JPS58184720A - Manufacture of semiconductor film - Google Patents

Manufacture of semiconductor film

Info

Publication number
JPS58184720A
JPS58184720A JP57068467A JP6846782A JPS58184720A JP S58184720 A JPS58184720 A JP S58184720A JP 57068467 A JP57068467 A JP 57068467A JP 6846782 A JP6846782 A JP 6846782A JP S58184720 A JPS58184720 A JP S58184720A
Authority
JP
Japan
Prior art keywords
region
film
silicon layer
silicon oxide
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57068467A
Other languages
Japanese (ja)
Inventor
Hiroshi Kitajima
洋 北島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57068467A priority Critical patent/JPS58184720A/en
Publication of JPS58184720A publication Critical patent/JPS58184720A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02683Continuous wave laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline

Abstract

PURPOSE:To permit a single crystal region to be formed at desired position on an amorphous insulating substrate, through the control of the cooling rate after annealing, by coating the surface of a semiconductor film with an insulating film and providing an opening in the insulating film. CONSTITUTION:With a silica glass 11 employed as an amorphous insulating substrate, a polysilicon layer 15 is deposited thereon, and a silicon oxide film 12 is deposited on the silicon layer 15. Openings 13 are formed in the silicon oxide film 12 to irradiate the silicon layer 15 with a laser light 14 form recrystallization. The silicon layer 15 is once melted and then recrystallized. At that time, the silicon layer 15 hardens from the vicinities of the openings 13 because heat escapes from the openings 13, so that growth takes place horizontally. Accordingly, forming an opening in the center of a region for forming an element makes it possible to form within one grain an element having a size smaller than about 10mum. After the recrystallization by means of the laser light, the silicon oxide film 12 is removed, and each element-forming region is separated as an island, thereby making is possible to obtain an element having a small parasitic capacitance. In addition, since no grain boundary exists in the active region of the element, there are small characteristic variations.

Description

【発明の詳細な説明】 本発明は、製御され九位置に単結1域を有するような半
導体膜を非晶質絶縁基板上に形成するようKし九半導体
膜の!l造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to the formation of a semiconductor film having single crystal regions at nine positions on an amorphous insulating substrate. This invention relates to a manufacturing method.

絶縁基板上の単結晶半導体膜を用い丸集積回路素子は、
素子間の分離が容品であ〉、また寄生容量を低減するこ
とができることから高1!度化・高速化に適している。
Round integrated circuit elements using a single crystal semiconductor film on an insulating substrate are
The isolation between elements is excellent, and parasitic capacitance can be reduced, so it is ranked high! Suitable for speeding up and increasing speed.

とりわけ非晶質絶縁基板上の華結晶半導体膜は、三次元
ICを可能にするとじて注目されている。絶縁基板上に
単結晶半導体膜を形成する方法としては、絶縁基板とし
て単結晶を用い、シリコン−オン・サファイアやシリコ
ン・オン・スピネルのように単結晶基板上に単結晶半導
体膜を成長する方法、非晶質絶縁基板上に多結晶あるい
は非晶質のシリコンを堆積しレーザ等のビーム・アニー
ルを用いて再結晶化する方法、非晶質絶縁基板上に多結
晶あるいは非晶質のシリコンを堆積しヒーターで溶かし
て再結晶化する方法などがある。現段階では、こうした
絶縁基板上のシリコン(8i1icon On In5
ulator 以下80Iと略す)Fi1層だけである
が、三次元化を図るとすると1層目に作った素子の特性
を悪化させずに2層目を作ることを考えなければならな
くなる。エビ成長の温度を大lIK下げる方法が得られ
ないとすれば、3J1在行われている方法のうちで三次
元化に対応できる方法社、絶縁基板上に形成した多結晶
又は非晶質層にレーザ・ビームや電子ビームを照射する
ビーム・アニールを用いた方法が考えられる。
In particular, a crystalline semiconductor film on an amorphous insulating substrate is attracting attention as it enables three-dimensional ICs. A method for forming a single crystal semiconductor film on an insulating substrate is to use a single crystal as the insulating substrate and grow a single crystal semiconductor film on a single crystal substrate such as silicon-on-sapphire or silicon-on-spinel. , a method in which polycrystalline or amorphous silicon is deposited on an amorphous insulating substrate and recrystallized using beam annealing such as a laser; a method in which polycrystalline or amorphous silicon is deposited on an amorphous insulating substrate; There are methods such as depositing it, melting it with a heater, and recrystallizing it. At present, silicon on such an insulating substrate (8i1icon On In5
ulator (hereinafter abbreviated as 80I) is only one Fi layer, but if three-dimensionalization is to be achieved, it is necessary to consider creating a second layer without deteriorating the characteristics of the element created in the first layer. If we cannot find a way to lower the temperature for shrimp growth by a large degree, one of the currently available methods that can be applied to three-dimensional systems is a polycrystalline or amorphous layer formed on an insulating substrate. A method using beam annealing that irradiates with a laser beam or an electron beam is considered.

