JP2010139171A - Refrigerant compressor and refrigerating cycle device - Google Patents

Refrigerant compressor and refrigerating cycle device Download PDF

Info

Publication number
JP2010139171A
JP2010139171A JP2008316345A JP2008316345A JP2010139171A JP 2010139171 A JP2010139171 A JP 2010139171A JP 2008316345 A JP2008316345 A JP 2008316345A JP 2008316345 A JP2008316345 A JP 2008316345A JP 2010139171 A JP2010139171 A JP 2010139171A
Authority
JP
Japan
Prior art keywords
refrigerant
oil
compressor
acid
refrigerating machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008316345A
Other languages
Japanese (ja)
Inventor
Norimi Sugano
典伺 菅野
Akira Ota
亮 太田
Masae Kawashima
正栄 川島
Kazumi Tamura
和巳 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2008316345A priority Critical patent/JP2010139171A/en
Priority to KR1020090011664A priority patent/KR20100068143A/en
Priority to CN200910008360A priority patent/CN101749891A/en
Publication of JP2010139171A publication Critical patent/JP2010139171A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2223/00Cellulosic materials, e.g. wood
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S415/00Rotary kinetic fluid motors or pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps
    • Y10S417/902Hermetically sealed motor pump unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Lubricants (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress increase in an acid value of refrigerating machine oil in a refrigerant compressor and a refrigerating cycle device using the refrigerating compressor compared to a conventional refrigerant compressor, so as to improve durability. <P>SOLUTION: A refrigerant filled in the refrigerant compressor is R410A, R407C or R404A, and polyol ester oil is used for base oil. As an acid scavenger, refrigerating machine oil including an alkyl glycidyl ester compound is used. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、HFC系冷媒を用いた家庭用ヒートポンプ式冷凍サイクルにおいて、エステル系冷凍機油など、加水分解性を持つ潤滑油を用いた場合における信頼性確保を行うものである。   The present invention secures reliability in the case of using a hydrolyzable lubricating oil such as an ester-based refrigeration oil in a household heat pump refrigeration cycle using an HFC-based refrigerant.

従来、家庭用ルームエアコンの冷媒はHCFC系のR22を用いていた。しかし、地球環境保護の点から、分子中に塩素を含まないHFC系のものに移行しつつある。その代替品としてはR32,125,134aの単独若しくはこれらの2種類以上を混合したR410A,R407Cが挙げられる。しかしながらHFC系冷媒はHCFC系の冷媒と分子の分極状態が異なるため、従来の鉱油との相溶性が劣り、サイクル内での油戻り性が低下する。そこで、必要な溶解度をもつ冷凍機油として、エステル油などの合成油を用い冷凍サイクルの基本構成を変更することなく、油戻りを確保する方法がとられる。   Conventionally, HCFC-based R22 has been used as a refrigerant for home room air conditioners. However, from the viewpoint of protecting the global environment, it is shifting to HFC-based ones that do not contain chlorine in the molecule. As an alternative, R410A and R407C in which R32, 125 and 134a are used alone or in combination of two or more of these may be mentioned. However, since the HFC-type refrigerant has a molecular polarization state different from that of the HCFC-type refrigerant, the compatibility with the conventional mineral oil is inferior, and the oil return property in the cycle is lowered. Therefore, a method of ensuring oil return without changing the basic configuration of the refrigeration cycle using synthetic oil such as ester oil as the refrigerating machine oil having the required solubility is employed.

しかし、この冷凍機油は加水分解性が大きく、サイクル中に水分があると加水分解反応を起こし、原料脂肪酸とアルコールに分解する。この原料脂肪酸は冷凍機油の全酸価値を上昇させ、この結果摺動部の腐食摩耗の原因となる。また、原料脂肪酸が金属と反応して脂肪酸金属塩を形成した場合、サイクル内に付着してサイクル詰まりの要因となる。   However, this refrigerating machine oil is highly hydrolyzable, and if there is moisture in the cycle, it causes a hydrolysis reaction and decomposes into raw fatty acids and alcohol. This raw fatty acid increases the total acid value of the refrigerating machine oil, and as a result, causes corrosion wear of the sliding portion. Further, when the raw fatty acid reacts with a metal to form a fatty acid metal salt, it adheres to the cycle and becomes a cause of cycle clogging.

この対応としては冷凍機油中に酸捕捉剤としてシクログリシジルエーテル化合物と添加する方法が特許文献1に開示されている。また、カルボジイミド化合物を添加する方法が特許文献2に開示されている。また、ハイドロカーボン(HC)冷媒用冷凍機油の油中水分または酸を捕捉する添加剤としてエポキシ系化合物であるグリシジルエステルやグリシジルエーテル等を用いる方法が特許文献3に示されている。   As a countermeasure, Patent Document 1 discloses a method of adding a cycloglycidyl ether compound as an acid scavenger to refrigerating machine oil. Further, Patent Document 2 discloses a method of adding a carbodiimide compound. Further, Patent Document 3 discloses a method using glycidyl ester, glycidyl ether or the like, which is an epoxy compound, as an additive for trapping moisture or acid in oil of refrigeration oil for hydrocarbon (HC) refrigerant.

特開平8−231972号公報JP-A-8-231972 特開平8−120288号公報JP-A-8-120288 特開2005−283106号公報JP-A-2005-283106

上記特許文献1は安定性が高い反面、加水分解反応等による原料脂肪酸の生成速度に比べて、酸との反応性が遅いので即座に脂肪酸を捕捉することができない。   Although the above Patent Document 1 is highly stable, the reactivity with the acid is slow compared to the production rate of the raw fatty acid by hydrolysis reaction or the like, so that the fatty acid cannot be captured immediately.

上記特許文献2は酸及び水分との反応性が高い反面すぐに消耗してしまうため、初期水分の捕捉に対しては効果が大きいが、冷凍機油の熱分解等による多量の酸生成には対応できない。   Although the above Patent Document 2 is highly reactive with acid and moisture, it is consumed quickly, so it is very effective for capturing initial moisture, but it can handle large amounts of acid produced by thermal decomposition of refrigerating machine oil. Can not.

上記特許文献3は酸捕捉剤としてエポキシ化合物等の使用を示しているが、具体的な物質を指定していない。また、冷媒としてハイドロカーボンを指定している。   Although the said patent document 3 shows use of an epoxy compound etc. as an acid scavenger, the specific substance is not designated. Moreover, hydrocarbon is designated as the refrigerant.

冷凍機油としてエステル油を使用する場合は、加水分解反応等により生成した酸が摺動部の腐食摩耗の原因となること、金属と反応して生成する金属石鹸が電動弁等の動作不良を引き起こす可能性がある。   When ester oil is used as refrigerating machine oil, acid generated by hydrolysis reaction causes corrosion and wear of sliding parts, and metal soap generated by reaction with metal causes malfunction of motor-operated valves. there is a possibility.

そこで本発明は、従来の冷媒圧縮機と比較して、冷媒圧縮機およびこれを使用した冷凍サイクル装置における冷凍機油の酸価上昇を抑え、耐久性を向上させることを目的とする。   Therefore, an object of the present invention is to suppress an increase in acid value of refrigeration machine oil and improve durability in a refrigerant compressor and a refrigeration cycle apparatus using the refrigerant compressor as compared with a conventional refrigerant compressor.

