JPS5939790A - Production of single crystal - Google Patents

Production of single crystal

Info

Publication number
JPS5939790A
JPS5939790A JP57147699A JP14769982A JPS5939790A JP S5939790 A JPS5939790 A JP S5939790A JP 57147699 A JP57147699 A JP 57147699A JP 14769982 A JP14769982 A JP 14769982A JP S5939790 A JPS5939790 A JP S5939790A
Authority
JP
Japan
Prior art keywords
silicon
film
substrate
single crystal
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57147699A
Other languages
Japanese (ja)
Inventor
Masayoshi Sasaki
佐々木 正義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57147699A priority Critical patent/JPS5939790A/en
Publication of JPS5939790A publication Critical patent/JPS5939790A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To form a silicon single crystal film having high quality in the desired position on a substrate, by providing an oxidized film of silicon provided with a level difference and a polycrystalline silicon film on the substrate then subjecting the films to a recrystallization treatment by melting. CONSTITUTION:A level difference 23 is formed by a photoetching method or the like on an oxidized film 22 of silicon formed on a silicon substrate 21; thereafter, a polycrystalline silicon film 24 is formed thereon. Laser light is irradiated to a region A including the part 23 and the peripheral part thereof to melt the film 24, thereby forming molten silicon 25. The molten silicon is allowed to cool and the molten silicon is cooled and solidified with the central point O of the part 23 having the lower temp. owing to the higher rate of cooling as a base point, whereby the material for semiconductors having the film 24, the polycrystalline silicon 26 formed in the stage of recrystallization and the single crystal silicon 27 film formed by the recrystallization on the substrate 21 through the film 22 is obtd.

Description

【発明の詳細な説明】 (技術分野) この発明は単結晶の製造方法に係シ、特に絶縁膜上に半
導体単結晶を成長させる方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method for manufacturing a single crystal, and particularly to a method for growing a semiconductor single crystal on an insulating film.

(従来技術とその問題点) 絶縁膜上に単結晶を成長させる方法として5OS(シリ
コンオン−サ/ファイア)が実用化されている。SO8
は絶縁体であるサファイア結晶表面にシリコンの単結晶
をエピタキシアル成長させるものであるが、基板として
サファイア結晶を使用しているためシリコン単結晶層は
基板の表面にだけしか形成出来ない。
(Prior art and its problems) 5OS (silicon-on-silicon/fire) has been put into practical use as a method for growing a single crystal on an insulating film. SO8
In this method, a silicon single crystal is grown epitaxially on the surface of a sapphire crystal, which is an insulator, but since a sapphire crystal is used as a substrate, a silicon single crystal layer can only be formed on the surface of the substrate.

これに対してグラフオエピタキシィという方法が提案さ
れている。この方法は非晶質絶縁膜にレリーフを施こし
、その上に堆積した多結晶をレリーフの形状に従がって
単結晶化させ、望みどおシの単結晶を得ようとするもの
である。第1図(a)。
For this purpose, a method called graph-o-epitaxy has been proposed. In this method, a relief is applied to an amorphous insulating film, and the polycrystalline deposited on the film is turned into a single crystal according to the shape of the relief, in order to obtain the desired single crystal. . Figure 1(a).

(b)はグラフオエピタキシィの原理を説明するための
模式図で、1ノは絶縁性基板、12は結晶化されるべき
材料で通常半導体材料を薄膜化して被着したものが用い
られる。
(b) is a schematic diagram for explaining the principle of graphoepitaxy, where 1 is an insulating substrate, 12 is a material to be crystallized, which is usually a thin film of a semiconductor material deposited on it.

