JP2015078789A - Heat exchanger and air conditioning device including heat exchanger - Google Patents

Heat exchanger and air conditioning device including heat exchanger Download PDF

Info

Publication number
JP2015078789A
JP2015078789A JP2013215712A JP2013215712A JP2015078789A JP 2015078789 A JP2015078789 A JP 2015078789A JP 2013215712 A JP2013215712 A JP 2013215712A JP 2013215712 A JP2013215712 A JP 2013215712A JP 2015078789 A JP2015078789 A JP 2015078789A
Authority
JP
Japan
Prior art keywords
heat exchanger
melting point
brazing material
aluminum
low melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013215712A
Other languages
Japanese (ja)
Other versions
JP2015078789A5 (en
Inventor
加奈 佐藤
Kana Sato
加奈 佐藤
満貞 早川
Mitsusada Hayakawa
満貞 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013215712A priority Critical patent/JP2015078789A/en
Priority to CN201420588115.2U priority patent/CN204534884U/en
Publication of JP2015078789A publication Critical patent/JP2015078789A/en
Publication of JP2015078789A5 publication Critical patent/JP2015078789A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger in which aluminum heat transfer pipes and refrigerant pipes can be simply connected and that has excellent corrosion resistance.SOLUTION: A heat exchanger comprises: fins 12 stacked at regular intervals; and heat transfer pipes 14 and 15 that penetrate through the respective stacked fins 12 and are fixed and in which aluminum refrigerant pipes 19 are connected to both end parts 14a and 14b. The heat transfer pipes 14 and 15 and the refrigerant pipes 19 are connected by a low melting point brazing material 17 mixed with noncorrosive flux, and surfaces of the low melting point brazing material 17 in contact with air are covered by coating members 18.

Description

本発明は、例えばアルミニウム製の冷媒配管がろう付けされるアルミニウム製の熱交換器、およびその熱交換器を備えた空気調和装置に関するものである。   The present invention relates to an aluminum heat exchanger to which, for example, an aluminum refrigerant pipe is brazed, and an air conditioner including the heat exchanger.

アルミニウム製の配管(以下、「アルミ配管」と称す)を接合する方法としては、アルミニウム−ケイ素合金のろう材を用いたろう付けが一般的である。しかし、アルミニウム−ケイ素合金の融点は約600℃、アルミ配管の融点は約660℃であるため、ろう材とアルミ配管との融点差が少ない。このことから、ろう付けをする際に、アルミ配管が溶融しないように、また、アルミ配管の溶融に加熱が弱くなってろう周りのろう材が不足しないようにと、アルミ配管の接合に高信頼性を保つ上で、ろう付け作業者の負担が大きいという現状である。   As a method for joining aluminum pipes (hereinafter referred to as “aluminum pipes”), brazing using a brazing material of an aluminum-silicon alloy is common. However, since the melting point of the aluminum-silicon alloy is about 600 ° C. and the melting point of the aluminum pipe is about 660 ° C., the melting point difference between the brazing material and the aluminum pipe is small. For this reason, when brazing, the aluminum piping is not melted, and the heat is weakened by the melting of the aluminum piping, so that there is no shortage of brazing material around the brazing. The current situation is that the burden on the brazing worker is heavy to maintain the characteristics.

作業者の負担を軽減するために、容易にアルミ配管を接続する方法として、例えば、CsF入りの非腐食性フラックスと亜鉛または亜鉛を主成分とする亜鉛−アルミニウム合金からなる低融点ろう材との混合物を用いて、低温でろう付けを行う方法がある(例えば、特許文献1参照)。   In order to reduce the burden on the operator, as a method for easily connecting aluminum piping, for example, a non-corrosive flux containing CsF and a low melting point brazing material made of zinc or a zinc-aluminum alloy mainly composed of zinc are used. There is a method of brazing at a low temperature using a mixture (see, for example, Patent Document 1).

特開2005−111527号公報(要約)JP 2005-111527 A (summary)

しかしながら、上記特許文献1による方法でろう付けを行うと、ろう付け部が電位的に卑となるため、ろう付けとアルミ配管の接合部で異種金属間の腐食が生じ、ろう付け部の耐食性が劣ってしまう。そのため、低融点ろう材の接合箇所から腐食が進行し、配管内部を流動する物質(冷媒)が外部へ漏れる可能性がある。   However, when brazing is performed by the method according to Patent Document 1, the brazed portion becomes lower in terms of potential, so that corrosion between different metals occurs at the joint between the brazing and the aluminum piping, and the corrosion resistance of the brazed portion is reduced. It will be inferior. Therefore, corrosion progresses from the joining point of the low melting point brazing material, and there is a possibility that a substance (refrigerant) flowing inside the pipe leaks to the outside.

