JP2015014395A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2015014395A
JP2015014395A JP2013140275A JP2013140275A JP2015014395A JP 2015014395 A JP2015014395 A JP 2015014395A JP 2013140275 A JP2013140275 A JP 2013140275A JP 2013140275 A JP2013140275 A JP 2013140275A JP 2015014395 A JP2015014395 A JP 2015014395A
Authority
JP
Japan
Prior art keywords
acid scavenger
oil
refrigerating machine
glycidyl ester
ester compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
JP2013140275A
Other languages
Japanese (ja)
Inventor
美早 廣瀬
Biso Hirose
美早 廣瀬
井関 崇
Takashi Izeki
崇 井関
荒木 邦成
Kuninari Araki
邦成 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2013140275A priority Critical patent/JP2015014395A/en
Publication of JP2015014395A publication Critical patent/JP2015014395A/en
Revoked legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner suppressing hydrolysis of refrigeration oil.SOLUTION: An air conditioner includes a compressor, an outdoor heat exchanger, an expansion mechanism, an indoor heat exchanger, R32 refrigerant or mixed refrigerant containing R32 of 50 wt.% or more, and refrigeration oil containing polyol ester oil and acid scavenger. The acid scavenger includes an alkyl glycidyl ester compound and a cyclo glycidyl ether compound. The content rate of the alkyl glycidyl ester compound in the acid scavenger is 10-97%.

Description

本発明は、空気調和機に関する。   The present invention relates to an air conditioner.

ルームエアコン用の冷媒は、オゾン層保護のためR22から代替冷媒へと移行され、現在は主にR410Aが使用されている。しかし、R410Aは地球温暖化係数(以下「GWP」という。)が2088と高く、地球環境に及ぼす影響を低減するために、地球温暖化係数がR410Aの1/3程度であるジフルオロメタン(以下「R32」という。)へ移行することが検討されている。   The refrigerant for room air conditioners has been shifted from R22 to an alternative refrigerant to protect the ozone layer, and currently R410A is mainly used. However, R410A has a high global warming potential (hereinafter referred to as “GWP”) of 2088, and in order to reduce the influence on the global environment, difluoromethane (hereinafter “ R32 ”) is under consideration.

ところで、冷媒の種類によって、相溶する冷凍機油は異なる。冷凍機油は圧縮機中に貯留され、圧縮機が起動すると各摺動部分に給油され、一部は冷媒とともに圧縮機の外へ吐出される。このとき、冷凍機油が冷媒に溶けづらいと、冷凍サイクル中の低温部で冷凍機油が冷媒から分離し、圧縮機に冷凍機油が戻らず、圧縮機内の冷凍機油の量が減少する。   By the way, the refrigerating machine oil to be compatible varies depending on the type of refrigerant. The refrigeration oil is stored in the compressor, and when the compressor is started, oil is supplied to each sliding portion, and a part is discharged out of the compressor together with the refrigerant. At this time, if the refrigerating machine oil is difficult to dissolve in the refrigerant, the refrigerating machine oil is separated from the refrigerant at a low temperature portion in the refrigerating cycle, the refrigerating machine oil does not return to the compressor, and the amount of the refrigerating machine oil in the compressor decreases.

このような問題を避けるため、HFC(Hydro Fluoro Carbons)系冷媒に対しては、一般に冷媒と相溶性の良いポリオールエステル油(以下「POE油」という。)やポリビニルエーテル油(以下「PVE油」という。)が冷凍機油として用いられている。   In order to avoid such problems, a polyol ester oil (hereinafter referred to as “POE oil”) or a polyvinyl ether oil (hereinafter referred to as “PVE oil”) that is generally compatible with the refrigerant for HFC (Hydro Fluoro Carbons) refrigerants. Is used as refrigeration oil.

ここで、POE油を用いる場合、冷凍サイクル中に水分が混入すると、POE油は加水分解を起こし、劣化する。そのため、POE油を用いる場合、POE油の加水分解を抑制するために、エポキシ化合物などの酸捕捉剤が添加される。   Here, when POE oil is used, if water is mixed in the refrigeration cycle, the POE oil undergoes hydrolysis and deteriorates. Therefore, when using POE oil, in order to suppress hydrolysis of POE oil, an acid scavenger such as an epoxy compound is added.

特許文献1には、冷凍機油の酸捕捉剤として、グリシジルエステル、グリシジルエーテル及びα―オレフィンオキシドの中から選ばれる少なくとも1種が用いられ、又、2種以上を組み合わせて用いてもよいことが記載されている。   In Patent Document 1, at least one selected from glycidyl esters, glycidyl ethers, and α-olefin oxides is used as an acid scavenger for refrigeration oil, and two or more types may be used in combination. Have been described.

特開2008−266423JP2008-266423

R32はR410Aよりも比熱比が高いため、R32を冷媒として採用すると、R410Aに比べて、圧縮機の吐出温度が高くなる。高圧チャンバ方式の圧縮機の場合、圧縮されて高温となった冷媒が圧縮機の中に充満する。   Since R32 has a higher specific heat ratio than R410A, when R32 is adopted as a refrigerant, the discharge temperature of the compressor becomes higher than that of R410A. In the case of a high-pressure chamber type compressor, the compressor is filled with a refrigerant that has been compressed to a high temperature.

高温下ほど冷凍機油の加水分解が促進されるため、特許文献1に記載された酸捕捉剤では、冷凍機油の加水分解を十分に抑制することができない。   Since the hydrolysis of the refrigerating machine oil is promoted at higher temperatures, the acid scavenger described in Patent Document 1 cannot sufficiently suppress the hydrolysis of the refrigerating machine oil.

そこで、本発明は、冷凍機油の加水分解を抑制する空気調和機を提供することを目的とする。   Then, an object of this invention is to provide the air conditioner which suppresses hydrolysis of refrigerating machine oil.

本発明の空気調和機は、圧縮機、室外熱交換器、膨張機構及び室内熱交換器と、R32冷媒又はR32が50重量%より多く含まれている混合冷媒と、ポリオールエステル油と酸捕捉剤を有する冷凍機油とを備え、酸捕捉剤はアルキルグリシジルエステル化合物及びシクログリシジルエーテル化合物を有し、酸捕捉剤におけるアルキルグリシジルエステル化合物の割合は10〜97%である。   The air conditioner of the present invention includes a compressor, an outdoor heat exchanger, an expansion mechanism, and an indoor heat exchanger, an R32 refrigerant or a mixed refrigerant containing more than 50% by weight of R32, a polyol ester oil, and an acid scavenger. The acid scavenger has an alkyl glycidyl ester compound and a cycloglycidyl ether compound, and the ratio of the alkyl glycidyl ester compound in the acid scavenger is 10 to 97%.

本発明によれば、冷凍機油の加水分解を抑制する空気調和機を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the air conditioner which suppresses hydrolysis of refrigerating machine oil can be provided.

