JPS5978999A - Manufacture of semiconductor single crystal film - Google Patents

Manufacture of semiconductor single crystal film

Info

Publication number
JPS5978999A
JPS5978999A JP18701282A JP18701282A JPS5978999A JP S5978999 A JPS5978999 A JP S5978999A JP 18701282 A JP18701282 A JP 18701282A JP 18701282 A JP18701282 A JP 18701282A JP S5978999 A JPS5978999 A JP S5978999A
Authority
JP
Japan
Prior art keywords
film
single crystal
light
silicon
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18701282A
Other languages
Japanese (ja)
Inventor
Hiroshi Kitajima
洋 北島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP18701282A priority Critical patent/JPS5978999A/en
Publication of JPS5978999A publication Critical patent/JPS5978999A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/16Heating of the molten zone
    • C30B13/22Heating of the molten zone by irradiation or electric discharge
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/16Heating of the molten zone
    • C30B13/22Heating of the molten zone by irradiation or electric discharge
    • C30B13/24Heating of the molten zone by irradiation or electric discharge using electromagnetic waves

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To enlarge the grain of a single crystal, by irradiating a semiconductor films doubly with laser light and light having the larger absorptivity than the laser light when a polycrystalline or amorphous semiconductor film on a substrate is to be converted to a single crystal. CONSTITUTION:Polycrystalline or amorphous silicon film 2 is piled up on the surface of a substrate 1 such as glass or the like and the lamp light B shaped by a slit and the CWNd:YAG laser beam 4 shaped to a semicircular form by a slit are irradiated doubly on the film. Said irradiation is carried out under the condition so that the silicon film 2 is melted and scanned in the direction showen by the arrow 5. The melted silicon layer 6 is solidified and a silicon single crystal 7 having a large grain size is formed.

Description

【発明の詳細な説明】 本発明は、半導体単結晶膜の製造方法、特に基板上に形
成した多結晶もしくは非晶質の斗°導体膜の単結晶化法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor single crystal film, and particularly to a method for single crystallizing a polycrystalline or amorphous conductor film formed on a substrate.

レーザ光照射による多結晶もしくけ非晶質の半導体膜の
単結晶化法は、一般にアルゴン(以下Arと略す)レー
ザあるいはネオジウム・ヤグ(以下N(1:YAGと略
す)レーザなどを用い、単一のレーザ光で行われている
Single crystallization of polycrystalline or amorphous semiconductor films by laser beam irradiation generally uses an argon (hereinafter abbreviated as Ar) laser or a neodymium YAG (hereinafter abbreviated as N (1: YAG) laser). This is done using a single laser beam.

シリコン膜を例にとると、Arレーザはシリコン膜に対
し吸収係数が太きいためシリコン膜を溶融しやすい。し
かしながら例えば絶縁体上の多結晶シリコン膜を単結晶
化する場合、構造による差はあるものの、膜厚0.3〜
0,8μm程度が適用範囲であり、厚ければ層全体は溶
融できず、薄ければ膜が飛散しやすいという欠点がある
。一方Nd:YAGレーザ(波長1.06μm)を用い
た場合には、シリコンに対する吸収係数が小さいために
0.5μm以上の厚さでな(・と膜が飛散しやすいとい
う欠点があった。以上の例で分るように、単一のCWレ
ーザ光だけで再結晶化を行う場合、レーザ光の波長の半
導体膜に対する吸収係数によって膜厚方向の温度分布が
決ってしまうために、適切1よ膜厚からはずれる程適当
1工溶融が行いにくいという問題があった。
Taking a silicon film as an example, since an Ar laser has a larger absorption coefficient than a silicon film, it is easy to melt the silicon film. However, for example, when converting a polycrystalline silicon film on an insulator into a single crystal, the film thickness varies from 0.3 to
The applicable range is about 0.8 μm, and if it is thick, the entire layer cannot be melted, and if it is thin, the film is likely to scatter. On the other hand, when a Nd:YAG laser (wavelength: 1.06 μm) is used, the absorption coefficient for silicon is small, so a film with a thickness of 0.5 μm or more has the disadvantage of being easily scattered. As shown in the example above, when recrystallization is performed using only a single CW laser beam, the temperature distribution in the film thickness direction is determined by the absorption coefficient of the wavelength of the laser beam into the semiconductor film. There was a problem in that the more the film deviated from the film thickness, the more difficult it was to perform proper one-step melting.

