JP2005248773A - Refrigerating device and refrigerant compressor - Google Patents

Refrigerating device and refrigerant compressor Download PDF

Info

Publication number
JP2005248773A
JP2005248773A JP2004058349A JP2004058349A JP2005248773A JP 2005248773 A JP2005248773 A JP 2005248773A JP 2004058349 A JP2004058349 A JP 2004058349A JP 2004058349 A JP2004058349 A JP 2004058349A JP 2005248773 A JP2005248773 A JP 2005248773A
Authority
JP
Japan
Prior art keywords
refrigerant
oil
compressor
ester oil
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004058349A
Other languages
Japanese (ja)
Inventor
Norimi Sugano
典伺 菅野
Tadashi Iizuka
董 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Home and Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Home and Life Solutions Inc filed Critical Hitachi Home and Life Solutions Inc
Priority to JP2004058349A priority Critical patent/JP2005248773A/en
Publication of JP2005248773A publication Critical patent/JP2005248773A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Lubricants (AREA)
  • Compressor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerant compressor and a refrigerating device high in reliability for standing long use in a cold region by using the combination of R410A and ester oil. <P>SOLUTION: In the combination of R410A and ester oil, ester oil of 0°C or lower in critical solution temperature is used to avoid supply of liquid refrigerant to a sliding part caused by a low-temperature flooded phenomenon when a compressor is started in the cold region. Therefore, insufficient lubrication in the sliding part is reduced to provide the refrigerant compressor high in reliability and the refrigerating device having the refrigerant compressor. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、HFC(ハイドロフルオロカーボン:フッ化炭化水素)系冷媒を用いた家庭用ヒートポンプ式冷凍サイクルで使用される冷媒圧縮機及びその圧縮機を用いた冷凍装置に関する。   The present invention relates to a refrigerant compressor used in a home heat pump refrigeration cycle using an HFC (hydrofluorocarbon: fluorinated hydrocarbon) refrigerant and a refrigeration apparatus using the compressor.

従来、ルームエアコンの冷媒はHCFC系のR22を用いていた。しかし、地球環境保護の観点から、分子中に塩素を含まないHFC系のものに移行した。その代替品としてはR32、R125、R134aの単独若しくはこれらの2種類以上を混合したR410A、R407Cが採用されてきた。   Conventionally, HCFC R22 was used as the refrigerant for room air conditioners. However, from the viewpoint of protecting the global environment, we have shifted to HFCs that do not contain chlorine in the molecule. As alternatives, R32A, R125, R134a, or R410A and R407C, which are a mixture of two or more of these, have been used.

しかしながらHFC系冷媒は従来の鉱油との相溶性が劣り、冷凍サイクル内で圧縮機への油戻り性が低下する。そこで、必要な溶解度をもつ冷凍機油として、エステル油などの合成油を用い冷凍サイクルの基本構成を変更することなく、油戻りを確保する方法をとってきた。非塩素系冷媒とエステル油を用いた圧縮機としては、特許文献1に開示されたものがある。   However, HFC refrigerants have poor compatibility with conventional mineral oils, and the oil return to the compressor is reduced in the refrigeration cycle. Therefore, as a refrigerating machine oil having a necessary solubility, a synthetic oil such as an ester oil has been used to ensure oil return without changing the basic configuration of the refrigeration cycle. A compressor using a non-chlorine refrigerant and ester oil is disclosed in Patent Document 1.

特開平8-120288号公報Japanese Patent Laid-Open No. 8-120288

エステル油は脂肪酸が一般式C・(CH2OCOR2)4、R2がC数が5〜12の範囲の1個又は複数とされている。ルームエアコンには冷媒がR407CのものとR410Aのものが使用され、冷凍機油として上記公知例に代表されるiC8とiC9脂肪酸とペンタエリスリトールよりなる冷凍機油が使用されてきた。しかし、暖房性能を比較した場合R407CよりR410Aの方が冷媒COPが優れルームエアコン用冷媒はR410Aが主流となったが、従来の冷凍機油との相溶性は悪くなり臨界溶解温度で20deg.上昇し溶解に関する種々の問題が懸念されるようになった。 The ester oil has one or more fatty acids in the general formula C · (CH 2 OCOR 2 ) 4 and R2 in the range of 5 to 12 carbon atoms. For room air conditioners, refrigerants of R407C and R410A are used, and refrigeration oils composed of iC 8 and iC 9 fatty acids and pentaerythritol represented by the above known examples have been used as refrigeration oils. However, when comparing the heating performance, R410A has better refrigerant COP than R407C, and R410A has become the mainstream refrigerant for room air conditioners. However, compatibility with conventional refrigeration oils deteriorates and the critical solution temperature rises by 20 degrees. Various problems regarding dissolution have become a concern.

