JP5721480B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP5721480B2
JP5721480B2 JP2011052983A JP2011052983A JP5721480B2 JP 5721480 B2 JP5721480 B2 JP 5721480B2 JP 2011052983 A JP2011052983 A JP 2011052983A JP 2011052983 A JP2011052983 A JP 2011052983A JP 5721480 B2 JP5721480 B2 JP 5721480B2
Authority
JP
Japan
Prior art keywords
refrigerant
oil
refrigerating machine
machine oil
refrigeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011052983A
Other languages
Japanese (ja)
Other versions
JP2012189255A (en
Inventor
英明 前山
英明 前山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011052983A priority Critical patent/JP5721480B2/en
Priority to KR1020120021654A priority patent/KR101309325B1/en
Priority to CZ2012-161A priority patent/CZ306890B6/en
Priority to CN201210060229.5A priority patent/CN102679604B/en
Publication of JP2012189255A publication Critical patent/JP2012189255A/en
Application granted granted Critical
Publication of JP5721480B2 publication Critical patent/JP5721480B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Lubricants (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明は、空調機、冷凍機、ヒートポンプ等の冷凍サイクル装置に関し、特に冷媒として炭化水素を使用した冷凍サイクル装置に使用する冷凍機油に関するものである。   The present invention relates to a refrigeration cycle apparatus such as an air conditioner, a refrigerator, and a heat pump, and more particularly to a refrigeration oil used in a refrigeration cycle apparatus using hydrocarbons as a refrigerant.

従来技術として、冷媒として炭化水素を使用し、密閉容器内が吐出圧力となる(高圧シェル型)圧縮機を用いた冷凍サイクル装置において、冷媒との相溶性を有する油を使用する例が知られている。この従来技術では、鉱物油中には炭化水素が多量に溶解し冷凍機油の粘度が大幅に低下する問題を指摘し、その系において圧縮機の摺動耐力(または潤滑性能)を確保するために粘度が40℃において46cSt以上の冷凍機油を用いることが示されている(例えば、特許文献1参照)。
また、この文献には、炭化水素と相溶性を示す冷凍機油として、パラフィン系炭化水素、ナフテン系炭化水素、カーボネートオイル、アルキルベンゼン、アルキレングリコールの単品かそれらの混合油と記述されているが、油の粘度が46cSt以上必要であることの根拠を示すデータは、鉱物油(パラフィン系炭化水素、または、ナフテン系炭化水素)を用いたものであり、その他の冷凍機油と炭化水素との組み合わせにおける具体的な記述はない。
また、アルキレングリコールが、後述のポリ・アルキレン・グリコールと同等の物質を示すものであるならば、ハイドロカーボンのポリ・アルキレン・グリコールに対する溶解性は従来使用していたCFC/HCFCに比べて小さいため、発明が解決しようとする課題に挙げられている、「冷媒の冷凍機油への溶け込みが多くなって冷凍機油の粘度が低下し、圧縮機の機械的な潤滑性が低下することによって機器の信頼性が低下する」という記述は当てはまらない。また、油の粘度の46cStの値自体は、例えば、HCFC冷媒の一般的な空調機用高圧シェル型圧縮機に用いられている相溶性の冷凍機油の粘度が、56cSt程度であることを考慮すると、「潤滑性確保のためには使用する冷凍機油はある程度高い粘度に調質する必要がある」という趣旨と反する数値設定であることを付け加えておく。
As a conventional technique, there is known an example in which oil having compatibility with a refrigerant is used in a refrigeration cycle apparatus using a compressor using a hydrocarbon as a refrigerant and having a discharge pressure inside the sealed container (high-pressure shell type). ing. In this prior art, the problem is that a large amount of hydrocarbon dissolves in mineral oil and the viscosity of the refrigerating machine oil is greatly reduced, and in order to ensure the sliding resistance (or lubrication performance) of the compressor in that system It has been shown that a refrigerating machine oil having a viscosity of 46 cSt or higher at 40 ° C. is used (for example, see Patent Document 1).
In addition, in this document, as a refrigerating machine oil having compatibility with hydrocarbons, paraffin hydrocarbons, naphthenic hydrocarbons, carbonate oils, alkylbenzenes, alkylene glycols are described as single products or mixed oils thereof. The data showing the basis for the necessity of a viscosity of 46 cSt or higher is based on mineral oil (paraffinic hydrocarbons or naphthenic hydrocarbons), and specific examples of combinations of other refrigerating machine oils and hydrocarbons. There is no specific description.
Also, if the alkylene glycol exhibits a substance equivalent to the polyalkylene glycol described later, the solubility of the hydrocarbon in the polyalkylene glycol is small compared to the conventionally used CFC / HCFC. , The problem to be solved by the invention is that "the reliability of the equipment is reduced by the fact that the refrigerant melts more into the refrigeration oil and the viscosity of the refrigeration oil decreases and the mechanical lubricity of the compressor decreases. The statement that “sexuality is reduced” does not apply. In addition, the value of 46 cSt of the viscosity of the oil itself is, for example, considering that the viscosity of the compatible refrigeration oil used in a high-pressure shell compressor for a general air conditioner of HCFC refrigerant is about 56 cSt. In addition, it is added that the numerical value setting is contrary to the idea that “the refrigerating machine oil to be used needs to be conditioned to a certain degree of viscosity in order to ensure lubricity”.

他の従来技術において、炭化水素系冷媒と相互溶解しないケトン化合物を含む冷凍機油を用いることにより、冷凍機油中に溶解する冷媒量を抑制し、可燃性である炭化水素冷媒の量を低減する内容が示されている(例えば、特許文献2参照)。   In other prior art, by using refrigerating machine oil containing a ketone compound that does not mutually dissolve with hydrocarbon-based refrigerant, the amount of refrigerant that dissolves in refrigerating machine oil is suppressed, and the amount of flammable hydrocarbon refrigerant is reduced (For example, refer to Patent Document 2).

以下の従来例は、冷媒や冷凍機油に関する一般的事項の補足説明を加えて記載する。
まず、本発明の説明の中で使用される「相溶性」について、一般的には「2種類または多種類の物質が相互に親和性を有し、溶液または混和物を形成する性質」で定義される。冷媒と冷凍機油の関係において、冷媒は冷凍機油中に一定量溶解し、また、冷凍機油は液冷媒中に一定量溶解する。そのため、冷媒と冷凍機油の混合比、温度や圧力により、上記の「相溶性」の定義に相当する混和物を形成する場合と、全量が混和物になりきれず、二層に分離する場合がある。一般に相互の溶解量が十分に大きく、冷媒と冷凍機油の混合比、温度や圧力によらず二層分離しない、または二層分離しにくい挙動を示す冷媒と冷凍機油の組み合わせを「相溶」と呼び、相互には溶解しにくく、冷媒と冷凍機油の混合比、温度や圧力の多くの組み合わせ範囲で二層分離するものを「非相溶」または「弱相溶」と呼ぶ(以降「非相溶」で代表する)。「非相溶」の場合、冷媒は冷凍機油中にある程度溶解するが、冷凍機油は液冷媒中にはわずかな量しか溶解しない。上記の「相溶」、「非相溶」については、明確な境界を定義することは困難であるが、現状「非相溶」とされているものは、「相溶」とは明らかに相互溶解しにくいものである。
The following conventional examples are described with supplementary explanations of general matters relating to refrigerants and refrigeration oil.
First, “compatibility” used in the description of the present invention is generally defined by “the property that two or more substances have an affinity for each other and form a solution or a mixture”. Is done. In the relationship between the refrigerant and the refrigerating machine oil, a certain amount of refrigerant is dissolved in the refrigerating machine oil, and the refrigerating machine oil is dissolved in a certain amount in the liquid refrigerant. Therefore, depending on the mixing ratio of refrigerant and refrigerating machine oil, temperature and pressure, there are cases where an admixture corresponding to the above definition of “compatibility” is formed, and there are cases where the total amount cannot be made into an admixture and is separated into two layers. is there. In general, a combination of refrigerant and refrigerating machine oil that has a sufficiently large amount of mutual dissolution and does not separate into two layers regardless of the mixing ratio of refrigerant and refrigerating machine oil, temperature or pressure, or has a behavior that makes it difficult to separate two layers. It is called “incompatible” or “weakly compatible” if it is difficult to dissolve each other and is separated into two layers in a range of combinations of refrigerant and refrigerating machine oil, temperature and pressure. "Resolve"). In the case of “incompatible”, the refrigerant dissolves to some extent in the refrigeration oil, but the refrigeration oil dissolves only in a small amount in the liquid refrigerant. It is difficult to define a clear boundary for the above-mentioned “compatible” and “incompatible”, but what is currently considered “incompatible” clearly differs from “compatible”. It is difficult to dissolve.

「非相溶」の例としては、HFC冷媒とアルキルベンゼン油やポリアルファオレフィン油の組み合わせが示されている(例えば、特許文献3参照)。特に、HFC冷媒とアルキルベンゼン油の組み合わせについては、冷蔵庫やルームエアコン等で製品化された実績がある。
「非相溶」における実際の溶解度は文献からは発見できないが、実際に製品化されているHFC冷媒とアルキルベンゼン油の組み合わせにおいては、冷凍機油中への冷媒溶解度は最大20〜30%程度あり、液冷媒中への冷凍機油溶解度は1%程度である。
As an example of “incompatible”, a combination of an HFC refrigerant and an alkylbenzene oil or polyalphaolefin oil is shown (for example, see Patent Document 3). In particular, the combination of HFC refrigerant and alkylbenzene oil has been successfully commercialized in refrigerators and room air conditioners.
The actual solubility in “incompatible” cannot be found from the literature, but in the combination of HFC refrigerant and alkylbenzene oil that are actually commercialized, the refrigerant solubility in the refrigeration oil is about 20 to 30% at maximum, The solubility of refrigeration oil in liquid refrigerant is about 1%.

特許文献3には、液冷媒よりも密度が小さく、冷媒と相溶しない油(「非相溶油」)を用いた冷凍サイクルにおいて、アキュムレーター内で冷媒と分離した冷凍機油を圧縮機に戻す技術が開示されている。   In Patent Document 3, in a refrigeration cycle using oil that is smaller in density than liquid refrigerant and incompatible with refrigerant ("incompatible oil"), the refrigeration oil separated from the refrigerant in the accumulator is returned to the compressor. Technology is disclosed.