13a、13bは基板11表面に施こされたレリーフで
、得ようとする単結晶の面方位に応じて種々の形状に蝕
刻されて形成される。第1図(a)では(100)面方
位の単結晶が、第1図(b)ではく110〉面方向の単
結晶がそれぞれ成長することが期待される。しかし、こ
のグラフオエピタキシィは技術的に困難な課題が多いた
め実用化には到っていない。
Reliefs 13a and 13b are formed on the surface of the substrate 11, and are etched into various shapes depending on the plane orientation of the single crystal to be obtained. In FIG. 1(a), a single crystal with a (100) plane orientation is expected to grow, whereas in FIG. 1(b), a single crystal with a 110> plane orientation is expected to grow. However, graphoepitaxy has not been put into practical use due to many technical difficulties.

この他に単結晶の製造方法として、基板結晶を種結晶と
して、絶縁膜上まで結晶成長を横方向に進めようとする
シーディングエピタキシィや、絶縁膜上に島状に多結晶
層を形成しておきその多結晶層を溶融、再固化させると
きに1つのグレイン(単結晶)として成長するようコン
トロールするアイランドエピタキシィ等が提案されてい
るが、それぞれ技術的に難かしさかアシ良質な単結晶は
得られていない。
Other methods for manufacturing single crystals include seeding epitaxy, which uses a substrate crystal as a seed crystal to grow the crystal laterally onto the insulating film, and forms an island-shaped polycrystalline layer on the insulating film. Island epitaxy, which controls the growth of a single grain (single crystal) when melting and resolidifying the polycrystalline layer, has been proposed, but each method is technically difficult or requires a high-quality single crystal. No crystals were obtained.

である。It is.

;九□あ、L/−fニヤゎよい5□、□□イ、るに際し
、結晶化がレーザ照射領域の周囲から不′窺則に始まら
ないように制御しなくてはならない・(発明の目的) この発明の目的は、結晶材料の再固化時に再結晶化が溶
融部分の中心付近から起こるようにした単結晶の製造方
法を提供するにある。
9 □ Ah, L/-f is good 5 □ □ Purpose) An object of the present invention is to provide a method for producing a single crystal in which recrystallization occurs from near the center of the molten portion during resolidification of the crystal material.

(発明の概要) この発明では、溶融部分に温度差をつけるようにしたこ
とを特徴とし、基板の表面にこの基板の熱伝導率と異な
る熱伝導率を持つ絶縁膜を形成する工程と、前記絶縁膜
にその熱伝導率に応じて段差部を形成する工程と、この
段差部を被覆するように単結晶化されるべき材料を被着
する工程と、前記段差部とこの周辺部の前記材料を溶融
させた後に再固化する工程とを具備することにより上記
目的を達成した。
(Summary of the Invention) The present invention is characterized in that a temperature difference is created in the melted portion, and includes the step of forming an insulating film having a thermal conductivity different from that of the substrate on the surface of the substrate; a step of forming a stepped portion in an insulating film according to its thermal conductivity; a step of depositing a material to be made into a single crystal so as to cover the stepped portion; and a step of forming the material in the stepped portion and its surrounding area. The above object was achieved by including a step of melting and then resolidifying.

以下この発明を実施例に基づいて詳細に説明する。The present invention will be described in detail below based on examples.

(発明の実施例) (第2図、第3図、第5図は、この発明の一実施ifう
を示した製造工程別の基板断面図である。本実1.シ 施例では基板としてシリコン基板を用い、単結晶:化さ
れるべき材料として多結晶シリコンを用いた゛場合につ
いて説明する。シリコン基板21の表面にシリコン酸化
膜22を酸化又は蒸着などの適当、な方法で形成する。
(Embodiment of the Invention) (Fig. 2, Fig. 3, and Fig. 5 are cross-sectional views of a substrate according to the manufacturing process showing one embodiment of the present invention. A case will be described in which a silicon substrate is used and polycrystalline silicon is used as the material to be made into a single crystal.A silicon oxide film 22 is formed on the surface of a silicon substrate 21 by an appropriate method such as oxidation or vapor deposition.