冷暖房兼用の空気調和機の概略図である。It is the schematic of the air conditioner combined with air conditioning. 密閉型圧縮機の概略図である。It is the schematic of a hermetic compressor. アルキルグリシジルエステル化合物及びシクログリシジルエーテル化合物の混合比と加水分解安定性試験後の酸捕捉剤存存率及び酸価との関係について示す図である。It is a figure which shows about the relationship between the mixing ratio of an alkyl glycidyl ester compound and a cycloglycidyl ether compound, the acid scavenger presence rate after a hydrolysis stability test, and an acid value.

以下、本発明の実施例に係る空気調和機について説明する。図1は冷暖房兼用の空気調和機の概略図である。本実施例の空気調和機は、圧縮機1、室外熱交換器3、膨張機構4、室内熱交換器5を配管で接続し、冷媒が循環する。   Hereinafter, an air conditioner according to an embodiment of the present invention will be described. FIG. 1 is a schematic view of an air conditioner that is also used for air conditioning. In the air conditioner of the present embodiment, the compressor 1, the outdoor heat exchanger 3, the expansion mechanism 4, and the indoor heat exchanger 5 are connected by piping, and the refrigerant circulates.

冷房運転の場合、圧縮機1で圧縮された高温高圧のガス冷媒は、四方弁2を介して室外熱交換器3に流れる。高温高圧のガス冷媒は、凝縮器として機能する室外熱交換器3で冷却され、高圧の液冷媒となる。高圧の液冷媒は、膨張機構4で膨張され、僅かにガスを含む低温低圧の液冷媒となって、室内熱交換器6に流れる。低温低圧の液冷媒は、蒸発器として機能する室内熱交換器6で加熱され、低温のガス冷媒となり、再び四方弁2を介して圧縮機1に戻る。暖房運転の場合、四方弁2によって冷媒の流れが変えられ、冷媒は冷房運転と逆方向に流れる。   In the case of the cooling operation, the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 flows to the outdoor heat exchanger 3 via the four-way valve 2. The high-temperature and high-pressure gas refrigerant is cooled by the outdoor heat exchanger 3 functioning as a condenser, and becomes a high-pressure liquid refrigerant. The high-pressure liquid refrigerant is expanded by the expansion mechanism 4 and becomes a low-temperature and low-pressure liquid refrigerant containing a slight amount of gas and flows to the indoor heat exchanger 6. The low-temperature and low-pressure liquid refrigerant is heated by the indoor heat exchanger 6 functioning as an evaporator, becomes a low-temperature gas refrigerant, and returns to the compressor 1 through the four-way valve 2 again. In the heating operation, the refrigerant flow is changed by the four-way valve 2, and the refrigerant flows in the opposite direction to the cooling operation.

なお、四方弁2を用いずに、冷房あるいは暖房のいずれか一方のみの機能を有するように構成してもよい。また、膨張機構4として、電子膨張弁、キャピラリーチューブや温度式膨張機構などを用いることができる。   In addition, you may comprise so that it may have only the function of either cooling or heating, without using the four-way valve 2. As the expansion mechanism 4, an electronic expansion valve, a capillary tube, a temperature type expansion mechanism, or the like can be used.

図2は圧縮機の概略図である。圧縮機1は、端板7と渦巻状ラップ8を有する固定スクロール部材6と、ラップ10を有する旋回スクロール部材9をお互いにラップ8とラップ10とを向い合わせにして噛み合わせて圧縮機構部を形成し、旋回スクロール部材9をクランクシャフト11によって旋回運動させる。固定スクロール部材6及び旋回スクロール部材9によって形成される圧縮室12(12a、12b・・・)のうち、最も外側に位置している圧縮室は、旋回運動にともなって容積が次第に縮小しながら、固定スクロール部材6及び旋回スクロール部材9の中心に向かって移動していく。圧縮室12が固定スクロール部材6及び旋回スクロール部材9の中心近傍に達したとき、圧縮室12が吐出口13と連通して、圧縮室12で圧縮されたガス冷媒が吐出パイプ16を通じて圧縮機1の外に吐出される。   FIG. 2 is a schematic view of the compressor. The compressor 1 engages a fixed scroll member 6 having an end plate 7 and a spiral wrap 8 and a orbiting scroll member 9 having a wrap 10 with the wrap 8 and the wrap 10 facing each other to engage the compression mechanism portion. Then, the orbiting scroll member 9 is orbited by the crankshaft 11. Of the compression chambers 12 (12a, 12b...) Formed by the fixed scroll member 6 and the orbiting scroll member 9, the outermost compression chamber is gradually reduced in volume with the orbiting motion. The fixed scroll member 6 and the orbiting scroll member 9 move toward the center. When the compression chamber 12 reaches the vicinity of the center of the fixed scroll member 6 and the orbiting scroll member 9, the compression chamber 12 communicates with the discharge port 13, and the gas refrigerant compressed in the compression chamber 12 passes through the discharge pipe 16. It is discharged outside.

圧縮機1は、圧力容器15内に電動モータ17を内蔵しており、圧縮機1は一定速あるいは図示しないインバータによって制御された電圧に応じた回転速度でクランクシャフト11が回転し、圧縮動作を行う。電動モータ17は冷媒及び冷凍機油の雰囲気中で作動する。モータ17の図示しないコイルの相間や積層鋼鈑の間には、その絶縁を保持するために絶縁フィルムが配置されている。しかし、絶縁フィルムは、安価なポリエチレンテレフタレートやポリエチレンナフタレート等のフィルムを用いている。   The compressor 1 has a built-in electric motor 17 in the pressure vessel 15, and the compressor 1 performs a compression operation by rotating the crankshaft 11 at a constant speed or at a rotational speed corresponding to a voltage controlled by an inverter (not shown). Do. The electric motor 17 operates in an atmosphere of refrigerant and refrigeration oil. An insulating film is arranged between the phases of coils (not shown) of the motor 17 and between the laminated steel plates in order to maintain the insulation. However, an inexpensive film such as polyethylene terephthalate or polyethylene naphthalate is used as the insulating film.

また、電動モータ17の下部に油溜め部が設けられており、油溜め部に溜まっている冷凍機油は圧力差によってクランクシャフト11に設けられた油孔19を通って、旋回スクロール部材9とクランクシャフト11との摺動部や滑り軸受け18等の潤滑に供される。   Further, an oil sump is provided at the lower part of the electric motor 17, and the refrigerating machine oil accumulated in the oil sump passes through the oil hole 19 provided in the crankshaft 11 due to a pressure difference, and the orbiting scroll member 9 and the crank. It is used for lubrication of the sliding portion with the shaft 11, the sliding bearing 18, and the like.

本実施例では、冷媒としてR32を用い、冷凍機油としてR32と相溶性があり、潤滑性に優れるPOE油を用いている。   In this example, R32 is used as the refrigerant, and POE oil that is compatible with R32 and has excellent lubricity is used as the refrigerating machine oil.