従来使用されてきた、R410A、R407CやR134a等のHFC冷媒では、一般的に空調用等で使用される運転条件の範囲において、液冷媒の方が冷凍機油よりも密度が大きく、油の下側に沈む特性を有するため、非相溶油を用いた場合には、油の下側に液冷媒層が形成され、圧縮機の下部に設けられた給油孔からの給油を阻害する問題がある。これに対し、圧縮機の下部の給油孔部にて油を攪拌して、給油孔に油を導く技術が開示されている(例えば、特許文献4参照)。   Conventionally used HFC refrigerants such as R410A, R407C, and R134a have a density higher than that of refrigerating machine oil in the range of operating conditions generally used for air conditioning, etc. Therefore, when incompatible oil is used, there is a problem that a liquid refrigerant layer is formed on the lower side of the oil and obstructs oil supply from an oil supply hole provided in the lower part of the compressor. On the other hand, the technique which stirs oil in the oil supply hole part of the lower part of a compressor and guides oil to an oil supply hole is disclosed (for example, refer patent document 4).

特開平9−264619号公報Japanese Patent Laid-Open No. 9-264619 特開平11−302675号公報JP-A-11-302675 特許第2803451号公報Japanese Patent No. 2803451 特開平10−082392号公報Japanese Patent Laid-Open No. 10-082392

従来の炭化水素冷媒用の冷凍機油は、その多くが特許文献1に示されているように、冷媒との相溶性が高く、冷凍機油中への冷媒溶解量が大きいため、圧縮機内においては冷凍機油中に溶解した冷媒により油の粘度が大幅に低下してしまう。そのため、圧縮機内で冷媒が溶け込んだ状態において十分な摺動耐力(または潤滑性能)を有するためには、基油の粘度を高めに設定する必要がある。例えば、高圧シェル圧縮機用に使用されている相溶性冷凍機油の一般的な基油(冷媒が溶け込んでいない状態)の粘度は、HCFC(R22)冷媒系の場合、40℃における動粘度で56mm2/s(=56cSt)程度、R410A冷媒系の場合、46〜74mm2/s程度になることに対し、例えば、プロパン(R290)とパラフィン系鉱油の組み合わせにおいては相溶性が高く、冷凍機油中への冷媒溶解量が大きいため、同等の粘度を実現するためには、40℃における動粘度で100mm2/s以上が必要となる。尚、以下の説明において、「粘度」は動粘度を表す。 Many conventional refrigeration oils for hydrocarbon refrigerants have high compatibility with the refrigerant and a large amount of refrigerant dissolved in the refrigeration oil, as disclosed in Patent Document 1, so that the refrigeration oil in the compressor is refrigerated. The viscosity of the oil is greatly reduced by the refrigerant dissolved in the machine oil. Therefore, in order to have sufficient sliding resistance (or lubrication performance) in a state where the refrigerant is melted in the compressor, it is necessary to set the viscosity of the base oil to be high. For example, the viscosity of a general base oil of a compatible refrigerating machine oil used for a high-pressure shell compressor (state in which refrigerant is not dissolved) is 56 mm in kinematic viscosity at 40 ° C. in the case of an HCFC (R22) refrigerant system. 2 / s (= 56 cSt), and in the case of the R410A refrigerant system, it is about 46-74 mm 2 / s. For example, in the combination of propane (R290) and paraffinic mineral oil, the compatibility is high. In order to achieve the same viscosity, the kinematic viscosity at 40 ° C. needs to be 100 mm 2 / s or more. In the following description, “viscosity” represents kinematic viscosity.

上記のように、従来の炭化水素用の冷凍機油では、圧縮機運転時(冷媒溶解時)の油の粘度と基油の粘度の差が大きいので、圧力や温度が変化すると、冷凍機油への冷媒溶解量の変化により、油の溶解粘度(冷凍機油中に冷媒が溶解した状態における混和物の動粘度)が大幅に変化する。具体的には、冷媒溶解量の比較的少ない圧縮機内の冷媒ガスの過熱度(過熱蒸気温度の沸点との差)が大きい条件では油の粘度が高すぎ、冷媒溶解量の多い圧縮機内の冷媒ガスの過熱度が小さい条件においては油の粘度が低すぎる状態が発生するという課題があった。   As described above, in conventional refrigeration oil for hydrocarbons, the difference between the viscosity of the oil during compressor operation (when the refrigerant is dissolved) and the viscosity of the base oil is large. Due to the change in the refrigerant dissolution amount, the oil dissolution viscosity (the kinematic viscosity of the admixture in a state where the refrigerant is dissolved in the refrigerating machine oil) changes significantly. Specifically, under conditions where the degree of superheat of the refrigerant gas in the compressor with a relatively small amount of refrigerant dissolved (difference from the boiling point of the superheated steam temperature) is large, the viscosity of the oil is too high and the refrigerant in the compressor with a large amount of refrigerant dissolved There was a problem that the oil viscosity was too low under conditions where the degree of superheating of the gas was small.

また、炭化水素冷媒に使用される相溶性の冷凍機油は、圧縮機内における溶解粘度を確保するために、基油の粘度を高めに設定する必要があるため、圧縮機に油を封入する際に、油の流動性が悪く、封入量にばらつきが出やすいという課題があった。   In addition, compatible refrigerating machine oils used for hydrocarbon refrigerants need to be set to a higher base oil viscosity in order to ensure the melt viscosity in the compressor. However, the fluidity of the oil is poor, and there is a problem that variations in the amount of oil are likely to occur.

また、非相溶の冷凍機油を使用した場合、冷凍回路内で液冷媒と油が分離するため、冷凍回路から圧縮機への油戻り性を確保するために、特許文献3に示されるような特別な技術が必要であり、冷凍回路の設計が複雑化するという課題があった。   In addition, when incompatible refrigerating machine oil is used, liquid refrigerant and oil are separated in the refrigerating circuit, and as shown in Patent Document 3, in order to ensure oil return from the refrigerating circuit to the compressor. There is a problem that special technology is required and the design of the refrigeration circuit is complicated.

更に、圧縮機内で液冷媒と冷凍機油が分離した場合、密度の大きい液冷媒が冷凍機油の下側に沈み込んでしまうため、特許文献4に示されるような、給油孔に油を吸入するための特別な技術が必要であり、部品点数増加に伴うコスト増加の課題があった。   Further, when the liquid refrigerant and the refrigeration oil are separated in the compressor, the liquid refrigerant having a high density sinks below the refrigeration oil, so that the oil is sucked into the oil supply hole as shown in Patent Document 4. Therefore, there is a problem of cost increase accompanying an increase in the number of parts.

本発明は、上記のよう課題を解決するためになされたもので、第1の目的は、冷媒に炭化水素を使用したときに、圧縮機の内部において、冷凍機油に対する冷媒溶解性が必要以上に大きくならず、冷凍機油の大幅な粘度低下を防止することのできる冷凍機油を用いた冷凍サイクル装置を得ることである。   The present invention has been made in order to solve the above-described problems. The first object of the present invention is that when a hydrocarbon is used as the refrigerant, the refrigerant solubility in the refrigerating machine oil is more than necessary in the compressor. An object of the present invention is to obtain a refrigeration cycle apparatus using a refrigerating machine oil that is not increased but can prevent a significant decrease in viscosity of the refrigerating machine oil.

本発明の第2の目的は、冷凍回路内において液冷媒が適度な冷媒溶解性を有し、通常の使用において、冷凍回路内の液冷媒中に冷凍機油が分離せずに溶解することのできる冷凍機油を用いた冷凍サイクル装置を得ることである。   The second object of the present invention is that the liquid refrigerant has an appropriate refrigerant solubility in the refrigeration circuit, and in normal use, the refrigeration oil can be dissolved in the liquid refrigerant in the refrigeration circuit without being separated. It is to obtain a refrigeration cycle apparatus using refrigeration oil.

本発明に係る冷凍サイクル装置は、圧縮機、凝縮機、膨張弁、蒸発機を配管で接続し構成された冷凍回路と、前記冷凍回路に封入され前記冷凍回路内を圧縮、凝縮、膨張、蒸発を繰り返し循環する炭化水素にて構成された冷媒と、前記冷媒とともに封入されプロピレン・オキサイドとエチレン・オキサイドとが共重合したポリ・アルキレン・グリコールにて構成された冷凍機油と、を備え、前記ポリ・アルキレン・グリコールは、前記冷媒が循環するときの凝縮温度から蒸発温度までの全温度範囲にて前記冷媒と前記冷凍機油とが二層分離状態となり、かつ前記プロピレン・オキサイドと前記エチレン・オキサイドの成分比において、前記エチレン・オキサイドの比率が最も少ない構成を含む所定の範囲の成分比にて構成され、前記ポリ・アルキレン・グリコールの前記エチレン・オキサイドの成分比の下限は、冷凍サイクルで使用する最高凝縮温度において、前記冷媒と前記冷凍機油が二層分離する成分比とするものであるA refrigeration cycle apparatus according to the present invention includes a refrigeration circuit configured by connecting a compressor, a condenser, an expansion valve, and an evaporator with piping, and the refrigeration circuit enclosed in the refrigeration circuit compresses, condenses, expands, and evaporates. And a refrigerating machine oil composed of a polyalkylene glycol in which propylene oxide and ethylene oxide are copolymerized and enclosed together with the refrigerant. The alkylene glycol is in a two-layer separation state between the refrigerant and the refrigerating machine oil in the entire temperature range from the condensation temperature to the evaporation temperature when the refrigerant circulates, and the propylene oxide and the ethylene oxide in the component ratios, it is constituted by component ratio in a predetermined range including the least configuration the ratio of the ethylene oxide, wherein the poly-a The lower limit of the component ratio of the ethylene oxide Killen glycol is at the highest condensation temperature used in the refrigeration cycle, the refrigerating machine oil and the refrigerant is to a component ratio to separate two layers.

本発明の冷凍サイクル装置は、冷凍回路に封入される冷媒として、炭化水素を使用し、冷凍機油として、プロピレン・オキサイド(PO)とエチレン・オキサイド(EO)とが共重合したポリ・アルキレン・グリコール(PAG)を用い、前記PAGは、冷凍サイクルで使用する凝縮温度から蒸発温度までの全温度範囲において、冷媒と冷凍機油とが二層分離状態となり、かつEOの成分比が最も少ないPOとEOの成分比(最も相溶に近い状態)にて構成されたものであるので、冷凍機油への冷媒溶解性を小さくすることができるとともに、液冷媒中への冷凍機油の溶解量を一定レベル以上に保つことができるので、圧力や温度条件による冷凍機油の溶解粘度変化を小さくすることができ、摺動部の信頼性を高めることができるという効果がある。   The refrigeration cycle apparatus of the present invention uses a hydrocarbon as a refrigerant sealed in a refrigeration circuit, and a polyalkylene glycol in which propylene oxide (PO) and ethylene oxide (EO) are copolymerized as refrigeration oil. (PAG), the PAG is a PO and EO in which the refrigerant and the refrigerating machine oil are separated into two layers and the EO component ratio is the smallest in the entire temperature range from the condensation temperature to the evaporation temperature used in the refrigeration cycle. Therefore, the solubility of the refrigerant in the refrigerating machine oil can be reduced, and the amount of the refrigerating machine oil dissolved in the liquid refrigerant can be more than a certain level. Therefore, it is possible to reduce the change in melt viscosity of refrigerating machine oil due to pressure and temperature conditions, and to improve the reliability of sliding parts. A.