ビーム・アニールを用い丸方法ハ、 シー V (8e
@d)としてシリコンを用い友方法と、シードを用いな
い方法に大別できる。どちらの方法4単結晶域の大きさ
は数ミクロンから数十ミクロンであるが。
Round method using beam annealing, Sea V (8e
@d) It can be roughly divided into a method using silicon and a method not using seeds. In both methods, the size of the single crystal region is from a few microns to several tens of microns.

このサイズが三次元化を考えた場合問題と1に−)てく
る、シードを用いる方法では、ビーム・アニールの影響
が下層に及ばないようKする丸めには。
This size becomes a problem when three-dimensionalization is considered.In the method using a seed, it is necessary to round off K so that the influence of beam annealing does not reach the lower layer.

下層の素子の領域とシードの領域とを分離する必要があ
り、tた層数が多くなるほど目合わせの必要上シード領
域を大きくとらなくてはならず、集積度はシードがない
方法に較ぺて小さい、を九。
It is necessary to separate the lower layer element region and the seed region, and as the number of layers increases, the seed region must be larger due to alignment requirements, and the degree of integration is lower than that of a method without seeds. Small, nine.

素子の領域とシードの領域を分離しても、ビーム・アニ
ール時にはシードの領域は高温になるためシードがない
方法に較べて既に作り九素子への熱の影響は大きい。
Even if the element region and the seed region are separated, the seed region reaches a high temperature during beam annealing, so the effect of heat on the already fabricated elements is greater than in a method without a seed.

シードを用いない場合に従来用いられていた方・:じ:
:・ 法の断面図を第1図に示す。
The method traditionally used when seeds are not used:
:・ A cross-sectional view of the method is shown in Figure 1.

第1図の例では、非晶質絶縁基板として石英ガラス1を
用い、その上に化学気相堆積法(Chanics+IV
apor Deposition法、以下CVD法と略
)でポリシリコンを0.6μm堆積し、更にその上K 
CVD法で酸化シリコン膜(840!II ) 2を1
800人堆積しレーザ光3で再結晶化を行ってい友、レ
ーザ光3としてはCW Nd : YAG (λ= I
f)64m )を用いた。8i0゜膜の厚さはλ=1.
06μ−の光の透過度が大きくなるように選んだ、シリ
コン層4は一度溶解し、再結晶化すると1μm=10μ
m程度のグレインに成長するが、グレインの位置に規則
性はなかった。このことは、平坦な非晶質基板を用いた
場合ばかりでなく、非晶質基板にグレーティングを形成
した方法(いわゆる「グラフオエピタキシー」)で4M
様であった。
In the example shown in FIG. 1, a quartz glass 1 is used as the amorphous insulating substrate, and a chemical vapor deposition method (Chanics+IV) is applied thereon.
Polysilicon was deposited to a thickness of 0.6 μm using the apor deposition method (hereinafter abbreviated as CVD method), and then K
Silicon oxide film (840!II) 2 to 1 using CVD method
800 people were deposited and recrystallized with laser beam 3.As laser beam 3, CW Nd: YAG (λ= I
f) 64m) was used. The thickness of the 8i0° film is λ=1.
The silicon layer 4, which was selected so that the light transmittance of 0.6 μm would be large, is once melted and recrystallized to have a diameter of 1 μm = 10 μm.
Although the grains grew to about m, there was no regularity in the position of the grains. This is true not only when a flat amorphous substrate is used, but also when a grating is formed on an amorphous substrate (so-called "graph-o-epitaxy").
It was like that.