POE油は、潤滑性能に優れるが、水分により分解し脂肪酸を生成する特性がある。脂肪酸を生成すると金属表面の腐食を引き起こし、又、生成した脂肪酸を触媒として冷凍機油の劣化が進行するおそれがある。   POE oil is excellent in lubrication performance, but has the property of decomposing with moisture to produce fatty acids. When the fatty acid is produced, the metal surface is corroded, and the deterioration of the refrigerating machine oil may proceed using the produced fatty acid as a catalyst.

さらに、R32は極性が高いため、冷媒としてR32を用いると、R410Aと比較して持ち込み水分量が多くなる。また、冷媒として用いられてきたR410Aに比べて、R32はR410Aよりも比熱比が高いため、圧縮機1の吐出温度が上昇しやすく、圧縮機1の吐出温度が100℃を超える可能性がある。高圧チャンバ方式の圧縮機の場合、圧縮されて高温となった冷媒が圧縮機の中に充満する。つまり、冷媒としてR32を用いると、持ち込み水分量が多くなり、又、圧縮機の高温化により冷凍機油の加水分解が促進されるため、R410A使用時よりも冷凍機油が劣化しやすくなる。   Furthermore, since R32 has a high polarity, when R32 is used as a refrigerant, the amount of moisture brought in is larger than that of R410A. Moreover, since R32 has a higher specific heat ratio than R410A compared to R410A that has been used as a refrigerant, the discharge temperature of the compressor 1 is likely to rise, and the discharge temperature of the compressor 1 may exceed 100 ° C. . In the case of a high-pressure chamber type compressor, the compressor is filled with a refrigerant that has been compressed to a high temperature. That is, when R32 is used as the refrigerant, the amount of moisture brought in increases, and the hydrolysis of the refrigerating machine oil is promoted by the high temperature of the compressor, so that the refrigerating machine oil is more likely to deteriorate than when R410A is used.

酸捕捉剤としては、エポキシ化合物、カルボジイミド等があるが、本実施例ではエポキシ化合物を用いている。エポキシ化合物は、水分及び酸を捕捉し、安定な物質に変える特性がある。また、エポキシ化合物は冷凍機油が劣化して生成する酸のほかに、冷凍サイクル中に存在する水分を捕捉する効果があるため、モータに使用する絶縁フィルム等を保護する効果もある。   Examples of the acid scavenger include an epoxy compound and carbodiimide. In this embodiment, an epoxy compound is used. Epoxy compounds have the property of trapping moisture and acid and turning them into stable materials. Moreover, since the epoxy compound has an effect of capturing moisture present in the refrigeration cycle in addition to the acid generated by the deterioration of the refrigerating machine oil, it also has an effect of protecting the insulating film used for the motor.

本実施例は、酸捕捉剤としてアルキルグリシジルエステル化合物とシクログリジルエーテル化合物を用いている。アルキルグリシジルエステル化合物は、化学式(1)に示す構造のもの(式中のR1は炭素数4〜9のアルキル基である)を用い、本実施例のシクログリシジルエーテル化合物は、化学式(2)に示す構造のものを用いている。 In this example, an alkyl glycidyl ester compound and a cycloglycidyl ether compound are used as the acid scavenger. The alkyl glycidyl ester compound has a structure represented by chemical formula (1) (wherein R 1 is an alkyl group having 4 to 9 carbon atoms), and the cycloglycidyl ether compound of this example has the chemical formula (2) The structure shown in FIG.

アルキルグリシジルエステル化合物は水分との反応性が高く、また低温で反応するため、冷凍サイクル中の水分と素早く反応し、冷凍機油の加水分解を抑制することが出来る。つまり、速効性であり、冷凍サイクル中の初期水分を低下させることが出来る。しかし、アルキルグリシジルエステル化合物は、速効性があるため、残存量の低下が早く、長期運転後に冷凍機油の劣化が発生する可能性がある。   The alkyl glycidyl ester compound is highly reactive with moisture and reacts at a low temperature. Therefore, the alkyl glycidyl ester compound reacts quickly with moisture in the refrigeration cycle and can suppress hydrolysis of the refrigerating machine oil. That is, it is fast-acting and can reduce the initial moisture in the refrigeration cycle. However, since alkyl glycidyl ester compounds are fast-acting, the remaining amount decreases rapidly, and the refrigeration oil may deteriorate after long-term operation.

一方、シクログリシジルエーテル化合物は比較的高温で反応し、アルキルグリシジルエステル化合物よりも耐熱性が高く、アルキルグリシジルエステル化合物が速効性であるのに対して遅効性である。しかし、シクログリシジルエーテル化合物は、水分との反応性がアルキルグリシジルエステル化合物よりも低く、シクログリシジルエーテル化合物のみでは水分を十分に捕捉できずに冷凍機油が加水分解を防ぐことができず、酸価が上昇してしまう。   On the other hand, the cycloglycidyl ether compound reacts at a relatively high temperature, has higher heat resistance than the alkyl glycidyl ester compound, and is slow-acting while the alkyl glycidyl ester compound is fast-acting. However, the cycloglycidyl ether compound is less reactive with moisture than the alkyl glycidyl ester compound, and the cycloglycidyl ether compound alone cannot sufficiently capture moisture and the refrigerating machine oil cannot prevent hydrolysis. Will rise.

そこで、本実施例では、アルキルグリシジルエステル化合物とシクログリシジルエーテル化合物を混合して用い、運転初期の段階で冷凍サイクル内の水分をアルキルグリシジルエステル化合物によって捕捉し、運転中に圧縮機内部が高温になるなどして冷凍機油が劣化し酸を生成した際にはシクログリシジルエーテル化合物により捕捉させている。   Therefore, in this example, an alkyl glycidyl ester compound and a cycloglycidyl ether compound are mixed and used, and moisture in the refrigeration cycle is captured by the alkyl glycidyl ester compound at the initial stage of operation, and the inside of the compressor becomes hot during operation. Thus, when the refrigerating machine oil deteriorates to generate an acid, it is captured by a cycloglycidyl ether compound.

本実施例では、上述したとおり、冷凍機油としてR32と相溶性があり、潤滑性に優れるPOE油を用いている。ここで、相溶性とは、冷媒と冷凍機油が分離せず溶解する特性である。相溶性が悪いと、圧縮機から冷媒と共に、冷凍サイクル中に吐出された冷凍機油が、冷凍サイクルの低温部で分離し、圧縮機に戻らず給油不足となる可能性がある。ここでは相溶性の指標として、低温側臨界溶解温度を用いる。低温側臨界溶解温度が高いほど相溶性が悪く、低いほど相溶性が良いと言える。そのため。R32との低温側臨界溶解温度が10℃以下であることが望ましい。また、潤滑性としては、動粘度が40mm2/s〜100mm2/sの範囲にあるPOE油を用いることが望ましい。 In this embodiment, as described above, POE oil that is compatible with R32 and has excellent lubricity is used as the refrigerating machine oil. Here, the compatibility is a characteristic that the refrigerant and the refrigerating machine oil dissolve without being separated. If the compatibility is poor, the refrigeration oil discharged into the refrigeration cycle together with the refrigerant from the compressor may be separated at the low temperature portion of the refrigeration cycle, and may not return to the compressor, resulting in insufficient oil supply. Here, the low temperature side critical dissolution temperature is used as a compatibility index. It can be said that the higher the low-temperature critical solution temperature, the worse the compatibility, and the lower, the better the compatibility. for that reason. The low temperature side critical dissolution temperature with R32 is desirably 10 ° C. or lower. As the lubricity, kinematic viscosity is desirably used POE oil in the range of 40mm 2 / s~100mm 2 / s.