また、冷凍機油は冷媒希釈による摺動部油膜低下のため粘度グレードを上げることになった。特に寒冷地等外気温の低い所においては、ルームエアコンの室外側の冷媒が室外側に集まり冷媒と冷凍機油が二層分離する低温寝こみ現象により、冷媒が圧縮機の底部に偏在することになる。実際には圧縮機の起動時、スクロール圧縮機では差圧給油方式、ロータリ圧縮機では機械式給油により潤滑油を吸引し軸/軸受け部へ送る。この時に極めて粘度の低い冷媒では冷凍機油が軸/軸受け部へ供給される潤滑不良が発生し、起動不良や焼付等の信頼性の問題を起こす要因となる。   In addition, the viscosity of refrigeration oil was increased due to the decrease in the oil film on the sliding part due to dilution of the refrigerant. Especially in places with low outside air temperature such as in cold districts, the refrigerant is unevenly distributed at the bottom of the compressor due to the low-temperature stagnation phenomenon where refrigerant outside the room air conditioner gathers outside and separates into two layers. Become. Actually, at the time of starting the compressor, the scroll compressor sucks the lubricating oil by the differential pressure oil supply method and the rotary compressor by the mechanical oil supply and sends it to the shaft / bearing portion. At this time, in the refrigerant having a very low viscosity, poor lubrication in which the refrigeration oil is supplied to the shaft / bearing portion occurs, which causes a problem of reliability such as poor start-up and seizure.

上記の課題を解決するために、本発明の目的は、例えば寒冷地においても低温寝込み現象が起こりづらく高い信頼性を備えた圧縮機及び冷凍装置を提供することにある。   In order to solve the above problems, an object of the present invention is to provide a compressor and a refrigeration apparatus having high reliability in which a low-temperature stagnation phenomenon hardly occurs even in a cold region, for example.

上記目的を解決するために本発明の冷凍装置は、R32、R125,R134aからなるHFC系冷媒と、そのHFC系冷媒とで臨界溶解温度が0℃以下望ましくは−20℃以下となる溶解度ダイヤグラムから求めたエステル油との組合せを備えるものである。この冷媒範囲であれば使用する圧縮機の起動時の低温寝込み現象による摺動部潤滑不良を回避することができる。   In order to solve the above-mentioned object, the refrigeration apparatus of the present invention is based on the solubility diagram in which the critical melting temperature is 0 ° C. or less, preferably −20 ° C. or less with the HFC refrigerant composed of R32, R125, R134a and the HFC refrigerant. The combination with the obtained ester oil is provided. Within this refrigerant range, sliding portion lubrication failure due to the low temperature stagnation phenomenon at the start of the compressor to be used can be avoided.

また上記目低を達成するために本発明の圧縮機は、脂肪酸の一般式C・(CH2OCOR2)4のR2のC数(炭素数)が4と9の混合により成るエステル油であって、R32、R125、R134aの混合冷媒において特に外気温が0℃を下回る地域、特に−20℃を下回る地域においても相溶性を大幅に改善した冷凍機油とHFC系冷媒とが共存する状態で備えるものである。 In order to achieve the above low, the compressor of the present invention is an ester oil composed of a mixture of 4 and 9 in which the C number (carbon number) of R2 in the general formula C. (CH 2 OCOR 2 ) 4 of the fatty acid. In the mixed refrigerant of R32, R125, and R134a, especially in regions where the outside air temperature is below 0 ° C., particularly in regions below −20 ° C., refrigeration oil with greatly improved compatibility and HFC refrigerant coexist. Is.

以上のように、本発明の冷凍装置及び圧縮機では、寒冷地での低温寝込み現象による摺動部への液冷媒供給を回避することができる。   As described above, in the refrigeration apparatus and the compressor according to the present invention, it is possible to avoid the supply of the liquid refrigerant to the sliding portion due to the low temperature stagnation phenomenon in a cold region.

図1に代表的な冷媒圧縮機として縦形スクロール圧縮機の断面図を示す。空調冷凍サイクルに用いる冷媒圧縮機にはロータリ形圧縮機、スクロール形圧縮機等があるが、中でもスクロール形圧縮機は摺動部が面接触となるため瞬時に温度上昇が起こりにくく、残存率の高い高性能の酸捕捉剤が十分に反応する温度まで上昇することは少ない。この冷媒圧縮機は、油溜めを兼ねた密閉容器1内に圧縮機構部2と電動機部3とが収納されている。圧縮機構部2は旋回スクロール4、固定スクロール5、フレーム6、クランク軸7、オルダムリング8を主要構成要素としている。密閉容器1にはサイクル構成部品の蒸発器と連通する吸入パイプ9が密封接続されている。   FIG. 1 shows a cross-sectional view of a vertical scroll compressor as a typical refrigerant compressor. Refrigerant compressors used in air-conditioning refrigeration cycles include rotary compressors, scroll compressors, etc. Among them, scroll compressors are in surface contact with the sliding part, so the temperature rise is unlikely to occur instantaneously and the residual rate is low. There is little rise to a temperature at which a high performance acid scavenger reacts sufficiently. In this refrigerant compressor, a compression mechanism section 2 and an electric motor section 3 are housed in a sealed container 1 that also serves as an oil reservoir. The compression mechanism unit 2 includes a turning scroll 4, a fixed scroll 5, a frame 6, a crankshaft 7, and an Oldham ring 8 as main components. A suction pipe 9 communicating with the evaporator of the cycle component is hermetically connected to the sealed container 1.