また、液冷媒中の一定量溶解した冷凍機油により、冷凍回路からの油戻し量を確保することができ、特許文献3に示されるような非相溶油を使用したときに必要となる冷凍サイクルから冷凍機油を圧縮機に戻すための工夫も不要となる効果がある。   In addition, the amount of oil returned from the refrigeration circuit can be ensured by a certain amount of refrigeration oil dissolved in the liquid refrigerant, and the refrigeration cycle required when using an incompatible oil as shown in Patent Document 3 Therefore, there is an effect that the device for returning the refrigeration oil to the compressor becomes unnecessary.

更に冷凍機油中の冷媒溶解性を低くすることができるので、冷凍機油の基油の粘度を鉱油等を使用する場合に比べて低めとすることができ、冷凍機油の封入性を改善できる効果がある。   Furthermore, since the solubility of the refrigerant in the refrigeration oil can be lowered, the viscosity of the base oil of the refrigeration oil can be made lower than when mineral oil or the like is used, and the effect of improving the sealing performance of the refrigeration oil can be improved. is there.

本発明の実施の形態1に係る冷凍サイクル装置の一例を示す冷凍回路図である。It is a freezing circuit diagram which shows an example of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1における高圧シェル型圧縮機の一例として示すロータリー圧縮機の断面図である。It is sectional drawing of the rotary compressor shown as an example of the high pressure shell type compressor in Embodiment 1 of this invention. 相溶油系における温度による冷凍機油中への冷媒溶解量特性を示す図で、比較のため非相溶油の冷媒溶解量特性も示している。It is a figure which shows the refrigerant | coolant dissolution amount characteristic in the refrigerating machine oil by the temperature in a compatible oil system, and the refrigerant | coolant dissolution amount characteristic of the incompatible oil is also shown for the comparison. 相溶油系における冷媒分率による油粘度特性を示す図である。It is a figure which shows the oil viscosity characteristic by the refrigerant | coolant fraction in a compatible oil system. 冷媒と冷凍機油の相溶性が変化したときの二層分離温度曲線を示す図である。It is a figure which shows the two-layer separation temperature curve when the compatibility of a refrigerant | coolant and refrigerator oil changes. 相溶油と非相溶油の得失比較を示す図である。It is a figure which shows the profit and loss comparison of a compatible oil and an incompatible oil. 各種冷媒の飽和液密度と冷凍機油の密度の温度による変化を示す図である。It is a figure which shows the change by the temperature of the saturated liquid density of various refrigerant | coolants, and the density of refrigeration oil. 冷媒/冷凍機油混合比と冷凍機油の粘度との関係を示す図である。It is a figure which shows the relationship between a refrigerant | coolant / refrigerator oil mixing ratio and the viscosity of refrigerator oil. 冷媒の過熱度に対応する冷凍機油の溶解粘度を示す図である。It is a figure which shows the melt viscosity of the refrigeration oil corresponding to the superheat degree of a refrigerant | coolant.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

実施の形態1.
図1は、本発明の実施の形態1に係る冷凍サイクル装置10の一例を示す冷凍回路図である。
この実施の形態1に係る冷凍サイクル装置10は、図1に示すように、圧縮機1、凝縮機2、膨張弁3、蒸発機4、アキュムレーター5を順に配管6で接続し、後述する冷媒及び冷凍機油が封入され冷凍回路を形成している。冷凍回路内の冷媒は、圧縮機1にて高温高圧の冷媒に圧縮され、凝縮機2に送られる。凝縮機2に送られた高温高圧冷媒は凝縮機2にて、例えば空気などの媒体と熱交換し凝縮され、温度降下した冷媒が膨張弁3に送られる。膨張弁3に送られた冷媒は膨張弁にて膨張(減圧)され低温低圧の冷媒となり、蒸発機4に送られる。蒸発機4に送られた低温低圧冷媒は蒸発機4にて、例えば空気などの媒体と熱交換し蒸発し、加熱された冷媒がアキュムレーター5を介して、再び、圧縮機に戻り、圧縮される。すなわち、冷凍回路では、図示矢印のように冷媒が冷凍回路内を循環するとともに、冷媒が圧縮、凝縮、減圧、蒸発を繰り返す冷凍サイクルを行っている。このような冷凍サイクル装置10を、例えば、空調機に適用することにより、冷房運転や暖房運転を行うことができる。なお、このとき、冷媒とともに封入した冷凍機油も、冷媒に混じり、あるいは溶け込み、冷凍回路内を循環している。
Embodiment 1 FIG.
FIG. 1 is a refrigeration circuit diagram showing an example of a refrigeration cycle apparatus 10 according to Embodiment 1 of the present invention.
As shown in FIG. 1, the refrigeration cycle apparatus 10 according to the first embodiment connects a compressor 1, a condenser 2, an expansion valve 3, an evaporator 4, and an accumulator 5 in order with a pipe 6, and a refrigerant described later. And refrigeration oil is enclosed and the refrigeration circuit is formed. The refrigerant in the refrigeration circuit is compressed into a high-temperature and high-pressure refrigerant by the compressor 1 and sent to the condenser 2. The high-temperature and high-pressure refrigerant sent to the condenser 2 is condensed by exchanging heat with a medium such as air in the condenser 2, and the refrigerant whose temperature has dropped is sent to the expansion valve 3. The refrigerant sent to the expansion valve 3 is expanded (depressurized) by the expansion valve to become a low-temperature and low-pressure refrigerant and sent to the evaporator 4. The low-temperature and low-pressure refrigerant sent to the evaporator 4 evaporates by exchanging heat with a medium such as air in the evaporator 4, and the heated refrigerant returns to the compressor again through the accumulator 5 and is compressed. The That is, in the refrigeration circuit, the refrigerant circulates in the refrigeration circuit as shown by the arrows in the figure, and the refrigeration cycle repeats compression, condensation, decompression, and evaporation. By applying such a refrigeration cycle apparatus 10 to an air conditioner, for example, a cooling operation or a heating operation can be performed. At this time, the refrigerating machine oil sealed together with the refrigerant is also mixed or dissolved in the refrigerant and circulated in the refrigeration circuit.

図2は、本発明の実施の形態1における高圧シェル型圧縮機の一例として示すロータリー圧縮機の断面図である。
高圧シェル型の圧縮機1の一例であるロータリー圧縮機は、密閉容器11の内部に、冷媒を圧縮する圧縮機構部101と、圧縮機構部101を駆動する電動機構部102とを備えている。圧縮機構部101と電動機構部102とは駆動軸12を介して同軸に連結されている。密閉容器11の底部には冷凍機油13が貯留されており、冷凍機油13は駆動軸12に設けられた給油経路14を通してポンプ作用により圧縮機構部101に供給され、圧縮機構部101の摺動部(軸受部を含む)を潤滑するようになっている。駆動軸12の下端部は冷凍機油13の中に浸漬されており、給油経路14は駆動軸12下端の給油孔15から軸方向に延びる通路と、この通路から潤滑を必要とするそれぞれの部位に通じる分岐路とから構成されている。
FIG. 2 is a cross-sectional view of a rotary compressor shown as an example of a high-pressure shell type compressor in Embodiment 1 of the present invention.
A rotary compressor that is an example of the high-pressure shell type compressor 1 includes a compression mechanism unit 101 that compresses a refrigerant and an electric mechanism unit 102 that drives the compression mechanism unit 101 inside a sealed container 11. The compression mechanism unit 101 and the electric mechanism unit 102 are coaxially connected via the drive shaft 12. Refrigerating machine oil 13 is stored at the bottom of the sealed container 11, and the refrigerating machine oil 13 is supplied to the compression mechanism unit 101 by a pump action through an oil supply path 14 provided on the drive shaft 12, and the sliding part of the compression mechanism unit 101. (Including the bearing portion) is lubricated. The lower end portion of the drive shaft 12 is immersed in the refrigeration oil 13, and the oil supply path 14 extends from the oil supply hole 15 at the lower end of the drive shaft 12 in the axial direction to each part that requires lubrication. It consists of a branch path that leads to it.

冷媒ガスは、吸入管16からアキュムレーター5を経て上記圧縮機構部101に吸入される。吸入された冷媒ガスは圧縮機構部101で圧縮され、高温高圧となった冷媒ガスが一旦圧縮機構部101から密閉容器11内に吐出される。さらに、密閉容器11内の高温高圧の冷媒ガスは、吐出管17へ吐出され、図1の凝縮機2に流入する。
なお、本実施の形態では、冷媒として、R290(プロパン)を使用しており、冷凍機油13は、後述するポリ・アルキレン・グリコールを使用している。
The refrigerant gas is sucked into the compression mechanism 101 from the suction pipe 16 through the accumulator 5. The sucked refrigerant gas is compressed by the compression mechanism unit 101, and the high-temperature and high-pressure refrigerant gas is once discharged from the compression mechanism unit 101 into the sealed container 11. Furthermore, the high-temperature and high-pressure refrigerant gas in the sealed container 11 is discharged to the discharge pipe 17 and flows into the condenser 2 of FIG.
In the present embodiment, R290 (propane) is used as the refrigerant, and the refrigerating machine oil 13 uses polyalkylene glycol described later.

本発明の技術内容を説明する前に、まず、冷媒と冷凍機油の相溶性について一般的な技術を解説する。
図3は、圧力一定としたときの冷媒および冷凍機油の混合物の過熱度に対する冷凍機油中への冷媒の溶解性について示す特性図であり、相溶油(完全相溶)と非相溶油の特性を示している。
図3に示すように、油中への冷媒溶解性は過熱度が小さいほど大きくなる傾向はどちらも同様であるが、一般に相溶油より非相溶油の方が冷媒溶解性は小さい。また、相溶油の場合は、油と冷媒が分離しないため、油に冷媒が溶け込んでいる状態と冷媒に油が溶け込んでいる状態が連続して現れるのに対して、非相溶油においては、油中に冷媒は一定量以上溶解しないため、油主体の層と冷媒主体の層に分離する。すなわち、二層分離する。
Before explaining the technical contents of the present invention, first, general techniques regarding the compatibility of refrigerant and refrigerating machine oil will be explained.
FIG. 3 is a characteristic diagram showing the solubility of the refrigerant in the refrigeration oil with respect to the degree of superheat of the mixture of the refrigerant and the refrigeration oil when the pressure is constant, and shows the compatibility between the compatible oil (completely compatible) and the incompatible oil. The characteristics are shown.
As shown in FIG. 3, the refrigerant solubility in oil tends to increase as the degree of superheat decreases. In general, incompatible oil has lower refrigerant solubility than compatible oil. In the case of compatible oil, since the oil and refrigerant are not separated, the state in which the refrigerant is dissolved in the oil and the state in which the oil is dissolved in the refrigerant appear continuously, whereas in the case of the incompatible oil, Since the refrigerant does not dissolve in oil in a certain amount or more, it is separated into an oil-based layer and a refrigerant-based layer. That is, two layers are separated.

