.2541y+51.02);
  • the line segment VG is represented by coordinates (0.0123y 2 ⁇ 1.8033y+39.6, y, ⁇ 0.0123y 2 +0.8033y+60.4);
  • the line segments NV and GM are straight lines.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 70% or more relative to R410A, a GWP of 125 or less, and an ASHRAE lower flammability.
  • the refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • the line segment ON is represented by coordinates (0.0072y 2 ⁇ 0.6701y+37.512, y, ⁇ 0.0072y 2 ⁇ 0.3299y+62.488);
  • the line segment NU is represented by coordinates (0.0083y 2 ⁇ 1.7403y+56.635, y, ⁇ 0.0083y 2 +0.7403y+43.365);
  • the line segment UO is a straight line.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 250 or less, and an ASHRAE lower flammability.
  • the refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • point Q (44.6, 23.0, 32.4), point R (25.5, 36.8, 37.7), point T (8.6, 51.6, 39.8), point L (28.9, 51.7, 19.4), and point K (35.6, 36.8, 27.6), or on these line segments;
  • the line segment QR is represented by coordinates (0.0099y 2 ⁇ 1.975y+84.765, y, ⁇ 0.0099y 2 +0.975y+15.235);
  • the line segment RT is represented by coordinates (0.0082y 2 ⁇ 1.8683y+83.126, y, ⁇ 0.0082y 2 +0.8683y+16.874);
  • the line segment LK is represented by coordinates (0.0049y 2 ⁇ 0.8842y+61.488, y, ⁇ 0.0049y 2 ⁇ 0.1158y+38.512);
  • the line segment KQ is represented by coordinates (0.0095y 2 ⁇ 1.2222y+67.676, y, ⁇ 0.0095y 2 +0.2222y+32.324);
  • the line segment TL is a straight line.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and a WCF lower flammability.
  • the refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • point P (20.5, 51.7, 27.8), point S (21.9, 39.7, 38.4), and point T (8.6, 51.6, 39.8), or on these line segments;
  • the line segment PS is represented by coordinates (0.0064y 2 ⁇ 0.7103y+40.1, y, ⁇ 0.0064y 2 ⁇ 0.2897y+59.9);
  • the line segment ST is represented by coordinates (0.0082y 2 ⁇ 1.8683y+83.126, y, ⁇ 0.0082y 2 +0.8683y+16.874);
  • the line segment TP is a straight line.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and an ASHRAE lower flammability.
  • the refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • point a (71.1, 0.0, 28.9), point c (36.5, 18.2, 45.3), point f (47.6, 18.3, 34.1), and point d (72.0, 0.0, 28.0), or on these line segments;
  • the line segment ac is represented by coordinates (0.0181y 2 ⁇ 2.2288y+71.096, y, ⁇ 0.0181y 2 +1.2288y+28.904);
  • the line segment fd is represented by coordinates (0.02y 2 ⁇ 1.7y+72, y, ⁇ 0.02y 2 +0.7y+28);
  • the line segments cf and da are straight lines.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to R410A, a GWP of 125 or less, and a lower flammability (Class 2L) according to the ASHRAE standard.
  • the refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • point a (71.1, 0.0, 28.9), point b (42.6, 14.5, 42.9), point e (51.4, 14.6, 34.0), and point d (72.0, 0.0, 28.0), or on these line segments;
  • the line segment ab is represented by coordinates (0.0181y 2 ⁇ 2.2288y+71.096, y, ⁇ 0.0181y 2 +1.2288y+28.904);
  • the line segment ed is represented by coordinates (0.02y 2 ⁇ 1.7y+72, y, ⁇ 0.02y 2 +0.7y+28);
  • the line segments be and da are straight lines.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to R410A, a GWP of 100 or less, and a lower flammability (Class 2L) according to the ASHRAE standard.
  • the refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • the line segment gi is represented by coordinates (0.02y 2 ⁇ 2.4583y+93.396, y, ⁇ 0.02y 2 +1.4583y+6.604);
  • the line segments ij and jg are straight lines.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to R410A and a GWP of 100 or less, undergoes fewer or no changes such as polymerization or decomposition, and also has excellent stability.
  • the refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • the line segment gh is represented by coordinates (0.02y 2 ⁇ 2.4583y+93.396, y, ⁇ 0.02y 2 +1.4583y+6.604);
  • the line segments hk and kg are straight lines.
  • the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to R410A and a GWP of 100 or less, undergoes fewer or no changes such as polymerization or decomposition, and also has excellent stability.
  • the refrigerant D according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), R32, and R1234yf, as long as the above properties and effects are not impaired.
  • the refrigerant according to the present disclosure preferably comprises HFO-1132(E), R32, and R1234yf in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and still more preferably 99.9 mass % or more based on the entire refrigerant.
  • additional refrigerants are not limited, and can be selected from a wide range of refrigerants.
  • the mixed refrigerant may comprise a single additional refrigerant, or two or more additional refrigerants.
  • refrigerant D is not limited to the Examples.
  • composition of each mixed refrigerant of HFO-1132(E), R32, and R1234yf was defined as WCF.
  • a leak simulation was performed using the NIST Standard Reference Database REFLEAK Version 4.0 under the conditions of Equipment, Storage, Shipping, Leak, and Recharge according to the ASHRAE Standard 34-2013.
  • the most flammable fraction was defined as WCFF.
  • a burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner.
  • the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge.
  • the burning velocity was measured by the closed method.
  • the initial temperature was ambient temperature.
  • Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell.
  • the duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J.
  • the spread of the flame was visualized using schlieren photographs.
  • a cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source.
  • Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC. Tables 113 to 115 show the results.
  • Example 21 Example Item Unit M 18 W 20 N 22 WCF HFO-1132(E) Mass % 52.6 39.2 32.4 29.3 27.7 24.6 R32 Mass % 0.0 5.0 10.0 14.5 18.2 27.6 R1234yf Mass % 47.4 55.8 57.6 56.2 54.1 47.8 Leak condition that Storage, Storage, Storage, Storage, Storage, results in WCFF Shipping, ⁇ 40° Shipping, ⁇ 40° Shipping, ⁇ 40° Shipping, ⁇ 40° Shipping, ⁇ 40° Shipping, ⁇ 40° Shipping, ⁇ 40° C., 0% release, C., 0% release, C., 0% release, C., 0% release, C., 0% release, on the gas on the gas on the gas on the gas on the gas on the gas on the gas phase side phase side phase side phase side WCF HFO-1132(E) Mass % 72.0 57.8 48.7 43.6 40.6 34.9 R32 Mass %
  • Example 25 Item Unit O 24 P WCF HFO-1132 Mass % 22.6 21.2 20.5 (E) HFO-1123 Mass % 36.8 44.2 51.7 R1234yf Mass % 40.6 34.6 27.8 Leak condition Storage, Storage, Storage, that results Shipping, ⁇ 40° Shipping, ⁇ 40° Shipping, ⁇ 40° in WCFF C., 0% release, C., 0% release, C., 0% release, on the gas on the gas on the gas phase side phase side phase side WCFF HFO-1132 Mass % 31.4 29.2 27.1 (E) HFO-1123 Mass % 45.7 51.1 56.4 R1234yf Mass % 23.0 19.7 16.5 Burning cm/s 8 or less 8 or less 8 or less Velocity (WCF) Burning cm/s 10 10 10 Velocity (WCFF)
  • Tables 116 to 144 show these values together with the GWP of each mixed refrigerant.
  • Example 1 A B A′ B′ A′′ B′′ HFO-1132(E) Mass % R410A 81.6 0.0 63.1 0.0 48.2 0.0 R32 Mass % 18.4 18.1 36.9 36.7 51.8 51.5 R1234yf Mass % 0.0 81.9 0.0 63.3 0.0 48.5 GWP — 2088 125 125 250 250 350 350 COP Ratio % (relative 100 98.7 103.6 98.7 102.3 99.2 102.2 to R410A) Refrigerating % (relative 100 105.3 62.5 109.9 77.5 112.1 87.3 Capacity Ratio to R410A)
  • Example 21 Example Item Unit M 18 W 20 N 22 HFO-1132(E) Mass % 52.6 39.2 32.4 29.3 27.7 24.5 R32 Mass % 0.0 5.0 10.0 14.5 18.2 27.6 R1234yf Mass % 47.4 55.8 57.6 56.2 54.1 47.9 GWP — 2 36 70 100 125 188 COP Ratio % (relative 100.5 100.9 100.9 100.8 100.7 100.4 to R410A) Refrigerating % (relative 77.1 74.8 75.6 77.8 80.0 85.5 Capacity Ratio to R410A)
  • Example 63 Example 64
  • Example 65 Example 66
  • Example 67 Example 68
  • Example 70 HFO-1132(E) Mass % 53.0 33.0 36.0 39.0 42.0 45.0 48.0 51.0
  • GWP 83 104 104 103 103 103 103 103 103 COP Ratio % (relative 99.6 100.5 100.3 100.1 99.9 99.7 99.6 99.5 to R410A) Refrigerating % (relative 88.0 80.3 81.9 83.5 85.0 86.5 88.0 89.5 Capacity Ratio to R410A)
  • Example 79 Example 80
  • Example 82 Example 83
  • Example 84 Example 85
  • Example 86 HFO-1132(E) Mass % 39.0 42.0 30.0 33.0 36.0 26.0 29.0 32.0
  • R1234yf Mass % 58.0 55.0 64.0 61.0 58.0 65.0 62.0 59.0
  • GWP 23 23 43 43 43 43 64 64 63 COP Ratio % (relative 101.1 100.9 101.5 101.3 101.0 101.6 101.3 101.1 to R410A)
  • Refrigerating % (relative 72.7 74.4 70.5 72.2 73.9 71.0 72.8 74.5 Capacity Ratio to R410A)
  • Example 87 Example 88
  • Example 89 Example 90
  • Example 91 Example 92
  • Example 93 Example 94 HFO-1132(E) Mass % 21.0 24.0 27.0 30.0 16.0 19.0 22.0 25.0
  • GWP — 84 84 84 84 104 104 104 104 104 COP Ratio % (relative 101.8 101.5 101.2 101.0 102.1 101.8 101.4 101.2 to R410A) Refrigerating % (relative 70.8 72.6 74.3 76.0 70.4 72.3 74.0 75.8 Capacity Ratio to R410A)
  • Example 101 Example 102 HFO-1132(E) Mass % 28.0 12.0 15.0 18.0 21.0 24.0 27.0 25.0 R32 Mass % 15.0 18.0 18.0 18.0 18.0 18.0 21.0 R1234yf Mass % 57.0 70.0 67.0 64.0 61.0 58.0 55.0 54.0 GWP — 104 124 124 124 124 124 124 144 COP Ratio % (relative 100.9 102.2 101.9 101.6 101.3 101.0 100.7 100.7 to R410A) Refrigerating % (relative 77.5 70.5 72.4 74.2 76.0 77.7 79.4 80.7 Capacity Ratio to R410A)
  • Example 104 Example 105
  • Example 106 Example 107
  • Example 108 Example 110 HFO-1132(E) Mass % 21.0 24.0 17.0 20.0 23.0 13.0 16.0 19.0
  • Example 119 Example 120
  • Example 121 Example 122
  • Example 123 Example 124
  • Example 125 Example 126 HFO-1132(E) Mass % 15.0 18.0 21.0 42.0 39.0 34.0 37.0 30.0
  • R32 Mass % 36.0 36.0
  • 25.0 28.0
  • R1234yf Mass % 49.0 46.0 43.0 33.0 33.0 35.0 32.0 36.0
  • GWP — 245 245 245 170 191 211 211 231
  • COP Ratio % (relative 101.0 100.7 100.5 99.5 99.5 99.8 99.6 99.9 to R410A)
  • Refrigerating % (relative 86.2 87.9 89.6 92.7 93.4 93.0 94.5 93.0 Capacity Ratio to R410A)
  • Example 135 Example 136
  • Example 137 Example 138
  • Example 140 Example 141
  • Refrigerating % (relative 96.4 97.9 93.1 94.7 96.2 97.8 99.3 94.4 Capacity Ratio to R410A)
  • Example 143 Example 144 Example 145 Example 146 Example 147 Example 148 Example 149 Example 150 HFO-1132(E) Mass % 21.0 23.0 26.0 29.0 13.0 16.0 19.0 22.0 R32 Mass % 46.0 46.0 46.0 49.0 49.0 49.0 49.0 R1234yf Mass % 33.0 31.0 28.0 25.0 38.0 35.0 32.0 29.0 GWP — 312 312 312 312 332 332 332 332 COP Ratio % (relative 100.5 100.4 100.2 100.0 101.1 100.9 100.7 100.5 to R410A) Refrigerating % (relative 96.0 97.0 98.6 100.1 93.5 95.1 96.7 98.3 Capacity Ratio to R410A)
  • Example 152 HFO-1132(E) Mass % 25.0 28.0 R32 Mass % 49.0 49.0 R1234yf Mass % 26.0 23.0 GWP — 332 332 COP Ratio % (relative 100.3 100.1 to R410A) Refrigerating Capacity % (relative 99.8 101.3 Ratio to R410A)
  • the line segment IJ is represented by coordinates (0.0236y 2 ⁇ 1.7616y+72.0, y, ⁇ 0.0236y 2 +0.7616y+28.0),
  • the line segment NE is represented by coordinates (0.012y 2 ⁇ 1.9003y+58.3, y, ⁇ 0.012y 2 +0.9003y+41.7), and
  • the refrigerant D has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 125 or less, and a WCF lower flammability.
  • point M (52.6, 0.0, 47.4), point M′ (39.2, 5.0, 55.8), point N (27.7, 18.2, 54.1), point V (11.0, 18.1, 70.9), and point G (39.6, 0.0, 60.4), or on these line segments (excluding the points on the line segment GM),
  • the line segment MM′ is represented by coordinates (0.132y 2 ⁇ 3.34y+52.6, y, ⁇ 0.132y 2 +2.34y+47.4)
  • the line segment M′N is represented by coordinates (0.0596y 2 ⁇ 2.2541y+48.98, y, ⁇ 0.0596y 2 +1.2541y+51.02),
  • the line segment VG is represented by coordinates (0.0123y 2 ⁇ 1.8033y+39.6, y, ⁇ 0.0123y 2 +0.8033y+60.4), and
  • the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 70% or more relative to R410A, a GWP of 125 or less, and an ASHRAE lower flammability.
  • the line segment ON is represented by coordinates (0.0072y 2 ⁇ 0.6701y+37.512, y, ⁇ 0.0072y 2 ⁇ 0.3299y+62.488),
  • the line segment NU is represented by coordinates (0.0083y 2 ⁇ 1.7403y+56.635, y, ⁇ 0.0083y 2 +0.7403y+43.365), and
  • the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 250 or less, and an ASHRAE lower flammability.
  • point Q (44.6, 23.0, 32.4), point R (25.5, 36.8, 37.7), point T (8.6, 51.6, 39.8), point L (28.9, 51.7, 19.4), and point K (35.6, 36.8, 27.6), or on these line segments,
  • the line segment QR is represented by coordinates (0.0099y 2 ⁇ 1.975y+84.765, y, ⁇ 0.0099y 2 +0.975y+15.235),
  • the line segment RT is represented by coordinates (0.0082y 2 ⁇ 1.8683y+83.126, y, ⁇ 0.0082y 2 +0.8683y+16.874),
  • the line segment LK is represented by coordinates (0.0049y 2 ⁇ 0.8842y+61.488, y, ⁇ 0.0049y 2 ⁇ 0.1158y+38.512),
  • the line segment KQ is represented by coordinates (0.0095y 2 ⁇ 1.2222y+67.676, y, ⁇ 0.0095y 2 +0.2222y+32.324), and
  • the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and a WCF lower flammability.
  • the line segment PS is represented by coordinates (0.0064y 2 ⁇ 0.7103y+40.1, y, ⁇ 0.0064y 2 ⁇ 0.2897y+59.9),
  • the line segment ST is represented by coordinates (0.0082y 2 ⁇ 1.8683y+83.126, y, ⁇ 0.0082y 2 +0.8683y+16.874), and
  • the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and an ASHRAE lower flammability.
  • the refrigerant E is a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32).
  • the refrigerant E according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant, i.e., a coefficient of performance equivalent to that of R410A and a sufficiently low GWP.
  • the refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • point I (72.0, 28.0, 0.0), point K (48.4, 33.2, 18.4), point B′ (0.0, 81.6, 18.4), point H (0.0, 84.2, 15.8), point R (23.1, 67.4, 9.5), and point G (38.5, 61.5, 0.0), or on these line segments (excluding the points on the line segments B′H and GI);
  • the line segment IK is represented by coordinates (0.025z 2 ⁇ 1.7429z+72.00, ⁇ 0.025z 2 +0.7429z+28.0, z),
  • the line segment HR is represented by coordinates ( ⁇ 0.3123z 2 +4.234z+11.06, 0.3123z 2 ⁇ 5.234z+88.94, z),
  • the line segment RG is represented by coordinates ( ⁇ 0.0491z 2 ⁇ 1.1544z+38.5, 0.0491z 2 +0.1544z+61.5, z), and
  • the line segments KB′ and GI are straight lines.
  • the refrigerant according to the present disclosure has WCF lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 125 or less.
  • the refrigerant E is preferably a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IJ, JR, RG, and GI that connect the following 4 points:
  • point I (72.0, 28.0, 0.0), point J (57.7, 32.8, 9.5), point R (23.1, 67.4, 9.5), and point G (38.5, 61.5, 0.0), or on these line segments (excluding the points on the line segment GI);
  • the line segment IJ is represented by coordinates (0.025z 2 ⁇ 1.7429z+72.0, ⁇ 0.025z 2 +0.7429z+28.0, z),
  • the line segment RG is represented by coordinates ( ⁇ 0.0491z 2 ⁇ 1.1544z+38.5, 0.0491z 2 +0.1544z+61.5, z), and
  • the line segments JR and GI are straight lines.
  • the refrigerant according to the present disclosure has WCF lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 125 or less.
  • the refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • point M (47.1, 52.9, 0.0), point P (31.8, 49.8, 18.4), point B′ (0.0, 81.6, 18.4), point H (0.0, 84.2, 15.8), point R (23.1, 67.4, 9.5), and point G (38.5, 61.5, 0.0), or on these line segments (excluding the points on the line segments B′H and GM);
  • the line segment MP is represented by coordinates (0.0083z 2 ⁇ 0.984z+47.1, ⁇ 0.0083z 2 ⁇ 0.016z+52.9, z),
  • the line segment HR is represented by coordinates ( ⁇ 0.3123z 2 +4.234z+11.06, 0.3123z 2 ⁇ 5.234z+88.94, z),
  • the line segment RG is represented by coordinates ( ⁇ 0.0491z 2 ⁇ 1.1544z+38.5, 0.0491z 2 +0.1544z+61.5, z), and
  • the line segments PB′ and GM are straight lines.
  • the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 125 or less.
  • the refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • point M (47.1, 52.9, 0.0), point N (38.5, 52.1, 9.5), point R (23.1, 67.4, 9.5), and point G (38.5, 61.5, 0.0), or on these line segments (excluding the points on the line segment GM);
  • the line segment MN is represented by coordinates (0.0083z 2 ⁇ 0.984z+47.1, ⁇ 0.0083z 2 ⁇ 0.016z+52.9, z),
  • the line segment RG is represented by coordinates ( ⁇ 0.0491z 2 ⁇ 1.1544z+38.5, 0.0491z 2 +0.1544z+61.5, z),
  • the line segments NR and GM are straight lines.
  • the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 65 or less.
  • the refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • point P (31.8, 49.8, 18.4), point S (25.4, 56.2, 18.4), and point T (34.8, 51.0, 14.2), or on these line segments;
  • the line segment ST is represented by coordinates ( ⁇ 0.0982z 2 +0.9622z+40.931, 0.0982z 2 ⁇ 1.9622z+59.069, z),
  • the line segment TP is represented by coordinates (0.0083z 2 ⁇ 0.984z+47.1, ⁇ 0.0083z 2 ⁇ 0.016z+52.9, z), and
  • the line segment PS is a straight line.
  • the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 94.5% or more relative to that of R410A, and a GWP of 125 or less.
  • the refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • point Q (28.6, 34.4, 37.0), point B′′ (0.0, 63.0, 37.0), point D (0.0, 67.0, 33.0), and point U (28.7, 41.2, 30.1), or on these line segments (excluding the points on the line segment B′′D);
  • the line segment DU is represented by coordinates ( ⁇ 3.4962z 2 +210.71z ⁇ 3146.1, 3.4962z 2 ⁇ 211.71z+3246.1, z),
  • the line segment UQ is represented by coordinates (0.0135z 2 ⁇ 0.9181z+44.133, ⁇ 0.0135z 2 ⁇ 0.0819z+55.867, z), and
  • the line segments QB′′ and B′′D are straight lines.
  • the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 96% or more relative to that of R410A, and a GWP of 250 or less.
  • the refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • point O (100.0, 0.0, 0.0), point c′ (56.7, 43.3, 0.0), point d′ (52.2, 38.3, 9.5), point e′ (41.8, 39.8, 18.4), and point a′ (81.6, 0.0, 18.4), or on the line segments c′d′, d′e′, and e′a′ (excluding the points c′ and a′);
  • the line segment c′d′ is represented by coordinates ( ⁇ 0.0297z 2 ⁇ 0.1915z+56.7, 0.0297z 2 +1.1915z+43.3, z),
  • the line segment d′e′ is represented by coordinates ( ⁇ 0.0535z 2 +0.3229z+53.957, 0.0535z 2 +0.6771z+46.043, z), and
  • the refrigerant according to the present disclosure has a COP ratio of 92.5% or more relative to that of R410A, and a GWP of 125 or less.
  • the refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • point O (100.0, 0.0, 0.0), point c (77.7, 22.3, 0.0), point d (76.3, 14.2, 9.5), point e (72.2, 9.4, 18.4), and point a′ (81.6, 0.0, 18.4), or on the line segments cd, de, and ea′ (excluding the points c and a′);
  • the line segment cde is represented by coordinates ( ⁇ 0.017z 2 +0.0148z+77.684, 0.017z 2 +0.9852z+22.316, z), and
  • the refrigerant according to the present disclosure has a COP ratio of 95% or more relative to that of R410A, and a GWP of 125 or less.
  • the refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • point O (100.0, 0.0, 0.0), point c′ (56.7, 43.3, 0.0), point d′ (52.2, 38.3, 9.5), and point a (90.5, 0.0, 9.5), or on the line segments c′d′ and d′a (excluding the points c′ and a);
  • the line segment c′d′ is represented by coordinates ( ⁇ 0.0297z 2 ⁇ 0.1915z+56.7, 0.0297z 2 +1.1915z+43.3, z), and
  • the refrigerant according to the present disclosure has a COP ratio of 93.5% or more relative to that of R410A, and a GWP of 65 or less.
  • the refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • point O (100.0, 0.0, 0.0), point c (77.7, 22.3, 0.0), point d (76.3, 14.2, 9.5), and point a (90.5, 0.0, 9.5), or on the line segments cd and da (excluding the points c and a);
  • the line segment cd is represented by coordinates ( ⁇ 0.017z 2 +0.0148z+77.684, 0.017z 2 +0.9852z+22.316, z), and
  • the refrigerant according to the present disclosure has a COP ratio of 95% or more relative to that of R410A, and a GWP of 65 or less.
  • the refrigerant E according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), HFO-1123, and R32, as long as the above properties and effects are not impaired.
  • the refrigerant according to the present disclosure preferably comprises HFO-1132(E), HFO-1123, and R32 in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and even more preferably 99.9 mass % or more, based on the entire refrigerant.
  • additional refrigerants are not limited, and can be selected from a wide range of refrigerants.
  • the mixed refrigerant may comprise a single additional refrigerant, or two or more additional refrigerants.
  • refrigerant E is not limited to the Examples.
  • composition of each mixture was defined as WCF.
  • a leak simulation was performed using National Institute of Science and Technology (NIST) Standard Reference Data Base Refleak Version 4.0 under the conditions for equipment, storage, shipping, leak, and recharge according to the ASHRAE Standard 34-2013.
  • the most flammable fraction was defined as WCFF.
  • the burning velocity was measured according to the ANSI/ASHRAE Standard 34-2013.
  • the burning velocities of the WCF composition and the WCFF composition are 10 cm/s or less, the flammability of such a refrigerant is classified as Class 2L (lower flammability) in the ASHRAE flammability classification.
  • a burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner.
  • the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge.
  • the burning velocity was measured by the closed method.
  • the initial temperature was ambient temperature.
  • Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell.
  • the duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J.
  • the spread of the flame was visualized using schlieren photographs.
  • a cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source.
  • Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.
  • Table 1 indicate that in a ternary composition diagram of a mixed refrigerant of HFO-1132(E), HFO-1123, and R32 in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on or below line segments IK and KL that connect the following 3 points:
  • the line segment IK is represented by coordinates (0.025z 2 ⁇ 1.7429z+72.00, ⁇ 0.025z 2 +0.7429z+28.00, z)
  • the line segment KL is represented by coordinates (0.0098z 2 ⁇ 1.238z+67.852, ⁇ 0.0098z 2 +0.238z+32.148, z)
  • Table 146 indicate that in a ternary composition diagram of a mixed refrigerant of HFO-1132(E), HFO-1123, and R32 in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on or below line segments MP and PQ that connect the following 3 points:
  • the line segment MP is represented by coordinates (0.0083z 2 ⁇ 0.984z+47.1, ⁇ 0.0083z 2 ⁇ 0.016z+52.9, z)
  • the line segment PQ is represented by coordinates (0.0135z 2 ⁇ 0.9181z+44.133, ⁇ 0.0135z 2 ⁇ 0.0819z+55.867, z).
  • an approximate curve was obtained from three points, i.e., points M, N, and P, by using the least-square method to determine coordinates.
  • an approximate curve was obtained from three points, i.e., points P, U, and Q, by using the least-square method to determine coordinates.
  • the GWP of compositions each comprising a mixture of R410A was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report.
  • IPCC Intergovernmental Panel on Climate Change
  • compositions each comprising R410A and a mixture of HFO-1132(E) and HFO-1123 were determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.
  • the COP ratio and the refrigerating capacity (which may be referred to as “cooling capacity” or “capacity”) ratio relative to those of R410 of the mixed refrigerants were determined.
  • the conditions for calculation were as described below.
  • Tables 147 to 166 show these values together with the GWP of each mixed refrigerant.
  • Example 1 A B A′ B′ A′′ B′′ HFO-1132(E) mass % R410A 90.5 0.0 81.6 0.0 63.0 0.0 HFO-1123 mass % 0.0 90.5 0.0 81.6 0.0 63.0 R32 mass % 9.5 9.5 18.4 18.4 37.0 37.0 GWP — 2088 65 65 125 125 250 250 COP ratio % (relative 100 99.1 92.0 98.7 93.4 98.7 96.1 to R410A) Refrigerating % (relative 100 102.2 111.6 105.3 113.7 110.0 115.4 capacity ratio to R410A)
  • Example 11 Item Unit O C
  • Example 10 U
  • Example 2 D
  • Refrigerating % (relative 98.3 109.9 111.7 113.5 114.8 115.4 capacity ratio to R410A)
  • Example 16 Item Unit G
  • Example 5 R
  • 82 107
  • COP ratio % reflative 93.0 93.0 93.0 93.0 93.0 to R410A
  • Refrigerating % (relative 107.0 109.1 110.9 111.9 113.2 capacity ratio to R410A)
  • Example 26 HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 HFO-1123 mass % 85.0 75.0 65.0 55.0 45.0 35.0 25.0 15.0 R32 mass % 5.0 5.0 5.0 5.0 5.0 5.0 GWP — 35 35 35 35 35 35 35 35 COP ratio % (relative 91.7 92.2 92.9 93.7 94.6 95.6 96.7 97.7 to R410A) Refrigerating % (relative 110.1 109.8 109.2 108.4 107.4 106.1 104.7 103.1 capacity ratio to R410A)
  • Example 27 Example 28 Example 29 Example 30
  • Example 31 Example 32
  • Example 33 Example 34 HFO-1132(E) mass % 38.0 40.0 42.0 44.0 35.0 37.0 39.0 41.0 HFO-1123 mass % 60.0 58.0 56.0 54.0 61.0 59.0 57.0 55.0
  • Refrigerating % (relative 107.7 107.5 107.3 107.2 108.6 108.4 108.2 108.0 capacity ratio to R410A)
  • Example 35 Example 36
  • Example 37 Example 38
  • Example 40 Example 41
  • Example 42 HFO-1132(E) mass % 43.0 31.0 33.0 35.0 37.0 39.0 41.0 27.0 HFO-1123 mass % 53.0 63.0 61.0 59.0 57.0 55.0 53.0 65.0
  • R32 mass % 4.0 6.0 6.0 6.0 6.0 6.0 8.0 GWP — 28
  • 41 41 41 41 41 55 COP ratio % (relative 93.9 93.1 93.2 93.4 93.6 93.7 93.9 93.0 to R410A)
  • Refrigerating % (relative 107.8 109.5 109.3 109.1 109.0 108.8 108.6 110.3 capacity ratio to R410A)
  • Example 43 Example 44
  • Example 45 Example 46
  • Example 47 Example 48
  • Example 50 HFO-1132(E) mass % 29.0 31.0 33.0 35.0 37.0 39.0 32.0 32.0 HFO-1123 mass % 63.0 61.0 59.0 57.0 55.0 53.0 51.0 50.0
  • R32 mass % 8.0 8.0 8.0 8.0 17.0 18.0 GWP — 55 55 55 55 55 55 116 122 COP ratio % (relative 93.2 93.3 93.5 93.6 93.8 94.0 94.5 94.7 to R410A)
  • Refrigerating % (relative 110.1 110.0 109.8 109.6 109.5 109.3 111.8 111.9 capacity ratio to R410A)
  • Example 51 Example 52
  • Example 53 Example 54
  • Example 56 Example 57
  • Example 58 HFO-1132(E) mass % 30.0 27.0 21.0 23.0 25.0 27.0 11.0 13.0 HFO-1123 mass % 52.0 42.0 46.0 44.0 42.0 40.0 54.0 52.0
  • R32 mass % 18.0 31.0 33.0 33.0 33.0 33.0 35.0 35.0
  • GWP 122 210 223 223 223 223 223 237 237
  • COP ratio % (relative 94.5 96.0 96.0 96.1 96.2 96.3 96.0 96.0 to R410A)
  • Refrigerating % (relative 112.1 113.7 114.3 114.2 114.0 113.8 115.0 114.9 capacity ratio to R410A)
  • Example 59 Example 60
  • Example 61 Example 62
  • Example 63 Example 64
  • Example 65 Example 66 HFO-1132(E) mass % 15.0 17.0 19.0 21.0 23.0 25.0 27.0 11.0 HFO-1123 mass % 50.0 48.0 46.0 44.0 42.0 40.0 38.0 52.0
  • R32 mass % 35.0 35.0 35.0 35.0 35.0 37.0 GWP — 237 237 237 237 237 237 237 250 COP ratio % (relative 96.1 96.2 96.2 96.3 96.4 96.4 96.5 96.2 to R410A)
  • Refrigerating % (relative 114.8 114.7 114.5 114.4 114.2 114.1 113.9 115.1 capacity ratio to R410A)
  • Example 67 Example 68
  • Example 69 Example 70
  • Example 71 Example 72
  • Example 73 Example 74 HFO-1132(E) mass % 13.0 15.0 17.0 15.0 17.0 19.0 21.0 23.0 HFO-1123 mass % 50.0 48.0 46.0 50.0 48.0 46.0 44.0 42.0
  • Refrigerating % (relative 115.0 114.9 114.7 114.8 114.7 114.5 114.4 114.2 capacity ratio to R410A)
  • Example 75 Example 76 Example 77 Example 78 Example 79 Example 80 Example 81 Example 82 HFO-1132(E) mass % 25.0 27.0 11.0 19.0 21.0 23.0 25.0 27.0 HFO-1123 mass % 40.0 38.0 52.0 44.0 42.0 40.0 38.0 36.0
  • the refrigerant has a GWP of 250 or less.
  • the refrigerant has a GWP of 125 or less.
  • the refrigerant has a GWP of 65 or less.
  • the refrigerant has a COP ratio of 96% or more relative to that of R410A.
  • the line segment CU is represented by coordinates ( ⁇ 0.0538z 2 +0.7888z+53.701, 0.0538z 2 ⁇ 1.7888z+46.299, z)
  • the line segment UD is represented by coordinates ( ⁇ 3.4962z 2 +210.71z ⁇ 3146.1, 3.4962z 2 ⁇ 211.71z+3246.1, z).
  • the points on the line segment CU are determined from three points, i.e.,
  • the points on the line segment UD are determined from three points, i.e.,
  • the refrigerant has a COP ratio of 94.5% or more relative to that of R410A.
  • the line segment ET is represented by coordinates ( ⁇ 0.0547z 2 ⁇ 0.5327z+53.4, 0.0547z 2 ⁇ 0.4673z+46.6, z)
  • the line segment TF is represented by coordinates ( ⁇ 0.0982z 2 +0.9622z+40.931, 0.0982z 2 ⁇ 1.9622z+59.069, z).
  • the points on the line segment ET are determined from three points, i.e.,
  • the points on the line segment TF are determined from three points, i.e., points T, S, and F, by using the least-square method.
  • the refrigerant has a COP ratio of 93% or more relative to that of R410A.
  • the line segment GR is represented by coordinates ( ⁇ 0.0491z 2 ⁇ 1.1544z+38.5, 0.0491z 2 +0.1544z+61.5, z), and the line segment RH is represented by coordinates ( ⁇ 0.3123z 2 +4.234z+11.06, 0.3123z 2 ⁇ 5.234z+88.94, z).
  • the points on the line segment GR are determined from three points, i.e.,
  • the points on the line segment RH are determined from three points, i.e.,
  • FIG. 16 is a configuration diagram of an air conditioner 1 according to a first embodiment of the present disclosure.
  • the air conditioner 1 is constituted by a utilization unit 2 and a heat source unit 3 .
  • the air conditioner 1 has a refrigerant circuit 11 in which a compressor 100 , a four-way switching valve 16 , a heat-source-side heat exchanger 17 , an expansion valve 18 serving as a decompression mechanism, and a utilization-side heat exchanger 13 are connected in a loop shape by refrigerant pipes.
  • the refrigerant circuit 11 is filled with refrigerant for performing a vapor compression refrigeration cycle.
  • the refrigerant is a refrigerant mixture containing 1,2-difluoroethylene, and any one of the above-described refrigerant A to refrigerant E can be used.
  • the refrigerant circuit 11 is filled with refrigerating machine oil together with the refrigerant mixture.
  • the utilization-side heat exchanger 13 belongs to the utilization unit 2 .
  • a utilization-side fan 14 is mounted in the utilization unit 2 .
  • the utilization-side fan 14 generates an air flow to the utilization-side heat exchanger 13 .
  • a utilization-side communicator 35 and a utilization-side microcomputer 41 are mounted in the utilization unit 2 .
  • the utilization-side communicator 35 is connected to the utilization-side microcomputer 41 .
  • the utilization-side communicator 35 is used by the utilization unit 2 to communicate with the heat source unit 3 .
  • the utilization-side microcomputer 41 is supplied with a control voltage even during a standby state in which the air conditioner 1 is not operating. Thus, the utilization-side microcomputer 41 is constantly activated.
  • the compressor 100 the four-way switching valve 16 , the heat-source-side heat exchanger 17 , and the expansion valve 18 belong to the heat source unit 3 .
  • a heat-source-side fan 19 is mounted in the heat source unit 3 . The heat-source-side fan 19 generates an air flow to the heat-source-side heat exchanger 17 .
  • connection unit 30 a connection unit 30 , a heat-source-side communicator 36 , and a heat-source-side microcomputer 42 are mounted in the heat source unit 3 .
  • the connection unit 30 and the heat-source-side communicator 36 are connected to the heat-source-side microcomputer 42 .
  • FIG. 17 is an operation circuit diagram of a motor 70 of the compressor 100 .
  • the connection unit 30 is a circuit that causes power to be supplied from an alternating-current (AC) power source 90 to the motor 70 of the compressor 100 without frequency conversion.
  • AC alternating-current
  • the motor 70 is an induction motor and includes a squirrel-cage rotor 71 , and a stator 72 having a main winding 727 and an auxiliary winding 728 .
  • the squirrel-cage rotor 71 rotates following a rotating magnetic field generated by the stator 72 .
  • the compressor 100 has an M terminal, an S terminal, and a C terminal.
  • the M terminal and the C terminal are connected by the main winding 727 .
  • the S terminal and the C terminal are connected by the auxiliary winding 728 .
  • the AC power source 90 and the compressor 100 are connected by power supply lines 901 and 902 that supply an AC voltage to the compressor 100 .
  • the power supply line 901 is connected to the C terminal via a thermostat 26 .
  • the thermostat 26 detects a temperature of a room equipped with the air conditioner 1 .
  • the thermostat 26 opens the contact thereof when the room temperature is within a set temperature range and closes the contact when the room temperature is out of the set temperature range.
  • the power supply line 902 branches off into a first branch line 902 A and a second branch line 902 B.
  • the first branch line 902 A is connected to the M terminal, and the second branch line 902 B is connected to the S terminal via an activation circuit 20 .
  • the activation circuit 20 is a circuit in which a positive temperature coefficient (PTC) thermistor 21 and an operation capacitor 22 are connected in parallel to each other.
  • PTC positive temperature coefficient
  • the thermostat 26 connected to the power supply line 901 and the activation circuit 20 connected to the power supply line 902 are referred to as the connection unit 30 .
  • turning on of the AC power source 90 causes a current to flow through the auxiliary winding 728 via the PTC thermistor 21 and the motor 70 to be activated.
  • the PTC thermistor 21 self-heats by using the current flowing therethrough, and the resistance value thereof increases.
  • the operation capacitor 22 instead of the PTC thermistor 21 , is connected to the auxiliary winding 728 , and the state shifts to a stable operation state.
  • the compressor 100 can be driven without interposing a power conversion device between the AC power source 90 and the motor 70 .
  • the air conditioner 1 that is environmentally friendly and has a relatively inexpensive configuration.
  • the connection between the auxiliary winding 728 and the activation circuit 20 which is a parallel circuit of the PTC thermistor 21 and the operation capacitor 22 , makes it possible to achieve a large activation torque of the motor 70 of the compressor 100 .
  • the PTC thermistor 21 self-heats and the resistance value thereof increases, the state changes to a state where the operation capacitor 22 and the auxiliary winding 728 are substantially connected to each other, and the compressor 100 is operated at a constant rotation rate (power source frequency).
  • the compressor 100 enters a state of being capable of outputting a rated torque.
  • switching of connection to the operation capacitor 22 is performed at appropriate timing, and thus the efficiency of the compressor 100 can be increased.
  • the motor 70 is an induction motor and is capable of high output with relatively low cost, and thus the efficiency of the air conditioner 1 can be increased.
  • FIG. 18 is an operation circuit diagram of a motor 170 of a compressor 200 in the air conditioner 1 according to a modification example.
  • the motor 170 is a three-phase induction motor and is connected to a three-phase AC power source 190 via a connection unit 130 .
  • the connection unit 130 is a relay having contacts 130 u , 130 v , and 130 w .
  • the contact 130 u opens or closes a power supply line 903 between an R terminal of the three-phase AC power source 190 and a U-phase winding Lu of the motor 170 .
  • the contact 130 v opens or closes a power supply line 904 between an S terminal of the three-phase AC power source 190 and a V-phase winding Lv of the motor 170 .
  • the contact 130 w opens or closes a power supply line 905 between a T terminal of the three-phase AC power source 190 and a W-phase winding Lw of the motor 170 .
  • AC voltages are supplied from the R terminal, the S terminal, and the T terminal of the three-phase AC power source 190 to the corresponding U-phase winding Lu, the V-phase winding Lv, and the W-phase winding Lw of the motor 170 .
  • the AC voltage supplied to the V-phase winding Lv of the motor 170 has a phase difference of 120 degrees with respect to the AC voltage supplied to the U-phase winding Lu.
  • the AC voltage supplied to the W-phase winding Lw of the motor 170 has a phase difference of 120 degrees with respect to the AC voltage supplied to the V-phase winding Lv.
  • the compressor 200 can be driven without interposing a power conversion device between the three-phase AC power source 190 and the motor 170 .
  • the air conditioner 1 that is environmentally friendly and has a relatively inexpensive configuration.
  • the motor 170 is an induction motor and is capable of high output with relatively low cost, and thus the efficiency of the air conditioner 1 can be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Signal Processing (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Lubricants (AREA)
  • Liquid Crystal Substances (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)
  • Compressor (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Complex Calculations (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Analytical Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Geometry (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

In an air conditioner that uses a refrigerant mixture containing at least 1,2-difluoroethylene, high efficiency is achieved. In the air conditioner (1), a compressor (100, 200) can be driven without interposing a power conversion device between an AC power source (90, 190) and a motor (70, 170). Thus, it is possible to provide the air conditioner (1) that is environmentally friendly and has a relatively inexpensive configuration.

