JPS60191090A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60191090A
JPS60191090A JP4632084A JP4632084A JPS60191090A JP S60191090 A JPS60191090 A JP S60191090A JP 4632084 A JP4632084 A JP 4632084A JP 4632084 A JP4632084 A JP 4632084A JP S60191090 A JPS60191090 A JP S60191090A
Authority
JP
Japan
Prior art keywords
single crystal
crystal regions
island
insular
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4632084A
Other languages
Japanese (ja)
Inventor
Shinji Maekawa
真司 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP4632084A priority Critical patent/JPS60191090A/en
Publication of JPS60191090A publication Critical patent/JPS60191090A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To convert surely and efficiently the insulator non-single crystal region into single crystals by forming plural insular non-single crystal regions in close proximity to one another on the surface of an insulating amorphous film, and irradiating an energy beam having Gaussian distribution of intensity to the boundary between adjacent insulator non-single crystal regions. CONSTITUTION:An amorphous insulating film 2 of SiO2, etc. is formed on a semiconductor substrate 1 of silicon, etc., and plural insulator non-single crystal regions 3 and 3 are formed in close proximity to one another and embedded into the surface of the amorphous insulating film 2. Then when an energy beam having Gaussian distribution of intensity is irradiated to the boundary between adjacent insular non-single crystal regions 3 and 3, the insular non-single crystal regions 3 and 3 are melted and recrystallized to grow crystal particles, and the insular single crystal layer is formed.

Description

【発明の詳細な説明】 く技術分野〉 本発明は半導体装置の製造方法に関し、特に非晶質膜面
に形成された多結晶或いは非晶質等の非単結晶半導体層
にエネルギビームを照射して単結晶化する半導体装置の
製造方法に関するものである。
[Detailed Description of the Invention] Technical Field> The present invention relates to a method for manufacturing a semiconductor device, and in particular to a method for manufacturing a semiconductor device, in particular a method for irradiating an energy beam onto a non-monocrystalline semiconductor layer such as a polycrystalline or amorphous semiconductor layer formed on an amorphous film surface. The present invention relates to a method of manufacturing a semiconductor device that is made into a single crystal by using a method of manufacturing a semiconductor device.

〈従来技術〉 近年、三次元積層型半導体装置等のために、非単結晶薄
膜を単結晶化して半導体層として利用する研究が行われ
ている。この種の半導体層は半導体基板上に一旦絶縁性
の非晶質薄膜を形成し、該非晶質絶縁薄膜上に多結晶半
導体層を形成し、該多結晶半導体層にレーザ光や電子ビ
ーム等のエネルギビームを照射して再結晶させ、結晶粒
の成長望ましくは単結晶領域を形成して、該単結晶半導
体領域中に素子を作成するだめの半導体層とする。
<Prior Art> In recent years, research has been conducted on converting non-single crystal thin films into single crystals and using them as semiconductor layers for three-dimensional stacked semiconductor devices and the like. This type of semiconductor layer is made by first forming an insulating amorphous thin film on a semiconductor substrate, forming a polycrystalline semiconductor layer on the amorphous insulating thin film, and then applying laser light, electron beam, etc. to the polycrystalline semiconductor layer. Recrystallization is performed by irradiation with an energy beam to grow crystal grains, preferably to form a single-crystal region, and the single-crystal semiconductor region is used as a semiconductor layer for forming devices.

このように多結晶半導体層にエネルギビームを照射して
溶融し、再結晶化させる処理において。
In this process, a polycrystalline semiconductor layer is irradiated with an energy beam to melt and recrystallize it.

多結晶半導体層を一つの結晶粒からなる単結晶とするた
めには、単にエネルギビームによって溶融後固化させた
だけでは単結晶化させることは非常に難しく、従来から
結晶成長を制御するための工夫が提案されている。その
1つの方法として、多結晶半導体層を島状に形成した後
、レーザ光を照射する方法がある。この方法によれば、
島状の多晶 断禰がビーム径に比べて充分小さい場合、多結晶層はレ
ーザ光の照射により一旦完全に溶融し、この領域が固化
する際、溶融状態では結晶成長を起す核となるキ結晶は
ない。また島形状が充分小さいため、島の周囲は基板が
レーザ光を吸収して加熱され、この基板からの熱伝導に
より多結晶領域の中央部よりも温度が高くなる。このよ
うな理由から低温状態の島中央部から単一の核発生によ
り結晶が成長し、島全体が単結晶に再結晶化される。
In order to make a polycrystalline semiconductor layer into a single crystal consisting of one crystal grain, it is extremely difficult to make it into a single crystal by simply melting it with an energy beam and then solidifying it, so conventional methods have been developed to control crystal growth. is proposed. One method is to form a polycrystalline semiconductor layer into an island shape and then irradiate it with laser light. According to this method,
If the island-shaped polycrystalline fractures are sufficiently small compared to the beam diameter, the polycrystalline layer will be completely melted by the laser beam irradiation, and when this region solidifies, the molten state will become the nucleus for crystal growth. There are no crystals. Furthermore, since the island shape is sufficiently small, the substrate around the island absorbs the laser beam and is heated, and due to heat conduction from the substrate, the temperature becomes higher than that at the center of the polycrystalline region. For this reason, a crystal grows from the center of the island in a low temperature state by single nucleation, and the entire island is recrystallized into a single crystal.