このような条件を満たした冷凍機油を作製するためには、例えば、多価アルコールとしては、ネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトールなどがある。1価の脂肪酸としては、ブタン酸、ペンタン酸、2−メチルプロパン酸、2−メチルブタン酸等の炭素数4〜5と比較的炭素数の少ない脂肪酸などが挙げられ、基油の異常な粘度低下を防止するために、オクタン酸、2−メチルペンタン酸、2−メチルヘキサン酸、2−エチルヘキサン酸、イソオクタン酸、3、5、5−トリメチルヘキサン酸等の炭素数8〜12の比較的炭素数の多い脂肪酸を単独で、又は混合して用いる。   In order to produce a refrigerating machine oil that satisfies such conditions, examples of polyhydric alcohols include neopentyl glycol, trimethylolpropane, pentaerythritol, and dipentaerythritol. Examples of monovalent fatty acids include fatty acids having 4 to 5 carbon atoms such as butanoic acid, pentanoic acid, 2-methylpropanoic acid, and 2-methylbutanoic acid, and a relatively small number of carbon atoms. In order to prevent the above, relatively carbon having 8 to 12 carbon atoms such as octanoic acid, 2-methylpentanoic acid, 2-methylhexanoic acid, 2-ethylhexanoic acid, isooctanoic acid, 3,5,5-trimethylhexanoic acid, etc. A large number of fatty acids are used alone or in combination.

特に、実際のルームエアコンのサイクルにおいて低温時の寝込み等を考慮すると使用する冷凍機油とR32の低温側臨界溶解温度は0℃以下が好ましい。R32との低温側臨界溶解温度が0℃以下となるPOE油としては下記化学式(3)〜(6)を示す構造のものを単独もしくは2つ以上組み合わせたものが好ましく(式中、R2は炭素数4〜9のアルキル基を表す)、さらに、高粘度の維持及び潤滑性の向上のため式(5)と式(6)のいずれか、若しくは、混合したものが好ましい。 In particular, considering the stagnation at low temperatures in an actual room air-conditioner cycle, the low-temperature critical solution temperature of the refrigerating machine oil and R32 used is preferably 0 ° C. or lower. The POE oil having a low temperature side critical dissolution temperature with R32 of 0 ° C. or lower is preferably one having a structure represented by the following chemical formulas (3) to (6) alone or in combination of two or more (wherein R 2 is (Represents an alkyl group having 4 to 9 carbon atoms), and in order to maintain high viscosity and improve lubricity, any of formula (5) and formula (6) or a mixture thereof is preferred.

次に、本実施例についてシールドチューブ試験により冷凍機油の耐加水分解性を評価した結果を説明する。耐加水分解性の試験方法は以下の通りである。外径13mm、内径10mmのガラスアンプル管に冷媒を0.5g、冷凍機油を5g封入した。実施例1〜3及び比較例1〜7は、冷媒としてR32、冷凍機油としてR32との相溶性に優れる化学式(3)及び(4)に示す構造のものを混合した基油を用い、従来例1〜2は、冷媒としてR410A、冷凍機油としてR410Aとの相溶性に優れる化学式(3)に示す構造の基油を用いた。   Next, the result of having evaluated the hydrolysis resistance of the refrigerating machine oil by the shield tube test about a present Example is demonstrated. The hydrolysis resistance test method is as follows. A glass ampoule tube having an outer diameter of 13 mm and an inner diameter of 10 mm was filled with 0.5 g of refrigerant and 5 g of refrigerating machine oil. Examples 1 to 3 and Comparative Examples 1 to 7 use a base oil mixed with the structure shown in chemical formulas (3) and (4) excellent in compatibility with R32 as a refrigerant and R32 as a refrigerating machine oil. 1-2 used the base oil of the structure shown to Chemical formula (3) excellent in compatibility with R410A as a refrigerant | coolant, and R410A as refrigerating machine oil.

そして、実施例1〜3、比較例1〜7及び従来例1〜2に、酸捕捉剤として化学式(1)に示すアルキルグリシジルエステル化合物、化学式(2)に示すシクログリシジルエーテル化合物を冷凍機油に添加した。表1は、冷凍機油に対するアルキルグリシジルエステル化合物とシクログリシジルエーテル化合物の添加割合である。   In Examples 1 to 3, Comparative Examples 1 to 7, and Conventional Examples 1 to 2, the alkyl glycidyl ester compound represented by the chemical formula (1) and the cycloglycidyl ether compound represented by the chemical formula (2) are used as refrigerating machine oils as the acid scavenger. Added. Table 1 shows the addition ratio of the alkyl glycidyl ester compound and the cycloglycidyl ether compound to the refrigerating machine oil.

アルキルグリシジルエステル化合物とシクログリシジルエーテル化合物の単位当たりの酸捕捉能力は異なる。そこで、酸捕捉能力を現行のR410A冷媒用冷凍機油の従来例1〜2の酸捕捉剤と同等になるようアルキルグリシジルエステル化合物及びシクログリシジルエーテル化合物の比率をそれぞれ変えて添加した。実施例1〜3、比較例1〜2及び7、従来例1〜2の酸捕捉剤の酸捕捉能力は同等である。   The acid scavenging ability per unit of the alkyl glycidyl ester compound and the cycloglycidyl ether compound is different. Then, the ratio of the alkyl glycidyl ester compound and the cycloglycidyl ether compound was changed and added so that the acid scavenging ability would be equivalent to that of the conventional acid scavengers of R410A refrigerant oil for conventional R1-2A. The acid scavenging ability of the acid scavengers of Examples 1 to 3, Comparative Examples 1 to 2 and 7 and Conventional Examples 1 to 2 are equivalent.

なお、酸捕捉剤の酸捕捉能力の理論値を酸価と同じ単位(mgKOH/g)で表すと、式(7)で表される。アルキルグリシジルエステル化合物の分子量は158〜228、シクログリシジルエーテル化合物の分子量は252である。   In addition, when the theoretical value of the acid scavenger of the acid scavenger is represented by the same unit (mgKOH / g) as the acid value, it is represented by the formula (7). The molecular weight of the alkyl glycidyl ester compound is 158 to 228, and the molecular weight of the cycloglycidyl ether compound is 252.