図4は、相溶油系における冷媒分率による油粘度を示す特性を示す図である。冷媒分率0%は油100%を示す。なお、図4の縦軸は二重対数軸である。
図4に示すように、油中の冷媒分率が高まるに従い油の粘度は低下する傾向がある。非相溶油の場合は、冷媒分率が一定比率以上となることにより二層分離してしまうため、冷媒分率全域を結ぶ線は描けないことになる。
FIG. 4 is a diagram showing characteristics indicating the oil viscosity according to the refrigerant fraction in the compatible oil system. A refrigerant fraction of 0% indicates 100% oil. The vertical axis in FIG. 4 is a double logarithmic axis.
As shown in FIG. 4, the viscosity of the oil tends to decrease as the refrigerant fraction in the oil increases. In the case of an incompatible oil, since the refrigerant fraction becomes a certain ratio or more and two layers are separated, a line connecting the whole refrigerant fraction cannot be drawn.

図5は、冷媒と冷凍機油の相溶性による二層分離特性を示す図である。図5の縦軸は冷媒と冷凍機油の混合物の温度を表し、横軸は混合物中の冷凍機油の割合である油分率を表している。すなわち、図5は油分率が0wt%のときは混合物中の冷媒が100wt%であり、油分率が100wt%のときは混合物中の冷媒が0wt%であることを示している。そして、冷凍機油に冷媒が溶け込むあるいは冷媒に冷凍機油が溶け込む場合は、油分率が小さいときは液冷媒主体の溶解域となり、冷媒に冷凍機油が溶け込む状態を示し、油分率が大きいときは冷凍機油主体の溶解域となり、冷凍機油に冷媒が溶け込む状態を示している。また、図5の(a)から(h)は、(a)の状態から(h)の状態にかけて冷凍機油の成分比などを変化させ相溶性が徐々に低下していく状態を示す。(a)は完全相溶の状態であり使用される冷凍サイクル中の凝縮温度から蒸発温度までの温度範囲にて二層分離領域を持たない。(h)は非相溶または弱相溶と呼ばれている油の二層分離曲線を表しており、冷凍サイクルで使用する最高凝縮温度から最低蒸発温度までの全温度範囲において二層分離することに加え、従来使用されていたHFC冷媒とアルキルベンゼンの組み合わせでは、油分率が大きい油主体の溶解域のとき、すなわち図の右側では20〜30%程度の冷媒溶解量、油分率が小さい液冷媒主体の溶解域のとき、すなわち図の左側では1%程度の油溶解量となる。
(a)から(h)の間には中間的な領域が存在する。(a)から(h)に向かって順に変化を説明すると、まず、高温域及び低温域に二層分離する領域が出始め(b)、相溶性の低下とともに前記2つの二層分離する領域は中温域に向かって広がる傾向となる(c〜e)。その後、高温側および低温側の二層分離領域がつながり、二層分離領域を挟んで油分率が大きくなる方向と小さくなる方向すなわち図の左右に溶解域ができる(f)。油分率が小さい領域すなわち図の左側が液冷媒主体の溶解域で油分率が大きい領域すなわち図の右側が油主体の溶解域である。更に相溶性が低下すると、左右の溶解域は徐々に狭くなる傾向を示す(g〜h)。
FIG. 5 is a diagram showing the two-layer separation characteristics based on the compatibility between the refrigerant and the refrigerating machine oil. The vertical axis in FIG. 5 represents the temperature of the mixture of refrigerant and refrigerating machine oil, and the horizontal axis represents the oil fraction, which is the ratio of refrigerating machine oil in the mixture. That is, FIG. 5 shows that when the oil content is 0 wt%, the refrigerant in the mixture is 100 wt%, and when the oil content is 100 wt%, the refrigerant in the mixture is 0 wt%. When the refrigerant melts into the refrigerating machine oil or the refrigerating machine oil dissolves into the refrigerant, it is a dissolution area mainly composed of liquid refrigerant when the oil content is small, and indicates that the refrigerating machine oil is dissolved into the refrigerant, and when the oil content is large, the refrigerating machine oil It shows a state in which the refrigerant is dissolved in the refrigerating machine oil as a main dissolution zone. Moreover, (a) to (h) in FIG. 5 shows a state in which the compatibility is gradually lowered by changing the component ratio of the refrigerating machine oil and the like from the state (a) to the state (h). (A) is in a completely compatible state and does not have a two-layer separation region in the temperature range from the condensation temperature to the evaporation temperature in the refrigeration cycle used. (H) represents a two-layer separation curve of oil, which is called incompatible or weakly compatible, and the two layers are separated in the entire temperature range from the highest condensation temperature to the lowest evaporation temperature used in the refrigeration cycle. In addition, in the conventionally used combination of HFC refrigerant and alkylbenzene, when the oil-based dissolution region has a large oil content, that is, on the right side of the figure, the refrigerant dissolution amount is about 20 to 30%, and the liquid refrigerant has a small oil content. In the dissolution zone, that is, on the left side of the figure, the oil dissolution amount is about 1%.
There is an intermediate region between (a) and (h). When the change is described in order from (a) to (h), first, a region where two layers are separated into a high temperature region and a low temperature region begins to appear (b), and the region where the two layers are separated together with a decrease in compatibility is It tends to spread toward the middle temperature range (ce). Thereafter, the two-layer separation region on the high-temperature side and the low-temperature side are connected, and a dissolution region is formed in the direction in which the oil content increases and decreases in the two-layer separation region, that is, on the left and right in the figure (f). A region where the oil content is small, that is, the left side of the figure is a dissolution region mainly composed of liquid refrigerant, and a region where the oil content is large, that is, the right side of the diagram is an oil-based dissolution region. When the compatibility further decreases, the left and right dissolution regions tend to be gradually narrowed (g to h).

従来、HFC冷媒を用いたルームエアコン等では、相溶油と非相溶油の両者が用いられており、それぞれに長所及び短所がある。冷凍回路における油の相溶性の影響は、主に以下に示す冷凍機油に求められる3項目に対する特性に対して現れる。
1)圧縮機内において適正な油粘度を保つ
2)圧縮機下部の給油孔から常時油を吸入可能
3)冷凍回路に放出された油が圧縮機に戻る
図6に上記3項目に対する相溶油と非相溶油の得失を○及び△で示す。なお、図6には、後述する本発明の中間相溶油の例についても併記してある。
Conventionally, in a room air conditioner using an HFC refrigerant, both compatible oil and non-compatible oil are used, and each has advantages and disadvantages. The effect of oil compatibility in the refrigeration circuit appears mainly on the characteristics for the three items required for the refrigerator oil shown below.
1) Maintaining proper oil viscosity in the compressor 2) Oil can always be sucked from the oil supply hole at the bottom of the compressor 3) Oil released into the refrigeration circuit returns to the compressor Figure 6 shows compatible oils for the above three items The advantages and disadvantages of the incompatible oil are indicated by ○ and Δ. In FIG. 6, examples of the intermediate phase dissolved oil of the present invention to be described later are also shown.

上記の各項目について説明する。まず、1)の圧縮機内において適正な油粘度を保つことについては、冷媒の溶解量が少ない非相溶油の方が相溶油より優れている。特に、吐出ガスの過熱度が小さい条件において、非相溶油は冷媒溶解量が少ないため油の粘度が低下しにくく、また、一定量以上冷媒が溶解しないため、冷媒量が増加すると二層に分離することで油の粘度を保つことができる。これに対して、相溶油においては、際限なく冷媒を溶解できる(途中から冷媒中に油が溶け込んだ状態になる)ので、油が希釈されて大幅な粘度低下を引き起こす可能性がある。油の粘度が低下することにより、圧縮機内の摺動部や軸受部において適正な油膜を形成できなくなり、圧縮機の信頼性低下を引き起こす可能性があった。   Each of the above items will be described. First, in order to maintain an appropriate oil viscosity in the compressor of 1), an incompatible oil with a small amount of refrigerant dissolved is superior to a compatible oil. In particular, under conditions where the degree of superheat of the discharged gas is small, the incompatible oil has a small amount of dissolved refrigerant, so that the viscosity of the oil does not easily decrease, and the refrigerant does not dissolve more than a certain amount. By separating, the viscosity of the oil can be maintained. On the other hand, in the case of compatible oil, the refrigerant can be dissolved without any limitation (the oil is in a state of being dissolved in the refrigerant from the middle), so that the oil may be diluted to cause a significant decrease in viscosity. When the viscosity of the oil is reduced, it is not possible to form an appropriate oil film in the sliding part and the bearing part in the compressor, which may cause a reduction in the reliability of the compressor.

次に、2)の圧縮機下部の給油孔から常時油を吸入可能、つまり圧縮機下部の給油孔部に油が存在することに関しては、相溶油の方が非相溶油より優れている。前述のように、吐出ガスの過熱度が小さくなり、圧縮機内の液冷媒量が増加したときに非相溶油の場合は液冷媒と油が分離する。液冷媒と油が分離した場合、HFC冷媒においては、密度の大きい液冷媒が下に沈み、油がその上に浮く傾向となる。そのため、圧縮機の下部に位置する給油孔からは、油の代わりに粘度の非常に小さい液冷媒が吸入される可能性があり、圧縮機の信頼性低下を引き起こす可能性があった。   Next, with respect to the fact that oil can always be sucked from the oil supply hole at the lower part of the compressor in 2), that is, the oil is present in the oil supply hole at the lower part of the compressor, the compatible oil is superior to the incompatible oil. . As described above, when the superheat degree of the discharge gas is reduced and the amount of liquid refrigerant in the compressor is increased, the liquid refrigerant and oil are separated in the case of incompatible oil. When the liquid refrigerant and the oil are separated, in the HFC refrigerant, the liquid refrigerant having a high density sinks downward, and the oil tends to float on it. For this reason, liquid refrigerant having a very low viscosity may be sucked from the oil supply hole located in the lower part of the compressor instead of oil, which may cause a reduction in the reliability of the compressor.