次に酸化膜22の表面に写真蝕刻法などを利用して段差
部23を形成する。ついで多結晶シリコン膜24を、こ
の段差部23を被覆するように被着する。(第2図) つぎに、段差部23とその周辺部を含む領域(第2図に
Aで示した領域)をレーザを用いて加熱し、多結晶シリ
コン膜24を溶融させる。第3図に示した25は溶融し
た多結晶シリコンである。
Next, a step portion 23 is formed on the surface of the oxide film 22 using photolithography or the like. Then, a polycrystalline silicon film 24 is deposited to cover this stepped portion 23. (FIG. 2) Next, a region including the stepped portion 23 and its peripheral portion (region indicated by A in FIG. 2) is heated using a laser to melt the polycrystalline silicon film 24. 25 shown in FIG. 3 is molten polycrystalline silicon.

さて、ここでシリコン基板21の表面には絶縁膜として
酸化膜22が形成されているが、両者は熱伝導率におい
て大きく異なっている。すなわち、シリコン、酸化膜2
2の熱伝導率は0.0030117cm−5−de8で
あるのに対し、シリコン基板21のそれは0.3m/、
・S・degである。そこで、第3図に示すように段差
部23に接して溶融している多結晶シリコン25は、酸
化膜22の厚さが薄いため他の部分のるため温度が低く
なっている。したがって溶融状態にある多結晶シリコン
25の第3図横方向における温度分布は第4図に示すよ
うになる。なお段差部23の中心位置の座標を0点で示
し、段差部23の範囲をBで示す。
Now, here, an oxide film 22 is formed as an insulating film on the surface of the silicon substrate 21, but the two differ greatly in thermal conductivity. That is, silicon, oxide film 2
The thermal conductivity of silicon substrate 21 is 0.0030117 cm-5-de8, while that of silicon substrate 21 is 0.3 m/,
・S・deg. Therefore, as shown in FIG. 3, the temperature of the melted polycrystalline silicon 25 in contact with the stepped portion 23 is low because the oxide film 22 is thin and lies on other parts. Therefore, the temperature distribution of polycrystalline silicon 25 in the molten state in the lateral direction of FIG. 3 is as shown in FIG. 4. Note that the coordinates of the center position of the stepped portion 23 are indicated by 0 point, and the range of the stepped portion 23 is indicated by B.

このような温度分布にある溶融多結晶シリコン25が冷
えて再固化する時には、温度の低い周辺部C点および中
心部07点から結晶化が始まり、温度の高い段差部23
のエツジ部H点でそれが完了する。結晶化の進行方向を
第3図に矢印で示した。
When the molten polycrystalline silicon 25 with such temperature distribution cools and re-solidifies, crystallization starts from the peripheral point C where the temperature is low and the center point 07, and the crystallization begins at the step portion 23 where the temperature is high.
This is completed at the edge H point. The direction of progress of crystallization is shown by arrows in FIG.

つまシ、再結晶化の核形成はC点およびC′点で発生し
、ここから結晶成長が始まるのである。
Nucleation of recrystallization occurs at points C and C', and crystal growth begins from there.

C点から成長した結晶はその部分で溶融していない多結
晶シリコンに接しているためほとんどが多結晶となる。
Since the crystal grown from point C is in contact with unmolten polycrystalline silicon at that portion, most of the crystal becomes polycrystalline.

一方C′点から成長した結晶は外部から何の妨害もなけ
れば1つの核から成長してゆくことが可能であシ、H点
まで単結晶成長が進行する。
On the other hand, a crystal grown from point C' can grow from a single nucleus without any external interference, and single crystal growth progresses to point H.

第5図はこのようにして再固化が完了した状態を示した
図である。26は再結晶化した多結晶シリコン、27は
再結晶化して出来た単結晶シリコンである。
FIG. 5 is a diagram showing a state in which resolidification is completed in this manner. 26 is recrystallized polycrystalline silicon, and 27 is recrystallized single crystal silicon.