冷凍機油の水分を1,000ppmに調整し、触媒として冷凍サイクル中に多く使用される金属部材である鉄、銅、アルミ(それぞれφ1.6mm、長さ50mm)を共存させ、175℃で14日間加熱した後の冷凍機油のあわ立ちを観察し、酸価及び添加剤残存率を測定した。あわ立ちは、ガラスアンプル管を開封し冷媒を脱気する際に発生する気泡の様子を観察し、気泡が消えずガラスアンプル管からあふれてしまったものをNGとした。酸価はJIS K2501「石油及び潤滑油―中和価試験方法」に従った。添加剤残存率は、ガスクロマトグラフにて測定した。   Adjusting the water content of the refrigerating machine oil to 1,000 ppm and coexisting iron, copper, and aluminum (each φ1.6 mm, length 50 mm), which are frequently used as catalysts in the refrigeration cycle, at 175 ° C. for 14 days The heating of the refrigerating machine oil after heating was observed, and the acid value and additive residual ratio were measured. As for the foaming, the state of bubbles generated when the glass ampule tube was opened and the refrigerant was degassed was observed, and the bubbles that did not disappear and overflowed from the glass ampule tube were determined as NG. The acid value was in accordance with JIS K2501 “Petroleum and lubricating oil—neutralization number test method”. The additive residual ratio was measured with a gas chromatograph.

表2は表1に示す酸捕捉剤を上述した条件で測定した耐加水分解性試験の結果を示している。   Table 2 shows the results of a hydrolysis resistance test in which the acid scavenger shown in Table 1 was measured under the conditions described above.

まず、従来例1及び従来例2については酸価の上昇が見られない結果になった。特に、従来例2については酸捕捉剤残存率も50%以上であり、酸捕捉剤が十分に残存している。ルームエアコンの寿命は通常10年を想定するが、実際に冷媒としてR410A、冷凍機油として従来例2を使用したルームエアコンの10年間運転後の冷凍機油を分析すると、酸価は0.01mgKOH/g以下、酸捕捉剤残存率は約50%、油中金属量はアルミ(Al)、銅(Cu)、鉄(Fe)の3元素においてそれぞれ0.1ppm以下となった。つまり、175℃で14日間加熱を継続する試験は、ルームエアコンを10年間運転した状態を再現しているといえる。   First, the results of Conventional Example 1 and Conventional Example 2 showed no increase in acid value. In particular, in Conventional Example 2, the acid scavenger remaining rate is also 50% or more, and the acid scavenger remains sufficiently. The life of a room air conditioner is normally assumed to be 10 years. However, when analyzing the refrigerator oil after 10 years of operation of the room air conditioner using R410A as the refrigerant and Conventional Example 2 as the refrigerator oil, the acid value is 0.01 mgKOH / g Hereinafter, the residual rate of the acid scavenger was about 50%, and the amount of metal in oil was 0.1 ppm or less for each of the three elements of aluminum (Al), copper (Cu), and iron (Fe). That is, it can be said that the test of continuing heating at 175 ° C. for 14 days reproduces the state in which the room air conditioner has been operated for 10 years.

そこで、本実施例における酸捕捉剤についても、175℃で14日間加熱を継続する試験を行い、従来例2の酸捕捉剤と同等の結果が得られれば、信頼性を確保した酸捕捉剤であると判断することにした。   Therefore, the acid scavenger in this example was also subjected to a test that continued heating at 175 ° C. for 14 days, and if a result equivalent to that of the acid scavenger of Conventional Example 2 was obtained, a reliable acid scavenger was used. I decided that there was.

比較例1は、R32用冷凍機油に従来例1の酸捕捉剤を添加したものである。表2に示すように、比較例1の酸捕捉剤の酸捕捉剤残存率は0となり、冷凍機油の酸価が上昇する結果となった。従って、比較例1の酸捕捉剤では、R32用の冷凍機油の加水分解を防ぐことができないことがわかった。   Comparative Example 1 is obtained by adding the acid scavenger of Conventional Example 1 to R32 refrigerating machine oil. As shown in Table 2, the acid scavenger remaining rate of the acid scavenger of Comparative Example 1 was 0, which resulted in an increase in the acid value of the refrigerating machine oil. Therefore, it was found that the acid scavenger of Comparative Example 1 cannot prevent hydrolysis of R32 refrigerating machine oil.

比較例2は、R32用の冷凍機油に従来例2の酸捕捉剤を添加したものである。表2に示すように、比較例2の酸捕捉剤は、比較例1の酸捕捉剤と異なり、酸捕捉剤残存率50%以上を確保できているが、冷凍機油の酸価が上昇する結果となった。つまり、比較例2の酸捕捉剤も、冷凍機油の加水分解を抑制できないことがわかった。これは、シクログリシジルエーテル化合物は、水分との反応性が低く、水分を十分に捕捉できていないことが原因と考えられる。   Comparative Example 2 is obtained by adding the acid scavenger of Conventional Example 2 to R32 refrigerating machine oil. As shown in Table 2, the acid scavenger of Comparative Example 2 is different from the acid scavenger of Comparative Example 1 in that an acid scavenger residual ratio of 50% or more can be secured, but the acid value of the refrigerating machine oil increases. It became. That is, it was found that the acid scavenger of Comparative Example 2 could not suppress hydrolysis of the refrigerating machine oil. This is presumably because the cycloglycidyl ether compound has low reactivity with moisture and cannot capture moisture sufficiently.

以上の結果から、R410A用冷凍機油に添加していた添加剤では、R32用冷凍機油の加水分解を抑制できないことがわかった。   From the above results, it was found that the additive added to the R410A refrigerating machine oil cannot suppress hydrolysis of the R32 refrigerating machine oil.

次に、R410A用冷凍機油に添加していた添加剤を用い、添加量を増やして試験を行なった結果について説明する。比較例3は、比較例1に対して、アルキルグリシジルエステル化合物の添加量を増やし、冷凍機油全重量におけるアルキルグリシジルエステル化合物の割合を2wt%にしたものである。比較例3の酸捕捉剤は、酸捕捉剤残存率が50%を下回っているが、比較例1と異なり、酸価の上昇は抑制できている。しかし、表2に示すとおり、油中金属では銅イオンの検出が認められ、銅触媒が影響を受けていることが推測される。アルキルグリシジルエステル化合物は過剰に添加すると圧縮機や、冷凍サイクル中の金属材料に影響を及ぼし、特に銅イオンなどの成分を油中に溶解させやすくなるからである。   Next, a description will be given of the results of tests conducted using the additive added to the R410A refrigerating machine oil with the addition amount increased. In Comparative Example 3, the addition amount of the alkyl glycidyl ester compound is increased with respect to Comparative Example 1, and the ratio of the alkyl glycidyl ester compound in the total weight of the refrigerating machine oil is 2 wt%. The acid scavenger remaining in Comparative Example 3 has an acid scavenger remaining rate of less than 50%, but unlike Comparative Example 1, an increase in acid value can be suppressed. However, as shown in Table 2, the detection of copper ions was recognized in the metal in oil, and it is assumed that the copper catalyst was affected. This is because if the alkyl glycidyl ester compound is added in excess, it affects the compressor and the metal material in the refrigeration cycle, and in particular, components such as copper ions are easily dissolved in the oil.