電動機部3は回転子10と固定子11を備え、回転子10には鋳鉄製のクランク軸7が嵌着されている。クランク軸7は偏心部12を有し、その他端側に軸の内部を中空にした軸穴13を有している。フレーム6の外周部は密閉容器1に固定されており、クランク軸7の回転を受ける軸受を具備している。クランク軸7の偏心部12には旋回スクロール4が回転自在に取付けられ、フレーム6に設けられた溝と旋回スクロール4の反ラップ側の台板に設けられた溝にはオルダムリング8が摺動自在に配設されている。これらの構成により旋回スクロールは自転することなく公転する。また、底部には油溜め14に冷凍機油が貯溜されており、この冷凍機油は、摺動部へと給油される。   The electric motor unit 3 includes a rotor 10 and a stator 11, and a crankshaft 7 made of cast iron is fitted on the rotor 10. The crankshaft 7 has an eccentric portion 12 and a shaft hole 13 having a hollow shaft at the other end. The outer periphery of the frame 6 is fixed to the sealed container 1 and includes a bearing that receives rotation of the crankshaft 7. An orbiting scroll 4 is rotatably attached to the eccentric portion 12 of the crankshaft 7, and an Oldham ring 8 slides in a groove provided on the frame 6 and a groove provided on the base plate on the side opposite to the wrapping scroll 4. Arranged freely. With these configurations, the orbiting scroll revolves without rotating. In addition, refrigeration oil is stored in the oil sump 14 at the bottom, and this refrigeration oil is supplied to the sliding portion.

この冷媒圧縮機がヒートポンプ用冷凍サイクルで使用する冷媒は、HFCのR410AやR407Cである。この場合の冷凍機油はHFCと相溶性の良いエステル油である。従来のHFC系冷媒用の冷凍機油としては、40℃の時の粘度が2〜70cSt、100℃の時の粘度が1〜9cStのものとし、エステル油の化学式がC・(CH2OCOR2)4−(1)でR2が5〜12の範囲のものが含まれており、ヒートポンプサイクルとしてはR2がiC7酸と iC8酸の混合酸であるものを用いられていた。 The refrigerant used in the refrigeration cycle for the heat pump by this refrigerant compressor is HFC R410A or R407C. The refrigerating machine oil in this case is an ester oil having good compatibility with HFC. Conventional refrigeration oils for HFC refrigerants have a viscosity of 2 to 70 cSt at 40 ° C. and a viscosity of 1 to 9 cSt at 100 ° C. The chemical formula of ester oil is C · (CH 2 OCOR 2 ). 4 - (1) and R 2 is included in the range of 5 to 12, as a heat pump cycle has been used as R2 is a mixed acid of iC 7 acid and iC 8 acid.

本発明ではR2がiC4酸と iC8酸を混合させることにより飛躍的にHFC冷媒相溶性に伴う種々技術課題を解決できたものである。冷媒相溶性の優れる冷凍機油は冷媒の循環と共に摺動部へと供給され、摺動部の潤滑に寄与する。 The present invention is intended that could solve various technical challenges associated with dramatically HFC refrigerant miscibility by R 2 is to mix iC 4 acid and iC 8 acid. Refrigerating machine oil having excellent refrigerant compatibility is supplied to the sliding portion along with the circulation of the refrigerant, and contributes to lubrication of the sliding portion.

図2(a)にスクロール圧縮機で代表される差圧式給油機構断面図、図2(b)にロータリ圧縮機で代表される軸穴の中に油に旋回力を与えるフィンを備えた機械式給油機構断面図を示す。冷凍機油14が、次に述べるように二層分離した状態を示していて、上層は比重の軽い分離した冷凍機油14aで、下層は冷凍機油14aより比重の重い液冷媒14bである。   2 (a) is a cross-sectional view of a differential pressure type oil supply mechanism represented by a scroll compressor, and FIG. 2 (b) is a mechanical type equipped with fins that give a turning force to oil in a shaft hole represented by a rotary compressor. The oil supply mechanism sectional view is shown. The refrigerating machine oil 14 is shown in a state of being separated into two layers as described below, the upper layer is a separated refrigerating machine oil 14a having a low specific gravity, and the lower layer is a liquid refrigerant 14b having a heavier specific gravity than the refrigerating machine oil 14a.