従って、素子を十分に作れるサイズの単結晶領域ができ
ているにもかかわらず、単結晶域は適当な位置にでき、
制御できないため実際に素子を作ると結晶粒界が活性領
婢内に含まれてしまう。この1 結果、結晶粒界が活性領域内にどのくらい含まれている
かKよって素子特性が非常に大きくばらつくという欠点
を有していた。
Therefore, even though the single crystal region is large enough to make a device, the single crystal region can be placed at an appropriate position.
Since it cannot be controlled, when an element is actually manufactured, the crystal grain boundaries are included in the active region. As a result, the device characteristics have a drawback that the device characteristics vary greatly depending on how many crystal grain boundaries are included in the active region.

本発明の目的は、従来法が持っていた単結晶領域の位置
の制御ができないという欠点、言いかえれば素子を作っ
ても活性領域に結晶粒界が存在し素子特性を悪化させて
しまうという欠点を改善し。
The purpose of the present invention is to overcome the disadvantage of conventional methods in that the position of the single crystal region cannot be controlled; in other words, even if a device is manufactured, crystal grain boundaries exist in the active region, which deteriorates device characteristics. Improve.

所望の位置に制御性良く単結晶領域を形成するための製
造方法を提供するととにある。
It is an object of the present invention to provide a manufacturing method for forming a single crystal region at a desired position with good controllability.

本発明は、非晶質絶縁基板上に多結晶又は非結晶質の半
導体膜を形成し、更にその半導体膜の上に絶縁膜を形成
し、半導体膜を単結晶化する位置の絶縁膜を選択エツチ
ングして開口部を設けてビーム・アニールを行うことを
特徴とし、*記非晶質絶縁膜に設けた開口部より冷却が
生ずる友めK。
The present invention forms a polycrystalline or amorphous semiconductor film on an amorphous insulating substrate, further forms an insulating film on the semiconductor film, and selects the insulating film at a position where the semiconductor film is made into a single crystal. It is characterized by performing beam annealing after etching an opening to form an amorphous insulating film.

該開口部を核として再結晶化が起こることがら鋏開口部
を中心とした単結晶域ができるという長所を有している
Since recrystallization occurs using the opening as a nucleus, it has the advantage that a single crystal region is formed around the scissor opening.

以下9本発明について実施例を示す111mを参照して
it1明する。
Hereinafter, nine embodiments of the present invention will be explained with reference to section 111m showing examples.

@2図は2本発明の一実施例を示す断面図で、非晶質絶
縁基板として石英ガラス11を用い、そO上にCVD法
でポリシリコンを0.6μm堆積し、更にその上にCV
D法で酸化シリコン(8i0.)膜12を1800A堆
積しその酸化シリコン膜に2μm角の開口部13を設は
レーザ光14を照射して再結晶化を行つた。レーザ光1
4としてはCW Nd :YAG(λ=1.06μm)
を用いた。酸化シリコン膜12の厚さはλ=1.06μ
mの光の透過度が大きくなるように選んだ。シリコン層
15は一度溶解し、再結晶化の際開口部13からの熱の
逃げのために開口部付近から固化し横方向に成長が及ぶ
。その結果開口部を中心[10μm程度の大きさのグレ
イン16が成長し、開口部と開口部の間ICU小さなグ
レインの領域17が存在していた。
Figure 2 is a cross-sectional view showing an embodiment of the present invention, in which a quartz glass 11 is used as an amorphous insulating substrate, 0.6 μm of polysilicon is deposited on it by the CVD method, and then a CVD film is further deposited on top of it.
A silicon oxide (8i0.) film 12 was deposited at 1800 Å using the D method, an opening 13 of 2 μm square was formed in the silicon oxide film, and a laser beam 14 was irradiated to perform recrystallization. Laser light 1
4 is CW Nd:YAG (λ=1.06μm)
was used. The thickness of the silicon oxide film 12 is λ=1.06μ
It was selected so that the transmittance of light of m is large. The silicon layer 15 is once melted, and during recrystallization, due to the escape of heat from the opening 13, the silicon layer 15 solidifies from the vicinity of the opening and grows laterally. As a result, grains 16 having a size of about 10 μm were grown around the openings, and a region 17 of small grains existed between the openings.