前記本発明の目的は、
冷凍機油を貯溜する密閉容器内に回転子と固定子とを有するモータと、
前記回転子に嵌着された回転軸と、
この回転軸を介して前記モータに連結された圧縮部とを収納する冷媒圧縮機において、
この冷媒圧縮機に封入される冷媒がR410A,R407CまたはR404Aであり、
ポリオールエステル油を基油とし、酸捕捉剤としてアルキルグリシジルエステル化合物を含有する冷凍機油
を用いることによって達成される。
The object of the present invention is to
A motor having a rotor and a stator in an airtight container for storing refrigerating machine oil;
A rotating shaft fitted to the rotor;
In the refrigerant compressor that houses the compression unit connected to the motor via the rotating shaft,
The refrigerant sealed in the refrigerant compressor is R410A, R407C or R404A,
This is achieved by using a refrigerating machine oil based on a polyol ester oil and containing an alkyl glycidyl ester compound as an acid scavenger.

また、前記アルキルグリシジルエステル化合物が下記式(1)で表される構造を有する。   The alkyl glycidyl ester compound has a structure represented by the following formula (1).

Figure 2010139171
(但し、前記式中、Rは、独立して炭素数4〜12のアルキル基を表す)
Figure 2010139171
(However, in said formula, R represents a C4-C12 alkyl group independently.)

本発明によれば、冷媒圧縮機およびこれを使用した冷凍サイクル装置の耐久性を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, durability of a refrigerant compressor and the refrigerating cycle apparatus using the same can be improved.

次に、本発明の実施形態について適宜図面を参照しながら詳細に説明する。本実施形態での冷媒圧縮機およびこれを使用した冷凍サイクル装置は、後記するように、ハイドロフルオロカーボンを冷媒とし、所定のポリオールエステルを冷凍機油としたことを主な特徴としている。ここでは本実施形態に係る冷媒圧縮機が使用された冷凍サイクル装置について説明した後に、この冷媒圧縮機について説明する。   Next, embodiments of the present invention will be described in detail with reference to the drawings as appropriate. The refrigerant compressor and the refrigeration cycle apparatus using the same according to the present embodiment are mainly characterized in that hydrofluorocarbon is used as a refrigerant and a predetermined polyol ester is used as refrigeration oil, as will be described later. Here, after describing the refrigeration cycle apparatus in which the refrigerant compressor according to the present embodiment is used, the refrigerant compressor will be described.

ここで参照する図面において、図1は、密閉型冷媒圧縮機の断面図である。密閉型冷媒圧縮機には、ロータリ方式,スクロール方式,レシプロ方式等があるが、スクロール方式の密閉型冷媒圧縮機の例を用いて説明する。この中でもスクロール型圧縮機は摺動部として旋回スクロールと固定スクロールとが面接触となるため瞬時に温度上昇が起こりにくく、残存率の高い高性能の酸捕捉剤が十分に反応する温度まで上昇することは少ない。また、ロータリ型圧縮機の場合はベーンとローラが点接触となるため摺動部の温度上昇が起きやすい。レシプロ型圧縮機の場合はシリンダとピストン部が面接触となるが、冷凍機油の粘度が低いため油膜形成が厳しく摺動部の発熱が起こりやすい。   In the drawings referred to here, FIG. 1 is a cross-sectional view of a hermetic refrigerant compressor. The hermetic refrigerant compressor includes a rotary method, a scroll method, a reciprocating method, and the like, and will be described using an example of a scroll-type hermetic refrigerant compressor. Among them, the scroll compressor has a sliding contact with the fixed scroll as a sliding part, so that the temperature does not easily increase instantaneously, and the temperature rises to a temperature at which a high-performance acid scavenger with a high residual rate reacts sufficiently. There are few things. In the case of a rotary type compressor, the vane and the roller are in point contact, and the temperature of the sliding portion is likely to increase. In the case of a reciprocating compressor, the cylinder and the piston are in surface contact with each other. However, since the viscosity of the refrigerating machine oil is low, oil film formation is severe and the sliding part tends to generate heat.

この冷媒圧縮機は、油溜めを兼ねた密閉ケース1内に圧縮機部2と電動機3とが収納されている。圧縮機部2は旋回スクロール4,固定スクロール5,フレーム6,クランク軸7,オルダムリング8を主要構成要素としている。密閉容器であるケース1には外部サイクルと連通する吸入パイプ9が密封接続されている。モータは回転子10と固定子11からなり、回転子10には鋳鉄製のクランク軸7が嵌着されている。クランク軸7は偏心部12を有し、一端側に中空状に軸穴13が形成されている。   In this refrigerant compressor, a compressor section 2 and an electric motor 3 are housed in a sealed case 1 that also serves as an oil reservoir. The compressor unit 2 includes a turning scroll 4, a fixed scroll 5, a frame 6, a crankshaft 7, and an Oldham ring 8 as main components. A suction pipe 9 communicating with an external cycle is hermetically connected to the case 1 which is a sealed container. The motor includes a rotor 10 and a stator 11, and a cast iron crankshaft 7 is fitted to the rotor 10. The crankshaft 7 has an eccentric portion 12, and a shaft hole 13 is formed in a hollow shape on one end side.

また、フレーム6の外周部は密閉容器1に固定されており、クランク軸7の回転を受ける軸受を具備している。クランク軸7の偏心部12には旋回スクロール4が回転自在に取付けられ、フレーム6に設けられた溝と旋回スクロール4の反ラップ側の台板に設けられた溝にはオルダムリング8が摺動自在に配設され、旋回スクロールは自転することなく公転する。   The outer periphery of the frame 6 is fixed to the hermetic container 1 and includes a bearing that receives the rotation of the crankshaft 7. An orbiting scroll 4 is rotatably attached to the eccentric portion 12 of the crankshaft 7, and an Oldham ring 8 slides in a groove provided on the frame 6 and a groove provided on the base plate on the side opposite to the wrapping scroll 4. The orbiting scroll is revolved without rotating.

また、底部には冷凍機油14が貯溜されており、この冷凍機油は、摺動部へと給油される。冷凍機油14の中には酸捕捉剤14aが添加されている。ちなみに、電動機3内の固定子11にマグネットワイヤを巻き付けるためのスロット(図示省略)があり、その表面には、周知のとおり、絶縁フィルムで被覆されており、本実施形態での絶縁フィルムは、エステル系樹脂で形成されている。   In addition, refrigerating machine oil 14 is stored at the bottom, and this refrigerating machine oil is supplied to the sliding part. In the refrigerating machine oil 14, an acid scavenger 14a is added. Incidentally, there is a slot (not shown) for winding the magnet wire around the stator 11 in the electric motor 3, and the surface thereof is covered with an insulating film as is well known, and the insulating film in this embodiment is It is made of an ester resin.