最後に、3)の冷凍回路に放出された油が圧縮機に戻ることに関しては、相溶油の方が非相溶油より優れている。相溶油では、液冷媒中に多量の油を溶解することができるため、冷凍回路中においても油は液冷媒中に溶解した状態で運ばれることになる。それに対し、非相溶油においては、液冷媒中に油は微量しか溶解しないため、圧縮機からの油吐出量が一定量を超えると、冷凍回路から油が圧縮機に戻らなくなる可能性があった。   Finally, with respect to the oil released into the refrigeration circuit of 3) returning to the compressor, the compatible oil is superior to the incompatible oil. In the case of the compatible oil, a large amount of oil can be dissolved in the liquid refrigerant, so that the oil is also conveyed in the liquid refrigerant in the refrigeration circuit. In contrast, with incompatible oils, only a very small amount of oil is dissolved in the liquid refrigerant. Therefore, if the amount of oil discharged from the compressor exceeds a certain amount, the oil may not return to the compressor from the refrigeration circuit. It was.

上記のように、相溶油と非相溶油は一長一短があるが、両者の中間的な位置づけの油に関しては、液冷媒と油が二層分離し、液冷媒が油の下側に沈みこんでしまう課題を、圧縮機側での対策(例えば、特許文献4に示される給油孔の周りに複数の大きさの異なる穴を持つ仕切り板を設けるなどの対策)や冷凍回路の制御によりリカバーする必要があるため、メリットがそれほどなく、使用例も見当たらない。   As described above, compatibilized oil and incompatible oil have advantages and disadvantages, but with regard to oil positioned between the two, liquid refrigerant and oil are separated into two layers, and liquid refrigerant sinks below the oil. This problem is recovered by measures on the compressor side (for example, measures such as providing a partition plate having a plurality of holes of different sizes around the oil supply hole shown in Patent Document 4) and control of the refrigeration circuit. Because it is necessary, there is not so much merit and there is no use example.

冷媒として、プロパンやプロピレンを使用した場合、前記の考え方が一部変わってくる。図7に、各種冷媒の飽和液冷媒密度と冷凍機油の温度に対するそれぞれの密度の変化を示す。従来使用されていたHFC系の冷媒に対し、プロパンやプロピレンの密度は小さく、冷凍機油の密度よりも小さい。つまり、冷媒と油が二層分離した場合においても、冷凍機油の方が液冷媒の下に沈むため、上記の2)の問題は自ずと解決されることになる。   When propane or propylene is used as the refrigerant, the above-mentioned concept is partially changed. In FIG. 7, the change of each density with respect to the saturated liquid refrigerant density of various refrigerant | coolants and the temperature of refrigeration oil is shown. The density of propane and propylene is smaller than the density of refrigeration oil compared to the HFC-based refrigerant that has been used conventionally. That is, even when the refrigerant and the oil are separated into two layers, the refrigerating machine oil sinks under the liquid refrigerant, so that the above problem 2) is naturally solved.

プロパンやプロピレンに対しては、従来使用されてきた、鉱油、POE油、PVE油、アルキルベンゼン等のほとんどの油は相溶かつ溶解性が大きすぎて油の粘度が大幅に低下する問題があったが、その問題を解決可能な油が存在する。すなわち、本発明では、ポリ・アルキレン・グリコールを冷凍機油として使用することで、油中への冷媒溶解性を低減することが可能になった。   For propane and propylene, most oils such as mineral oil, POE oil, PVE oil, and alkylbenzene, which have been used in the past, have a problem in that the viscosity of the oil is greatly reduced due to the compatibility and solubility. However, there are oils that can solve the problem. That is, in the present invention, the use of polyalkylene glycol as a refrigerating machine oil makes it possible to reduce the solubility of the refrigerant in the oil.

ポリ・アルキレン・グリコールは、プロピレン・オキサイドとエチレン・オキサイドの共重合体であり、下記の構造式にて定義される。   Polyalkylene glycol is a copolymer of propylene oxide and ethylene oxide, and is defined by the following structural formula.

Figure 0005721480
Figure 0005721480

(1)式中の、CH2-CH(CH3)-O は、プロピレン・オキサイド成分を表し、CH2-CH2-O は、エチレン・オキサイド成分を表す。また、n、mは、プロピレン・オキサイドとエチレン・オキサイドの比率を示す。また、R1、R2はメチル基が好ましいが、水酸基やカルボン酸等でもよい。 In the formula (1), CH 2 —CH (CH 3 ) —O represents a propylene / oxide component, and CH 2 —CH 2 —O represents an ethylene / oxide component. N and m represent the ratio of propylene oxide to ethylene oxide. R1 and R2 are preferably methyl groups, but may be hydroxyl groups or carboxylic acids.

以下、本発明の特徴的な部分について説明する。
ポリ・アルキレン・グリコール油中のプロピレン・オキサイド及び、エチレン・オキサイドの、共重合比率を変化させることで、プロパンやプロピレンに対し、相溶性を調整する。したがって、相溶から非相溶までの広い範囲の特性を作ることができる。
Hereinafter, characteristic portions of the present invention will be described.
Compatibility with propane and propylene is adjusted by changing the copolymerization ratio of propylene oxide and ethylene oxide in polyalkylene glycol oil. Therefore, a wide range of characteristics from compatible to incompatible can be created.

プロパンやプロピレン等の炭化水素冷媒は、上述のように二層分離したときにも液冷媒が冷凍機油の上に浮き、圧縮機の給油への問題がないため、油の相溶性に関しては、上述の相溶性、非相溶性に伴う課題(上述の1)、3))の両者に対し、最も問題の少ない溶解度を選択することが望ましい。具体的には、冷凍機油の冷媒による際限ない希釈を防止するため、二層分離することが望ましい。また、液冷媒中の冷凍機油溶解性をなるべく大きくできる方が望ましい。すなわち、プロピレン・オキサイドとエチレン・オキサイドとの成分比が、冷凍サイクルで使用する最高凝縮温度から最低蒸発温度までの全温度範囲において、それぞれ液冷媒と冷凍機油が二層分離する混合比を有する(非相溶に近い状態)成分比のうち、エチレン・オキサイド比率が最小(最も相溶に近い状態)となる成分比(「相溶」と「非相溶」の中間的な性質を呈する成分比)、つまり、図5の(f)の状態が望ましい状態となる。この状態は相溶と非相溶の中間的な位置づけとなるため、以降、「中間相溶」と記述する。
以下、中間相溶の具体的な範囲について説明する。
Hydrocarbon refrigerants such as propane and propylene, even when two-layer separation is performed as described above, the liquid refrigerant floats on the refrigerating machine oil, and there is no problem with the refueling of the compressor. It is desirable to select the solubility with the least problem with respect to both of the problems (1) and (3)) associated with incompatibility and incompatibility. Specifically, it is desirable to separate the two layers in order to prevent endless dilution by the refrigerant of the refrigerating machine oil. It is desirable that the refrigerating machine oil solubility in the liquid refrigerant can be increased as much as possible. That is, the component ratio of propylene oxide and ethylene oxide has a mixing ratio at which the liquid refrigerant and the refrigerating machine oil are separated into two layers in the entire temperature range from the highest condensation temperature to the lowest evaporation temperature used in the refrigeration cycle ( Among the component ratios (close to incompatibility), the component ratio that exhibits the lowest ethylene oxide ratio (closest to compatibility) (component ratio that exhibits intermediate properties between "compatible" and "incompatible") That is, the state shown in FIG. 5F is a desirable state. Since this state is intermediate between compatible and incompatible, it will be described as “intermediate compatible” hereinafter.
Hereinafter, a specific range of the intermediate compatibility will be described.

中間相溶の状態が実現できるエチレン・オキサイド比率(プロピレン・オキサイドとエチレン・オキサイドとの成分比)は、冷媒がプロパンの場合、ポリ・アルキレン・グリコール油の粘度グレードISO VG32では、エチレン・オキサイド比率が20%、粘度グレードISO VG46では、エチレン・オキサイド比率が15%、粘度グレードISO VG68では、エチレン・オキサイド比率が10%程度となる。   The ethylene oxide ratio (component ratio of propylene oxide and ethylene oxide) that can achieve an intermediate compatible state is the ratio of ethylene oxide in the viscosity grade ISO VG32 of polyalkylene glycol oil when the refrigerant is propane. Is 20%, the viscosity grade ISO VG46 has an ethylene oxide ratio of 15%, and the viscosity grade ISO VG68 has an ethylene oxide ratio of about 10%.

ポリ・アルキレン・グリコール油(PAG油)のプロピレン・オキサイドとエチレンオキサイドの共重合成分比を上記の中間相溶状態に設定することにより、従来の相溶油、及び非相溶油における課題を解決することができる。具体的には、冷凍サイクルで使用する最高凝縮温度から最低蒸発温度までの全温度範囲において、それぞれ液冷媒と冷凍機油が二層分離する混合比を有するため、冷凍機油の冷媒による際限ない希釈を防止し、冷凍機油の粘度が一定以下に低下することを防止し、圧縮機の摺動部の信頼性を確保することができるとともに、その中でも最もエチレン・オキサイドの比率が小さい成分比とすることで、液冷媒中に溶解可能な冷凍機油の量を最大とすることができ、冷凍サイクルからの油戻り性を非相溶油に比べて改善することができる。   Solving the problems of conventional compatible and non-compatible oils by setting the copolymer component ratio of propylene oxide and ethylene oxide of polyalkylene glycol oil (PAG oil) to the above intermediate compatible state can do. Specifically, in the entire temperature range from the highest condensation temperature to the lowest evaporation temperature used in the refrigeration cycle, the liquid refrigerant and the refrigerating machine oil each have a mixing ratio that separates into two layers. Preventing the viscosity of the refrigeration oil from dropping below a certain level, ensuring the reliability of the sliding part of the compressor, and making the component ratio with the smallest ethylene oxide ratio among them Thus, the amount of refrigerating machine oil that can be dissolved in the liquid refrigerant can be maximized, and the oil return property from the refrigeration cycle can be improved as compared with the incompatible oil.