現在、ルームエアコンは特に国内では室外機と室内機が分離しているセパレートタイプが主流である。寒冷地であってもセパレートタイプの室外機は屋外に設置される。この室外機では、圧縮機の停止時に外気温が0℃以下となると、温度の高い室内側の冷媒が温度の低い室外機に移動する。このとき圧縮機に貯留している冷凍機油14は、戻り冷媒により二層分離を起こす。冷凍機油であるエステル油より比重の重い冷媒14bは圧縮機の底部に溜る。圧縮機起動時には、クランク軸7の先端が液冷媒14bに浸っているので、液冷媒14bがクランク軸7を通り、軸穴13より摺動部に供給される。そのため、摺動部には一時的に低粘度の液冷媒が供給され潤滑油膜が切断され摺動部の潤滑不良が発生し、圧縮機の起動不良の要因となる。   At present, the room air conditioner is mainly a separate type in which the outdoor unit and the indoor unit are separated, particularly in Japan. Separate type outdoor units are installed outdoors even in cold regions. In this outdoor unit, when the outside air temperature becomes 0 ° C. or less when the compressor is stopped, the indoor refrigerant having a high temperature moves to the outdoor unit having a low temperature. At this time, the refrigerating machine oil 14 stored in the compressor causes two-layer separation by the return refrigerant. Refrigerant 14b having a specific gravity heavier than that of ester oil, which is a refrigerating machine oil, accumulates at the bottom of the compressor. When the compressor is activated, the tip of the crankshaft 7 is immersed in the liquid refrigerant 14b, so that the liquid refrigerant 14b passes through the crankshaft 7 and is supplied from the shaft hole 13 to the sliding portion. For this reason, a low-viscosity liquid refrigerant is temporarily supplied to the sliding portion, the lubricating oil film is cut, and the sliding portion is poorly lubricated, which causes a compressor start-up failure.

この現象は冬場にのみ発生し、特に外気温度が−20℃に達する極寒冷地で運転停止状態が続いた後起動させた場合に多発する。大型機種ほど封入冷媒量が多く、封入冷媒量が多いほど起動不良が生じやすい。4.0kwクラス以上の空気調和機では、冷凍機油420mlに対し冷媒量1450gであり、2.8kwクラスの空気調和機における冷媒量が1300gの機種より、起動不良が発生し易くなっている。しかし、一度起動すると分離していた冷凍機油14aと液冷媒14bが攪拌され混ざり合い、また圧縮機の温度が上昇するため、摺動部に冷凍機油が供給されるようになる。従って起動時の段階で液冷媒のみが摺動部に供給されなければ圧縮機の起動不良は改善される。なお、差圧式給油機構、機械式給油機構とも圧縮機底部より冷媒及び冷凍機油が供給される仕組みは同じである。   This phenomenon occurs only in winter, especially when it is started after the operation is stopped in a very cold region where the outside air temperature reaches -20 ° C. The larger the model, the larger the amount of the enclosed refrigerant, and the larger the amount of the enclosed refrigerant, the more likely to start up. In an air conditioner of 4.0 kw class or higher, the refrigerant amount is 1450 g with respect to 420 ml of refrigerating machine oil, and starting failure is more likely to occur than a model in which the refrigerant amount in a 2.8 kw class air conditioner is 1300 g. However, once started, the separated refrigerating machine oil 14a and liquid refrigerant 14b are agitated and mixed, and the temperature of the compressor rises, so that the refrigerating machine oil is supplied to the sliding portion. Therefore, if only the liquid refrigerant is not supplied to the sliding portion at the start-up stage, the start-up failure of the compressor is improved. Note that the mechanism for supplying refrigerant and refrigerating machine oil from the bottom of the compressor is the same in both the differential pressure type oil supply mechanism and the mechanical oil supply mechanism.

図3に基本的な冷凍サイクル構成図を示す。冷媒圧縮機15、凝縮器16、膨張機構17、蒸発器18よりなる冷凍サイクルを備えた冷凍装置について説明する。冷媒圧縮機15は、低温低圧の冷媒ガスを圧縮し、高温高圧の冷媒ガスを吐出し凝縮器16に送る。凝縮器16に送られた冷媒ガスは、その熱を空気中に放出しながら高温高圧の冷媒液となり、膨張機構17に送られる。膨張機構を通過する高温高圧の冷媒液は絞り効果により低温低圧の湿り蒸気となり蒸発器18へ送られる。蒸発器18に入った冷媒は周囲から熱を吸収して蒸発し、蒸発器18を出た低温低圧の冷媒ガスは圧縮機15に吸い込まれ、以下同じサイクルが繰り返される。この冷凍サイクルにおいて、ルームエアコンなどでは中温度の蒸発器温度(−10℃以下)を必要としている。ここで冷媒と相溶性の劣る冷凍機油を使用した場合、熱交換器や膨張機構で冷媒と分離した冷凍機油が蓄積し、圧縮機への油戻り性が落ちる。圧縮機から持ち出される冷凍機油が増加することにより摺動部に供給される油量が不足する現象が起きる。   FIG. 3 shows a basic refrigeration cycle configuration diagram. A refrigeration apparatus including a refrigeration cycle including the refrigerant compressor 15, the condenser 16, the expansion mechanism 17, and the evaporator 18 will be described. The refrigerant compressor 15 compresses the low-temperature and low-pressure refrigerant gas, discharges the high-temperature and high-pressure refrigerant gas, and sends it to the condenser 16. The refrigerant gas sent to the condenser 16 becomes a high-temperature and high-pressure refrigerant liquid while releasing its heat into the air, and is sent to the expansion mechanism 17. The high-temperature and high-pressure refrigerant liquid that passes through the expansion mechanism becomes low-temperature and low-pressure wet steam by the throttling effect and is sent to the evaporator 18. The refrigerant that has entered the evaporator 18 absorbs heat from the surroundings and evaporates, and the low-temperature and low-pressure refrigerant gas that has exited the evaporator 18 is sucked into the compressor 15, and the same cycle is repeated thereafter. In this refrigeration cycle, a room air conditioner or the like requires an intermediate evaporator temperature (−10 ° C. or lower). Here, when the refrigerating machine oil having incompatibility with the refrigerant is used, the refrigerating machine oil separated from the refrigerant by the heat exchanger or the expansion mechanism is accumulated, and the oil return property to the compressor is lowered. A phenomenon occurs in which the amount of oil supplied to the sliding portion is insufficient due to an increase in refrigerating machine oil taken out of the compressor.