縁膜、32.33.34はそれぞれソース電極、゛ドレ
イン電極、ダート電極である。このようにし□て形成さ
れた素子は単結晶基板に直接形成した場合と同等もしく
はそれに近い特性を示す。
The edge film 32, 33, and 34 are a source electrode, a drain electrode, and a dirt electrode, respectively. A device formed in this manner exhibits characteristics equivalent to or close to those of a device formed directly on a single crystal substrate.

なお上述した段差部の形成にあたって本実施例では、単
結晶化されるべき材料が被着された部分の絶縁膜が他の
部分に比べて薄くなるように構成したが、これは基板の
熱伝導率が絶縁膜のそれよシも大きかったためである。
In addition, in forming the step portion mentioned above, in this example, the insulating film in the part where the material to be single-crystalized was deposited was made thinner than in other parts, but this is due to the thermal conductivity of the substrate. This is because the ratio was higher than that of the insulating film.

熱伝導率の関係が逆の場合には、単結晶化されるべき材
料が被着された部分の絶縁膜を他の部分に比べて厚くな
るように構成する。また絶縁膜が2層構造になっている
場合には、それぞれの熱伝導率と基板のそれとの兼ね合
いで、適当な段差を形成する必要がある。
If the thermal conductivity relationship is reversed, the insulating film is configured to be thicker in the portion where the material to be single-crystalized is deposited than in other portions. Further, when the insulating film has a two-layer structure, it is necessary to form an appropriate level difference in consideration of the thermal conductivity of each layer and that of the substrate.

いずれにしても、単結晶化されるべき材料が被着された
部分では溶融後の再固化の段階での温度分布が、第4図
に示すように中心部分とその周辺部で低くなるように段
差部を形成しなくてはならない。
In any case, in the area where the material to be single-crystalized is deposited, the temperature distribution during the re-solidification stage after melting will be lower in the center and surrounding areas, as shown in Figure 4. A stepped portion must be formed.

単結晶化されるべき材料を溶融させる手段としそも本実
施例に示したシリコン酸化膜の他にシリトパ デン窒化膜やその複合体なども使用出来る。シリ」°ン
基板とシリコン酸化膜の組合せの場合には絶縁膜の厚さ
は0.3μm〜1.0μmで段差部の厚さが0.05μ
m〜0.5μmが適当である。段差部の表面形状は種々
考えられるが、一般には短冊状とし、その長さは5μm
〜1000μmとする。レーザ又は電子線を照射すべき
範囲は、段差部とその周辺部2μm以上を加えた領域と
するのが最適である。
As a means for melting the material to be made into a single crystal, in addition to the silicon oxide film shown in this embodiment, a silitopadene nitride film or a composite thereof can also be used. In the case of a combination of a silicon substrate and a silicon oxide film, the thickness of the insulating film is 0.3 μm to 1.0 μm, and the thickness of the stepped portion is 0.05 μm.
m to 0.5 μm is suitable. Various surface shapes can be considered for the stepped portion, but generally it is a rectangular shape with a length of 5 μm.
~1000 μm. The range to be irradiated with the laser or electron beam is optimally the area including the stepped portion and its surrounding area of 2 μm or more.