上述の説明では、本発明の理想的な状態として、中間相溶状態となる一点についてその成分比及び効果を説明したが、上述の効果が部分的に得られる成分比であってもよい。その範囲として、以下を定義する。まず、エチレン・オキサイド比率(プロピレン・オキサイドとエチレン・オキサイドとの成分比)の下限については次のようになる。圧縮機の各摺動部にかかる負荷は、高圧(凝縮)側の圧力が高い方が大きくなる傾向がある。そのため、実際に使用される冷凍サイクルの最大高圧(凝縮側)条件付近に二層分離領域が存在すれば本発明の効果を得ることができるので、図5(c)の状態のように高温側の二層分離領域が冷凍サイクル中の最高凝縮温度(最高飽和温度)にかかり始める、すなわち、最高凝縮温度にて二層分離状態が発生するエチレン・オキサイド比率を下限とする。なお、最高凝縮温度は、空調機では65℃程度、給湯器では80℃程度であり、本発明の説明においては、80℃として以下のエチレン・オキサイド比率(プロピレン・オキサイドとエチレン・オキサイドとの成分比)を定義する。   In the above description, as an ideal state of the present invention, the component ratio and the effect have been described with respect to one point where the intermediate compatible state is obtained, but the component ratio at which the above effect is partially obtained may be used. The scope is defined as follows. First, the lower limit of the ethylene oxide ratio (component ratio of propylene oxide and ethylene oxide) is as follows. The load applied to each sliding portion of the compressor tends to increase as the pressure on the high pressure (condensation) side is higher. Therefore, if the two-layer separation region exists near the maximum high pressure (condensation side) condition of the refrigeration cycle that is actually used, the effect of the present invention can be obtained, so that the high temperature side as in the state of FIG. The lower limit is the ethylene oxide ratio at which the two-layer separation region starts to reach the maximum condensation temperature (maximum saturation temperature) in the refrigeration cycle, that is, the two-layer separation state occurs at the highest condensation temperature. The maximum condensation temperature is about 65 ° C. for an air conditioner and about 80 ° C. for a water heater. In the description of the present invention, the following ethylene / oxide ratio (component of propylene / oxide and ethylene / oxide) is assumed to be 80 ° C. Ratio).

次に、エチレン・オキサイド比率(プロピレン・オキサイドとエチレン・オキサイドとの成分比)の上限については次のようになる。すなわち、冷媒回路からの十分な油戻り性が確保できればよい。通常の高圧シェル型圧縮機の油吐出量は、油吐出量の大きめのものにおいても2%程度と考えられるため、液冷媒中に2%程度の冷凍機油が溶解していれば十分である。液冷媒中の冷凍機油溶解量は、低温になるほど小さくなる傾向のため、冷凍サイクル中の最低蒸発温度(最低飽和温度)において、液冷媒中に2%以上の冷凍機油が溶解できればよい。つまり、図5(g)中に示すA点の冷凍機油溶解量が2%以上となるエチレン・オキサイド比率を上限とする。なお、最低凝縮蒸発温度は、空調機、給湯器で−10℃〜−30℃程度であり、本発明の説明においては、−30℃として以下のエチレン・オキサイド比率(プロピレン・オキサイドとエチレン・オキサイドとの成分比)を定義する。   Next, the upper limit of the ethylene oxide ratio (component ratio of propylene oxide and ethylene oxide) is as follows. That is, it is only necessary to ensure sufficient oil return from the refrigerant circuit. The oil discharge amount of a normal high-pressure shell type compressor is considered to be about 2% even when the oil discharge amount is large, so it is sufficient that about 2% of refrigerating machine oil is dissolved in the liquid refrigerant. Since the amount of refrigeration oil dissolved in the liquid refrigerant tends to decrease as the temperature decreases, it is sufficient that 2% or more of the refrigeration oil can be dissolved in the liquid refrigerant at the lowest evaporation temperature (minimum saturation temperature) in the refrigeration cycle. In other words, the upper limit is the ethylene oxide ratio at which the refrigerating machine oil dissolution at point A shown in FIG. The minimum condensation evaporation temperature is about −10 ° C. to −30 ° C. for air conditioners and water heaters. In the description of the present invention, the following ethylene oxide ratio (propylene oxide and ethylene oxide) is assumed to be −30 ° C. Component ratio).

上記の下限、上限の定義を実現可能なエチレン・オキサイドの成分比は、概ね上述の中間相溶となる成分比に対し、±10%の範囲となる。すなわち、冷媒としてプロパンを使用した場合、ポリ・アルキレン・グリコール油の粘度グレードISO VG32では、エチレン・オキサイド比率が10〜30%、粘度グレードISO VG46では、エチレン・オキサイド比率が5〜25%、粘度グレードISO VG68では、エチレン・オキサイド比率が0〜20%程度となる。上記の間の粘度の冷凍機油においては、粘度グレードISO VG32、46、68のデータを結ぶ曲線より補完した成分比を適用すればよい。   The component ratio of ethylene oxide capable of realizing the above-mentioned definitions of the lower limit and the upper limit is in the range of ± 10% with respect to the component ratio at which the intermediate compatibility is achieved. That is, when propane is used as the refrigerant, the viscosity of polyalkylene glycol oil is ISO VG32 and the ethylene oxide ratio is 10 to 30%, and the viscosity grade ISO VG46 is 5 to 25% of ethylene / oxide ratio. In grade ISO VG68, the ethylene oxide ratio is about 0 to 20%. In the refrigerating machine oil having the viscosity between the above, the component ratio complemented from the curve connecting the data of the viscosity grade ISO VG32, 46, 68 may be applied.

図8は、冷媒/冷凍機油混合比と冷凍機油の粘度との関係を示す図で、液冷媒(冷媒過熱度0である)と油が混在したときの油の挙動を示すものである。
図に示すように、二層分離しない相溶油(鉱油等)は、冷媒比率の増加とともに際限なく油の粘度は低下するが、本発明の油は、二層分離するため、油側の粘度は一定値以下には低下しない。
FIG. 8 is a diagram showing the relationship between the refrigerant / refrigeration oil mixing ratio and the viscosity of the refrigerating machine oil, and shows the behavior of oil when liquid refrigerant (refrigerant superheat degree is 0) and oil are mixed.
As shown in the figure, in the case of a compatible oil that does not separate into two layers (mineral oil or the like), the viscosity of the oil decreases endlessly as the refrigerant ratio increases, but the oil of the present invention separates into two layers, so the viscosity on the oil side Does not drop below a certain value.

図9は、冷媒の過熱度に対応する冷凍機油の溶解粘度を示す図で、加熱冷媒(ガス)が油に溶解した状態での油粘度を示している。
図9に示すように、過熱冷媒の油中への溶解量は、過熱度により変化する。すなわち、過熱度が小さいほど油が溶けやすい。また、冷媒の溶け込みが多いほど、油の粘度は低下する。鉱油は溶けやすいので、溶解量は多めであり、その分粘度の低下が大きい。
これに対して、本発明の油は、冷媒の過熱度が小さいときにも油中に冷媒が溶けにくく、溶解粘度を高めに保つことができる。
FIG. 9 is a diagram showing the melt viscosity of refrigerating machine oil corresponding to the degree of superheat of the refrigerant, and shows the oil viscosity in a state where the heated refrigerant (gas) is dissolved in the oil.
As shown in FIG. 9, the amount of superheated refrigerant dissolved in oil varies depending on the degree of superheat. That is, the oil is more easily dissolved as the degree of superheat is smaller. In addition, the more the refrigerant melts, the lower the oil viscosity. Mineral oil is easy to dissolve, so the amount of dissolution is large and the viscosity is greatly reduced accordingly.
On the other hand, the oil of the present invention is difficult to dissolve in the oil even when the superheat degree of the refrigerant is small, and the viscosity of the melt can be kept high.

尚、上述では、冷媒がプロパンの時の特性を示したが、冷媒はプロピレンでも良い。冷媒がプロピレンの場合は、中間相溶の状態実現可能な具体的なエチレン・オキサイド比率は不明であるが、プロパンに対するよりもエチレン・オキサイド比率が高いときに、図5の(f)の状態を実現可能であり、概ねエチレン・オキサイド比率が50%程度であると推定される。   In the above description, the characteristics when the refrigerant is propane are shown, but the refrigerant may be propylene. When the refrigerant is propylene, the specific ethylene oxide ratio that can be realized in an intermediate compatible state is unknown, but when the ethylene oxide ratio is higher than that of propane, the state of (f) in FIG. It is feasible, and it is estimated that the ethylene oxide ratio is about 50%.

次に動作について説明する。まず、冷凍回路内の冷媒及び油の状態について説明する。
圧縮機1は、吸入管16より低圧の冷媒ガスを吸入し、圧縮機構部101にて冷媒ガスを高圧に圧縮後、密閉容器11内に一度吐出され、その後、密閉容器11内に開口している吐出管17より密閉容器11外に吐出される。この際、圧縮機1内の潤滑に使用された冷凍機油13も冷媒ガスとともに少量吐出される。高圧シェル方式の圧縮機では、通常の運転条件において、冷媒ガスとともに吐出される冷凍機油の量は、最大2%程度である。圧縮機1より吐出された高圧の冷媒ガス及び少量の冷凍機油は、図1の凝縮機2に入り冷媒ガスは凝縮されて液化し、液冷媒となって膨張弁3に移動する。
Next, the operation will be described. First, the state of the refrigerant and oil in the refrigeration circuit will be described.
The compressor 1 sucks a low-pressure refrigerant gas from the suction pipe 16, compresses the refrigerant gas to a high pressure by the compression mechanism unit 101, and then discharges it once into the sealed container 11, and then opens into the sealed container 11. The discharge pipe 17 is discharged out of the sealed container 11. At this time, a small amount of the refrigerating machine oil 13 used for lubrication in the compressor 1 is also discharged together with the refrigerant gas. In a high-pressure shell type compressor, the amount of refrigerating machine oil discharged together with the refrigerant gas is about 2% at maximum under normal operating conditions. The high-pressure refrigerant gas and a small amount of refrigeration oil discharged from the compressor 1 enter the condenser 2 in FIG. 1, and the refrigerant gas is condensed and liquefied, and becomes liquid refrigerant and moves to the expansion valve 3.

また、その液冷媒中にも圧縮機1から吐出された量と同量の冷凍機油13が含まれることになるが、冷凍機油13は上述のとおり、液冷媒を2%以上溶解可能なため、冷凍機油13は分離することなく液冷媒とともに膨張弁3に移動する。   In addition, the amount of refrigerating machine oil 13 that is the same as the amount discharged from the compressor 1 is also included in the liquid refrigerant, but the refrigerating machine oil 13 can dissolve the liquid refrigerant by 2% or more as described above. The refrigerating machine oil 13 moves to the expansion valve 3 together with the liquid refrigerant without being separated.

膨張弁3により液冷媒は減圧され気液二相状態となり、蒸発機4に移動する。蒸発機4においても、冷凍機油13は液相中に溶解している状態である。蒸発機4内で冷媒は気化され、それに伴い、冷凍機油13は徐々に析出し、液冷媒が完全にガス化されると冷媒と油は分離した状態となる。また、低圧空間における油中への冷媒溶解量は少ないため、油の粘度は増加する傾向となるが、基油の粘度グレードがISO VG32〜68程度と低めに設定されているため、油は冷媒ガスとともに問題なく移動し、圧縮機1へ戻ることができる。   The liquid refrigerant is decompressed by the expansion valve 3 to be in a gas-liquid two-phase state, and moves to the evaporator 4. Also in the evaporator 4, the refrigerating machine oil 13 is in a state of being dissolved in the liquid phase. In the evaporator 4, the refrigerant is vaporized, and accordingly, the refrigeration oil 13 gradually precipitates. When the liquid refrigerant is completely gasified, the refrigerant and the oil are separated. Also, since the amount of refrigerant dissolved in oil in the low pressure space is small, the viscosity of the oil tends to increase. However, since the viscosity grade of the base oil is set to a low level of about ISO VG 32 to 68, the oil is a refrigerant. The gas can move without problems and return to the compressor 1.