図4はR410Aとエステル油の相溶性試験の結果である。この二層分離温度曲線の下側が分離状態であり、最も高いところが臨界溶解温度である。この臨界溶解温度が低いほど相溶性に優れる冷凍機油と言える。   FIG. 4 shows the results of a compatibility test between R410A and ester oil. The lower side of the two-layer separation temperature curve is the separated state, and the highest point is the critical dissolution temperature. It can be said that the lower the critical solution temperature, the better the refrigerating machine oil.

ここでR410Aとエステル油の相溶性を比べた場合、従来のエステル油Aの臨界溶解温度は+9℃であるが、本発明における油Bは臨界溶解温度が−23℃と大幅に改善されている。これは原料脂肪酸の成分が異なるためである。油Aは、炭素数8のイソ有機酸(i-C8)と炭素数9のイソ有機酸(i-C9)の比率が50:50である原料脂肪酸とペンタエリスリトールからなるエステル油であった。本発明の油Bは、炭素数5のノルマル脂肪酸(n-C5)と炭素数9のイソ脂肪酸(i-C9)の比率が30:70である原料脂肪酸とペンタエリスリトールからなるエステル油であり、種々の実験から見出したのである。また、この特性は酸化防止剤や酸捕捉剤、極圧添加剤、消泡剤、腐食防止剤等の添加剤を添加しても適量であれば冷媒溶解特性はかわらない。   Here, when the compatibility of R410A and ester oil is compared, the critical dissolution temperature of conventional ester oil A is + 9 ° C., but the critical dissolution temperature of oil B in the present invention is greatly improved to −23 ° C. . This is because the components of the raw fatty acid are different. Oil A was an ester oil composed of a raw fatty acid and pentaerythritol in which the ratio of the C8 isoorganic acid (i-C8) to the C9 isoorganic acid (i-C9) was 50:50. Oil B of the present invention is an ester oil composed of raw fatty acid and pentaerythritol in which the ratio of normal fatty acid (n-C5) having 5 carbon atoms and iso fatty acid (i-C9) having 9 carbon atoms is 30:70, It was found from various experiments. In addition, even if an additive such as an antioxidant, an acid scavenger, an extreme pressure additive, an antifoaming agent, or a corrosion inhibitor is added, this characteristic does not change the refrigerant dissolution characteristic.

図5は各冷媒と冷凍機油の臨界溶解温度である。油Aと油Bを比較したところ、R32を除き、いずれの冷媒においても油Bの方が臨界溶解温度が低くなっていることが判る。   FIG. 5 shows the critical melting temperature of each refrigerant and refrigerating machine oil. Comparison of oil A and oil B reveals that oil B has a lower critical dissolution temperature in any refrigerant except R32.

図6は油Bの冷媒溶解度ダイヤグラムである。また、図7は油Aの冷媒溶解度ダイヤグラムである。本油Bは従来の油Aに比べて冷媒相溶性が優れているため、例えばR32,R125,R134aの三成分のダイヤグラムを作成した場合、冷媒溶解部分が広くなっている。このダイヤグラムによるとR410A、R407Cとも−20℃以下の冷媒溶解を示し2層分離が解消されていることがわかる。また、三成分の混合比率が異なる例えばR407A(R32/125/134a=20/40/40wt%)、 R407B(R32/125/134a=10/70/20wt%)、R407D(R32/125/134a=15/15/70wt%)、R407E(R32/125/134a=25/15/60wt%)、R410B(R32/125=45/55wt%)等の冷媒についても−20℃以下の冷媒溶解範囲に入っていることが判る。また、本発明で使用されるエステル油に対する冷媒の溶解度は、冷媒ごとにそれぞれ異なることから、サイクル内では封入冷媒組成とは異なる部分も存在すると推測される。しかしその場合でも十分に溶解範囲に入っているといえる。   FIG. 6 is a refrigerant solubility diagram of Oil B. FIG. 7 is a refrigerant solubility diagram of oil A. Since the main oil B has better refrigerant compatibility than the conventional oil A, for example, when a three-component diagram of R32, R125, and R134a is prepared, the refrigerant-dissolving portion is widened. According to this diagram, it can be seen that both R410A and R407C showed refrigerant dissolution at −20 ° C. or less, and the two-layer separation was eliminated. Also, the mixing ratio of the three components is different, for example R407A (R32 / 125 / 134a = 20/40 / 40wt%), R407B (R32 / 125 / 134a = 10/70 / 20wt%), R407D (R32 / 125 / 134a = 15/15 / 70wt%), R407E (R32 / 125 / 134a = 25/15 / 60wt%), R410B (R32 / 125 = 45 / 55wt%), etc. You can see that Moreover, since the solubility of the refrigerant | coolant with respect to the ester oil used by this invention differs for every refrigerant | coolant, it is estimated that the part different from an enclosed refrigerant composition also exists in a cycle. However, even in that case, it can be said that it is sufficiently within the dissolution range.