(発明の効果) 以上、実施例に基づいて詳細に説明したように1、この
発明では基板と絶縁膜の熱伝導率の差を利用して所望の
形状に単結晶を形成することが出来るようにしたので、
基板表面だけでなくあらゆる部分に単結晶の成長が自由
に行なえるため素子を3次元的に集積した3次元LSI
や接合容量を小さくした高速半導体素子などに利用する
ことが出来る。
(Effects of the Invention) As described above in detail based on Examples, 1. In this invention, it is possible to form a single crystal in a desired shape by utilizing the difference in thermal conductivity between the substrate and the insulating film. So,
A 3D LSI in which elements are integrated three-dimensionally because single crystals can be grown freely not only on the substrate surface but also in all parts.
It can be used in high-speed semiconductor devices with reduced junction capacitance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b)はグラフオエピタキシィの原
理を説明するだめの模式図、第2図、第3図、第5図、
直単結晶にFETを形成した図である。 !:、’! 21・・・基板、22・・・絶縁膜、23
・・・段差部、24・・・単結晶化されるべき材料。 2.1瞥 特許出願人 工業技術院長石板誠− (b)
Figures 1 (a) and (b) are schematic diagrams for explaining the principle of graphoepitaxy, Figures 2, 3, and 5.
It is a diagram in which an FET is formed in a direct single crystal. ! :,'! 21... Substrate, 22... Insulating film, 23
. . . Step portion, 24 . . . Material to be single crystallized. 2. First Patent Applicant: Makoto Ishiita, Director of the Agency of Industrial Science and Technology (b)

Claims (1)

【特許請求の範囲】[Claims] 基板の表面にこの基板の熱伝導率と異なる熱伝導率を持
つ絶縁膜を形成する工程と、前記絶縁膜にその熱伝導率
に応じて段差部を形成する工程と、この段差部を被覆す
るように結晶化されるべき材料を被着する工程と、前記
段差部とこの周辺部の前記材料を溶融させた後に再固化
する工程とを具備したことを特徴とする単結晶の製造方
法。
A step of forming an insulating film having a thermal conductivity different from that of the substrate on the surface of the substrate, a step of forming a stepped portion in the insulating film according to the thermal conductivity, and a step of covering the stepped portion. 1. A method for producing a single crystal, comprising the steps of depositing a material to be crystallized, and melting and resolidifying the material in the stepped portion and the surrounding area.
JP57147699A 1982-08-27 1982-08-27 Production of single crystal Pending JPS5939790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57147699A JPS5939790A (en) 1982-08-27 1982-08-27 Production of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57147699A JPS5939790A (en) 1982-08-27 1982-08-27 Production of single crystal

Publications (1)

Publication Number Publication Date
JPS5939790A true JPS5939790A (en) 1984-03-05

Family

ID=15436253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57147699A Pending JPS5939790A (en) 1982-08-27 1982-08-27 Production of single crystal

Country Status (1)

Country Link
JP (1) JPS5939790A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
US11492527B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11535781B2 (en) 2017-12-18 2022-12-27 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
US11492527B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11535781B2 (en) 2017-12-18 2022-12-27 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus

Similar Documents

Publication Publication Date Title
JPH0454370B2 (en)
JPS5939790A (en) Production of single crystal
JPS5939791A (en) Production of single crystal
JPS58184720A (en) Manufacture of semiconductor film
JPS5880831A (en) Manufacture of substrate for semiconductor device
JPS6147627A (en) Manufacture of semiconductor device
JPH01264215A (en) Manufacture of semiconductor device
JPH0354819A (en) Manufacture of soi substrate
JPH0236052B2 (en)
JP2745055B2 (en) Method for manufacturing single crystal semiconductor thin film
JPH0368532B2 (en)
JPS6130024A (en) Formation of soi
JPH03286520A (en) Manufacture of thin crystalline semiconductor film
JPS63265464A (en) Manufacture of semiconductor device
JPS63174308A (en) Manufacture of semiconductor thin film crystal layer
JPS6130023A (en) Formation of soi
JPS6362893B2 (en)
JPS61251114A (en) Manufacture of single crystal silicon film
JPH0449250B2 (en)
JPH0410214B2 (en)
JPS5978999A (en) Manufacture of semiconductor single crystal film
JPS61123125A (en) Manufacture of semiconductor device
JPS62130510A (en) Manufacture of semiconductor substrate
JPH0775223B2 (en) Method for manufacturing semiconductor single crystal layer
JPS6151820A (en) Manufacture of semiconductor device