図2に基本的な冷凍機用の冷凍サイクル構成図を示す。冷媒圧縮機15,凝縮器16,膨張機構17,蒸発器18よりなる冷凍サイクル装置において、冷媒圧縮機15は、低温低圧の冷媒ガスを吸い込んで圧縮し、高温高圧の冷媒ガスを吐出して凝縮器16に送る。凝縮器16に送られた冷媒ガスは、その熱を空気中に放出しながら高温高圧の冷媒液となり、膨張機構17に送られる。膨張機構17を通過する高温高圧の冷媒液は絞り効果により低温低圧の湿り蒸気となり蒸発器18へ送られる。蒸発器18に入った冷媒は周囲から熱を吸収して蒸発し、蒸発器18を出た低温低圧の冷媒ガスは圧縮機15に吸い込まれ、以下同じサイクルが繰り返される。   FIG. 2 shows a basic refrigeration cycle configuration diagram for a refrigerator. In the refrigeration cycle apparatus including the refrigerant compressor 15, the condenser 16, the expansion mechanism 17, and the evaporator 18, the refrigerant compressor 15 sucks and compresses the low-temperature and low-pressure refrigerant gas, and discharges and condenses the high-temperature and high-pressure refrigerant gas. Send to vessel 16. The refrigerant gas sent to the condenser 16 becomes a high-temperature and high-pressure refrigerant liquid while releasing its heat into the air, and is sent to the expansion mechanism 17. The high-temperature and high-pressure refrigerant liquid passing through the expansion mechanism 17 becomes low-temperature and low-pressure wet steam due to the throttling effect and is sent to the evaporator 18. The refrigerant that has entered the evaporator 18 absorbs heat from the surroundings and evaporates, and the low-temperature and low-pressure refrigerant gas that has exited the evaporator 18 is sucked into the compressor 15, and the same cycle is repeated thereafter.

この冷凍サイクル構成において、冷凍機等では低温度の蒸発器温度(−40℃以下)を必要としている。ここで冷媒との相溶性が悪い冷凍機油を使用すると熱交換器や膨張機構で冷媒と分離した冷凍機油が蓄積し、圧縮機15への油戻り性が落ちる。   In this refrigeration cycle configuration, a refrigerator or the like requires a low evaporator temperature (−40 ° C. or lower). Here, when refrigeration oil having poor compatibility with the refrigerant is used, the refrigeration oil separated from the refrigerant by the heat exchanger or the expansion mechanism is accumulated, and the oil return property to the compressor 15 is lowered.

図3に基本的な空調機用の冷凍サイクル構成図を示す。冷媒圧縮機15,凝縮器16,膨張機構17,蒸発器18,四方弁19よりなる冷凍装置において、冷媒圧縮機15は、低温低圧の冷媒ガスを吸い込んで圧縮し、高温高圧の冷媒ガスを吐出して四方弁19に送る。ここに送られた冷媒は四方弁19での冷媒流路に従って、ここでは凝縮器に送られる。従って、冷媒は図2と同様に反時計回りすることになる。   FIG. 3 shows a basic refrigeration cycle configuration diagram for an air conditioner. In the refrigeration apparatus including the refrigerant compressor 15, the condenser 16, the expansion mechanism 17, the evaporator 18, and the four-way valve 19, the refrigerant compressor 15 sucks and compresses the low-temperature and low-pressure refrigerant gas and discharges the high-temperature and high-pressure refrigerant gas. Then, it is sent to the four-way valve 19. The refrigerant sent here follows the refrigerant flow path in the four-way valve 19 and is sent here to the condenser. Accordingly, the refrigerant rotates counterclockwise as in FIG.

凝縮器16に送られた冷媒ガスは、その熱を空気中に放出しながら高温高圧の冷媒液となり、膨張機構17に送られる。膨張機構17を通過する高温高圧の冷媒液は絞り効果により低温低圧の湿り蒸気となり蒸発器18へ送られる。蒸発器18に入った冷媒は周囲から熱を吸収して蒸発し、蒸発器18を出た低温低圧の冷媒ガスは圧縮機1に吸い込まれ、以下同じサイクルが繰り返される。   The refrigerant gas sent to the condenser 16 becomes a high-temperature and high-pressure refrigerant liquid while releasing its heat into the air, and is sent to the expansion mechanism 17. The high-temperature and high-pressure refrigerant liquid passing through the expansion mechanism 17 becomes low-temperature and low-pressure wet steam due to the throttling effect and is sent to the evaporator 18. The refrigerant that has entered the evaporator 18 absorbs heat from the surroundings and evaporates, and the low-temperature and low-pressure refrigerant gas that has exited the evaporator 18 is sucked into the compressor 1, and the same cycle is repeated thereafter.

四方弁19を切り替えることによって冷媒流路が変わり、つまり、上記とは逆に冷媒は時計回りとなるので、凝縮器16と蒸発器18とは作用が入れ替わる。   By switching the four-way valve 19, the refrigerant flow path is changed, that is, the refrigerant turns clockwise as opposed to the above, so that the operation of the condenser 16 and the evaporator 18 is switched.

この冷凍サイクルにおいて、ルームエアコン等では中温度の蒸発器温度(−10℃以下)を必要としている。ここで冷媒との相溶性が悪い冷凍機油を使用すると熱交換器や膨張機構で冷媒と分離した冷凍機油が蓄積し、圧縮機15への油戻り性が落ちる。   In this refrigeration cycle, a room air conditioner or the like requires an intermediate evaporator temperature (−10 ° C. or lower). Here, when refrigeration oil having poor compatibility with the refrigerant is used, the refrigeration oil separated from the refrigerant by the heat exchanger or the expansion mechanism is accumulated, and the oil return property to the compressor 15 is lowered.

今回用いる冷媒はハイドロフルオロカーボン系であり、分子中に塩素を含んでいないことから、冷媒自身の潤滑性が期待できず、圧縮機の耐摩耗性を低下させる。前記の冷凍機油を用いることで、冷媒/冷凍機油混合液の潤滑性を確保することができる。前記したポリールエステル油としては、多価アルコールと1価の脂肪酸とから合成され、熱安定性に優れるヒンダードタイプが好ましい。   The refrigerant used this time is hydrofluorocarbon-based and does not contain chlorine in the molecule. Therefore, the lubricity of the refrigerant itself cannot be expected, and the wear resistance of the compressor is lowered. By using the refrigerating machine oil, the lubricity of the refrigerant / refrigerating machine oil mixture can be ensured. As the above-mentioned polyol ester oil, a hindered type synthesized from a polyhydric alcohol and a monovalent fatty acid and excellent in thermal stability is preferable.

例えば、多価アルコールとしては、
ペンタエリスリトール、
ジペンタエリスリトール
がある。
For example, as a polyhydric alcohol,
Pentaerythritol,
There is dipentaerythritol.

例えば、1価の脂肪酸としては、
ペンタン酸、
ヘキサン酸、
ヘプタン酸、
オクタン酸、
2−メチルブタン酸、
2−メチルペンタン酸、
2−メチルヘキサン酸、
2−エチルヘキサン酸、
イソオクタン酸、
3,5,5−トリメチルヘキサン酸
等があり、単独で又は2種類以上の混合脂肪酸にして用いる。
For example, as monovalent fatty acid,
Pentanoic acid,
Hexanoic acid,
Heptanoic acid,
Octanoic acid,
2-methylbutanoic acid,
2-methylpentanoic acid,
2-methylhexanoic acid,
2-ethylhexanoic acid,
Isooctanoic acid,
3,5,5-trimethylhexanoic acid and the like are used alone or in combination of two or more kinds.