上述のような単結晶化は、島領域の寸法がエネルギビー
ムの径に比べて充分小さい場合に限られ、島領域が大き
くなった場合には次のような理由により単結晶化は難し
い。
Single crystallization as described above is possible only when the size of the island region is sufficiently small compared to the diameter of the energy beam, and if the island region becomes large, single crystallization is difficult for the following reasons.

即ち光源から放射される通常のレーザ光は強度かがウス
分布を呈し、このようなビームを照射した場合には島の
中央部に照射されるエネルギ強度が最も強くなって高温
になり、従って上述のような中央部の温度が周囲よりも
低い温度分布の逆転は難しく、基根上の絶縁膜厚のバラ
ツキによる反射率の影響等も作用して、しばしば島の中
央部の温度の方が周囲よりも高くなり、周囲の複数個所
から結晶成長が起こり、結果的に多結晶あ;形成される
ことになる。
In other words, normal laser light emitted from a light source exhibits an intensity distribution, and when such a beam is irradiated, the energy intensity irradiated to the center of the island is the strongest, resulting in high temperature, and therefore the above-mentioned It is difficult to reverse a temperature distribution where the temperature at the center is lower than the surrounding area, and the temperature at the center of the island is often higher than the surrounding area due to the influence of reflectance due to variations in the thickness of the insulating film on the base. crystal growth occurs from several surrounding locations, resulting in the formation of polycrystals.

上記のような温度分布は、多結晶層を支持している基板
がレーザ光を吸収しに<<、熱伝導による島領域の周囲
加熱が行われ難い場合にも起こり易く、同様に単結晶化
が困難である。
The above temperature distribution also tends to occur when the substrate supporting the polycrystalline layer absorbs the laser beam and it is difficult to heat the surrounding area of the island region by heat conduction. is difficult.

〈発明の目的〉 本発明は上記従来の半導体装置の製造方法の欠点を除去
し、エネルギビームの照射によって島状の非単結晶層を
確実に効率的に単結晶化する方法を提供する。
<Objective of the Invention> The present invention provides a method for reliably and efficiently monocrystallizing an island-shaped non-single crystal layer by irradiating an energy beam by eliminating the drawbacks of the conventional semiconductor device manufacturing method described above.

〈実施例〉 第1図において、シリコン等の半導体基板】上にS i
 02等の非晶質絶縁膜2が形成され、該非晶質絶縁膜
2面に埋設して多結晶或いは非晶質等の非単結晶領域3
,3・・・が島状に形成される。該非単結晶領域3,3
・・・は木実雄側のように絶縁膜2に埋設する代りに、
単に絶縁@2上に積層して形成してもよい。
<Example> In FIG. 1, a semiconductor substrate such as silicon
An amorphous insulating film 2 such as 02 is formed, and a non-single crystal region 3 such as polycrystalline or amorphous is embedded in the surface of the amorphous insulating film 2.
, 3... are formed in an island shape. The non-single crystal regions 3, 3
. . . is buried in the insulating film 2 as on the Kinomio side,
It may be formed simply by laminating on the insulation@2.

上記非単結晶領域3,3・・・はレーザ光からエネルギ
が与えられて溶融し、再結晶化する過程で単結晶に成長
させる半導体領域で、上記非単結晶領域3.3・・・は
近接する領域間の間隔2aが、第2図に示す如く、ガウ
ス分布したレーザ光4の中心4aが島領域の間に照射さ
れるように間隔が設定される。隣接する非単結晶領域3
,3間の間隙に位置する非晶質絶縁1!!2aに強度の
ピークを位置させて、ガウス分布をもつレーザ光4を隣
接する両側の非単結晶領域に照射して第3図に示す如く
走査する。レーザ光が照射された非単結晶領域はビーム
の中心側の温度が外側よりも高くなり、溶融した島領域
はビームの走査と共に温度の低い外側エツジA及びBよ
り固化が開始される。即ち単結晶化の際の核発生場所が
一定し、上記工・ツジA及びBから夫々結晶成長が進行
し、島領域全体に亘って均一に単結晶化され、しかも1
回の走査で両側の非単結晶領域が再結晶化される。
The non-single crystal regions 3, 3, . . . are semiconductor regions that are melted by energy from a laser beam and grown into a single crystal in the process of recrystallization. As shown in FIG. 2, the spacing 2a between adjacent regions is set so that the center 4a of the laser beam 4 having a Gaussian distribution is irradiated between the island regions. Adjacent non-single crystal region 3
, amorphous insulation 1 located in the gap between 3! ! With the intensity peak located at 2a, laser light 4 having a Gaussian distribution is irradiated onto the non-single crystal regions on both adjacent sides and scanned as shown in FIG. In the non-single crystal region irradiated with the laser beam, the temperature at the center of the beam becomes higher than the outside, and as the beam scans, the melted island region begins to solidify from the outer edges A and B where the temperature is lower. That is, the nucleus generation location during single crystallization is constant, crystal growth progresses from the above-mentioned grains A and B, and the entire island region is uniformly single crystallized.
In one scan, the non-single crystal regions on both sides are recrystallized.