上記のように、炭化水素冷媒に対し、中間相溶の特性を有する冷凍機油を選択したことにより、冷凍機油に求められる前記3項目の特性全てに対し良好な特性を示す。
1)圧縮機内において適正な油粘度を保つ
・冷凍機油中への冷媒溶解量が相対的に少なく、また、冷凍機油と液冷媒は分離するため、冷凍機油中の冷媒量は一定割合以上には増加せず、適正な油の粘度が保たれる。
2)圧縮機下部の給油孔から常時油を吸入可能
・冷凍機油と液冷媒が密閉容器内で分離した場合においても、炭化水素冷媒は冷凍機油よりも密度が小さいため、冷凍機油は、どの圧力・温度条件においても炭化水素冷媒の下側に沈み、圧縮機下部の給油孔部に、常に冷凍機油を保つことができる。
3)冷凍回路に放出された油が圧縮機に戻る
・液冷媒中に溶け込む冷凍機油の量が2%以上あるため、通常の圧縮機から放出される油の量(2%以下)に対しては、液冷媒中に溶け込んだまま冷凍回路内を循環できるため、十分な油戻り性を確保することができる。
As described above, by selecting a refrigerating machine oil having intermediate compatibility characteristics with respect to the hydrocarbon refrigerant, good characteristics are exhibited with respect to all the above three characteristics required for the refrigerating machine oil.
1) Maintaining proper oil viscosity in the compressor ・ The amount of refrigerant dissolved in the refrigerating machine oil is relatively small, and the refrigerating machine oil and liquid refrigerant are separated. It does not increase and the proper oil viscosity is maintained.
2) Oil can always be sucked from the oil supply hole at the bottom of the compressor. Even when the refrigeration oil and the liquid refrigerant are separated in a closed container, the hydrocarbon refrigerant has a lower density than the refrigeration oil. -Even under temperature conditions, the oil can sink below the hydrocarbon refrigerant and keep the refrigerating machine oil in the oil supply hole at the bottom of the compressor.
3) The oil released to the refrigeration circuit returns to the compressor. • Since the amount of refrigeration oil that dissolves in the liquid refrigerant is 2% or more, the amount of oil released from the normal compressor (2% or less) Since it can circulate in the refrigeration circuit while being dissolved in the liquid refrigerant, sufficient oil return can be ensured.

更に、この冷凍機油は冷凍回路で使用する凝縮温度の範囲の全て/または一部で二層分離するため、冷凍機油中に溶解する冷媒量は二層分離濃度以上には増えず、冷凍機油の際限ない希釈を防止し、圧縮機の摺動部の信頼性を高めることができるという効果がある。   Furthermore, since this refrigerating machine oil is separated into two layers at all / a part of the range of the condensation temperature used in the refrigerating circuit, the amount of refrigerant dissolved in the refrigerating machine oil does not increase beyond the double layer separation concentration, There is an effect that the unlimited dilution can be prevented and the reliability of the sliding portion of the compressor can be improved.

また、液冷媒と冷凍機油が二層分離した際、プロパンやプロピレンの液冷媒密度は冷凍機油よりも小さいため、油が冷凍機油の下側に沈み、圧縮機の給油孔付近は常に冷凍機油層となるため、従来例にあるような液冷媒の上側に浮いた冷凍機油を圧縮機の給油孔に供給するための特別な工夫は必要なく、安価な冷凍サイクル装置が得られるという効果がある。   Also, when liquid refrigerant and refrigerating machine oil are separated into two layers, the density of liquid refrigerant of propane and propylene is smaller than that of refrigerating machine oil. Therefore, there is no need for a special device for supplying the refrigeration oil floating above the liquid refrigerant to the oil supply hole of the compressor as in the conventional example, and there is an effect that an inexpensive refrigeration cycle apparatus can be obtained.

また、冷凍回路内において、液冷媒中には2%以上の冷凍機油が溶解可能なため、通常の運転状態において、圧縮機から冷媒とともに吐出される冷凍機油は液冷媒中に溶解することができ、十分な油戻り性を確保することができるという効果がある。   In the refrigeration circuit, 2% or more of the refrigeration oil can be dissolved in the liquid refrigerant, so that the refrigeration oil discharged together with the refrigerant from the compressor can be dissolved in the liquid refrigerant in a normal operation state. There is an effect that sufficient oil return property can be secured.

なお、本発明の実施の形態において圧縮機を示す図2には、高圧シェル型のロータリー圧縮機を示したが、圧縮機のタイプとして、特に、高圧シェル型、低圧シェル型を問わない。また、スクロール圧縮機等の他の圧縮形式でもよい。また、圧縮機構部と電動機構部の位置関係についても、図2には、圧縮機構部が下側に配置された形態を示したが、冷凍機油13が圧縮機の下側に貯留され、給油孔15が、圧縮機の下側の冷凍機油貯留部に開口する構成になっていれば、圧縮機構部が上側に配置されたものでも同様の効果を示す。   FIG. 2 showing the compressor in the embodiment of the present invention shows a high-pressure shell type rotary compressor, but the type of the compressor is not particularly limited to a high-pressure shell type or a low-pressure shell type. Other compression formats such as a scroll compressor may be used. In addition, regarding the positional relationship between the compression mechanism unit and the electric mechanism unit, FIG. 2 shows a configuration in which the compression mechanism unit is disposed on the lower side. However, the refrigerating machine oil 13 is stored on the lower side of the compressor and is supplied with oil. If the hole 15 is configured to open to the refrigeration machine oil storage section on the lower side of the compressor, the same effect can be obtained even if the compression mechanism section is arranged on the upper side.

1 圧縮機、2 凝縮機、3 膨張弁、4 蒸発機、5 アキュムレーター、6 配管、10 冷凍サイクル装置、11 密閉容器、12 駆動軸、13 冷凍機油、14 給油経路、15 給油孔、16 吸入管、17 吐出管、101 圧縮機構部、102 電動機構部。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 Condenser, 3 Expansion valve, 4 Evaporator, 5 Accumulator, 6 Piping, 10 Refrigeration cycle apparatus, 11 Airtight container, 12 Drive shaft, 13 Refrigerator oil, 14 Oil supply path, 15 Oil supply hole, 16 Inhalation Pipe, 17 Discharge pipe, 101 Compression mechanism part, 102 Electric mechanism part.

Claims (7)

圧縮機、凝縮機、膨張弁、蒸発機を配管で接続し構成された冷凍回路と、
前記冷凍回路に封入され前記冷凍回路内を圧縮、凝縮、膨張、蒸発を繰り返し循環する炭化水素にて構成された冷媒と、
前記冷媒とともに封入されプロピレン・オキサイドとエチレン・オキサイドとが共重合したポリ・アルキレン・グリコールにて構成された冷凍機油と、
を備え、
前記ポリ・アルキレン・グリコールは、前記冷媒が循環するときの凝縮温度から蒸発温度までの全温度範囲にて前記冷媒と前記冷凍機油とが二層分離状態となり、かつ前記プロピレン・オキサイドと前記エチレン・オキサイドの成分比において、前記エチレン・オキサイドの比率が最も少ない構成を含む所定の範囲の成分比にて構成され、
前記ポリ・アルキレン・グリコールの前記エチレン・オキサイドの成分比の下限は、冷凍サイクルで使用する最高凝縮温度において、前記冷媒と前記冷凍機油が二層分離する成分比とすることを特徴とする冷凍サイクル装置。
A refrigeration circuit configured by connecting a compressor, a condenser, an expansion valve, and an evaporator with piping;
A refrigerant composed of hydrocarbons that are enclosed in the refrigeration circuit and circulate repeatedly in the refrigeration circuit through compression, condensation, expansion, and evaporation;
Refrigerating machine oil composed of polyalkylene glycol encapsulated with the refrigerant and copolymerized with propylene oxide and ethylene oxide,
With
The poly-alkylene glycol is in a two-layer separation state between the refrigerant and the refrigerating machine oil in the entire temperature range from the condensation temperature to the evaporation temperature when the refrigerant circulates, and the propylene oxide and the ethylene In the component ratio of oxide, the ratio of the ethylene oxide is configured with a component ratio in a predetermined range including a configuration with the smallest ratio,
The lower limit of the ethylene oxide component ratio of the polyalkylene glycol is a component ratio at which the refrigerant and the refrigerating machine oil are separated into two layers at the highest condensation temperature used in the refrigeration cycle. apparatus.
圧縮機、凝縮機、膨張弁、蒸発機を配管で接続し構成された冷凍回路と、
前記冷凍回路に封入され前記冷凍回路内を圧縮、凝縮、膨張、蒸発を繰り返し循環する炭化水素にて構成された冷媒と、
前記冷媒とともに封入されプロピレン・オキサイドとエチレン・オキサイドとが共重合したポリ・アルキレン・グリコールにて構成された冷凍機油と、
を備え、
前記ポリ・アルキレン・グリコールは、前記冷媒が循環するときの凝縮温度から蒸発温度までの全温度範囲にて前記冷媒と前記冷凍機油とが二層分離状態となり、かつ前記プロピレン・オキサイドと前記エチレン・オキサイドの成分比において、前記エチレン・オキサイドの比率が最も少ない構成を含む所定の範囲の成分比にて構成され、
前記ポリ・アルキレン・グリコールの前記エチレン・オキサイドの成分比の上限は、冷凍サイクルで使用する最低蒸発温度において、前記冷媒中に前記冷凍機油が2%以上溶解する成分比とすることを特徴とする冷凍サイクル装置。
A refrigeration circuit configured by connecting a compressor, a condenser, an expansion valve, and an evaporator with piping;
A refrigerant composed of hydrocarbons that are enclosed in the refrigeration circuit and circulate repeatedly in the refrigeration circuit through compression, condensation, expansion, and evaporation;
Refrigerating machine oil composed of polyalkylene glycol encapsulated with the refrigerant and copolymerized with propylene oxide and ethylene oxide,
With
The poly-alkylene glycol is in a two-layer separation state between the refrigerant and the refrigerating machine oil in the entire temperature range from the condensation temperature to the evaporation temperature when the refrigerant circulates, and the propylene oxide and the ethylene In the component ratio of oxide, the ratio of the ethylene oxide is configured with a component ratio in a predetermined range including a configuration with the smallest ratio,
The upper limit of the component ratio of the ethylene oxide of the poly-alkylene glycol, and characterized in that at the lowest evaporating temperature to be used in refrigeration cycle, the component ratio of the refrigerating machine oil in the refrigerant is dissolved 2% or more It is that refrigeration cycle apparatus.
前記冷媒として、プロパンを用い、前記冷凍機油として、粘度グレードISO VG32のポリ・アルキレン・グリコールを用い、前記ポリ・アルキレン・グリコール中の前記エチレン・オキサイドの成分比を、10〜30%とすることを特徴とする請求項1又は2記載の冷凍サイクル装置。 Propane is used as the refrigerant, viscosity grade ISO VG32 polyalkylene glycol is used as the refrigerating machine oil, and the ethylene oxide component ratio in the polyalkylene glycol is 10 to 30%. The refrigeration cycle apparatus according to claim 1 or 2 . 前記冷媒として、プロパンを用い、前記冷凍機油として、粘度グレードISO VG46のポリ・アルキレン・グリコールを用い、前記ポリ・アルキレン・グリコール中のエチレン・オキサイドの成分比を、5〜25%としたことを特徴とする請求項1又は2記載の冷凍サイクル装置。 Propane is used as the refrigerant, viscosity grade ISO VG46 polyalkylene glycol is used as the refrigerating machine oil, and the component ratio of ethylene oxide in the polyalkylene glycol is 5 to 25%. The refrigeration cycle apparatus according to claim 1 or 2, characterized in that 前記冷媒として、プロパンを用い、前記冷凍機油として、粘度グレードISO VG68のポリ・アルキレン・グリコールを用い、前記ポリ・アルキレン・グリコール中の前記エチレン・オキサイドの成分比を、0〜20%としたことを特徴とする請求項1又は2記載の冷凍サイクル装置。 Propane is used as the refrigerant, viscosity grade ISO VG68 polyalkylene glycol is used as the refrigerating machine oil, and the ethylene oxide component ratio in the polyalkylene glycol is 0 to 20%. The refrigeration cycle apparatus according to claim 1 or 2 . 圧縮機、凝縮機、膨張弁、蒸発機を配管で接続し構成された冷凍回路と、
前記冷凍回路に封入され前記冷凍回路内を圧縮、凝縮、膨張、蒸発を繰り返し循環する炭化水素にて構成された冷媒と、
前記冷媒とともに封入されプロピレン・オキサイドとエチレン・オキサイドとが共重合したポリ・アルキレン・グリコールにて構成された冷凍機油と、
を備え、
前記ポリ・アルキレン・グリコールは、前記冷媒が循環するときの凝縮温度から蒸発温度までの全温度範囲にて前記冷媒と前記冷凍機油とが二層分離状態となり、かつ前記プロピレン・オキサイドと前記エチレン・オキサイドの成分比において、前記エチレン・オキサイドの比率が最も少ない構成を含む所定の範囲の成分比にて構成され、
前記冷媒として、プロパンを用い、前記冷凍機油として、粘度グレードISO VG32〜68のポリ・アルキレン・グリコールを用い、前記ポリ・アルキレン・グリコール中の前記エチレン・オキサイドの成分比を、粘度グレードのISO VG32、VG46、VG68に対して示した値を結ぶ曲線より補完される範囲とすることを特徴とする冷凍サイクル装置。
A refrigeration circuit configured by connecting a compressor, a condenser, an expansion valve, and an evaporator with piping;
A refrigerant composed of hydrocarbons that are enclosed in the refrigeration circuit and circulate repeatedly in the refrigeration circuit through compression, condensation, expansion, and evaporation;
Refrigerating machine oil composed of polyalkylene glycol encapsulated with the refrigerant and copolymerized with propylene oxide and ethylene oxide,
With
The poly-alkylene glycol is in a two-layer separation state between the refrigerant and the refrigerating machine oil in the entire temperature range from the condensation temperature to the evaporation temperature when the refrigerant circulates, and the propylene oxide and the ethylene In the component ratio of oxide, the ratio of the ethylene oxide is configured with a component ratio in a predetermined range including a configuration with the smallest ratio,
Propane is used as the refrigerant, polyalkylene glycol of viscosity grade ISO VG32 to 68 is used as the refrigerating machine oil, and the component ratio of ethylene oxide in the polyalkylene glycol is determined according to viscosity grade ISO VG32. , VG46, refrigerating cycle apparatus characterized in that the area to be complemented from curve connecting the values shown relative to VG68.
前記冷媒として、プロピレンを用い、前記冷凍機油として、ポリ・アルキレン・グリコールを用いることを特徴とする請求項1又は2記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1 or 2 , wherein propylene is used as the refrigerant, and polyalkylene glycol is used as the refrigerating machine oil.
JP2011052983A 2011-03-10 2011-03-10 Refrigeration cycle equipment Active JP5721480B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011052983A JP5721480B2 (en) 2011-03-10 2011-03-10 Refrigeration cycle equipment
KR1020120021654A KR101309325B1 (en) 2011-03-10 2012-03-02 Refrigeration cycle apparatus
CZ2012-161A CZ306890B6 (en) 2011-03-10 2012-03-07 Cooling machine oil
CN201210060229.5A CN102679604B (en) 2011-03-10 2012-03-09 Cooling cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011052983A JP5721480B2 (en) 2011-03-10 2011-03-10 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2012189255A JP2012189255A (en) 2012-10-04
JP5721480B2 true JP5721480B2 (en) 2015-05-20

Family

ID=46811905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011052983A Active JP5721480B2 (en) 2011-03-10 2011-03-10 Refrigeration cycle equipment

Country Status (4)

Country Link
JP (1) JP5721480B2 (en)
KR (1) KR101309325B1 (en)
CN (1) CN102679604B (en)
CZ (1) CZ306890B6 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103884138A (en) * 2012-12-20 2014-06-25 上海日立电器有限公司 Protection method for state of lubricating oil of compressor of high-back-pressure air conditioner
JP5911637B2 (en) * 2013-03-05 2016-04-27 三菱電機株式会社 Compressor
CN103743143A (en) * 2013-12-24 2014-04-23 西安交通大学 Air conditioning refrigerating device
JPWO2015136980A1 (en) * 2014-03-14 2017-04-06 三菱電機株式会社 Refrigeration cycle equipment
CN104132472B (en) * 2014-07-16 2017-03-29 广东美芝制冷设备有限公司 Air conditioning system
CN104101138B (en) * 2014-07-16 2017-03-29 广东美芝制冷设备有限公司 Air conditioning system
JP6342006B2 (en) * 2014-10-16 2018-06-13 三菱電機株式会社 Refrigeration cycle equipment
CN105091226B (en) * 2015-08-07 2018-11-06 广东美芝制冷设备有限公司 The control method and control device of air-conditioning system
CN107062679A (en) * 2017-04-27 2017-08-18 广东美的制冷设备有限公司 Air-conditioning system and its control method
CN111479910A (en) * 2017-12-18 2020-07-31 大金工业株式会社 Refrigerating machine oil for refrigerant or refrigerant composition, method for using refrigerating machine oil, and use as refrigerating machine oil
JP6811789B2 (en) * 2018-07-03 2021-01-13 三菱電機株式会社 Air conditioner and compressor
CN112289387B (en) * 2020-11-02 2023-10-20 西安交通大学 Refrigerating machine oil composition of vapor compression cycle system and design method thereof
CN112410109B (en) * 2020-11-27 2022-07-12 珠海格力节能环保制冷技术研究中心有限公司 Refrigerator oil, working fluid composition, and refrigeration cycle device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3672173B2 (en) 1998-08-07 2005-07-13 旭電化工業株式会社 Refrigerator lubricant using ammonia refrigerant
JP3960859B2 (en) 2002-05-31 2007-08-15 三洋電機株式会社 Refrigeration equipment
JP4012441B2 (en) * 2002-07-11 2007-11-21 株式会社ジャパンエナジー Lubricating oil and working medium for refrigerant compression refrigeration cycle equipment
JP2004198062A (en) * 2002-12-20 2004-07-15 Sanyo Electric Co Ltd Refrigerating device
JP2008308610A (en) * 2007-06-15 2008-12-25 Idemitsu Kosan Co Ltd Refrigerator oil composition
JP2010002099A (en) * 2008-06-19 2010-01-07 Mitsubishi Electric Corp Refrigerating cycle device
JP5260168B2 (en) * 2008-07-29 2013-08-14 日立アプライアンス株式会社 Refrigerant compressor
JP5379445B2 (en) * 2008-10-23 2013-12-25 サンデン株式会社 Refrigeration cycle system and vehicle air conditioning system using the refrigeration cycle system
MX365490B (en) * 2009-09-16 2019-06-05 E I Du Pont De Nemours And Company Star Composition comprising cis-1,1,1,4,4,4-hexafluoro-2-butene and trans-1,2-dichloroethylene, apparatus containing same and methods of producing cooling therein.

Also Published As

Publication number Publication date
CZ306890B6 (en) 2017-08-30
CN102679604A (en) 2012-09-19
CN102679604B (en) 2014-12-31
CZ2012161A3 (en) 2012-09-19
JP2012189255A (en) 2012-10-04
KR20120103457A (en) 2012-09-19
KR101309325B1 (en) 2013-09-16

Similar Documents

Publication Publication Date Title
JP5721480B2 (en) Refrigeration cycle equipment
US9528037B2 (en) Method for selecting lubricants for heat pumps
US20070000261A1 (en) Very low temperature refrigeration system having a scroll compressor with liquid injection
CN107353973B9 (en) Lubricant blends for reducing refrigerant solubility
CN112410109B (en) Refrigerator oil, working fluid composition, and refrigeration cycle device
JPH11125481A (en) Refrigerating air conditioner
CN107044739A (en) Refrigerator, the manufacture method of refrigerator and the method for improving COP
WO2022114137A1 (en) Working fluid, freezer, and freezer oil
JP6912649B2 (en) Refrigerator
EP0622445B1 (en) Refrigerant circulating system
JP5659403B2 (en) Refrigeration cycle equipment
JP6522345B2 (en) Refrigerating apparatus and sealed electric compressor
JPH07208819A (en) Refrigerant circulating system
JP2018136057A (en) Refrigerant system including direct contact heat exchanger and control method of refrigerant system
JPH11294873A (en) Refrigeration cycle device
JP2002303456A (en) Refrigeration air conditioner
JP2005248773A (en) Refrigerating device and refrigerant compressor
CN101611113A (en) Fluorinated composition and the system that uses this based composition
JP2015140994A (en) Air conditioner, and refrigerator oil
JPH1054618A (en) Freezing cycle apparatus using three component mixture refrigerant
EP0846926A2 (en) Refrigerant circulating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150119

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150324

R150 Certificate of patent or registration of utility model

Ref document number: 5721480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250