特に冷凍機油に基油としては分子中にエステル結合を少なくとも2個保有する式(2),(3)又は(4)で示される脂肪酸のエステル油の郡から選ばれる少なくとも1種類が好ましい。   In particular, the base oil in the refrigerating machine oil is preferably at least one selected from the group of fatty acid ester oils represented by the formula (2), (3) or (4) having at least two ester bonds in the molecule.

〔化2〕
(R1−CH2)2−C−(CH2−O−CO−R2)2 ・・・・(2)
(式(2)中、R1は、それぞれ独立して水素原子または炭素数1〜3のアルキル基を表し、R2は、それぞれ独立して炭素数5〜12のアルキル基を表す)
[Chemical 2]
(R 1 —CH 2 ) 2 —C— (CH 2 —O—CO—R 2 ) 2 ... (2)
(Equation (2), R 1 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, R 2 represents an alkyl group having 5 to 12 carbon atoms each independently)

〔化3〕
(R1−CH2)−C−(CH2−O−CO−R2)3 ・・・・(3)
(式(3)中、R1およびR2は、前記と同義である)
[Chemical formula 3]
(R 1 —CH 2 ) —C— (CH 2 —O—CO—R 2 ) 3 ... (3)
(In formula (3), R 1 and R 2 are as defined above.)

〔化4〕
C−(CH2−O−CO−R2)4 ・・・・(4)
(式(4)中、R2は、前記と同義である)
図2,図3の冷凍装置もしくは空調機に用いる冷凍機油の粘度(JIS K 2283で測定)は圧縮機の種類によって異なるが、スクロール式圧縮機では40℃における粘度が40〜100mm2/sの範囲が好ましい。粘度40mm2/s未満の場合は冷媒が溶解した冷凍機油の粘度が低くなってしまい、圧縮機内部での油膜が十分に保持されず潤滑性が保てない。更には圧縮部のシール性も保てない。これに対して粘度100mm2/sを越えると粘性抵抗,摩擦抵抗等の機械損失が増大し、圧縮機効率を低下させる。
[Chemical formula 4]
C— (CH 2 —O—CO—R 2 ) 4 ... (4)
(In formula (4), R 2 is as defined above)
The viscosity of the refrigerating machine oil used in the refrigerating apparatus or the air conditioner shown in FIGS. 2 and 3 (measured according to JIS K 2283) varies depending on the type of the compressor, but in the scroll compressor, the viscosity at 40 ° C. is 40 to 100 mm 2 / s. A range is preferred. When the viscosity is less than 40 mm 2 / s, the viscosity of the refrigerating machine oil in which the refrigerant is dissolved becomes low, and the oil film inside the compressor is not sufficiently maintained, and the lubricity cannot be maintained. Furthermore, the sealing performance of the compression part cannot be maintained. On the other hand, when the viscosity exceeds 100 mm 2 / s, mechanical loss such as viscous resistance and frictional resistance increases, and the compressor efficiency decreases.

アルキルグリシジルエステル化合物を有する酸捕捉剤についてはその添加量が0.1質量%未満では十分な酸捕捉効果が見込めず、逆に1質量%を越えると冷凍機油に完全に溶解せず析出する虞がある。従って、添加量としては0.1〜1.0質量%が好ましい。   With respect to the acid scavenger having an alkyl glycidyl ester compound, if the addition amount is less than 0.1% by mass, a sufficient acid scavenging effect cannot be expected, and conversely if it exceeds 1% by mass, it may precipitate completely without being dissolved in the refrigerating machine oil. There is. Therefore, the addition amount is preferably 0.1 to 1.0% by mass.

また、圧縮機モータに使用する有機絶縁材料については、電気絶縁の耐熱クラスが電気絶JEC−6147(電気学会電気規格調査標準規格)で規定されている。しかし、冷凍空調機器用の有機絶縁材料の場合、冷媒雰囲気中という特殊な環境で使用されるため、温度以外にも圧力による変形・変性を抑制すること、更には冷媒や冷凍機油といった有極性化合物にも接触するため耐溶剤性,耐抽出性,熱的・化学的・機械的安定性,耐冷媒性等も考慮しなくてはいけない。ここでいう耐冷媒性とは、例えばクレージング(皮膜にストレスを与えた後、冷媒に浸漬すると発生する微細な蛇腹状クラック),ブリスタ(皮膜に吸収された冷媒が、温度上昇によって引き起こされる皮膜の気泡)等のことである。空調機用の絶縁材料としては耐熱クラス(B種130℃以上)の絶縁材料を使用する必要がある。   As for the organic insulating material used in the compressor motor, the heat insulation class of electrical insulation is defined by JEC-6147 (The Institute of Electrical Engineers of Japan, electrical standard survey standard). However, in the case of organic insulation materials for refrigeration and air-conditioning equipment, they are used in a special environment such as in a refrigerant atmosphere. Therefore, in addition to temperature, polar compounds such as refrigerant and refrigeration oil can be suppressed. Therefore, solvent resistance, extraction resistance, thermal / chemical / mechanical stability, and refrigerant resistance must be taken into consideration. The term “refrigerant resistance” as used herein refers to, for example, crazing (a fine bellows-like crack that occurs when the film is stressed and then immersed in the refrigerant), blister (the refrigerant absorbed in the film is caused by the temperature rise) Air bubbles). As an insulating material for an air conditioner, it is necessary to use an insulating material of a heat resistance class (B class 130 ° C. or higher).

圧縮機内で最も多く使用される絶縁材料はPET(ポリエチレンテレフタレート)である。用途としては、分布巻モータの鉄心とのコイル絶縁にフィルム材が用いられ、コイルの縛り糸,モータの口出し線の被覆材に繊維状のPETが使用されている。   The insulating material most frequently used in the compressor is PET (polyethylene terephthalate). As a use, a film material is used for coil insulation with an iron core of a distributed winding motor, and fibrous PET is used for a coil binding thread and a covering material for a lead wire of a motor.

これ以外の絶縁フィルムとしては、
PPS(ポリフェニレンサルファイド)、
PEN(ポリエチレンナフタレート)、
PEEK(ポリエーテルーテルケトン)、
PI(ポリイミド)、
PA(ポリアミド)
等が挙げられる。
Other insulating films include
PPS (polyphenylene sulfide),
PEN (polyethylene naphthalate),
PEEK (polyether-terketone),
PI (polyimide),
PA (polyamide)
Etc.

また、コイルの主絶縁被覆材料には、
THEIC変性ポリエステル、
ポリアミド、
ポリアミドイミド、
ポリエステルイミド、
ポリエステルアミドイミド
等が使用され、ポリエステルイミド−アミドイミドのダブルコートを施した二重被覆銅線が好ましく使用される。本発明の実施例では前記した冷凍機油に消泡剤,潤滑性向上剤,酸化防止剤,金属不活性剤等を添加しても特に問題は無い。
In addition, the main insulation coating material of the coil
THEIC modified polyester,
polyamide,
Polyamideimide,
Polyesterimide,
Polyester amide imide or the like is used, and a double coated copper wire having a polyester imide-amide imide double coat is preferably used. In the embodiment of the present invention, there is no particular problem even if an antifoaming agent, a lubricity improver, an antioxidant, a metal deactivator or the like is added to the above-described refrigerator oil.