Description

    TECHNICAL FIELD
  • The present invention relates to an air conditioner that uses refrigerant with a low global warming potential (GWP).
  • BACKGROUND ART
  • In recent years, use of refrigerant with a low GWP (hereinafter referred to as low-GWP refrigerant) in air conditioners has been considered from the viewpoint of environmental protection. A dominant example of low-GWP refrigerant is a refrigerant mixture containing 1,2-difluoroethylene.
  • SUMMARY OF THE INVENTION Technical Problem
  • However, the related art giving consideration from the aspect of increasing the efficiency of air conditioners using the foregoing refrigerant is rarely found. For example, in the case of applying the foregoing refrigerant to the air conditioner disclosed in PTL 1 (Japanese Unexamined Patent Application Publication No. 2013-124848), there is an issue of how to achieve high efficiency.
  • Solution to Problem
  • An air conditioner according to a first aspect includes a compressor that compresses a refrigerant mixture containing at least 1,2-difluoroethylene, a motor that drives the compressor, and a connection unit that causes power to be supplied from an alternating-current (AC) power source to the motor without frequency conversion.
  • In the air conditioner that uses a refrigerant mixture containing at least 1,2-difluoroethylene, the compressor can be driven without interposing a power conversion device between the AC power source and the motor. Thus, it is possible to provide the air conditioner that is environmentally friendly and has a relatively inexpensive configuration.
  • An air conditioner according to a second aspect is the air conditioner according to the first aspect, in which the connection unit directly applies an AC voltage of the AC power source between at least two terminals of the motor.
  • An air conditioner according to a third aspect is the air conditioner according to the first aspect or the second aspect, in which the AC power source is a single-phase power source.
  • An air conditioner according to a fourth aspect is the air conditioner according to any one of the first aspect to the third aspect, in which one terminal of the motor is connected in series to an activation circuit.
  • An air conditioner according to a fifth aspect is the air conditioner according to the fourth aspect, in which the activation circuit is a circuit in which a positive temperature coefficient thermistor and an operation capacitor are connected in parallel to each other.
  • In the air conditioner that uses a refrigerant mixture containing at least 1,2-difluoroethylene, after the compressor has been activated, the PTC thermistor self-heats and the resistance value thereof increases, and switching to an operation circuit substantially by the operation capacitor occurs. Thus, the compressor enters a state of being capable of outputting a rated torque at appropriate timing.
  • An air conditioner according to a sixth aspect is the air conditioner according to the first aspect or the second aspect, in which the AC power source is a three-phase power source.
  • This air conditioner does not require an activation circuit and thus the cost is relatively low.
  • An air conditioner according to a seventh aspect is the air conditioner according to any one of the first aspect to the sixth aspect, in which the motor is an induction motor.
  • In this air conditioner, the motor is capable of high output with relatively low cost, and thus the efficiency of the air conditioner can be increased.
  • An air conditioner according to a eighth aspect is the air conditioner according to any of the first through seventh aspects, wherein, the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).
  • In the air conditioner that uses a refrigerant mixture containing at least 1,2-difluoroethylene, the compressor can be driven without interposing a power conversion device between the AC power source and the motor. Thus, the air conditioner that is environmentally friendly and has a relatively inexpensive configuration can also be achieved when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) and a coefficient of performance (COP) equal to those of R410A is used.
  • An air conditioner according to a ninth aspect is the air conditioner according to the eighth aspect, wherein, when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments AA′, A′B, BD, DC′, C′C, CO, and OA that connect the following 7 points:
  • point A (68.6, 0.0, 31.4),
    point A′ (30.6, 30.0, 39.4),
    point B (0.0, 58.7, 41.3),
    point D (0.0, 80.4, 19.6),
    point C′ (19.5, 70.5, 10.0),
    point C (32.9, 67.1, 0.0), and
    point O (100.0, 0.0, 0.0),
    or on the above line segments (excluding the points on the line segments BD, CO, and OA);
  • the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
  • the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
  • the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
  • the line segments BD, CO, and OA are straight lines.
  • An air conditioner according to a tenth aspect is the air conditioner according to the eighth aspect, wherein, when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments GI, IA, AA′, A′B, BD, DC′, C′C, and CG that connect the following 8 points:
  • point G (72.0, 28.0, 0.0),
    point I (72.0, 0.0, 28.0),
    point A (68.6, 0.0, 31.4),
    point A′ (30.6, 30.0, 39.4),
    point B (0.0, 58.7, 41.3),
    point D (0.0, 80.4, 19.6),
    point C′ (19.5, 70.5, 10.0), and
    point C (32.9, 67.1, 0.0),
    or on the above line segments (excluding the points on the line segments IA, BD, and CG);
  • the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
  • the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
  • the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
  • the line segments GI, IA, BD, and CG are straight lines.
  • An air conditioner according to a eleventh aspect is the air conditioner according to the eighth aspect, wherein, when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PN, NK, KA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
  • point J (47.1, 52.9, 0.0),
    point P (55.8, 42.0, 2.2),
    point N (68.6, 16.3, 15.1),
    point K (61.3, 5.4, 33.3),
    point A′ (30.6, 30.0, 39.4),
    point B (0.0, 58.7, 41.3),
    point D (0.0, 80.4, 19.6),
    point C′ (19.5, 70.5, 10.0), and
    point C (32.9, 67.1, 0.0),
    or on the above line segments (excluding the points on the line segments BD and CJ);
  • the line segment PN is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
  • the line segment NK is represented by coordinates (x, 0.2421x2−29.955x+931.91, −0.2421x2+28.955x−831.91),
  • the line segment KA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
  • the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
  • the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
  • the line segments JP, BD, and CG are straight lines.
  • An air conditioner according to a twelfth aspect is the air conditioner according to the eighth aspect, wherein, when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PL, LM, MA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
  • point J (47.1, 52.9, 0.0),
    point P (55.8, 42.0, 2.2),
    point L (63.1, 31.9, 5.0),
    point M (60.3, 6.2, 33.5),
    point A′ (30.6, 30.0, 39.4),
    point B (0.0, 58.7, 41.3),
    point D (0.0, 80.4, 19.6),
    point C′ (19.5, 70.5, 10.0), and
    point C (32.9, 67.1, 0.0),
    or on the above line segments (excluding the points on the line segments BD and CJ);
  • the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43)
  • the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
  • the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
  • the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
  • the line segments JP, LM, BD, and CG are straight lines.
  • An air conditioner according to a thirteenth aspect is the air conditioner according to the eighth aspect, wherein, when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LM, MA′, A′B, BF, FT, and TP that connect the following 7 points:
  • point P (55.8, 42.0, 2.2),
    point L (63.1, 31.9, 5.0),
    point M (60.3, 6.2, 33.5),
    point A′ (30.6, 30.0, 39.4),
    point B (0.0, 58.7, 41.3),
    point F (0.0, 61.8, 38.2), and
    point T (35.8, 44.9, 19.3),
    or on the above line segments (excluding the points on the line segment BF);
  • the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
  • the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
  • the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2),
  • the line segment TP is represented by coordinates (x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and
  • the line segments LM and BF are straight lines.
  • An air conditioner according to a fourteenth aspect is the air conditioner according to the eighth aspect, wherein, when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LQ, QR, and RP that connect the following 4 points:
  • point P (55.8, 42.0, 2.2),
    point L (63.1, 31.9, 5.0),
    point Q (62.8, 29.6, 7.6), and
    point R (49.8, 42.3, 7.9),
    or on the above line segments;
  • the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
  • the line segment RP is represented by coordinates (x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and
  • the line segments LQ and QR are straight lines.
  • An air conditioner according to a fifth aspect is the air conditioner according to the eighth aspect, wherein, when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments SM, MA′, A′B, BF, FT, and TS that connect the following 6 points:
  • point S (62.6, 28.3, 9.1),
    point M (60.3, 6.2, 33.5),
    point A′ (30.6, 30.0, 39.4),
    point B (0.0, 58.7, 41.3),
    point F (0.0, 61.8, 38.2), and
    point T (35.8, 44.9, 19.3),
    or on the above line segments,
  • the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
  • the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2),
  • the line segment TS is represented by coordinates (x, −0.0017x2−0.7869x+70.888, −0.0017x2−0.2131x+29.112), and
  • the line segments SM and BF are straight lines.
  • An air conditioner according to a sixth aspect is the air conditioner according to any of the 1 through seventh aspects, wherein, the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)) and trifluoroethylene (HFO-1123) in a total amount of 99.5 mass % or more based on the entire refrigerant, and the refrigerant comprises 62.0 mass % to 72.0 mass % of HFO-1132(E) based on the entire refrigerant.
  • In the air conditioner that uses a refrigerant mixture containing at least 1,2-difluoroethylene, the compressor can be driven without interposing a power conversion device between the AC power source and the motor. Thus, the air conditioner that is environmentally friendly and has a relatively inexpensive configuration can also be achieved when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) and a coefficient of performance (COP) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.
  • An air conditioner according to a seventeenth aspect is the air conditioner according to any of the first through seventh aspects, wherein, the refrigerant comprises HFO-1132(E) and HFO-1123 in a total amount of 99.5 mass % or more based on the entire refrigerant, and
  • the refrigerant comprises 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire refrigerant.
  • In the air conditioner that uses a refrigerant mixture containing at least 1,2-difluoroethylene, the compressor can be driven without interposing a power conversion device between the AC power source and the motor. Thus, the air conditioner that is environmentally friendly and has a relatively inexpensive configuration can also be achieved when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) and a coefficient of performance (COP) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.
  • An air conditioner according to a eighteenth aspect is the air conditioner according to any of the first through seventh aspects, wherein, the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32), wherein
  • when the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum in the refrigerant is respectively represented by x, y, z, and a,
  • if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass % are within the range of a figure surrounded by straight lines GI, IA, AB, BD′, D′C, and CG that connect the following 6 points:
  • point G (0.026a2−1.7478a+72.0, −0.026a2+0.7478a+28.0, 0.0),
    point I (0.026a2−1.7478a+72.0, 0.0, −0.026a2+0.7478a+28.0),
    point A (0.0134a2−1.9681a+68.6, 0.0, −0.0134a2+0.9681a+31.4),
    point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3),
    point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6), and
    point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0),
    or on the straight lines GI, AB, and D′C (excluding point G, point I, point A, point B, point D′, and point C);
  • if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
  • point G (0.02a2−1.6013a+71.105, −0.02a2+0.6013a+28.895, 0.0),
    point I (0.02a2−1.6013a+71.105, 0.0, −0.02a2+0.6013a+28.895),
    point A (0.0112a2−1.9337a+68.484, 0.0, −0.0112a2+0.9337a+31.516),
    point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801), and
    point W (0.0, 100.0−a, 0.0),
    or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);
  • if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
  • point G (0.0135a2−1.4068a+69.727, −0.0135a2+0.4068a+30.273, 0.0),
    point I (0.0135a2−1.4068a+69.727, 0.0, −0.0135a2+0.4068a+30.273),
    point A (0.0107a2−1.9142a+68.305, 0.0, −0.0107a2+0.9142a+31.695),
    point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682), and
    point W (0.0, 100.0−a, 0.0),
    or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);
  • if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
  • point G (0.0111a2−1.3152a+68.986, −0.0111a2+0.3152a+31.014, 0.0),
    point I (0.0111a2−1.3152a+68.986, 0.0, −0.0111a2+0.3152a+31.014),
    point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207),
    point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714), and
    point W (0.0, 100.0−a, 0.0),
    or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W); and
  • if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
  • point G (0.0061a2−0.9918a+63.902, −0.0061a2−0.0082a+36.098, 0.0),
    point I (0.0061a2−0.9918a+63.902, 0.0, −0.0061a2−0.0082a+36.098),
    point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9),
    point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05), and
    point W (0.0, 100.0−a, 0.0),
    or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W).
  • In the air conditioner that uses a refrigerant mixture containing at least 1,2-difluoroethylene, the compressor can be driven without interposing a power conversion device between the AC power source and the motor. Thus, the air conditioner that is environmentally friendly and has a relatively inexpensive configuration can also be achieved when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) and a coefficient of performance (COP) equal to those of R410A is used.
  • An air conditioner according to a nineteenth aspect is the air conditioner according to any of the first through seventh aspects, wherein, the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32), wherein
  • when the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum in the refrigerant is respectively represented by x, y, z, and a,
  • if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass % are within the range of a figure surrounded by straight lines JK′, K′B, BD′, D′C, and CJ that connect the following 5 points:
  • point J (0.0049a2−0.9645a+47.1, −0.0049a2−0.0355a+52.9, 0.0),
    point K′ (0.0514a2−2.4353a+61.7, −0.0323a2+0.4122a+5.9, −0.0191a2+1.0231a+32.4),
    point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3),
    point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6), and
    point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0),
    or on the straight lines JK′, K′B, and D′C (excluding point J, point B, point D′, and point C);
  • if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
  • point J (0.0243a2−1.4161a+49.725, −0.0243a2+0.4161a+50.275, 0.0),
    point K′ (0.0341a2−2.1977a+61.187, −0.0236a2+0.34a+5.636, −0.0105a2+0.8577a+33.177),
    point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801), and
    point W (0.0, 100.0−a, 0.0),
    or on the straight lines JK′ and K′B (excluding point J, point B, and point W);
  • if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
  • point J (0.0246a2−1.4476a+50.184, −0.0246a2+0.4476a+49.816, 0.0),
    point K′ (0.0196a2−1.7863a+58.515, −0.0079a2−0.1136a+8.702, −0.0117a2+0.8999a+32.783),
    point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682), and
    point W (0.0, 100.0−a, 0.0),
    or on the straight lines JK′ and K′B (excluding point J, point B, and point W);
  • if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
  • point J (0.0183a2−1.1399a+46.493, −0.0183a2+0.1399a+53.507, 0.0),
    point K′ (−0.0051a2+0.0929a+25.95, 0.0, 0.0051a2−1.0929a+74.05),
    point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207),
    point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714), and
    point W (0.0, 100.0−a, 0.0),
    or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W); and
  • if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
  • point J (−0.0134a2+1.0956a+7.13, 0.0134a2−2.0956a+92.87, 0.0),
    point K′ (−1.892a+29.443, 0.0, 0.892a+70.557),
    point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9),
    point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05), and
    point W (0.0, 100.0−a, 0.0),
    or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W).
  • In the air conditioner that uses a refrigerant mixture containing at least 1,2-difluoroethylene, the compressor can be driven without interposing a power conversion device between the AC power source and the motor. Thus, the air conditioner that is environmentally friendly and has a relatively inexpensive configuration can also be achieved when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) and a coefficient of performance (COP) equal to those of R410A is used.
  • An air conditioner according to a twentieth aspect is the air conditioner according to any of the first through seventh aspects, wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf),
  • wherein
  • when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments IJ, JN, NE, and EI that connect the following 4 points:
  • point I (72.0, 0.0, 28.0),
    point J (48.5, 18.3, 33.2),
    point N (27.7, 18.2, 54.1), and
    point E (58.3, 0.0, 41.7),
    or on these line segments (excluding the points on the line segment EI;
  • the line segment IJ is represented by coordinates (0.0236y2−1.7616y+72.0, y, −0.0236y2+0.7616y+28.0);
  • the line segment NE is represented by coordinates (0.012y2−1.9003y+58.3, y, −0.012y2+0.9003y+41.7); and
  • the line segments JN and EI are straight lines.
  • In the air conditioner that uses a refrigerant mixture containing at least 1,2-difluoroethylene, the compressor can be driven without interposing a power conversion device between the AC power source and the motor. Thus, the air conditioner that is environmentally friendly and has a relatively inexpensive configuration can also be achieved when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.
  • An air conditioner according to a twenty-first aspect is the air conditioner according to any of the first through seventh aspects, wherein the refrigerant comprises HFO-1132(E), R32, and R1234yf,
  • wherein
  • when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments MM′, M′N, NV, VG, and GM that connect the following 5 points:
  • point M (52.6, 0.0, 47.4),
    point M′ (39.2, 5.0, 55.8),
    point N (27.7, 18.2, 54.1),
    point V (11.0, 18.1, 70.9), and
    point G (39.6, 0.0, 60.4),
    or on these line segments (excluding the points on the line segment GM);
  • the line segment MM′ is represented by coordinates (0.132y2−3.34y+52.6, y, −−0.132y2+2.34y+47.4);
  • the line segment M′N is represented by coordinates (0.0596y2−2.2541y+48.98, y, −0.0596y2+1.2541y+51.02);
  • the line segment VG is represented by coordinates (0.0123y2−1.8033y+39.6, y, −0.0123y2+0.8033y+60.4); and
  • the line segments NV and GM are straight lines.
  • In the air conditioner that uses a refrigerant mixture containing at least 1,2-difluoroethylene, the compressor can be driven without interposing a power conversion device between the AC power source and the motor. Thus, the air conditioner that is environmentally friendly and has a relatively inexpensive configuration can also be achieved when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.
  • An air conditioner according to a twenty-second aspect is the air conditioner according to any of the first through seventh aspects, wherein the refrigerant comprises HFO-1132(E), R32, and R1234yf,
  • wherein
  • when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ON, NU, and UO that connect the following 3 points:
  • point O (22.6, 36.8, 40.6),
    point N (27.7, 18.2, 54.1), and
    point U (3.9, 36.7, 59.4),
    or on these line segments;
  • the line segment ON is represented by coordinates (0.0072y2−0.6701y+37.512, y, −0.0072y2−0.3299y+62.488);
  • the line segment NU is represented by coordinates (0.0083y2−1.7403y+56.635, y, −0.0083y2+0.7403y+43.365); and
  • the line segment UO is a straight line.
  • In the air conditioner that uses a refrigerant mixture containing at least 1,2-difluoroethylene, the compressor can be driven without interposing a power conversion device between the AC power source and the motor. Thus, the air conditioner that is environmentally friendly and has a relatively inexpensive configuration can also be achieved when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.
  • An air conditioner according to a twenty-third aspect is the air conditioner according to any of the first through seventh aspects, wherein the refrigerant comprises HFO-1132(E), R32, and R1234yf,
  • wherein
  • when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments QR, RT, TL, LK, and KQ that connect the following 5 points:
  • point Q (44.6, 23.0, 32.4),
    point R (25.5, 36.8, 37.7),
    point T (8.6, 51.6, 39.8),
    point L (28.9, 51.7, 19.4), and
    point K (35.6, 36.8, 27.6),
    or on these line segments;
  • the line segment QR is represented by coordinates (0.0099y2−1.975y+84.765, y, −0.0099y2+0.975y+15.235);
  • the line segment RT is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874);
  • the line segment LK is represented by coordinates (0.0049y2−0.8842y+61.488, y, −0.0049y2−0.1158y+38.512);
  • the line segment KQ is represented by coordinates (0.0095y2−1.2222y+67.676, y, −0.0095y2+0.2222y+32.324); and
  • the line segment TL is a straight line.
  • In the air conditioner that uses a refrigerant mixture containing at least 1,2-difluoroethylene, the compressor can be driven without interposing a power conversion device between the AC power source and the motor. Thus, the air conditioner that is environmentally friendly and has a relatively inexpensive configuration can also be achieved when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.
  • An air conditioner according to a twenty-fourth aspect is the air conditioner according to any of the first through seventh aspects, wherein the refrigerant comprises HFO-1132(E), R32, and R1234yf,
  • wherein
  • when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:
  • point P (20.5, 51.7, 27.8),
    point S (21.9, 39.7, 38.4), and
    point T (8.6, 51.6, 39.8),
    or on these line segments;
  • the line segment PS is represented by coordinates (0.0064y2−0.7103y+40.1, y, −0.0064y2−0.2897y+59.9);
  • the line segment ST is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874); and
  • the line segment TP is a straight line.
  • In the air conditioner that uses a refrigerant mixture containing at least 1,2-difluoroethylene, the compressor can be driven without interposing a power conversion device between the AC power source and the motor. Thus, the air conditioner that is environmentally friendly and has a relatively inexpensive configuration can also be achieved when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.
  • An air conditioner according to a fifth aspect is the air conditioner according to any of the first through seventh aspects, wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
  • wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IK, KB′, B′H, HR, RG, and GI that connect the following 6 points:
  • point I (72.0, 28.0, 0.0),
    point K (48.4, 33.2, 18.4),
    point B′ (0.0, 81.6, 18.4),
    point H (0.0, 84.2, 15.8),
    point R (23.1, 67.4, 9.5), and
    point G (38.5, 61.5, 0.0),
    or on these line segments (excluding the points on the line segments B′H and GI);
  • the line segment IK is represented by coordinates (0.025z2−1.7429z+72.00, −0.025z2+0.7429z+28.0, z),
  • the line segment HR is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z),
  • the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
  • the line segments KB′ and GI are straight lines.
  • In the air conditioner that uses a refrigerant mixture containing at least 1,2-difluoroethylene, the compressor can be driven without interposing a power conversion device between the AC power source and the motor. Thus, the air conditioner that is environmentally friendly and has a relatively inexpensive configuration can also be achieved when a refrigerant having a sufficiently low GWP, and a coefficient of performance (COP) equal to that of R410A is used.
  • An air conditioner according to a twenty-sixth aspect is the air conditioner according to any of the first through seventh aspects, wherein the refrigerant comprises HFO-1132(E), HFO-1123, and R32,
  • wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IJ, JR, RG, and GI that connect the following 4 points:
  • point I (72.0, 28.0, 0.0),
    point J (57.7, 32.8, 9.5),
    point R (23.1, 67.4, 9.5), and
    point G (38.5, 61.5, 0.0),
    or on these line segments (excluding the points on the line segment GI);
  • the line segment IJ is represented by coordinates (0.025z2−1.7429z+72.0, −0.025z2+0.7429z+28.0, z),
  • the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and the line segments JR and GI are straight lines.
  • In the air conditioner that uses a refrigerant mixture containing at least 1,2-difluoroethylene, the compressor can be driven without interposing a power conversion device between the AC power source and the motor. Thus, the air conditioner that is environmentally friendly and has a relatively inexpensive configuration can also be achieved when a refrigerant having a sufficiently low GWP, and a coefficient of performance (COP) equal to that of R410A is used.
  • An air conditioner according to a twenty-seventh aspect is the air conditioner according to any of the first through seventh aspects, wherein the refrigerant comprises HFO-1132(E), HFO-1123, and R32,
  • wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MP, PB′, B′H, HR, RG, and GM that connect the following 6 points:
  • point M (47.1, 52.9, 0.0),
    point P (31.8, 49.8, 18.4),
    point B′ (0.0, 81.6, 18.4),
    point H (0.0, 84.2, 15.8),
    point R (23.1, 67.4, 9.5), and
    point G (38.5, 61.5, 0.0),
    or on these line segments (excluding the points on the line segments B′H and GM);
  • the line segment MP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z),
  • the line segment HR is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z),
  • the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
  • the line segments PB′ and GM are straight lines.
  • In the air conditioner that uses a refrigerant mixture containing at least 1,2-difluoroethylene, the compressor can be driven without interposing a power conversion device between the AC power source and the motor. Thus, the air conditioner that is environmentally friendly and has a relatively inexpensive configuration can also be achieved when a refrigerant having a sufficiently low GWP, and a coefficient of performance (COP) equal to that of R410A is used.
  • An air conditioner according to a twenty-eighth aspect is the air conditioner according to any of the first through seventh aspects, wherein the refrigerant comprises HFO-1132(E), HFO-1123, and R32,
  • wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MN, NR, RG, and GM that connect the following 4 points:
  • point M (47.1, 52.9, 0.0),
    point N (38.5, 52.1, 9.5),
    point R (23.1, 67.4, 9.5), and
    point G (38.5, 61.5, 0.0),
    or on these line segments (excluding the points on the line segment GM);
  • the line segment MN is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z),
  • the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
  • the line segments JR and GI are straight lines.
  • In the air conditioner that uses a refrigerant mixture containing at least 1,2-difluoroethylene, the compressor can be driven without interposing a power conversion device between the AC power source and the motor. Thus, the air conditioner that is environmentally friendly and has a relatively inexpensive configuration can also be achieved when a refrigerant having a sufficiently low GWP, and a coefficient of performance (COP) equal to that of R410A is used.
  • An air conditioner according to a twenty-ninth aspect is the air conditioner according to any of the first through seventh aspects, wherein the refrigerant comprises HFO-1132(E), HFO-1123, and R32,
  • wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:
  • point P (31.8, 49.8, 18.4),
    point S (25.4, 56.2, 18.4), and
    point T (34.8, 51.0, 14.2),
    or on these line segments;
  • the line segment ST is represented by coordinates (−0.0982z2+0.9622z+40.931, 0.0982z2−1.9622z+59.069, z),
  • the line segment TP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z), and
  • the line segment PS is a straight line.
  • In the air conditioner that uses a refrigerant mixture containing at least 1,2-difluoroethylene, the compressor can be driven without interposing a power conversion device between the AC power source and the motor. Thus, the air conditioner that is environmentally friendly and has a relatively inexpensive configuration can also be achieved when a refrigerant having a sufficiently low GWP, and a coefficient of performance (COP) equal to that of R410A is used.
  • An air conditioner according to a thirtieth aspect is the air conditioner according to any of the first through seventh aspects, wherein the refrigerant comprises HFO-1132(E), HFO-1123, and R32,
  • wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments QB″, B″D, DU, and UQ that connect the following 4 points:
  • point Q (28.6, 34.4, 37.0),
    point B″ (0.0, 63.0, 37.0),
    point D (0.0, 67.0, 33.0), and
    point U (28.7, 41.2, 30.1),
    or on these line segments (excluding the points on the line segment B″D);
  • the line segment DU is represented by coordinates (−3.4962z2+210.71z−3146.1, 3.4962z2−211.71z+3246.1, z),
  • the line segment UQ is represented by coordinates (0.0135z2−0.9181z+44.133, −0.0135z2−0.0819z+55.867, z), and
  • the line segments QB″ and B″D are straight lines.
  • In the air conditioner that uses a refrigerant mixture containing at least 1,2-difluoroethylene, the compressor can be driven without interposing a power conversion device between the AC power source and the motor. Thus, the air conditioner that is environmentally friendly and has a relatively inexpensive configuration can also be achieved when a refrigerant having a sufficiently low GWP, and a coefficient of performance (COP) equal to that of R410A is used.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic view of an instrument used for a flammability test.
  • FIG. 2 is a diagram showing points A to T and line segments that connect these points in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass %.
  • FIG. 3 is a diagram showing points A to C, D′, G, I, J, and K′, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass %.
  • FIG. 4 is a diagram showing points A to C, D′, G, I, J, and K′, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 92.9 mass % (the content of R32 is 7.1 mass %).
  • FIG. 5 is a diagram showing points A to C, D′, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 88.9 mass % (the content of R32 is 11.1 mass %).
  • FIG. 6 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 85.5 mass % (the content of R32 is 14.5 mass %).
  • FIG. 7 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 81.8 mass % (the content of R32 is 18.2 mass %).
  • FIG. 8 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 78.1 mass % (the content of R32 is 21.9 mass %).
  • FIG. 9 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 73.3 mass % (the content of R32 is 26.7 mass %).
  • FIG. 10 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 70.7 mass % (the content of R32 is 29.3 mass %).
  • FIG. 11 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 63.3 mass % (the content of R32 is 36.7 mass %).
  • FIG. 12 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 55.9 mass % (the content of R32 is 44.1 mass %).
  • FIG. 13 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 52.2 mass % (the content of R32 is 47.8 mass %).
  • FIG. 14 is a view showing points A to C, E, G, and I to W; and line segments that connect points A to C, E, G, and I to W in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass %.
  • FIG. 15 is a view showing points A to U; and line segments that connect the points in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass %.
  • FIG. 16 is a configuration diagram of an air conditioner according to one embodiment of the present disclosure.
  • FIG. 17 is an operation circuit diagram of a motor of a compressor.
  • FIG. 18 is an operation circuit diagram of a motor of a compressor in an air conditioner according to a modification example.
  • DESCRIPTION OF EMBODIMENTS (1) Definition of Terms
  • In the present specification, the term “refrigerant” includes at least compounds that are specified in ISO 817 (International Organization for Standardization), and that are given a refrigerant number (ASHRAE number) representing the type of refrigerant with “R” at the beginning; and further includes refrigerants that have properties equivalent to those of such refrigerants, even though a refrigerant number is not yet given. Refrigerants are broadly divided into fluorocarbon compounds and non-fluorocarbon compounds in terms of the structure of the compounds. Fluorocarbon compounds include chlorofluorocarbons (CFC), hydrochlorofluorocarbons (HCFC), and hydrofluorocarbons (HFC). Non-fluorocarbon compounds include propane (R290), propylene (R1270), butane (R600), isobutane (R600a), carbon dioxide (R744), ammonia (R717), and the like.
  • In the present specification, the phrase “composition comprising a refrigerant” at least includes (1) a refrigerant itself (including a mixture of refrigerants), (2) a composition that further comprises other components and that can be mixed with at least a refrigeration oil to obtain a working fluid for a refrigerating machine, and (3) a working fluid for a refrigerating machine containing a refrigeration oil. In the present specification, of these three embodiments, the composition (2) is referred to as a “refrigerant composition” so as to distinguish it from a refrigerant itself (including a mixture of refrigerants). Further, the working fluid for a refrigerating machine (3) is referred to as a “refrigeration oil-containing working fluid” so as to distinguish it from the “refrigerant composition.”
  • In the present specification, when the term “alternative” is used in a context in which the first refrigerant is replaced with the second refrigerant, the first type of “alternative” means that equipment designed for operation using the first refrigerant can be operated using the second refrigerant under optimum conditions, optionally with changes of only a few parts (at least one of the following: refrigeration oil, gasket, packing, expansion valve, dryer, and other parts) and equipment adjustment. In other words, this type of alternative means that the same equipment is operated with an alternative refrigerant. Embodiments of this type of “alternative” include “drop-in alternative,” “nearly drop-in alternative,” and “retrofit,” in the order in which the extent of changes and adjustment necessary for replacing the first refrigerant with the second refrigerant is smaller.
  • The term “alternative” also includes a second type of “alternative,” which means that equipment designed for operation using the second refrigerant is operated for the same use as the existing use with the first refrigerant by using the second refrigerant. This type of alternative means that the same use is achieved with an alternative refrigerant.
  • In the present specification, the term “refrigerating machine” refers to machines in general that draw heat from an object or space to make its temperature lower than the temperature of ambient air, and maintain a low temperature. In other words, refrigerating machines refer to conversion machines that gain energy from the outside to do work, and that perform energy conversion, in order to transfer heat from where the temperature is lower to where the temperature is higher.
  • In the present specification, a refrigerant having a “WCF lower flammability” means that the most flammable composition (worst case of formulation for flammability: WCF) has a burning velocity of 10 cm/s or less according to the US ANSI/ASHRAE Standard 34-2013. Further, in the present specification, a refrigerant having “ASHRAE lower flammability” means that the burning velocity of WCF is 10 cm/s or less, that the most flammable fraction composition (worst case of fractionation for flammability: WCFF), which is specified by performing a leakage test during storage, shipping, or use based on ANSI/ASHRAE 34-2013 using WCF, has a burning velocity of 10 cm/s or less, and that flammability classification according to the US ANSI/ASHRAE Standard 34-2013 is determined to classified as be “Class 2L.”
  • In the present specification, a refrigerant having an “RCL of x % or more” means that the refrigerant has a refrigerant concentration limit (RCL), calculated in accordance with the US ANSI/ASHRAE Standard 34-2013, of x % or more. RCL refers to a concentration limit in the air in consideration of safety factors. RCL is an index for reducing the risk of acute toxicity, suffocation, and flammability in a closed space where humans are present. RCL is determined in accordance with the ASHRAE Standard. More specifically, RCL is the lowest concentration among the acute toxicity exposure limit (ATEL), the oxygen deprivation limit (ODL), and the flammable concentration limit (FCL), which are respectively calculated in accordance with sections 7.1.1, 7.1.2, and 7.1.3 of the ASHRAE Standard.
  • In the present specification, temperature glide refers to an absolute value of the difference between the initial temperature and the end temperature in the phase change process of a composition containing the refrigerant of the present disclosure in the heat exchanger of a refrigerant system.
  • (2) Refrigerant (2-1) Refrigerant Component
  • Any one of various refrigerants such as refrigerant A, refrigerant B, refrigerant C, refrigerant D, and refrigerant E, details of these refrigerant are to be mentioned later, can be used as the refrigerant.
  • (2-2) Use of Refrigerant
  • The refrigerant according to the present disclosure can be preferably used as a working fluid in a refrigerating machine.
  • The composition according to the present disclosure is suitable for use as an alternative refrigerant for HFC refrigerant such as R410A, R407C and R404 etc, or HCFC refrigerant such as R22 etc.
  • (3) Refrigerant Composition
  • The refrigerant composition according to the present disclosure comprises at least the refrigerant according to the present disclosure, and can be used for the same use as the refrigerant according to the present disclosure. Moreover, the refrigerant composition according to the present disclosure can be further mixed with at least a refrigeration oil to thereby obtain a working fluid for a refrigerating machine.
  • The refrigerant composition according to the present disclosure further comprises at least one other component in addition to the refrigerant according to the present disclosure. The refrigerant composition according to the present disclosure may comprise at least one of the following other components, if necessary. As described above, when the refrigerant composition according to the present disclosure is used as a working fluid in a refrigerating machine, it is generally used as a mixture with at least a refrigeration oil. Therefore, it is preferable that the refrigerant composition according to the present disclosure does not substantially comprise a refrigeration oil. Specifically, in the refrigerant composition according to the present disclosure, the content of the refrigeration oil based on the entire refrigerant composition is preferably 0 to 1 mass %, and more preferably 0 to 0.1 mass %.
  • (3-1) Water
  • The refrigerant composition according to the present disclosure may contain a small amount of water. The water content of the refrigerant composition is preferably 0.1 mass % or less based on the entire refrigerant. A small amount of water contained in the refrigerant composition stabilizes double bonds in the molecules of unsaturated fluorocarbon compounds that can be present in the refrigerant, and makes it less likely that the unsaturated fluorocarbon compounds will be oxidized, thus increasing the stability of the refrigerant composition.
  • (3-2) Tracer
  • A tracer is added to the refrigerant composition according to the present disclosure at a detectable concentration such that when the refrigerant composition has been diluted, contaminated, or undergone other changes, the tracer can trace the changes.
  • The refrigerant composition according to the present disclosure may comprise a single tracer, or two or more tracers.
  • The tracer is not limited, and can be suitably selected from commonly used tracers. Preferably, a compound that cannot be an impurity inevitably mixed in the refrigerant of the present disclosure is selected as the tracer.
  • Examples of tracers include hydrofluorocarbons, hydrochlorofluorocarbons, chlorofluorocarbons, hydrochlorocarbons, fluorocarbons, deuterated hydrocarbons, deuterated hydrofluorocarbons, perfluorocarbons, fluoroethers, brominated compounds, iodinated compounds, alcohols, aldehydes, ketones, and nitrous oxide (N2O). The tracer is particularly preferably a hydrofluorocarbon, a hydrochlorofluorocarbon, a chlorofluorocarbon, a fluorocarbon, a hydrochlorocarbon, a fluorocarbon, or a fluoroether.
  • The following compounds are preferable as the tracer.
  • FC-14 (tetrafluoromethane, CF4)
    HCC-40 (chloromethane, CH3Cl)
    HFC-23 (trifluoromethane, CHF3)
    HFC-41 (fluoromethane, CH3Cl)
    HFC-125 (pentafluoroethane, CF3CHF2)
    HFC-134a (1,1,1,2-tetrafluoroethane, CF3CH2F)
    HFC-134 (1,1,2,2-tetrafluoroethane, CHF2CHF2)
    HFC-143a (1,1,1-trifluoroethane, CF3CH3)
    HFC-143 (1,1,2-trifluoroethane, CHF2CH2F)
    HFC-152a (1,1-difluoroethane, CHF2CH3)
    HFC-152 (1,2-difluoroethane, CH2FCH2F)
    HFC-161 (fluoroethane, CH3CH2F)
    HFC-245fa (1,1,1,3,3-pentafluoropropane, CF3CH2CHF2)
    HFC-236fa (1,1,1,3,3,3-hexafluoropropane, CF3CH2CF3)
    HFC-236ea (1,1,1,2,3,3-hexafluoropropane, CF3CHFCHF2)
    HFC-227ea (1,1,1,2,3,3,3-heptafluoropropane, CF3CHFCF3)
    HCFC-22 (chlorodifluoromethane, CHClF2)
    HCFC-31 (chlorofluoromethane, CH2ClF)
    CFC-1113 (chlorotrifluoroethylene, CF2═CClF)
    HFE-125 (trifluoromethyl-difluoromethyl ether, CF3OCHF2)
    HFE-134a (trifluoromethyl-fluoromethyl ether, CF3OCH2F)
    HFE-143a (trifluoromethyl-methyl ether, CF3OCH3)
    HFE-227ea (trifluoromethyl-tetrafluoroethyl ether, CF3OCHFCF3)
    HFE-236fa (trifluoromethyl-trifluoroethyl ether, CF3OCH2CF3)
  • The tracer compound may be present in the refrigerant composition at a total concentration of about 10 parts per million (ppm) to about 1000 ppm. Preferably, the tracer compound is present in the refrigerant composition at a total concentration of about 30 ppm to about 500 ppm, and most preferably, the tracer compound is present at a total concentration of about 50 ppm to about 300 ppm.
  • (3-3) Ultraviolet Fluorescent Dye
  • The refrigerant composition according to the present disclosure may comprise a single ultraviolet fluorescent dye, or two or more ultraviolet fluorescent dyes.
  • The ultraviolet fluorescent dye is not limited, and can be suitably selected from commonly used ultraviolet fluorescent dyes.
  • Examples of ultraviolet fluorescent dyes include naphthalimide, coumarin, anthracene, phenanthrene, xanthene, thioxanthene, naphthoxanthene, fluorescein, and derivatives thereof. The ultraviolet fluorescent dye is particularly preferably either naphthalimide or coumarin, or both.
  • (3-4) Stabilizer
  • The refrigerant composition according to the present disclosure may comprise a single stabilizer, or two or more stabilizers.
  • The stabilizer is not limited, and can be suitably selected from commonly used stabilizers.
  • Examples of stabilizers include nitro compounds, ethers, and amines.
  • Examples of nitro compounds include aliphatic nitro compounds, such as nitromethane and nitroethane; and aromatic nitro compounds, such as nitro benzene and nitro styrene.
  • Examples of ethers include 1,4-dioxane.
  • Examples of amines include 2,2,3,3,3-pentafluoropropylamine and diphenylamine.
  • Examples of stabilizers also include butylhydroxyxylene and benzotriazole.
  • The content of the stabilizer is not limited. Generally, the content of the stabilizer is preferably 0.01 to 5 mass %, and more preferably 0.05 to 2 mass %, based on the entire refrigerant.
  • (3-5) Polymerization Inhibitor
  • The refrigerant composition according to the present disclosure may comprise a single polymerization inhibitor, or two or more polymerization inhibitors.
  • The polymerization inhibitor is not limited, and can be suitably selected from commonly used polymerization inhibitors.
  • Examples of polymerization inhibitors include 4-methoxy-1-naphthol, hydroquinone, hydroquinone methyl ether, dimethyl-t-butylphenol, 2,6-di-tert-butyl-p-cresol, and benzotriazole.
  • The content of the polymerization inhibitor is not limited. Generally, the content of the polymerization inhibitor is preferably 0.01 to 5 mass %, and more preferably 0.05 to 2 mass %, based on the entire refrigerant.
  • (4) Refrigeration Oil-Containing Working Fluid
  • The refrigeration oil-containing working fluid according to the present disclosure comprises at least the refrigerant or refrigerant composition according to the present disclosure and a refrigeration oil, for use as a working fluid in a refrigerating machine. Specifically, the refrigeration oil-containing working fluid according to the present disclosure is obtained by mixing a refrigeration oil used in a compressor of a refrigerating machine with the refrigerant or the refrigerant composition. The refrigeration oil-containing working fluid generally comprises 10 to 50 mass % of refrigeration oil.
  • (4-1) Refrigeration Oil
  • The refrigeration oil is not limited, and can be suitably selected from commonly used refrigeration oils. In this case, refrigeration oils that are superior in the action of increasing the miscibility with the mixture and the stability of the mixture, for example, are suitably selected as necessary.
  • The base oil of the refrigeration oil is preferably, for example, at least one member selected from the group consisting of polyalkylene glycols (PAG), polyol esters (POE), and polyvinyl ethers (PVE).
  • The refrigeration oil may further contain additives in addition to the base oil. The additive may be at least one member selected from the group consisting of antioxidants, extreme-pressure agents, acid scavengers, oxygen scavengers, copper deactivators, rust inhibitors, oil agents, and antifoaming agents.
  • A refrigeration oil with a kinematic viscosity of 5 to 400 cSt at 40° C. is preferable from the standpoint of lubrication.
  • The refrigeration oil-containing working fluid according to the present disclosure may further optionally contain at least one additive. Examples of additives include compatibilizing agents described below.
  • (4-2) Compatibilizing Agent
  • The refrigeration oil-containing working fluid according to the present disclosure may comprise a single compatibilizing agent, or two or more compatibilizing agents.
  • The compatibilizing agent is not limited, and can be suitably selected from commonly used compatibilizing agents.
  • Examples of compatibilizing agents include polyoxyalkylene glycol ethers, amides, nitriles, ketones, chlorocarbons, esters, lactones, aryl ethers, fluoroethers, and 1,1,1-trifluoroalkanes. The compatibilizing agent is particularly preferably a polyoxyalkylene glycol ether.
  • (5) Various Refrigerants
  • Hereinafter, the refrigerants A to E, which are the refrigerants used in the present embodiment, will be described in detail.
  • In addition, each description of the following refrigerant A, refrigerant B, refrigerant C, refrigerant D, and refrigerant E is each independent. The alphabet which shows a point or a line segment, the number of an Examples, and the number of a comparative examples are all independent of each other among the refrigerant A, the refrigerant B, the refrigerant C, the refrigerant D, and the refrigerant E. For example, the first embodiment of the refrigerant A and the first embodiment of the refrigerant B are different embodiment from each other.
  • (5-1) Refrigerant A
  • The refrigerant A according to the present disclosure is a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).
  • The refrigerant A according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant, i.e., a refrigerating capacity and a coefficient of performance that are equivalent to those of R410A, and a sufficiently low GWP.
  • The refrigerant A according to the present disclosure is a composition comprising HFO-1132(E) and R1234yf, and optionally further comprising HFO-1123, and may further satisfy the following requirements. This refrigerant also has various properties desirable as an alternative refrigerant for R410A; i.e., it has a refrigerating capacity and a coefficient of performance that are equivalent to those of R410A, and a sufficiently low GWP.
  • Requirements
  • Preferable refrigerant A is as follows:
  • When the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments AA′, A′B, BD, DC′, C′C, CO, and OA that connect the following 7 points:
  • point A (68.6, 0.0, 31.4),
    point A′ (30.6, 30.0, 39.4),
    point B (0.0, 58.7, 41.3),
    point D (0.0, 80.4, 19.6),
    point C′ (19.5, 70.5, 10.0),
    point C (32.9, 67.1, 0.0), and
    point O (100.0, 0.0, 0.0),
    or on the above line segments (excluding the points on the line CO);
  • the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3,
  • the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
  • the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
  • the line segments BD, CO, and OA are straight lines.
  • When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A.
  • When the mass % of HFO-1132(E), HFO-1123, and R1234yf, based on their sum in the refrigerant A according to the present disclosure is respectively represented by x, y, and z, the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within a figure surrounded by line segments GI, IA, AA′, A′B, BD, DC′, C′C, and CG that connect the following 8 points:
  • point G (72.0, 28.0, 0.0),
  • point I (72.0, 0.0, 28.0),
    point A (68.6, 0.0, 31.4),
    point A′ (30.6, 30.0, 39.4),
    point B (0.0, 58.7, 41.3),
    point D (0.0, 80.4, 19.6),
    point C′ (19.5, 70.5, 10.0), and
    point C (32.9, 67.1, 0.0),
    or on the above line segments (excluding the points on the line segment CG);
  • the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
  • the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
  • the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
  • the line segments GI, IA, BD, and CG are straight lines.
  • When the requirements above are satisfied, the refrigerant A according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A; furthermore, the refrigerant A has a WCF lower flammability according to the ASHRAE Standard (the WCF composition has a burning velocity of 10 cm/s or less).
  • When the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant according to the present disclosure is respectively represented by x, y, and z, the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PN, NK, KA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
  • point J (47.1, 52.9, 0.0),
    point P (55.8, 42.0, 2.2),
    point N (68.6, 16.3, 15.1),
    point K (61.3, 5.4, 33.3),
    point A′ (30.6, 30.0, 39.4),
    point B (0.0, 58.7, 41.3),
    point D (0.0, 80.4, 19.6),
    point C′ (19.5, 70.5, 10.0), and
    point C (32.9, 67.1, 0.0),
    or on the above line segments (excluding the points on the line segment CJ);
  • the line segment PN is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
  • the line segment NK is represented by coordinates (x, 0.2421x2−29.955x+931.91, −0.2421x2+28.955x−831.91),
  • the line segment KA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
  • the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
  • the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
  • the line segments JP, BD, and CG are straight lines.
  • When the requirements above are satisfied, the refrigerant A according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A; furthermore, the refrigerant exhibits a lower flammability (Class 2L) according to the ASHRAE Standard (the WCF composition and the WCFF composition have a burning velocity of 10 cm/s or less).
  • When the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant according to the present disclosure is respectively represented by x, y, and z, the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PL, LM, MA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
  • point J (47.1, 52.9, 0.0),
    point P (55.8, 42.0, 2.2),
    point L (63.1, 31.9, 5.0),
    point M (60.3, 6.2, 33.5),
    point A′ (30.6, 30.0, 39.4),
    point B (0.0, 58.7, 41.3),
    point D (0.0, 80.4, 19.6),
    point C′ (19.5, 70.5, 10.0), and
    point (32.9, 67.1, 0.0),
    or on the above line segments (excluding the points on the line segment CJ);
  • the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
  • the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
  • the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
  • the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
  • the line segments JP, LM, BD, and CG are straight lines.
  • When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A; furthermore, the refrigerant has an RCL of 40 g/m3 or more.
  • When the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant A according to the present disclosure is respectively represented by x, y, and z, the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LM, MA′, A′B, BF, FT, and TP that connect the following 7 points:
  • point P (55.8, 42.0, 2.2),
    point L (63.1, 31.9, 5.0),
    point M (60.3, 6.2, 33.5),
    point A′ (30.6, 30.0, 39.4),
    point B (0.0, 58.7, 41.3),
    point F (0.0, 61.8, 38.2), and
    point T (35.8, 44.9, 19.3),
    or on the above line segments (excluding the points on the line segment BF);
  • the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
  • the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
  • the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2),
  • the line segment TP is represented by coordinates (x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and
  • the line segments LM and BF are straight lines.
  • When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 95% or more relative to that of R410A; furthermore, the refrigerant has an RCL of 40 g/m3 or more.
  • The refrigerant A according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LQ, QR, and RP that connect the following 4 points:
  • point P (55.8, 42.0, 2.2),
    point L (63.1, 31.9, 5.0),
    point Q (62.8, 29.6, 7.6), and
    point R (49.8, 42.3, 7.9),
    or on the above line segments;
  • the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
  • the line segment RP is represented by coordinates (x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and
  • the line segments LQ and QR are straight lines.
  • When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP of 95% or more relative to that of R410A, and an RCL of 40 g/m3 or more, furthermore, the refrigerant has a condensation temperature glide of 1° C. or less.
  • The refrigerant A according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments SM, MA′, A′B, BF, FT, and TS that connect the following 6 points:
  • point S (62.6, 28.3, 9.1),
    point M (60.3, 6.2, 33.5),
    point A′(30.6, 30.0, 39.4),
    point B (0.0, 58.7, 41.3),
    point F (0.0, 61.8, 38.2), and
    point T (35.8, 44.9, 19.3),
    or on the above line segments,
  • the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
  • the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
  • the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2),
  • the line segment TS is represented by coordinates (x, −0.0017x2−0.7869x+70.888, −0.0017x2−0.2131x+29.112), and
  • the line segments SM and BF are straight lines.
  • When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, a COP of 95% or more relative to that of R410A, and an RCL of 40 g/m3 or more furthermore, the refrigerant has a discharge pressure of 105% or more relative to that of R410A.
  • The refrigerant A according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments Od, dg, gh, and hO that connect the following 4 points:
  • point d (87.6, 0.0, 12.4),
    point g (18.2, 55.1, 26.7),
    point h (56.7, 43.3, 0.0), and
    point o (100.0, 0.0, 0.0),
    or on the line segments Od, dg, gh, and hO (excluding the points O and h);
  • the line segment dg is represented by coordinates (0.0047y2−1.5177y+87.598, y, −0.0047y2+0.5177y+12.402),
  • the line segment gh is represented by coordinates (−0.0134z2−1.0825z+56.692, 0.0134z2+0.0825z+43.308, z), and
  • the line segments hO and Od are straight lines.
  • When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A.
  • The refrigerant A according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R1234yf, based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments lg, gh, hi, and il that connect the following 4 points:
  • point l (72.5, 10.2, 17.3),
    point g (18.2, 55.1, 26.7),
    point h (56.7, 43.3, 0.0), and
    point i (72.5, 27.5, 0.0) or
    on the line segments lg, gh, and il (excluding the points h and i);
  • the line segment lg is represented by coordinates (0.0047y2−1.5177y+87.598, y, −0.0047y2+0.5177y+12.402),
  • the line gh is represented by coordinates (−0.0134z2−1.0825z+56.692, 0.0134z2+0.0825z+43.308, z), and
  • the line segments hi and il are straight lines.
  • When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A; furthermore, the refrigerant has a lower flammability (Class 2L) according to the ASHRAE Standard.
  • The refrigerant A according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments Od, de, ef, and fO that connect the following 4 points:
  • point d (87.6, 0.0, 12.4),
    point e (31.1, 42.9, 26.0),
    point f (65.5, 34.5, 0.0), and
    point O (100.0, 0.0, 0.0),
    or on the line segments Od, de, and ef (excluding the points O and f);
  • the line segment de is represented by coordinates (0.0047y2−1.5177y+87.598, y, −0.0047y2+0.5177y+12.402),
  • the line segment ef is represented by coordinates (−0.0064z2−1.1565z+65.501, 0.0064z2+0.1565z+34.499, z), and
  • the line segments fO and Od are straight lines.
  • When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 93.5% or more relative to that of R410A, and a COP ratio of 93.5% or more relative to that of R410A.
  • The refrigerant A according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z,
  • coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments le, ef, fi, and il that connect the following 4 points:
  • point l (72.5, 10.2, 17.3),
    point e (31.1, 42.9, 26.0),
    point f (65.5, 34.5, 0.0), and
    point i (72.5, 27.5, 0.0),
    or on the line segments le, ef, and il (excluding the points f and i);
  • the line segment le is represented by coordinates (0.0047y2−1.5177y+87.598, y, −0.0047y2+0.5177y+12.402),
  • the line segment ef is represented by coordinates (−0.0134z2−1.0825z+56.692, 0.0134z2+0.0825z+43.308, z), and
  • the line segments fi and il are straight lines.
  • When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 93.5% or more relative to that of R410A, and a COP ratio of 93.5% or more relative to that of R410A; furthermore, the refrigerant has a lower flammability (Class 2L) according to the ASHRAE Standard.
  • The refrigerant A according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z,
  • coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments Oa, ab, bc, and cO that connect the following 4 points:
  • point a (93.4, 0.0, 6.6),
    point b (55.6, 26.6, 17.8),
    point c (77.6, 22.4, 0.0), and
    point O (100.0, 0.0, 0.0),
    or on the line segments Oa, ab, and bc (excluding the points O and c);
  • the line segment ab is represented by coordinates (0.0052y2−1.5588y+93.385, y, −0.0052y2+0.5588y+6.615),
  • the line segment bc is represented by coordinates (−0.0032z2−1.1791z+77.593, 0.0032z2+0.1791z+22.407, z), and
  • the line segments cO and Oa are straight lines.
  • When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to that of R410A, and a COP ratio of 95% or more relative to that of R410A.
  • The refrigerant A according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z,
  • coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments kb, bj, and jk that connect the following 3 points:
  • point k (72.5, 14.1, 13.4),
    point b (55.6, 26.6, 17.8), and
    point j (72.5, 23.2, 4.3),
    or on the line segments kb, bj, and jk;
  • the line segment kb is represented by coordinates (0.0052y2−1.5588y+93.385, y, and −0.0052y2+0.5588y+6.615),
  • the line segment bj is represented by coordinates (−0.0032z2−1.1791z+77.593, 0.0032z2+0.1791z+22.407, z), and
  • the line segment jk is a straight line.
  • When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to that of R410A, and a COP ratio of 95% or more relative to that of R410A; furthermore, the refrigerant has a lower flammability (Class 2L) according to the ASHRAE Standard.
  • The refrigerant according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), HFO-1123, and R1234yf, as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO-1132(E), HFO-1123, and R1234yf in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and still more preferably 99.9 mass % or more, based on the entire refrigerant.
  • The refrigerant according to the present disclosure may comprise HFO-1132(E), HFO-1123, and R1234yf in a total amount of 99.5 mass % or more, 99.75 mass % or more, or 99.9 mass % or more, based on the entire refrigerant.
  • Additional refrigerants are not particularly limited and can be widely selected. The mixed refrigerant may contain one additional refrigerant, or two or more additional refrigerants.
  • (Examples of Refrigerant A)
  • The present disclosure is described in more detail below with reference to Examples of refrigerant A. However, refrigerant A is not limited to the Examples.
  • The GWP of R1234yf and a composition consisting of a mixed refrigerant R410A (R32=50%/R125=50%) was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report. The GWP of HFO-1132(E), which was not stated therein, was assumed to be 1 from HFO-1132a (GWP=1 or less) and HFO-1123 (GWP=0.3, described in WO2015/141678). The refrigerating capacity of R410A and compositions each comprising a mixture of HFO-1132(E), HFO-1123, and R1234yf was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.
  • Further, the RCL of the mixture was calculated with the LFL of HFO-1132(E) being 4.7 vol. %, the LFL of HFO-1123 being 10 vol. %, and the LFL of R1234yf being 6.2 vol. %, in accordance with the ASHRAE Standard 34-2013.
  • Evaporating temperature: 5° C.
    Condensation temperature: 45° C.
    Degree of superheating: 5 K
    Degree of subcooling: 5 K
    Compressor efficiency: 70%
  • Tables 1 to 34 show these values together with the GWP of each mixed refrigerant.
  • TABLE 1
    Comp. Comp. Exam- Comp.
    Comp. Ex. 2 Ex. 3 Exam- ple 2 Exam- Ex. 4
    Item Unit Ex. 1 O A ple 1 A′ ple 3 B
    HFO-1132(E) mass % R410A 100.0 68.6 49.0 30.6 14.1 0.0
    HFO-1123 mass % 0.0 0.0 14.9 30.0 44.8 58.7
    R1234yf mass % 0.0 31.4 36.1 39.4 41.1 41.3
    GWP 2088 1 2 2 2 2 2
    COP ratio % (relative 100 99.7 100.0 98.6 97.3 96.3 95.5
    to 410A)
    Refrigerating % (relative 100 98.3 85.0 85.0 85.0 85.0 85.0
    capacity ratio to 410A)
    Condensation ° C. 0.1 0.00 1.98 3.36 4.46 5.15 5.35
    glide
    Discharge % (relative 100.0 99.3 87.1 88.9 90.6 92.1 93.2
    pressure to 410A)
    RCL g/m3 30.7 37.5 44.0 52.7 64.0 78.6
  • TABLE 2
    Comp. Exam- Comp. Comp. Exam- Comp.
    Ex. 5 Exam- ple 5 Exam- Ex. 6 Ex. 7 ple 7 Ex. 8
    Item Unit C ple 4 C′ ple 6 D E E′ F
    HFO-1132(E) mass % 32.9 26.6 19.5 10.9 0.0 58.0 23.4 0.0
    HFO-1123 mass % 67.1 68.4 70.5 74.1 80.4 42.0 48.5 61.8
    R1234yf mass % 0.0 5.0 10.0 15.0 19.6 0.0 28.1 38.2
    GWP 1 1 1 1 2 1 2 2
    COP ratio % (relative 92.5 92.5 92.5 92.5 92.5 95.0 95.0 95.0
    to 410A)
    Refrigerating % (relative 107.4 105.2 102.9 100.5 97.9 105.0 92.5 86.9
    capacity ratio to 410A)
    Condensation ° C. 0.16 0.52 0.94 1.42 1.90 0.42 3.16 4.80
    glide
    Discharge % (relative 119.5 117.4 115.3 113.0 115.9 112.7 101.0 95.8
    pressure to 410A)
    RCL g/m3 53.5 57.1 62.0 69.1 81.3 41.9 46.3 79.0
  • TABLE 3
    Comp. Exam- Exam- Exam- Exam- Exam-
    Ex. 9 ple 8 ple 9 ple 10 ple 11 ple 12
    Item Unit J P L N N′ K
    HFO-1132(E) mass % 47.1 55.8 63.1 68.6 65.0 61.3
    HFO-1123 mass % 52.9 42.0 31.9 16.3 7.7 5.4
    R1234yf mass % 0.0 2.2 5.0 15.1 27.3 33.3
    GWP 1 1 1 1 2 2
    COP ratio % (relative 93.8 95.0 96.1 97.9 99.1 99.5
    to 410A)
    Refrigerating % (relative 106.2 104.1 101.6 95.0 88.2 85.0
    capacity ratio to 410A)
    Condensation ° C. 0.31 0.57 0.81 1.41 2.11 2.51
    glide
    Discharge % (relative 115.8 111.9 107.8 99.0 91.2 87.7
    pressure to 410A)
    RCL g/m3 46.2 42.6 40.0 38.0 38.7 39.7
  • TABLE 4
    Exam- Exam- Exam- Exam- Exam- Exam- Exam-
    ple 13 ple 14 ple 15 ple 16 ple 17 ple 18 ple 19
    Item Unit L M Q R S S′ T
    HFO-1132(E) mass % 63.1 60.3 62.8 49.8 62.6 50.0 35.8
    HFO-1123 mass % 31.9 6.2 29.6 42.3 28.3 35.8 44.9
    R1234yf mass % 5.0 33.5 7.6 7.9 9.1 14.2 19.3
    GWP 1 2 1 1 1 1 2
    COP ratio % (relative 96.1 99.4 96.4 95.0 96.6 95.8 95.0
    to 410A)
    Refrigerating % (relative 101.6 85.0 100.2 101.7 99.4 98.1 96.7
    capacity ratio to 410A)
    Condensation ° C. 0.81 2.58 1.00 1.00 1.10 1.55 2.07
    glide
    Discharge % (relative 107.8 87.9 106.0 109.6 105.0 105.0 105.0
    pressure to 410A)
    RCL g/m3 40.0 40.0 40.0 44.8 40.0 44.4 50.8
  • TABLE 5
    Comp. Example Example
    Ex. 10 20 21
    Item Unit G H I
    HFO-1132(E) mass % 72.0 72.0 72.0
    HFO-1123 mass % 28.0 14.0 0.0
    R1234yf mass % 0.0 14.0 28.0
    GWP 1 1 2
    COP ratio % (relative 96.6 98.2 99.9
    to 410A)
    Refrigerating % (relative 103.1 95.1 86.6
    capacity ratio to 410A)
    Condensation glide ° C. 0.46 1.27 1.71
    Discharge pressure % (relative 108.4 98.7 88.6
    to 410A)
    RCL g/m3 37.4 37.0 36.6
  • TABLE 6
    Comp. Comp. Exam- Exam- Exam- Exam- Exam- Comp.
    Item Unit Ex. 11 Ex. 12 ple 22 ple 23 ple 24 ple 25 ple 26 Ex. 13
    HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
    HFO-1123 mass % 85.0 75.0 65.0 55.0 45.0 35.0 25.0 15.0
    R1234yf mass % 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
    GWP 1 1 1 1 1 1 1 1
    COP ratio % (relative 91.4 92.0 92.8 93.7 94.7 95.8 96.9 98.0
    to 410A)
    Refrigerating % (relative 105.7 105.5 105.0 104.3 103.3 102.0 100.6 99.1
    capacity ratio to 410A)
    Condensation ° C. 0.40 0.46 0.55 0.66 0.75 0.80 0.79 0.67
    glide
    Discharge % (relative 120.1 118.7 116.7 114.3 111.6 108.7 105.6 102.5
    pressure to 410A)
    RCL g/m3 71.0 61.9 54.9 49.3 44.8 41.0 37.8 35.1
  • TABLE 7
    Comp. Exam- Exam- Exam- Exam- Exam- Exam- Comp.
    Item Unit Ex. 14 ple 27 ple 28 ple 29 ple 30 ple 31 ple 32 Ex. 15
    HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
    HFO-1123 mass % 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0
    R1234yf mass % 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
    GWP 1 1 1 1 1 1 1 1
    COP ratio % (relative 91.9 92.5 93.3 94.3 95.3 96.4 97.5 98.6
    to 410A)
    Refrigerating % (relative 103.2 102.9 102.4 101.5 100.5 99.2 97.8 96.2
    capacity ratio to 410A)
    Condensation ° C. 0.87 0.94 1.03 1.12 1.18 1.18 1.09 0.88
    glide
    Discharge % (relative 116.7 115.2 113.2 110.8 108.1 105.2 102.1 99.0
    pressure to 410A)
    RCL g/m3 70.5 61.6 54.6 49.1 44.6 40.8 37.7 35.0
  • TABLE 8
    Comp. Exam- Exam- Exam- Exam- Exam- Exam- Comp.
    Item Unit Ex. 16 ple 33 ple 34 ple 35 ple 36 ple 37 ple 38 Ex. 17
    HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
    HFO-1123 mass % 75.0 65.0 55.0 45.0 35.0 25.0 15.0 5.0
    R1234yf mass % 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0
    GWP 1 1 1 1 1 1 1 1
    COP ratio % (relative 92.4 93.1 93.9 94.8 95.9 97.0 98.1 99.2
    to 410A)
    Refrigerating % (relative 100.5 100.2 99.6 98.7 97.7 96.4 94.9 93.2
    capacity ratio to 410A)
    Condensation ° C. 1.41 1.49 1.56 1.62 1.63 1.55 1.37 1.05
    glide
    Discharge % (relative 113.1 111.6 109.6 107.2 104.5 101.6 98.6 95.5
    pressure to 410A)
    RCL g/m3 70.0 61.2 54.4 48.9 44.4 40.7 37.5 34.8
  • TABLE 9
    Exam- Exam- Exam- Exam- Exam- Exam- Exam-
    Item Unit ple 39 ple 40 ple 41 ple 42 ple 43 ple 44 ple 45
    HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0
    HFO-1123 mass % 70.0 60.0 50.0 40.0 30.0 20.0 10.0
    R1234yf mass % 20.0 20.0 20.0 20.0 20.0 20.0 20.0
    GWP 2 2 2 2 2 2 2
    COP ratio % (relative 93.0 93.7 94.5 95.5 96.5 97.6 98.7
    to 410A)
    Refrigerating % (relative 97.7 97.4 96.8 95.9 94.7 93.4 91.9
    capacity ratio to 410A)
    Condensation ° C. 2.03 2.09 2.13 2.14 2.07 1.91 1.61
    glide
    Discharge % (relative 109.4 107.9 105.9 103.5 100.8 98.0 95.0
    pressure to 410A)
    RCL g/m3 69.6 60.9 54.1 48.7 44.2 40.5 37.4
  • TABLE 10
    Exam- Exam- Exam- Exam- Exam- Exam- Exam-
    Item Unit ple 46 ple 47 ple 48 ple 49 ple 50 ple 51 ple 52
    HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0
    HFO-1123 mass % 65.0 55.0 45.0 35.0 25.0 15.0 5.0
    R1234yf mass % 25.0 25.0 25.0 25.0 25.0 25.0 25.0
    GWP 2 2 2 2 2 2 2
    COP ratio % (relative 93.6 94.3 95.2 96.1 97.2 98.2 99.3
    to 410A)
    Refrigerating % (relative 94.8 94.5 93.8 92.9 91.8 90.4 88.8
    capacity ratio to 410A)
    Condensation ° C. 2.71 2.74 2.73 2.66 2.50 2.22 1.78
    glide
    Discharge % (relative 105.5 104.0 102.1 99.7 97.1 94.3 91.4
    pressure to 410A)
    RCL g/m3 69.1 60.5 53.8 48.4 44.0 40.4 37.3
  • TABLE 11
    Exam- Exam- Exam- Exam- Exam- Exam-
    Item Unit ple 53 ple 54 ple 55 ple 56 ple 57 ple 58
    HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0
    HFO-1123 mass % 60.0 50.0 40.0 30.0 20.0 10.0
    R1234yf mass % 30.0 30.0 30.0 30.0 30.0 30.0
    GWP 2 2 2 2 2 2
    COP ratio % (relative 94.3 95.0 95.9 96.8 97.8 98.9
    to 410A)
    Refrigerating % (relative 91.9 91.5 90.8 89.9 88.7 87.3
    capacity ratio to 410A)
    Condensation ° C. 3.46 3.43 3.35 3.18 2.90 2.47
    glide
    Discharge % (relative 101.6 100.1 98.2 95.9 93.3 90.6
    pressure to 410A)
    RCL g/m3 68.7 60.2 53.5 48.2 43.9 40.2
  • TABLE 12
    Exam- Exam- Exam- Exam- Exam- Comp.
    Item Unit ple 59 ple 60 ple 61 ple 62 ple 63 Ex. 18
    HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0
    HFO-1123 mass % 55.0 45.0 35.0 25.0 15.0 5.0
    R1234yf mass % 35.0 35.0 35.0 35.0 35.0 35.0
    GWP 2 2 2 2 2 2
    COP ratio % (relative 95.0 95.8 96.6 97.5 98.5 99.6
    to 410A)
    Refrigerating % (relative 88.9 88.5 87.8 86.8 85.6 84.1
    capacity ratio to 410A)
    Condensation ° C. 4.24 4.15 3.96 3.67 3.24 2.64
    glide
    Discharge % (relative 97.6 96.1 94.2 92.0 89.5 86.8
    pressure to 410A)
    RCL g/m3 68.2 59.8 53.2 48.0 43.7 40.1
  • TABLE 13
    Exam- Exam- Comp. Comp. Comp.
    Item Unit ple 64 ple 65 Ex. 19 Ex. 20 Ex. 21
    HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0
    HFO-1123 mass % 50.0 40.0 30.0 20.0 10.0
    R1234yf mass % 40.0 40.0 40.0 40.0 40.0
    GWP 2 2 2 2 2
    COP ratio % (relative 95.9 96.6 97.4 98.3 99.2
    to 410A)
    Refrigerating % (relative 85.8 85.4 84.7 83.6 82.4
    capacity ratio to 410A)
    Condensation ° C. 5.05 4.85 4.55 4.10 3.50
    glide
    Discharge % (relative 93.5 92.1 90.3 88.1 85.6
    pressure to 410A)
    RCL g/m3 67.8 59.5 53.0 47.8 43.5
  • TABLE 14
    Exam- Exam- Exam- Exam- Exam- Exam- Exam- Exam-
    Item Unit ple 66 ple 67 ple 68 ple 69 ple 70 ple 71 ple 72 ple 73
    HFO-1132(E) mass % 54.0 56.0 58.0 62.0 52.0 54.0 56.0 58.0
    HFO-1123 mass % 41.0 39.0 37.0 33.0 41.0 39.0 37.0 35.0
    R1234yf mass % 5.0 5.0 5.0 5.0 7.0 7.0 7.0 7.0
    GWP 1 1 1 1 1 1 1 1
    COP ratio % (relative 95.1 95.3 95.6 96.0 95.1 95.4 95.6 95.8
    to 410A)
    Refrigerating % (relative 102.8 102.6 102.3 101.8 101.9 101.7 101.5 101.2
    capacity ratio to 410A)
    Condensation ° C. 0.78 0.79 0.80 0.81 0.93 0.94 0.95 0.95
    glide
    Discharge % (relative 110.5 109.9 109.3 108.1 109.7 109.1 108.5 107.9
    pressure to 410A)
    RCL g/m3 43.2 42.4 41.7 40.3 43.9 43.1 42.4 41.6
  • TABLE 15
    Exam- Exam- Exam- Exam- Exam- Exam- Exam- Exam-
    Item Unit ple 74 ple 75 ple 76 ple 77 ple 78 ple 79 ple 80 ple 81
    HFO-1132(E) mass % 60.0 62.0 61.0 58.0 60.0 62.0 52.0 54.0
    HFO-1123 mass % 33.0 31.0 29.0 30.0 28.0 26.0 34.0 32.0
    R1234yf mass % 7.0 7.0 10.0 12.0 12.0 12.0 14.0 14.0
    GWP 1 1 1 1 1 1 1 1
    COP ratio % (relative 96.0 96.2 96.5 96.4 96.6 96.8 96.0 96.2
    to 410A)
    Refrigerating % (relative 100.9 100.7 99.1 98.4 98.1 97.8 98.0 97.7
    capacity ratio to 410A)
    Condensation ° C. 0.95 0.95 1.18 1.34 1.33 1.32 1.53 1.53
    glide
    Discharge % (relative 107.3 106.7 104.9 104.4 103.8 103.2 104.7 104.1
    pressure to 410A)
    RCL g/m3 40.9 40.3 40.5 41.5 40.8 40.1 43.6 42.9
  • TABLE 16
    Exam- Exam- Exam- Exam- Exam- Exam- Exam- Exam-
    Item Unit ple 82 ple 83 ple 84 ple 85 ple 86 ple 87 ple 88 ple 89
    HFO-1132(E) mass % 56.0 58.0 60.0 48.0 50.0 52.0 54.0 56.0
    HFO-1123 mass % 30.0 28.0 26.0 36.0 34.0 32.0 30.0 28.0
    R1234yf mass % 14.0 14.0 14.0 16.0 16.0 16.0 16.0 16.0
    GWP 1 1 1 1 1 1 1 1
    COP ratio % (relative 96.4 96.6 96.9 95.8 96.0 96.2 96.4 96.7
    to 410A)
    Refrigerating % (relative 97.5 97.2 96.9 97.3 97.1 96.8 96.6 96.3
    capacity ratio to 410A)
    Condensation ° C. 1.51 1.50 1.48 1.72 1.72 1.71 1.69 1.67
    glide
    Discharge % (relative 103.5 102.9 102.3 104.3 103.8 103.2 102.7 102.1
    pressure to 410A)
    RCL g/m3 42.1 41.4 40.7 45.2 44.4 43.6 42.8 42.1
  • TABLE 17
    Exam- Exam- Exam- Exam- Exam- Exam- Exam- Exam-
    Item Unit ple 90 ple 91 ple 92 ple 93 ple 94 ple 95 ple 96 ple 97
    HFO-1132(E) mass % 58.0 60.0 42.0 44.0 46.0 48.0 50.0 52.0
    HFO-1123 mass % 26.0 24.0 40.0 38.0 36.0 34.0 32.0 30.0
    R1234yf mass % 16.0 16.0 18.0 18.0 18.0 18.0 18.0 18.0
    GWP 1 1 2 2 2 2 2 2
    COP ratio % (relative 96.9 97.1 95.4 95.6 95.8 96.0 96.3 96.5
    to 410A)
    Refrigerating % (relative 96.1 95.8 96.8 96.6 96.4 96.2 95.9 95.7
    capacity ratio to 410A)
    Condensation ° C. 1.65 1.63 1.93 1.92 1.92 1.91 1.89 1.88
    glide
    Discharge % (relative 101.5 100.9 104.5 103.9 103.4 102.9 102.3 101.8
    pressure to 410A)
    RCL g/m3 41.4 40.7 47.8 46.9 46.0 45.1 44.3 43.5
  • TABLE 18
    Exam- Exam- Exam- Exam- Exam- Exam- Exam- Exam-
    Item Unit ple 98 ple 99 ple 100 ple 101 ple 102 ple 103 ple 104 ple 105
    HFO-1132(E) mass % 54.0 56.0 58.0 60.0 36.0 38.0 42.0 44.0
    HFO-1123 mass % 28.0 26.0 24.0 22.0 44.0 42.0 38.0 36.0
    R1234yf mass % 18.0 18.0 18.0 18.0 20.0 20.0 20.0 20.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 96.7 96.9 97.1 97.3 95.1 95.3 95.7 95.9
    to 410A)
    Refrigerating % (relative 95.4 95.2 94.9 94.6 96.3 96.1 95.7 95.4
    capacity ratio to 410A)
    Condensation ° C. 1.86 1.83 1.80 1.77 2.14 2.14 2.13 2.12
    glide
    Discharge % (relative 101.2 100.6 100.0 99.5 104.5 104.0 103.0 102.5
    pressure to 410A)
    RCL g/m3 42.7 42.0 41.3 40.6 50.7 49.7 47.7 46.8
  • TABLE 19
    Exam- Exam- Exam- Exam- Exam- Exam- Exam- Exam-
    Item Unit ple 106 ple 107 ple 108 ple 109 ple 110 ple 111 ple 112 ple 113
    HFO-1132(E) mass % 46.0 48.0 52.0 54.0 56.0 58.0 34.0 36.0
    HFO-1123 mass % 34.0 32.0 28.0 26.0 24.0 22.0 44.0 42.0
    R1234yf mass % 20.0 20.0 20.0 20.0 20.0 20.0 22.0 22.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 96.1 96.3 96.7 96.9 97.2 97.4 95.1 95.3
    to 410A)
    Refrigerating % (relative 95.2 95.0 94.5 94.2 94.0 93.7 95.3 95.1
    capacity ratio to 410A)
    Condensation ° C. 2.11 2.09 2.05 2.02 1.99 1.95 2.37 2.36
    glide
    Discharge % (relative 101.9 101.4 100.3 99.7 99.2 98.6 103.4 103.0
    pressure to 410A)
    RCL g/m3 45.9 45.0 43.4 42.7 41.9 41.2 51.7 50.6
  • TABLE 20
    Exam- Exam- Exam- Exam- Exam- Exam- Exam- Exam-
    Item Unit ple 114 ple 115 ple 116 ple 117 ple 118 ple 119 ple 120 ple 121
    HFO-1132(E) mass % 38.0 40.0 42.0 44.0 46.0 48.0 50.0 52.0
    HFO-1123 mass % 40.0 38.0 36.0 34.0 32.0 30.0 28.0 26.0
    R1234yf mass % 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 95.5 95.7 95.9 96.1 96.4 96.6 96.8 97.0
    to 410A)
    Refrigerating % (relative 94.9 94.7 94.5 94.3 94.0 93.8 93.6 93.3
    capacity ratio to 410A)
    Condensation ° C. 2.36 2.35 2.33 2.32 2.30 2.27 2.25 2.21
    glide
    Discharge % (relative 102.5 102.0 101.5 101.0 100.4 99.9 99.4 98.8
    pressure to 410A)
    RCL g/m3 49.6 48.6 47.6 46.7 45.8 45.0 44.1 43.4
  • TABLE 21
    Exam- Exam- Exam- Exam- Exam- Exam- Exam- Exam-
    Item Unit ple 122 ple 123 ple 124 ple 125 ple 126 ple 127 ple 128 ple 129
    HFO-1132(E) mass % 54.0 56.0 58.0 60.0 32.0 34.0 36.0 38.0
    HFO-1123 mass % 24.0 22.0 20.0 18.0 44.0 42.0 40.0 38.0
    R1234yf mass % 22.0 22.0 22.0 22.0 24.0 24.0 24.0 24.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 97.2 97.4 97.6 97.9 95.2 95.4 95.6 95.8
    to 410A)
    Refrigerating % (relative 93.0 92.8 92.5 92.2 94.3 94.1 93.9 93.7
    capacity ratio to 410A)
    Condensation ° C. 2.18 2.14 2.09 2.04 2.61 2.60 2.59 2.58
    glide
    Discharge % (relative 98.2 97.7 97.1 96.5 102.4 101.9 101.5 101.0
    pressure to 410A)
    RCL g/m3 42.6 41.9 41.2 40.5 52.7 51.6 50.5 49.5
  • TABLE 22
    Exam- Exam- Exam- Exam- Exam- Exam- Exam- Exam-
    Item Unit ple 130 ple 131 ple 132 ple 133 ple 134 ple 135 ple 136 ple 137
    HFO-1132(E) mass % 40.0 42.0 44.0 46.0 48.0 50.0 52.0 54.0
    HFO-1123 mass % 36.0 34.0 32.0 30.0 28.0 26.0 24.0 22.0
    R1234yf mass % 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 96.0 96.2 96.4 96.6 96.8 97.0 97.2 97.5
    to 410A)
    Refrigerating % (relative 93.5 93.3 93.1 92.8 92.6 92.4 92.1 91.8
    capacity ratio to 410A)
    Condensation ° C. 2.56 2.54 2.51 2.49 2.45 2.42 2.38 2.33
    glide
    Discharge % (relative 100.5 100.0 99.5 98.9 98.4 97.9 97.3 96.8
    pressure to 410A)
    RCL g/m3 48.5 47.5 46.6 45.7 44.9 44.1 43.3 42.5
  • TABLE 23
    Exam- Exam- Exam- Exam- Exam- Exam- Exam- Exam-
    Item Unit ple 138 ple 139 ple 140 ple 141 ple 142 ple 143 ple 144 ple 145
    HFO-1132(E) mass % 56.0 58.0 60.0 30.0 32.0 34.0 36.0 38.0
    HFO-1123 mass % 20.0 18.0 16.0 44.0 42.0 40.0 38.0 36.0
    R1234yf mass % 24.0 24.0 24.0 26.0 26.0 26.0 26.0 26.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 97.7 97.9 98.1 95.3 95.5 95.7 95.9 96.1
    to 410A)
    Refrigerating % (relative 91.6 91.3 91.0 93.2 93.1 92.9 92.7 92.5
    capacity ratio to 410A)
    Condensation ° C. 2.28 2.22 2.16 2.86 2.85 2.83 2.81 2.79
    glide
    Discharge % (relative 96.2 95.6 95.1 101.3 100.8 100.4 99.9 99.4
    pressure to 410A)
    RCL g/m3 41.8 41.1 40.4 53.7 52.6 51.5 50.4 49.4
  • TABLE 24
    Exam- Exam- Exam- Exam- Exam- Exam- Exam- Exam-
    Item Unit ple 146 ple 147 ple 148 ple 149 ple 150 ple 151 ple 152 ple 153
    HFO-1132(E) mass % 40.0 42.0 44.0 46.0 48.0 50.0 52.0 54.0
    HFO-1123 mass % 34.0 32.0 30.0 28.0 26.0 24.0 22.0 20.0
    R1234yf mass % 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 96.3 96.5 96.7 96.9 97.1 97.3 97.5 97.7
    to 410A)
    Refrigerating % (relative 92.3 92.1 91.9 91.6 91.4 91.2 90.9 90.6
    capacity ratio to 410A)
    Condensation ° C. 2.77 2.74 2.71 2.67 2.63 2.59 2.53 2.48
    glide
    Discharge % (relative 99.0 98.5 97.9 97.4 96.9 96.4 95.8 95.3
    pressure to 410A)
    RCL g/m3 48.4 47.4 46.5 45.7 44.8 44.0 43.2 42.5
  • TABLE 25
    Exam- Exam- Exam- Exam- Exam- Exam- Exam- Exam-
    Item Unit ple 154 ple 155 ple 156 ple 157 ple 158 ple 159 ple 160 ple 161
    HFO-1132(E) mass % 56.0 58.0 60.0 30.0 32.0 34.0 36.0 38.0
    HFO-1123 mass % 18.0 16.0 14.0 42.0 40.0 38.0 36.0 34.0
    R1234yf mass % 26.0 26.0 26.0 28.0 28.0 28.0 28.0 28.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 97.9 98.2 98.4 95.6 95.8 96.0 96.2 96.3
    to 410A)
    Refrigerating % (relative 90.3 90.1 89.8 92.1 91.9 91.7 91.5 91.3
    capacity ratio to 410A)
    Condensation ° C. 2.42 2.35 2.27 3.10 3.09 3.06 3.04 3.01
    glide
    Discharge % (relative 94.7 94.1 93.6 99.7 99.3 98.8 98.4 97.9
    pressure to 410A)
    RCL g/m3 41.7 41.0 40.3 53.6 52.5 51.4 50.3 49.3
  • TABLE 26
    Exam- Exam- Exam- Exam- Exam- Exam- Exam- Exam-
    Item Unit ple 162 ple 163 ple 164 ple 165 ple 166 ple 167 ple 168 ple 169
    HFO-1132(E) mass % 40.0 42.0 44.0 46.0 48.0 50.0 52.0 54.0
    HFO-1123 mass % 32.0 30.0 28.0 26.0 24.0 22.0 20.0 18.0
    R1234yf mass % 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 96.5 96.7 96.9 97.2 97.4 97.6 97.8 98.0
    to 410A)
    Refrigerating % (relative 91.1 90.9 90.7 90.4 90.2 89.9 89.7 89.4
    capacity ratio to 410A)
    Condensation ° C. 2.98 2.94 2.90 2.85 2.80 2.75 2.68 2.62
    glide
    Discharge % (relative 97.4 96.9 96.4 95.9 95.4 94.9 94.3 93.8
    pressure to 410A)
    RCL g/m3 48.3 47.4 46.4 45.6 44.7 43.9 43.1 42.4
  • TABLE 27
    Exam- Exam- Exam- Exam- Exam- Exam- Exam- Exam-
    Item Unit ple 170 ple 171 ple 172 ple 173 ple 174 ple 175 ple 176 ple 177
    HFO-1132(E) mass % 56.0 58.0 60.0 32.0 34.0 36.0 38.0 42.0
    HFO-1123 mass % 16.0 14.0 12.0 38.0 36.0 34.0 32.0 28.0
    R1234yf mass % 28.0 28.0 28.0 30.0 30.0 30.0 30.0 30.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 98.2 98.4 98.6 96.1 96.2 96.4 96.6 97.0
    to 410A)
    Refrigerating % (relative 89.1 88.8 88.5 90.7 90.5 90.3 90.1 89.7
    capacity ratio to 410A)
    Condensation ° C. 2.54 2.46 2.38 3.32 3.30 3.26 3.22 3.14
    glide
    Discharge % (relative 93.2 92.6 92.1 97.7 97.3 96.8 96.4 95.4
    pressure to 410A)
    RCL g/m3 41.7 41.0 40.3 52.4 51.3 50.2 49.2 47.3
  • TABLE 28
    Exam- Exam- Exam- Exam- Exam- Exam- Exam- Exam-
    Item Unit ple 178 ple 179 ple 180 ple 181 ple 182 ple 183 ple 184 ple 185
    HFO-1132(E) mass % 44.0 46.0 48.0 50.0 52.0 54.0 56.0 58.0
    HFO-1123 mass % 26.0 24.0 22.0 20.0 18.0 16.0 14.0 12.0
    R1234yf mass % 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 97.2 97.4 97.6 97.8 98.0 98.3 98.5 98.7
    to 410A)
    Refrigerating % (relative 89.4 89.2 89.0 88.7 88.4 88.2 87.9 87.6
    capacity ratio to 410A)
    Condensation ° C. 3.08 3.03 2.97 2.90 2.83 2.75 2.66 2.57
    glide
    Discharge % (relative 94.9 94.4 93.9 93.3 92.8 92.3 91.7 91.1
    pressure to 410A)
    RCL g/m3 46.4 45.5 44.7 43.9 43.1 42.3 41.6 40.9
  • TABLE 29
    Exam- Exam- Exam- Exam- Exam- Exam- Exam- Exam-
    Item Unit ple 186 ple 187 ple 188 ple 189 ple 190 ple 191 ple 192 ple 193
    HFO-1132(E) mass % 30.0 32.0 34.0 36.0 38.0 40.0 42.0 44.0
    HFO-1123 mass % 38.0 36.0 34.0 32.0 30.0 28.0 26.0 24.0
    R1234yf mass % 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 96.2 96.3 96.5 96.7 96.9 97.1 97.3 97.5
    to 410A)
    Refrigerating % (relative 89.6 89.5 89.3 89.1 88.9 88.7 88.4 88.2
    capacity ratio to 410A)
    Condensation ° C. 3.60 3.56 3.52 3.48 3.43 3.38 3.33 3.26
    glide
    Discharge % (relative 96.6 96.2 95.7 95.3 94.8 94.3 93.9 93.4
    pressure to 410A)
    RCL g/m3 53.4 52.3 51.2 50.1 49.1 48.1 47.2 46.3
  • TABLE 30
    Exam- Exam- Exam- Exam- Exam- Exam- Exam- Exam-
    Item Unit ple 194 ple 195 ple 196 ple 197 ple 198 ple 199 ple 200 ple 201
    HFO-1132(E) mass % 46.0 48.0 50.0 52.0 54.0 56.0 58.0 60.0
    HFO-1123 mass % 22.0 20.0 18.0 16.0 14.0 12.0 10.0 8.0
    R1234yf mass % 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 97.7 97.9 98.1 98.3 98.5 98.7 98.9 99.2
    to 410A)
    Refrigerating % (relative 88.0 87.7 87.5 87.2 86.9 86.6 86.3 86.0
    capacity ratio to 410A)
    Condensation ° C. 3.20 3.12 3.04 2.96 2.87 2.77 2.66 2.55
    glide
    Discharge % (relative 92.8 92.3 91.8 91.3 90.7 90.2 89.6 89.1
    pressure to 410A)
    RCL g/m3 45.4 44.6 43.8 43.0 42.3 41.5 40.8 40.2
  • TABLE 31
    Exam- Exam- Exam- Exam- Exam- Exam- Exam- Exam-
    Item Unit ple 202 ple 203 ple 204 ple 205 ple 206 ple 207 ple 208 ple 209
    HFO-1132(E) mass % 30.0 32.0 34.0 36.0 38.0 40.0 42.0 44.0
    HFO-1123 mass % 36.0 34.0 32.0 30.0 28.0 26.0 24.0 22.0
    R1234yf mass % 34.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 96.5 96.6 96.8 97.0 97.2 97.4 97.6 97.8
    to 410A)
    Refrigerating % (relative 88.4 88.2 88.0 87.8 87.6 87.4 87.2 87.0
    capacity ratio to 410A)
    Condensation ° C. 3.84 3.80 3.75 3.70 3.64 3.58 3.51 3.43
    glide
    Discharge % (relative 95.0 94.6 94.2 93.7 93.3 92.8 92.3 91.8
    pressure to 410A)
    RCL g/m3 53.3 52.2 51.1 50.0 49.0 48.0 47.1 46.2
  • TABLE 32
    Exam- Exam- Exam- Exam- Exam- Exam- Exam- Exam-
    Item Unit ple 210 ple 211 ple 212 ple 213 ple 214 ple 215 ple 216 ple 217
    HFO-1132(E) mass % 46.0 48.0 50.0 52.0 54.0 30.0 32.0 34.0
    HFO-1123 mass % 20.0 18.0 16.0 14.0 12.0 34.0 32.0 30.0
    R1234yf mass % 34.0 34.0 34.0 34.0 34.0 36.0 36.0 36.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 98.0 98.2 98.4 98.6 98.8 96.8 96.9 97.1
    to 410A)
    Refrigerating % (relative 86.7 86.5 86.2 85.9 85.6 87.2 87.0 86.8
    capacity ratio to 410A)
    Condensation ° C. 3.36 3.27 3.18 3.08 2.97 4.08 4.03 3.97
    glide
    Discharge % (relative 91.3 90.8 90.3 89.7 89.2 93.4 93.0 92.6
    pressure to 410A)
    RCL g/m3 45.3 44.5 43.7 42.9 42.2 53.2 52.1 51.0
  • TABLE 33
    Exam- Exam- Exam- Exam- Exam- Exam- Exam- Exam-
    Item Unit ple 218 ple 219 ple 220 ple 221 ple 222 ple 223 ple 224 ple 225
    HFO-1132(E) mass % 36.0 38.0 40.0 42.0 44.0 46.0 30.0 32.0
    HFO-1123 mass % 28.0 26.0 24.0 22.0 20.0 18.0 32.0 30.0
    R1234yf mass % 36.0 36.0 36.0 36.0 36.0 36.0 38.0 38.0
    GWP 2 2 2 2 2 2 2 2
    COP ratio % (relative 97.3 97.5 97.7 97.9 98.1 98.3 97.1 97.2
    to 410A)
    Refrigerating % (relative 86.6 86.4 86.2 85.9 85.7 85.5 85.9 85.7
    capacity ratio to 410A)
    Condensation ° C. 3.91 3.84 3.76 3.68 3.60 3.50 4.32 4.25
    glide
    Discharge % (relative 92.1 91.7 91.2 90.7 90.3 89.8 91.9 91.4
    pressure to 410A)
    RCL g/m3 49.9 48.9 47.9 47.0 46.1 45.3 53.1 52.0
  • TABLE 34
    Example Example
    Item Unit 226 227
    HFO-1132(E) mass % 34.0 36.0
    HFO-1123 mass % 28.0 26.0
    R1234yf mass % 38.0 38.0
    GWP 2 2
    COP ratio % (relative 97.4 97.6
    to 410A)
    Refrigerating % (relative 85.6 85.3
    capacity ratio to 410A)
    Condensation glide ° C. 4.18 4.11
    Discharge pressure % (relative 91.0 90.6
    to 410A)
    RCL g/m3 50.9 49.8
  • These results indicate that under the condition that the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments AA′, A′B, BD, DC′, C′C, CO, and OA that connect the following 7 points:
  • point A (68.6, 0.0, 31.4),
    point A′(30.6, 30.0, 39.4),
    point B (0.0, 58.7, 41.3),
    point D (0.0, 80.4, 19.6),
    point C′ (19.5, 70.5, 10.0),
    point C (32.9, 67.1, 0.0), and
    point O (100.0, 0.0, 0.0),
    or on the above line segments (excluding the points on the line segment CO);
    the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
    the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3,
    the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
    the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
    the line segments BD, CO, and OA are straight lines,
    the refrigerant has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A.
  • The point on the line segment AA′ was determined by obtaining an approximate curve connecting point A, Example 1, and point A′ by the least square method.
  • The point on the line segment A′B was determined by obtaining an approximate curve connecting point A′, Example 3, and point B by the least square method.
  • The point on the line segment DC′ was determined by obtaining an approximate curve connecting point D, Example 6, and point C′ by the least square method.
  • The point on the line segment C′C was determined by obtaining an approximate curve connecting point C′, Example 4, and point C by the least square method.
  • Likewise, the results indicate that when coordinates (x,y,z) are within the range of a figure surrounded by line segments AA′, A′B, BF, FT, TE, EO, and OA that connect the following 7 points:
  • point A (68.6, 0.0, 31.4),
    point A′ (30.6, 30.0, 39.4),
    point B (0.0, 58.7, 41.3),
    point F (0.0, 61.8, 38.2),
    point T (35.8, 44.9, 19.3),
    point E (58.0, 42.0, 0.0) and
    point O (100.0, 0.0, 0.0),
    or on the above line segments (excluding the points on the line EO);
    the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
    the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
    the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2), and
    the line segment TE is represented by coordinates (x, 0.0067x2−0.7607x+63.525, −0.0067x2−0.2393x+36.475), and
    the line segments BF, FO, and OA are straight lines,
    the refrigerant has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 95% or more relative to that of R410A.
  • The point on the line segment FT was determined by obtaining an approximate curve connecting three points, i.e., points T, E′, and F, by the least square method.
  • The point on the line segment TE was determined by obtaining an approximate curve connecting three points, i.e., points E, R, and T, by the least square method.
  • The results in Tables 1 to 34 clearly indicate that in a ternary composition diagram of the mixed refrigerant of HFO-1132(E), HFO-1123, and R1234yf in which the sum of these components is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on or below the line segment LM connecting point L (63.1, 31.9, 5.0) and point M (60.3, 6.2, 33.5), the refrigerant has an RCL of 40 g/m3 or more.
  • The results in Tables 1 to 34 clearly indicate that in a ternary composition diagram of the mixed refrigerant of HFO-1132(E), HFO-1123 and R1234yf in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on the line segment QR connecting point Q (62.8, 29.6, 7.6) and point R (49.8, 42.3, 7.9) or on the left side of the line segment, the refrigerant has a temperature glide of 1° C. or less.
  • The results in Tables 1 to 34 clearly indicate that in a ternary composition diagram of the mixed refrigerant of HFO-1132(E), HFO-1123, and R1234yf in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on the line segment ST connecting point S (62.6, 28.3, 9.1) and point T (35.8, 44.9, 19.3) or on the right side of the line segment, the refrigerant has a discharge pressure of 105% or less relative to that of 410A.
  • In these compositions, R1234yf contributes to reducing flammability, and suppressing deterioration of polymerization etc. Therefore, the composition preferably contains R1234yf.
  • Further, the burning velocity of these mixed refrigerants whose mixed formulations were adjusted to WCF concentrations was measured according to the ANSI/ASHRAE Standard 34-2013. Compositions having a burning velocity of 10 cm/s or less were determined to be classified as “Class 2L (lower flammability).”
  • A burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner. In FIG. 1, reference numeral 901 refers to a sample cell, 902 refers to a high-speed camera, 903 refers to a xenon lamp, 904 refers to a collimating lens, 905 refers to a collimating lens, and 906 refers to a ring filter. First, the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge. The burning velocity was measured by the closed method. The initial temperature was ambient temperature. Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using schlieren photographs. A cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source. Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.
  • Each WCFF concentration was obtained by using the WCF concentration as the initial concentration and performing a leak simulation using NIST Standard Reference Database REFLEAK Version 4.0.
  • Tables 35 and 36 show the results.
  • TABLE 35
    Item Unit G H I
    WCF HFO-1132(E) mass % 72.0 72.0 72.0
    HFO-1123 mass % 28.0 9.6 0.0
    R1234yf mass % 0.0 18.4 28.0
    Burning velocity (WCF) cm/s 10 10 10
  • TABLE 36
    Item Unit J P L N N′ K
    WCF HFO-1132(E) mass % 47.1 55.8 63.1 68.6 65.0 61.3
    HFO-1123 mass % 52.9 42.0 31.9 16.3 7.7 5.4
    R1234yf mass % 0.0  2.2  5.0 15.1 27.3 33.3
    Leak condition that Storage/ Storage/ Storage/ Storage/ Storage/ Storage/
    results in WCFF Shipping −40° Shipping −40° Shipping −40° Shipping −40° Shipping −40° Shipping, −40°
    C., 92% C., 90% C., 90% C., 66% C., 12% C., 0%
    release, release, release, release, release, release,
    liquid liquid gas phase gas phase gas phase gas phase
    phase side phase side side side side side
    WCFF HFO-1132(E) mass % 72.0 72.0 72.0 72.0 72.0 72.0
    HFO-1123 mass % 28.0 17.8 17.4 13.6 12.3 9.8
    R1234yf mass % 0.0 10.2 10.6 14.4 15.7 18.2
    Burning cm/s 8 or less 8 or less 8 or less 9 9 8 or less
    velocity (WCF)
    Burning cm/s 10 10   10   10 10 10
    velocity (WCFF)
  • The results in Table 35 clearly indicate that when a mixed refrigerant of HFO-1132(E), HFO-1123, and R1234yf contains HFO-1132(E) in a proportion of 72.0 mass % or less based on their sum, the refrigerant can be determined to have a WCF lower flammability.
  • The results in Tables 36 clearly indicate that in a ternary composition diagram of a mixed refrigerant of HFO-1132(E), HFO-1123, and R1234yf in which their sum is 100 mass %, and a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base,
  • when coordinates (x,y,z) are on or below the line segments JP, PN, and NK connecting the following 6 points:
    point J (47.1, 52.9, 0.0),
    point P (55.8, 42.0, 2.2),
    point L (63.1, 31.9, 5.0)
    point N (68.6, 16.3, 15.1)
    point N′ (65.0, 7.7, 27.3) and
    point K (61.3, 5.4, 33.3),
    the refrigerant can be determined to have a WCF lower flammability, and a WCFF lower flammability.
    In the diagram, the line segment PN is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
    and the line segment NK is represented by coordinates (x, 0.2421x2−29.955x+931.91, −0.2421x2+28.955x−831.91).
  • The point on the line segment PN was determined by obtaining an approximate curve connecting three points, i.e., points P, L, and N, by the least square method.
  • The point on the line segment NK was determined by obtaining an approximate curve connecting three points, i.e., points N, N′, and K, by the least square method.
  • (5-2) Refrigerant B
  • The refrigerant B according to the present disclosure is
  • a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)) and trifluoroethylene (HFO-1123) in a total amount of 99.5 mass % or more based on the entire refrigerant, and the refrigerant comprising 62.0 mass % to 72.0 mass % or 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire refrigerant, or
  • a mixed refrigerant comprising HFO-1132(E) and HFO-1123 in a total amount of 99.5 mass % or more based on the entire refrigerant, and the refrigerant comprising 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire refrigerant.
  • The refrigerant B according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant, i.e., (1) a coefficient of performance equivalent to that of R410A, (2) a refrigerating capacity equivalent to that of R410A, (3) a sufficiently low GWP, and (4) a lower flammability (Class 2L) according to the ASHRAE standard.
  • When the refrigerant B according to the present disclosure is a mixed refrigerant comprising 72.0 mass % or less of HFO-1132(E), it has WCF lower flammability. When the refrigerant B according to the present disclosure is a composition comprising 47.1% or less of HFO-1132(E), it has WCF lower flammability and WCFF lower flammability, and is determined to be “Class 2L,” which is a lower flammable refrigerant according to the ASHRAE standard, and which is further easier to handle.
  • When the refrigerant B according to the present disclosure comprises 62.0 mass % or more of HFO-1132(E), it becomes superior with a coefficient of performance of 95% or more relative to that of R410A, the polymerization reaction of HFO-1132(E) and/or HFO-1123 is further suppressed, and the stability is further improved. When the refrigerant B according to the present disclosure comprises 45.1 mass % or more of HFO-1132(E), it becomes superior with a coefficient of performance of 93% or more relative to that of R410A, the polymerization reaction of HFO-1132(E) and/or HFO-1123 is further suppressed, and the stability is further improved.
  • The refrigerant B according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E) and HFO-1123, as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO-1132(E) and HFO-1123 in a total amount of 99.75 mass % or more, and more preferably 99.9 mass % or more, based on the entire refrigerant.
  • Such additional refrigerants are not limited, and can be selected from a wide range of refrigerants. The mixed refrigerant may comprise a single additional refrigerant, or two or more additional refrigerants.
  • (Examples of Refrigerant B)
  • The present disclosure is described in more detail below with reference to Examples of refrigerant B. However, the refrigerant B is not limited to the Examples.
  • Mixed refrigerants were prepared by mixing HFO-1132(E) and HFO-1123 at mass % based on their sum shown in Tables 37 and 38.
  • The GWP of compositions each comprising a mixture of R410A (R32=50%/R125=50%) was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report. The GWP of HFO-1132(E), which was not stated therein, was assumed to be 1 from HFO-1132a (GWP=1 or less) and HFO-1123 (GWP=0.3, described in WO2015/141678). The refrigerating capacity of compositions each comprising R410A and a mixture of HFO-1132(E) and HFO-1123 was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.
  • Evaporating temperature: 5° C.
    Condensation temperature: 45° C.
    Superheating temperature: 5 K
    Subcooling temperature: 5 K
    Compressor efficiency: 70%
  • The composition of each mixture was defined as WCF. A leak simulation was performed using NIST Standard Reference Data Base Refleak Version 4.0 under the conditions of Equipment, Storage, Shipping, Leak, and Recharge according to the ASHRAE Standard 34-2013. The most flammable fraction was defined as WCFF.
  • Tables 1 and 2 show GWP, COP, and refrigerating capacity, which were calculated based on these results. The COP and refrigerating capacity are ratios relative to R410A.
  • The coefficient of performance (COP) was determined by the following formula.