従って素子を作る領域の中心に開口部を設けておけば、
 10μm程度以下の大匙さの素子を1つのグレイン内
に作製することができる。レーザ光で再結晶化した後は
酸化シリコン膜12を除去し、アイランド化を行うこと
Kよ″つて寄生容量の小さい素子を得ることができる。
Therefore, if an opening is provided in the center of the area where the element will be made,
Elements as large as about 10 μm or less can be fabricated within one grain. After recrystallization with laser light, the silicon oxide film 12 is removed and an island is formed, thereby making it possible to obtain an element with small parasitic capacitance.

また、素子の活性領域にグレイン・バウンダリが存在し
ないため、4I性のばらつきが小さい。
Furthermore, since there is no grain boundary in the active region of the device, variations in 4I properties are small.

石英ガラスの代〉K、単結晶シリコン・クエーハの表面
に熱酸化膜を形成したもOを基板として用いた場合にも
同様の効果が見られえ。
A similar effect can be seen when using quartz glass instead of quartz glass or monocrystalline silicon with a thermally oxidized film formed on the surface of the quartz glass as a substrate.

以上のように1本発明はビーム・アエーkKより非晶質
絶縁基板上に単結晶半導体膜を形成する場合に、半導体
膜上に絶縁膜を被覆し、その絶縁膜に開口部を設けるこ
とによシ、アニール後の冷却速度即ち、結晶成長核O位
置制御及び成長方向の制御を行うことを特徴とするもの
で、非晶質絶縁基板上の所望の位置に単結晶域の形成を
可能にし、素子の高速化・三次元化に多大の効果を発揮
する奄のである。
As described above, the present invention provides a method for forming an insulating film on the semiconductor film and providing an opening in the insulating film when forming a single crystal semiconductor film on an amorphous insulating substrate using Beam AKK. This method is characterized by controlling the cooling rate after annealing, that is, the position and growth direction of crystal growth nuclei O, and enables the formation of a single crystal region at a desired position on an amorphous insulating substrate. , Amano is highly effective in increasing the speed and making three-dimensional elements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例を示すもので、aa中1は石英ガラス基
板を、2は酸化シリコン膜を、3はレーザ光を、4はシ
リコン層をそれぞれ示している。 −:、:・・ 第2図は本発明の一実施例をボすもので9図中11は石
英ガラス基板を、12は酸化シリコン膜を、13は酸化
シリコン膜に設は九−口部を、14社レーザ光を、15
はシリコン層を、16は太きなグレインを、17は小さ
なグレインの領穢をそれぞれ示している。 第1図 第2図
FIG. 1 shows a conventional example, in which 1 in aa indicates a quartz glass substrate, 2 indicates a silicon oxide film, 3 indicates a laser beam, and 4 indicates a silicon layer. -:, :... Figure 2 shows an embodiment of the present invention, in which 11 is a quartz glass substrate, 12 is a silicon oxide film, and 13 is a silicon oxide film. , 14 laser beams, 15
16 indicates a silicon layer, 16 indicates a thick grain, and 17 indicates a small grain area. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 非晶質結縁基板上に多結晶又は非晶質O半導体膜を形成
し、該半導体膜の上に絶縁膜を形成し。 前記半導体膜の単結晶化を行うべ無位置の該絶縁膜Kt
i口部を設けてビーム・アニールを行うことを特徴とす
る半導体膜の製造方法。
[Claims] A polycrystalline or amorphous O semiconductor film is formed on an amorphous bonded substrate, and an insulating film is formed on the semiconductor film. The insulating film Kt has no position where the semiconductor film should be single crystallized.
A method for manufacturing a semiconductor film, characterized in that beam annealing is performed with an i-portion provided.
JP57068467A 1982-04-23 1982-04-23 Manufacture of semiconductor film Pending JPS58184720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57068467A JPS58184720A (en) 1982-04-23 1982-04-23 Manufacture of semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57068467A JPS58184720A (en) 1982-04-23 1982-04-23 Manufacture of semiconductor film