冷凍機油の酸捕捉剤性能を確認する方法としてシールドチューブ試験にて熱安定性及び加水分解性の評価を実施した。冷媒としてはR410A、冷凍機油としてはポリオールエステル油であり、具体的にはアルコールとしてペンタエリスリトール、脂肪酸としてi−C8酸/i−C9酸(50/50)からなるVG68のヒンダードエステル油を用いた。   As a method for confirming the acid scavenger performance of the refrigerating machine oil, thermal stability and hydrolyzability were evaluated by a shield tube test. The refrigerant is R410A, the refrigerating machine oil is polyol ester oil, and specifically, VG68 hindered ester oil composed of pentaerythritol as alcohol and i-C8 acid / i-C9 acid (50/50) as fatty acid is used. It was.

次に、圧縮機内の有機絶縁材料評価としてシールドチューブ試験を実施した。冷媒としてはR410A、冷凍機油としてはポリオールエステル油であり、具体的にはアルコールとしてペンタエリスリトール、脂肪酸としてi−C8酸/i−C9酸(50/50)からなるVG68のヒンダードエステル油を用いた。絶縁フィルムは耐熱グレード(B種130℃)のPETフィルムを、エナメル銅線にはポリエステルイミド−ポリアミドイミドの二重被覆線を用いた。   Next, a shield tube test was performed as an organic insulating material evaluation in the compressor. The refrigerant is R410A, the refrigerating machine oil is polyol ester oil, and specifically, VG68 hindered ester oil composed of pentaerythritol as alcohol and i-C8 acid / i-C9 acid (50/50) as fatty acid is used. It was. As the insulating film, a heat-resistant grade (B type 130 ° C.) PET film was used, and as the enameled copper wire, a polyesterimide-polyamideimide double-coated wire was used.

絶縁材料の評価項目について説明する。絶縁フィルムについては、試験前後での引張強度保持率並びに伸び保持率を測定した。保持率50%以上を目標とした。また、エナメル銅線に関しては外観変化や鉛筆硬度変化,巻付特性,絶縁破壊電圧(JIS C 3003)を測定し、耐冷媒性ではクレージングとブリスタを観察した。これらの項目については、試験前後で変化が無いことを目標とした。   The evaluation items of the insulating material will be described. For the insulating film, the tensile strength retention and elongation retention before and after the test were measured. The target was a retention rate of 50% or more. In addition, the appearance change, pencil hardness change, winding characteristics, dielectric breakdown voltage (JIS C 3003) were measured for enameled copper wire, and crazing and blistering were observed for refrigerant resistance. For these items, the goal was to have no change before and after the test.

表1及び図4に加水分解性評価として行ったシールドチューブ試験の結果を示す。冷凍機油はポリオールエステル油であり、具体的にはアルコールとしてペンタエリスリトール、脂肪酸としてi−C8酸/i−C9酸(50/50)からなるVG68のヒンダードエステル油を用いた。シールドチューブ試験条件としては、内径10φのガラス管に触媒として長さ50mmの鉄,銅,アルミを入れ、冷凍機油を5g、冷媒としてR410Aを1g注入後密封し150℃で最大14,21,28日加熱後、油の色,酸価,添加剤の残存率、触媒の外観などを測定した。油中の水分は1000ppmとした。酸捕捉剤の種類としては、エポキシ当量を揃えるため本実施例のアルキルグリシジルエステル(0.9mass%)(1式)と比較例1として脂環式エポキシ化合物(0.5mass%)(5式)をそれぞれ添加した。   Table 1 and FIG. 4 show the results of a shield tube test performed as a hydrolyzability evaluation. The refrigerating machine oil is a polyol ester oil. Specifically, hindered ester oil of VG68 composed of pentaerythritol as alcohol and i-C8 acid / i-C9 acid (50/50) as fatty acid was used. The shield tube test conditions were as follows: iron, copper, and aluminum with a length of 50 mm were placed in a glass tube having an inner diameter of 10φ, 5 g of refrigerating machine oil and 1 g of R410A as a refrigerant were sealed and sealed at 150 ° C. for a maximum of 14, 21, 28 After heating on the sun, the color of the oil, acid value, residual rate of additives, appearance of the catalyst, etc. were measured. The water content in the oil was 1000 ppm. As the types of acid scavengers, the alkyl glycidyl ester of this example (0.9 mass%) (1 formula) and the alicyclic epoxy compound (0.5 mass%) (5 formula) as Comparative Example 1 in order to make the epoxy equivalent. Was added respectively.

Figure 2010139171
(但し、前記式中、Rは、独立して炭素数4〜12のアルキル基を表す)
Figure 2010139171
(However, in said formula, R represents a C4-C12 alkyl group independently.)

Figure 2010139171
Figure 2010139171

試験後の冷凍機油の酸価及び添加剤の測定はJIS K2501「石油製品及び潤滑油−中和価試験方法」に従った。色相についてはJIS K2580「石油製品色試験方法」に従った。添加剤の残存率はJIS K2501「石油製品及び潤滑油−中和価試験方法」に準じた方法で行った。   The acid values and additives of the refrigeration oil after the test were measured according to JIS K2501 “Petroleum products and lubricants—neutralization number test method”. The hue was in accordance with JIS K2580 “Petroleum product color test method”. The residual rate of the additive was determined by a method according to JIS K2501 “Petroleum products and lubricants—neutralization number test method”.

評価の結果、水分が1000ppmの場合は、実施例1の場合、28日加熱においても酸価の上昇は認められなかったが、比較例1の場合は28日加熱において0.05mgKOH/gまで酸価の上昇が認められた。   As a result of the evaluation, when the water content was 1000 ppm, no increase in acid value was observed even when heated for 28 days in the case of Example 1, but in the case of Comparative Example 1, the acid was increased to 0.05 mgKOH / g when heated for 28 days. An increase in value was observed.

酸捕捉剤の残存率を測定すると、比較例1では酸捕捉剤が47%も残存しているにもかかわらず酸価が0.05mgKOH/gまで上昇している。このことから、酸捕捉の反応速度が酸の生成速度に追いついていないことが分かる。生成した酸は摺動部の腐食や金属と反応して金属石鹸を生成し、弁に詰まり誤作動を引き起こすといった懸念がある。   When the residual ratio of the acid scavenger was measured, in Comparative Example 1, the acid value increased to 0.05 mgKOH / g despite the fact that 47% of the acid scavenger remained. From this, it can be seen that the reaction rate of acid capture does not catch up with the acid generation rate. There is a concern that the generated acid reacts with corrosion of the sliding part or metal to generate metal soap, which may clog the valve and cause malfunction.