  • COP=(refrigerating capacity or heating capacity)/power consumption
  • For the flammability, the burning velocity was measured according to the ANSI/ASHRAE Standard 34-2013. Both WCF and WCFF having a burning velocity of 10 cm/s or less were determined to be “Class 2L (lower flammability).”
  • A burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner. First, the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge. The burning velocity was measured by the closed method. The initial temperature was ambient temperature. Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using schlieren photographs. A cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source. Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.
  • TABLE 37
    Comparative Comparative
    Example 1 Example 2 Comparative Exam- Exam- Exam- Exam- Exam- Comparative
    Item Unit R410A HFO-1132E Example 3 ple 1 ple 2 ple 3 ple 4 ple 5 Example 4
    HFO-1132E mass % 100 80 72 70 68 65 62 60
    (WCF)
    HFO-1123 mass % 0 20 28 30 32 35 38 40
    (WCF)
    GWP 2088 1 1 1 1 1 1 1 1
    COP ratio % (relative 100 99.7 97.5 96.6 96.3 96.1 95.8 95.4 95.2
    to R410A)
    Refrigerating % (relative 100 98.3 101.9 103.1 103.4 103.8 104.1 104.5 104.8
    capacity ratio to R410A)
    Discharge Mpa 2.73 2.71 2.89 2.96 2.98 3.00 3.02 3.04 3.06
    pressure
    Burning cm/sec Non- 20 13 10 9 9 8 8 or 8 or
    velocity flammable less less
    (WCF)
  • TABLE 38
    Comparative Comparative
    Item Unit Example 5 Example 6 Example 7 Example 8 Example 9
    HFO-1132E mass % 50 48 47.1 46.1 45.1
    (WCF)
    HFO-1123 mass % 50 52 52.9 53.9 54.9
    (WCF)
    GWP 1 1 1 1 1
    COP ratio % (relative 94.1 93.9 93.8 93.7 93.6
    to R410A)
    Refrigerating % (relative 105.9 106.1 106.2 106.3 106.4
    capacity ratio to R410A)
    Discharge Mpa 3.14 3.16 3.16 3.17 3.18
    pressure
    Leakage test Storage/ Storage/ Storage/ Storage/ Storage/
    conditions (WCFF) Shipping −40° Shipping −40° Shipping −40° Shipping −40° Shipping −40°
    C., 92% C., 92% C., 92% C., 92% C., 92%
    release, release, release, release, release,
    liquid liquid liquid liquid liquid
    phase side phase side phase side phase side phase side
    HFO-1132E mass % 74 73 72 71 70
    (WCFF)
    HFO-1123 mass % 26 27 28 29 30
    (WCFF)
    Burning cm/sec 8 or less 8 or less 8 or less 8 or less 8 or less
    velocity
    (WCF)
    Burning cm/sec 11 10.5 10.0 9.5 9.5
    velocity
    (WCFF)
    ASHRAE flammability 2 2 2L 2L 2L
    classification
    Comparative
    Comparative Comparative Comparative Example 10
    Item Unit Example 7 Example 8 Example 9 HFO-1123
    HFO-1132E mass % 43 40 25 0
    (WCF)
    HFO-1123 mass % 57 60 75 100
    (WCF)
    GWP 1 1 1 1
    COP ratio % (relative 93.4 93.1 91.9 90.6
    to R410A)
    Refrigerating % (relative 106.6 106.9 107.9 108.0
    capacity ratio to R410A)
    Discharge Mpa 3.20 3.21 3.31 3.39
    pressure
    Leakage test Storage/ Storage/ Storage/
    conditions (WCFF) Shipping −40° Shipping −40° Shipping −40°
    C., 92% C., 92% C., 90%
    release, release, release,
    liquid liquid liquid
    phase side phase side phase side
    HFO-1132E mass % 67 63 38
    (WCFF)
    HFO-1123 mass % 33 37 62
    (WCFF)
    Burning cm/sec 8 or less 8 or less 8 or less 5
    velocity
    (WCF)
    Burning cm/sec 8.5 8 or less 8 or less
    velocity
    (WCFF)
    ASHRAE flammability 2L 2L 2L 2L
    classification
  • The compositions each comprising 62.0 mass % to 72.0 mass % of HFO-1132(E) based on the entire composition are stable while having a low GWP (GWP=1), and they ensure WCF lower flammability. Further, surprisingly, they can ensure performance equivalent to that of R410A. Moreover, compositions each comprising 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire composition are stable while having a low GWP (GWP=1), and they ensure WCFF lower flammability. Further, surprisingly, they can ensure performance equivalent to that of R410A.
  • (5-3) Refrigerant C
  • The refrigerant C according to the present disclosure is a composition comprising trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32), and satisfies the following requirements. The refrigerant C according to the present disclosure has various properties that are desirable as an alternative refrigerant for R410A; i.e. it has a coefficient of performance and a refrigerating capacity that are equivalent to those of R410A, and a sufficiently low GWP.
  • Requirements
  • Preferable refrigerant C is as follows:
  • When the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum is respectively represented by x, y, z, and a,
  • if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass % are within the range of a figure surrounded by straight lines GI, IA, AB, BD′, D′C, and CG that connect the following 6 points:
  • point G (0.026a2−1.7478a+72.0, −0.026a2+0.7478a+28.0, 0.0),
    point I (0.026a2−1.7478a+72.0, 0.0, −0.026a2+0.7478a+28.0),
    point A (0.0134a2−1.9681a+68.6, 0.0, −0.0134a2+0.9681a+31.4),
    point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3),
    point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6), and
    point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0),
    or on the straight lines GI, AB, and D′C (excluding point G, point I, point A, point B, point D′, and point C);
  • if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
  • point G (0.02a2−1.6013a+71.105, −0.02a2+0.6013a+28.895, 0.0),
    point I (0.02a2−1.6013a+71.105, 0.0, −0.02a2+0.6013a+28.895),
    point A (0.0112a2−1.9337a+68.484, 0.0, −0.0112a2+0.9337a+31.516),
    point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801) and
    point W (0.0, 100.0−a, 0.0),
    or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);
  • if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
  • point G (0.0135a2−1.4068a+69.727, −0.0135a2+0.4068a+30.273, 0.0),
    point I (0.0135a2−1.4068a+69.727, 0.0, −0.0135a2+0.4068a+30.273),
    point A (0.0107a2−1.9142a+68.305, 0.0, −0.0107a2+0.9142a+31.695),
    point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682) and
    point W (0.0, 100.0−a, 0.0),
    or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);
  • if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
  • point G (0.0111a2−1.3152a+68.986, −0.0111a2+0.3152a+31.014, 0.0),
    point I (0.0111a2−1.3152a+68.986, 0.0, −0.0111a2+0.3152a+31.014),
    point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207),
    point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714) and
    point W (0.0, 100.0−a, 0.0),
    or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W); and
  • if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
  • point G (0.0061a2−0.9918a+63.902, −0.0061a2−0.0082a+36.098, 0.0),
    point I (0.0061a2−0.9918a+63.902, 0.0, −0.0061a2−0.0082a+36.098),
    point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9),
    point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05) and
    point W (0.0, 100.0−a, 0.0),
    or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W). When the refrigerant according to the present disclosure satisfies the above requirements, it has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A, and further ensures a WCF lower flammability.
  • The refrigerant C according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z,
  • if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass % are within the range of a figure surrounded by straight lines JK′, K′B, BD′, D′C, and CJ that connect the following 5 points:
  • point J (0.0049a2−0.9645a+47.1, −0.0049a2−0.0355a+52.9, 0.0),
    point K′ (0.0514a2−2.4353a+61.7, −0.0323a2+0.4122a+5.9, −0.0191a2+1.0231a+32.4),
    point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3),
    point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6), and
    point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0),
    or on the straight lines JK′, K′B, and D′C (excluding point J, point B, point D′, and point C);
  • if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
  • point J (0.0243a2−1.4161a+49.725, −0.0243a2+0.4161a+50.275, 0.0),
    point K′ (0.0341a2−2.1977a+61.187, −0.0236a2+0.34a+5.636, −0.0105a2+0.8577a+33.177),
    point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801) and
    point W (0.0, 100.0−a, 0.0),
    or on the straight lines JK′ and K′B (excluding point J, point B, and point W);
  • if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
  • point J (0.0246a2−1.4476a+50.184, −0.0246a2+0.4476a+49.816, 0.0),
    point K′ (0.0196a2−1.7863a+58.515, −0.0079a2−0.1136a+8.702, −0.0117a2+0.8999a+32.783),
    point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682) and
    point W (0.0, 100.0−a, 0.0),
    or on the straight lines JK′ and K′B (excluding point J, point B, and point W);
  • if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
  • point J (0.0183a2−1.1399a+46.493, −0.0183a2+0.1399a+53.507, 0.0),
    point K′ (−0.0051a2+0.0929a+25.95, 0.0, 0.0051a2−1.0929a+74.05),
    point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207),
    point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714) and
    point W (0.0, 100.0−a, 0.0),
    or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W); and
  • if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
  • point J (−0.0134a2+1.0956a+7.13, 0.0134a2−2.0956a+92.87, 0.0),
    point K′ (−1.892a+29.443, 0.0, 0.892a+70.557),
    point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9),
    point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05) and
    point W (0.0, 100.0−a, 0.0),
    or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W). When the refrigerant according to the present disclosure satisfies the above requirements, it has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A. Additionally, the refrigerant has a WCF lower flammability and a WCFF lower flammability, and is classified as “Class 2L,” which is a lower flammable refrigerant according to the ASHRAE standard.
  • When the refrigerant C according to the present disclosure further contains R32 in addition to HFO-1132 (E), HFO-1123, and R1234yf, the refrigerant may be a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum is respectively represented by x, y, z, and a,
  • if 0<a≤10.0, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass % are within the range of a figure surrounded by straight lines that connect the following 4 points:
  • point a (0.02a2−2.46a+93.4, 0, −0.02a2+2.46a+6.6),
    point b′ (−0.008a2−1.38a+56, 0.018a2−0.53a+26.3, −0.01a2+1.91a+17.7),
    point c (−0.016a2+1.02a+77.6, 0.016a2−1.02a+22.4, 0), and
    point o (100.0−a, 0.0, 0.0)
    or on the straight lines oa, ab′, and b′c (excluding point o and point c);
  • if 10.0<a≤16.5, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines that connect the following 4 points:
  • point a (0.0244a2−2.5695a+94.056, 0, −0.0244a2+2.5695a+5.944),
    point b′ (0.1161a2−1.9959a+59.749, 0.014a2−0.3399a+24.8, −0.1301a2+2.3358a+15.451),
    point c (−0.0161a2+1.02a+77.6, 0.0161a2−1.02a+22.4, 0), and
    point o (100.0−a, 0.0, 0.0),
    or on the straight lines oa, ab′, and b′c (excluding point o and point c); or
  • if 16.5<a≤21.8, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines that connect the following 4 points:
  • point a (0.0161a2−2.3535a+92.742, 0, −0.0161a2+2.3535a+7.258),
    point b′ (−0.0435a2−0.0435a+50.406, 0.0304a2+1.8991a−0.0661, 0.0739a2−1.8556a+49.6601),
    point c (−0.0161a2+0.9959a+77.851, 0.0161a2−0.9959a+22.149, 0), and
    point o (100.0−a, 0.0, 0.0),
    or on the straight lines oa, ab′, and b′c (excluding point o and point c). Note that when point b in the ternary composition diagram is defined as a point where a refrigerating capacity ratio of 95% relative to that of R410A and a COP ratio of 95% relative to that of R410A are both achieved, point b′ is the intersection of straight line ab and an approximate line formed by connecting the points where the COP ratio relative to that of R410A is 95%. When the refrigerant according to the present disclosure meets the above requirements, the refrigerant has a refrigerating capacity ratio of 95% or more relative to that of R410A, and a COP ratio of 95% or more relative to that of R410A.
  • The refrigerant C according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), HFO-1123, R1234yf, and R32 as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO-1132(E), HFO-1123, R1234yf, and R32 in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and still more preferably 99.9 mass % or more, based on the entire refrigerant.
  • The refrigerant C according to the present disclosure may comprise HFO-1132(E), HFO-1123, R1234yf, and R32 in a total amount of 99.5 mass % or more, 99.75 mass % or more, or 99.9 mass % or more, based on the entire refrigerant.
  • Additional refrigerants are not particularly limited and can be widely selected. The mixed refrigerant may contain one additional refrigerant, or two or more additional refrigerants.
  • (Examples of Refrigerant C)
  • The present disclosure is described in more detail below with reference to Examples of refrigerant C. However, the refrigerant C is not limited to the Examples.
  • Mixed refrigerants were prepared by mixing HFO-1132(E), HFO-1123, R1234yf, and R32 at mass % based on their sum shown in Tables 39 to 96.
  • The GWP of compositions each comprising a mixture of R410A (R32=50%/R125=50%) was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report. The GWP of HFO-1132(E), which was not stated therein, was assumed to be 1 from HFO-1132a (GWP=1 or less) and HFO-1123 (GWP=0.3, described in WO2015/141678). The refrigerating capacity of compositions each comprising R410A and a mixture of HFO-1132(E) and HFO-1123 was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.
  • For each of these mixed refrigerants, the COP ratio and the refrigerating capacity ratio relative to those of R410 were obtained. Calculation was conducted under the following conditions.
  • Evaporating temperature: 5° C.
  • Condensation temperature: 45° C.
  • Superheating temperature: 5 K
  • Subcooling temperature: 5 K
  • Compressor efficiency: 70%
  • Tables 39 to 96 show the resulting values together with the GWP of each mixed refrigerant. The COP and refrigerating capacity are ratios relative to R410A.
  • The coefficient of performance (COP) was determined by the following formula.