本発明は、前記のような課題を解決するためになされたもので、アルミニウム製の伝熱管および冷媒配管を簡易的に接合することが可能で、かつ耐腐食性に優れた熱交換器および熱交換器を備えた空気調和装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and is capable of simply joining an aluminum heat transfer tube and a refrigerant pipe, and having excellent corrosion resistance and heat. It aims at obtaining the air conditioning apparatus provided with the exchanger.

本発明に係る熱交換器は、一定の間隔で積層されたフィンと、積層された各フィンを貫通して固定され、両端部にアルミニウム製の冷媒配管が接合されるアルミニウム製の伝熱管とを備え、伝熱管と冷媒配管とを、非腐食性フラックスが混合された低融点ろう材で接合し、低融点ろう材の大気と接触する表面を被膜部材で覆っている。   The heat exchanger according to the present invention includes fins stacked at regular intervals, and aluminum heat transfer tubes that are fixed through the stacked fins and joined to both ends with aluminum refrigerant pipes. The heat transfer pipe and the refrigerant pipe are joined with a low melting point brazing material mixed with a non-corrosive flux, and the surface of the low melting point brazing material in contact with the atmosphere is covered with a coating member.

本発明においては、伝熱管と冷媒配管とを、非腐食性フラックスが混合された低融点ろう材で接合し、低融点ろう材の大気と接触する表面を被膜部材で覆っている。この構成により、低融点ろう材とアルミニウム製の伝熱管および冷媒配管との融点差が大きくなる。このため、より容易な接合を行うことが可能となり、さらに電位が卑である低融点ろう材を被膜部材で覆っているため、異種金属間の腐食を防ぐことができ、接合の信頼性も向上する。   In the present invention, the heat transfer tube and the refrigerant pipe are joined with a low melting point brazing material mixed with a non-corrosive flux, and the surface of the low melting point brazing material that comes into contact with the atmosphere is covered with a coating member. With this configuration, the melting point difference between the low melting point brazing filler metal, the aluminum heat transfer tube, and the refrigerant piping is increased. For this reason, it becomes possible to perform easier joining, and furthermore, since the low melting point brazing material having a low potential is covered with a coating member, corrosion between different kinds of metals can be prevented and the reliability of joining is also improved. To do.

本発明の実施の形態に係る空気調和装置の概略構成を示す冷媒回路図である。It is a refrigerant circuit figure showing a schematic structure of an air harmony device concerning an embodiment of the invention. 図1に示す室外熱交換器の拡大斜視図である。It is an expansion perspective view of the outdoor heat exchanger shown in FIG. 図2におけるA部およびB部を拡大して示す断面図である。It is sectional drawing which expands and shows the A section and B section in FIG. アルミニウム製の配管、一般的なろう材(アルミニウム−ケイ素合金)、低融点ろう材の電極電位の測定結果を示す図である。It is a figure which shows the measurement result of the electrode potential of aluminum piping, a common brazing material (aluminum-silicon alloy), and a low melting point brazing material.

以下に、本発明に係る熱交換器を備えた空気調和装置の実施の形態について説明する。
図1は本発明の実施の形態に係る空気調和装置の概略構成を示す冷媒回路図である。
Hereinafter, an embodiment of an air-conditioning apparatus including a heat exchanger according to the present invention will be described.
FIG. 1 is a refrigerant circuit diagram showing a schematic configuration of an air-conditioning apparatus according to an embodiment of the present invention.

実施の形態に係る空気調和装置100は、図1に示すように、圧縮機1と、マフラ2と、四方弁3と、本発明に係る熱交換器である室外熱交換器4と、毛細管5と、ストレーナ6と、電子制御式膨張弁7と、ストップバルブ8a、8bと、室内熱交換器9と、補助マフラ10とが、冷媒配管19により接続されて構成される冷媒回路を備えている。   As shown in FIG. 1, an air conditioner 100 according to an embodiment includes a compressor 1, a muffler 2, a four-way valve 3, an outdoor heat exchanger 4 that is a heat exchanger according to the present invention, and a capillary tube 5. And a strainer 6, an electronically controlled expansion valve 7, stop valves 8 a and 8 b, an indoor heat exchanger 9, and an auxiliary muffler 10 are connected to each other through a refrigerant pipe 19. .

この空気調和装置100の室内熱交換器9には、外気、室内、冷媒等の各温度に基づいて、圧縮機1、電子制御式膨張弁7等のアクチュエータ類の制御を司る制御部11が設けられている。前述の四方弁3は、冷房と暖房の冷媒サイクルを切り替えるための弁で、制御部11によって制御される。   The indoor heat exchanger 9 of the air conditioner 100 is provided with a control unit 11 that controls the actuators such as the compressor 1 and the electronically controlled expansion valve 7 based on the temperatures of the outside air, the room, the refrigerant, and the like. It has been. The aforementioned four-way valve 3 is a valve for switching between the cooling and heating refrigerant cycles, and is controlled by the control unit 11.