上記再結晶化過程は、下地となっている非晶質絶縁膜2
の膜厚及び半導体基板1の種類に影響されることもなく
、常に安定して島領域のビーム中心側の温度が外側より
も高くなり、核発生の位置が安定し、発生した核を種に
して結晶が成長し。
In the above recrystallization process, the amorphous insulating film 2 serving as the base
It is not affected by the film thickness of the semiconductor substrate 1 or the type of the semiconductor substrate 1, and the temperature on the center side of the beam in the island region is always higher than the outside, the position of the nucleus generation is stabilized, and the generated nucleus is used as a seed. crystals grow.

要語晶化される。Key words are crystallized.

く効 果〉 以上本発明によれば、島状の部用結晶半導体層を再結晶
化により確実に良質の単結晶半導体層に変換することが
でき、三次元積層型半導体装置等のための半導体層を容
易に作成することができる。
Effects> As described above, according to the present invention, a crystalline semiconductor layer for an island-like part can be reliably converted into a high-quality single-crystalline semiconductor layer by recrystallization, and a semiconductor for a three-dimensional stacked semiconductor device, etc. Layers can be easily created.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による一実施例を説明するための半導体
基板構造図、第2図は同実施例を説明するだめのレーザ
光強度分布と基板との位置関係を示す図、第3図は同実
施例によるレーザ光の走査及び核発生位置を示す図であ
る。 1:半導体基板、2:非晶質絶縁膜、 3:非単結晶島状領域
FIG. 1 is a structural diagram of a semiconductor substrate for explaining one embodiment of the present invention, FIG. 2 is a diagram showing the positional relationship between the laser light intensity distribution and the substrate for explaining the embodiment, and FIG. 3 is a diagram for explaining the same embodiment. It is a figure which shows the scanning of the laser beam and the nucleus generation position by the same Example. 1: Semiconductor substrate, 2: Amorphous insulating film, 3: Non-single crystal island region

Claims (1)

【特許請求の範囲】[Claims] 1)絶縁性非晶質膜面に、島状の非単結晶領域を複数個
近接して形成し、隣接する島状非単結晶領域の境界に、
強度かがウス分布をもつエネルギビームを照射し、非単
結晶領域を再結晶化して結晶粒を成長、させることを特
徴とする半導体装置の製造方法。
1) Form a plurality of island-shaped non-single crystal regions adjacent to each other on the surface of the insulating amorphous film, and at the boundary between the adjacent island-shaped non-single crystal regions,
1. A method for manufacturing a semiconductor device, which comprises irradiating an energy beam with an intensity distribution to recrystallize a non-single crystal region to grow crystal grains.
JP4632084A 1984-03-08 1984-03-08 Manufacture of semiconductor device Pending JPS60191090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4632084A JPS60191090A (en) 1984-03-08 1984-03-08 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4632084A JPS60191090A (en) 1984-03-08 1984-03-08 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60191090A true JPS60191090A (en) 1985-09-28

Family

ID=12743866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4632084A Pending JPS60191090A (en) 1984-03-08 1984-03-08 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60191090A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009217233A (en) * 2008-03-06 2009-09-24 Asami Inoue Improved piano hammer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009217233A (en) * 2008-03-06 2009-09-24 Asami Inoue Improved piano hammer

Similar Documents

Publication Publication Date Title
EP0047140B1 (en) Method of converting areas of semiconductor material into single crystal areas
US5371381A (en) Process for producing single crystal semiconductor layer and semiconductor device produced by said process
EP0127323B1 (en) A process for producing a single crystal semiconductor island on an insulator
JPH0588544B2 (en)
JPS6115319A (en) Manufacture of semiconductor device
JPS60191090A (en) Manufacture of semiconductor device
JPS6147627A (en) Manufacture of semiconductor device
JP2993107B2 (en) Semiconductor thin film manufacturing method
JPS5983993A (en) Growth of semiconductor layer of single crystal
JPH0136972B2 (en)
JPH0449250B2 (en)
JP2929660B2 (en) Method for manufacturing semiconductor device
JPH0442358B2 (en)
JPH0652712B2 (en) Semiconductor device
JPS59154016A (en) Formation of thin film crystal
JPH0236050B2 (en)
JPH0371767B2 (en)
JPS6320011B2 (en)
JPS5978999A (en) Manufacture of semiconductor single crystal film
JPS59224114A (en) Manufacture of single crystal semiconductor thin-film
JP2566663B2 (en) Method for manufacturing semiconductor single crystal film
JP2526380B2 (en) Method for manufacturing multilayer semiconductor substrate
JPS63142810A (en) Manufacture of semiconductor device
JPS6265410A (en) Formation of single crystal thin film
JPS63102221A (en) Manufacture of semiconductor device