  • COP=(refrigerating capacity or heating capacity)/power consumption
  • TABLE 39
    Comp. Comp. Comp. Comp. Comp. Comp. Comp.
    Comp. Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex. 7 Ex. 8 Ex. 1
    Item Unit Ex. 1 A B C D′ G I J K′
    HFO-1132(E) Mass % R410A 68.6 0.0 32.9 0.0 72.0 72.0 47.1 61.7
    HFO-1123 Mass % 0.0 58.7 67.1 75.4 28.0 0.0 52.9 5.9
    R1234yf Mass % 31.4 41.3 0.0 24.6 0.0 28.0 0.0 32.4
    R32 Mass % 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
    GWP 2088 2 2 1 2 1 2 1 2
    COP ratio % (relative 100 100.0 95.5 92.5 93.1 96.6 99.9 93.8 99.4
    to R410A)
    Refrigerating % (relative 100 85.0 85.0 107.4 95.0 103.1 86.6 106.2 85.5
    capacity ratio to R410A)
  • TABLE 40
    Comp. Comp. Comp. Comp. Comp. Comp. Comp.
    Ex. 9 Ex. 10 Ex. 11 Ex. 12 Ex. 13 Ex. 14 Ex. 15 Ex. 2
    Item Unit A B C D′ G I J K′
    HFO-1132(E) Mass % 55.3 0.0 18.4 0.0 60.9 60.9 40.5 47.0
    HFO-1123 Mass % 0.0 47.8 74.5 83.4 32.0 0.0 52.4 7.2
    R1234yf Mass % 37.6 45.1 0.0 9.5 0.0 32.0 0.0 38.7
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 50 50 49 49 49 50 49 50
    COP ratio % (relative 99.8 96.9 92.5 92.5 95.9 99.6 94.0 99.2
    to R410A)
    Refrigerating % (relative 85.0 85.0 110.5 106.0 106.5 87.7 108.9 85.5
    capacity ratio to R410A)
  • TABLE 41
    Comp. Comp. Comp. Comp. Comp. Comp.
    Ex. 16 Ex. 17 Ex. 18 Ex. 19 Ex. 20 Ex. 21 Ex. 3
    Item Unit A B C = D′ G I J K′
    HFO-1132(E) Mass % 48.4 0.0 0.0 55.8 55.8 37.0 41.0
    HFO-1123 Mass % 0.0 42.3 88.9 33.1 0.0 51.9 6.5
    R1234yf Mass % 40.5 46.6 0.0 0.0 33.1 0.0 41.4
    R32 Mass % 11.1 11.1 11.1 11.1 11.1 11.1 11.1
    GWP 77 77 76 76 77 76 77
    COP ratio % (relative 99.8 97.6 92.5 95.8 99.5 94.2 99.3
    to R410A)
    Refrigerating % (relative 85.0 85.0 112.0 108.0 88.6 110.2 85.4
    capacity ratio to R410A)
  • TABLE 42
    Comp. Comp. Comp. Comp. Comp.
    Ex. 22 Ex. 23 Ex. 24 Ex. 25 Ex. 26 Ex. 4
    Item Unit A B G I J K′
    HFO-1132(E) Mass % 42.8 0.0 52.1 52.1 34.3 36.5
    HFO-1123 Mass % 0.0 37.8 33.4 0.0 51.2 5.6
    R1234yf Mass % 42.7 47.7 0.0 33.4 0.0 43.4
    R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5
    GWP 100 100 99 100 99 100
    COP ratio % (relative 99.9 98.1 95.8 99.5 94.4 99.5
    to R410A)
    Refrigerating % (relative 85.0 85.0 109.1 89.6 111.1 85.3
    capacity ratio to R410A)
  • TABLE 43
    Comp. Comp. Comp. Comp. Comp.
    Ex. 27 Ex. 28 Ex. 29 Ex. 30 Ex. 31 Ex. 5
    Item Unit A B G I J K′
    HFO-1132(E) Mass % 37.0 0.0 48.6 48.6 32.0 32.5
    HFO-1123 Mass % 0.0 33.1 33.2 0.0 49.8 4.0
    R1234yf Mass % 44.8 48.7 0.0 33.2 0.0 45.3
    R32 Mass % 18.2 18.2 18.2 18.2 18.2 18.2
    GWP 125 125 124 125 124 125
    COP ratio % (relative 100.0 98.6 95.9 99.4 94.7 99.8
    to R410A)
    Refrigerating % (relative 85.0 85.0 110.1 90.8 111.9 85.2
    capacity ratio to R410A)
  • TABLE 44
    Comp. Comp. Comp. Comp. Comp.
    Ex. 32 Ex. 33 Ex. 34 Ex. 35 Ex. 36 Ex. 6
    Item Unit A B G I J K′
    HFO-1132(E) Mass % 31.5 0.0 45.4 45.4 30.3 28.8
    HFO-1123 Mass % 0.0 28.5 32.7 0.0 47.8 2.4
    R1234yf Mass % 46.6 49.6 0.0 32.7 0.0 46.9
    R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9
    GWP 150 150 149 150 149 150
    COP ratio % (relative 100.2 99.1 96.0 99.4 95.1 100.0
    to R410A)
    Refrigerating % (relative 85.0 85.0 111.0 92.1 112.6 85.1
    capacity ratio to R410A)
  • TABLE 45
    Comp. Comp. Comp. Comp. Comp. Comp.
    Ex. 37 Ex. 38 Ex. 39 Ex. 40 Ex. 41 Ex. 42
    Item Unit A B G I J K′
    HFO-1132(E) Mass % 24.8 0.0 41.8 41.8 29.1 24.8
    HFO-1123 Mass % 0.0 22.9 31.5 0.0 44.2 0.0
    R1234yf Mass % 48.5 50.4 0.0 31.5 0.0 48.5
    R32 Mass % 26.7 26.7 26.7 26.7 26.7 26.7
    GWP 182 182 181 182 181 182
    COP ratio % (relative 100.4 99.8 96.3 99.4 95.6 100.4
    to R410A)
    Refrigerating % (relative 85.0 85.0 111.9 93.8 113.2 85.0
    capacity ratio to R410A)
  • TABLE 46
    Comp. Comp. Comp. Comp. Comp. Comp.
    Ex. 43 Ex. 44 Ex. 45 Ex. 46 Ex. 47 Ex. 48
    Item Unit A B G I J K′
    HFO-1132(E) Mass % 21.3 0.0 40.0 40.0 28.8 24.3
    HFO-1123 Mass % 0.0 19.9 30.7 0.0 41.9 0.0
    R1234yf Mass % 49.4 50.8 0.0 30.7 0.0 46.4
    R32 Mass % 29.3 29.3 29.3 29.3 29.3 29.3
    GWP 200 200 198 199 198 200
    COP ratio % (relative 100.6 100.1 96.6 99.5 96.1 100.4
    to R410A)
    Refrigerating % (relative 85.0 85.0 112.4 94.8 113.6 86.7
    capacity ratio to R410A)
  • TABLE 47
    Comp. Comp. Comp. Comp. Comp. Comp.
    Ex. 49 Ex. 50 Ex. 51 Ex. 52 Ex. 53 Ex. 54
    Item Unit A B G I J K′
    HFO-1132(E) Mass % 12.1 0.0 35.7 35.7 29.3 22.5
    HFO-1123 Mass % 0.0 11.7 27.6 0.0 34.0 0.0
    R1234yf Mass % 51.2 51.6 0.0 27.6 0.0 40.8
    R32 Mass % 36.7 36.7 36.7 36.7 36.7 36.7
    GWP 250 250 248 249 248 250
    COP ratio % (relative 101.2 101.0 96.4 99.6 97.0 100.4
    to R410A)
    Refrigerating % (relative 85.0 85.0 113.2 97.6 113.9 90.9
    capacity ratio to R410A)
  • TABLE 48
    Comp. Comp. Comp. Comp. Comp. Comp.
    Ex. 55 Ex. 56 Ex. 57 Ex. 58 Ex. 59 Ex. 60
    Item Unit A B G I J K′
    HFO-1132(E) Mass % 3.8 0.0 32.0 32.0 29.4 21.1
    HFO-1123 Mass % 0.0 3.9 23.9 0.0 26.5 0.0
    R1234yf Mass % 52.1 52.0 0.0 23.9 0.0 34.8
    R32 Mass % 44.1 44.1 44.1 44.1 44.1 44.1
    GWP 300 300 298 299 298 299
    COP ratio % (relative 101.8 101.8 97.9 99.8 97.8 100.5
    to R410A)
    Refrigerating % (relative 85.0 85.0 113.7 100.4 113.9 94.9
    capacity ratio to R410A)
  • TABLE 49
    Comp. Comp. Comp. Comp. Comp.
    Ex. 61 Ex. 62 Ex. 63 Ex. 64 Ex. 65
    Item Unit A = B G I J K′
    HFO-1132(E) Mass % 0.0 30.4 30.4 28.9 20.4
    HFO-1123 Mass % 0.0 21.8 0.0 23.3 0.0
    R1234yf Mass % 52.2 0.0 21.8 0.0 31.8
    R32 Mass % 47.8 47.8 47.8 47.8 47.8
    GWP 325 323 324 323 324
    COP ratio % (relative 102.1 98.2 100.0 98.2 100.6
    to R410A)
    Refrigerating % (relative 85.0 113.8 101.8 113.9 96.8
    capacity ratio to R410A)
  • TABLE 50
    Comp.
    Item Unit Ex. 66 Ex. 7 Ex. 8 Ex. 9 Ex. 10 Ex. 11 Ex. 12 Ex. 13
    HFO-1132(E) Mass % 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0
    HFO-1123 Mass % 82.9 77.9 72.9 67.9 62.9 57.9 52.9 47.9
    R1234yf Mass % 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 49 49 49 49 49 49 49 49
    COP ratio % (relative 92.4 92.6 92.8 93.1 93.4 93.7 94.1 94.5
    to R410A)
    Refrigerating % (relative 108.4 108.3 108.2 107.9 107.6 107.2 106.8 106.3
    capacity ratio to R410A)
  • TABLE 51
    Comp.
    Item Unit Ex. 14 Ex. 15 Ex. 16 Ex. 17 Ex. 67 Ex. 18 Ex. 19 Ex. 20
    HFO-1132(E) Mass % 45.0 50.0 55.0 60.0 65.0 10.0 15.0 20.0
    HFO-1123 Mass % 42.9 37.9 32.9 27.9 22.9 72.9 67.9 62.9
    R1234yf Mass % 5.0 5.0 5.0 5.0 5.0 10.0 10.0 10.0
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 49 49 49 49 49 49 49 49
    COP ratio % (relative 95.0 95.4 95.9 96.4 96.9 93.0 93.3 93.6
    to R410A)
    Refrigerating % (relative 105.8 105.2 104.5 103.9 103.1 105.7 105.5 105.2
    capacity ratio to R410A)
  • TABLE 52
    Item Unit Ex. 21 Ex. 22 Ex. 23 Ex. 24 Ex. 25 Ex. 26 Ex. 27 Ex. 28
    HFO-1132(E) Mass % 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0
    HFO-1123 Mass % 57.9 52.9 47.9 42.9 37.9 32.9 27.9 22.9
    R1234yf Mass % 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 49 49 49 49 49 49 49 49
    COP ratio % (relative 93.9 94.2 94.6 95.0 95.5 96.0 96.4 96.9
    to R410A)
    Refrigerating % (relative 104.9 104.5 104.1 103.6 103.0 102.4 101.7 101.0
    capacity ratio to R410A)
  • TABLE 53
    Comp.
    Item Unit Ex. 68 Ex. 29 Ex. 30 Ex. 31 Ex. 32 Ex. 33 Ex. 34 Ex. 35
    HFO-1132(E) Mass % 65.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0
    HFO-1123 Mass % 17.9 67.9 62.9 57.9 52.9 47.9 42.9 37.9
    R1234yf Mass % 10.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 49 49 49 49 49 49 49 49
    COP ratio % (relative 97.4 93.5 93.8 94.1 94.4 94.8 95.2 95.6
    to R410A)
    Refrigerating % (relative 100.3 102.9 102.7 102.5 102.1 101.7 101.2 100.7
    capacity ratio to R410A)
  • TABLE 54
    Comp.
    Item Unit Ex. 36 Ex. 37 Ex. 38 Ex. 39 Ex. 69 Ex. 40 Ex. 41 Ex. 42
    HFO-1132(E) Mass % 45.0 50.0 55.0 60.0 65.0 10.0 15.0 20.0
    HFO-1123 Mass % 32.9 27.9 22.9 17.9 12.9 62.9 57.9 52.9
    R1234yf Mass % 15.0 15.0 15.0 15.0 15.0 20.0 20.0 20.0
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 49 49 49 49 49 49 49 49
    COP ratio % (relative 96.0 96.5 97.0 97.5 98.0 94.0 94.3 94.6
    to R410A)
    Refrigerating % (relative 100.1 99.5 98.9 98.1 97.4 100.1 99.9 99.6
    capacity ratio to R410A)
  • TABLE 55
    Item Unit Ex. 43 Ex. 44 Ex. 45 Ex. 46 Ex. 47 Ex. 48 Ex. 49 Ex. 50
    HFO-1132(E) Mass % 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0
    HFO-1123 Mass % 47.9 42.9 37.9 32.9 27.9 22.9 17.9 12.9
    R1234yf Mass % 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 49 49 49 49 49 49 49 49
    COP ratio % (relative 95.0 95.3 95.7 96.2 96.6 97.1 97.6 98.1
    to R410A)
    Refrigerating % (relative 99.2 98.8 98.3 97.8 97.2 96.6 95.9 95.2
    capacity ratio to R410A)
  • TABLE 56
    Comp.
    Item Unit Ex. 70 Ex. 51 Ex. 52 Ex. 53 Ex. 54 Ex. 55 Ex. 56 Ex. 57
    HFO-1132(E) Mass % 65.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0
    HFO-1123 Mass % 7.9 57.9 52.9 47.9 42.9 37.9 32.9 27.9
    R1234yf Mass % 20.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 49 50 50 50 50 50 50 50
    COP ratio % (relative 98.6 94.6 94.9 95.2 95.5 95.9 96.3 96.8
    to R410A)
    Refrigerating % (relative 94.4 97.1 96.9 96.7 96.3 95.9 95.4 94.8
    capacity ratio to R410A)
  • TABLE 57
    Comp.
    Item Unit Ex. 58 Ex. 59 Ex. 60 Ex. 61 Ex. 71 Ex. 62 Ex. 63 Ex. 64
    HFO-1132(E) Mass % 45.0 50.0 55.0 60.0 65.0 10.0 15.0 20.0
    HFO-1123 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    R1234yf Mass % 25.0 25.0 25.0 25.0 25.0 30.0 30.0 30.0
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 50 50 50 50 50 50 50 50
    COP ratio % (relative 97.2 97.7 98.2 98.7 99.2 95.2 95.5 95.8
    to R410A)
    Refrigerating % (relative 94.2 93.6 92.9 92.2 91.4 94.2 93.9 93.7
    capacity ratio to R410A)
  • TABLE 58
    Item Unit Ex. 65 Ex. 66 Ex. 67 Ex. 68 Ex. 69 Ex. 70 Ex. 71 Ex. 72
    HFO-1132(E) Mass % 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0
    HFO-1123 Mass % 37.9 32.9 27.9 22.9 17.9 12.9 7.9 2.9
    R1234yf Mass % 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 50 50 50 50 50 50 50 50
    COP ratio % (relative 96.2 96.6 97.0 97.4 97.9 98.3 98.8 99.3
    to R410A)
    Refrigerating % (relative 93.3 92.9 92.4 91.8 91.2 90.5 89.8 89.1
    capacity ratio to R410A)
  • TABLE 59
    Item Unit Ex. 73 Ex. 74 Ex. 75 Ex. 76 Ex. 77 Ex. 78 Ex. 79 Ex. 80
    HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0
    HFO-1123 Mass % 47.9 42.9 37.9 32.9 27.9 22.9 17.9 12.9
    R1234yf Mass % 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 50 50 50 50 50 50 50 50
    COP ratio % (relative 95.9 96.2 96.5 96.9 97.2 97.7 98.1 98.5
    to R410A)
    Refrigerating % (relative 91.1 90.9 90.6 90.2 89.8 89.3 88.7 88.1
    capacity ratio to R410A)
  • TABLE 60
    Item Unit Ex. 81 Ex. 82 Ex. 83 Ex. 84 Ex. 85 Ex. 86 Ex. 87 Ex. 88
    HFO-1132(E) Mass % 50.0 55.0 10.0 15.0 20.0 25.0 30.0 35.0
    HFO-1123 Mass % 7.9 2.9 42.9 37.9 32.9 27.9 22.9 17.9
    R1234yf Mass % 35.0 35.0 40.0 40.0 40.0 40.0 40.0 40.0
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 50 50 50 50 50 50 50 50
    COP ratio % (relative 99.0 99.4 96.6 96.9 97.2 97.6 98.0 98.4
    to R410A)
    Refrigerating % (relative 87.4 86.7 88.0 87.8 87.5 87.1 86.6 86.1
    capacity ratio to R410A)
  • TABLE 61
    Comp. Comp. Comp. Comp. Comp. Comp. Comp. Comp.
    Item Unit Ex. 72 Ex. 73 Ex. 74 Ex. 75 Ex. 76 Ex. 77 Ex. 78 Ex. 79
    HFO-1132(E) Mass % 40.0 45.0 50.0 10.0 15.0 20.0 25.0 30.0
    HFO-1123 Mass % 12.9 7.9 2.9 37.9 32.9 27.9 22.9 17.9
    R1234yf Mass % 40.0 40.0 40.0 45.0 45.0 45.0 45.0 45.0
    R32 Mass % 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
    GWP 50 50 50 50 50 50 50 50
    COP ratio % (relative 98.8 99.2 99.6 97.4 97.7 98.0 98.3 98.7
    to R410A)
    Refrigerating % (relative 85.5 84.9 84.2 84.9 84.6 84.3 83.9 83.5
    capacity ratio to R410A)
  • TABLE 62
    Comp. Comp. Comp.
    Item Unit Ex. 80 Ex. 81 Ex. 82
    HFO-1132(E) Mass % 35.0 40.0 45.0
    HFO-1123 Mass % 12.9 7.9 2.9
    R1234yf Mass % 45.0 45.0 45.0
    R32 Mass % 7.1 7.1 7.1
    GWP 50 50 50
    COP ratio % (relative 99.1 99.5 99.9
    to R410A)
    Refrigerating % (relative 82.9 82.3 81.7
    capacity ratio to R410A)
  • TABLE 63
    Item Unit Ex. 89 Ex. 90 Ex. 91 Ex. 92 Ex. 93 Ex. 94 Ex. 95 Ex. 96
    HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0
    HFO-1123 Mass % 70.5 65.5 60.5 55.5 50.5 45.5 40.5 35.5
    R1234yf Mass % 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
    R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
    GWP 99 99 99 99 99 99 99 99
    COP ratio % (relative 93.7 93.9 94.1 94.4 94.7 95.0 95.4 95.8
    to R410A)
    Refrigerating % (relative 110.2 110.0 109.7 109.3 108.9 108.4 107.9 107.3
    capacity ratio to R410A)
  • TABLE 64
    Comp.
    Item Unit Ex. 97 Ex. 83 Ex. 98 Ex. 99 Ex. 100 Ex. 101 Ex. 102 Ex. 103
    HFO-1132(E) Mass % 50.0 55.0 10.0 15.0 20.0 25.0 30.0 35.0
    HFO-1123 Mass % 30.5 25.5 65.5 60.5 55.5 50.5 45.5 40.5
    R1234yf Mass % 5.0 5.0 10.0 10.0 10.0 10.0 10.0 10.0
    R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
    GWP 99 99 99 99 99 99 99 99
    COP ratio % (relative 96.2 96.6 94.2 94.4 94.6 94.9 95.2 95.5
    to R410A)
    Refrigerating % (relative 106.6 106.0 107.5 107.3 107.0 106.6 106.1 105.6
    capacity ratio to R410A)
  • TABLE 65
    Comp.
    Item Unit Ex. 104 Ex. 105 Ex. 106 Ex. 84 Ex. 107 Ex. 108 Ex. 109 Ex. 110
    HFO-1132(E) Mass % 40.0 45.0 50.0 55.0 10.0 15.0 20.0 25.0
    HFO-1123 Mass % 35.5 30.5 25.5 20.5 60.5 55.5 50.5 45.5
    R1234yf Mass % 10.0 10.0 10.0 10.0 15.0 15.0 15.0 15.0
    R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
    GWP 99 99 99 99 99 99 99 99
    COP ratio % (relative 95.9 96.3 96.7 97.1 94.6 94.8 95.1 95.4
    to R410A)
    Refrigerating % (relative 105.1 104.5 103.8 103.1 104.7 104.5 104.1 103.7
    capacity ratio to R410A)
  • TABLE 66
    Comp.
    Item Unit Ex. 111 Ex. 112 Ex. 113 Ex. 114 Ex. 115 Ex. 85 Ex. 116 Ex. 117
    HFO-1132(E) Mass % 30.0 35.0 40.0 45.0 50.0 55.0 10.0 15.0
    HFO-1123 Mass % 40.5 35.5 30.5 25.5 20.5 15.5 55.5 50.5
    R1234yf Mass % 15.0 15.0 15.0 15.0 15.0 15.0 20.0 20.0
    R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
    GWP 99 99 99 99 99 99 99 99
    COP ratio % (relative 95.7 96.0 96.4 96.8 97.2 97.6 95.1 95.3
    to R410A)
    Refrigerating % (relative 103.3 102.8 102.2 101.6 101.0 100.3 101.8 101.6
    capacity ratio to R410A)
  • TABLE 67
    Comp.
    Item Unit Ex. 118 Ex. 119 Ex. 120 Ex. 121 Ex. 122 Ex. 123 Ex. 124 Ex. 86
    HFO-1132(E) Mass % 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0
    HFO-1123 Mass % 45.5 40.5 35.5 30.5 25.5 20.5 15.5 10.5
    R1234yf Mass % 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
    R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
    GWP 99 99 99 99 99 99 99 99
    COP ratio % (relative 95.6 95.9 96.2 96.5 96.9 97.3 97.7 98.2
    to R410A)
    Refrigerating % (relative 101.2 100.8 100.4 99.9 99.3 98.7 98.0 97.3
    capacity ratio to R410A)
  • TABLE 68
    Item Unit Ex. 125 Ex. 126 Ex. 127 Ex. 128 Ex. 129 Ex. 130 Ex. 131 Ex. 132
    HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0
    HFO-1123 Mass % 50.5 45.5 40.5 35.5 30.5 25.5 20.5 15.5
    R1234yf Mass % 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
    R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
    GWP 99 99 99 99 99 99 99 99
    COP ratio % (relative 95.6 95.9 96.1 96.4 96.7 97.1 97.5 97.9
    to R410A)
    Refrigerating % (relative 98.9 98.6 98.3 97.9 97.4 96.9 96.3 95.7
    capacity ratio to R410A)
  • TABLE 69
    Comp.
    Item Unit Ex. 133 Ex. 87 Ex. 134 Ex. 135 Ex. 136 Ex. 137 Ex. 138 Ex. 139
    HFO-1132(E) Mass % 50.0 55.0 10.0 15.0 20.0 25.0 30.0 35.0
    HFO-1123 Mass % 10.5 5.5 45.5 40.5 35.5 30.5 25.5 20.5
    R1234yf Mass % 25.0 25.0 30.0 30.0 30.0 30.0 30.0 30.0
    R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
    GWP 99 99 100 100 100 100 100 100
    COP ratio % (relative 98.3 98.7 96.2 96.4 96.7 97.0 97.3 97.7
    to R410A)
    Refrigerating % (relative 95.0 94.3 95.8 95.6 95.2 94.8 94.4 93.8
    capacity ratio to R410A)
  • TABLE 70
    Item Unit Ex. 140 Ex. 141 Ex. 142 Ex. 143 Ex. 144 Ex. 145 Ex. 146 Ex. 147
    HFO-1132(E) Mass % 40.0 45.0 50.0 10.0 15.0 20.0 25.0 30.0
    HFO-1123 Mass % 15.5 10.5 5.5 40.5 35.5 30.5 25.5 20.5
    R1234yf Mass % 30.0 30.0 30.0 35.0 35.0 35.0 35.0 35.0
    R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
    GWP 100 100 100 100 100 100 100 100
    COP ratio % (relative 98.1 98.5 98.9 96.8 97.0 97.3 97.6 97.9
    to R410A)
    Refrigerating % (relative 93.3 92.6 92.0 92.8 92.5 92.2 91.8 91.3
    capacity ratio to R410A)
  • TABLE 71
    Item Unit Ex. 148 Ex. 149 Ex. 150 Ex. 151 Ex. 152 Ex. 153 Ex. 154 Ex. 155
    HFO-1132(E) Mass % 35.0 40.0 45.0 10.0 15.0 20.0 25.0 30.0
    HFO-1123 Mass % 15.5 10.5 5.5 35.5 30.5 25.5 20.5 15.5
    R1234yf Mass % 35.0 35.0 35.0 40.0 40.0 40.0 40.0 40.0
    R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
    GWP 100 100 100 100 100 100 100 100
    COP ratio % (relative 98.3 98.7 99.1 97.4 97.7 98.0 98.3 98.6
    to R410A)
    Refrigerating % (relative 90.8 90.2 89.6 89.6 89.4 89.0 88.6 88.2
    capacity ratio to R410A)
  • TABLE 72
    Comp. Comp. Comp.
    Item Unit Ex. 156 Ex. 157 Ex. 158 Ex. 159 Ex. 160 Ex. 88 Ex. 89 Ex. 90
    HFO-1132(E) Mass % 35.0 40.0 10.0 15.0 20.0 25.0 30.0 35.0
    HFO-1123 Mass % 10.5 5.5 30.5 25.5 20.5 15.5 10.5 5.5
    R1234yf Mass % 40.0 40.0 45.0 45.0 45.0 45.0 45.0 45.0
    R32 Mass % 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
    GWP 100 100 100 100 100 100 100 100
    COP ratio % (relative 98.9 99.3 98.1 98.4 98.7 98.9 99.3 99.6
    to R410A)
    Refrigerating % (relative 87.6 87.1 86.5 86.2 85.9 85.5 85.0 84.5
    capacity ratio to R410A)
  • TABLE 73
    Comp. Comp. Comp. Comp. Comp.
    Item Unit Ex. 91 Ex. 92 Ex. 93 Ex. 94 Ex. 95
    HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0
    HFO-1123 Mass % 25.5 20.5 15.5 10.5 5.5
    R1234yf Mass % 50.0 50.0 50.0 50.0 50.0
    R32 Mass % 14.5 14.5 14.5 14.5 14.5
    GWP 100 100 100 100 100
    COP ratio % (relative 98.9 99.1 99.4 99.7 100.0
    to R410A)
    Refrigerating % (relative 83.3 83.0 82.7 82.2 81.8
    capacity ratio to R410A)
  • TABLE 74
    Item Unit Ex. 161 Ex. 162 Ex. 163 Ex. 164 Ex. 165 Ex. 166 Ex. 167 Ex. 168
    HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0
    HFO-1123 Mass % 63.1 58.1 53.1 48.1 43.1 38.1 33.1 28.1
    R1234yf Mass % 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
    R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9
    GWP 149 149 149 149 149 149 149 149
    COP ratio % (relative 94.8 95.0 95.2 95.4 95.7 95.9 96.2 96.6
    to R410A)
    Refrigerating % (relative 111.5 111.2 110.9 110.5 110.0 109.5 108.9 108.3
    capacity ratio to R410A)
  • TABLE 75
    Comp.
    Item Unit Ex. 96 Ex. 169 Ex. 170 Ex. 171 Ex. 172 Ex. 173 Ex. 174 Ex. 175
    HFO-1132(E) Mass % 50.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0
    HFO-1123 Mass % 23.1 58.1 53.1 48.1 43.1 38.1 33.1 28.1
    R1234yf Mass % 5.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
    R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9
    GWP 149 149 149 149 149 149 149 149
    COP ratio % (relative 96.9 95.3 95.4 95.6 95.8 96.1 96.4 96.7
    to R410A)
    Refrigerating % (relative 107.7 108.7 108.5 108.1 107.7 107.2 106.7 106.1
    capacity ratio to R410A)
  • TABLE 76
    Comp.
    Item Unit Ex. 176 Ex. 97 Ex. 177 Ex. 178 Ex. 179 Ex. 180 Ex. 181 Ex. 182
    HFO-1132(E) Mass % 45.0 50.0 10.0 15.0 20.0 25.0 30.0 35.0
    HFO-1123 Mass % 23.1 18.1 53.1 48.1 43.1 38.1 33.1 28.1
    R1234yf Mass % 10.0 10.0 15.0 15.0 15.0 15.0 15.0 15.0
    R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9
    GWP 149 149 149 149 149 149 149 149
    COP ratio % (relative 97.0 97.4 95.7 95.9 96.1 96.3 96.6 96.9
    to R410A)
    Refrigerating % (relative 105.5 104.9 105.9 105.6 105.3 104.8 104.4 103.8
    capacity ratio to R410A)
  • TABLE 77
    Comp.
    Item Unit Ex. 183 Ex. 184 Ex. 98 Ex. 185 Ex. 186 Ex. 187 Ex. 188 Ex. 189
    HFO-1132(E) Mass % 40.0 45.0 50.0 10.0 15.0 20.0 25.0 30.0
    HFO-1123 Mass % 23.1 18.1 13.1 48.1 43.1 38.1 33.1 28.1
    R1234yf Mass % 15.0 15.0 15.0 20.0 20.0 20.0 20.0 20.0
    R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9
    GWP 149 149 149 149 149 149 149 149
    COP ratio % (relative 97.2 97.5 97.9 96.1 96.3 96.5 96.8 97.1
    to R410A)
    Refrigerating % (relative 103.3 102.6 102.0 103.0 102.7 102.3 101.9 101.4
    capacity ratio to R410A)
  • TABLE 78
    Comp.
    Item Unit Ex. 190 Ex. 191 Ex. 192 Ex. 99 Ex. 193 Ex. 194 Ex. 195 Ex. 196
    HFO-1132(E) Mass % 35.0 40.0 45.0 50.0 10.0 15.0 20.0 25.0
    HFO-1123 Mass % 23.1 18.1 13.1 8.1 43.1 38.1 33.1 28.1
    R1234yf Mass % 20.0 20.0 20.0 20.0 25.0 25.0 25.0 25.0
    R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9
    GWP 149 149 149 149 149 149 149 149
    COP ratio % (relative 97.4 97.7 98.0 98.4 96.6 96.8 97.0 97.3
    to R410A)
    Refrigerating % (relative 100.9 100.3 99.7 99.1 100.0 99.7 99.4 98.9
    capacity ratio to R410A)
  • TABLE 79
    Comp.
    Item Unit Ex. 197 Ex. 198 Ex. 199 Ex. 200 Ex. 100 Ex. 201 Ex. 202 Ex. 203
    HFO-1132(E) Mass % 30.0 35.0 40.0 45.0 50.0 10.0 15.0 20.0
    HFO-1123 Mass % 23.1 18.1 13.1 8.1 3.1 38.1 33.1 28.1
    R1234yf Mass % 25.0 25.0 25.0 25.0 25.0 30.0 30.0 30.0
    R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9
    GWP 149 149 149 149 149 150 150 150
    COP ratio % (relative 97.6 97.9 98.2 98.5 98.9 97.1 97.3 97.6
    to R410A)
    Refrigerating % (relative 98.5 97.9 97.4 96.8 96.1 97.0 96.7 96.3
    capacity ratio to R410A)
  • TABLE 80
    Item Unit Ex. 204 Ex. 205 Ex. 206 Ex. 207 Ex. 208 Ex. 209 Ex. 210 Ex. 211
    HFO-1132(E) Mass % 25.0 30.0 35.0 40.0 45.0 10.0 15.0 20.0
    HFO-1123 Mass % 23.1 18.1 13.1 8.1 3.1 33.1 28.1 23.1
    R1234yf Mass % 30.0 30.0 30.0 30.0 30.0 35.0 35.0 35.0
    R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9
    GWP 150 150 150 150 150 150 150 150
    COP ratio % (relative 97.8 98.1 98.4 98.7 99.1 97.7 97.9 98.1
    to R410A)
    Refrigerating % (relative 95.9 95.4 94.9 94.4 93.8 93.9 93.6 93.3
    capacity ratio to R410A)
  • TABLE 81
    Item Unit Ex. 212 Ex. 213 Ex. 214 Ex. 215 Ex. 216 Ex. 217 Ex. 218 Ex. 219
    HFO-1132(E) Mass % 25.0 30.0 35.0 40.0 10.0 15.0 20.0 25.0
    HFO-1123 Mass % 18.1 13.1 8.1 3.1 28.1 23.1 18.1 13.1
    R1234yf Mass % 35.0 35.0 35.0 35.0 40.0 40.0 40.0 40.0
    R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9
    GWP 150 150 150 150 150 150 150 150
    COP ratio % (relative 98.4 98.7 99.0 99.3 98.3 98.5 98.7 99.0
    to R410A)
    Refrigerating % (relative 92.9 92.4 91.9 91.3 90.8 90.5 90.2 89.7
    capacity ratio to R410A)
  • TABLE 82
    Comp.
    Item Unit Ex. 220 Ex. 221 Ex. 222 Ex. 223 Ex. 224 Ex. 225 Ex. 226 Ex. 101
    HFO-1132(E) Mass % 30.0 35.0 10.0 15.0 20.0 25.0 30.0 10.0
    HFO-1123 Mass % 8.1 3.1 23.1 18.1 13.1 8.1 3.1 18.1
    R1234yf Mass % 40.0 40.0 45.0 45.0 45.0 45.0 45.0 50.0
    R32 Mass % 21.9 21.9 21.9 21.9 21.9 21.9 21.9 21.9
    GWP 150 150 150 150 150 150 150 150
    COP ratio % (relative 99.3 99.6 98.9 99.1 99.3 99.6 99.9 99.6
    to R410A)
    Refrigerating % (relative 89.3 88.8 87.6 87.3 87.0 86.6 86.2 84.4
    capacity ratio to R410A)
  • TABLE 83
    Comp. Comp. Comp.
    Item Unit Ex. 102 Ex. 103 Ex. 104
    HFO-1132(E) Mass % 15.0 20.0 25.0
    HFO-1123 Mass % 13.1 8.1 3.1
    R1234yf Mass % 50.0 50.0 50.0
    R32 Mass % 21.9 21.9 21.9
    GWP 150 150 150
    COP ratio % (relative 99.8 100.0 100.2
    to R410A)
    Refrigerating % (relative 84.1 83.8 83.4
    capacity ratio to R410A)
  • TABLE 84
    Comp.
    Item Unit Ex. 227 Ex. 228 Ex. 229 Ex. 230 Ex. 231 Ex. 232 Ex. 233 Ex. 105
    HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0
    HFO-1123 Mass % 55.7 50.7 45.7 40.7 35.7 30.7 25.7 20.7
    R1234yf Mass % 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
    R32 Mass % 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3
    GWP 199 199 199 199 199 199 199 199
    COP ratio % (relative 95.9 96.0 96.2 96.3 96.6 96.8 97.1 97.3
    to R410A)
    Refrigerating % (relative 112.2 111.9 111.6 111.2 110.7 110.2 109.6 109.0
    capacity ratio to R410A)
  • TABLE 85
    Comp.
    Item Unit Ex. 234 Ex. 235 Ex. 236 Ex. 237 Ex. 238 Ex. 239 Ex. 240 Ex. 106
    HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0
    HFO-1123 Mass % 50.7 45.7 40.7 35.7 30.7 25.7 20.7 15.7
    R1234yf Mass % 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
    R32 Mass % 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3
    GWP 199 199 199 199 199 199 199 199
    COP ratio % (relative 96.3 96.4 96.6 96.8 97.0 97.2 97.5 97.8
    to R410A)
    Refrigerating % (relative 109.4 109.2 108.8 108.4 107.9 107.4 106.8 106.2
    capacity ratio to R410A)
  • TABLE 86
    Comp.
    Item Unit Ex. 241 Ex. 242 Ex. 243 Ex. 244 Ex. 245 Ex. 246 Ex. 247 Ex. 107
    HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0
    HFO-1123 Mass % 45.7 40.7 35.7 30.7 25.7 20.7 15.7 10.7
    R1234yf Mass % 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0
    R32 Mass % 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3
    GWP 199 199 199 199 199 199 199 199
    COP ratio % (relative 96.7 96.8 97.0 97.2 97.4 97.7 97.9 98.2
    to R410A)
    Refrigerating % (relative 106.6 106.3 106.0 105.5 105.1 104.5 104.0 103.4
    capacity ratio to R410A)
  • TABLE 87
    Comp.
    Item Unit Ex. 248 Ex. 249 Ex. 250 Ex. 251 Ex. 252 Ex. 253 Ex. 254 Ex. 108
    HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0
    HFO-1123 Mass % 40.7 35.7 30.7 25.7 20.7 15.7 10.7 5.7
    R1234yf Mass % 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
    R32 Mass % 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3
    GWP 199 199 199 199 199 199 199 199
    COP ratio % (relative 97.1 97.3 97.5 97.7 97.9 98.1 98.4 98.7
    to R410A)
    Refrigerating % (relative 103.7 103.4 103.0 102.6 102.2 101.6 101.1 100.5
    capacity ratio to R410A)
  • TABLE 88
    Item Unit Ex. 255 Ex. 256 Ex. 257 Ex. 258 Ex. 259 Ex. 260 Ex. 261 Ex. 262
    HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 40.0 10.0
    HFO-1123 Mass % 35.7 30.7 25.7 20.7 15.7 10.7 5.7 30.7
    R1234yf Mass % 25.0 25.0 25.0 25.0 25.0 25.0 25.0 30.0
    R32 Mass % 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3
    GWP 199 199 199 199 199 199 199 199
    COP ratio % (relative 97.6 97.7 97.9 98.1 98.4 98.6 98.9 98.1
    to R410A)
    Refrigerating % (relative 100.7 100.4 100.1 99.7 99.2 98.7 98.2 97.7
    capacity ratio to R410A)
  • TABLE 89
    Item Unit Ex. 263 Ex. 264 Ex. 265 Ex. 266 Ex. 267 Ex. 268 Ex. 269 Ex. 270
    HFO-1132(E) Mass % 15.0 20.0 25.0 30.0 35.0 10.0 15.0 20.0
    HFO-1123 Mass % 25.7 20.7 15.7 10.7 5.7 25.7 20.7 15.7
    R1234yf Mass % 30.0 30.0 30.0 30.0 30.0 35.0 35.0 35.0
    R32 Mass % 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3
    GWP 199 199 199 199 199 200 200 200
    COP ratio % (relative 98.2 98.4 98.6 98.9 99.1 98.6 98.7 98.9
    to R410A)
    Refrigerating % (relative 97.4 97.1 96.7 96.2 95.7 94.7 94.4 94.0
    capacity ratio to R410A)
  • TABLE 90
    Item Unit Ex. 271 Ex. 272 Ex. 273 Ex. 274 Ex. 275 Ex. 276 Ex. 277 Ex. 278
    HFO-1132(E) Mass % 25.0 30.0 10.0 15.0 20.0 25.0 10.0 15.0
    HFO-1123 Mass % 10.7 5.7 20.7 15.7 10.7 5.7 15.7 10.7
    R1234yf Mass % 35.0 35.0 40.0 40.0 40.0 40.0 45.0 45.0
    R32 Mass % 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3
    GWP 200 200 200 200 200 200 200 200
    COP ratio % (relative 99.2 99.4 99.1 99.3 99.5 99.7 99.7 99.8
    to R410A)
    Refrigerating % (relative 93.6 93.2 91.5 91.3 90.9 90.6 88.4 88.1
    capacity ratio to R410A)
  • TABLE 91
    Comp. Comp.
    Item Unit Ex. 279 Ex. 280 Ex. 109 Ex. 110
    HFO-1132(E) Mass % 20.0 10.0 15.0 10.0
    HFO-1123 Mass % 5.7 10.7 5.7 5.7
    R1234yf Mass % 45.0 50.0 50.0 55.0
    R32 Mass % 29.3 29.3 29.3 29.3
    GWP 200 200 200 200
    COP ratio % (relative 100.0 100.3 100.4 100.9
    to R410A)
    Refrigerating % (relative 87.8 85.2 85.0 82.0
    capacity ratio to R410A)
  • TABLE 92
    Comp.
    Item Unit Ex. 281 Ex. 282 Ex. 283 Ex. 284 Ex. 285 Ex. 111 Ex. 286 Ex. 287
    HFO-1132(E) Mass % 10.0 15.0 20.0 25.0 30.0 35.0 10.0 15.0
    HFO-1123 Mass % 40.9 35.9 30.9 25.9 20.9 15.9 35.9 30.9
    R1234yf Mass % 5.0 5.0 5.0 5.0 5.0 5.0 10.0 10.0
    R32 Mass % 44.1 44.1 44.1 44.1 44.1 44.1 44.1 44.1
    GWP 298 298 298 298 298 298 299 299
    COP ratio % (relative 97.8 97.9 97.9 98.1 98.2 98.4 98.2 98.2
    to R410A)
    Refrigerating % (relative 112.5 112.3 111.9 111.6 111.2 110.7 109.8 109.5
    capacity ratio to R410A)
  • TABLE 93
    Comp.
    Item Unit Ex. 288 Ex. 289 Ex. 290 Ex. 112 Ex. 291 Ex. 292 Ex. 293 Ex. 294
    HFO-1132(E) Mass % 20.0 25.0 30.0 35.0 10.0 15.0 20.0 25.0
    HFO-1123 Mass % 25.9 20.9 15.9 10.9 30.9 25.9 20.9 15.9
    R1234yf Mass % 10.0 10.0 10.0 10.0 15.0 15.0 15.0 15.0
    R32 Mass % 44.1 44.1 44.1 44.1 44.1 44.1 44.1 44.1
    GWP 299 299 299 299 299 299 299 299
    COP ratio % (relative 98.3 98.5 98.6 98.8 98.6 98.6 98.7 98.9
    to R410A)
    Refrigerating % (relative 109.2 108.8 108.4 108.0 107.0 106.7 106.4 106.0
    capacity ratio to R410A)
  • TABLE 94
    Comp.
    Item Unit Ex. 295 Ex. 113 Ex. 296 Ex. 297 Ex. 298 Ex. 299 Ex. 300 Ex. 301
    HFO-1132(E) Mass % 30.0 35.0 10.0 15.0 20.0 25.0 30.0 10.0
    HFO-1123 Mass % 10.9 5.9 25.9 20.9 15.9 10.9 5.9 20.9
    R1234yf Mass % 15.0 15.0 20.0 20.0 20.0 20.0 20.0 25.0
    R32 Mass % 44.1 44.1 44.1 44.1 44.1 44.1 44.1 44.1
    GWP 299 299 299 299 299 299 299 299
    COP ratio % (relative 99.0 99.2 99.0 99.0 99.2 99.3 99.4 99.4
    to R410A)
    Refrigerating % (relative 105.6 105.2 104.1 103.9 103.6 103.2 102.8 101.2
    capacity ratio to R410A)
  • TABLE 95
    Item Unit Ex. 302 Ex. 303 Ex. 304 Ex. 305 Ex. 306 Ex. 307 Ex. 308 Ex. 309
    HFO-1132(E) Mass % 15.0 20.0 25.0 10.0 15.0 20.0 10.0 15.0
    HFO-1123 Mass % 15.9 10.9 5.9 15.9 10.9 5.9 10.9 5.9
    R1234yf Mass % 25.0 25.0 25.0 30.0 30.0 30.0 35.0 35.0
    R32 Mass % 44.1 44.1 44.1 44.1 44.1 44.1 44.1 44.1
    GWP 299 299 299 299 299 299 299 299
    COP ratio % (relative 99.5 99.6 99.7 99.8 99.9 100.0 100.3 100.4
    to R410A)
    Refrigerating % (relative 101.0 100.7 100.3 98.3 98.0 97.8 95.3 95.1
    capacity ratio to R410A)
  • TABLE 96
    Item Unit Ex. 400
    HFO-1132(E) Mass % 10.0
    HFO-1123 Mass % 5.9
    R1234yf Mass % 40.0
    R32 Mass % 44.1
    GWP 299
    COP ratio % (relative to R410A) 100.7
    Refrigerating capacity ratio % (relative to R410A) 92.3
  • The above results indicate that the refrigerating capacity ratio relative to R410A is 85% or more in the following cases:
  • When the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum is respectively represented by x, y, z, and a, in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass %, a straight line connecting a point (0.0, 100.0−a, 0.0) and a point (0.0, 0.0, 100.0−a) is the base, and the point (0.0, 100.0−a, 0.0) is on the left side, if 0<a≤11.1, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0134a2−1.9681a+68.6, 0.0, −0.0134a2+0.9681a+31.4) and point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3);
  • if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0112a2−1.9337a+68.484, 0.0, −0.0112a2+0.9337a+31.516) and point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801);
  • if 18.2a<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0107a2−1.9142a+68.305, 0.0, −0.0107a2+0.9142a+31.695) and point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682);
  • if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207) and point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714); and
  • if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9) and point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05).
  • Actual points having a refrigerating capacity ratio of 85% or more form a curved line that connects point A and point B in FIG. 3, and that extends toward the 1234yf side. Accordingly, when coordinates are on, or on the left side of, the straight line AB, the refrigerating capacity ratio relative to R410A is 85% or more.
  • Similarly, it was also found that in the ternary composition diagram, if 0<a≤11.1, when coordinates (x,y,z) are on, or on the left side of, a straight line D′C that connects point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6) and point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0); or if 11.1<a≤46.7, when coordinates are in the entire region, the COP ratio relative to that of R410A is 92.5% or more.
  • In FIG. 3, the COP ratio of 92.5% or more forms a curved line CD. In FIG. 3, an approximate line formed by connecting three points: point C (32.9, 67.1, 0.0) and points (26.6, 68.4, 5) (19.5, 70.5, 10) where the COP ratio is 92.5% when the concentration of R1234yf is 5 mass % and 10 mass was obtained, and a straight line that connects point C and point D′ (0, 75.4, 24.6), which is the intersection of the approximate line and a point where the concentration of HFO-1132(E) is 0.0 mass % was defined as a line segment D′C. In FIG. 4, point D′(0, 83.4, 9.5) was similarly obtained from an approximate curve formed by connecting point C (18.4, 74.5, 0) and points (13.9, 76.5, 2.5) (8.7, 79.2, 5) where the COP ratio is 92.5%, and a straight line that connects point C and point D′ was defined as the straight line D′C.
  • The composition of each mixture was defined as WCF. A leak simulation was performed using NIST Standard Reference Database REFLEAK Version 4.0 under the conditions of Equipment, Storage, Shipping, Leak, and Recharge according to the ASHRAE Standard 34-2013. The most flammable fraction was defined as WCFF.
  • For the flammability, the burning velocity was measured according to the ANSI/ASHRAE Standard 34-2013. Both WCF and WCFF having a burning velocity of 10 cm/s or less were determined to be classified as “Class 2L (lower flammability).”
  • A burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner. First, the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge. The burning velocity was measured by the closed method. The initial temperature was ambient temperature. Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using schlieren photographs. A cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source. Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.
  • The results are shown in Tables 97 to 104.
  • TABLE 97
    Comp. Comp. Comp. Comp. Comp. Comp.
    Item Ex. 6 Ex. 13 Ex. 19 Ex. 24 Ex. 29 Ex. 34
    WCF HFO-1132(E) Mass % 72.0 60.9 55.8 52.1 48.6 45.4
    HFO-1123 Mass % 28.0 32.0 33.1 33.4 33.2 32.7
    R1234yf Mass % 0.0 0.0 0.0 0 0 0
    R32 Mass % 0.0 7.1 11.1 14.5 18.2 21.9
    Burning velocity (WCF) cm/s 10 10 10 10 10 10
  • TABLE 98
    Comp. Comp. Comp. Comp. Comp.
    Item Ex. 39 Ex. 45 Ex. 51 Ex. 57 Ex. 62
    WCF HFO-1132(E) Mass % 41.8 40 35.7 32 30.4
    HFO-1123 Mass % 31.5 30.7 23.6 23.9 21.8
    R1234yf Mass % 0 0 0 0 0
    R32 Mass % 26.7 29.3 36.7 44.1 47.8
    Burning velocity (WCF) cm/s 10 10 10 10 10
  • TABLE 99
    Comp. Comp. Comp. Comp. Comp. Comp.
    Item Ex. 7 Ex. 14 Ex. 20 Ex. 25 Ex. 30 Ex. 35
    WCF HFO-1132(E) Mass % 72.0 60.9 55.8 52.1 48.6 45.4
    HFO-1123 Mass % 0.0 0.0 0.0 0 0 0
    R1234yf Mass % 28.0 32.0 33.1 33.4 33.2 32.7
    R32 Mass % 0.0 7.1 11.1 14.5 18.2 21.9
    Burning velocity (WCF) cm/s 10 10 10 10 10 10
  • TABLE 100
    Comp. Comp. Comp. Comp. Comp.
    Item Ex. 40 Ex. 46 Ex. 52 Ex. 58 Ex. 63
    WCF HFO-1132(E) Mass % 41.8 40 35.7 32 30.4
    HFO-1123 Mass % 0 0 0 0 0
    R1234yf Mass % 31.5 30.7 23.6 23.9 21.8
    R32 Mass % 26.7 29.3 36.7 44.1 47.8
    Burning velocity (WCF) cm/s 10 10 10 10 10
  • TABLE 101
    Comp. Comp. Comp. Comp. Comp. Comp.
    Item Ex. 8 Ex. 15 Ex. 21 Ex. 26 Ex. 31 Ex. 36
    WCF HFO-1132(E) Mass % 47.1 40.5 37.0 34.3 32.0 30.3
    HFO-1123 Mass % 52.9 52.4 51.9 51.2 49.8 47.8
    R1234yf Mass % 0.0 0.0 0.0  0.0 0.0 0.0
    R32 Mass % 0.0 7.1 11.1 14.5 18.2 21.9
    Leak condition that Storage/ Storage/ Storage/ Storage/ Storage/ Storage/
    results in WCFF Shipping −40° Shipping −40° Shipping −40° Shipping −40° Shipping −40° Shipping −40°
    C., 92% C., 92% C., 92% C., 92% C., 92% C., 92%
    release, liquid release, liquid release, liquid release, liquid release, liquid release, liquid
    phase side phase side phase side phase side phase side phase side
    WCFF HFO-1132(E) Mass % 72.0 62.4 56.2 50.6 45.1 40.0
    HFO-1123 Mass % 28.0 31.6 33.0 33.4 32.5 30.5
    R1234yf Mass % 0.0 0.0 0.0 20.4 0.0 0.0
    R32 Mass % 0.0 50.9 10.8 16.0 22.4 29.5
    Burning velocity (WCF) cm/s 8 or less 8 or less 8 or less 8 or less 8 or less 8 or less
    Burning velocity (WCFF) cm/s 10 10 10 10   10 10
  • TABLE 102
    Comp. Comp. Comp. Comp. Comp.
    Item Ex. 41 Ex. 47 Ex. 53 Ex. 59 Ex. 64
    WCF HFO-1132(E) Mass % 29.1 28.8 29.3 29.4 28.9
    HFO-1123 Mass % 44.2 41.9 34.0 26.5 23.3
    R1234yf Mass % 0.0 0.0 0.0 0.0 0.0
    R32 Mass % 26.7 29.3 36.7 44.1 47.8
    Leak condition that Storage/ Storage/ Storage/ Storage/ Storage/
    results in WCFF Shipping −40° Shipping −40° Shipping −40° Shipping −40° Shipping −40°
    C., 92% C., 92% C., 92% C., 90% C., 86%
    release, liquid release, liquid release, liquid release, gas release, gas
    phase side phase side phase side phase side phase side
    WCFF HFO-1132(E) Mass % 34.6 32.2 27.7 28.3 27.5
    HFO-1123 Mass % 26.5 23.9 17.5 18.2 16.7
    R1234yf Mass % 0.0 0.0 0.0 0.0 0.0
    R32 Mass % 38.9 43.9 54.8 53.5 55.8
    Burning velocity (WCF) cm/s 8 or less 8 or less 8.3 9.3 9.6
    Burning velocity (WCFF) cm/s 10 10 10 10 10
  • TABLE 103
    Comp. Comp. Comp. Comp Comp. Comp.
    Item Ex. 9 Ex. 16 Ex. 22 Ex. 27 Ex. 32 Ex. 37
    WCF HFO-1132(E) Mass % 61.7 47.0 41.0 36.5 32.5 28.8
    HFO-1123 Mass % 5.9 7.2  6.5  5.6 4.0 2.4
    R1234yf Mass % 32.4 38.7 41.4 43.4 45.3 46.9
    R32 Mass % 0.0 7.1 11.1 14.5 18.2 21.9
    Leak condition that Storage/ Storage/ Storage/ Storage/ Storage/ Storage/
    results in WCFF Shipping −40° Shipping −40° Shipping −40° Shipping −40° Shipping −40° Shipping −40°
    C., 0% C., 0% C., 0% C., 92% C., 0% C., 0%
    release, gas release, gas release, gas release, liquid release, gas release, gas
    phase side phase side phase side phase side phase side phase side
    WCFF HFO-1132(E) Mass % 72.0 56.2 50.4 46.0 42.4 39.1
    HFO-1123 Mass % 10.5 12.6 11.4 10.1 7.4 4.4
    R1234yf Mass % 17.5 20.4 21.8 22.9 24.3 25.7
    R32 Mass % 0.0 10.8 16.3 21.0 25.9 30.8
    Burning velocity (WCF) cm/s 8 or less 8 or less 8 or less 8 or less 8 or less 8 or less
    Burning velocity (WCFF) cm/s 10 10 10   10   10 10
  • TABLE 104
    Comp. Comp. Comp. Comp. Comp.
    Item Ex. 42 Ex. 48 Ex. 54 Ex. 60 Ex. 65
    WCF HFO-1132(E) Mass % 24.8 24.3 22.5 21.1 20.4
    HFO-1123 Mass % 0.0 0.0 0.0 0.0 0.0
    R1234yf Mass % 48.5 46.4 40.8 34.8 31.8
    R32 Mass % 26.7 29.3 36.7 44.1 47.8
    Leak condition that Storage/ Storage/ Storage/ Storage/ Storage/
    results in WCFF Shipping −40° Shipping −40° Shipping −40° Shipping −40° Shipping −40°
    C., 0% C., 0% C., 0% C., 0% C., 0%
    release, gas release, gas release, gas release, gas release, gas
    phase side phase side phase side phase side phase side
    WCFF HFO-1132(E) Mass % 35.3 34.3 31.3 29.1 28.1
    HFO-1123 Mass % 0.0 0.0 0.0 0.0 0.0
    R1234yf Mass % 27.4 26.2 23.1 19.8 18.2
    R32 Mass % 37.3 39.6 45.6 51.1 53.7
    Burning velocity (WCF) cm/s 8 or less 8 or less 8 or less 8 or less 8 or less
    Burning velocity (WCFF) cm/s 10 10 10 10 10
  • The results in Tables 97 to 100 indicate that the refrigerant has a WCF lower flammability in the following cases:
  • When the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum in the mixed refrigerant of HFO-1132(E), HFO-1123, R1234yf, and R32 is respectively represented by x, y, z, and a, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass % and a straight line connecting a point (0.0, 100.0−a, 0.0) and a point (0.0, 0.0, 100.0−a) is the base, if 0<a≤11.1, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.026a2−1.7478a+72.0, −0.026a2+0.7478a+28.0, 0.0) and point I (0.026a2−1.7478a+72.0, 0.0, −0.026a2+0.7478a+28.0);
  • if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.02a2−1.6013a+71.105, −0.02a2+0.6013a+28.895, 0.0) and point I (0.02a2−1.6013a+71.105, 0.0, −0.02a2+0.6013a+28.895); if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.0135a2−1.4068a+69.727, −0.0135a2+0.4068a+30.273, 0.0) and point I (0.0135a2−1.4068a+69.727, 0.0, −0.0135a2+0.4068a+30.273); if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.0111a2−1.3152a+68.986, −0.0111a2+0.3152a+31.014, 0.0) and point I (0.0111a2−1.3152a+68.986, 0.0, −0.0111a2+0.3152a+31.014); and if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.0061a2−0.9918a+63.902, −0.0061a2−0.0082a+36.098, 0.0) and point I (0.0061a2−0.9918a+63.902, 0.0, −0.0061a2−0.0082a+36.098).
  • Three points corresponding to point G (Table 105) and point I (Table 106) were individually obtained in each of the following five ranges by calculation, and their approximate expressions were obtained.
  • TABLE 105
    Item 11.1 ≥ R32 > 0 18.2 ≥ R32 ≥ 11.1 26.7 ≥ R32 ≥ 18.2
    R32 0 7.1 11.1 11.1 14.5 18.2 18.2 21.9 26.7
    HFO-1132(E) 72.0 60.9 55.8 55.8 52.1 48.6 48.6 45.4 41.8
    HFO-1123 28.0 32.0 33.1 33.1 33.4 33.2 33.2 32.7 31.5
    R1234yf 0 0 0 0 0 0 0 0 0
    R32 a a a
    HFO-1132(E) 0.026a2 − 1.7478a + 72.0 0.02a2 − 1.6013a + 71.105  0.0135a2 − 1.4068a + 69.727
    Approximate
    expression
    HFO-1123 −0.026a2 + 0..7478a + 28.0 −0.02a2 + 0..6013a + 28.895 −0.0135a2 + 0.4068a + 30.273
    Approximate
    expression
    R1234yf
    0 0 0
    Approximate
    expression
    Item 36.7 ≥ R32 ≥ 26.7 46.7 ≥ R32 ≥ 36.7
    R32 26.7 29.3 36.7 36.7 44.1 47.8
    HFO-1132(E) 41.8 40.0 35.7 35.7 32.0 30.4
    HFO-1123 31.5 30.7 27.6 27.6 23.9 21.8
    R1234yf 0 0 0 0 0 0
    R32 a a
    HFO-1132(E)  0.0111a2 − 1.3152a + 68.986  0.0061a2 − 0.9918a + 63.902
    Approximate
    expression
    HFO-1123 −0.0111a2 + 0.3152a + 31.014 −0.0061a2 − 0.0082a + 36.098
    Approximate
    expression
    R1234yf
    0 0
    Approximate
    expression
  • TABLE 106
    Item 11.1 ≥ R32 > 0 18.2 ≥ R32 ≥ 11.1 26.7 ≥ R32 ≥ 18.2
    R32 0 7.1 11.1 11.1 14.5 18.2 18.2 21.9 26.7
    HFO-1132(E) 72.0 60.9 55.8 55.8 52.1 48.6 48.6 45.4 41.8
    HFO-1123 0 0 0 0 0 0 0 0 0
    R1234yf 28.0 32.0 33.1 33.1 33.4 33.2 33.2 32.7 31.5
    R32 a a a
    HFO-1132(E)  0.026a2 − 1.7478a + 72.0  0.02a2 − 1.6013a + 71.105  0.0135a2 − 1.4068a + 69.727
    Approximate
    expression
    HFO-1123 0 0 0
    Approximate
    expression
    R1234yf −0.026a2 + 0.7478a + 28.0 −0.02a2 + 0.6013a + 28.895 −0.0135a2 + 0.4068a + 30.273
    Approximate
    expression
    Item 36.7 ≥ R32 ≥ 26.7 46.7 ≥ R32 ≥ 36.7
    R32 26.7 29.3 36.7 36.7 44.1 47.8
    HFO-1132(E) 41.8 40.0 35.7 35.7 32.0 30.4
    HFO-1123 0 0 0 0 0 0
    R1234yf 31.5 30.7 23.6 23.6 23.5 21.8
    R32 x x
    HFO-1132(E)  0.0111a2 − 1.3152a + 68.986  0.0061a2 − 0.9918a + 63.902
    Approximate
    expression
    HFO-1123 0 0
    Approximate
    expression
    R1234yf −0.0111a2 + 0.3152a + 31.014 −0.0061a2 − 0.0082a + 36.098
    Approximate
    expression
  • The results in Tables 101 to 104 indicate that the refrigerant is determined to have a WCFF lower flammability, and the flammability classification according to the ASHRAE Standard is “2L (flammability)” in the following cases:
  • When the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum in the mixed refrigerant of HFO-1132(E), HFO-1123, R1234yf, and R32 is respectively represented by x, y, z, and a, in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass % and a straight line connecting a point (0.0, 100.0−a, 0.0) and a point (0.0, 0.0, 100.0−a) is the base, if 0<a≤11.1, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line JK′ that connects point J (0.0049a2−0.9645a+47.1, −0.0049a2−0.0355a+52.9, 0.0) and point K′(0.0514a2−2.4353a+61.7, −0.0323a2+0.4122a+5.9, −0.0191a2+1.0231a+32.4); if 11.1<a≤18.2, coordinates are on a straight line JK′ that connects point J (0.0243a2−1.4161a+49.725, −0.0243a2+0.4161a+50.275, 0.0) and point K′(0.0341a2−2.1977a+61.187, −0.0236a2+0.34a+5.636, −0.0105a2+0.8577a+33.177); if 18.2<a≤26.7, coordinates are on or below a straight line JK′ that connects point J (0.0246a2−1.4476a+50.184, −0.0246a2+0.4476a+49.816, 0.0) and point K′ (0.0196a2−1.7863a+58.515, −0.0079a2−0.1136a+8.702, −0.0117a2+0.8999a+32.783); if 26.7<a≤36.7, coordinates are on or below a straight line JK′ that connects point J (0.0183a2−1.1399a+46.493, −0.0183a2+0.1399a+53.507, 0.0) and point K′ (−0.0051a2+0.0929a+25.95, 0.0, 0.0051a2−1.0929a+74.05); and if 36.7<a≤46.7, coordinates are on or below a straight line JK′ that connects point J (−0.0134a2+1.0956a+7.13, 0.0134a2−2.0956a+92.87, 0.0) and point K′(−1.892a+29.443, 0.0, 0.892a+70.557).
  • Actual points having a WCFF lower flammability form a curved line that connects point J and point K′ (on the straight line AB) in FIG. 3 and extends toward the HFO-1132(E) side. Accordingly, when coordinates are on or below the straight line JK′, WCFF lower flammability is achieved.
  • Three points corresponding to point J (Table 107) and point K′ (Table 108) were individually obtained in each of the following five ranges by calculation, and their approximate expressions were obtained.
  • TABLE 107
    Item 11.1 ≥ R32 > 0 18.2 ≥ R32 ≥ 11.1 26.7 ≥ R32 ≥ 18.2
    R32 0 7.1 11.1 11.1 14.5 18.2 18.2 21.9 26.7
    HFO-1132(E) 47.1 40.5 37 37.0 34.3 32.0 32.0 30.3 29.1
    HFO-1123 52.9 52.4 51.9 51.9 51.2 49.8 49.8 47.8 44.2
    R1234yf 0 0 0 0 0 0 0 0 0
    R32 a a a
    HFO-1132(E)  0.0049a2 − 0.9645a + 47.1  0.0243a2 − 1.4161a + 49.725  0.0246a2 − 1.4476a + 50.184
    Approximate
    expression
    HFO-1123 −0.0049a2 − 0.0355a + 52.9 −0.0243a2 + 0.4161a + 50.275 −0.0246a2 + 0.4476a + 49.816
    Approximate
    expression
    R1234yf
    0 0 0
    Approximate
    expression
    Item 36.7 ≥ R32 ≥ 26.7 47.8 ≥ R32 ≥ 36.7
    R32 26.7 29.3 36.7 36.7 44.1 47.8
    HFO-1132(E) 29.1 28.8 29.3 29.3 29.4 28.9
    HFO-1123 44.2 41.9 34.0 34.0 26.5 23.3
    R1234yf 0 0 0 0 0 0
    R32 a a
    HFO-1132(E)  0.0183a2 − 1.1399a + 46.493 −0.0134a2 + 1.0956a + 7.13
    Approximate
    expression
    HFO-1123 −0.0183a2 + 0.1399a + 53.507  0.0134a2 − 2.0956a + 92.87
    Approximate
    expression
    R1234yf
    0 0
    Approximate
    expression
  • TABLE 108
    Item 11.1 ≥ R32 > 0 18.2 ≥ R32 ≥ 11.1 26.7 ≥ R32 ≥ 18.2
    R32 0 7.1 11.1 11.1 14.5 18.2 18.2 21.9 26.7
    HFO-1132(E) 61.7 47.0 41.0 41.0 36.5 32.5 32.5 28.8 24.8
    HFO-1123 5.9 7.2 6.5 6.5 5.6 4.0 4.0 2.4 0
    R1234yf 32.4 38.7 41.4 41.4 43.4 45.3 45.3 46.9 48.5
    R32 x x x
    HFO-1132(E)  0.0514a2 − 2.4353a + 61.7  0.0341a2 − 2.1977a + 61.187  0.0196a2 − 1.7863a + 58.515
    Approximate
    expression
    HFO-1123 −0.0323a2 + 0.4122a + 5.9  −0.0236a2 + 0.34a + 5.636 −0.0079a2 − 0.1136a + 8.702 
    Approximate
    expression
    R1234yf −0.0191a2 + 1.0231a + 32.4 −0.0105a2 + 0.8577a + 33.177 −0.0117a2 + 0.8999a + 32.783
    Approximate
    expression
    Item 36.7 ≥ R32 ≥ 26.7 46.7 ≥ R32 ≥ 36.7
    R32 26.7 29.3 36.7 36.7 44.1 47.8
    HFO-1132(E) 24.8 24.3 22.5 22.5 21.1 20.4
    HFO-1123 0 0 0 0 0 0
    R1234yf 48.5 46.4 40.8 40.8 34.8 31.8
    R32 x x
    HFO-1132(E) −0.0051a2 + 0.0929a + 25.95 −1.892a + 29.443
    Approximate
    expression
    HFO-1123 0 0
    Approximate
    expression
    R1234yf  0.0051a2 − 1.0929a + 74.05  0.892a + 70.557
    Approximate
    expression
  • FIGS. 3 to 13 show compositions whose R32 content a (mass %) is 0 mass %, 7.1 mass %, 11.1 mass %, 14.5 mass %, 18.2 mass %, 21.9 mass %, 26.7 mass %, 29.3 mass %, 36.7 mass %, 44.1 mass %, and 47.8 mass %, respectively.
  • Points A, B, C, and D′ were obtained in the following manner according to approximate calculation.
  • Point A is a point where the content of HFO-1123 is 0 mass %, and a refrigerating capacity ratio of 85% relative to that of R410A is achieved. Three points corresponding to point A were obtained in each of the following five ranges by calculation, and their approximate expressions were obtained (Table 109).
  • TABLE 109
    Item 11.1 ≥ R32 > 0 18.2 ≥ R32 ≥ 11.1 26.7 ≥ R32 ≥ 18.2
    R32 0 7.1 11.1 11.1 14.5 18.2 18.2 21.9 26.7
    HFO-1132(E) 68.6 55.3 48.4 48.4 42.8 37 37 31.5 24.8
    HFO-1123 0 0 0 0 0 0 0 0 0
    R1234yf 31.4 37.6 40.5 40.5 42.7 44.8 44.8 46.6 48.5
    R32 a a a
    HFO-1132(E)  0.0134a2 − 1.9681a + 68.6  0.0112a2 − 1.9337a + 68.484  0.0107a2 − 1.9142a + 68.305
    Approximate
    expression
    HFO-1123 0 0 0
    Approximate
    expression
    R1234yf −0.0134a2 + 0.9681a + 31.4 −0.0112a2 + 0.69337a + 31.516 −0.0107a2 + 0.9142a + 31.695
    Approximate
    expression
    Item 36.7 ≥ R32 ≥ 26.7 46.7 ≥ R32 ≥ 36.7
    R32 26.7 29.3 36.7 36.7 44.1 47.8
    HFO-1132(E) 24.8 21.3 12.1 12.1 3.8 0
    HFO-1123 0 0 0 0 0 0
    R1234yf 48.5 49.4 51.2 51.2 52.1 52.2
    R32 a a
    HFO-1132(E)  0.0103a2 − 1.9225a + 68.793  0.0085a2 − 1.8102a + 67.1
    Approximate
    expression
    HFO-1123 0 0
    Approximate
    expression
    R1234yf −0.0103a2 + 0.9225a + 31..207  −0.0085a2 + 0.8102a + 32.9
    Approximate
    expression
  • Point B is a point where the content of HFO-1132(E) is 0 mass %, and a refrigerating capacity ratio of 85% relative to that of R410A is achieved.
  • Three points corresponding to point B were obtained in each of the following five ranges by calculation, and their approximate expressions were obtained (Table 110).
  • TABLE 110
    Item 11.1 ≥ R32 > 0 18.2 ≥ R32 ≥ 11.1 26.7 ≥ R32 ≥ 18.2
    R32 0 7.1 11.1 11.1 14.5 18.2 18.2 21.9 26.7
    HFO-1132(E) 0 0 0 0 0 0 0 0 0
    HFO-1123 58.7 47.8 42.3 42.3 37.8 33.1 33.1 28.5 22.9
    R1234yf 41.3 45.1 46.6 46.6 47.7 48.7 48.7 49.6 50.4
    R32 a a a
    HFO-1132(E) 0 0 0
    Approximate
    expression
    HFO-1123  0.0144a2 − 1.6377a + 58.7  0.0075a2 − 1.5156a + 58.199  0.009a2 − 1.6045a + 59.318
    Approximate
    expression
    R1234yf −0.0144a2 + 0.6377a + 41.3 −0.0075a2 + 0.5156a + 41.801 −0.009a2 + 0.6045a + 40.682
    Approximate
    expression
    Item 36.7 ≥ R32 ≥ 26.7 46.7 ≥ R32 ≥ 36.7
    R32 26.7 29.3 36.7 36.7 44.1 47.8
    HFO-1132(E) 0 0 0 0 0 0
    HFO-1123 22.9 19.9 11.7 11.8 3.9 0
    R1234yf 50.4 50.8 51.6 51.5 52.0 52.2
    R32 a a
    HFO-1132(E) 0 0
    Approximate
    expression
    HFO-1123  0.0046a2 − 1.41a + 57.286  0.0012a2 − 1.1659a + 52.95
    Approximate
    expression
    R1234yf −0.0046a2 + 0.41a + 42.714 −0.0012a2 + 0.1659a + 47.05
    Approximate
    expression
  • Point D′ is a point where the content of HFO-1132(E) is 0 mass %, and a COP ratio of 95.5% relative to that of R410A is achieved.
  • Three points corresponding to point D′ were obtained in each of the following by calculation, and their approximate expressions were obtained (Table 111).
  • TABLE 111
    Item 11.1 ≥ R32 > 0
    R32 0 7.1 11.1
    HFO-1132(E) 0 0 0
    HFO-1123 75.4 83.4 88.9
    R1234yf 24.6 9.5 0
    R32 a
    HFO-1132(E) 0
    Approximate
    expression
    HFO-1123  0.0224a2 + 0.968a + 75.4
    Approximate
    expression
    R1234yf −0.0224a2 − 1.968a + 24.6
    Approximate
    expression
  • Point C is a point where the content of R1234yf is 0 mass %, and a COP ratio of 95.5% relative to that of R410A is achieved.
  • Three points corresponding to point C were obtained in each of the following by calculation, and their approximate expressions were obtained (Table 112).
  • TABLE 112
    Item 11.1 ≥ R32 > 0
    R32 0 7.1 11.1
    HFO-1132(E) 32.9 18.4 0
    HFO-1123 67.1 74.5 88.9
    R1234yf 0 0 0
    R32 a
    HFO-1132(E) −0.2304a2 − 0.4062a + 32.9
    Approximate
    expression
    HFO-1123  0.2304a2 − 0.5938a + 67.1
    Approximate
    expression
    R1234yf
    0
    Approximate
    expression
  • (5-4) Refrigerant D
  • The refrigerant D according to the present disclosure is a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).
  • The refrigerant D according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant; i.e., a refrigerating capacity equivalent to that of R410A, a sufficiently low GWP, and a lower flammability (Class 2L) according to the ASHRAE standard.
  • The refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments IJ, JN, NE, and EI that connect the following 4 points:
  • point I (72.0, 0.0, 28.0),
    point J (48.5, 18.3, 33.2),
    point N (27.7, 18.2, 54.1), and
    point E (58.3, 0.0, 41.7),
    or on these line segments (excluding the points on the line segment EI);
  • the line segment IJ is represented by coordinates (0.0236y2−1.7616y+72.0, y, −0.0236y2+0.7616y+28.0);
  • the line segment NE is represented by coordinates (0.012y2−1.9003y+58.3, y, −0.012y2+0.9003y+41.7); and
  • the line segments JN and EI are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 125 or less, and a WCF lower flammability.
  • The refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments MM′, M′N, NV, VG, and GM that connect the following 5 points:
  • point M (52.6, 0.0, 47.4),
    point M′ (39.2, 5.0, 55.8),
    point N (27.7, 18.2, 54.1),
    point V (11.0, 18.1, 70.9), and
    point G (39.6, 0.0, 60.4),
    or on these line segments (excluding the points on the line segment GM);
  • the line segment MM′ is represented by coordinates (0.132y2−3.34y+52.6, y, −0.132y2+2.34y+47.4);
  • the line segment M′N is represented by coordinates (0.0596y2−2.2541y+48.98, y, −0.0596y2+1.2541y+51.02);
  • the line segment VG is represented by coordinates (0.0123y2−1.8033y+39.6, y, −0.0123y2+0.8033y+60.4); and
  • the line segments NV and GM are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 70% or more relative to R410A, a GWP of 125 or less, and an ASHRAE lower flammability.
  • The refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ON, NU, and UO that connect the following 3 points:
  • point O (22.6, 36.8, 40.6),
    point N (27.7, 18.2, 54.1), and
    point U (3.9, 36.7, 59.4),
    or on these line segments;
  • the line segment ON is represented by coordinates (0.0072y2−0.6701y+37.512, y, −0.0072y2−0.3299y+62.488);
  • the line segment NU is represented by coordinates (0.0083y2−1.7403y+56.635, y, −0.0083y2+0.7403y+43.365); and
  • the line segment UO is a straight line. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 250 or less, and an ASHRAE lower flammability.
  • The refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments QR, RT, TL, LK, and KQ that connect the following 5 points:
  • point Q (44.6, 23.0, 32.4),
    point R (25.5, 36.8, 37.7),
    point T (8.6, 51.6, 39.8),
    point L (28.9, 51.7, 19.4), and
    point K (35.6, 36.8, 27.6),
    or on these line segments;
  • the line segment QR is represented by coordinates (0.0099y2−1.975y+84.765, y, −0.0099y2+0.975y+15.235);
  • the line segment RT is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874);
  • the line segment LK is represented by coordinates (0.0049y2−0.8842y+61.488, y, −0.0049y2−0.1158y+38.512);
  • the line segment KQ is represented by coordinates (0.0095y2−1.2222y+67.676, y, −0.0095y2+0.2222y+32.324); and
  • the line segment TL is a straight line. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and a WCF lower flammability.
  • The refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:
  • point P (20.5, 51.7, 27.8),
    point S (21.9, 39.7, 38.4), and
    point T (8.6, 51.6, 39.8),
    or on these line segments;
  • the line segment PS is represented by coordinates (0.0064y2−0.7103y+40.1, y, −0.0064y2−0.2897y+59.9);
  • the line segment ST is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874); and
  • the line segment TP is a straight line. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and an ASHRAE lower flammability.
  • The refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ac, cf, fd, and da that connect the following 4 points:
  • point a (71.1, 0.0, 28.9),
    point c (36.5, 18.2, 45.3),
    point f (47.6, 18.3, 34.1), and
    point d (72.0, 0.0, 28.0),
    or on these line segments;
  • the line segment ac is represented by coordinates (0.0181y2−2.2288y+71.096, y, −0.0181y2+1.2288y+28.904);
  • the line segment fd is represented by coordinates (0.02y2−1.7y+72, y, −0.02y2+0.7y+28); and
  • the line segments cf and da are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to R410A, a GWP of 125 or less, and a lower flammability (Class 2L) according to the ASHRAE standard.
  • The refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ab, be, ed, and da that connect the following 4 points:
  • point a (71.1, 0.0, 28.9),
    point b (42.6, 14.5, 42.9),
    point e (51.4, 14.6, 34.0), and
    point d (72.0, 0.0, 28.0),
    or on these line segments;
  • the line segment ab is represented by coordinates (0.0181y2−2.2288y+71.096, y, −0.0181y2+1.2288y+28.904);
  • the line segment ed is represented by coordinates (0.02y2−1.7y+72, y, −0.02y2+0.7y+28); and
  • the line segments be and da are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to R410A, a GWP of 100 or less, and a lower flammability (Class 2L) according to the ASHRAE standard.
  • The refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments gi, ij, and jg that connect the following 3 points:
  • point g (77.5, 6.9, 15.6),
    point i (55.1, 18.3, 26.6), and
    point j (77.5. 18.4, 4.1),
    or on these line segments;
  • the line segment gi is represented by coordinates (0.02y2−2.4583y+93.396, y, −0.02y2+1.4583y+6.604); and
  • the line segments ij and jg are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to R410A and a GWP of 100 or less, undergoes fewer or no changes such as polymerization or decomposition, and also has excellent stability.
  • The refrigerant D according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments gh, hk, and kg that connect the following 3 points:
  • point g (77.5, 6.9, 15.6),
    point h (61.8, 14.6, 23.6), and
    point k (77.5, 14.6, 7.9),
    or on these line segments;
  • the line segment gh is represented by coordinates (0.02y2−2.4583y+93.396, y, −0.02y2+1.4583y+6.604); and
  • the line segments hk and kg are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to R410A and a GWP of 100 or less, undergoes fewer or no changes such as polymerization or decomposition, and also has excellent stability.
  • The refrigerant D according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), R32, and R1234yf, as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO-1132(E), R32, and R1234yf in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and still more preferably 99.9 mass % or more based on the entire refrigerant.
  • Such additional refrigerants are not limited, and can be selected from a wide range of refrigerants. The mixed refrigerant may comprise a single additional refrigerant, or two or more additional refrigerants.
  • (Examples of Refrigerant D)
  • The present disclosure is described in more detail below with reference to Examples of refrigerant D. However, the refrigerant D is not limited to the Examples.
  • The composition of each mixed refrigerant of HFO-1132(E), R32, and R1234yf was defined as WCF. A leak simulation was performed using the NIST Standard Reference Database REFLEAK Version 4.0 under the conditions of Equipment, Storage, Shipping, Leak, and Recharge according to the ASHRAE Standard 34-2013. The most flammable fraction was defined as WCFF.
  • A burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner. First, the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge. The burning velocity was measured by the closed method. The initial temperature was ambient temperature. Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using schlieren photographs. A cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source. Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC. Tables 113 to 115 show the results.
  • TABLE 113
    Comparative Example Example Example
    Example 13 Example 12 Example 14 Example 16
    Item Unit I 11 J 13 K 15 L