制御部11により四方弁3が冷房に切り替えられたときには、冷媒は、圧縮機1により圧縮されて高温高圧のガス冷媒となり、四方弁3を介して室外熱交換器4に流入する。室外熱交換器4に流入した高温高圧のガス冷媒は、室外熱交換器4を通過する室外空気と熱交換(放熱)され、高圧の液冷媒となって流出する。室外熱交換器4から流出した高圧の液冷媒は、毛細管5及び電子制御式膨張弁7で減圧されて、低圧の気液二相の冷媒となり、室内熱交換器9に流入する。室内熱交換器9に流入した気液二相の冷媒は、室内熱交換器9を通過する室内空気と熱交換され、低温低圧のガス冷媒となって圧縮機1に吸入される。   When the four-way valve 3 is switched to cooling by the control unit 11, the refrigerant is compressed by the compressor 1 to become a high-temperature and high-pressure gas refrigerant and flows into the outdoor heat exchanger 4 through the four-way valve 3. The high-temperature and high-pressure gas refrigerant that has flowed into the outdoor heat exchanger 4 undergoes heat exchange (heat radiation) with outdoor air that passes through the outdoor heat exchanger 4 and flows out as high-pressure liquid refrigerant. The high-pressure liquid refrigerant that has flowed out of the outdoor heat exchanger 4 is depressurized by the capillary 5 and the electronically controlled expansion valve 7, becomes a low-pressure gas-liquid two-phase refrigerant, and flows into the indoor heat exchanger 9. The gas-liquid two-phase refrigerant flowing into the indoor heat exchanger 9 is heat-exchanged with the indoor air passing through the indoor heat exchanger 9, and is drawn into the compressor 1 as a low-temperature and low-pressure gas refrigerant.

また、制御部11により四方弁3が暖房に切り替えられたときには、冷媒は、前記と同様に圧縮機1により圧縮されて高温高圧のガス冷媒となり、四方弁3を介して室内熱交換器9に流入する。室内熱交換器9に流入した高温高圧のガス冷媒は、室内熱交換器9を通過する室内空気と熱交換され、高圧の液冷媒となる。室内熱交換器9から流出した高圧の液冷媒は、電子制御式膨張弁7および毛細管5で減圧されて、低圧の気液二相の冷媒となり、室外熱交換器4に流入する。室外熱交換器4に流入した低圧の気液二相の冷媒は、室外熱交換器4を通過する室外空気と熱交換され、低温低圧のガス冷媒となって圧縮機1に吸入される。   When the control unit 11 switches the four-way valve 3 to heating, the refrigerant is compressed by the compressor 1 to become a high-temperature and high-pressure gas refrigerant in the same manner as described above, and enters the indoor heat exchanger 9 via the four-way valve 3. Inflow. The high-temperature and high-pressure gas refrigerant that has flowed into the indoor heat exchanger 9 is heat-exchanged with indoor air that passes through the indoor heat exchanger 9 and becomes high-pressure liquid refrigerant. The high-pressure liquid refrigerant flowing out of the indoor heat exchanger 9 is depressurized by the electronically controlled expansion valve 7 and the capillary tube 5 to become a low-pressure gas-liquid two-phase refrigerant and flows into the outdoor heat exchanger 4. The low-pressure gas-liquid two-phase refrigerant that has flowed into the outdoor heat exchanger 4 is heat-exchanged with outdoor air that passes through the outdoor heat exchanger 4 and is sucked into the compressor 1 as a low-temperature low-pressure gas refrigerant.

次に、室外熱交換器4の構成について、図2を用いて説明する。図2は図1に示す室外熱交換器の拡大斜視図である。
図2に示す室外熱交換器4は、例えばフィンアンドチューブ型の熱交換器で、一定の間隔で平行に積層された複数のフィン12と、複数のフィン12の積層方向の外側に配置された固定板13と、積層された複数のフィン12と固定板13に垂直に挿入された複数のU字形状のヘアピン管14と、互いに隣接するヘアピン管14の端部を連通するU字形状のベンド15とで構成されている。ヘアピン管14とベンド15とで伝熱管が構成される。
Next, the configuration of the outdoor heat exchanger 4 will be described with reference to FIG. FIG. 2 is an enlarged perspective view of the outdoor heat exchanger shown in FIG.
The outdoor heat exchanger 4 shown in FIG. 2 is, for example, a fin-and-tube heat exchanger, and is arranged outside the plurality of fins 12 stacked in parallel at regular intervals and the plurality of fins 12 in the stacking direction. A fixed plate 13, a plurality of laminated fins 12, a plurality of U-shaped hairpin tubes 14 inserted perpendicularly to the fixed plate 13, and a U-shaped bend communicating the ends of adjacent hairpin tubes 14 15. The hairpin tube 14 and the bend 15 constitute a heat transfer tube.