絶縁基板上の多結晶シリコン膜の単結晶化法としてアブ
−ライド・フィジクス・レターズ(App l 1ed
Physics Letters )の第37巻 (1
980年)454〜456ページ所載の論文「シリコン
グラフオエピタキシー ユーシング ア ストライプヒ
ータ オープン(Silicon  graphoep
itaxy  using  a  5tripe −
heater oven) Jにおいて、カーボンヒー
ターでシリコンを溶融させ、前記カーボンヒーターをス
キャンさせることにより、レーザな用いた場合より10
倍以上大きなグレインが成長して(・ることを示した。
Ab-Ride Physics Letters (App l 1ed) as a single crystallization method for polycrystalline silicon films on insulating substrates.
Physics Letters) Volume 37 (1
980) on pages 454-456 of the paper ``Silicon graphoepitaxy using a stripe heater open''.
itaxy using a 5tripe -
Heater oven) In J, by melting silicon with a carbon heater and scanning the carbon heater, the temperature was 10 times higher than when using a laser.
It was shown that grains that were more than twice as large grew (・).

このことは、ヒーターを用いると、再結晶化の際の温度
変化が緩やかであるためと考えられるが、レーザを用い
た場合、ビームが通り過きた後急激に温度が下がること
により、グレインの大きさが限定されるという欠点があ
った。
This is thought to be due to the fact that when a heater is used, the temperature change during recrystallization is gradual, but when a laser is used, the temperature drops rapidly after the beam passes, causing the grain size to increase. It had the disadvantage of being limited.

本発明は、従来の単一レーザ光照射でみられる欠点を改
善するためのもので、基板上に形成した多結晶または非
晶質半導体膜にレーザ光および前記半導体膜に対し前記
レーザ光よりも吸収係数の大きな光を重ねて照射するこ
とにより前記半導体膜を単結晶化することを特徴とする
The present invention is intended to improve the drawbacks observed in conventional single laser beam irradiation, and is directed to applying a laser beam to a polycrystalline or amorphous semiconductor film formed on a substrate, and applying the laser beam to the semiconductor film. The method is characterized in that the semiconductor film is made into a single crystal by irradiating the semiconductor film with light having a large absorption coefficient in a superimposed manner.

本発明の方法を用いれば、例えばシリコン膜に対するN
d:YAGのように吸収係数の小、さい場合でも、吸収
係数を高めることによりNa:YAGのパワーを有効に
利用でき、従って従来よりも低いパワーで半導体膜を溶
融して単結晶化できる。その直接の効果として、レーザ
・ビームの径を拡大スることができ、グレインの巨大化
や全面をアニールするための時間の短縮という利点があ
る。また光とレーザ光が重なった領域を溶融することが
できるために、スリット等による照射領域の整形を行う
ことにより、面内の温度分布の制御ずなわち冷却方向の
制御が容易に行え、グレインを更に大きくできるという
利点がある。
If the method of the present invention is used, for example, N
Even when the absorption coefficient is small, such as d:YAG, the power of Na:YAG can be effectively utilized by increasing the absorption coefficient, and therefore the semiconductor film can be melted and made into a single crystal with lower power than before. As a direct effect, the diameter of the laser beam can be expanded, which has the advantage of increasing the size of the grain and shortening the time required to anneal the entire surface. In addition, since it is possible to melt the area where the light and laser beam overlap, by shaping the irradiation area with slits etc., it is possible to easily control the temperature distribution in the plane, that is, the cooling direction, and the grain It has the advantage that it can be made even larger.

本発明の詳細を実施例を示す図面を参照して説明する。The details of the invention will be explained with reference to the drawings showing examples.

第1図(a) (b)は本発明の一実施例の断面図及び
照射領域の平面図である。基板の構造は第1図(a)に
限定されるわけではない。ガラス基板1の上に多結晶あ
るいは非晶質のシリコン膜2を堆積し、スリットで整形
したランプ光3とスリットで半月状にしたCW Nd:
YAGレーザ4を重ねて照射する。シリコン膜2が溶融
する条件で照射を行い矢印5の方向にスキャンすると、
溶融したシリコン層6が固まりグレインの大きなシリコ
ン結晶7になる。
FIGS. 1(a) and 1(b) are a sectional view and a plan view of an irradiation area of an embodiment of the present invention. The structure of the substrate is not limited to that shown in FIG. 1(a). A polycrystalline or amorphous silicon film 2 is deposited on a glass substrate 1, lamp light 3 is shaped by a slit, and CW Nd is formed into a half-moon shape by the slit.
The YAG laser 4 is irradiated in layers. When irradiation is performed under conditions that melt the silicon film 2 and scanned in the direction of arrow 5,
The molten silicon layer 6 solidifies into silicon crystals 7 with large grains.