比較例4は、比較例3に対して、アルキルグリシジルエステル化合物の添加量をさらに増やし、冷凍機油全重量におけるアルキルグリシジルエステル化合物の割合を5wt%にしたものである。比較例4の酸捕捉剤の酸捕捉残存率は比較例3よりも多いが、50%以下であり、油中金属では銅イオンの検出量も増加している。   In Comparative Example 4, the addition amount of the alkyl glycidyl ester compound is further increased with respect to Comparative Example 3, and the ratio of the alkyl glycidyl ester compound in the total weight of the refrigerating machine oil is 5 wt%. Although the acid scavenging residual rate of the acid scavenger of Comparative Example 4 is larger than that of Comparative Example 3, it is 50% or less, and the detected amount of copper ions is increased in the metal in oil.

比較例5は、比較例2に対して、シクログリシジルエーテル化合物の添加量を増やし、冷凍機油全重量におけるシクログリシジルエーテル化合物の割合を2wt%にしたものである。酸捕捉剤残存率は100%であり、全く減少していないが、酸価が上昇する結果となった。つまり、酸捕捉剤が冷凍機油の加水分解を抑制できていない。   In Comparative Example 5, the addition amount of the cycloglycidyl ether compound is increased with respect to Comparative Example 2, and the ratio of the cycloglycidyl ether compound in the total weight of the refrigerating machine oil is 2 wt%. The residual rate of the acid scavenger was 100% and did not decrease at all, but the acid value increased. That is, the acid scavenger cannot suppress the hydrolysis of the refrigerating machine oil.

比較例6は、比較例5に対して、さらにシクログリシジルエーテル化合物の添加量を増やし、冷凍機油全重量におけるシクログリシジルエーテル化合物の割合を5wt%にしたものである。酸捕捉剤残存率は96.9%と酸捕捉剤も十分に残存しており、酸価の上昇も抑制できている。しかし、シクログリシジルエーテル化合物の添加量が5wt%以上である場合、冷凍機油のあわ立ち性が高く摺動部への給油量が低下し、使用中に給油不足による潤滑不良を起こす可能性が考えられる。   In Comparative Example 6, the addition amount of the cycloglycidyl ether compound is further increased with respect to Comparative Example 5 so that the ratio of the cycloglycidyl ether compound in the total weight of the refrigerating machine oil is 5 wt%. The acid scavenger remaining rate is 96.9%, and the acid scavenger remains sufficiently, and the increase in acid value can be suppressed. However, when the addition amount of the cycloglycidyl ether compound is 5 wt% or more, the turbidity of the refrigerating machine oil is high, and the amount of oil supplied to the sliding portion is reduced, which may cause poor lubrication due to insufficient oil supply during use. .

以上の結果から、アルキルグリシジルエステル化合物またはシクログリシジルエーテル化合物の添加量を増やしても効果はなく、過剰に添加することにより金属部材や冷凍機油の他の性能に影響を及ぼすことがわかった。また、少なくともアルキルグリシジルエステル化合物の添加量は冷凍機油全重量に対して2wt%未満にする必要があることがわかった。さらに、添加剤自体の粘度が低いため冷凍機油の粘度が低下しシール性の低下につながるため、酸捕捉剤の添加量は極力増やさないほうが望ましい。   From the above results, it was found that there was no effect even when the amount of the alkyl glycidyl ester compound or cycloglycidyl ether compound was increased, and that excessive addition had an effect on other performances of the metal member and the refrigerating machine oil. It was also found that at least the addition amount of the alkyl glycidyl ester compound needs to be less than 2 wt% with respect to the total weight of the refrigerating machine oil. Furthermore, since the viscosity of the additive itself is low, the viscosity of the refrigerating machine oil is lowered and the sealing property is lowered. Therefore, it is desirable that the addition amount of the acid scavenger is not increased as much as possible.

つぎに、R32冷媒用酸捕捉剤として、アルキルグリシジルエステル化合物及びシクログリシジルエーテル化合物を混合して酸捕捉剤を構成した場合について説明する。実施例1〜3及び比較例7は、アルキルグリシジルエステル化合物とシクログリシジルエーテル化合物を混合して添加したものである。添加量は従来例1及び従来例2の酸捕捉剤の酸捕捉能力に合わせ、アルキルグリシジルエステル化合物及びシクログリシジルエーテル化合物の比率をそれぞれ変化させて試験を実施した。   Next, a case where an acid scavenger is constituted by mixing an alkyl glycidyl ester compound and a cycloglycidyl ether compound as the acid scavenger for R32 refrigerant will be described. In Examples 1 to 3 and Comparative Example 7, an alkyl glycidyl ester compound and a cycloglycidyl ether compound are mixed and added. The amount of addition was adjusted according to the acid scavenging ability of the acid scavengers of Conventional Example 1 and Conventional Example 2, and the ratio of the alkyl glycidyl ester compound and the cycloglycidyl ether compound was changed to perform the test.

表2に示すとおり、実施例1〜3及び比較例7はいずれも酸価の上昇は見られないため、2種類の酸捕捉剤を混合して添加することにより、冷凍機油の劣化を抑制できていることがわかる。しかし、実施例1〜実施例3については酸捕捉剤残存率50%以上を確保しているが、比較例7については酸捕捉剤残存率が前歴に対して50%を下回る結果になった。   As shown in Table 2, since Examples 1 to 3 and Comparative Example 7 do not show an increase in acid value, the deterioration of the refrigerating machine oil can be suppressed by mixing and adding two types of acid scavengers. You can see that However, although the acid scavenger residual rate of 50% or more was secured for Examples 1 to 3, the acid scavenger residual rate was less than 50% of the previous history for Comparative Example 7.

図3は、アルキルグリシジルエステル化合物及びシクログリシジルエーテル化合物の混合比と加水分解安定性試験後の酸捕捉剤存存率及び酸価との関係について示す図である。図3は、実施例1〜3、比較例1〜2、7についての加水分解安定性試験後の酸価と酸捕捉剤残存率をまとめた図である。   FIG. 3 is a diagram showing the relationship between the mixing ratio of the alkyl glycidyl ester compound and the cycloglycidyl ether compound, the acid scavenger existing rate after the hydrolysis stability test, and the acid value. FIG. 3 is a table summarizing the acid value and acid scavenger remaining rate after hydrolysis stability tests for Examples 1 to 3 and Comparative Examples 1 to 2 and 7.

酸価を防ぐためには、酸捕捉剤をアルキルグリシジルエステル化合物及びシクログリシジルエーテル化合物を混合して構成する必要がある。しかし、アルキルグリシジルエステル化合物及びシクログリシジルエーテル化合物を混合して酸捕捉剤を構成したとしても、酸捕捉剤におけるアルキルグリシジルエステル化合物の比率が少なすぎると、冷凍機油中の水分を初期の段階で捕捉できない。図3に示すとおり、アルキルグリシジルエステル化合物の比率が10%を下回るとPOE油の加水分解を抑制することができず、冷凍機油の酸価が上昇する。   In order to prevent the acid value, it is necessary to configure the acid scavenger by mixing an alkyl glycidyl ester compound and a cycloglycidyl ether compound. However, even if an alkyl glycidyl ester compound and a cycloglycidyl ether compound are mixed to form an acid scavenger, if the ratio of the alkyl glycidyl ester compound in the acid scavenger is too small, moisture in the refrigerating machine oil is captured at the initial stage. Can not. As shown in FIG. 3, when the ratio of the alkyl glycidyl ester compound is less than 10%, hydrolysis of the POE oil cannot be suppressed, and the acid value of the refrigerating machine oil increases.

また、酸捕捉剤におけるアルキルグリシジルエステル化合物の比率が多すぎると、耐熱性の問題から消費量が多くなる。図3に示すとおり、アルキルグリシジルエステル化合物の比率が97%を超えるとPOE油の加水分解を抑制することができず、冷凍機油の酸価が上昇する。   Moreover, when there are too many ratios of the alkylglycidyl ester compound in an acid scavenger, consumption will increase from a heat resistant problem. As shown in FIG. 3, when the ratio of the alkyl glycidyl ester compound exceeds 97%, hydrolysis of the POE oil cannot be suppressed, and the acid value of the refrigerating machine oil increases.

そのため、冷凍機油の酸価を防ぐためには、アルキルグリシジルエステル化合物及びシクログリシジルエーテル化合物を混合して酸捕捉剤を構成することに加え、酸捕捉剤におけるアルキルグリシジルエステル化合物の割合を10〜97%にする必要がある。   Therefore, in order to prevent the acid value of the refrigerating machine oil, in addition to constituting an acid scavenger by mixing an alkyl glycidyl ester compound and a cycloglycidyl ether compound, the ratio of the alkyl glycidyl ester compound in the acid scavenger is 10 to 97%. It is necessary to.

なお、酸捕捉剤におけるアルキルグリシジルエステル化合物の割合は、式(8)を用いて計算した。   In addition, the ratio of the alkyl glycidyl ester compound in an acid scavenger was calculated using Formula (8).

さらに、酸捕捉剤残存率50%以上を保つためには、酸捕捉剤におけるアルキルグリシジルエステル化合物の割合を10〜70%にする必要がある。酸捕捉剤残存率50%以上を保つことで、冷凍サイクル中の金属部材へ影響を与えることなく長期に渡り安定性を維持することができる。   Furthermore, in order to maintain the acid scavenger remaining rate of 50% or more, the ratio of the alkyl glycidyl ester compound in the acid scavenger needs to be 10 to 70%. By maintaining the acid scavenger remaining rate of 50% or more, stability can be maintained over a long period of time without affecting the metal member in the refrigeration cycle.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

本実施例の冷媒は、R32が50重量%より多く含まれている混合冷媒で構成してもよい。例えば、R32及びR125からなる冷媒や、R32及びR1234yfからなる冷媒や、R32、R1234yf及びR1234zeからなる冷媒を用いることができる。また、冷凍機油の加水分解を防ぐことが困難な他の冷媒にも用いることができる。   The refrigerant of this embodiment may be composed of a mixed refrigerant containing more than 50% by weight of R32. For example, a refrigerant composed of R32 and R125, a refrigerant composed of R32 and R1234yf, or a refrigerant composed of R32, R1234yf and R1234ze can be used. It can also be used for other refrigerants that are difficult to prevent the hydrolysis of refrigeration oil.

1…圧縮機、2…四方弁、3…室外熱交換器、4…膨張手段、5…室内熱交換機 DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Four-way valve, 3 ... Outdoor heat exchanger, 4 ... Expansion means, 5 ... Indoor heat exchanger

Claims (5)

圧縮機、室外熱交換器、膨張機構及び室内熱交換器と、
R32冷媒又はR32が50重量%より多く含まれている混合冷媒と、
ポリオールエステル油及び酸捕捉剤を有する冷凍機油とを備え、
前記酸捕捉剤はアルキルグリシジルエステル化合物及びシクログリシジルエーテル化合物を有し、
前記酸捕捉剤におけるアルキルグリシジルエステル化合物の割合は10〜97%である空気調和機。
A compressor, an outdoor heat exchanger, an expansion mechanism, and an indoor heat exchanger;
R32 refrigerant or a mixed refrigerant containing more than 50% by weight of R32;
A refrigerating machine oil having a polyol ester oil and an acid scavenger,
The acid scavenger has an alkyl glycidyl ester compound and a cycloglycidyl ether compound,
The air conditioner in which the ratio of the alkyl glycidyl ester compound in the acid scavenger is 10 to 97%.
前記酸捕捉剤におけるアルキルグリシジルエステル化合物の割合は10〜70%であることを特徴とする請求項1に記載の空気調和機。   The air conditioner according to claim 1, wherein a ratio of the alkyl glycidyl ester compound in the acid scavenger is 10 to 70%. 前記冷凍機油全重量中における前記アルキルグリシジルエステル化合物の割合は2wt%未満であることを特徴とする請求項1又は2に記載の空気調和機。   The air conditioner according to claim 1 or 2, wherein a ratio of the alkyl glycidyl ester compound in the total weight of the refrigerating machine oil is less than 2 wt%. 前記アルキルグリシジルエステル化合物は式(1)(式中のR1は炭素数4〜9のアルキル基である)であり、
前記シクログリシジルエーテル化合物は式(2)であることを特徴とする請求項1乃至3のいずれかに記載の空気調和機。
The alkyl glycidyl ester compound is of the formula (1) (wherein R 1 is an alkyl group having 4 to 9 carbon atoms),
The air conditioner according to any one of claims 1 to 3, wherein the cycloglycidyl ether compound is represented by formula (2).
前記ポリオールエステル油は式(3)、(4)、(5)、または(6)の単独または混合である(式中のR1は炭素数4〜5のアルキル基又は炭素数8〜12のアルキル基であり、式中のR1の少なくとも1つは炭素数4〜5のアルキル基である)ことを特徴とする請求項1乃至4のいずれかに記載の空気調和機。
The polyol ester oil is a single or mixed of the formula (3), (4), (5), or (6) (wherein R 1 is an alkyl group having 4 to 5 carbon atoms or an alkyl group having 8 to 12 carbon atoms. 5. The air conditioner according to claim 1, wherein the air conditioner is an alkyl group, and at least one of R 1 in the formula is an alkyl group having 4 to 5 carbon atoms.
JP2013140275A 2013-07-04 2013-07-04 Air conditioner Revoked JP2015014395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013140275A JP2015014395A (en) 2013-07-04 2013-07-04 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013140275A JP2015014395A (en) 2013-07-04 2013-07-04 Air conditioner

Publications (1)

Publication Number Publication Date
JP2015014395A true JP2015014395A (en) 2015-01-22

Family

ID=52436230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013140275A Revoked JP2015014395A (en) 2013-07-04 2013-07-04 Air conditioner

Country Status (1)