Figure 2010139171
Figure 2010139171

条件を変えて、実施例1と同様に加水分解性評価として行ったシールドチューブ試験を実施した。評価結果を表2及び図5に示す。冷凍機油はポリオールエステル油であり、具体的にはアルコールとしてペンタエリスリトール、脂肪酸としてi−C8酸/i−C9酸(50/50)からなるVG68のヒンダードエステル油を用いた。シールドチューブ試験条件としては、内径10φのガラス管に触媒として長さ50mmの鉄,銅,アルミを入れ、冷凍機油を5g、冷媒としてR410Aを1g注入後密封し150℃で最大20,40日加熱後、油の色,酸価,添加剤の残存率,触媒の外観などを測定した。油中の水分は2000ppmとした。   The shield tube test performed as the hydrolyzability evaluation in the same manner as in Example 1 was performed by changing the conditions. The evaluation results are shown in Table 2 and FIG. The refrigerating machine oil is a polyol ester oil. Specifically, hindered ester oil of VG68 composed of pentaerythritol as alcohol and i-C8 acid / i-C9 acid (50/50) as fatty acid was used. Shield tube test conditions were as follows: iron, copper, aluminum with a length of 50 mm as a catalyst in a glass tube with an inner diameter of 10φ, 5 g of refrigerating machine oil and 1 g of R410A as a refrigerant, sealed, and heated at 150 ° C. for a maximum of 20, 40 days Thereafter, oil color, acid value, additive residual ratio, appearance of the catalyst, and the like were measured. The water content in the oil was 2000 ppm.

評価の結果、水分が2000ppmの場合は、アルキルグリシジルエステルを添加した実施例2の冷凍機油については20日加熱では酸価上昇なし、40日加熱においても0.03mgKOH/gと若干の変化に留まったが、脂環式エポキシ化合物を添加した比較例2のものについては20日加熱時点で0.04mgKOH/gと上昇を始め、40日加熱品においては1.13mgKOH/gと大幅に酸価の上昇が認められた。   As a result of the evaluation, when the water content was 2000 ppm, the refrigerating machine oil of Example 2 to which the alkyl glycidyl ester was added did not increase the acid value when heated for 20 days, and remained slightly changed to 0.03 mg KOH / g even when heated for 40 days. However, Comparative Example 2 to which an alicyclic epoxy compound was added started to increase to 0.04 mg KOH / g at the time of heating on the 20th, and 1.13 mgKOH / g in the product heated at the 40th day. An increase was observed.

しかし、酸捕捉剤の残存率を測定すると比較例2のものにおいては酸捕捉剤の残存率が67%と高く、酸捕捉剤の反応速度が脂肪酸の生成速度に追いつかないということが判明した。   However, when the residual ratio of the acid scavenger was measured, the residual ratio of the acid scavenger was as high as 67% in the comparative example 2, and it was found that the reaction rate of the acid scavenger could not catch up with the fatty acid production rate.

Figure 2010139171
Figure 2010139171

表3に絶縁フィルムの耐油/冷媒性評価として行ったシールドチューブ試験の結果を示す。冷凍機油はVG68のポリオールエステル油を用いた。シールドチューブ試験条件としては、内径10φのガラス管に、供試品として長さ50mm,幅3mmのダンベル形状に加工した絶縁材料を入れ、冷凍機油としてポリオールエステル油であり、具体的にはアルコールとしてペンタエリスリトール、脂肪酸としてi−C8酸/i−C9酸(50/50)からなるVG68のヒンダードエステル油:5g、冷媒としてR410A:0.5gを注入後密封し130℃で最大40日加熱後、油の色,酸価,供試品の外観,強度などを測定した。油中の水分は50ppmとした。酸捕捉剤の種類としては、アルキルグリシジルエステル(0.9mass%)を添加した。   Table 3 shows the results of a shield tube test conducted as an oil resistance / refrigerant evaluation of the insulating film. As the refrigerating machine oil, VG68 polyol ester oil was used. Shield tube test conditions include a glass tube having an inner diameter of 10φ and an insulating material processed into a dumbbell shape having a length of 50 mm and a width of 3 mm as a test sample, polyol ester oil as a refrigerating machine oil, specifically as alcohol After injecting pentaerythritol, 5 g of hindered ester oil of VG68 consisting of i-C8 acid / i-C9 acid (50/50) as fatty acid and 0.5 g of R410A as refrigerant, sealed and heated at 130 ° C. for up to 40 days The oil color, acid value, appearance of the specimen, strength, etc. were measured. The water content in the oil was 50 ppm. Alkyl glycidyl ester (0.9 mass%) was added as the type of acid scavenger.

試験後の冷凍機油の酸価測定はJIS K2501「石油製品及び潤滑油−中和価試験方法」に従った。色相についてはJIS K2580「石油製品色試験方法」に従った。また、絶縁材料の引張強度はJIS C2111「電気絶縁紙試験方法」に準じた方法で行った。   The acid value of the refrigerating machine oil after the test was in accordance with JIS K2501 “Petroleum products and lubricating oils—Neutralization number test method”. The hue was in accordance with JIS K2580 “Petroleum product color test method”. The tensile strength of the insulating material was measured by a method according to JIS C2111 “Electrical insulating paper test method”.

評価の結果、色相,酸価等について冷凍機油の劣化は認められなかった。絶縁フィルム材料についても外観,引張強度,可撓性等異常なしであることを確認した。   As a result of the evaluation, no deterioration of the refrigerating machine oil was recognized in terms of hue, acid value and the like. It was confirmed that there were no abnormalities in the appearance, tensile strength, flexibility, etc. of the insulating film material.

この試験方法は加速試験であり、実際の稼動年数に換算すると10年以上に値する。これは従来品と同等であるので、つまり、従来のものと実施例のものとを置換したとしても影響は無いと考えられる。   This test method is an accelerated test, and it is worth more than 10 years when converted into actual operating years. Since this is equivalent to the conventional product, that is, it is considered that there is no influence even if the conventional one and the embodiment are replaced.

Figure 2010139171
Figure 2010139171

表4にエナメル線の耐油/冷媒性評価として行ったシールドチューブ試験の結果を示す。冷凍機油はポリオールエステル油であり、具体的にはアルコールとしてペンタエリスリトール、脂肪酸としてi−C8酸/i−C9酸(50/50)からなるVG68のヒンダードエステル油を用いた。シールドチューブ試験条件としては、内径10φのガラス管に、供試品として長さ18cmのツイストペア、と10cmのエナメル線を入れ、冷凍機油としてポリオールエステル油5g、冷媒としてR410A:0.5gを注入後密封し150℃で最大40日加熱後、油の色,酸価,供試品の外観,皮膜強度などを測定した。油中の水分は50ppmとした。酸捕捉剤の種類としては、アルキルグリシジルエステル(0.9mass%)を添加した。   Table 4 shows the results of a shield tube test performed as an oil resistance / refrigerant evaluation of enameled wire. The refrigerating machine oil is a polyol ester oil. Specifically, hindered ester oil of VG68 composed of pentaerythritol as alcohol and i-C8 acid / i-C9 acid (50/50) as fatty acid was used. The shield tube test conditions were as follows: a twisted pair with a length of 18 cm and a 10 cm enamel wire were put into a glass tube with an inner diameter of 10φ, and 5 g of polyol ester oil as a refrigerating machine oil and 0.5 g of R410A as a refrigerant were injected. After sealing and heating at 150 ° C. for a maximum of 40 days, the oil color, acid value, appearance of the specimen, film strength, etc. were measured. The water content in the oil was 50 ppm. Alkyl glycidyl ester (0.9 mass%) was added as the type of acid scavenger.