    WCF HFO-1132(E) Mass % 72 57.2 48.5 41.2 35.6 32 28.9
    R32 Mass % 0 10 18.3 27.6 36.8 44.2 51.7
    R1234yf Mass % 28 32.8 33.2 31.2 27.6 23.8 19.4
    Burning Velocity (WCF) cm/s 10 10 10 10 10 10 10
  • TABLE 114
    Comparative Example Example
    Example 14 Example 19 Example 21 Example
    Item Unit M 18 W 20 N 22
    WCF HFO-1132(E) Mass % 52.6 39.2 32.4 29.3 27.7 24.6
    R32 Mass % 0.0 5.0 10.0 14.5 18.2 27.6
    R1234yf Mass % 47.4 55.8 57.6 56.2 54.1 47.8
    Leak condition that Storage, Storage, Storage, Storage, Storage, Storage,
    results in WCFF Shipping, −40° Shipping, −40° Shipping, −40° Shipping, −40° Shipping, −40° Shipping, −40°
    C., 0% release, C., 0% release, C., 0% release, C., 0% release, C., 0% release, C., 0% release,
    on the gas on the gas on the gas on the gas on the gas on the gas
    phase side phase side phase side phase side phase side phase side
    WCF HFO-1132(E) Mass % 72.0 57.8 48.7 43.6 40.6 34.9
    R32 Mass % 0.0 9.5 17.9 24.2 28.7 38.1
    R1234yf Mass % 28.0 32.7 33.4 32.2 30.7 27.0
    Burning Velocity (WCF) cm/s 8 or less 8 or less 8 or less 8 or less 8 or less 8 or less
    Burning Velocity (WCFF) cm/s 10 10 10 10 10 10
  • TABLE 115
    Example Example
    23 Example 25
    Item Unit O 24 P
    WCF HFO-1132 Mass % 22.6 21.2 20.5
    (E)
    HFO-1123 Mass % 36.8 44.2 51.7
    R1234yf Mass % 40.6 34.6 27.8
    Leak condition Storage, Storage, Storage,
    that results Shipping, −40° Shipping, −40° Shipping, −40°
    in WCFF C., 0% release, C., 0% release, C., 0% release,
    on the gas on the gas on the gas
    phase side phase side phase side
    WCFF HFO-1132 Mass % 31.4 29.2 27.1
    (E)
    HFO-1123 Mass % 45.7 51.1 56.4
    R1234yf Mass % 23.0 19.7 16.5
    Burning cm/s 8 or less 8 or less 8 or less
    Velocity (WCF)
    Burning cm/s 10   10   10  
    Velocity (WCFF)
  • The results indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in the ternary composition diagram shown in FIG. 14 in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are on the line segment that connects point I, point J, point K, and point L, or below these line segments, the refrigerant has a WCF lower flammability.
  • The results also indicate that when coordinates (x,y,z) in the ternary composition diagram shown in FIG. 14 are on the line segments that connect point M, point M′, point W, point J, point N, and point P, or below these line segments, the refrigerant has an ASHRAE lower flammability.
  • Mixed refrigerants were prepared by mixing HFO-1132(E), R32, and R1234yf in amounts (mass %) shown in Tables 116 to 144 based on the sum of HFO-1132(E), R32, and R1234yf. The coefficient of performance (COP) ratio and the refrigerating capacity ratio relative to R410 of the mixed refrigerants shown in Tables 116 to 144 were determined. The conditions for calculation were as described below.
  • Evaporating temperature: 5° C.
  • Condensation temperature: 45° C.
  • Degree of superheating: 5 K
  • Degree of subcooling: 5 K
  • Compressor efficiency: 70%
  • Tables 116 to 144 show these values together with the GWP of each mixed refrigerant.
  • TABLE 116
    Comparative Comparative Comparative Comparative Comparative Comparative
    Comparative Example 2 Example 3 Example 4 Example 5 Example 6 Example 7
    Item Unit Example 1 A B A′ B′ A″ B″
    HFO-1132(E) Mass % R410A 81.6 0.0 63.1 0.0 48.2 0.0
    R32 Mass % 18.4 18.1 36.9 36.7 51.8 51.5
    R1234yf Mass % 0.0 81.9 0.0 63.3 0.0 48.5
    GWP 2088 125 125 250 250 350 350
    COP Ratio % (relative 100 98.7 103.6 98.7 102.3 99.2 102.2
    to R410A)
    Refrigerating % (relative 100 105.3 62.5 109.9 77.5 112.1 87.3
    Capacity Ratio to R410A)
  • TABLE 117
    Comparative Comparative Example Example
    Example 8 Comparative Example 10 Example 2 Example 4
    Item Unit C Example 9 C′ 1 R 3 T
    HFO-1132(E) Mass % 85.5 66.1 52.1 37.8 25.5 16.6 8.6
    R32 Mass % 0.0 10.0 18.2 27.6 36.8 44.2 51.6
    R1234yf Mass % 14.5 23.9 29.7 34.6 37.7 39.2 39.8
    GWP 1 69 125 188 250 300 350
    COP Ratio % (relative 99.8 99.3 99.3 99.6 100.2 100.8 101.4
    to R410A)
    Refrigerating % (relative 92.5 92.5 92.5 92.5 92.5 92.5 92.5
    Capacity Ratio to R410A)
  • TABLE 118
    Comparative Example Example Comparative Example
    Example 11 Example 6 Example 8 Example 12 Example 10
    Item Unit E 5 N 7 U G 9 V
    HFO-1132(E) Mass % 58.3 40.5 27.7 14.9 3.9 39.6 22.8 11.0
    R32 Mass % 0.0 10.0 18.2 27.6 36.7 0.0 10.0 18.1
    R1234yf Mass % 41.7 49.5 54.1 57.5 59.4 60.4 67.2 70.9
    GWP 2 70 125 189 250 3 70 125
    COP Ratio % (relative 100.3 100.3 100.7 101.2 101.9 101.4 101.8 102.3
    to R410A)
    Refrigerating % (relative 80.0 80.0 80.0 80.0 80.0 70.0 70.0 70.0
    Capacity Ratio to R410A)
  • TABLE 119
    Comparative Example Example Example Example
    Example 13 Example 12 Example 14 Example 16 17
    Item Unit I 11 J 13 K 15 L Q
    HFO-1132(E) Mass % 72.0 57.2 48.5 41.2 35.6 32.0 28.9 44.6
    R32 Mass % 0.0 10.0 18.3 27.6 36.8 44.2 51.7 23.0
    R1234yf Mass % 28.0 32.8 33.2 31.2 27.6 23.8 19.4 32.4
    GWP 2 69 125 188 250 300 350 157
    COP Ratio % (relative 99.9 99.5 99.4 99.5 99.6 99.8 100.1 99.4
    to R410A)
    Refrigerating % (relative 86.6 88.4 90.9 94.2 97.7 100.5 103.3 92.5
    Capacity Ratio to R410A)
  • TABLE 120
    Comparative Example Example
    Example 14 Example 19 Example 21 Example
    Item Unit M 18 W 20 N 22
    HFO-1132(E) Mass % 52.6 39.2 32.4 29.3 27.7 24.5
    R32 Mass % 0.0 5.0 10.0 14.5 18.2 27.6
    R1234yf Mass % 47.4 55.8 57.6 56.2 54.1 47.9
    GWP 2 36 70 100 125 188
    COP Ratio % (relative 100.5 100.9 100.9 100.8 100.7 100.4
    to R410A)
    Refrigerating % (relative 77.1 74.8 75.6 77.8 80.0 85.5
    Capacity Ratio to R410A)
  • TABLE 121
    Exam- Exam- Exam-
    ple Exam- ple ple
    23 ple 25 26
    Item Unit O 24 P S
    HFO-1132(E) Mass % 22.6 21.2 20.5 21.9
    R32 Mass % 36.8 44.2 51.7 39.7
    R1234yf Mass % 40.6 34.6 27.8 38.4
    GWP 250 300 350 270
    COP Ratio % (relative 100.4 100.5 100.6 100.4
    to R410A)
    Refrigerating % (relative 91.0 95.0 99.1 92.5
    Capacity to R410A)
    Ratio
  • TABLE 122
    Comparative Comparative Comparative Comparative Example Example Comparative Comparative
    Item Unit Example 15 Example 16 Example 17 Example 18 27 28 Example 19 Example 20
    HFO-1132(E) Mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
    R32 Mass % 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
    R1234yf Mass % 85.0 75.0 65.0 55.0 45.0 35.0 25.0 15.0
    GWP 37 37 37 36 36 36 35 35
    COP Ratio % (relative 103.4 102.6 101.6 100.8 100.2 99.8 99.6 99.4
    to R410A)
    Refrigerating % (relative 56.4 63.3 69.5 75.2 80.5 85.4 90.1 94.4
    Capacity Ratio to R410A)
  • TABLE 123
    Comparative Comparative Example Comparative Example Comparative Comparative Comparative
    Item Unit Example 21 Example 22 29 Example 23 30 Example 24 Example 25 Example 26
    HFO-1132(E) Mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
    R32 Mass % 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
    R1234yf Mass % 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0
    GWP 71 71 70 70 70 69 69 69
    COP Ratio % (relative 103.1 102.1 101.1 100.4 99.8 99.5 99.2 99.1
    to R410A)
    Refrigerating % (relative 61.8 68.3 74.3 79.7 84.9 89.7 94.2 98.4
    Capacity Ratio to R410A)
  • TABLE 124
    Comparative Example Comparative Example Example Comparative Comparative Comparative
    Item Unit Example 27 31 Example 28 32 33 Example 29 Example 30 Example 31
    HFO-1132(E) Mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
    R32 Mass % 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0
    R1234yf Mass % 75.0 65.0 55.0 45.0 35.0 25.0 15.0 5.0
    GWP 104 104 104 103 103 103 103 102
    COP Ratio % (relative 102.7 101.6 100.7 100.0 99.5 99.2 99.0 98.9
    to R410A)
    Refrigerating % (relative 66.6 72.9 78.6 84.0 89.0 93.7 98.1 102.2
    Capacity Ratio to R410A)
  • TABLE 125
    Comparative Comparative Comparative Comparative Comparative Comparative Comparative Comparative
    Item Unit Example 32 Example 33 Example 34 Example 35 Example 36 Example 37 Example 38 Example 39
    HFO-1132(E) Mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 10.0
    R32 Mass % 20.0 20.0 20.0 20.0 20.0 20.0 20.0 25.0
    R1234yf Mass % 70.0 60.0 50.0 40.0 30.0 20.0 10.0 65.0
    GWP 138 138 137 137 137 136 136 171
    COP Ratio % (relative 102.3 101.2 100.4 99.7 99.3 99.0 98.8 101.9
    to R410A)
    Refrigerating % (relative 71.0 77.1 82.7 88.0 92.9 97.5 101.7 75.0
    Capacity Ratio to R410A)
  • TABLE 126
    Example Comparative Comparative Comparative Comparative Comparative Comparative Example
    Item Unit 34 Example 40 Example 41 Example 42 Example 43 Example 44 Example 45 35
    HFO-1132(E) Mass % 20.0 30.0 40.0 50.0 60.0 70.0 10.0 20.0
    R32 Mass % 25.0 25.0 25.0 25.0 25.0 25.0 30.0 30.0
    R1234yf Mass % 55.0 45.0 35.0 25.0 15.0 5.0 60.0 50.0
    GWP 171 171 171 170 170 170 205 205
    COP Ratio % (relative 100.9 100.1 99.6 99.2 98.9 98.7 101.6 100.7
    to R410A)
    Refrigerating % (relative 81.0 86.6 91.7 96.5 101.0 105.2 78.9 84.8
    Capacity Ratio to R410A)
  • TABLE 127
    Comparative Comparative Comparative Comparative Example Example Example Comparative
    Item Unit Example 46 Example 47 Example 48 Example 49 36 37 38 Example 50
    HFO-1132(E) Mass % 30.0 40.0 50.0 60.0 10.0 20.0 30.0 40.0
    R32 Mass % 30.0 30.0 30.0 30.0 35.0 35.0 35.0 35.0
    R1234yf Mass % 40.0 30.0 20.0 10.0 55.0 45.0 35.0 25.0
    GWP 204 204 204 204 239 238 238 238
    COP Ratio % (relative 100.0 99.5 99.1 98.8 101.4 100.6 99.9 99.4
    to R410A)
    Refrigerating % (relative 90.2 95.3 100.0 104.4 82.5 88.3 93.7 98.6
    Capacity Ratio to R410A)
  • TABLE 128
    Comparative Comparative Comparative Comparative Example Comparative Comparative Comparative
    Item Unit Example 51 Example 52 Example 53 Example 54 39 Example 55 Example 56 Example 57
    HFO-1132(E) Mass % 50.0 60.0 10.0 20.0 30.0 40.0 50.0 10.0
    R32 Mass % 35.0 35.0 40.0 40.0 40.0 40.0 40.0 45.0
    R1234yf Mass % 15.0 5.0 50.0 40.0 30.0 20.0 10.0 45.0
    GWP 237 237 272 272 272 271 271 306
    COP Ratio % (relative 99.0 98.8 101.3 100.6 99.9 99.4 99.0 101.3
    to R410A)
    Refrigerating % (relative 103.2 107.5 86.0 91.7 96.9 101.8 106.3 89.3
    Capacity Ratio to R410A)
  • TABLE 129
    Example Example Comparative Comparative Comparative Example Comparative Comparative
    Item Unit 40 41 Example 58 Example 59 Example 60 42 Example 61 Example 62
    HFO-1132(E) Mass % 20.0 30.0 40.0 50.0 10.0 20.0 30.0 40.0
    R32 Mass % 45.0 45.0 45.0 45.0 50.0 50.0 50.0 50.0
    R1234yf Mass % 35.0 25.0 15.0 5.0 40.0 30.0 20.0 10.0
    GWP 305 305 305 304 339 339 339 338
    COP Ratio % (relative 100.6 100.0 99.5 99.1 101.3 100.6 100.0 99.5
    to R410A)
    Refrigerating % (relative 94.9 100.0 104.7 109.2 92.4 97.8 102.9 107.5
    Capacity Ratio to R410A)
  • TABLE 130
    Comparative Comparative Comparative Comparative Example Example Example Example
    Item Unit Example 63 Example 64 Example 65 Example 66 43 44 45 46
    HFO-1132(E) Mass % 10.0 20.0 30.0 40.0 56.0 59.0 62.0 65.0
    R32 Mass % 55.0 55.0 55.0 55.0 3.0 3.0 3.0 3.0
    R1234yf Mass % 35.0 25.0 15.0 5.0 41.0 38.0 35.0 32.0
    GWP 373 372 372 372 22 22 22 22
    COP Ratio % (relative 101.4 100.7 100.1 99.6 100.1 100.0 99.9 99.8
    to R410A)
    Refrigerating % (relative 95.3 100.6 105.6 110.2 81.7 83.2 84.6 86.0
    Capacity Ratio to R410A)
  • TABLE 131
    Example Example Example Example Example Example Example Example
    Item Unit 47 48 49 50 51 52 53 54
    HFO-1132(E) Mass % 49.0 52.0 55.0 58.0 61.0 43.0 46.0 49.0
    R32 Mass % 6.0 6.0 6.0 6.0 6.0 9.0 9.0 9.0
    R1234yf Mass % 45.0 42.0 39.0 36.0 33.0 48.0 45.0 42.0
    GWP 43 43 43 43 42 63 63 63
    COP Ratio % (relative 100.2 100.0 99.9 99.8 99.7 100.3 100.1 99.9
    to R410A)
    Refrigerating % (relative 80.9 82.4 83.9 85.4 86.8 80.4 82.0 83.5
    Capacity Ratio to R410A)
  • TABLE 132
    Example Example Example Example Example Example Example Example
    Item Unit 55 56 57 58 59 60 61 62
    HFO-1132(E) Mass % 52.0 55.0 58.0 38.0 41.0 44.0 47.0 50.0
    R32 Mass % 9.0 9.0 9.0 12.0 12.0 12.0 12.0 12.0
    R1234yf Mass % 39.0 36.0 33.0 50.0 47.0 44.0 41.0 38.0
    GWP 63 63 63 83 83 83 83 83
    COP Ratio % (relative 99.8 99.7 99.6 100.3 100.1 100.0 99.8 99.7
    to R410A)
    Refrigerating % (relative 85.0 86.5 87.9 80.4 82.0 83.5 85.1 86.6
    Capacity Ratio to R410A)
  • TABLE 133
    Item Unit Example 63 Example 64 Example 65 Example 66 Example 67 Example 68 Example 69 Example 70
    HFO-1132(E) Mass % 53.0 33.0 36.0 39.0 42.0 45.0 48.0 51.0
    R32 Mass % 12.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0
    R1234yf Mass % 35.0 52.0 49.0 46.0 43.0 40.0 37.0 34.0
    GWP 83 104 104 103 103 103 103 103
    COP Ratio % (relative 99.6 100.5 100.3 100.1 99.9 99.7 99.6 99.5
    to R410A)
    Refrigerating % (relative 88.0 80.3 81.9 83.5 85.0 86.5 88.0 89.5
    Capacity Ratio to R410A)
  • TABLE 134
    Item Unit Example 71 Example 72 Example 73 Example 74 Example 75 Example 76 Example 77 Example 78
    HFO-1132(E) Mass % 29.0 32.0 35.0 38.0 41.0 44.0 47.0 36.0
    R32 Mass % 18.0 18.0 18.0 18.0 18.0 18.0 18.0 3.0
    R1234yf Mass % 53.0 50.0 47.0 44.0 41.0 38.0 35.0 61.0
    GWP 124 124 124 124 124 123 123 23
    COP Ratio % (relative 100.6 100.3 100.1 99.9 99.8 99.6 99.5 101.3
    to R410A)
    Refrigerating % (relative 80.6 82.2 83.8 85.4 86.9 88.4 89.9 71.0
    Capacity Ratio to R410A)
  • TABLE 135
    Item Unit Example 79 Example 80 Example 81 Example 82 Example 83 Example 84 Example 85 Example 86
    HFO-1132(E) Mass % 39.0 42.0 30.0 33.0 36.0 26.0 29.0 32.0
    R32 Mass % 3.0 3.0 6.0 6.0 6.0 9.0 9.0 9.0
    R1234yf Mass % 58.0 55.0 64.0 61.0 58.0 65.0 62.0 59.0
    GWP 23 23 43 43 43 64 64 63
    COP Ratio % (relative 101.1 100.9 101.5 101.3 101.0 101.6 101.3 101.1
    to R410A)
    Refrigerating % (relative 72.7 74.4 70.5 72.2 73.9 71.0 72.8 74.5
    Capacity Ratio to R410A)
  • TABLE 136
    Item Unit Example 87 Example 88 Example 89 Example 90 Example 91 Example 92 Example 93 Example 94
    HFO-1132(E) Mass % 21.0 24.0 27.0 30.0 16.0 19.0 22.0 25.0
    R32 Mass % 12.0 12.0 12.0 12.0 15.0 15.0 15.0 15.0
    R1234yf Mass % 67.0 64.0 61.0 58.0 69.0 66.0 63.0 60.0
    GWP 84 84 84 84 104 104 104 104
    COP Ratio % (relative 101.8 101.5 101.2 101.0 102.1 101.8 101.4 101.2
    to R410A)
    Refrigerating % (relative 70.8 72.6 74.3 76.0 70.4 72.3 74.0 75.8
    Capacity Ratio to R410A)
  • TABLE 137
    Item Unit Example 95 Example 96 Example 97 Example 98 Example 99 Example 100 Example 101 Example 102
    HFO-1132(E) Mass % 28.0 12.0 15.0 18.0 21.0 24.0 27.0 25.0
    R32 Mass % 15.0 18.0 18.0 18.0 18.0 18.0 18.0 21.0
    R1234yf Mass % 57.0 70.0 67.0 64.0 61.0 58.0 55.0 54.0
    GWP 104 124 124 124 124 124 124 144
    COP Ratio % (relative 100.9 102.2 101.9 101.6 101.3 101.0 100.7 100.7
    to R410A)
    Refrigerating % (relative 77.5 70.5 72.4 74.2 76.0 77.7 79.4 80.7
    Capacity Ratio to R410A)
  • TABLE 138
    Item Unit Example 103 Example 104 Example 105 Example 106 Example 107 Example 108 Example 109 Example 110
    HFO-1132(E) Mass % 21.0 24.0 17.0 20.0 23.0 13.0 16.0 19.0
    R32 Mass % 24.0 24.0 27.0 27.0 27.0 30.0 30.0 30.0
    R1234yf Mass % 55.0 52.0 56.0 53.0 50.0 57.0 54.0 51.0
    GWP 164 164 185 185 184 205 205 205
    COP Ratio % (relative 100.9 100.6 101.1 100.8 100.6 101.3 101.0 100.8
    to R410A)
    Refrigerating % (relative 80.8 82.5 80.8 82.5 84.2 80.7 82.5 84.2
    Capacity Ratio to R410A)
  • TABLE 139
    Item Unit Example 111 Example 112 Example 113 Example 114 Example 115 Example 116 Example 117 Example 118
    HFO-1132(E) Mass % 22.0 9.0 12.0 15.0 18.0 21.0 8.0 12.0
    R32 Mass % 30.0 33.0 33.0 33.0 33.0 33.0 36.0 36.0
    R1234yf Mass % 48.0 58.0 55.0 52.0 49.0 46.0 56.0 52.0
    GWP 205 225 225 225 225 225 245 245
    COP Ratio % (relative 100.5 101.6 101.3 101.0 100.8 100.5 101.6 101.2
    to R410A)
    Refrigerating % (relative 85.9 80.5 82.3 84.1 85.8 87.5 82.0 84.4
    Capacity Ratio to R410A)
  • TABLE 140
    Item Unit Example 119 Example 120 Example 121 Example 122 Example 123 Example 124 Example 125 Example 126
    HFO-1132(E) Mass % 15.0 18.0 21.0 42.0 39.0 34.0 37.0 30.0
    R32 Mass % 36.0 36.0 36.0 25.0 28.0 31.0 31.0 34.0
    R1234yf Mass % 49.0 46.0 43.0 33.0 33.0 35.0 32.0 36.0
    GWP 245 245 245 170 191 211 211 231
    COP Ratio % (relative 101.0 100.7 100.5 99.5 99.5 99.8 99.6 99.9
    to R410A)
    Refrigerating % (relative 86.2 87.9 89.6 92.7 93.4 93.0 94.5 93.0
    Capacity Ratio to R410A)
  • TABLE 141
    Item Unit Example 127 Example 128 Example 129 Example 130 Example 131 Example 132 Example 133 Example 134
    HFO-1132(E) Mass % 33.0 36.0 24.0 27.0 30.0 33.0 23.0 26.0
    R32 Mass % 34.0 34.0 37.0 37.0 37.0 37.0 40.0 40.0
    R1234yf Mass % 33.0 30.0 39.0 36.0 33.0 30.0 37.0 34.0
    GWP 231 231 252 251 251 251 272 272
    COP Ratio % (relative 99.8 99.6 100.3 100.1 99.9 99.8 100.4 100.2
    to R410A)
    Refrigerating % (relative 94.5 96.0 91.9 93.4 95.0 96.5 93.3 94.9
    Capacity Ratio to R410A)
  • TABLE 142
    Item Unit Example 135 Example 136 Example 137 Example 138 Example 139 Example 140 Example 141 Example 142
    HFO-1132(E) Mass % 29.0 32.0 19.0 22.0 25.0 28.0 31.0 18.0
    R32 Mass % 40.0 40.0 43.0 43.0 43.0 43.0 43.0 46.0
    R1234yf Mass % 31.0 28.0 38.0 35.0 32.0 29.0 26.0 36.0
    GWP 272 271 292 292 292 292 292 312
    COP Ratio % (relative 100.0 99.8 100.6 100.4 100.2 100.1 99.9 100.7
    to R410A)
    Refrigerating % (relative 96.4 97.9 93.1 94.7 96.2 97.8 99.3 94.4
    Capacity Ratio to R410A)
  • TABLE 143
    Item Unit Example 143 Example 144 Example 145 Example 146 Example 147 Example 148 Example 149 Example 150
    HFO-1132(E) Mass % 21.0 23.0 26.0 29.0 13.0 16.0 19.0 22.0
    R32 Mass % 46.0 46.0 46.0 46.0 49.0 49.0 49.0 49.0
    R1234yf Mass % 33.0 31.0 28.0 25.0 38.0 35.0 32.0 29.0
    GWP 312 312 312 312 332 332 332 332
    COP Ratio % (relative 100.5 100.4 100.2 100.0 101.1 100.9 100.7 100.5
    to R410A)
    Refrigerating % (relative 96.0 97.0 98.6 100.1 93.5 95.1 96.7 98.3
    Capacity Ratio to R410A)
  • TABLE 144
    Item Unit Example 151 Example 152
    HFO-1132(E) Mass % 25.0 28.0
    R32 Mass % 49.0 49.0
    R1234yf Mass % 26.0 23.0
    GWP 332 332
    COP Ratio % (relative 100.3 100.1
    to R410A)
    Refrigerating Capacity % (relative 99.8 101.3
    Ratio to R410A)
  • The results also indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments IJ, JN, NE, and EI that connect the following 4 points:
  • point I (72.0, 0.0, 28.0),
    point J (48.5, 18.3, 33.2),
    point N (27.7, 18.2, 54.1), and
    point E (58.3, 0.0, 41.7),
    or on these line segments (excluding the points on the line segment EI),
  • the line segment IJ is represented by coordinates (0.0236y2−1.7616y+72.0, y, −0.0236y2+0.7616y+28.0),
  • the line segment NE is represented by coordinates (0.012y2−1.9003y+58.3, y, −0.012y2+0.9003y+41.7), and
  • the line segments JN and EI are straight lines, the refrigerant D has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 125 or less, and a WCF lower flammability.
  • The results also indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments MM′, M′N, NV, VG, and GM that connect the following 5 points:
  • point M (52.6, 0.0, 47.4),
    point M′ (39.2, 5.0, 55.8),
    point N (27.7, 18.2, 54.1),
    point V (11.0, 18.1, 70.9), and
    point G (39.6, 0.0, 60.4),
    or on these line segments (excluding the points on the line segment GM),
  • the line segment MM′ is represented by coordinates (0.132y2−3.34y+52.6, y, −0.132y2+2.34y+47.4),
  • the line segment M′N is represented by coordinates (0.0596y2−2.2541y+48.98, y, −0.0596y2+1.2541y+51.02),
  • the line segment VG is represented by coordinates (0.0123y2−1.8033y+39.6, y, −0.0123y2+0.8033y+60.4), and
  • the line segments NV and GM are straight lines, the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 70% or more relative to R410A, a GWP of 125 or less, and an ASHRAE lower flammability.
  • The results also indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ON, NU, and UO that connect the following 3 points:
  • point O (22.6, 36.8, 40.6),
    point N (27.7, 18.2, 54.1), and
    point U (3.9, 36.7, 59.4),
    or on these line segments,
  • the line segment ON is represented by coordinates (0.0072y2−0.6701y+37.512, y, −0.0072y2−0.3299y+62.488),
  • the line segment NU is represented by coordinates (0.0083y2−1.7403y+56.635, y, −0.0083y2+0.7403y+43.365), and
  • the line segment UO is a straight line, the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 250 or less, and an ASHRAE lower flammability.
  • The results also indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments QR, RT, TL, LK, and KQ that connect the following 5 points:
  • point Q (44.6, 23.0, 32.4),
    point R (25.5, 36.8, 37.7),
    point T (8.6, 51.6, 39.8),
    point L (28.9, 51.7, 19.4), and
    point K (35.6, 36.8, 27.6),
    or on these line segments,
  • the line segment QR is represented by coordinates (0.0099y2−1.975y+84.765, y, −0.0099y2+0.975y+15.235),
  • the line segment RT is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874),
  • the line segment LK is represented by coordinates (0.0049y2−0.8842y+61.488, y, −0.0049y2−0.1158y+38.512),
  • the line segment KQ is represented by coordinates (0.0095y2−1.2222y+67.676, y, −0.0095y2+0.2222y+32.324), and
  • the line segment TL is a straight line, the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and a WCF lower flammability.
  • The results further indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:
  • point P (20.5, 51.7, 27.8),
    point S (21.9, 39.7, 38.4), and
    point T (8.6, 51.6, 39.8),
    or on these line segments,
  • the line segment PS is represented by coordinates (0.0064y2−0.7103y+40.1, y, −0.0064y2−0.2897y+59.9),
  • the line segment ST is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874), and
  • the line segment TP is a straight line, the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and an ASHRAE lower flammability.
  • (5-5) Refrigerant E
  • The refrigerant E according to the present disclosure is a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32).
  • The refrigerant E according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant, i.e., a coefficient of performance equivalent to that of R410A and a sufficiently low GWP.
  • The refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IK, KB′, B′H, HR, RG, and GI that connect the following 6 points:
  • point I (72.0, 28.0, 0.0),
    point K (48.4, 33.2, 18.4),
    point B′ (0.0, 81.6, 18.4),
    point H (0.0, 84.2, 15.8),
    point R (23.1, 67.4, 9.5), and
    point G (38.5, 61.5, 0.0),
    or on these line segments (excluding the points on the line segments B′H and GI);
  • the line segment IK is represented by coordinates (0.025z2−1.7429z+72.00, −0.025z2+0.7429z+28.0, z),
  • the line segment HR is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z),
  • the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
  • the line segments KB′ and GI are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has WCF lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 125 or less.
  • The refrigerant E according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IJ, JR, RG, and GI that connect the following 4 points:
  • point I (72.0, 28.0, 0.0),
    point J (57.7, 32.8, 9.5),
    point R (23.1, 67.4, 9.5), and
    point G (38.5, 61.5, 0.0),
    or on these line segments (excluding the points on the line segment GI);
  • the line segment IJ is represented by coordinates (0.025z2−1.7429z+72.0, −0.025z2+0.7429z+28.0, z),
  • the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
  • the line segments JR and GI are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has WCF lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 125 or less.
  • The refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MP, PB′, B′H, HR, RG, and GM that connect the following 6 points:
  • point M (47.1, 52.9, 0.0),
    point P (31.8, 49.8, 18.4),
    point B′ (0.0, 81.6, 18.4),
    point H (0.0, 84.2, 15.8),
    point R (23.1, 67.4, 9.5), and
    point G (38.5, 61.5, 0.0),
    or on these line segments (excluding the points on the line segments B′H and GM);
  • the line segment MP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z),
  • the line segment HR is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z),
  • the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
  • the line segments PB′ and GM are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 125 or less.
  • The refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MN, NR, RG, and GM that connect the following 4 points:
  • point M (47.1, 52.9, 0.0),
    point N (38.5, 52.1, 9.5),
    point R (23.1, 67.4, 9.5), and
    point G (38.5, 61.5, 0.0),
    or on these line segments (excluding the points on the line segment GM);
  • the line segment MN is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z),
  • the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z),
  • the line segments NR and GM are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 65 or less.
  • The refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:
  • point P (31.8, 49.8, 18.4),
    point S (25.4, 56.2, 18.4), and
    point T (34.8, 51.0, 14.2),
    or on these line segments;
  • the line segment ST is represented by coordinates (−0.0982z2+0.9622z+40.931, 0.0982z2−1.9622z+59.069, z),
  • the line segment TP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z), and
  • the line segment PS is a straight line. When the requirements above are satisfied, the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 94.5% or more relative to that of R410A, and a GWP of 125 or less.
  • The refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments QB″, B″D, DU, and UQ that connect the following 4 points:
  • point Q (28.6, 34.4, 37.0),
    point B″ (0.0, 63.0, 37.0),
    point D (0.0, 67.0, 33.0), and
    point U (28.7, 41.2, 30.1),
    or on these line segments (excluding the points on the line segment B″D);
  • the line segment DU is represented by coordinates (−3.4962z2+210.71z−3146.1, 3.4962z2−211.71z+3246.1, z),
  • the line segment UQ is represented by coordinates (0.0135z2−0.9181z+44.133, −0.0135z2−0.0819z+55.867, z), and
  • the line segments QB″ and B″D are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 96% or more relative to that of R410A, and a GWP of 250 or less.
  • The refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc′, c′d′, d′e′, e′a′, and a′O that connect the following 5 points:
  • point O (100.0, 0.0, 0.0),
    point c′ (56.7, 43.3, 0.0),
    point d′ (52.2, 38.3, 9.5),
    point e′ (41.8, 39.8, 18.4), and
    point a′ (81.6, 0.0, 18.4),
    or on the line segments c′d′, d′e′, and e′a′ (excluding the points c′ and a′);
  • the line segment c′d′ is represented by coordinates (−0.0297z2−0.1915z+56.7, 0.0297z2+1.1915z+43.3, z),
  • the line segment d′e′ is represented by coordinates (−0.0535z2+0.3229z+53.957, 0.0535z2+0.6771z+46.043, z), and
  • the line segments Oc′, e′a′, and a′O are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP ratio of 92.5% or more relative to that of R410A, and a GWP of 125 or less.
  • The refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc, cd, de, ea′, and a′O that connect the following 5 points:
  • point O (100.0, 0.0, 0.0),
    point c (77.7, 22.3, 0.0),
    point d (76.3, 14.2, 9.5),
    point e (72.2, 9.4, 18.4), and
    point a′ (81.6, 0.0, 18.4),
    or on the line segments cd, de, and ea′ (excluding the points c and a′);
  • the line segment cde is represented by coordinates (−0.017z2+0.0148z+77.684, 0.017z2+0.9852z+22.316, z), and
  • the line segments Oc, ea′, and a′O are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP ratio of 95% or more relative to that of R410A, and a GWP of 125 or less.
  • The refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc′, c′d′, d′a, and aO that connect the following 5 points:
  • point O (100.0, 0.0, 0.0),
    point c′ (56.7, 43.3, 0.0),
    point d′ (52.2, 38.3, 9.5), and
    point a (90.5, 0.0, 9.5),
    or on the line segments c′d′ and d′a (excluding the points c′ and a);
  • the line segment c′d′ is represented by coordinates (−0.0297z2−0.1915z+56.7, 0.0297z2+1.1915z+43.3, z), and
  • the line segments Oc′, d′a, and aO are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP ratio of 93.5% or more relative to that of R410A, and a GWP of 65 or less.
  • The refrigerant E according to the present disclosure is preferably a refrigerant wherein
  • when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc, cd, da, and aO that connect the following 4 points:
  • point O (100.0, 0.0, 0.0),
    point c (77.7, 22.3, 0.0),
    point d (76.3, 14.2, 9.5), and
    point a (90.5, 0.0, 9.5),
    or on the line segments cd and da (excluding the points c and a);
  • the line segment cd is represented by coordinates (−0.017z2+0.0148z+77.684, 0.017z2+0.9852z+22.316, z), and
  • the line segments Oc, da, and aO are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP ratio of 95% or more relative to that of R410A, and a GWP of 65 or less.
  • The refrigerant E according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), HFO-1123, and R32, as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO-1132(E), HFO-1123, and R32 in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and even more preferably 99.9 mass % or more, based on the entire refrigerant.
  • Such additional refrigerants are not limited, and can be selected from a wide range of refrigerants. The mixed refrigerant may comprise a single additional refrigerant, or two or more additional refrigerants.
  • (Examples of Refrigerant E)
  • The present disclosure is described in more detail below with reference to Examples of refrigerant E. However, the refrigerant E is not limited to the Examples.
  • Mixed refrigerants were prepared by mixing HFO-1132(E), HFO-1123, and R32 at mass % based on their sum shown in Tables 145 and 146.
  • The composition of each mixture was defined as WCF. A leak simulation was performed using National Institute of Science and Technology (NIST) Standard Reference Data Base Refleak Version 4.0 under the conditions for equipment, storage, shipping, leak, and recharge according to the ASHRAE Standard 34-2013. The most flammable fraction was defined as WCFF.
  • For each mixed refrigerant, the burning velocity was measured according to the ANSI/ASHRAE Standard 34-2013. When the burning velocities of the WCF composition and the WCFF composition are 10 cm/s or less, the flammability of such a refrigerant is classified as Class 2L (lower flammability) in the ASHRAE flammability classification.
  • A burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner. First, the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge. The burning velocity was measured by the closed method. The initial temperature was ambient temperature. Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using schlieren photographs. A cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source. Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.
  • Tables 145 and 146 show the results.
  • TABLE 145
    Item Unit I J K L
    WCF HFO-1132(E) mass % 72.0 57.7 48.4 35.5
    HFO-1123 mass % 28.0 32.8 33.2 27.5
    R32 mass % 0.0 9.5 18.4 37.0
    Burning velocity (WCF) cm/s 10 10 10 10
  • TABLE 146
    Item Unit M N T P U Q
    WCF HFO- mass % 47.1 38.5 34.8 31.8 28.7 28.6
    1132(E)
    HFO-1123 mass % 52.9 52.1 51.0 49.8 41.2 34.4
    R32 mass % 0.0 9.5 14.2 18.4 30.1 37.0
    Leak condition Storage, Storage, Storage, Storage, Storage, Storage,
    that results Shipping, −40° Shipping, −40° Shipping, −40° Shipping, −40° Shipping, −40° Shipping, −40°
    in WCFF C., 92%, release, C., 92%, release, C., 92%, release, C., 92%, release, C., 92%, release, C., 92%, release,
    on the liquid on the liquid on the liquid on the liquid on the liquid on the liquid
    phase side phase side phase side phase side phase side phase side
    WCFF HFO- mass % 72.0 58.9 51.5 44.6 31.4 27.1
    1132(E)
    HFO-1123 mass % 28.0 32.4 33.1 32.6 23.2 18.3
    R32 mass % 0.0 8.7 15.4 22.8 45.4 54.6
    Burning cm/s 8 or less 8 or less 8 or less 8 or less 8 or less 8 or less
    velocity (WCF)
    Burning cm/s 10 10 10   10   10   10  
    velocity (WCFF)
  • The results in Table 1 indicate that in a ternary composition diagram of a mixed refrigerant of HFO-1132(E), HFO-1123, and R32 in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on or below line segments IK and KL that connect the following 3 points:
  • point I (72.0, 28.0, 0.0),
    point K (48.4, 33.2, 18.4), and
    point L (35.5, 27.5, 37.0);
    the line segment IK is represented by coordinates (0.025z2−1.7429z+72.00, −0.025z2+0.7429z+28.00, z), and
    the line segment KL is represented by coordinates (0.0098z2−1.238z+67.852, −0.0098z2+0.238z+32.148, z),
    it can be determined that the refrigerant has WCF lower flammability.
  • For the points on the line segment IK, an approximate curve (x=0.025z2−1.7429z+72.00) was obtained from three points, i.e., I (72.0, 28.0, 0.0), J (57.7, 32.8, 9.5), and K (48.4, 33.2, 18.4) by using the least-square method to determine coordinates (x=0.025z2−1.7429z+72.00, y=100−z−x=−0.00922z2+0.2114z+32.443, z).
  • Likewise, for the points on the line segment KL, an approximate curve was determined from three points, i.e., K (48.4, 33.2, 18.4), Example 10 (41.1, 31.2, 27.7), and L (35.5, 27.5, 37.0) by using the least-square method to determine coordinates.
  • The results in Table 146 indicate that in a ternary composition diagram of a mixed refrigerant of HFO-1132(E), HFO-1123, and R32 in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on or below line segments MP and PQ that connect the following 3 points:
  • point M (47.1, 52.9, 0.0),
    point P (31.8, 49.8, 18.4), and
    point Q (28.6, 34.4, 37.0),
    it can be determined that the refrigerant has ASHRAE lower flammability.
  • In the above, the line segment MP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z), and the line segment PQ is represented by coordinates (0.0135z2−0.9181z+44.133, −0.0135z2−0.0819z+55.867, z).
  • For the points on the line segment MP, an approximate curve was obtained from three points, i.e., points M, N, and P, by using the least-square method to determine coordinates. For the points on the line segment PQ, an approximate curve was obtained from three points, i.e., points P, U, and Q, by using the least-square method to determine coordinates.
  • The GWP of compositions each comprising a mixture of R410A (R32=50%/R125=50%) was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report. The GWP of HFO-1132(E), which was not stated therein, was assumed to be 1 from HFO-1132a (GWP=1 or less) and HFO-1123 (GWP=0.3, described in WO2015/141678). The refrigerating capacity of compositions each comprising R410A and a mixture of HFO-1132(E) and HFO-1123 was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.
  • The COP ratio and the refrigerating capacity (which may be referred to as “cooling capacity” or “capacity”) ratio relative to those of R410 of the mixed refrigerants were determined. The conditions for calculation were as described below.
  • Evaporating temperature: 5° C.
    Condensation temperature: 45° C.
    Degree of superheating: 5K
    Degree of subcooling: 5K
    Compressor efficiency: 70%
  • Tables 147 to 166 show these values together with the GWP of each mixed refrigerant.
  • TABLE 147
    Comparative Comparative Comparative Comparative Comparative Comparative
    Comparative Example 2 Example 3 Example 4 Example 5 Example 6 Example 7
    Item Unit Example 1 A B A′ B′ A″ B″
    HFO-1132(E) mass % R410A 90.5 0.0 81.6 0.0 63.0 0.0
    HFO-1123 mass % 0.0 90.5 0.0 81.6 0.0 63.0
    R32 mass % 9.5 9.5 18.4 18.4 37.0 37.0
    GWP 2088 65 65 125 125 250 250
    COP ratio % (relative 100 99.1 92.0 98.7 93.4 98.7 96.1
    to R410A)
    Refrigerating % (relative 100 102.2 111.6 105.3 113.7 110.0 115.4
    capacity ratio to R410A)
  • TABLE 148
    Comparative Comparative Comparative
    Example 8 Example 9 Comparative Example 1 Example 11
    Item Unit O C Example 10 U Example 2 D
    HFO-1132(E) mass % 100.0 50.0 41.1 28.7 15.2 0.0
    HFO-1123 mass % 0.0 31.6 34.6 41.2 52.7 67.0
    R32 mass % 0.0 18.4 24.3 30.1 32.1 33.0
    GWP 1 125 165 204 217 228
    COP ratio % (relative 99.7 96.0 96.0 96.0 96.0 96.0
    to R410A)
    Refrigerating % (relative 98.3 109.9 111.7 113.5 114.8 115.4
    capacity ratio to R410A)
  • TABLE 149
    Comparative Comparative
    Example 12 Comparative Example 3 Example 4 Example 14
    Item Unit E Example 13 T S F
    HFO-1132(E) mass % 53.4 43.4 34.8 25.4 0.0
    HFO-1123 mass % 46.6 47.1 51.0 56.2 74.1
    R32 mass % 0.0 9.5 14.2 18.4 25.9
    GWP 1 65 97 125 176
    COP ratio % (relative 94.5 94.5 94.5 94.5 94.5
    to R410A)
    Refrigerating % (relative 105.6 109.2 110.8 112.3 114.8
    capacity ratio to R410A)
  • TABLE 150
    Comparative Comparative
    Example 15 Example 6 Example 16
    Item Unit G Example 5 R Example 7 H
    HFO-1132(E) mass % 38.5 31.5 23.1 16.9 0.0
    HFO-1123 mass % 61.5 63.5 67.4 71.1 84.2
    R32 mass % 0.0 5.0 9.5 12.0 15.8
    GWP 1 35 65 82 107
    COP ratio % (relative 93.0 93.0 93.0 93.0 93.0
    to R410A)
    Refrigerating % (relative 107.0 109.1 110.9 111.9 113.2
    capacity ratio to R410A)
  • TABLE 151
    Comparative Comparative
    Example 17 Example 8 Example 9 Comparative Example 19
    Item Unit I J K Example 18 L
    HFO-1132(E) mass % 72.0 57.7 48.4 41.1 35.5
    HFO-1123 mass % 28.0 32.8 33.2 31.2 27.5
    R32 mass % 0.0 9.5 18.4 27.7 37.0
    GWP 1 65 125 188 250
    COP ratio % (relative 96.6 95.8 95.9 96.4 97.1
    to R410A)
    Refrigerating % (relative 103.1 107.4 110.1 112.1 113.2
    capacity ratio to R410A)
  • TABLE 152
    Compar-
    ative Exam- Exam- Exam-
    Example 20 ple 10 ple 11 ple 12
    Item Unit M N P Q
    HFO-1132(E) mass % 47.1 38.5 31.8 28.6
    HFO-1123 mass % 52.9 52.1 49.8 34.4
    R32 mass % 0.0 9.5 18.4 37.0
    GWP 1 65 125 250
    COP ratio % (relative 93.9 94.1 94.7 96.9
    to R410A)
    Refrigerating % (relative 106.2 109.7 112.0 114.1
    capacity to R410A)
    ratio
  • TABLE 153
    Comparative Comparative Comparative Comparative Comparative
    Item Unit Example 22 Example 23 Example 24 Example 14 Example 15 Example 16 Example 25 Example 26
    HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
    HFO-1123 mass % 85.0 75.0 65.0 55.0 45.0 35.0 25.0 15.0
    R32 mass % 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
    GWP 35 35 35 35 35 35 35 35
    COP ratio % (relative 91.7 92.2 92.9 93.7 94.6 95.6 96.7 97.7
    to R410A)
    Refrigerating % (relative 110.1 109.8 109.2 108.4 107.4 106.1 104.7 103.1
    capacity ratio to R410A)
  • TABLE 154
    Comparative Comparative Comparative Comparative Comparative
    Item Unit Example 27 Example 28 Example 29 Example 17 Example 18 Example 19 Example 30 Example 31
    HFO-1132(E) mass % 90.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0
    HFO-1123 mass % 5.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0
    R32 mass % 5.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
    GWP 35 68 68 68 68 68 68 68
    COP ratio % (relative 98.8 92.4 92.9 93.5 94.3 95.1 96.1 97.0
    to R410A)
    Refrigerating % (relative 101.4 111.7 111.3 110.6 109.6 108.5 107.2 105.7
    capacity ratio to R410A)
  • TABLE 155
    Comparative Comparative Comparative
    Item Unit Example 32 Example 20 Example 21 Example 22 Example 23 Example 24 Example 33 Example 34
    HFO-1132(E) mass % 80.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0
    HFO-1123 mass % 10.0 75.0 65.0 55.0 45.0 35.0 25.0 15.0
    R32 mass % 10.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0
    GWP 68 102 102 102 102 102 102 102
    COP ratio % (relative 98.0 93.1 93.6 94.2 94.9 95.6 96.5 97.4
    to R410A)
    Refrigerating % (relative 104.1 112.9 112.4 111.6 110.6 109.4 108.1 106.6
    capacity ratio to R410A)
  • TABLE 156
    Comparative Comparative Comparative Comparative Comparative Comparative Comparative Comparative
    Item Unit Example 35 Example 36 Example 37 Example 38 Example 39 Example 40 Example 41 Example 42
    HFO-1132(E) mass % 80.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0
    HFO-1123 mass % 5.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0
    R32 mass % 15.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
    GWP 102 136 136 136 136 136 136 136
    COP ratio % (relative 98.3 93.9 94.3 94.8 95.4 96.2 97.0 97.8
    to R410A)
    Refrigerating % (relative 105.0 113.8 113.2 112.4 111.4 110.2 108.8 107.3
    capacity ratio to R410A)
  • TABLE 157
    Comparative Comparative Comparative Comparative Comparative Comparative Comparative Comparative
    Item Unit Example 43 Example 44 Example 45 Example 46 Example 47 Example 48 Example 49 Example 50
    HFO-1132(E) mass % 10.0 20.0 30.0 40.0 50.0 60.0 70.0 10.0
    HFO-1123 mass % 65.0 55.0 45.0 35.0 25.0 15.0 5.0 60.0
    R32 mass % 25.0 25.0 25.0 25.0 25.0 25.0 25.0 30.0
    GWP 170 170 170 170 170 170 170 203
    COP ratio % (relative 94.6 94.9 95.4 96.0 96.7 97.4 98.2 95.3
    to R410A)
    Refrigerating % (relative 114.4 113.8 113.0 111.9 110.7 109.4 107.9 114.8
    capacity ratio to R410A)
  • TABLE 158
    Comparative Comparative Comparative Comparative Comparative Comparative
    Item Unit Example 51 Example 52 Example 53 Example 54 Example 55 Example 25 Example 26 Example 56
    HFO-1132(E) mass % 20.0 30.0 40.0 50.0 60.0 10.0 20.0 30.0
    HFO-1123 mass % 50.0 40.0 30.0 20.0 10.0 55.0 45.0 35.0
    R32 mass % 30.0 30.0 30.0 30.0 30.0 35.0 35.0 35.0
    GWP 203 203 203 203 203 237 237 237
    COP ratio % (relative 95.6 96.0 96.6 97.2 97.9 96.0 96.3 96.6
    to R410A)
    Refrigerating % (relative 114.2 113.4 112.4 111.2 109.8 115.1 114.5 113.6
    capacity ratio to R410A)
  • TABLE 159
    Comparative Comparative Comparative Comparative Comparative Comparative Comparative Comparative
    Item Unit Example 57 Example 58 Example 59 Example 60 Example 61 Example 62 Example 63 Example 64
    HFO-1132(E) mass % 40.0 50.0 60.0 10.0 20.0 30.0 40.0 50.0
    HFO-1123 mass % 25.0 15.0 5.0 50.0 40.0 30.0 20.0 10.0
    R32 mass % 35.0 35.0 35.0 40.0 40.0 40.0 40.0 40.0
    GWP 237 237 237 271 271 271 271 271
    COP ratio % (relative 97.1 97.7 98.3 96.6 96.9 97.2 97.7 98.2
    to R410A)
    Refrigerating % (relative 112.6 111.5 110.2 115.1 114.6 113.8 112.8 111.7
    capacity ratio to R410A)
  • TABLE 160
    Item Unit Example 27 Example 28 Example 29 Example 30 Example 31 Example 32 Example 33 Example 34
    HFO-1132(E) mass % 38.0 40.0 42.0 44.0 35.0 37.0 39.0 41.0
    HFO-1123 mass % 60.0 58.0 56.0 54.0 61.0 59.0 57.0 55.0
    R32 mass % 2.0 2.0 2.0 2.0 4.0 4.0 4.0 4.0
    GWP 14 14 14 14 28 28 28 28
    COP ratio % (relative 93.2 93.4 93.6 93.7 93.2 93.3 93.5 93.7
    to R410A)
    Refrigerating % (relative 107.7 107.5 107.3 107.2 108.6 108.4 108.2 108.0
    capacity ratio to R410A)
  • TABLE 161
    Item Unit Example 35 Example 36 Example 37 Example 38 Example 39 Example 40 Example 41 Example 42
    HFO-1132(E) mass % 43.0 31.0 33.0 35.0 37.0 39.0 41.0 27.0
    HFO-1123 mass % 53.0 63.0 61.0 59.0 57.0 55.0 53.0 65.0
    R32 mass % 4.0 6.0 6.0 6.0 6.0 6.0 6.0 8.0
    GWP 28 41 41 41 41 41 41 55
    COP ratio % (relative 93.9 93.1 93.2 93.4 93.6 93.7 93.9 93.0
    to R410A)
    Refrigerating % (relative 107.8 109.5 109.3 109.1 109.0 108.8 108.6 110.3
    capacity ratio to R410A)
  • TABLE 162
    Item Unit Example 43 Example 44 Example 45 Example 46 Example 47 Example 48 Example 49 Example 50
    HFO-1132(E) mass % 29.0 31.0 33.0 35.0 37.0 39.0 32.0 32.0
    HFO-1123 mass % 63.0 61.0 59.0 57.0 55.0 53.0 51.0 50.0
    R32 mass % 8.0 8.0 8.0 8.0 8.0 8.0 17.0 18.0
    GWP 55 55 55 55 55 55 116 122
    COP ratio % (relative 93.2 93.3 93.5 93.6 93.8 94.0 94.5 94.7
    to R410A)
    Refrigerating % (relative 110.1 110.0 109.8 109.6 109.5 109.3 111.8 111.9
    capacity ratio to R410A)
  • TABLE 163
    Item Unit Example 51 Example 52 Example 53 Example 54 Example 55 Example 56 Example 57 Example 58
    HFO-1132(E) mass % 30.0 27.0 21.0 23.0 25.0 27.0 11.0 13.0
    HFO-1123 mass % 52.0 42.0 46.0 44.0 42.0 40.0 54.0 52.0
    R32 mass % 18.0 31.0 33.0 33.0 33.0 33.0 35.0 35.0
    GWP 122 210 223 223 223 223 237 237
    COP ratio % (relative 94.5 96.0 96.0 96.1 96.2 96.3 96.0 96.0
    to R410A)
    Refrigerating % (relative 112.1 113.7 114.3 114.2 114.0 113.8 115.0 114.9
    capacity ratio to R410A)
  • TABLE 164
    Item Unit Example 59 Example 60 Example 61 Example 62 Example 63 Example 64 Example 65 Example 66
    HFO-1132(E) mass % 15.0 17.0 19.0 21.0 23.0 25.0 27.0 11.0
    HFO-1123 mass % 50.0 48.0 46.0 44.0 42.0 40.0 38.0 52.0
    R32 mass % 35.0 35.0 35.0 35.0 35.0 35.0 35.0 37.0
    GWP 237 237 237 237 237 237 237 250
    COP ratio % (relative 96.1 96.2 96.2 96.3 96.4 96.4 96.5 96.2
    to R410A)
    Refrigerating % (relative 114.8 114.7 114.5 114.4 114.2 114.1 113.9 115.1
    capacity ratio to R410A)
  • TABLE 165
    Item Unit Example 67 Example 68 Example 69 Example 70 Example 71 Example 72 Example 73 Example 74
    HFO-1132(E) mass % 13.0 15.0 17.0 15.0 17.0 19.0 21.0 23.0
    HFO-1123 mass % 50.0 48.0 46.0 50.0 48.0 46.0 44.0 42.0
    R32 mass % 37.0 37.0 37.0 0.0 0.0 0.0 0.0 0.0
    GWP 250 250 250 237 237 237 237 237
    COP ratio % (relative 96.3 96.4 96.4 96.1 96.2 96.2 96.3 96.4
    to R410A)
    Refrigerating % (relative 115.0 114.9 114.7 114.8 114.7 114.5 114.4 114.2
    capacity ratio to R410A)
  • TABLE 166
    Item Unit Example 75 Example 76 Example 77 Example 78 Example 79 Example 80 Example 81 Example 82
    HFO-1132(E) mass % 25.0 27.0 11.0 19.0 21.0 23.0 25.0 27.0
    HFO-1123 mass % 40.0 38.0 52.0 44.0 42.0 40.0 38.0 36.0
    R32 mass % 0.0 0.0 0.0 37.0 37.0 37.0 37.0 37.0
    GWP 237 237 250 250 250 250 250 250
    COP ratio % (relative 96.4 96.5 96.2 96.5 96.5 96.6 96.7 96.8
    to R410A)
    Refrigerating % (relative 114.1 113.9 115.1 114.6 114.5 114.3 114.1 114.0
    capacity ratio to R410A)
  • The above results indicate that under the condition that the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, and the point (0.0, 100.0, 0.0) is on the left side are within the range of a figure surrounded by line segments that connect the following 4 points:
  • point O (100.0, 0.0, 0.0),
    point A″ (63.0, 0.0, 37.0),
    point B″ (0.0, 63.0, 37.0), and
    point (0.0, 100.0, 0.0),
    or on these line segments,
    the refrigerant has a GWP of 250 or less.
  • The results also indicate that when coordinates (x,y,z) are within the range of a figure surrounded by line segments that connect the following 4 points:
  • point O (100.0, 0.0, 0.0),
    point A′ (81.6, 0.0, 18.4),
    point B′ (0.0, 81.6, 18.4), and
    point (0.0, 100.0, 0.0),
    or on these line segments,
    the refrigerant has a GWP of 125 or less.
  • The results also indicate that when coordinates (x,y,z) are within the range of a figure surrounded by line segments that connect the following 4 points:
  • point O (100.0, 0.0, 0.0),
    point A (90.5, 0.0, 9.5),
    point B (0.0, 90.5, 9.5), and
    point (0.0, 100.0, 0.0),
    or on these line segments,
    the refrigerant has a GWP of 65 or less.
  • The results also indicate that when coordinates (x,y,z) are on the left side of line segments that connect the following 3 points:
  • point C (50.0, 31.6, 18.4),
    point U (28.7, 41.2, 30.1), and
    point D (52.2, 38.3, 9.5),
    or on these line segments, the refrigerant has a COP ratio of 96% or more relative to that of R410A.
  • In the above, the line segment CU is represented by coordinates (−0.0538z2+0.7888z+53.701, 0.0538z2−1.7888z+46.299, z), and the line segment UD is represented by coordinates (−3.4962z2+210.71z−3146.1, 3.4962z2−211.71z+3246.1, z).
  • The points on the line segment CU are determined from three points, i.e.,
  • point C, Comparative Example 10, and point U, by using the least-square method.
  • The points on the line segment UD are determined from three points, i.e.,
  • point U, Example 2, and point D, by using the least-square method.
  • The results also indicate that when coordinates (x,y,z) are on the left side of line segments that connect the following 3 points:
  • point E (55.2, 44.8, 0.0),
    point T (34.8, 51.0, 14.2), and
    point F (0.0, 76.7, 23.3),
    or on these line segments,
    the refrigerant has a COP ratio of 94.5% or more relative to that of R410A.
  • In the above, the line segment ET is represented by coordinates (−0.0547z2−0.5327z+53.4, 0.0547z2−0.4673z+46.6, z), and the line segment TF is represented by coordinates (−0.0982z2+0.9622z+40.931, 0.0982z2−1.9622z+59.069, z).
  • The points on the line segment ET are determined from three points, i.e.,
  • point E, Example 2, and point T, by using the least-square method.
  • The points on the line segment TF are determined from three points, i.e., points T, S, and F, by using the least-square method.
  • The results also indicate that when coordinates (x,y,z) are on the left side of line segments that connect the following 3 points:
  • point G (0.0, 76.7, 23.3),
    point R (21.0, 69.5, 9.5), and
    point H (0.0, 85.9, 14.1),
    or on these line segments, the refrigerant has a COP ratio of 93% or more relative to that of R410A.
  • In the above, the line segment GR is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and the line segment RH is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z).
  • The points on the line segment GR are determined from three points, i.e.,
  • point G, Example 5, and point R, by using the least-square method.
  • The points on the line segment RH are determined from three points, i.e.,
  • point R, Example 7, and point H, by using the least-square method.
  • In contrast, as shown in, for example, Comparative Examples 8, 9, 13, 15, 17, and 18, when R32 is not contained, the concentrations of HFO-1132(E) and HFO-1123, which have a double bond, become relatively high; this undesirably leads to deterioration, such as decomposition, or polymerization in the refrigerant compound.
  • (6) Specific Embodiment
  • FIG. 16 is a configuration diagram of an air conditioner 1 according to a first embodiment of the present disclosure. In FIG. 16, the air conditioner 1 is constituted by a utilization unit 2 and a heat source unit 3.
  • (6-1) Configuration of Air Conditioner 1
  • The air conditioner 1 has a refrigerant circuit 11 in which a compressor 100, a four-way switching valve 16, a heat-source-side heat exchanger 17, an expansion valve 18 serving as a decompression mechanism, and a utilization-side heat exchanger 13 are connected in a loop shape by refrigerant pipes.
  • In this embodiment, the refrigerant circuit 11 is filled with refrigerant for performing a vapor compression refrigeration cycle. The refrigerant is a refrigerant mixture containing 1,2-difluoroethylene, and any one of the above-described refrigerant A to refrigerant E can be used. The refrigerant circuit 11 is filled with refrigerating machine oil together with the refrigerant mixture.
  • (6-1-1) Utilization Unit 2
  • In the refrigerant circuit 11, the utilization-side heat exchanger 13 belongs to the utilization unit 2. In addition, a utilization-side fan 14 is mounted in the utilization unit 2. The utilization-side fan 14 generates an air flow to the utilization-side heat exchanger 13.
  • A utilization-side communicator 35 and a utilization-side microcomputer 41 are mounted in the utilization unit 2. The utilization-side communicator 35 is connected to the utilization-side microcomputer 41.
  • The utilization-side communicator 35 is used by the utilization unit 2 to communicate with the heat source unit 3. The utilization-side microcomputer 41 is supplied with a control voltage even during a standby state in which the air conditioner 1 is not operating. Thus, the utilization-side microcomputer 41 is constantly activated.
  • (6-1-2) Heat Source Unit 3
  • In the refrigerant circuit 11, the compressor 100, the four-way switching valve 16, the heat-source-side heat exchanger 17, and the expansion valve 18 belong to the heat source unit 3. In addition, a heat-source-side fan 19 is mounted in the heat source unit 3. The heat-source-side fan 19 generates an air flow to the heat-source-side heat exchanger 17.
  • In addition, a connection unit 30, a heat-source-side communicator 36, and a heat-source-side microcomputer 42 are mounted in the heat source unit 3. The connection unit 30 and the heat-source-side communicator 36 are connected to the heat-source-side microcomputer 42.
  • (6-2) Configuration of Connection Unit 30
  • FIG. 17 is an operation circuit diagram of a motor 70 of the compressor 100. In FIG. 17, the connection unit 30 is a circuit that causes power to be supplied from an alternating-current (AC) power source 90 to the motor 70 of the compressor 100 without frequency conversion.
  • The motor 70 is an induction motor and includes a squirrel-cage rotor 71, and a stator 72 having a main winding 727 and an auxiliary winding 728. The squirrel-cage rotor 71 rotates following a rotating magnetic field generated by the stator 72.
  • The compressor 100 has an M terminal, an S terminal, and a C terminal. The M terminal and the C terminal are connected by the main winding 727. The S terminal and the C terminal are connected by the auxiliary winding 728.
  • The AC power source 90 and the compressor 100 are connected by power supply lines 901 and 902 that supply an AC voltage to the compressor 100. The power supply line 901 is connected to the C terminal via a thermostat 26.
  • The thermostat 26 detects a temperature of a room equipped with the air conditioner 1. The thermostat 26 opens the contact thereof when the room temperature is within a set temperature range and closes the contact when the room temperature is out of the set temperature range.
  • The power supply line 902 branches off into a first branch line 902A and a second branch line 902B. The first branch line 902A is connected to the M terminal, and the second branch line 902B is connected to the S terminal via an activation circuit 20.
  • The activation circuit 20 is a circuit in which a positive temperature coefficient (PTC) thermistor 21 and an operation capacitor 22 are connected in parallel to each other.
  • In this embodiment, the thermostat 26 connected to the power supply line 901 and the activation circuit 20 connected to the power supply line 902 are referred to as the connection unit 30.
  • (6-3) Operation
  • In the operation circuit of the compressor 100 having the above-described configuration, turning on of the AC power source 90 causes a current to flow through the auxiliary winding 728 via the PTC thermistor 21 and the motor 70 to be activated.
  • After the motor 70 has been activated, the PTC thermistor 21 self-heats by using the current flowing therethrough, and the resistance value thereof increases. As a result, the operation capacitor 22, instead of the PTC thermistor 21, is connected to the auxiliary winding 728, and the state shifts to a stable operation state.
  • (6-4) Features
  • (6-4-1)
  • In the air conditioner 1 that uses a refrigerant mixture containing at least 1,2-difluoroethylene, the compressor 100 can be driven without interposing a power conversion device between the AC power source 90 and the motor 70. Thus, it is possible to provide the air conditioner 1 that is environmentally friendly and has a relatively inexpensive configuration.
  • (6-4-2)
  • In the air conditioner 1 that uses a refrigerant mixture containing at least 1,2-difluoroethylene, the connection between the auxiliary winding 728 and the activation circuit 20, which is a parallel circuit of the PTC thermistor 21 and the operation capacitor 22, makes it possible to achieve a large activation torque of the motor 70 of the compressor 100.
  • After the compressor 100 has been activated, the PTC thermistor 21 self-heats and the resistance value thereof increases, the state changes to a state where the operation capacitor 22 and the auxiliary winding 728 are substantially connected to each other, and the compressor 100 is operated at a constant rotation rate (power source frequency). Thus, the compressor 100 enters a state of being capable of outputting a rated torque. As described above, in the air conditioner 1, switching of connection to the operation capacitor 22 is performed at appropriate timing, and thus the efficiency of the compressor 100 can be increased.
  • (6-4-3)
  • The motor 70 is an induction motor and is capable of high output with relatively low cost, and thus the efficiency of the air conditioner 1 can be increased.
  • (6-5) Modification example
  • FIG. 18 is an operation circuit diagram of a motor 170 of a compressor 200 in the air conditioner 1 according to a modification example. In FIG. 18, the motor 170 is a three-phase induction motor and is connected to a three-phase AC power source 190 via a connection unit 130.
  • The connection unit 130 is a relay having contacts 130 u, 130 v, and 130 w. The contact 130 u opens or closes a power supply line 903 between an R terminal of the three-phase AC power source 190 and a U-phase winding Lu of the motor 170. The contact 130 v opens or closes a power supply line 904 between an S terminal of the three-phase AC power source 190 and a V-phase winding Lv of the motor 170. The contact 130 w opens or closes a power supply line 905 between a T terminal of the three-phase AC power source 190 and a W-phase winding Lw of the motor 170.
  • AC voltages are supplied from the R terminal, the S terminal, and the T terminal of the three-phase AC power source 190 to the corresponding U-phase winding Lu, the V-phase winding Lv, and the W-phase winding Lw of the motor 170. The AC voltage supplied to the V-phase winding Lv of the motor 170 has a phase difference of 120 degrees with respect to the AC voltage supplied to the U-phase winding Lu. Also, the AC voltage supplied to the W-phase winding Lw of the motor 170 has a phase difference of 120 degrees with respect to the AC voltage supplied to the V-phase winding Lv.
  • Thus, only the supply of AC voltages from the three-phase AC power source 190 to the motor 170 causes a rotating magnetic field to be generated in the stator 172, and the rotor 171 rotates following the rotating magnetic field. As a result, the compressor 200 is operated at a constant rotation rate (power source frequency). Thus, the operation circuit of the motor 170 does not require the activation circuit 20 according to the foregoing embodiment, and only a relay circuit of the connection unit 130 is used.
  • (6-6) Features of Modification Example
  • (6-6-1)
  • In the air conditioner 1 that uses a refrigerant mixture containing at least 1,2-difluoroethylene, the compressor 200 can be driven without interposing a power conversion device between the three-phase AC power source 190 and the motor 170. Thus, it is possible to provide the air conditioner 1 that is environmentally friendly and has a relatively inexpensive configuration.
  • (6-6-2)
  • The motor 170 is an induction motor and is capable of high output with relatively low cost, and thus the efficiency of the air conditioner 1 can be increased.
  • An embodiment of the present disclosure has been described above. It is to be understood that various changes of the embodiment and details are possible without deviating from the gist and scope of the present disclosure described in the claims.
  • REFERENCE SIGNS LIST
      • 1: air conditioner
      • 20: activation circuit
      • 21: positive temperature coefficient thermistor
      • 22: operation capacitor
      • 30: connection unit
      • 70: motor
      • 90: single-phase AC power source
      • 100: compressor
      • 130: connection unit
      • 170: motor
      • 190: three-phase AC power source
      • 200: compressor
    CITATION LIST Patent Literature
  • PTL 1: Japanese Unexamined Patent Application Publication No. 2013-124848