第1図(b)のようにランプ光3とCWNd:YAGレ
ーザ4を重ねておくと、ランプ光3が照射されて(・る
領域では励起されたキャリアによって吸収係数が増加し
、Nd:YAGレーザの吸収が高まるばかりでなく、C
W Nd:YAGレーザの照射されていない領域でも光
の吸収によってキャリアが存在づるために熱伝導率が高
まり溶融したシリコン6が門結晶化の除、よりゆるやか
な成長となり、グレインが大きくなる。従って方位が制
御された領域(典型的には午結晶シリコン基板上に絶縁
膜をJF’成し、その、一部分をエツチング除去し、全
面に多結晶シリコン膜を形成したときの基板と多結晶シ
リコン膜の狼触部分)からの成長によって単結晶化する
領域を広げることができ、40μmX200μ?n程度
の大きなグレインサイズが得られた。
When the lamp light 3 and the CWNd:YAG laser 4 are overlapped as shown in FIG. Not only does laser absorption increase, but C
Even in the region not irradiated with the WNd:YAG laser, carriers exist due to absorption of light, so the thermal conductivity increases and the molten silicon 6 grows more slowly, excluding gate crystallization, and the grains become larger. Therefore, a region in which the orientation is controlled (typically, an insulating film is formed on a crystalline silicon substrate, a part of it is etched away, and a polycrystalline silicon film is formed on the entire surface) By growing from the tactile part of the membrane, it is possible to widen the area where single crystals form, 40μm x 200μ? A large grain size on the order of n was obtained.

ランプ光とレーザ光の重ね方の別の実施例を第2図に示
す。8がレーザ光の照射領域、9がランプ光の照射領域
である。重ねた状態で多結晶ないし非晶質の半導体膜に
照射し、たとえば半導体膜を矢印10の方向にスキャン
すると、矢印11の方向に再結晶化が進み、半導体膜上
をレーザ光の中心が通る線の部分が核となるために、大
きなグレインを得ることができた。
Another example of how lamp light and laser light are superimposed is shown in FIG. 8 is a laser beam irradiation area, and 9 is a lamp light irradiation area. When polycrystalline or amorphous semiconductor films are irradiated in a stacked state and, for example, the semiconductor film is scanned in the direction of arrow 10, recrystallization progresses in the direction of arrow 11, and the center of the laser beam passes over the semiconductor film. Because the line part becomes the core, we were able to obtain large grains.

以、上述べたように、本発明は多結晶ないし非晶質の半
導体膜にレーザ光と、前記レーザ光よりも前記半導体膜
に対する吸収係数が大きな光とを重ねて照射することに
より、膜厚や構造に適応できるアニール方法を折供でき
る。また、半導体膜に対し吸収係数の/J%さ1工1/
−ザ光だけでアニールする場合に較べ、光を重ねて照射
することにより、レーザ光のパワーを有効に利用でき、
その結果、パワー密度がより低い状態で充分であること
がらレーザの照射面積を拡大できるため、単位面積当り
のアニール時間の短縮、グレインサイズの増大と(・う
点で多大の効果を発揮する。
As described above, the present invention improves the film thickness by irradiating a polycrystalline or amorphous semiconductor film with laser light and light whose absorption coefficient for the semiconductor film is larger than that of the laser light. We can provide annealing methods that can be adapted to different types of materials and structures. In addition, the absorption coefficient of /J% for the semiconductor film is
- Compared to annealing with laser light alone, the power of laser light can be used more effectively by irradiating the light in layers,
As a result, the irradiation area of the laser can be expanded since a lower power density is sufficient, resulting in significant effects in shortening the annealing time per unit area and increasing the grain size.