試験後の冷凍機油の酸価測定はJIS K2501「石油製品及び潤滑油−中和価試験方法」に従った。色相についてはJIS K2580「石油製品色試験方法」に従った。また、エナメル線の評価はJIS C3003「エナメル線試験方法」、JIS C3202「エナメル線」に準じた方法で行った。評価の結果、冷凍機油の劣化は認められなかった。また、エナメル銅線については、鉛筆硬度が5H、巻付特性が自己径に巻き付けても皮膜に亀裂等見られず良好であった。絶縁破壊電圧も初期値とほぼ同等、クレージングやブリスタも発生していないことを外観から確認でき、目標を満足できた。   The acid value of the refrigerating machine oil after the test was in accordance with JIS K2501 “Petroleum products and lubricating oils—Neutralization number test method”. The hue was in accordance with JIS K2580 “Petroleum product color test method”. The enameled wire was evaluated by a method according to JIS C3003 “Enameled wire test method” and JIS C3202 “Enameled wire”. As a result of the evaluation, no deterioration of the refrigerating machine oil was observed. Further, the enameled copper wire was good because the pencil hardness was 5H and the winding characteristic was not wound on the film even when wound around its own diameter. The breakdown voltage was almost the same as the initial value, and it was confirmed from the appearance that no crazing or blistering occurred, and the target was satisfied.

この試験方法は加速試験であり、実際の稼動年数に換算すると10年以上に値する。   This test method is an accelerated test, and it is worth more than 10 years when converted into actual operating years.

これは従来品と同等であるので、つまり、従来のものと実施例のものとを置換したとしても影響は無いと考えられる。   Since this is equivalent to the conventional product, that is, it is considered that there is no influence even if the conventional one and the embodiment are replaced.

Figure 2010139171
Figure 2010139171

酸捕捉剤としてアルキルグリシジルエステル化合物を添加したポリオールエステル油を封入したスクロール圧縮機をルームエアコンに搭載し90日の実機評価試験を実施した。冷媒としてR410Aを1600g、冷凍機油はポリオールエステル油であり、具体的にはアルコールとしてペンタエリスリトール、脂肪酸としてi−C8酸/i−C9酸(50/50)からなるVG68のヒンダードエステル油を460ml封入した。酸捕捉剤として本発明のアルキルグリシジルエステルを0.9質量%添加した。冷凍機油試験後の冷凍機油を分析した所、酸価の上昇もなく、添加剤50%以上残存していることを確認した。モータ絶縁材料についても異常は認められなかった。   A 90-day actual machine evaluation test was carried out on a room air conditioner equipped with a scroll compressor containing a polyol ester oil added with an alkyl glycidyl ester compound as an acid scavenger. 1600 g of R410A as a refrigerant, a refrigerating machine oil is a polyol ester oil, specifically, 460 ml of hindered ester oil of VG68 consisting of pentaerythritol as alcohol and i-C8 acid / i-C9 acid (50/50) as fatty acid. Enclosed. As an acid scavenger, 0.9% by mass of the alkyl glycidyl ester of the present invention was added. When the refrigerating machine oil after the refrigerating machine oil test was analyzed, it was confirmed that there was no increase in the acid value and 50% or more of the additive remained. No abnormality was found in the motor insulation material.

本発明はハイドロフルオロカーボン(HFC)冷媒を用いた圧縮機に関するものであり、この圧縮機を搭載した冷凍装置,空調設備にも適用可能である。   The present invention relates to a compressor using a hydrofluorocarbon (HFC) refrigerant, and can also be applied to a refrigeration apparatus and an air conditioner equipped with the compressor.

密閉型冷媒圧縮機を説明する断面図である。It is sectional drawing explaining a hermetic refrigerant compressor. 基本的な冷凍機用の冷凍サイクル構成図である。It is a refrigeration cycle block diagram for basic refrigerators. 基本的な空調機用の冷凍サイクル構成図である。It is a refrigeration cycle block diagram for basic air conditioners. 水分を1000ppm添加した時の加水分解性試験結果である。It is a hydrolyzability test result when 1000 ppm of moisture is added. 水分を2000ppm添加した時の加水分解性試験結果である。It is a hydrolyzability test result when water is added at 2000 ppm.

符号の説明Explanation of symbols

1 ケース
2 圧縮機部
3 電動機
4 旋回スクロール
5 固定スクロール
6 フレーム
7 クランク軸
8 オルダムリング
9 吸入パイプ
10 回転子
11 固定子
12 偏心部
13 軸穴
14 冷凍機油
14a 酸捕捉剤
15 圧縮機
16 凝縮機
17 膨張機構
18 蒸発器
19 四方弁
DESCRIPTION OF SYMBOLS 1 Case 2 Compressor part 3 Electric motor 4 Orbiting scroll 5 Fixed scroll 6 Frame 7 Crankshaft 8 Oldham ring 9 Intake pipe 10 Rotor 11 Stator 12 Eccentric part 13 Shaft hole 14 Refrigerating machine oil 14a Acid scavenger 15 Compressor 16 Condenser 17 Expansion mechanism 18 Evaporator 19 Four-way valve

Claims (5)

冷凍機油を貯溜する密閉容器内に回転子と固定子とを有するモータと、
前記回転子に嵌着された回転軸と、
この回転軸を介して前記モータに連結された圧縮部とを収納する冷媒圧縮機において、
この冷媒圧縮機に封入される冷媒がR410A,R407CまたはR404Aであり、
ポリオールエステル油を基油とし、酸捕捉剤としてアルキルグリシジルエステル化合物を含有する冷凍機油
を用いた冷媒圧縮機。
A motor having a rotor and a stator in an airtight container for storing refrigerating machine oil;
A rotating shaft fitted to the rotor;
In the refrigerant compressor that houses the compression unit connected to the motor via the rotating shaft,
The refrigerant sealed in the refrigerant compressor is R410A, R407C or R404A,
A refrigerant compressor using a refrigerating machine oil containing a polyol ester oil as a base oil and an alkyl glycidyl ester compound as an acid scavenger.
少なくとも、圧縮機,凝縮器,膨張機構及び蒸発器とこれらを接続する冷媒配管により構成された冷凍サイクル装置において、
前記圧縮機を請求項1の冷媒圧縮機としたことを特徴とする冷凍サイクル装置。
At least in a refrigeration cycle apparatus configured with a compressor, a condenser, an expansion mechanism, an evaporator and a refrigerant pipe connecting them,
A refrigeration cycle apparatus, wherein the compressor is the refrigerant compressor according to claim 1.
請求項2において、
前記アルキルグリシジルエステル化合物が下記式(1)で表される構造を有することを特徴とする冷凍サイクル装置。
Figure 2010139171
(但し、前記式中、Rは、独立して炭素数4〜12のアルキル基を表す)
In claim 2,
The alkyl glycidyl ester compound has a structure represented by the following formula (1).
Figure 2010139171
(However, in said formula, R represents a C4-C12 alkyl group independently.)
請求項2において、
前記アルキルグリシジルエステル化合物を0.1〜1.0質量%添加したことを特徴とする冷凍サイクル装置。
In claim 2,
A refrigeration cycle apparatus comprising 0.1 to 1.0% by mass of the alkyl glycidyl ester compound.
請求項1において、
前記冷媒圧縮機に使用する有機材料が物理的及び化学的に劣化を受けない材料であることを特徴とする冷媒圧縮機。
In claim 1,
An organic material used for the refrigerant compressor is a material that is not physically and chemically deteriorated.
JP2008316345A 2008-12-12 2008-12-12 Refrigerant compressor and refrigerating cycle device Pending JP2010139171A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008316345A JP2010139171A (en) 2008-12-12 2008-12-12 Refrigerant compressor and refrigerating cycle device
KR1020090011664A KR20100068143A (en) 2008-12-12 2009-02-13 Refrigerant compressor and freezing cycle device
CN200910008360A CN101749891A (en) 2008-12-12 2009-02-26 Refrigerant compressor and freezing cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008316345A JP2010139171A (en) 2008-12-12 2008-12-12 Refrigerant compressor and refrigerating cycle device