Claims (30)

1. An air conditioner comprising:
a compressor that compresses a refrigerant containing at least 1,2-difluoroethylene;
a motor that drives the compressor; and
a connection unit that causes power to be supplied from an alternating-current (AC) power source to the motor without frequency conversion.
2. The air conditioner according to claim 1, wherein the connection unit directly applies an AC voltage of the AC power source between at least two terminals of the motor.
3. The air conditioner according to claim 1, wherein the AC power source is a single-phase power source.
4. The air conditioner according to claim 1, wherein one terminal of the motor is connected in series to an activation circuit.
5. The air conditioner according to claim 4, wherein the activation circuit is a circuit in which a positive temperature coefficient thermistor and an operation capacitor are connected in parallel to each other.
6. The air conditioner according to claim 1, wherein the AC power source is a three-phase power source.
7. The air conditioner according to claim 1, wherein the motor is an induction motor.
8. The air conditioner according to claim 1,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).
9. The air conditioner according to claim 8,
wherein
when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments AA′, A′B, BD, DC′, C′C, CO, and OA that connect the following 7 points:
point A (68.6, 0.0, 31.4),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point D (0.0, 80.4, 19.6),
point C′ (19.5, 70.5, 10.0),
point C (32.9, 67.1, 0.0), and
point O (100.0, 0.0, 0.0),
or on the above line segments (excluding the points on the line segments BD, CO, and OA);
the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
the line segments BD, CO, and OA are straight lines.
10. The air conditioner according to claim 8,
wherein
when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments GI, IA, AA′, A′B, BD, DC′, C′C, and CG that connect the following 8 points:
point G (72.0, 28.0, 0.0),
point I (72.0, 0.0, 28.0),
point A (68.6, 0.0, 31.4),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point D (0.0, 80.4, 19.6),
point C′ (19.5, 70.5, 10.0), and
point C (32.9, 67.1, 0.0),
or on the above line segments (excluding the points on the line segments IA, BD, and CG);
the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
the line segments GI, IA, BD, and CG are straight lines.
11. The air conditioner according to claim 8,
wherein
when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PN, NK, KA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
point J (47.1, 52.9, 0.0),
point P (55.8, 42.0, 2.2),
point N (68.6, 16.3, 15.1),
point K (61.3, 5.4, 33.3),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point D (0.0, 80.4, 19.6),
point C′ (19.5, 70.5, 10.0), and
point C (32.9, 67.1, 0.0),
or on the above line segments (excluding the points on the line segments BD and CJ);
the line segment PN is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
the line segment NK is represented by coordinates (x, 0.2421x2−29.955x+931.91, −0.2421x2+28.955x−831.91),
the line segment KA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
the line segments JP, BD, and CG are straight lines.
12. The air conditioner according to claim 8,
wherein
when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PL, LM, MA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:
point J (47.1, 52.9, 0.0),
point P (55.8, 42.0, 2.2),
point L (63.1, 31.9, 5.0),
point M (60.3, 6.2, 33.5),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point D (0.0, 80.4, 19.6),
point C′ (19.5, 70.5, 10.0), and
point C (32.9, 67.1, 0.0),
or on the above line segments (excluding the points on the line segments BD and CJ);
the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43)
the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),
the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and
the line segments JP, LM, BD, and CG are straight lines.
13. The air conditioner according to claim 8,
wherein
when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LM, MA′, A′B, BF, FT, and TP that connect the following 7 points:
point P (55.8, 42.0, 2.2),
point L (63.1, 31.9, 5.0),
point M (60.3, 6.2, 33.5),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point F (0.0, 61.8, 38.2), and
point T (35.8, 44.9, 19.3),
or on the above line segments (excluding the points on the line segment BF);
the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2),
the line segment TP is represented by coordinates (x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and
the line segments LM and BF are straight lines.
14. The air conditioner according to claim 8,
wherein
when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LQ, QR, and RP that connect the following 4 points:
point P (55.8, 42.0, 2.2),
point L (63.1, 31.9, 5.0),
point Q (62.8, 29.6, 7.6), and
point R (49.8, 42.3, 7.9),
or on the above line segments;
the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),
the line segment RP is represented by coordinates (x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and
the line segments LQ and QR are straight lines.
15. The air conditioner according to claim 8,
wherein
when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments SM, MA′, A′B, BF, FT, and TS that connect the following 6 points:
point S (62.6, 28.3, 9.1),
point M (60.3, 6.2, 33.5),
point A′ (30.6, 30.0, 39.4),
point B (0.0, 58.7, 41.3),
point F (0.0, 61.8, 38.2), and
point T (35.8, 44.9, 19.3),
or on the above line segments,
the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),
the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),
the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2),
the line segment TS is represented by coordinates (x, −0.0017x2−0.7869x+70.888, −0.0017x2−0.2131x+29.112), and
the line segments SM and BF are straight lines.
16. The air conditioner according claim 1,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)) and trifluoroethylene (HFO-1123) in a total amount of 99.5 mass % or more based on the entire refrigerant, and
the refrigerant comprises 62.0 mass % to 72.0 mass % of HFO-1132(E) based on the entire refrigerant.
17. The air conditioner according to claim 1,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)) and trifluoroethylene (HFO-1123) in a total amount of 99.5 mass % or more based on the entire refrigerant, and
the refrigerant comprises 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire refrigerant.
18. The air conditioner according to claim 1,
wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)),
trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32),
wherein
when the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum in the refrigerant is respectively represented by x, y, z, and a,
if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass % are within the range of a figure surrounded by straight lines GI, IA, AB, BD′, D′C, and CG that connect the following 6 points:
point G (0.026a2−1.7478a+72.0, −0.026a2+0.7478a+28.0, 0.0),
point I (0.026a2−1.7478a+72.0, 0.0, −0.026a2+0.7478a+28.0),
point A (0.0134a2−1.9681a+68.6, 0.0, −0.0134a2+0.9681a+31.4),
point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3),
point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6), and
point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0),
or on the straight lines GI, AB, and D′C (excluding point G, point I, point A, point B, point D′, and point C);
if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
point G (0.02a2−1.6013a+71.105, −0.02a2+0.6013a+28.895, 0.0),
point I (0.02a2−1.6013a+71.105, 0.0, −0.02a2+0.6013a+28.895),
point A (0.0112a2−1.9337a+68.484, 0.0, −0.0112a2+0.9337a+31.516),
point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801), and
point W (0.0, 100.0−a, 0.0),
or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);
if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
point G (0.0135a2−1.4068a+69.727, −0.0135a2+0.4068a+30.273, 0.0),
point I (0.0135a2−1.4068a+69.727, 0.0, −0.0135a2+0.4068a+30.273),
point A (0.0107a2−1.9142a+68.305, 0.0, −0.0107a2+0.9142a+31.695),
point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682), and
point W (0.0, 100.0−a, 0.0),
or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);
if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
point G (0.0111a2−1.3152a+68.986, −0.0111a2+0.3152a+31.014, 0.0),
point I (0.0111a2−1.3152a+68.986, 0.0, −0.0111a2+0.3152a+31.014),
point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207),
point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714), and
point W (0.0, 100.0−a, 0.0),
or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W); and
if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:
point G (0.0061a2−0.9918a+63.902, −0.0061a2−0.0082a+36.098, 0.0),
point I (0.0061a2−0.9918a+63.902, 0.0, −0.0061a2−0.0082a+36.098),
point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9),
point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05), and
point W (0.0, 100.0−a, 0.0),
or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W).
19. The air conditioner according to claim 1,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32),
wherein
when the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum in the refrigerant is respectively represented by x, y, z, and a,
if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100−a) mass % are within the range of a figure surrounded by straight lines JK′, K′B, BD′, D′C, and CJ that connect the following 5 points:
point J (0.0049a2−0.9645a+47.1, −0.0049a2−0.0355a+52.9, 0.0),
point K′ (0.0514a2−2.4353a+61.7, −0.0323a2+0.4122a+5.9, −0.0191a2+1.0231a+32.4),
point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3),
point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6), and
point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0),
or on the straight lines JK′, K′B, and D′C (excluding point J, point B, point D′, and point C);
if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
point J (0.0243a2−1.4161a+49.725, −0.0243a2+0.4161a+50.275, 0.0),
point K′ (0.0341a2−2.1977a+61.187, −0.0236a2+0.34a+5.636, −0.0105a2+0.8577a+33.177),
point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801), and
point W (0.0, 100.0−a, 0.0),
or on the straight lines JK′ and K′B (excluding point J, point B, and point W);
if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:
point J (0.0246a2−1.4476a+50.184, −0.0246a2+0.4476a+49.816, 0.0),
point K′ (0.0196a2−1.7863a+58.515, −0.0079a2−0.1136a+8.702, −0.0117a2+0.8999a+32.783),
point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682), and
point W (0.0, 100.0−a, 0.0),
or on the straight lines JK′ and K′B (excluding point J, point B, and point W);
if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
point J (0.0183a2−1.1399a+46.493, −0.0183a2+0.1399a+53.507, 0.0),
point K′ (−0.0051a2+0.0929a+25.95, 0.0, 0.0051a2−1.0929a+74.05),
point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207),
point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714), and
point W (0.0, 100.0−a, 0.0),
or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W); and
if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:
point J (−0.0134a2+1.0956a+7.13, 0.0134a2−2.0956a+92.87, 0.0),
point K′ (−1.892a+29.443, 0.0, 0.892a+70.557),
point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9),
point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05), and
point W (0.0, 100.0−a, 0.0),
or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W).
20. The air conditioner according to claim 1,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf),
wherein
when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments IJ, JN, NE, and EI that connect the following 4 points:
point I (72.0, 0.0, 28.0),
point J (48.5, 18.3, 33.2),
point N (27.7, 18.2, 54.1), and
point E (58.3, 0.0, 41.7),
or on these line segments (excluding the points on the line segment EI;
the line segment U is represented by coordinates (0.0236y2−1.7616y+72.0, y, −0.0236y2+0.7616y+28.0);
the line segment NE is represented by coordinates (0.012y2−1.9003y+58.3, y, −0.012y2+0.9003y+41.7); and
the line segments JN and EI are straight lines.
21. The air conditioner according to claim 1,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)),
difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf),
wherein
when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments MM′, M′N, NV, VG, and GM that connect the following 5 points:
point M (52.6, 0.0, 47.4),
point M′(39.2, 5.0, 55.8),
point N (27.7, 18.2, 54.1),
point V (11.0, 18.1, 70.9), and
point G (39.6, 0.0, 60.4),
or on these line segments (excluding the points on the line segment GM);
the line segment MM′ is represented by coordinates (0.132y2−3.34y+52.6, y, −0.132y2+2.34y+47.4);
the line segment M′N is represented by coordinates (0.0596y2−2.2541y+48.98, y, −0.0596y2+1.2541y+51.02);
the line segment VG is represented by coordinates (0.0123y2−1.8033y+39.6, y, −0.0123y2+0.8033y+60.4); and
the line segments NV and GM are straight lines.
22. The air conditioner according to claim 1,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf),
wherein
when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ON, NU, and UO that connect the following 3 points:
point O (22.6, 36.8, 40.6),
point N (27.7, 18.2, 54.1), and
point U (3.9, 36.7, 59.4),
or on these line segments;
the line segment ON is represented by coordinates (0.0072y2−0.6701y+37.512, y, −0.0072y2−0.3299y+62.488);
the line segment NU is represented by coordinates (0.0083y2−1.7403y+56.635, y, −0.0083y2+0.7403y+43.365); and
the line segment UO is a straight line.
23. The air conditioner according to claim 1,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)),
difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf),
wherein
when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments QR, RT, TL, LK, and KQ that connect the following 5 points:
point Q (44.6, 23.0, 32.4),
point R (25.5, 36.8, 37.7),
point T (8.6, 51.6, 39.8),
point L (28.9, 51.7, 19.4), and
point K (35.6, 36.8, 27.6),
or on these line segments;
the line segment QR is represented by coordinates (0.0099y2−1.975y+84.765, y, −0.0099y2+0.975y+15.235);
the line segment RT is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874);
the line segment LK is represented by coordinates (0.0049y2−0.8842y+61.488, y, −0.0049y2−0.1158y+38.512);
the line segment KQ is represented by coordinates (0.0095y2−1.2222y+67.676, y, −0.0095y2+0.2222y+32.324); and
the line segment TL is a straight line.
24. The air conditioner according to claim 1,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)),
difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf),
wherein
when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:
point P (20.5, 51.7, 27.8),
point S (21.9, 39.7, 38.4), and
point T (8.6, 51.6, 39.8),
or on these line segments;
the line segment PS is represented by coordinates (0.0064y2−0.7103y+40.1, y, −0.0064y2−0.2897y+59.9);
the line segment ST is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874); and
the line segment TP is a straight line.
25. The air conditioner according to claim 1,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
wherein
when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IK, KB′, B′H, HR, RG, and GI that connect the following 6 points:
point I (72.0, 28.0, 0.0),
point K (48.4, 33.2, 18.4),
point B′ (0.0, 81.6, 18.4),
point H (0.0, 84.2, 15.8),
point R (23.1, 67.4, 9.5), and
point G (38.5, 61.5, 0.0),
or on these line segments (excluding the points on the line segments B′H and GI);
the line segment IK is represented by coordinates (0.025z2−1.7429z+72.00, −0.025z2+0.7429z+28.0, z),
the line segment HR is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z),
the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
the line segments KB′ and GI are straight lines.
26. The air conditioner according to claim 1,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
wherein
when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments U, JR, RG, and GI that connect the following 4 points:
point I (72.0, 28.0, 0.0),
point J (57.7, 32.8, 9.5),
point R (23.1, 67.4, 9.5), and
point G (38.5, 61.5, 0.0),
or on these line segments (excluding the points on the line segment GI);
the line segment U is represented by coordinates (0.025z2−1.7429z+72.0, −0.025z2+0.7429z+28.0, z),
the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
the line segments JR and GI are straight lines.
27. The air conditioner according to claim 1,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
wherein
when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MP, PB′, B′H, HR, RG, and GM that connect the following 6 points:
point M (47.1, 52.9, 0.0),
point P (31.8, 49.8, 18.4),
point B′ (0.0, 81.6, 18.4),
point H (0.0, 84.2, 15.8),
point R (23.1, 67.4, 9.5), and
point G (38.5, 61.5, 0.0),
or on these line segments (excluding the points on the line segments B′H and GM);
the line segment MP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z),
the line segment HR is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z),
the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
the line segments PB′ and GM are straight lines.
28. The air conditioner according to claim 1,
wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
wherein
when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MN, NR, RG; and GM that connect the following 4 points:
point M (47.1, 52.9, 0.0),
point N (38.5, 52.1, 9.5),
point R (23.1, 67.4, 9.5), and
point G (38.5, 61.5, 0.0),
or on these line segments (excluding the points on the line segment GM);
the line segment MN is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z),
the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and
the line segments JR and GI are straight lines.
29. The air conditioner according to claim 1,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
wherein
when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:
point P (31.8, 49.8, 18.4),
point S (25.4, 56.2, 18.4), and
point T (34.8, 51.0, 14.2),
or on these line segments;
the line segment ST is represented by coordinates (−0.0982z2+0.9622z+40.931, 0.0982z2−1.9622z+59.069, z),
the line segment TP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z), and
the line segment PS is a straight line.
30. The air conditioner according to claim 1,
wherein
the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),
wherein
when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments QB″, B″D, DU, and UQ that connect the following 4 points:
point Q (28.6, 34.4, 37.0),
point B″ (0.0, 63.0, 37.0),
point D (0.0, 67.0, 33.0), and
point U (28.7, 41.2, 30.1),
or on these line segments (excluding the points on the line segment B″D);
the line segment DU is represented by coordinates (−3.4962z2+210.71z−3146.1, 3.4962z2−211.71z+3246.1, z),
the line segment UQ is represented by coordinates (0.0135z2−0.9181z+44.133, −0.0135z2−0.0819z+55.867, z), and
the line segments QB″ and B″D are straight lines.
US16/772,961 2017-12-18 2018-12-18 Air conditioner Abandoned US20210164701A1 (en)