前述のフィン12、固定板13、ヘアピン管14およびベンド15は、アルミニウム材によって形成されている。ヘアピン管14は、各フィン12に設けられた穴に挿入された後、拡管されて各フィン12に固定されている。ヘアピン管14とベンド15は、製造ライン上で、アルミニウム−ケイ素合金のろう材16によって接合されている。固定板13は、室外機の外郭を形成する箱形状のケーシング内に、前述の室外熱交換器4を固定するための部材である。複数のヘアピン管14のうち、両端に位置するヘアピン管14の端部14a、14bは、低融点ろう材17によってアルミニウム製の冷媒配管19と接合されている。その接合部A、Bには、被膜部材18によって覆われている。   The fin 12, the fixing plate 13, the hairpin tube 14, and the bend 15 are formed of an aluminum material. The hairpin tube 14 is inserted into a hole provided in each fin 12 and then expanded to be fixed to each fin 12. The hairpin tube 14 and the bend 15 are joined by an aluminum-silicon alloy brazing material 16 on the production line. The fixing plate 13 is a member for fixing the outdoor heat exchanger 4 described above in a box-shaped casing that forms the outline of the outdoor unit. Of the plurality of hairpin tubes 14, end portions 14 a and 14 b of the hairpin tubes 14 positioned at both ends are joined to an aluminum refrigerant pipe 19 by a low melting point brazing material 17. The joints A and B are covered with a coating member 18.

ここで、接合部A、Bの構成について、図3を用いて詳述する。図3は図2におけるA部およびB部を拡大して示す断面図である。
ヘアピン管14の端部14a、14bは、冷媒配管19の外径よりも大きく拡管されている。その端部14a、14bの拡管により、端部14a、14bの内周面と冷媒配管19の外周面との間に、筒形状の隙間Waが形成されている。その隙間Waには、低融点ろう材17が充填されている。さらに、端部14a、14bの外周面および低融点ろう材17の大気と接触する表面が被膜部材18によって覆われている。低融点ろう材17は、CsF入りの非腐食性フラックスと、亜鉛あるいは亜鉛を主成分とする亜鉛−アルミニウム合金との混合物からなり、融点が560℃以下となっている。
Here, the configuration of the joints A and B will be described in detail with reference to FIG. FIG. 3 is an enlarged cross-sectional view showing a portion A and a portion B in FIG.
The ends 14 a and 14 b of the hairpin tube 14 are expanded larger than the outer diameter of the refrigerant pipe 19. Due to the expansion of the end portions 14 a and 14 b, a cylindrical gap Wa is formed between the inner peripheral surface of the end portions 14 a and 14 b and the outer peripheral surface of the refrigerant pipe 19. The gap Wa is filled with a low melting point brazing material 17. Further, the outer peripheral surfaces of the end portions 14 a and 14 b and the surface of the low melting point brazing material 17 that comes into contact with the atmosphere are covered with the coating member 18. The low melting point brazing material 17 is made of a mixture of non-corrosive flux containing CsF and zinc or a zinc-aluminum alloy containing zinc as a main component, and has a melting point of 560 ° C. or lower.

次に、ヘアピン管14の端部14a、14bと冷媒配管19との接合について説明する。
ヘアピン管14の端部14a、14bに冷媒配管19を挿入し、端部14a、14bと冷媒配管19との間の隙間Waに低融点ろう材17を充填する。その状態においてトーチ等の加熱手段でヘアピン管14の端部14a、14bをそれぞれ加熱しながら、低融点ろう材17を溶融し、ヘアピン管14の端部14a、14bと冷媒配管19とを接合する。
Next, the joining of the end portions 14a and 14b of the hairpin tube 14 and the refrigerant pipe 19 will be described.
The refrigerant pipe 19 is inserted into the end portions 14 a and 14 b of the hairpin tube 14, and the low melting point brazing material 17 is filled in the gap Wa between the end portions 14 a and 14 b and the refrigerant pipe 19. In this state, the low melting point brazing material 17 is melted while heating the ends 14a and 14b of the hairpin tube 14 with heating means such as a torch, and the ends 14a and 14b of the hairpin tube 14 and the refrigerant pipe 19 are joined. .

このように、アルミニウム製のヘアピン管14の端部14a、14bとアルミニウム製の冷媒配管19との接合に、融点が560℃以下の低融点ろう材17を用いることにより、低融点ろう材17と、融点が660℃のアルミニウム製の配管(ヘアピン管14および冷媒配管19)との融点差が100℃以上となる。このため、より容易でかつ信頼性の高い接合を行うことができる。   Thus, by using the low melting point brazing material 17 having a melting point of 560 ° C. or less for joining the end portions 14a, 14b of the aluminum hairpin tube 14 and the aluminum refrigerant pipe 19, the low melting point brazing material 17 and The melting point difference from the aluminum piping (hairpin tube 14 and refrigerant piping 19) having a melting point of 660 ° C. is 100 ° C. or more. For this reason, it is possible to perform easier and more reliable bonding.

しかし、低融点ろう材17は、亜鉛を主成分としているため、アルミニウム材と比較して電極電位が低い、すなわち「卑」であるため、異種金属間に腐食が生じて、低融点ろう材17の方が腐食し易い。なお、異種金属間の腐食とは、電位の異なる2種類の金属が電解液中で接触した場合に生じる腐食である。つまり、接触する2種類の金属間で電位差が生じ、かつ電解液と接触すると、局部電池が形成され、電位が高い「貴」な金属(アルミニウム材)から電位が低い「卑」な金属(亜鉛)へ電流が流れ、電位が低い「卑」な金属(低融点ろう材17)において腐食が生じる。   However, since the low melting point brazing material 17 is mainly composed of zinc, the electrode potential is lower than that of the aluminum material, that is, it is “base”. Is more susceptible to corrosion. The corrosion between different metals is corrosion that occurs when two types of metals having different potentials come into contact with each other in the electrolyte. In other words, when a potential difference occurs between two types of metals that come into contact with each other and an electrolyte is contacted, a local battery is formed, and from a “noble” metal (aluminum material) with a high potential to a “base” metal (zinc with a low potential) ), And corrosion occurs in the “base” metal (low melting point brazing material 17) having a low potential.

図4はアルミニウム製の配管、一般的なろう材(アルミニウム−ケイ素合金)、低融点ろう材の電極電位の測定結果を示す図である。
測定には、5%のNaClの溶液中で行い、参照電極として銀−塩化銀電極を用いた。図4に示すように、アルミニウム製の配管、即ちヘアピン管14および冷媒配管19と一般的なろう材との電位差が約130mVであるのに対し、ヘアピン管14および冷媒配管19と低融点ろう材17との電位差は約200mVとなっている。一般的に電位差が200mV以上の場合、異種金属間の腐食が顕著になってくるため、アルミニウム製のヘアピン管14と冷媒配管19との接合に低融点ろう材17を用いる場合には防食することが必須となる。
FIG. 4 is a diagram showing measurement results of electrode potentials of aluminum piping, a general brazing material (aluminum-silicon alloy), and a low melting point brazing material.
The measurement was performed in a 5% NaCl solution, and a silver-silver chloride electrode was used as a reference electrode. As shown in FIG. 4, the potential difference between aluminum pipes, that is, the hairpin pipe 14 and the refrigerant pipe 19, and the general brazing material is about 130 mV, whereas the hairpin pipe 14 and the refrigerant pipe 19 and the low melting point brazing material. The potential difference from 17 is about 200 mV. In general, when the potential difference is 200 mV or more, corrosion between different types of metals becomes prominent. Therefore, when the low melting point brazing material 17 is used for joining the aluminum hairpin tube 14 and the refrigerant piping 19, the corrosion should be prevented. Is essential.

低融点ろう材17での異種金属間の腐食を防止するためには、ヘアピン管14および冷媒配管19と低融点ろう材17との接触部に電解液を付着させないことが重要である。電解液とは、電気を通す液体のことで、水道水、雨水、結露による水滴なども含まれる。   In order to prevent corrosion between dissimilar metals in the low melting point brazing material 17, it is important that the electrolyte does not adhere to the contact portion between the hairpin tube 14 and the refrigerant pipe 19 and the low melting point brazing material 17. The electrolytic solution is a liquid that conducts electricity, and includes tap water, rain water, and water droplets due to condensation.

そこで、本実施の形態においては、図3に示すように、電解液が付着する可能性のある、ヘアピン管14と低融点ろう材17の接触部、冷媒配管19と低融点ろう材17の接触部、および低融点ろう材17の大気と接触する表面を被膜部材18で覆うようにしている。被膜部材18として、熱収縮チューブが用いられている。この熱収縮チューブは、温風によって収縮して硬化し、図3に示すように、ヘアピン管14の端部14a、14b、低融点ろう材17の大気と接触する表面、及び冷媒配管19とを覆う。   Therefore, in the present embodiment, as shown in FIG. 3, the contact portion between the hairpin tube 14 and the low melting point brazing material 17 and the contact between the refrigerant pipe 19 and the low melting point brazing material 17 to which the electrolytic solution may adhere. And the surface of the low melting point brazing material 17 in contact with the atmosphere is covered with the coating member 18. A heat shrinkable tube is used as the coating member 18. This heat-shrinkable tube shrinks and cures with hot air, and as shown in FIG. cover.

以上のように実施の形態によれば、アルミニウム製のヘアピン管14の端部14a、14bとアルミニウム製の冷媒配管19との接合に、アルミニウム材との融点差が100℃以上となる低融点ろう材17を用いるようにしている。このため、ヘアピン管14の端部14a、14bと冷媒配管19との接合をより容易に、かつ信頼性の高い接合を行うことができる。
また、低融点ろう材17の大気と接触する表面を被膜部材18である熱収縮チューブで覆って、ヘアピン管14と低融点ろう材17の接触部、冷媒配管19と低融点ろう材17の接触部に雨水、結露による水滴等の電解液が浸入しないようにしている。このため、アルミニウム材と比較して電位が低い「卑」な低融点ろう材17の腐食を防止できる。
As described above, according to the embodiment, the low melting point brazing solder having a melting point difference of 100 ° C. or more at the joining between the ends 14a and 14b of the aluminum hairpin tube 14 and the aluminum refrigerant pipe 19 is 100 ° C. The material 17 is used. For this reason, joining with edge part 14a, 14b of the hairpin pipe | tube 14 and the refrigerant | coolant piping 19 can be performed more easily and highly reliable.
Further, the surface of the low melting point brazing material 17 that comes into contact with the atmosphere is covered with a heat shrinkable tube as the coating member 18, and the contact portion between the hairpin tube 14 and the low melting point brazing material 17, and the contact between the refrigerant pipe 19 and the low melting point brazing material 17. This prevents electrolytes such as rainwater and water droplets from condensing from entering. For this reason, it is possible to prevent the corrosion of the “base” low melting point brazing material 17 having a lower potential than the aluminum material.

なお、実施の形態では、低融点ろう材17の大気と接触する表面を熱収縮チューブで覆うようにしたが、内側に接着剤が塗布された熱収縮チューブを用いるようにしても良い。熱収縮チューブで低融点ろう材17の大気と接触する表面を覆った際に隙間ができた場合には、隙間から電解液が浸入する可能性がある。その場合、熱収縮チューブによって隙間内の電解液が保持されるため、異種金属間の腐食による侵食が加速する可能性がある。これを防止するために、前述の如く、内側に接着剤が塗布された熱収縮チューブで低融点ろう材17の大気と接触する表面を覆って、その部分を接着剤で密着させて隙間ができないようにする。熱収縮チューブの接着剤での密着によって、電解液の浸入を完全に防ぐことができる。   In the embodiment, the surface of the low melting point brazing material 17 that comes into contact with the atmosphere is covered with a heat shrinkable tube, but a heat shrinkable tube coated with an adhesive on the inside may be used. If a gap is formed when the heat-shrinkable tube covers the surface of the low melting point brazing material 17 that comes into contact with the atmosphere, the electrolyte may enter through the gap. In that case, since the electrolyte solution in the gap is held by the heat-shrinkable tube, erosion due to corrosion between different metals may be accelerated. In order to prevent this, as described above, the surface of the low melting point brazing material 17 that is in contact with the atmosphere is covered with a heat shrinkable tube coated with an adhesive on the inside, and the portion is brought into close contact with the adhesive so that there is no gap. Like that. The adhesion of the heat shrinkable tube with the adhesive can completely prevent the electrolyte from entering.

また、熱収縮チューブに代えて、亜鉛粉末を含有する常温硬化型の塗料で低融点ろう材17の大気と接触する表面を覆うようにしても良い。常温硬化型の塗料を使用することによって、加熱工程を必要とせず、電解液の侵入を防止でき、かつ犠牲陽極層による防食を行うことができる。さらに、塗料に亜鉛粉末を含有することによって、犠牲防食を行うことが可能である。なお、塗料によって防食する場合には、必ず低融点ろう材17よりも電極電位が「卑」となる亜鉛もしくは亜鉛合金の粉末が含有されている必要がある。   Further, instead of the heat shrinkable tube, a room temperature curable paint containing zinc powder may cover the surface of the low melting point brazing material 17 in contact with the atmosphere. By using a room temperature curable coating, a heating step is not required, the intrusion of the electrolytic solution can be prevented, and corrosion protection by the sacrificial anode layer can be performed. Furthermore, sacrificial corrosion protection can be performed by containing zinc powder in the paint. In the case of anticorrosion with a paint, it is necessary to always contain zinc or zinc alloy powder whose electrode potential is “base” than the low melting point brazing material 17.

また、実施の形態では、被膜部材18によってアルミニウムと亜鉛合金(又は亜鉛)の異種金属間の腐食を防ぐようにしたが、これは一例であって、「卑」となる金属と「貴」となる金属の異種金属の接合であれば被膜部材18で覆うようにしても良い。   In the embodiment, the coating member 18 prevents corrosion between different metals of aluminum and zinc alloy (or zinc). However, this is an example, and “base” metal and “noble” It may be made to cover with the coating member 18 as long as it is a joining of different metals.

1 圧縮機、2 マフラ、3 四方弁、4 室外熱交換器、5 毛細管、6 ストレーナ、7 電子制御式膨張弁、8a、8b ストップバルブ、9 室内熱交換器、10 補助マフラ、11 制御部、12 アルミニウム製のフィン、13 アルミニウム製の固定板、14 アルミニウム製のヘアピン管、14a、14b ヘアピン管の端部、15 アルミニウム製のベンド、16 ろう材、17 低融点ろう材、18 被膜部材、19 アルミニウム製の冷媒配管、100 空気調和装置。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 Muffler, 3 Four way valve, 4 Outdoor heat exchanger, 5 Capillary, 6 Strainer, 7 Electronically controlled expansion valve, 8a, 8b Stop valve, 9 Indoor heat exchanger, 10 Auxiliary muffler, 11 Control part, 12 Aluminum fin plate, 13 Aluminum fixing plate, 14 Aluminum hairpin tube, 14a, 14b End of hairpin tube, 15 Aluminum bend, 16 Brazing material, 17 Low melting point brazing material, 18 Coating member, 19 Aluminum refrigerant piping, 100 air conditioner.

Claims (6)

一定の間隔で積層されたフィンと、
積層された各フィンを貫通して固定され、両端部にアルミニウム製の冷媒配管が接合されるアルミニウム製の伝熱管とを備え、
前記伝熱管と前記冷媒配管とを、非腐食性フラックスが混合された低融点ろう材で接合し、前記低融点ろう材の大気と接触する表面を被膜部材で覆ったことを特徴とする熱交換器。
Fins stacked at regular intervals;
An aluminum heat transfer tube, which is fixed by penetrating each laminated fin and joined with an aluminum refrigerant pipe at both ends,
The heat transfer pipe and the refrigerant pipe are joined with a low melting point brazing material mixed with a non-corrosive flux, and the surface of the low melting point brazing material that contacts the atmosphere is covered with a coating member. vessel.
前記被膜部材は、熱で硬化する熱収縮チューブであることを特徴とする請求項1記載の熱交換器。   The heat exchanger according to claim 1, wherein the coating member is a heat shrinkable tube that is cured by heat. 前記熱収縮チューブの内側に接着剤が塗布されていることを特徴とする請求項2記載の熱交換器。   The heat exchanger according to claim 2, wherein an adhesive is applied to the inside of the heat shrinkable tube. 前記被膜部材は、亜鉛粉末が含有された常温硬化型の塗料であることを特徴とする請求項1記載の熱交換器。   2. The heat exchanger according to claim 1, wherein the coating member is a room temperature curable coating material containing zinc powder. 前記低融点ろう材は、亜鉛あるいは亜鉛を主成分とする亜鉛−アルミニウム合金からなり、融点が560℃以下であることを特徴とする請求項1〜4の何れか1項に記載の熱交換器。   5. The heat exchanger according to claim 1, wherein the low melting point brazing material is made of zinc or a zinc-aluminum alloy containing zinc as a main component, and has a melting point of 560 ° C. or less. . 請求項1〜5の何れか1項に記載の熱交換器を室外熱交換器として備えていることを特徴とする空気調和装置。   An air conditioner comprising the heat exchanger according to any one of claims 1 to 5 as an outdoor heat exchanger.
JP2013215712A 2013-10-16 2013-10-16 Heat exchanger and air conditioning device including heat exchanger Pending JP2015078789A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013215712A JP2015078789A (en) 2013-10-16 2013-10-16 Heat exchanger and air conditioning device including heat exchanger
CN201420588115.2U CN204534884U (en) 2013-10-16 2014-10-11 Heat exchanger and there is the aircondition of heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013215712A JP2015078789A (en) 2013-10-16 2013-10-16 Heat exchanger and air conditioning device including heat exchanger

Publications (2)

Publication Number Publication Date
JP2015078789A true JP2015078789A (en) 2015-04-23
JP2015078789A5 JP2015078789A5 (en) 2015-07-30

Family

ID=53010346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013215712A Pending JP2015078789A (en) 2013-10-16 2013-10-16 Heat exchanger and air conditioning device including heat exchanger

Country Status (2)

Country Link
JP (1) JP2015078789A (en)
CN (1) CN204534884U (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101806260B1 (en) * 2015-12-23 2017-12-07 희성정밀(주) A cooling fin for The battery cell assembly and The method thereof
WO2019124361A1 (en) * 2017-12-18 2019-06-27 ダイキン工業株式会社 Refrigeration cycle device
US11007592B2 (en) 2015-07-30 2021-05-18 Denso Aircool Corporation Heat exchanger and method for producing same
JPWO2021181683A1 (en) * 2020-03-13 2021-09-16
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
US11492527B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11535781B2 (en) 2017-12-18 2022-12-27 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus
JP7442033B2 (en) 2019-10-15 2024-03-04 パナソニックIpマネジメント株式会社 Heat exchanger and air conditioner equipped with the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105928394A (en) * 2016-05-11 2016-09-07 南京工业大学 Laminated finned tube heat exchanger
DE102016114466A1 (en) * 2016-08-04 2018-02-08 Eisenmann Se Conditioning device and method for conditioning a gaseous medium and system and method for treating workpieces
JP6673318B2 (en) * 2017-12-05 2020-03-25 ダイキン工業株式会社 air conditioner
BR202022020179Y1 (en) * 2022-10-05 2023-09-26 Gav Representação Comercial Ltda CONSTRUCTIVE ARRANGEMENT APPLIED TO ALUMINUM WIRE EVAPORATOR AND CONDENSER