Publications (1)

Publication Number Publication Date
JP2010139171A true JP2010139171A (en) 2010-06-24

Family

ID=42349447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008316345A Pending JP2010139171A (en) 2008-12-12 2008-12-12 Refrigerant compressor and refrigerating cycle device

Country Status (3)

Country Link
JP (1) JP2010139171A (en)
KR (1) KR20100068143A (en)
CN (1) CN101749891A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015014395A (en) * 2013-07-04 2015-01-22 日立アプライアンス株式会社 Air conditioner
WO2017199516A1 (en) * 2016-05-17 2017-11-23 三菱電機株式会社 Refrigeration cycle device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086518A1 (en) * 2010-12-20 2012-06-28 日立アプライアンス株式会社 Compressor for refrigeration and air-conditioning, and refrigerating and air-conditioning apparatus
CN104662476B (en) * 2012-09-28 2019-04-23 富士胶片株式会社 Photosensitive polymer combination, the manufacturing method of pattern, the manufacturing method of cured film, organic EL display device and liquid crystal display device
JP6076876B2 (en) * 2013-10-02 2017-02-08 Jxエネルギー株式会社 Refrigerator oil composition, working fluid composition for refrigerator
CN109852456A (en) * 2017-11-30 2019-06-07 中国海洋石油集团有限公司 A kind of long drain period diesel engine oil composition
JP7198589B2 (en) * 2018-03-13 2023-01-04 Eneos株式会社 Refrigerator, use of refrigerating machine oil, method for suppressing oligomer elution, refrigerating machine oil, working fluid composition for refrigerating machine, and method for producing refrigerating machine oil
CN110514415A (en) * 2018-05-22 2019-11-29 Tcl瑞智(惠州)制冷设备有限公司 A kind of the Motor Components endurance testing device and method of compressor
KR20230168821A (en) 2022-06-08 2023-12-15 임종봉 R410A gas insulated transformer

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08120288A (en) * 1994-10-27 1996-05-14 Hitachi Ltd Refrigerator working medium and refrigerator using same
JPH08231972A (en) * 1996-01-09 1996-09-10 Hitachi Ltd Refrigerating unit
JPH1037881A (en) * 1996-07-22 1998-02-13 Toshiba Corp Rotary compressor
JPH11158478A (en) * 1997-09-09 1999-06-15 Hitachi Ltd Refrigerator oil composition and refrigerating apparatus using the same
JP2005248773A (en) * 2004-03-03 2005-09-15 Hitachi Home & Life Solutions Inc Refrigerating device and refrigerant compressor
JP2005283106A (en) * 2005-03-16 2005-10-13 Sanyo Electric Co Ltd Refrigerating device
JP2006342357A (en) * 2006-08-04 2006-12-21 Japan Energy Corp Lubricant composition for freezer
WO2008120536A1 (en) * 2007-03-29 2008-10-09 Nippon Oil Corporation Refrigerator oil composition and working fluid composition for refrigerating machine
JP2008239818A (en) * 2007-03-27 2008-10-09 Nippon Oil Corp Freezer oil and hydraulic fluid composition for freezer
WO2008130039A1 (en) * 2007-04-18 2008-10-30 Idemitsu Kosan Co., Ltd. Lubricating oil composition for refrigerators and compressors with the composition

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08120288A (en) * 1994-10-27 1996-05-14 Hitachi Ltd Refrigerator working medium and refrigerator using same
JPH08231972A (en) * 1996-01-09 1996-09-10 Hitachi Ltd Refrigerating unit
JPH1037881A (en) * 1996-07-22 1998-02-13 Toshiba Corp Rotary compressor
JPH11158478A (en) * 1997-09-09 1999-06-15 Hitachi Ltd Refrigerator oil composition and refrigerating apparatus using the same
JP2005248773A (en) * 2004-03-03 2005-09-15 Hitachi Home & Life Solutions Inc Refrigerating device and refrigerant compressor
JP2005283106A (en) * 2005-03-16 2005-10-13 Sanyo Electric Co Ltd Refrigerating device
JP2006342357A (en) * 2006-08-04 2006-12-21 Japan Energy Corp Lubricant composition for freezer
JP2008239818A (en) * 2007-03-27 2008-10-09 Nippon Oil Corp Freezer oil and hydraulic fluid composition for freezer
WO2008120536A1 (en) * 2007-03-29 2008-10-09 Nippon Oil Corporation Refrigerator oil composition and working fluid composition for refrigerating machine
WO2008130039A1 (en) * 2007-04-18 2008-10-30 Idemitsu Kosan Co., Ltd. Lubricating oil composition for refrigerators and compressors with the composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015014395A (en) * 2013-07-04 2015-01-22 日立アプライアンス株式会社 Air conditioner
WO2017199516A1 (en) * 2016-05-17 2017-11-23 三菱電機株式会社 Refrigeration cycle device
JP6271102B1 (en) * 2016-05-17 2018-01-31 三菱電機株式会社 Refrigeration cycle equipment

Also Published As

Publication number Publication date
CN101749891A (en) 2010-06-23
KR20100068143A (en) 2010-06-22

Similar Documents

Publication Publication Date Title
JP2010139171A (en) Refrigerant compressor and refrigerating cycle device
US5553465A (en) Refrigeration apparatus containing lubricant composition
JP5260168B2 (en) Refrigerant compressor
KR101196536B1 (en) Refrigerant compressor and refrigeration cycle
JP2009225636A (en) Refrigerating apparatus
JP2011094039A (en) Refrigerant compressor, refrigeration cycle apparatus
JP2002129179A (en) Refrigerator
JP6012878B2 (en) Compressor and refrigeration cycle equipment
CN109073278B (en) Refrigeration cycle device
JP2012057812A (en) Refrigerant compressor and freezing cycle
JP2015014395A (en) Air conditioner
JP2010031134A (en) Refrigerant compressor
JP3831416B2 (en) Refrigeration equipment
JP2008121484A (en) Refrigerant compressor
JP3960859B2 (en) Refrigeration equipment
JP2001311088A (en) Freezer
JP2010168436A (en) Refrigerant compressor and refrigerator equipped with the same
JP2016023902A (en) Air conditioner
JP2001098290A (en) Coolant compressor
JP3208335B2 (en) Hermetic compressor and refrigeration apparatus using the same
JP2001271081A (en) Compressor and freezer with the compressor
CN117365902A (en) Compressor and refrigerating device
JP2015017730A (en) Air conditioner
KR940007760B1 (en) Compressor
JPH06240285A (en) Refrigerating equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120807