図8は油B/油Aの混合比率とR410Aとの臨界溶解温度である。R410Aとの相溶性に劣る油Aと相溶性に優れる油Bを混合させた場合、その混入比率により臨界溶解温度も変化することがわかる。油Aと油Bをブレンドした場合、油Bが25%を超える比率ならば臨界溶解温度は0℃以下であり、他の冷凍機油についても最適混合比率を見出すことにより臨界溶解温度0℃以下を満足することができる。   FIG. 8 shows the mixing ratio of oil B / oil A and the critical melting temperature of R410A. It can be seen that when oil A having poor compatibility with R410A and oil B having excellent compatibility are mixed, the critical solution temperature also varies depending on the mixing ratio. When oil A and oil B are blended, the critical dissolution temperature is 0 ° C or lower if the ratio of oil B exceeds 25%, and the critical dissolution temperature of 0 ° C or lower is also found for other refrigerating machine oils. Can be satisfied.

さらに−20℃以下を寒冷地向けに対する冷媒とする場合は油Bの混合率を90%よりも多い割合に保つことにより達成できる。   Furthermore, in the case where a refrigerant of −20 ° C. or lower is used for a cold district, this can be achieved by keeping the mixing ratio of the oil B at a ratio higher than 90%.

上述の説明のとおり、以上説明した本発明にて使用される冷凍機油を備えた本発明の冷凍装置及び圧縮機では、R410AやR407Cに代表されるHFC冷媒の組成が、図6のP134a(R134a=100%)、A0(R32/R134a=65/35)、B0(R32/R125=23/77)、P125(R125=100%)に囲まれた範囲と本発明のエステル油の組合せにおいて臨界溶解温度が0℃以下であるエステル油を用いることにより、寒冷地での低温寝込み現象による摺動部への液冷媒供給を回避することができる。そのため、摺動部の潤滑不良の発生を低減し、信頼性の高い冷媒圧縮機及び冷凍装置をそれぞれ提供することができる。   As described above, in the refrigerating apparatus and compressor of the present invention equipped with the refrigerating machine oil used in the present invention described above, the composition of the HFC refrigerant represented by R410A and R407C is P134a (R134a in FIG. = 100%), A0 (R32 / R134a = 65/35), B0 (R32 / R125 = 23/77), P125 (R125 = 100%), and the combination of the ester oil of the present invention and critical dissolution By using ester oil having a temperature of 0 ° C. or lower, it is possible to avoid supply of liquid refrigerant to the sliding portion due to a low-temperature stagnation phenomenon in a cold region. Therefore, the occurrence of poor lubrication of the sliding portion can be reduced, and a highly reliable refrigerant compressor and refrigeration apparatus can be provided.

またさらに、外気冷媒が−20℃以下になる極寒冷地においては図6に示したP134a(R134a=100%)、A-20(R32/R134a=35/65)、B-20(R32/R125=52/48)、P125(R125=100%)の範囲の混合冷媒において相溶性改善による圧縮機及びヒートポンプ冷凍サイクルの信頼性改善の効果がある。   Furthermore, in extremely cold regions where the outside air refrigerant is -20 ° C. or lower, P134a (R134a = 100%), A-20 (R32 / R134a = 35/65), B-20 (R32 / R125) shown in FIG. = 52/48), the mixed refrigerant in the range of P125 (R125 = 100%) has the effect of improving the reliability of the compressor and heat pump refrigeration cycle by improving the compatibility.

本発明の一実施例である縦形スクロール圧縮機の断面図である。It is sectional drawing of the vertical scroll compressor which is one Example of this invention. 圧縮機の給油機構断面図である。It is sectional drawing of the oil supply mechanism of a compressor. 本発明の一実施例である冷凍サイクル構成図である。It is a refrigerating cycle block diagram which is one Example of this invention. R410Aとエステル油の相溶性試験結果の説明図である。It is explanatory drawing of the compatibility test result of R410A and ester oil. 各冷媒に対する臨界溶解温度を示す表である。It is a table | surface which shows the critical solution temperature with respect to each refrigerant | coolant. 油Bの冷媒溶解度ダイヤグラムである。2 is a refrigerant solubility diagram of Oil B. 従来油の冷媒溶解度ダイヤグラムである。It is a refrigerant solubility diagram of conventional oil. 油B/油Aの比率とR410Aの臨界溶解温度との関係を示す図である。It is a figure which shows the relationship between the ratio of oil B / oil A, and the critical solution temperature of R410A.