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002254165A (en) * 2001-03-02 2002-09-10 Hoshizaki Electric Co Ltd Pipe joining structure and joining method
JP2004010685A (en) * 2002-06-05 2004-01-15 Kurosawa Construction Co Ltd Rust-inhibitive coating
JP2007216267A (en) * 2006-02-17 2007-08-30 Denso Corp Low melting point brazing filler metal for aluminum heat exchanger and method for producing aluminum heat exchanger
JP2010112667A (en) * 2008-11-10 2010-05-20 Mitsubishi Electric Corp Air conditioner
JP2011202723A (en) * 2010-03-25 2011-10-13 Panasonic Corp Aluminum tube connecting structure and heat exchanger having the same
EP2645042A1 (en) * 2012-03-30 2013-10-02 BSH Electrodomésticos España, S.A. Heat exchanger, household appliance comprising such heat exchanger and method for manufacturing such heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002254165A (en) * 2001-03-02 2002-09-10 Hoshizaki Electric Co Ltd Pipe joining structure and joining method
JP2004010685A (en) * 2002-06-05 2004-01-15 Kurosawa Construction Co Ltd Rust-inhibitive coating
JP2007216267A (en) * 2006-02-17 2007-08-30 Denso Corp Low melting point brazing filler metal for aluminum heat exchanger and method for producing aluminum heat exchanger
JP2010112667A (en) * 2008-11-10 2010-05-20 Mitsubishi Electric Corp Air conditioner
JP2011202723A (en) * 2010-03-25 2011-10-13 Panasonic Corp Aluminum tube connecting structure and heat exchanger having the same
EP2645042A1 (en) * 2012-03-30 2013-10-02 BSH Electrodomésticos España, S.A. Heat exchanger, household appliance comprising such heat exchanger and method for manufacturing such heat exchanger

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11007592B2 (en) 2015-07-30 2021-05-18 Denso Aircool Corporation Heat exchanger and method for producing same
KR101806260B1 (en) * 2015-12-23 2017-12-07 희성정밀(주) A cooling fin for The battery cell assembly and The method thereof
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
US11492527B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
WO2019124361A1 (en) * 2017-12-18 2019-06-27 ダイキン工業株式会社 Refrigeration cycle device
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11535781B2 (en) 2017-12-18 2022-12-27 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
JP7442033B2 (en) 2019-10-15 2024-03-04 パナソニックIpマネジメント株式会社 Heat exchanger and air conditioner equipped with the same
JP7352215B2 (en) 2020-03-13 2023-09-28 三菱電機株式会社 Air conditioner heat exchanger and method for manufacturing an air conditioner heat exchanger
JPWO2021181683A1 (en) * 2020-03-13 2021-09-16

Also Published As

Publication number Publication date
CN204534884U (en) 2015-08-05

Similar Documents

Publication Publication Date Title
JP2015078789A (en) Heat exchanger and air conditioning device including heat exchanger
JP6004202B2 (en) Air conditioner heat exchanger
EP3244159A1 (en) Method for manufacturing refrigerant distributor, apparatus for manufacturing refrigerant distributor, refrigerant distributor, heat exchanger, and air conditioning apparatus
JP2009121758A (en) Heat exchanger and cryogenic system
JP2005090761A (en) Air conditioner
WO2017010120A1 (en) Heat exchanger and air conditioning device
JP2014020704A (en) Bonded body of pipe members and heat exchanger for refrigeration cycle device
KR101646484B1 (en) Plate Heat Exchangers having copper connectors's manufacturing method
JP2013226593A (en) Ti/Cu DISSIMILAR METAL WELDED JOINT
JP6223603B2 (en) Heat exchanger and air conditioner
JP5238428B2 (en) Heat exchanger and air conditioner
JP4980128B2 (en) Heat exchanger and refrigeration circuit using the heat exchanger
KR20160020313A (en) Heat exchanger
JP2016099037A (en) Heat exchanger of refrigeration cycle device
US11698213B2 (en) Heat exchanger, indoor unit for air-conditioner, and refrigeration device
KR20170004845A (en) Heat exchanger and air conditioner including the same
JP6064287B2 (en) Refrigeration cycle equipment
WO2023074328A1 (en) Heat exchanger, air conditioning device, and method for manufacturing heat exchanger
JP2015183850A (en) Pipe connection structure
JP5853203B2 (en) Refrigeration cycle equipment
JP5820975B2 (en) Refrigeration cycle equipment
JP2013221697A (en) Refrigerator
JP5858805B2 (en) Dissimilar metal pipe joint structure and air conditioning equipment
JP7315864B2 (en) Pressure reducing valve, heat exchanger, air conditioner, and method for manufacturing heat exchanger
WO2015104845A1 (en) Connecting member and distributor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150611

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151013

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160315