Country Link
JP (1) JP2015014395A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016133000A1 (en) * 2015-02-20 2016-08-25 Jxエネルギー株式会社 Refrigerator oil and working fluid composition for refrigerators
WO2017086221A1 (en) * 2015-11-20 2017-05-26 Jxエネルギー株式会社 Refrigeration oil
JPWO2017145278A1 (en) * 2016-02-24 2018-10-11 三菱電機株式会社 Refrigeration equipment
JP2020056517A (en) * 2018-09-28 2020-04-09 株式会社富士通ゼネラル Refrigeration cycle device
WO2023286863A1 (en) * 2021-07-16 2023-01-19 Eneos株式会社 Method for improving combustion resistance of working fluid, use of acid scavenger as combustion resistance improver, and combustion resistance improver

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0420597A (en) * 1990-05-14 1992-01-24 Nippon Oil Co Ltd Refrigerator oil for hydrofluorocarbon refrigerant
JPH07150160A (en) * 1993-12-01 1995-06-13 Nippon Petrochem Co Ltd Lubricating oil
JPH08231972A (en) * 1996-01-09 1996-09-10 Hitachi Ltd Refrigerating unit
JPH09302372A (en) * 1996-05-10 1997-11-25 Kao Corp Refrigerator oil composition
JP2000345183A (en) * 1999-03-26 2000-12-12 Nippon Mitsubishi Oil Corp Refrigeration oil composition
JP2008208262A (en) * 2007-02-27 2008-09-11 Nippon Oil Corp Refrigerating machine oil composition and working fluid composition for refrigerating machine
WO2008130039A1 (en) * 2007-04-18 2008-10-30 Idemitsu Kosan Co., Ltd. Lubricating oil composition for refrigerators and compressors with the composition
JP2009074018A (en) * 2007-02-27 2009-04-09 Nippon Oil Corp Refrigerator oil and working fluid composition for refrigerator
JP2010139171A (en) * 2008-12-12 2010-06-24 Hitachi Appliances Inc Refrigerant compressor and refrigerating cycle device
JP2013014673A (en) * 2011-07-01 2013-01-24 Idemitsu Kosan Co Ltd Lubricant composition for compression type refrigerator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0420597A (en) * 1990-05-14 1992-01-24 Nippon Oil Co Ltd Refrigerator oil for hydrofluorocarbon refrigerant
JPH07150160A (en) * 1993-12-01 1995-06-13 Nippon Petrochem Co Ltd Lubricating oil
JPH08231972A (en) * 1996-01-09 1996-09-10 Hitachi Ltd Refrigerating unit
JPH09302372A (en) * 1996-05-10 1997-11-25 Kao Corp Refrigerator oil composition
JP2000345183A (en) * 1999-03-26 2000-12-12 Nippon Mitsubishi Oil Corp Refrigeration oil composition
JP2008208262A (en) * 2007-02-27 2008-09-11 Nippon Oil Corp Refrigerating machine oil composition and working fluid composition for refrigerating machine
JP2009074018A (en) * 2007-02-27 2009-04-09 Nippon Oil Corp Refrigerator oil and working fluid composition for refrigerator
WO2008130039A1 (en) * 2007-04-18 2008-10-30 Idemitsu Kosan Co., Ltd. Lubricating oil composition for refrigerators and compressors with the composition
JP2010139171A (en) * 2008-12-12 2010-06-24 Hitachi Appliances Inc Refrigerant compressor and refrigerating cycle device
JP2013014673A (en) * 2011-07-01 2013-01-24 Idemitsu Kosan Co Ltd Lubricant composition for compression type refrigerator

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016133000A1 (en) * 2015-02-20 2016-08-25 Jxエネルギー株式会社 Refrigerator oil and working fluid composition for refrigerators
WO2016133001A1 (en) * 2015-02-20 2016-08-25 Jxエネルギー株式会社 Refrigerator oil and working fluid composition for refrigerators
WO2016132999A1 (en) * 2015-02-20 2016-08-25 Jxエネルギー株式会社 Refrigerator oil and working fluid composition for refrigerators
CN107250330A (en) * 2015-02-20 2017-10-13 Jxtg能源株式会社 Refrigerator oil and working fluid composition for refrigerating machine
JPWO2016133000A1 (en) * 2015-02-20 2017-12-21 Jxtgエネルギー株式会社 Refrigerator oil and working fluid composition for refrigerator
US10351793B2 (en) * 2015-02-20 2019-07-16 Jxtg Nippon Oil & Energy Corporation Refrigerator oil and working fluid composition for refrigerators
WO2017086221A1 (en) * 2015-11-20 2017-05-26 Jxエネルギー株式会社 Refrigeration oil
JP2017101215A (en) * 2015-11-20 2017-06-08 Jxtgエネルギー株式会社 Refrigeration oil
JPWO2017086221A1 (en) * 2015-11-20 2018-09-06 Jxtgエネルギー株式会社 Refrigeration oil
JPWO2017145278A1 (en) * 2016-02-24 2018-10-11 三菱電機株式会社 Refrigeration equipment
JP2020056517A (en) * 2018-09-28 2020-04-09 株式会社富士通ゼネラル Refrigeration cycle device
WO2023286863A1 (en) * 2021-07-16 2023-01-19 Eneos株式会社 Method for improving combustion resistance of working fluid, use of acid scavenger as combustion resistance improver, and combustion resistance improver

Similar Documents

Publication Publication Date Title
US20200393175A1 (en) Compressor
US20200333054A1 (en) Compressor
WO2020044721A1 (en) Refrigeration cycle device
WO2019124399A1 (en) Compression machine
US20120024007A1 (en) Compressor for refrigeration and air-conditioning and refrigerating and air-conditioning apparatus
JP2011052032A (en) Refrigeration air-condition unit using 2,3,3,3-tetrafluoropropene
JP2014112026A (en) Refrigeration device
JPWO2012086518A1 (en) Compressor for refrigeration and air-conditioning equipment
JP6450896B1 (en) Refrigerant composition and refrigeration cycle apparatus using the same
JP2015014395A (en) Air conditioner
EP2773715A1 (en) Use of compositions comprising 1,1,1,2,3-pentafluoropropane and optionally z-1,1,1,4,4,4-hexafluoro-2-butene in chillers
CN109072895B (en) Electric compressor and refrigerating and air-conditioning device
WO2017199516A1 (en) Refrigeration cycle device
JP6012878B2 (en) Compressor and refrigeration cycle equipment
WO2015093183A1 (en) Air conditioner
JP2016023902A (en) Air conditioner
CN114659288A (en) Refrigeration cycle device
JP2015017730A (en) Air conditioner
JP6522345B2 (en) Refrigerating apparatus and sealed electric compressor
CN108517247A (en) A kind of synthesis refrigerator oil and preparation method thereof
JP2005248773A (en) Refrigerating device and refrigerant compressor
JP7053938B1 (en) Refrigeration cycle device
JP2015140994A (en) Air conditioner, and refrigerator oil
JP2002194369A (en) Working medium composition for air conditioning and air conditioner using the same composition
CN117365902A (en) Compressor and refrigerating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150722

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150818

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150903

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160517

AA91 Notification that invitation to amend document was cancelled

Free format text: JAPANESE INTERMEDIATE CODE: A971091

Effective date: 20160607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171010