符号の説明Explanation of symbols

1 ケース
2 圧縮機構部
3 電動機
4 旋回スクロール
5 固定スクロール
6 フレーム
7 クランク軸
8 オルダムリング
9 吸入パイプ
10 固定子
11 回転子
12 偏心部
13 軸穴
14 冷凍機油
15 冷媒圧縮機
16 凝縮器
17 膨張機構
18 蒸発器。
DESCRIPTION OF SYMBOLS 1 Case 2 Compression mechanism part 3 Electric motor 4 Orbiting scroll 5 Fixed scroll 6 Frame 7 Crankshaft 8 Oldham ring 9 Suction pipe 10 Stator 11 Rotor 12 Eccentric part 13 Shaft hole 14 Refrigerator oil 15 Refrigerant compressor 16 Condenser 17 Expansion mechanism 18 Evaporator.

Claims (7)

冷凍サイクルに用いる冷媒圧縮機であって、冷凍機油を貯溜する密閉容器内に回転子と固定子とを有するモータと、前記回転子に嵌着された回転軸と、この回転軸を介して前記モータに連結された圧縮機構部とを収納してなる冷媒圧縮機において、少なくともR32,R125,R134aの単独若しくは2種類以上の混合冷媒と、その冷媒との臨界溶解温度が0℃以下であり、P134a(R134a=100%),A0(R32/R134a=65/35),B0(R32/R125=23/77),P125(R125=100%)で規定される冷媒組成の範囲で冷凍機油としてこれら冷媒との粘度が40℃ 56〜72mm2/sのペンタエリスリトールと脂肪酸より合成されたエステル油を用いた冷媒圧縮機。 A refrigerant compressor for use in a refrigeration cycle, a motor having a rotor and a stator in a sealed container for storing refrigerator oil, a rotating shaft fitted to the rotor, and the rotating shaft through the rotating shaft In a refrigerant compressor containing a compression mechanism connected to a motor, the critical melting temperature of at least R32, R125, R134a alone or a mixed refrigerant of two or more and the refrigerant is 0 ° C. or less, These are used as refrigeration oils within the refrigerant composition range specified by P134a (R134a = 100%), A0 (R32 / R134a = 65/35), B0 (R32 / R125 = 23/77), P125 (R125 = 100%) A refrigerant compressor using ester oil synthesized from pentaerythritol and fatty acid whose viscosity with refrigerant is 40 ° C 56 to 72 mm 2 / s. 冷媒組成がP134a,A-20(R32/R134a=35/65),B-20(R32/R125=52/48)P125で囲まれた冷媒組成の範囲で冷媒との臨界溶解温度−20℃以下である請求項1記載の冷媒圧縮機。 Refrigerant composition is P 134a , A- 20 (R32 / R134a = 35/65), B-20 (R32 / R125 = 52/48) P 125 The refrigerant compressor according to claim 1, wherein the refrigerant compressor has a temperature of not higher than ° C. 少なくとも、圧縮機、凝縮器、膨張機構及び蒸発器とこれらを接続する冷媒配管により構成された冷凍装置において、請求項1の冷媒圧縮機を具備して成る冷凍装置。   A refrigerating apparatus comprising the refrigerant compressor according to claim 1, wherein the refrigerating apparatus includes at least a compressor, a condenser, an expansion mechanism, an evaporator, and a refrigerant pipe connecting them. 炭素数5のノルマル脂肪酸(n-C5)30%と炭素数9のイソ脂肪酸(i-C9)70%の質量比率がおおよそ25〜35:75〜65である原料脂肪酸とペンタエリスリトールからなる40℃で56〜72mm2/sの粘度を有するエステル油(VG68)を基油とした冷凍機油を用いる冷凍装置。 40 ° C composed of raw fatty acid and pentaerythritol whose mass ratio of 30% normal fatty acid (n-C5) having 5 carbon atoms and 70% iso fatty acid (i-C9) having 9 carbon atoms is approximately 25 to 35:75 to 65 A refrigerating apparatus using a refrigerating machine oil based on an ester oil (VG68) having a viscosity of 56 to 72 mm 2 / s. 請求項3で記載したエステル油に対して他のエステル油を5〜95%混合し、R410Aに対する臨界溶解温度が0℃以下としたことを特徴とする冷凍装置。   A refrigerating apparatus, wherein the ester oil described in claim 3 is mixed with 5 to 95% of another ester oil, and the critical solution temperature for R410A is 0 ° C or lower. 前記冷凍機油に酸化防止剤,酸捕捉剤,極圧添加剤、消泡剤、腐食防止剤等の添加剤を少なくとも1種類以上添加したエステル油を用いる請求項3、4、又は5記載の冷凍装置。   The refrigeration according to claim 3, 4, or 5, wherein the refrigerating machine oil is ester oil obtained by adding at least one additive such as an antioxidant, an acid scavenger, an extreme pressure additive, an antifoaming agent, and a corrosion inhibitor. apparatus. 請求項5の酸捕捉剤がカルボジイミド類、エポキシ類の1種類以上を0.05〜3.0質量%を加えたことを特徴とする請求項5記載の冷凍装置。
6. The refrigeration apparatus according to claim 5, wherein 0.05 to 3.0% by mass of one or more kinds of carbodiimides and epoxies is added as the acid scavenger of claim 5.
JP2004058349A 2004-03-03 2004-03-03 Refrigerating device and refrigerant compressor Withdrawn JP2005248773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004058349A JP2005248773A (en) 2004-03-03 2004-03-03 Refrigerating device and refrigerant compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004058349A JP2005248773A (en) 2004-03-03 2004-03-03 Refrigerating device and refrigerant compressor