更に、レーザ光及び吸収係数を上げるための光はそれ自
体では半導体膜を溶かす程ではないため、スリット等に
よる整形が従来より容易である。
Furthermore, since the laser beam and the light for increasing the absorption coefficient are not strong enough to melt the semiconductor film by themselves, shaping with a slit or the like is easier than in the past.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示し、(a)はその断面図
(b)は照射領域の平面図で、ある。また、第2回目、
本発明の他の実施例の照射領域の平面図を示す1はガラ
ス基板、2け多結晶あるいは非晶質のシリコン膜、3は
レーザ光、4はランプ光、5はスキャン方向、6し1溶
融したシリコン、7は1J結晶化シリコン膜、+!!?
I?−8はレーザ光の照射領域l。 、 9はランプ光の照射領域、10は試別のスキャン方
向、11は6結晶化の方向をそれぞれ示している。 527− −、ユ 躬 Z 図
FIG. 1 shows an embodiment of the present invention, in which (a) is a cross-sectional view and (b) is a plan view of the irradiation area. Also, the second time,
1 is a glass substrate; 2 is a polycrystalline or amorphous silicon film; 3 is a laser beam; 4 is a lamp beam; Molten silicon, 7 is 1J crystallized silicon film, +! ! ?
I? -8 is the laser beam irradiation area l. , 9 indicates the irradiation area of the lamp light, 10 indicates the scanning direction of trial scanning, and 11 indicates the six crystallization directions, respectively. 527--, Yuman Z figure

Claims (1)

【特許請求の範囲】 基板上に形成した多結晶または非晶質半導体膜にレーザ
光お°よび前記半導体膜に対し前記レーザ光よりも吸収
係数の大きt【光を重ねて照射することにより前記半導
体膜を増結晶化することを特徴とする半導体単結晶膜の
製造方法。
[Claims] A polycrystalline or amorphous semiconductor film formed on a substrate is irradiated with laser light, and the semiconductor film is irradiated with light having a larger absorption coefficient than the laser light. A method for producing a semiconductor single crystal film, characterized by increasing the crystallization of the semiconductor film.
JP18701282A 1982-10-25 1982-10-25 Manufacture of semiconductor single crystal film Pending JPS5978999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18701282A JPS5978999A (en) 1982-10-25 1982-10-25 Manufacture of semiconductor single crystal film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18701282A JPS5978999A (en) 1982-10-25 1982-10-25 Manufacture of semiconductor single crystal film

Publications (1)

Publication Number Publication Date
JPS5978999A true JPS5978999A (en) 1984-05-08

Family

ID=16198653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18701282A Pending JPS5978999A (en) 1982-10-25 1982-10-25 Manufacture of semiconductor single crystal film

Country Status (1)

Country Link
JP (1) JPS5978999A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314080C (en) * 1993-01-18 2007-05-02 株式会社半导体能源研究所 MIS semiconductor device manufacture method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314080C (en) * 1993-01-18 2007-05-02 株式会社半导体能源研究所 MIS semiconductor device manufacture method

Similar Documents

Publication Publication Date Title
JPS5861622A (en) Manufacture of single crystal thin film
JPH0454370B2 (en)
JPS61244020A (en) Oriented monocrystalline silicon film with restricted defecton insulation support
JPS5939790A (en) Production of single crystal
JPH0588544B2 (en)
JPS5978999A (en) Manufacture of semiconductor single crystal film
JPS5892213A (en) Manufacture of semiconductor single crystalline film
JPS5939791A (en) Production of single crystal
JPS6147627A (en) Manufacture of semiconductor device
JPS58184720A (en) Manufacture of semiconductor film
JPS5856457A (en) Manufacture of semiconductor device
JP2993107B2 (en) Semiconductor thin film manufacturing method
JPH01264215A (en) Manufacture of semiconductor device
JPH0795526B2 (en) Method for manufacturing single crystal thin film
JPS60191090A (en) Manufacture of semiconductor device
JP2566663B2 (en) Method for manufacturing semiconductor single crystal film
JPH01720A (en) Method for manufacturing single crystal thin film
JPH03286520A (en) Manufacture of thin crystalline semiconductor film
JP3223040B2 (en) Crystallization method of semiconductor thin film
JPH0354819A (en) Manufacture of soi substrate
JPH0410214B2 (en)
JPH0371767B2 (en)
JPH0795525B2 (en) Method for manufacturing single crystal thin film
JPH03250620A (en) Manufacture of semiconductor device
JPS60229330A (en) Manufacture of semiconductor device