Publications (1)

Publication Number Publication Date
JPS58184720A true JPS58184720A (en) 1983-10-28

Family

ID=13374516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57068467A Pending JPS58184720A (en) 1982-04-23 1982-04-23 Manufacture of semiconductor film

Country Status (1)

Country Link
JP (1) JPS58184720A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60249312A (en) * 1984-05-24 1985-12-10 Fujitsu Ltd Manufacture of semiconductor device
JPS6130023A (en) * 1984-07-21 1986-02-12 Agency Of Ind Science & Technol Formation of soi
JPS6130024A (en) * 1984-07-21 1986-02-12 Agency Of Ind Science & Technol Formation of soi
JPS6189621A (en) * 1984-10-09 1986-05-07 Fujitsu Ltd Manufacture of semiconductor device
JP2004207691A (en) * 2002-12-11 2004-07-22 Sharp Corp Semiconductor thin film manufacturing method and apparatus, semiconductor thin film manufactured by method, and semiconductor element using thin film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60249312A (en) * 1984-05-24 1985-12-10 Fujitsu Ltd Manufacture of semiconductor device
JPS6130023A (en) * 1984-07-21 1986-02-12 Agency Of Ind Science & Technol Formation of soi
JPS6130024A (en) * 1984-07-21 1986-02-12 Agency Of Ind Science & Technol Formation of soi
JPS6189621A (en) * 1984-10-09 1986-05-07 Fujitsu Ltd Manufacture of semiconductor device
JP2004207691A (en) * 2002-12-11 2004-07-22 Sharp Corp Semiconductor thin film manufacturing method and apparatus, semiconductor thin film manufactured by method, and semiconductor element using thin film

Similar Documents

Publication Publication Date Title
JPS59161014A (en) Crystallization of semiconductor thin film
US6664152B2 (en) Method for crystallizing silicon film and thin film transistor and fabricating method using the same
JPS5939790A (en) Production of single crystal
JPS58184720A (en) Manufacture of semiconductor film
JPS60143624A (en) Manufacture of semiconductor device
JPH0232527A (en) Formation of single-crystal thin film
JPS6119116A (en) Manufacture of semiconductor device
JPS5939791A (en) Production of single crystal
JPS6147627A (en) Manufacture of semiconductor device
JPS59148322A (en) Manufacture of semiconductor device
JPS61135110A (en) Manufacture of semiconductor device
JPS5880831A (en) Manufacture of substrate for semiconductor device
JPS5825220A (en) Manufacture of semiconductor substrate
JPH0354819A (en) Manufacture of soi substrate
JPH0442358B2 (en)
JPH03286520A (en) Manufacture of thin crystalline semiconductor film
JPS61123125A (en) Manufacture of semiconductor device
JPS5810816A (en) Semiconductor device
JPS6055614A (en) Manufacture of film of semiconductor single crystal
JPS63108A (en) Manufacture of semiconductor element
JPH0775223B2 (en) Method for manufacturing semiconductor single crystal layer
JPS59139622A (en) Manufacture of stacked semiconductor device
JPS6151820A (en) Manufacture of semiconductor device
JPH0410214B2 (en)
JPS60106124A (en) Formation of semiconductor thin film on insulating substrate