Publications (1)

Publication Number Publication Date
JP2005248773A true JP2005248773A (en) 2005-09-15

Family

ID=35029499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004058349A Withdrawn JP2005248773A (en) 2004-03-03 2004-03-03 Refrigerating device and refrigerant compressor

Country Status (1)

Country Link
JP (1) JP2005248773A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010139171A (en) * 2008-12-12 2010-06-24 Hitachi Appliances Inc Refrigerant compressor and refrigerating cycle device
CN103388921A (en) * 2012-05-10 2013-11-13 广东美芝制冷设备有限公司 Refrigerating or heat pump water heater system with compressor
JP2014112026A (en) * 2012-10-31 2014-06-19 Daikin Ind Ltd Refrigeration device
WO2014136207A1 (en) * 2013-03-05 2014-09-12 三菱電機株式会社 Compressor
CN104567139A (en) * 2013-10-23 2015-04-29 日立空调·家用电器株式会社 Cooling circulation device and air conditioning device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010139171A (en) * 2008-12-12 2010-06-24 Hitachi Appliances Inc Refrigerant compressor and refrigerating cycle device
CN103388921A (en) * 2012-05-10 2013-11-13 广东美芝制冷设备有限公司 Refrigerating or heat pump water heater system with compressor
JP2014112026A (en) * 2012-10-31 2014-06-19 Daikin Ind Ltd Refrigeration device
JP2014224271A (en) * 2012-10-31 2014-12-04 ダイキン工業株式会社 Refrigeration device
WO2014136207A1 (en) * 2013-03-05 2014-09-12 三菱電機株式会社 Compressor
CN105051465A (en) * 2013-03-05 2015-11-11 三菱电机株式会社 Compressor
JP5911637B2 (en) * 2013-03-05 2016-04-27 三菱電機株式会社 Compressor
CN104567139A (en) * 2013-10-23 2015-04-29 日立空调·家用电器株式会社 Cooling circulation device and air conditioning device
CN107036318A (en) * 2013-10-23 2017-08-11 江森自控日立空调技术(香港)有限公司 Refrigerating circulatory device

Similar Documents

Publication Publication Date Title
CN109072895B (en) Electric compressor and refrigerating and air-conditioning device
CN112410109B (en) Refrigerator oil, working fluid composition, and refrigeration cycle device
JP6450896B1 (en) Refrigerant composition and refrigeration cycle apparatus using the same
KR101196536B1 (en) Refrigerant compressor and refrigeration cycle
JP2010031728A (en) Refrigerant compressor
JP6012878B2 (en) Compressor and refrigeration cycle equipment
JP2015014395A (en) Air conditioner
JP2005248773A (en) Refrigerating device and refrigerant compressor
JP2003336916A (en) Refrigerating cycle and heat pump water heater
JP2000129275A (en) Working fluid composition for refrigerating/air- conditioning machine and refrigerating/air-conditioning apparatus using same
JP3654702B2 (en) Refrigeration cycle equipment
JP6522345B2 (en) Refrigerating apparatus and sealed electric compressor
JP2014228154A (en) Air conditioner
JPH09221693A (en) Refrigerating machine oil for hfc refrigerant
JPH11158478A (en) Refrigerator oil composition and refrigerating apparatus using the same
JP2002194369A (en) Working medium composition for air conditioning and air conditioner using the same composition
JP6651664B1 (en) Method for producing lubricating composition, lubricating composition produced thereby, and compressor and refrigeration system using the same
JP2002194375A (en) Working medium composition for freezing/air conditioning use and freezing/air conditioning unit using the same
JP2016023902A (en) Air conditioner
JP2000044938A (en) Working medium composition for air conditioner, and air conditioner using the same
JP2015140994A (en) Air conditioner, and refrigerator oil
JPH11256177A (en) Refrigerant-circulating system
JP2015017730A (en) Air conditioner
JP2020045866A (en) Refrigeration air conditioning device and hermetic type electric compressor used for the same
JPH08152209A (en) Refrigerating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060324

RD04 Notification of resignation of power of attorney

Effective date: 20060509

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061005

A131 Notification of reasons for refusal

Effective date: 20081111

Free format text: JAPANESE INTERMEDIATE CODE: A131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081112

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081218