Applications Claiming Priority (19)

Application Number Priority Date Filing Date Title
JP2017-242185 2017-12-18
JP2017-242183 2017-12-18
JP2017242185 2017-12-18
JP2017-242187 2017-12-18
JP2017242187 2017-12-18
JP2017242183 2017-12-18
JP2017-242186 2017-12-18
JP2017242186 2017-12-18
PCT/JP2018/037483 WO2019123782A1 (en) 2017-12-18 2018-10-05 Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
JPPCT/JP2018/037483 2018-10-05
JPPCT/JP2018/038746 2018-10-17
JPPCT/JP2018/038749 2018-10-17
PCT/JP2018/038748 WO2019123806A1 (en) 2017-12-18 2018-10-17 Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
PCT/JP2018/038746 WO2019123804A1 (en) 2017-12-18 2018-10-17 Refrigerant-containing composition, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
PCT/JP2018/038749 WO2019123807A1 (en) 2017-12-18 2018-10-17 Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
JPPCT/JP2018/038747 2018-10-17
PCT/JP2018/038747 WO2019123805A1 (en) 2017-12-18 2018-10-17 Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
JPPCT/JP2018/038748 2018-10-17
PCT/JP2018/046628 WO2019124396A1 (en) 2017-12-18 2018-12-18 Air conditioner

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046628 A-371-Of-International WO2019124396A1 (en) 2017-12-18 2018-12-18 Air conditioner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/913,454 Continuation-In-Part US20200363112A1 (en) 2017-12-18 2020-06-26 Air conditioner

Publications (1)

Publication Number Publication Date
US20210164701A1 true US20210164701A1 (en) 2021-06-03

Family

ID=66992715

Family Applications (22)

Application Number Title Priority Date Filing Date
US16/954,651 Abandoned US20200339856A1 (en) 2017-12-18 2018-11-13 Refrigerating oil for refrigerant or refrigerant composition, method for using refrigerating oil, and use of refrigerating oil
US16/954,631 Abandoned US20200392389A1 (en) 2017-12-18 2018-11-13 Refrigeration cycle apparatus
US16/954,613 Abandoned US20200309437A1 (en) 2017-12-18 2018-12-10 Refrigeration cycle apparatus and method of determining refrigerant enclosure amount in refrigeration cycle apparatus
US16/954,669 Abandoned US20210164703A1 (en) 2017-12-18 2018-12-10 Air-conditioning unit
US16/955,465 Abandoned US20210003323A1 (en) 2017-12-18 2018-12-10 Refrigeration cycle apparatus
US16/954,973 Abandoned US20200333051A1 (en) 2017-12-18 2018-12-10 Refrigeration cycle
US16/954,956 Abandoned US20200378662A1 (en) 2017-12-18 2018-12-11 Air conditioning apparatus
US16/955,218 Abandoned US20200333049A1 (en) 2017-12-18 2018-12-13 Refrigeration apparatus
US16/954,967 Abandoned US20200309411A1 (en) 2017-12-18 2018-12-13 Warm-water generating apparatus
US16/954,745 Abandoned US20210095897A1 (en) 2017-12-18 2018-12-17 Heat source unit and refrigeration cycle apparatus
US16/772,927 Abandoned US20210163804A1 (en) 2017-12-18 2018-12-17 Refrigeration cycle apparatus
US16/954,718 Abandoned US20200386459A1 (en) 2017-12-18 2018-12-17 Heat exchange unit
US16/955,222 Abandoned US20200333041A1 (en) 2017-12-18 2018-12-17 Refrigeration cycle apparatus
US16/955,565 Active US11535781B2 (en) 2017-12-18 2018-12-18 Refrigeration cycle apparatus
US16/955,207 Abandoned US20200340714A1 (en) 2017-12-18 2018-12-18 Refrigeration cycle apparatus
US16/954,679 Abandoned US20200309419A1 (en) 2017-12-18 2018-12-18 Refrigeration cycle apparatus
US16/772,953 Abandoned US20210164698A1 (en) 2017-12-18 2018-12-18 Air conditioner
US16/772,986 Abandoned US20200393176A1 (en) 2017-12-18 2018-12-18 Compressor
US16/954,702 Abandoned US20200362215A1 (en) 2017-12-18 2018-12-18 Refrigeration cycle apparatus
US16/772,961 Abandoned US20210164701A1 (en) 2017-12-18 2018-12-18 Air conditioner
US16/772,976 Abandoned US20200393175A1 (en) 2017-12-18 2018-12-18 Compressor
US17/991,204 Abandoned US20230097829A1 (en) 2017-12-18 2022-11-21 Refrigeration cycle apparatus

Family Applications Before (19)

Application Number Title Priority Date Filing Date
US16/954,651 Abandoned US20200339856A1 (en) 2017-12-18 2018-11-13 Refrigerating oil for refrigerant or refrigerant composition, method for using refrigerating oil, and use of refrigerating oil
US16/954,631 Abandoned US20200392389A1 (en) 2017-12-18 2018-11-13 Refrigeration cycle apparatus
US16/954,613 Abandoned US20200309437A1 (en) 2017-12-18 2018-12-10 Refrigeration cycle apparatus and method of determining refrigerant enclosure amount in refrigeration cycle apparatus
US16/954,669 Abandoned US20210164703A1 (en) 2017-12-18 2018-12-10 Air-conditioning unit
US16/955,465 Abandoned US20210003323A1 (en) 2017-12-18 2018-12-10 Refrigeration cycle apparatus
US16/954,973 Abandoned US20200333051A1 (en) 2017-12-18 2018-12-10 Refrigeration cycle
US16/954,956 Abandoned US20200378662A1 (en) 2017-12-18 2018-12-11 Air conditioning apparatus
US16/955,218 Abandoned US20200333049A1 (en) 2017-12-18 2018-12-13 Refrigeration apparatus
US16/954,967 Abandoned US20200309411A1 (en) 2017-12-18 2018-12-13 Warm-water generating apparatus
US16/954,745 Abandoned US20210095897A1 (en) 2017-12-18 2018-12-17 Heat source unit and refrigeration cycle apparatus
US16/772,927 Abandoned US20210163804A1 (en) 2017-12-18 2018-12-17 Refrigeration cycle apparatus
US16/954,718 Abandoned US20200386459A1 (en) 2017-12-18 2018-12-17 Heat exchange unit
US16/955,222 Abandoned US20200333041A1 (en) 2017-12-18 2018-12-17 Refrigeration cycle apparatus
US16/955,565 Active US11535781B2 (en) 2017-12-18 2018-12-18 Refrigeration cycle apparatus
US16/955,207 Abandoned US20200340714A1 (en) 2017-12-18 2018-12-18 Refrigeration cycle apparatus
US16/954,679 Abandoned US20200309419A1 (en) 2017-12-18 2018-12-18 Refrigeration cycle apparatus
US16/772,953 Abandoned US20210164698A1 (en) 2017-12-18 2018-12-18 Air conditioner
US16/772,986 Abandoned US20200393176A1 (en) 2017-12-18 2018-12-18 Compressor
US16/954,702 Abandoned US20200362215A1 (en) 2017-12-18 2018-12-18 Refrigeration cycle apparatus

Family Applications After (2)

Application Number Title Priority Date Filing Date
US16/772,976 Abandoned US20200393175A1 (en) 2017-12-18 2018-12-18 Compressor
US17/991,204 Abandoned US20230097829A1 (en) 2017-12-18 2022-11-21 Refrigeration cycle apparatus

Country Status (9)

Country Link
US (22) US20200339856A1 (en)
EP (19) EP3730569A4 (en)
JP (22) JP7269499B2 (en)
KR (11) KR102655619B1 (en)
CN (21) CN111511874A (en)
AU (11) AU2018390660B2 (en)
BR (10) BR112020011145A2 (en)
PH (10) PH12020550899A1 (en)
WO (1) WO2019124409A1 (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10119738B2 (en) 2014-09-26 2018-11-06 Waterfurnace International Inc. Air conditioning system with vapor injection compressor
US11839062B2 (en) 2016-08-02 2023-12-05 Munters Corporation Active/passive cooling system
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
JP7269499B2 (en) 2017-12-18 2023-05-09 ダイキン工業株式会社 refrigeration cycle equipment
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus
WO2019123782A1 (en) * 2017-12-18 2019-06-27 ダイキン工業株式会社 Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US20220389299A1 (en) * 2017-12-18 2022-12-08 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
BR112020010501A2 (en) * 2017-12-18 2020-11-10 Daikin Industries, Ltd. composition containing refrigerant, use for the same, refrigeration machine having the same and method for operating the refrigeration machine
KR20210011954A (en) * 2018-06-25 2021-02-02 미쓰비시덴키 가부시키가이샤 Rotors, electric motors, blowers and air conditioners
US11592215B2 (en) 2018-08-29 2023-02-28 Waterfurnace International, Inc. Integrated demand water heating using a capacity modulated heat pump with desuperheater
WO2020255198A1 (en) * 2019-06-17 2020-12-24 三菱電機株式会社 Freezing apparatus
US20210003322A1 (en) * 2019-07-02 2021-01-07 Heatcraft Refrigeration Products Llc Cooling System
EP3879207B1 (en) * 2020-03-10 2023-09-06 Trane International Inc. Refrigeration apparatuses and operating method thereof
JP7362909B2 (en) * 2020-04-20 2023-10-17 三菱電機株式会社 Repeater and air conditioner equipped with it
CN111555480B (en) * 2020-05-26 2021-04-30 安徽美芝精密制造有限公司 Motor, compressor and refrigeration plant
DE102020115275A1 (en) * 2020-06-09 2021-12-09 Stiebel Eltron Gmbh & Co. Kg Method for operating a compression refrigeration system and compression refrigeration system
CN112290783A (en) * 2020-08-31 2021-01-29 海信(山东)空调有限公司 Air conditioner and IPM module bootstrap circuit pre-charging control method
JP7108208B2 (en) * 2020-10-09 2022-07-28 ダイキン工業株式会社 Compositions containing refrigerants and methods of stabilizing compositions containing refrigerants
CN112396818B (en) * 2020-11-12 2021-09-24 贵州电网有限责任公司 Portable mobile detection terminal
US11913672B2 (en) * 2020-12-21 2024-02-27 Goodman Global Group, Inc. Heating, ventilation, and air-conditioning system with dehumidification
JP7174278B2 (en) * 2021-01-13 2022-11-17 ダイキン工業株式会社 Air conditioner and method for replacing functional parts
US11754316B2 (en) * 2021-04-26 2023-09-12 Villara Corporation Providing domestic hot water from conventional residential split system heat pumps
CN113432196B (en) * 2021-06-21 2022-10-18 深圳市科信通信技术股份有限公司 Air conditioning system
CN113294884B (en) * 2021-06-21 2022-04-19 宁波奥克斯电气股份有限公司 Heating control method and device and air conditioner
US11984838B2 (en) * 2021-07-16 2024-05-14 Haier Us Appliance Solutions, Inc. Direct current load identification system
CN113864984B (en) * 2021-10-19 2022-11-18 宁波奥克斯电气股份有限公司 APF automatic debugging method and device for air conditioner, computer equipment and storage medium
CN114061143B (en) * 2021-11-18 2023-05-30 深圳职业技术学院 Direct heating type multifunctional heat pump water heater
WO2023164101A1 (en) * 2022-02-25 2023-08-31 The Chemours Company Fc, Llc Compositions of hfo-1234yf, hfo-1132e, and hfc-152a and systems for using the compositions
KR102548607B1 (en) * 2022-10-13 2023-06-28 지에스칼텍스 주식회사 Base oil comprising polyol ester and refrigerating machine oil composition comprising the same
CN115888163B (en) * 2022-11-22 2024-03-01 常州东立冷冻科技有限公司 Assembled full liquid evaporation cold all-in-one
CN117111533B (en) * 2023-10-09 2024-05-14 佛山市芯耀环保科技有限公司 Control circuit of ice machine, PCB and ice machine

Family Cites Families (275)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5190115A (en) 1975-02-05 1976-08-07
FR2314456A1 (en) * 1975-06-09 1977-01-07 Inst Francais Du Petrole COLD PRODUCTION PROCESS
JPS5213025A (en) 1975-07-18 1977-02-01 Nissan Motor Co Ltd Torch ignition engine
JPS57198968A (en) 1981-05-29 1982-12-06 Hitachi Ltd Heat pump type refrigerator
JPS5939790A (en) 1982-08-27 1984-03-05 Agency Of Ind Science & Technol Production of single crystal
JPS6269066A (en) 1985-09-24 1987-03-30 株式会社東芝 Refrigeration cycle device
JPS6369066A (en) 1986-09-09 1988-03-29 Nec Corp Data correcting system on unrewritable medium
JPH024163A (en) 1988-03-08 1990-01-09 Mitsubishi Electric Corp Cooling device for semiconductor element for power
EP0638630B1 (en) 1990-01-31 1998-06-17 Exxon Chemical Patents Inc. Esters as lubricants for a haloalkane refrigerant
JP2803451B2 (en) 1991-07-12 1998-09-24 三菱電機株式会社 Refrigerant compressor, refrigerator, refrigerating air conditioner, and method of assembling refrigerant compressor
JPH05149605A (en) 1991-11-30 1993-06-15 Toshiba Corp Air conditioner
JPH05264070A (en) 1992-03-17 1993-10-12 Mitsubishi Electric Corp Outdoor apparatus of air conditioner
JP3021947B2 (en) 1992-03-24 2000-03-15 ダイキン工業株式会社 Control method of variable capacity air conditioner
JPH0719627A (en) * 1993-06-30 1995-01-20 Daikin Ind Ltd Heat exchanger for non-azeotrope refrigerant
JPH07190571A (en) * 1993-12-24 1995-07-28 Matsushita Electric Ind Co Ltd Refrigerator using non-azeotropic mixture refrigerant
DE69531614T2 (en) 1994-05-23 2004-06-17 Cognis Corp. INCREASING THE SPECIFIC ELECTRICAL RESISTANCE OF ESTER LUBRICANTS
JPH08200273A (en) 1995-01-30 1996-08-06 Sanyo Electric Co Ltd Scroll compressor
CN1083474C (en) * 1995-10-24 2002-04-24 顾雏军 Improved non-azeotropic operating medium using in thermal circulation
JPH10309050A (en) 1996-05-16 1998-11-17 Matsushita Electric Ind Co Ltd Compressor
JPH1046170A (en) * 1996-08-06 1998-02-17 Kao Corp Working fluid composition for refrigerator
JP3104642B2 (en) 1997-04-25 2000-10-30 ダイキン工業株式会社 Refrigeration equipment
JPH10318564A (en) 1997-05-20 1998-12-04 Fujitsu General Ltd Outdoor unit for air conditioner
JP3936027B2 (en) * 1997-06-23 2007-06-27 松下電器産業株式会社 Air conditioner
JPH11206001A (en) 1998-01-07 1999-07-30 Meidensha Corp Protector for motor
JPH11256358A (en) 1998-03-09 1999-09-21 Sanyo Electric Co Ltd Corrosion resistance copper pipe for heat exchanger
JP2000161805A (en) * 1998-11-27 2000-06-16 Daikin Ind Ltd Refrigerating apparatus
JP2000220877A (en) 1999-01-29 2000-08-08 Daikin Ind Ltd Ventilating air conditioner
JP2000234767A (en) 1999-02-10 2000-08-29 Mitsubishi Electric Corp Cooling device and cooling device of air-conditioner
JP2000304302A (en) 1999-04-19 2000-11-02 Daikin Ind Ltd Air conditioner
CN1238442A (en) * 1999-05-08 1999-12-15 三菱电机株式会社 Compressor for closed-lorp refrigenation device and assembling method thereof
BR0011311A (en) 1999-05-10 2002-02-26 New Japan Chem Co Ltd Lubricating oil for refrigerator, operating fluid for refrigerator and method for lubricating a refrigerator
JP4312894B2 (en) 1999-09-09 2009-08-12 東芝キヤリア株式会社 Air conditioner indoor unit
JP2001194016A (en) 1999-10-18 2001-07-17 Daikin Ind Ltd Freezing apparatus
JP3860942B2 (en) * 1999-11-18 2006-12-20 株式会社ジャパンエナジー Lubricating oil composition for refrigeration equipment, working fluid and refrigeration equipment
KR100327551B1 (en) * 1999-12-27 2002-03-15 황한규 Airconditioner for vehicle with dual evaporator ASS'Y
JP3763120B2 (en) 2000-08-09 2006-04-05 三菱電機株式会社 Air conditioner
JP2002089978A (en) 2000-09-11 2002-03-27 Daikin Ind Ltd Paired refrigerating device and multiple refrigerating device
JP3952769B2 (en) * 2001-02-19 2007-08-01 株式会社デンソー Heat pump chiller
JP2002257366A (en) * 2001-03-02 2002-09-11 Sekisui Chem Co Ltd Hot water supplying/heating system
JP2002272043A (en) 2001-03-05 2002-09-20 Daikin Ind Ltd Rotary compressor and air-conditioner provided with the compressor
JP3518518B2 (en) * 2001-03-05 2004-04-12 松下電器産業株式会社 Banknote recognition device
JP4410957B2 (en) * 2001-03-26 2010-02-10 株式会社ラブアース・テクノロジー Hybrid water heater and method
JP2003018776A (en) 2001-03-30 2003-01-17 Sanyo Electric Co Ltd Synchronous induction motor
EP1246348B1 (en) 2001-03-30 2011-05-04 Sanyo Electric Co., Ltd. Synchronous induction motor and manufacturing method and drive unit for the same, and hermetic electric compressor
JP3885535B2 (en) 2001-09-07 2007-02-21 株式会社デンソー Water heater
JP3690341B2 (en) 2001-12-04 2005-08-31 ダイキン工業株式会社 Brushless DC motor driving method and apparatus
TWI288519B (en) 2002-03-27 2007-10-11 Sanyo Electric Co Synchronous induction motor
JP2004028035A (en) 2002-06-28 2004-01-29 Fujitsu General Ltd Enclosed compressor
JP3925383B2 (en) 2002-10-11 2007-06-06 ダイキン工業株式会社 Hot water supply device, air conditioning hot water supply system, and hot water supply system
JP2004215406A (en) 2002-12-28 2004-07-29 Daikin Ind Ltd Motor driver for air conditioner
JP2004251535A (en) 2003-02-20 2004-09-09 Aisin Seiki Co Ltd Air conditioner
JP2004361036A (en) 2003-06-06 2004-12-24 Daikin Ind Ltd Air conditioning system
JP2005061711A (en) * 2003-08-12 2005-03-10 Osaka Gas Co Ltd Exhaust heat recovering water heater
JP2005241045A (en) 2004-02-24 2005-09-08 Sanyo Electric Co Ltd Air conditioner
JP4759226B2 (en) 2004-03-31 2011-08-31 株式会社コベルコ マテリアル銅管 Tube expansion tool and tube expansion method using the same
WO2005100866A1 (en) 2004-04-15 2005-10-27 Daikin Industries, Ltd. Air conditioner
JP4222273B2 (en) * 2004-08-03 2009-02-12 パナソニック株式会社 Heat pump water heater
JP4555671B2 (en) 2004-12-09 2010-10-06 東芝キヤリア株式会社 Air conditioner
JP2006211824A (en) 2005-01-28 2006-08-10 Mitsubishi Electric Corp Compressor
JP4591112B2 (en) 2005-02-25 2010-12-01 株式会社日立製作所 Permanent magnet rotating machine
ES2580080T3 (en) 2005-03-18 2016-08-19 Carrier Commercial Refrigeration, Inc. Multi-part heat exchanger
JP2006313027A (en) 2005-05-06 2006-11-16 Mitsubishi Electric Corp Ventilation air conditioner
JP2007084481A (en) * 2005-09-22 2007-04-05 Daikin Ind Ltd Preparation method of pentafluoroethane
JP3985834B2 (en) 2005-11-07 2007-10-03 ダイキン工業株式会社 Electrical component assembly, outdoor unit of air conditioner including the same, and air conditioner
CN1987264A (en) * 2005-12-22 2007-06-27 乐金电子(天津)电器有限公司 Air conditioner
JP4893251B2 (en) 2006-07-28 2012-03-07 パナソニック株式会社 Matrix converter and device equipped with the same
JP2008039305A (en) * 2006-08-07 2008-02-21 Daikin Ind Ltd Hot water circulation heating system performing heating by circulating hot water in building and water spraying device for evaporator
EP2054361B1 (en) * 2006-08-24 2016-02-17 E. I. du Pont de Nemours and Company Processes for separation of fluoroolefins from hydrogen fluoride by azeotropic distillation
JP4859694B2 (en) * 2007-02-02 2012-01-25 三菱重工業株式会社 Multistage compressor
US8672733B2 (en) 2007-02-06 2014-03-18 Nordyne Llc Ventilation airflow rate control
JP4840215B2 (en) 2007-03-27 2011-12-21 株式会社日立製作所 Permanent magnet type rotating electric machine and compressor using the same
JP2008286422A (en) * 2007-05-15 2008-11-27 Panasonic Corp Refrigerator
JP2008295161A (en) * 2007-05-23 2008-12-04 Daikin Ind Ltd Power conversion device
JP2009063216A (en) 2007-09-06 2009-03-26 Hitachi Appliances Inc Heat exchanger and air conditioner using the same
JP2009092274A (en) * 2007-10-05 2009-04-30 Hitachi Appliances Inc Air conditioner
JP5050763B2 (en) * 2007-10-05 2012-10-17 パナソニック株式会社 Water heater
JP5038105B2 (en) * 2007-11-19 2012-10-03 パナソニック株式会社 Valve device and air conditioner having the same
JP4738401B2 (en) 2007-11-28 2011-08-03 三菱電機株式会社 Air conditioner
JP2009150620A (en) 2007-12-21 2009-07-09 Toshiba Carrier Corp Dual heat pump type air conditioning system
JP5130910B2 (en) * 2007-12-28 2013-01-30 ダイキン工業株式会社 Air conditioner and refrigerant quantity determination method
WO2009093345A1 (en) 2008-01-25 2009-07-30 Mitsubishi Electric Corporation Induction electric motor and hermetic comporessor
ES2610615T3 (en) * 2008-02-21 2017-04-28 The Chemours Company Fc, Llc Azeotrope compositions comprising 3,3,3-trifluoropropene and hydrogen fluoride and methods for separating them
JP2009219268A (en) * 2008-03-11 2009-09-24 Daikin Ind Ltd Power conversion apparatus
JP5407157B2 (en) * 2008-03-18 2014-02-05 ダイキン工業株式会社 Refrigeration equipment
JP4931848B2 (en) * 2008-03-31 2012-05-16 三菱電機株式会社 Heat pump type outdoor unit for hot water supply
JP4471023B2 (en) 2008-06-12 2010-06-02 ダイキン工業株式会社 Air conditioner
CN102083934B (en) * 2008-07-01 2013-06-12 大金工业株式会社 Refrigerant composition comprising difluoromethane (HFC32), pentafluoroethane (HFC125) and 2,3,3,3-tetrafluoropropene (HFO1234yf)
JP4654423B2 (en) 2008-07-22 2011-03-23 独立行政法人産業技術総合研究所 Power converter
JP5128424B2 (en) * 2008-09-10 2013-01-23 パナソニックヘルスケア株式会社 Refrigeration equipment
JP2010071530A (en) 2008-09-17 2010-04-02 Daikin Ind Ltd Air conditioner
US20100082162A1 (en) 2008-09-29 2010-04-01 Actron Air Pty Limited Air conditioning system and method of control
JP2010121927A (en) * 2008-10-22 2010-06-03 Panasonic Corp Cooling cycle device
JP2010103346A (en) 2008-10-24 2010-05-06 Daido Steel Co Ltd Magnet for ipm type concentrated winding motor and method of manufacturing the same, and ipm type concentrated winding motor using the magnet
JP2010119190A (en) 2008-11-12 2010-05-27 Toyota Motor Corp Rotor for magnet-embedded motors and magnet-embedded motor
US20100122545A1 (en) 2008-11-19 2010-05-20 E. I. Du Pont De Nemours And Company Tetrafluoropropene compositions and uses thereof
JP2010164222A (en) * 2009-01-14 2010-07-29 Panasonic Corp Finned heat exchanger
JP5136495B2 (en) 2009-03-27 2013-02-06 パナソニック株式会社 Heat exchanger
CN102395842B (en) * 2009-04-17 2015-03-11 大金工业株式会社 Heat source unit
JP2011004449A (en) 2009-06-16 2011-01-06 Panasonic Corp Matrix converter circuit
US9250001B2 (en) 2009-06-17 2016-02-02 Emerson Electric Co. Control of an expansion valve regulating refrigerant to an evaporator of a climate control system
JP2011043304A (en) * 2009-08-24 2011-03-03 Hitachi Appliances Inc Air conditioner
JP5452138B2 (en) * 2009-09-01 2014-03-26 三菱電機株式会社 Refrigeration air conditioner
CN101649189B (en) * 2009-09-04 2012-05-23 西安交通大学 Environmental mixed refrigerant with trifluoroiodomethane
JP2011094841A (en) 2009-10-28 2011-05-12 Daikin Industries Ltd Refrigerating device
JP5542423B2 (en) 2009-12-22 2014-07-09 東芝産業機器システム株式会社 Rotating electric machine rotor and rotating electric machine
JP2011202738A (en) * 2010-03-25 2011-10-13 Toshiba Carrier Corp Air conditioner
JP2011252636A (en) * 2010-06-01 2011-12-15 Panasonic Corp Hot-water heating hot-water supply apparatus
JP5388969B2 (en) 2010-08-23 2014-01-15 三菱電機株式会社 Heat exchanger and air conditioner equipped with this heat exchanger
CN102401519B (en) * 2010-09-16 2016-08-10 乐金电子(天津)电器有限公司 The off-premises station of air-conditioner
FR2964976B1 (en) * 2010-09-20 2012-08-24 Arkema France COMPOSITION BASED ON 1,3,3,3-TETRAFLUOROPROPENE
JP5595245B2 (en) 2010-11-26 2014-09-24 三菱電機株式会社 Refrigeration equipment
JP2012132637A (en) 2010-12-22 2012-07-12 Daikin Industries Ltd Outdoor unit for air conditioner
JP5716408B2 (en) 2011-01-18 2015-05-13 ダイキン工業株式会社 Power converter
JP5721480B2 (en) * 2011-03-10 2015-05-20 三菱電機株式会社 Refrigeration cycle equipment
JP5821756B2 (en) * 2011-04-21 2015-11-24 株式会社デンソー Refrigeration cycle equipment
RU2625307C2 (en) 2011-05-19 2017-07-13 Асахи Гласс Компани, Лимитед Working medium and heat cycle system
CN103547652B (en) 2011-05-19 2016-06-29 旭硝子株式会社 Working media and heat circulating system
CN103975204B (en) * 2011-12-06 2016-02-24 三菱电机株式会社 Heat pump type heating and hot-water supply system
JP6065429B2 (en) 2011-12-08 2017-01-25 パナソニック株式会社 Air conditioner
JP2013126281A (en) 2011-12-14 2013-06-24 Daikin Ind Ltd Method for manufacturing field element, and end plate for field element
JP5506770B2 (en) 2011-12-16 2014-05-28 三菱電機株式会社 Air conditioner
JP5881435B2 (en) 2012-01-27 2016-03-09 三菱電機株式会社 Heat exchanger and air conditioner equipped with the same
JP5867116B2 (en) 2012-01-30 2016-02-24 ダイキン工業株式会社 Refrigeration unit outdoor unit
JP6111520B2 (en) 2012-02-22 2017-04-12 ダイキン工業株式会社 Power converter
JP5897110B2 (en) 2012-03-23 2016-03-30 三菱重工業株式会社 Motor and electric compressor using the same
JP5536817B2 (en) 2012-03-26 2014-07-02 日立アプライアンス株式会社 Refrigeration cycle equipment
JP2015111012A (en) * 2012-03-26 2015-06-18 東芝キヤリア株式会社 Refrigeration cycle device
KR20130111186A (en) * 2012-03-31 2013-10-10 (주)코스모테크놀로지 Hybrid heating apparatus and method thereof
JPWO2013151043A1 (en) * 2012-04-02 2015-12-17 東芝キヤリア株式会社 Refrigeration cycle equipment
JP5533926B2 (en) 2012-04-16 2014-06-25 ダイキン工業株式会社 Air conditioner
JP2015127593A (en) * 2012-04-27 2015-07-09 東芝キヤリア株式会社 Outdoor unit of air conditioner
US20130283832A1 (en) * 2012-04-30 2013-10-31 Trane International Inc. Refrigeration system with purge using enrivonmentally-suitable chiller refrigerant
JP5500240B2 (en) * 2012-05-23 2014-05-21 ダイキン工業株式会社 Refrigeration equipment
JP5516712B2 (en) 2012-05-28 2014-06-11 ダイキン工業株式会社 Refrigeration equipment
JP5673612B2 (en) * 2012-06-27 2015-02-18 三菱電機株式会社 Refrigeration cycle equipment
JP5805598B2 (en) * 2012-09-12 2015-11-04 三菱電機株式会社 Refrigeration cycle equipment
WO2014045400A1 (en) 2012-09-21 2014-03-27 三菱電機株式会社 Refrigeration device and method for controlling same
JP6044238B2 (en) 2012-09-28 2016-12-14 ダイキン工業株式会社 Air conditioner
WO2014068655A1 (en) 2012-10-30 2014-05-08 三菱電機株式会社 Electric motor with embedded permanent magnet, and refrigeration and air conditioning equipment equipped with same
JP5516695B2 (en) 2012-10-31 2014-06-11 ダイキン工業株式会社 Air conditioner
CN103032996B (en) * 2012-12-12 2015-03-11 宁波奥克斯电气有限公司 Parallel compressor selection and configuration method for preventing compressor from being frequently started up and shut down
JP5776746B2 (en) 2013-01-29 2015-09-09 ダイキン工業株式会社 Air conditioner
CN108469126A (en) 2013-01-31 2018-08-31 日立江森自控空调有限公司 Outdoor unit and the freezing cycle device for using the outdoor unit
JP2014152999A (en) 2013-02-08 2014-08-25 Daikin Ind Ltd Air conditioner
WO2014128831A1 (en) * 2013-02-19 2014-08-28 三菱電機株式会社 Air conditioning device
WO2014156190A1 (en) 2013-03-29 2014-10-02 パナソニックヘルスケア株式会社 Dual refrigeration device
CZ2014196A3 (en) 2013-04-17 2015-08-19 Mitsubishi Electric Corporation Refrigerant compressor
BR112015025238A2 (en) * 2013-04-30 2017-07-18 Asahi Glass Co Ltd trifluoroethylene containing composition
EP2993212B1 (en) 2013-04-30 2019-08-28 AGC Inc. Working medium for heat cycle
CN103363705B (en) * 2013-05-28 2015-05-13 广东美的制冷设备有限公司 Refrigeration system, refrigeration equipment comprising refrigeration system and control method of refrigeration equipment
GB2530915C (en) * 2013-06-19 2019-10-30 Mitsubishi Electric Corp Air-conditioning apparatus
WO2014203354A1 (en) 2013-06-19 2014-12-24 三菱電機株式会社 Refrigeration cycle device
JP6157616B2 (en) * 2013-06-19 2017-07-05 三菱電機株式会社 Refrigeration cycle equipment
EP3012555B1 (en) * 2013-06-19 2021-01-13 Mitsubishi Electric Corporation Refrigeration cycle device
JP5850204B2 (en) 2013-07-12 2016-02-03 旭硝子株式会社 Working medium for heat cycle, composition for heat cycle system, and heat cycle system
KR101525849B1 (en) * 2013-07-16 2015-06-05 삼성전자 주식회사 Compressor and air conditioning apparatus using the same
JP2015023721A (en) 2013-07-22 2015-02-02 ダイキン工業株式会社 Rotor, motor and compressor
WO2015015881A1 (en) * 2013-07-29 2015-02-05 三菱電機株式会社 Heat pump device
GB2516694B (en) * 2013-07-30 2016-09-07 Mexichem Amanco Holding Sa Heat transfer compositions
JP6225548B2 (en) * 2013-08-08 2017-11-08 株式会社富士通ゼネラル Air conditioner
JP2015055455A (en) 2013-09-13 2015-03-23 三菱電機株式会社 Outdoor unit and air conditioner
CN105579790B (en) * 2013-09-27 2017-04-05 松下健康医疗控股株式会社 Refrigerating plant
JP2015078789A (en) 2013-10-16 2015-04-23 三菱電機株式会社 Heat exchanger and air conditioning device including heat exchanger
JP6118227B2 (en) 2013-10-22 2017-04-19 株式会社日立産機システム Permanent magnet rotating electric machine and compressor using the same
EP3070417A4 (en) 2013-11-12 2017-09-27 Mitsubishi Electric Corporation Refrigeration system
JP5661903B2 (en) 2013-12-04 2015-01-28 三菱電機株式会社 Compressor
WO2015083274A1 (en) 2013-12-05 2015-06-11 三菱電機株式会社 Permanent magnet-embedded electric motor, compressor, and refrigerating and air-conditioning device
KR102135086B1 (en) * 2013-12-10 2020-07-17 엘지전자 주식회사 Motor driving device and air conditioner including the same
JP2015114082A (en) 2013-12-13 2015-06-22 ダイキン工業株式会社 Refrigerant pipeline connection body and manufacturing method thereof
CN105939984B (en) * 2014-01-30 2020-08-14 Agc株式会社 Method for producing trifluoroethylene
EP3792330B1 (en) 2014-01-31 2024-04-24 AGC Inc. Working fluid for heat cycle, composition for heat cycle system, and heat cycle system
JP6252211B2 (en) * 2014-02-03 2017-12-27 ダイキン工業株式会社 Air conditioning system
JP6354616B2 (en) * 2014-02-20 2018-07-11 旭硝子株式会社 Composition for thermal cycle system and thermal cycle system
CN110079276B (en) * 2014-02-20 2022-01-14 Agc株式会社 Composition for heat cycle system and heat cycle system
CN106062159B (en) 2014-02-20 2019-04-16 Agc株式会社 Heat circulating system composition and heat circulating system
EP3109292B1 (en) 2014-02-20 2020-09-02 AGC Inc. Working fluid for heat cycle
JP6624047B2 (en) * 2014-02-20 2019-12-25 Agc株式会社 Composition for heat cycle system and heat cycle system
JP6375639B2 (en) 2014-02-21 2018-08-22 ダイキン工業株式会社 Air conditioner
JP6293262B2 (en) * 2014-03-14 2018-03-14 三菱電機株式会社 Compressor and refrigeration cycle apparatus
JP6453849B2 (en) * 2014-03-14 2019-01-16 三菱電機株式会社 Refrigeration cycle equipment
WO2015140827A1 (en) 2014-03-17 2015-09-24 三菱電機株式会社 Heat pump device
WO2015140874A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Air conditioning device
KR101935116B1 (en) * 2014-03-17 2019-01-03 미쓰비시덴키 가부시키가이샤 Refrigeration cycle apparatus
CN106133110B (en) * 2014-03-18 2020-06-02 Agc株式会社 Working medium for heat cycle, composition for heat cycle system, and heat cycle system
JP6105511B2 (en) * 2014-04-10 2017-03-29 三菱電機株式会社 Heat pump equipment
CN103940018A (en) * 2014-05-06 2014-07-23 北京德能恒信科技有限公司 Heat pipe air conditioner all-in-one machine with evaporative condenser
JP5897062B2 (en) * 2014-05-08 2016-03-30 三菱電機株式会社 Compressor motor, compressor, refrigeration cycle apparatus, and compressor motor manufacturing method
JP2015218912A (en) * 2014-05-14 2015-12-07 パナソニックIpマネジメント株式会社 Air conditioner and load adjustment device used for the same
JP2015218909A (en) * 2014-05-14 2015-12-07 パナソニックIpマネジメント株式会社 Refrigeration cycle device and hot water generation device including the same
JP2016011423A (en) * 2014-06-06 2016-01-21 旭硝子株式会社 Working medium for heat cycle, composition for heat cycle system and heat cycle system
EP3153561A4 (en) 2014-06-06 2018-01-10 Asahi Glass Company, Limited Composition for heat cycle system and heat cycle system
JP2015229767A (en) 2014-06-06 2015-12-21 旭硝子株式会社 Actuation medium for heat cycle
JPWO2015186671A1 (en) 2014-06-06 2017-04-20 旭硝子株式会社 Composition for thermal cycle system and thermal cycle system
JPWO2015186558A1 (en) * 2014-06-06 2017-04-20 旭硝子株式会社 Working medium for heat cycle, composition for heat cycle system, and heat cycle system
WO2015186557A1 (en) * 2014-06-06 2015-12-10 旭硝子株式会社 Working medium for heat cycle, composition for heat cycle system, and heat cycle system
JP2016001062A (en) 2014-06-11 2016-01-07 パナソニックIpマネジメント株式会社 Inverter control device
JP6519909B2 (en) 2014-07-18 2019-05-29 出光興産株式会社 Refrigerating machine oil composition and refrigerating apparatus
JP2016033426A (en) * 2014-07-31 2016-03-10 日立アプライアンス株式会社 Air conditioner
JP6188951B2 (en) * 2014-07-31 2017-08-30 三菱電機株式会社 Refrigerant distributor, heat exchanger and refrigeration cycle apparatus
CN110205099A (en) * 2014-08-12 2019-09-06 Agc株式会社 Heat circulating system
US10295236B2 (en) 2014-08-13 2019-05-21 Trane International Inc. Compressor heating system
JP6543450B2 (en) * 2014-09-29 2019-07-10 Phcホールディングス株式会社 Refrigeration system
EP3208555A4 (en) 2014-10-16 2018-05-30 Mitsubishi Electric Corporation Refrigeration cycle device
US9982904B2 (en) 2014-11-07 2018-05-29 Daikin Industries, Ltd. Air conditioning system
WO2016104418A1 (en) * 2014-12-22 2016-06-30 三菱電機株式会社 Rotor for rotary electrical machine
CN107110570B (en) 2014-12-26 2019-12-31 大金工业株式会社 Heat storage type air conditioner
JP6028815B2 (en) 2015-01-19 2016-11-24 ダイキン工業株式会社 Heat exchange unit of air conditioner
WO2016129500A1 (en) * 2015-02-09 2016-08-18 旭硝子株式会社 Air conditioner working medium for electric car and air conditioner working medium composition for electric car
PL3536760T3 (en) * 2015-02-19 2022-04-04 Daikin Industries, Ltd. Composition containing mixture of fluorinated hydrocarbons, and method for producing same
CN106032955B (en) * 2015-03-09 2020-06-16 大金工业株式会社 Refrigerant recovery unit and outdoor unit connected to the same
JP2016174461A (en) 2015-03-17 2016-09-29 ダイキン工業株式会社 Rotor
JP6552851B2 (en) * 2015-03-19 2019-07-31 三菱重工サーマルシステムズ株式会社 Compressor driving motor and cooling method thereof
CN204648544U (en) * 2015-03-27 2015-09-16 中国建筑科学研究院 Indoor environmental condition control unit and system and building system and passive type building
JPWO2016157538A1 (en) 2015-04-03 2017-04-27 三菱電機株式会社 Refrigeration cycle equipment
CN107532074A (en) * 2015-05-14 2018-01-02 旭硝子株式会社 Fluid composition, refrigerant composition earl august eugene lund ian robert and air conditioner
WO2016190232A1 (en) 2015-05-22 2016-12-01 ダイキン工業株式会社 Fluid supplying device for temperature adjustment
JP6582236B2 (en) 2015-06-11 2019-10-02 パナソニックIpマネジメント株式会社 Refrigeration cycle equipment
JP6604082B2 (en) * 2015-08-07 2019-11-13 ダイキン工業株式会社 Refrigeration equipment
DE112015006824T5 (en) 2015-08-21 2018-05-03 Mitsubishi Electric Corporation ELECTRICAL ROTATION MACHINE AND AIR CONDITIONER
JP2017046430A (en) 2015-08-26 2017-03-02 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Motor controller, fluid machinery, air conditioner, and program
WO2017038489A1 (en) * 2015-09-01 2017-03-09 三菱電機株式会社 Rotor, rotating electric machine, electric compressor, and refrigeration/air-conditioning device
CN204943959U (en) * 2015-09-01 2016-01-06 河北纳森空调有限公司 Environmental protection refrigerant R410A low-temperature air energy heat pump water chiller-heater unit
JP2017053285A (en) 2015-09-10 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Compressor
JP6733145B2 (en) 2015-09-30 2020-07-29 ダイキン工業株式会社 Water heat exchanger housing unit
JP6274277B2 (en) 2015-09-30 2018-02-07 ダイキン工業株式会社 Refrigeration equipment
CN205261858U (en) * 2015-11-12 2016-05-25 珠海丽日帐篷有限公司 Medium -and -large -sized integral covering or awning on a car, boat, etc. air conditioner for room
JPWO2017115636A1 (en) 2015-12-28 2018-10-18 Agc株式会社 Refrigeration cycle equipment
GB2562347A (en) 2016-01-07 2018-11-14 Mitsubishi Electric Corp Permanent magnet embedded motor, compressor, and refrigeration and air conditioning device
JP6762719B2 (en) * 2016-01-08 2020-09-30 株式会社デンソーエアクール How to make a heat exchanger
CN109073295A (en) 2016-01-12 2018-12-21 Agc株式会社 Refrigerating circulatory device and heat circulating system
CN108885039A (en) 2016-01-29 2018-11-23 Agc株式会社 Refrigerating circulatory device
JP2017145975A (en) * 2016-02-15 2017-08-24 三菱電機株式会社 Refrigeration cycle device, process of manufacture of refrigeration cycle device, drop-in method for refrigeration cycle device, and replace method for refrigeration cycle device
CN109072900B (en) 2016-02-22 2020-11-10 Agc株式会社 Compressor and heat cycle system
JPWO2017145826A1 (en) * 2016-02-24 2018-12-13 Agc株式会社 Refrigeration cycle equipment
US9976759B2 (en) 2016-02-29 2018-05-22 Johnson Controls Technology Company Rain shield for a heat exchanger component
JP2017192190A (en) 2016-04-12 2017-10-19 日立ジョンソンコントロールズ空調株式会社 Permanent magnet motor, compressor and air conditioner using the same
US11131490B2 (en) * 2016-05-09 2021-09-28 Mitsubishi Electric Corporation Refrigeration device having condenser unit connected to compressor unit with on-site pipe interposed therebetween and remote from the compressor unit
US10883745B2 (en) 2016-06-27 2021-01-05 Mitsubishi Electric Corporation Refrigeration cycle apparatus
CN109477656B (en) 2016-07-28 2019-12-10 大金工业株式会社 Multi-connected air conditioner
JP6731865B2 (en) 2017-02-06 2020-07-29 日立ジョンソンコントロールズ空調株式会社 Air conditioner outdoor unit, air conditioner, and air conditioning management method
WO2018203364A1 (en) 2017-05-01 2018-11-08 三菱電機株式会社 Rotor, electric motor, compressor, and air conditioning device
JP6551571B2 (en) 2017-07-24 2019-07-31 ダイキン工業株式会社 Refrigerant composition
KR102359392B1 (en) 2017-09-05 2022-02-08 미쓰비시덴키 가부시키가이샤 Continuous pole rotors, electric motors, compressors, blowers and air conditioners
US10933615B2 (en) * 2017-09-29 2021-03-02 Ube Industries, Ltd. Multilayer tubes
BR112020010823A2 (en) * 2017-11-30 2020-11-10 The Lubrizol Corporation aromatic ester lubricant for use with low global warming potential refrigerants
US20200392388A1 (en) 2017-12-18 2020-12-17 Daikin Industries, Ltd. Refrigerant-containing composition, use thereof and refrigerator comprising same, and method for operating said refrigerator
US20200326110A1 (en) 2017-12-18 2020-10-15 Daikin Industries, Ltd. Compressor
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US20200347283A1 (en) 2017-12-18 2020-11-05 Daikin Industries, Ltd. Refrigerating oil for refrigerant or refrigerant composition, method for using refrigerating oil, and use of refrigerating oil
US20200326103A1 (en) 2017-12-18 2020-10-15 Daikin Industries, Ltd. Refrigeration cycle
US20200325376A1 (en) 2017-12-18 2020-10-15 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
WO2019123782A1 (en) 2017-12-18 2019-06-27 ダイキン工業株式会社 Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US20200392387A1 (en) 2017-12-18 2020-12-17 Daikin Industries, Ltd. Air conditioner
JP7269499B2 (en) 2017-12-18 2023-05-09 ダイキン工業株式会社 refrigeration cycle equipment
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
BR112020010762A2 (en) 2017-12-18 2020-11-24 Daikin Industries, Ltd. composition containing refrigerant, use of said composition, refrigerator having said composition and method for operating said refrigerator
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
WO2019123805A1 (en) 2017-12-18 2019-06-27 ダイキン工業株式会社 Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US20200393178A1 (en) 2017-12-18 2020-12-17 Daikin Industries, Ltd. Refrigeration cycle apparatus
US20200363106A1 (en) 2017-12-18 2020-11-19 Daikin Industries, Ltd. Refrigeration cycle apparatus
US20200333054A1 (en) 2017-12-18 2020-10-22 Daikin Industries, Ltd. Compressor
US20200325375A1 (en) 2017-12-18 2020-10-15 Daikin Industries, Ltd. Refrigeration cycle apparatus and method of determining refrigerant enclosure amount in refrigeration cycle apparatus
US20200326100A1 (en) 2017-12-18 2020-10-15 Daikin Industries, Ltd. Warm-water generating apparatus
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus
US20200332164A1 (en) 2017-12-18 2020-10-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
BR112020010501A2 (en) 2017-12-18 2020-11-10 Daikin Industries, Ltd. composition containing refrigerant, use for the same, refrigeration machine having the same and method for operating the refrigeration machine
US20200363112A1 (en) 2017-12-18 2020-11-19 Daikin Industries, Ltd. Air conditioner
US10982863B2 (en) 2018-04-10 2021-04-20 Carrier Corporation HVAC fan inlet
WO2020071380A1 (en) 2018-10-01 2020-04-09 Agc株式会社 Composition for heat cycle system, and heat cycle system
JP6696633B1 (en) 2019-02-05 2020-05-20 ダイキン工業株式会社 Refrigerant-containing composition, refrigeration method using the composition, refrigeration apparatus operation method, and refrigeration apparatus

Also Published As

Publication number Publication date
EP3730585A4 (en) 2021-10-20
PH12020550914A1 (en) 2021-05-10
CN111492189A (en) 2020-08-04
EP3730870A4 (en) 2021-10-27
CN111492186A (en) 2020-08-04
JPWO2019123898A1 (en) 2020-12-10
CN111492188B (en) 2022-06-21
JPWO2019124327A1 (en) 2021-01-21
CN111479910A (en) 2020-07-31
US20200309437A1 (en) 2020-10-01
CN111492188A (en) 2020-08-04
CN111480040B (en) 2022-06-21
EP3730593A4 (en) 2021-10-27
AU2018391186A1 (en) 2020-07-16
JPWO2019124362A1 (en) 2021-01-21
EP3730577A1 (en) 2020-10-28
EP3730865A1 (en) 2020-10-28
BR112020010413A2 (en) 2020-11-24
BR112020010676A2 (en) 2020-11-10
BR112020010388A2 (en) 2020-10-20
AU2018387884A1 (en) 2020-07-16
JPWO2019124330A1 (en) 2021-01-21
BR112020009626A2 (en) 2020-11-03
US20200378662A1 (en) 2020-12-03
AU2018388034A1 (en) 2020-07-09
PH12020550912A1 (en) 2021-05-10
PH12020550915A1 (en) 2021-05-10
US20210003323A1 (en) 2021-01-07
US20200333051A1 (en) 2020-10-22
CN111480039A (en) 2020-07-31
US20210163804A1 (en) 2021-06-03
JP7231834B2 (en) 2023-03-02
JPWO2019124379A1 (en) 2021-01-14
US20210164698A1 (en) 2021-06-03
JP7284405B2 (en) 2023-05-31
CN111492185A (en) 2020-08-04
CN111527353A (en) 2020-08-11
JPWO2019124360A1 (en) 2020-12-24
CN111480040A (en) 2020-07-31
JPWO2019124361A1 (en) 2021-01-14
JPWO2019123897A1 (en) 2020-12-24
JPWO2019124230A1 (en) 2021-01-07
JPWO2019124409A1 (en) 2021-01-07
US20200393175A1 (en) 2020-12-17
EP3730569A4 (en) 2021-12-22
AU2018387883A1 (en) 2020-07-23
EP3730572A4 (en) 2021-09-29
EP3730865A4 (en) 2021-10-06
KR20200100740A (en) 2020-08-26
EP3730571A1 (en) 2020-10-28
CN111480041B (en) 2022-06-21
AU2018387900A1 (en) 2020-07-23
KR20200100688A (en) 2020-08-26
CN114838515A (en) 2022-08-02
KR20200100693A (en) 2020-08-26
EP3730864A4 (en) 2021-09-29
CN111479898A (en) 2020-07-31
CN111479896A (en) 2020-07-31
CN111479897A (en) 2020-07-31
CN111511874A (en) 2020-08-07
CN111492183A (en) 2020-08-04
CN111542580A (en) 2020-08-14
EP3730580A1 (en) 2020-10-28
CN111480041A (en) 2020-07-31
PH12020550920A1 (en) 2021-05-31
JPWO2019124398A1 (en) 2021-01-14
BR112020010318A2 (en) 2021-01-05
EP3730861A4 (en) 2021-09-29
KR102655073B1 (en) 2024-04-08
CN111527178A (en) 2020-08-11
EP3730869A4 (en) 2021-10-20
EP3730869A1 (en) 2020-10-28
US20210164703A1 (en) 2021-06-03
EP3730584A4 (en) 2021-10-20
US20200362215A1 (en) 2020-11-19
CN111492185B (en) 2022-06-17
KR20200100694A (en) 2020-08-26
KR102601018B1 (en) 2023-11-10
EP3730593A1 (en) 2020-10-28
JP7212265B2 (en) 2023-01-25
JPWO2019124140A1 (en) 2020-12-10
US20210095897A1 (en) 2021-04-01
JPWO2019124145A1 (en) 2021-01-28
EP3730866A1 (en) 2020-10-28
KR102601975B1 (en) 2023-11-14
US20200386459A1 (en) 2020-12-10
KR20200100682A (en) 2020-08-26
EP3730871A1 (en) 2020-10-28
JPWO2019124146A1 (en) 2021-01-21
EP3730870A1 (en) 2020-10-28
EP3730868A1 (en) 2020-10-28
BR112020010468A2 (en) 2020-11-24
PH12020550899A1 (en) 2021-03-22
CN111479899A (en) 2020-07-31
PH12020550919A1 (en) 2021-05-17
EP3730584A1 (en) 2020-10-28
US20200339856A1 (en) 2020-10-29
PH12020550913A1 (en) 2021-05-17
AU2018387985A1 (en) 2020-07-16
KR20200101401A (en) 2020-08-27
AU2018390660A1 (en) 2020-07-02
EP3730868A4 (en) 2021-10-20
BR112020011145A2 (en) 2020-11-17
JPWO2019124395A1 (en) 2020-12-17
PH12020550911A1 (en) 2021-05-17
JPWO2019124229A1 (en) 2020-12-17
US20230097829A1 (en) 2023-03-30
EP3730570A4 (en) 2021-11-17
KR20200100718A (en) 2020-08-26
JP7303445B2 (en) 2023-07-05
EP3730572A1 (en) 2020-10-28
US20200333041A1 (en) 2020-10-22
EP3730585A1 (en) 2020-10-28
JPWO2019124139A1 (en) 2020-12-17
EP3730576A1 (en) 2020-10-28
EP3730580A4 (en) 2021-10-13
AU2018387884B2 (en) 2024-03-14
KR20200100681A (en) 2020-08-26
KR20200100143A (en) 2020-08-25
AU2018388050A1 (en) 2020-07-16
US20200392389A1 (en) 2020-12-17
WO2019124409A1 (en) 2019-06-27
CN111527353B (en) 2022-06-21
JP7269499B2 (en) 2023-05-09
KR20200100716A (en) 2020-08-26
AU2018390660B2 (en) 2023-01-05
US20200340714A1 (en) 2020-10-29
BR112020010607A2 (en) 2020-11-10
AU2018391876A1 (en) 2020-07-02
US11535781B2 (en) 2022-12-27
US20200309411A1 (en) 2020-10-01
EP3730569A1 (en) 2020-10-28
JPWO2019124380A1 (en) 2021-01-14
JPWO2019124329A1 (en) 2021-01-21
EP3730864A1 (en) 2020-10-28
PH12020550918A1 (en) 2021-05-17
CN111492031A (en) 2020-08-04
US20200393176A1 (en) 2020-12-17
EP3730871A4 (en) 2021-10-20
AU2018388034B2 (en) 2024-05-23
EP3730861A1 (en) 2020-10-28
US20200309419A1 (en) 2020-10-01
US20200333049A1 (en) 2020-10-22
AU2018391876B2 (en) 2023-01-05
CN111480038A (en) 2020-07-31
CN111480038B (en) 2022-06-21
KR20200100689A (en) 2020-08-26
JPWO2019124326A1 (en) 2021-02-04
JPWO2019124138A1 (en) 2020-12-10
CN111492189B (en) 2022-06-21
JPWO2019124328A1 (en) 2020-12-24
JP7244763B2 (en) 2023-03-23
EP3730867A4 (en) 2021-10-20
EP3730577A4 (en) 2021-10-13
EP3730867A1 (en) 2020-10-28
PH12020550917A1 (en) 2021-05-10
CN111492033A (en) 2020-08-04
KR102655619B1 (en) 2024-04-09
EP3730866A4 (en) 2021-10-13
AU2018391894A1 (en) 2020-07-16
EP3730576A4 (en) 2021-10-13
BR112020009389A2 (en) 2020-11-03
US20200332166A1 (en) 2020-10-22
EP3730570A1 (en) 2020-10-28
EP3730571A4 (en) 2021-10-06
AU2018387983A1 (en) 2020-07-23
BR112020011168A2 (en) 2020-11-17
CN111479899B (en) 2022-09-20

Similar Documents

Publication Publication Date Title
US20210164701A1 (en) Air conditioner
US20200363112A1 (en) Air conditioner
US20200393178A1 (en) Refrigeration cycle apparatus
US11492527B2 (en) Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US20200326103A1 (en) Refrigeration cycle
US11435118B2 (en) Heat source unit and refrigeration cycle apparatus
US20200325375A1 (en) Refrigeration cycle apparatus and method of determining refrigerant enclosure amount in refrigeration cycle apparatus
US11820933B2 (en) Refrigeration cycle apparatus
US20200392387A1 (en) Air conditioner
US11506425B2 (en) Refrigeration cycle apparatus
WO2019124396A1 (en) Air conditioner
US20200325376A1 (en) Refrigeration cycle apparatus
WO2019123805A1 (en) Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
WO2019124360A1 (en) Air conditioner
US20230117208A1 (en) Air conditioner
KR102581223B1 (en) Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
CN114096636A (en) Refrigerant-containing composition, use thereof, refrigerator having same, and method for operating refrigerator

Legal Events

Date Code Title Description
AS Assignment

Owner name: DAIKIN INDUSTRIES, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OHTSUKA, KEISUKE;ITANO, MITSUSHI;KARUBE, DAISUKE;AND OTHERS;SIGNING DATES FROM 20190206 TO 20190306;REEL/FRAME:052940/0706

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION