JPS59224114A - Manufacture of single crystal semiconductor thin-film - Google Patents

Manufacture of single crystal semiconductor thin-film

Info

Publication number
JPS59224114A
JPS59224114A JP58097960A JP9796083A JPS59224114A JP S59224114 A JPS59224114 A JP S59224114A JP 58097960 A JP58097960 A JP 58097960A JP 9796083 A JP9796083 A JP 9796083A JP S59224114 A JPS59224114 A JP S59224114A
Authority
JP
Japan
Prior art keywords
single crystal
intensity distribution
laser beam
seed
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58097960A
Other languages
Japanese (ja)
Other versions
JPH0152888B2 (en
Inventor
Hisaaki Aizaki
尚昭 相崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58097960A priority Critical patent/JPS59224114A/en
Publication of JPS59224114A publication Critical patent/JPS59224114A/en
Publication of JPH0152888B2 publication Critical patent/JPH0152888B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02678Beam shaping, e.g. using a mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To form an excellent region changed into a single crystal extending over a wide region by previously projecting laser beams over the periphery of a seed section from the seed section when the upper section of asample is scanned by multi-crested laser beams. CONSTITUTION:A silicon oxide film 210 is formed on the surface of a single crystal silicon substrate 200, one parts of the film 210 are removed, and a polycrystalline silicon film 220 is shaped extending over the whole surface. The silicon oxide film 210 is removed, regions in which the polycrystalline silicon film 220 is brought directly into contact with the single crystal silicon substrate 200 are used as seed sections 300, and a region containing the seed sections 300 is scanned preparatorily in the direction of the arrow 20 by double-crested laser beams 71. Polycrystalline silicon in sections 400, 420 is melted, recrystallized, and changed into single crystal regions having the same crystalline direction as the substrate. The sample is mainly scanned by double-crested laser beams so that a through section passes through the region 420 in the same direction as laser beams 71.

Description

【発明の詳細な説明】 この発明は集積回路装置や半導体装置等の製造に用いら
れる半導体薄膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor thin film used for manufacturing integrated circuit devices, semiconductor devices, and the like.

近年、半導体集積回路の高密度化が進むに伴い半導体集
積回路の各素子寸法の微細化をはかって横方向の集積贋
を向上させる他に、いったん形成された素子構造の上に
絶縁膜を全面にわたって形成し、さらにこの絶縁膜上に
半導体薄膜を設けてこの半導体薄膜を用いて素子を形成
するというようないわゆる三次元構造が盛んに研死開発
されている。とくに絶縁膜上に形成した多結晶シリコン
膜をレーザビームにより照射し再結晶化させる方法が注
目されている。又、半導体集積回路の商法化が進むに伴
い半導体集積回路の各素子あるいは配線部分と基板シリ
コンとの間の電気容量を小さくすることが重要な課題と
なっている。これまでによく用いられているpnW合分
熱分離4夕すると、絶縁膜上に形成したシリコン膜を用
いれば寄生容量を小さくできるのでこの意味でもレーザ
ビームによる再結晶化技術すなわちレーザアニーリング
技術が注目されている。しかし、現在の段階では半導体
集積回路を形成する目的に対して十分良好な結晶性を得
るに至っていない。
In recent years, as the density of semiconductor integrated circuits has increased, in addition to miniaturizing the dimensions of each element in semiconductor integrated circuits to improve lateral integration failure, it is also necessary to apply an insulating film over the entire surface of the element structure once it has been formed. A so-called three-dimensional structure in which a semiconductor thin film is further provided on this insulating film and an element is formed using this semiconductor thin film is being actively developed. In particular, a method of recrystallizing a polycrystalline silicon film formed on an insulating film by irradiating it with a laser beam is attracting attention. Further, as the commercialization of semiconductor integrated circuits progresses, it has become an important issue to reduce the electric capacitance between each element or wiring portion of the semiconductor integrated circuit and the substrate silicon. In contrast to the pnW combined thermal isolation method that has been commonly used, the parasitic capacitance can be reduced by using a silicon film formed on an insulating film, so recrystallization technology using a laser beam, that is, laser annealing technology, is attracting attention in this sense as well. has been done. However, at the current stage, crystallinity sufficiently good for the purpose of forming semiconductor integrated circuits has not been achieved.

以上説明した絶縁膜上のシリコン膜の結晶性が十分良好
でない原因の一つはレーザビームの形状が丸形であるた
め、レーザビームを前述のごとく多結晶シリコン膜に照
射しつつ第1図のごとく走査方向20の方向に走査する
と、多結晶シリコン膜はいったん溶融し、再結晶化する
がこのとき再結晶化の進行する方向4oは固数界面3o
に直角方向に進むが、この固液界面3oの形状はレーザ
ビーム10の形状から決定され、周辺よυ中央に集まっ
て来る。その結果レーザビームで走査した際、再結晶化
の核として特定の位置の結晶粒が伐先されることなく、
周辺部からのランダムな核発生を伴うことになシ広い面
積吐たシ単結晶化をはがf閤して通常のガウス型ではな
く、ガウス型強度分布のレーザビーム10を一波長板5
oによ9円偏光とし、さらに水晶複屈折板6oを透過す
ることによって得られるガウス型分布が複数個連なっ嬶
ン膜等の絶縁膜110上の多結晶あるいは非晶JJ4.
V導体薄膜120を走査し、再結晶化の核として特定る
が走査中央部では走査方向に細長い単結晶化領域80を
P+現性よく得ることが可能になった。
One of the reasons why the crystallinity of the silicon film on the insulating film described above is not sufficiently good is that the shape of the laser beam is round. When the polycrystalline silicon film is scanned in the scanning direction 20 as shown in FIG.
The shape of this solid-liquid interface 3o is determined by the shape of the laser beam 10, and the solid-liquid interface 3o converges at the center from the periphery. As a result, when scanning with a laser beam, crystal grains at specific positions are not removed as nuclei for recrystallization, and
The laser beam 10 with a Gaussian-type intensity distribution, rather than the usual Gaussian-type, is applied to the single-wavelength plate 5 by ejecting a single crystal over a wide area without causing random nucleation from the periphery.
A plurality of Gaussian distributions obtained by making the light circularly polarized by 9 circularly polarized light and transmitting it through the crystal birefringence plate 6o are connected to form a polycrystalline or amorphous JJ4.
By scanning the V conductor thin film 120, it has become possible to identify a recrystallization nucleus and obtain a single crystallized region 80 elongated in the scanning direction with good P+ reactivity at the center of the scan.

以上の説明では、署波長板50と複屈折板600組は1
紹であるために、レーザビーム70の強度分布は双峰型
となっているが、これを2組あるいは3組用いれば、四
つのピークを有する四節型あるいは八つのピークを有す
る双峰型とすることが可能であり、広い面積を1回の走
査で溶融・再結晶化することができる。
In the above explanation, the number of pairs of stationary wave plate 50 and birefringent plate 600 is 1.
Since the laser beam 70 is an introduction, the intensity distribution of the laser beam 70 is a bimodal type, but if two or three sets of this are used, a four-node type with four peaks or a bimodal type with eight peaks can be obtained. It is possible to melt and recrystallize a wide area in one scan.

しかし、この多節型レーザビームを用いる。嚇合、横方
向に幅広い領域を単結晶化するには、前述の走査方向に
細長い単結晶化領截同士で同じ結晶方位を有する必要が
あシ、この目的のため釦、第3図に示すような基板構造
とすることが望ましい。
However, this multi-node laser beam is used. In order to single-crystallize a wide region in the lateral direction, it is necessary to have the same crystal orientation in the single-crystallization regions elongated in the scanning direction. It is desirable to have such a substrate structure.

すなわち、基板に単結晶シリコン200を用い、その上
に酸化シリコン膜210を形成し、さらにその上に多結
晶シリコン膜220を形成する。このとき酸化シリコン
膜210は一部除去してシード部300とし、このシー
ド部300では多結晶シリコン膜220が直接単結晶シ
リコン200と接するようにる単結晶化領域となシ、さ
らに、シード部300に続いて走査される多結晶シリコ
ン膜も同様にし・て、同じ結晶方位を有する単結晶化領
域となるため、走査方向に細長い単結晶化領域は単結晶
シリコン基板と同一の結晶方位を有する。従って走査位
置をずらしながらくシかえし走査を行えば、次々に得ら
れる細長い単結晶化領域は、互いに同一の結晶方位を有
するため、それぞれの細長い単結晶化領域の間に結晶格
子のずれはなく、結晶粒界“ が形成されることもなく
幅広い領域にわたって単結晶化領域が形成される。
That is, a single crystal silicon 200 is used as a substrate, a silicon oxide film 210 is formed thereon, and a polycrystalline silicon film 220 is further formed thereon. At this time, a portion of the silicon oxide film 210 is removed to form a seed portion 300, and in this seed portion 300, a single crystallized region is formed in which the polycrystalline silicon film 220 is in direct contact with the single crystal silicon 200. The polycrystalline silicon film scanned subsequent to step 300 similarly becomes a single crystallized region having the same crystal orientation, so that the single crystallized region elongated in the scanning direction has the same crystal orientation as the single crystal silicon substrate. . Therefore, if repeated scanning is performed while shifting the scanning position, the elongated single crystallized regions obtained one after another have the same crystal orientation, so there is no crystal lattice shift between the respective elongated single crystallized regions. A single crystallized region is formed over a wide area without the formation of grain boundaries.

ところで前述の方法の欠点は、絶縁膜上の多・結晶シリ
コン膜220を溶融再結晶化するためのレーザパワー条
件にくらべ、シード部では熱の逃げが大きいため多結晶
シリコン膜を浴融再結晶化するためのレーザパワー条件
が異なることであシ、シード部ではよシ大きなレーザパ
ワーを必要とする。
By the way, the drawback of the above method is that compared to the laser power conditions for melting and recrystallizing the polycrystalline silicon film 220 on the insulating film, heat escape is large at the seed part, so the polycrystalline silicon film cannot be bath-melted and recrystallized. The reason is that the laser power conditions for oxidation are different, and the seed section requires a higher laser power.

従って絶縁膜上の多結晶シリコン膜を前述の多峰型レー
ザビームで走査した時に多結晶シリコン膜がレーザビー
ム強度分布の山に相当する部分でも再結晶化が起りレー
ザビーム強度分布の谷に相当とく細長い単結晶化領域の
単結晶化の核の位置はレーザビーム強度分布の谷に相当
する位置であってレーザビーム強度分布の山に相当する
走査部分では単結晶シリコン基板と同一の結晶方位を有
する単結晶化領域82はごく小面積にしか形成されずシ
ード部で、レーザビーム強度分布の谷に相当する部分で
多結晶シリコン膜が良好に溶融・単結晶化しないと形成
された細長い単結晶化領域81の結晶方位は制御できず
、くりかえし走査を行った時に次々に得られる細長い単
結晶他領或は、互いに同一の結晶方位を有することは困
難となシ、従って前述のごとき、幅広い領域にわたる単
結晶化領域を得ることは困難となる。
Therefore, when the polycrystalline silicon film on the insulating film is scanned with the multi-peaked laser beam described above, recrystallization occurs even in the portions of the polycrystalline silicon film that correspond to the peaks of the laser beam intensity distribution, which corresponds to the valleys of the laser beam intensity distribution. In particular, the position of the single crystallization nucleus in the elongated single crystal region is a position corresponding to the valley of the laser beam intensity distribution, and the scanning portion corresponding to the peak of the laser beam intensity distribution has the same crystal orientation as the single crystal silicon substrate. The single-crystalline region 82 is formed only in a very small area, and is a seed part. If the polycrystalline silicon film is not well melted and single-crystallized in the part corresponding to the valley of the laser beam intensity distribution, an elongated single crystal is formed. The crystal orientation of the crystalline region 81 cannot be controlled, and it is difficult to obtain elongated single crystal regions one after another by repeated scanning, or to have the same crystal orientation with each other. It becomes difficult to obtain a single crystallized region spanning the entire range.

本発明の目的は単結晶半導体基板上に絶縁膜を設け、さ
らにその上に多結晶あるいは非晶質半導体薄膜を形成し
た試料上を多峰型レーザビームでI果、幅広い領域にわ
たって良好な単結晶化領域J得ることができるような単
結晶半導体薄膜の製造方法を提供することにある。
The purpose of the present invention is to form a good single crystal over a wide area by using a multimodal laser beam on a sample in which an insulating film is provided on a single crystal semiconductor substrate, and a polycrystalline or amorphous semiconductor thin film is formed on top of the insulating film. It is an object of the present invention to provide a method for manufacturing a single crystal semiconductor thin film that can obtain a chemical region J.

本発明によれば単結晶半導体基板上に絶縁膜を形成し、
次いでこの絶縁膜の一部分を除去して基板表面を露出さ
せてシード部となし、次いで少なくとも該シード部及び
その周辺に多結晶するいは非晶質半導体薄膜を形成し、
次いで第1のレーザビームを前記シード部からその周辺
にかけて照射して少なくとも前記シード部から前記絶縁
膜端部の上にかけての領域の前記半導体薄膜を溶融し再
結晶化させて前記基板と同一の結晶方位を有する単結晶
領域となし、次い中強度分布が多峰型である第2のレー
ザビームをその強度分イロの谷に相当する部分が前記単
結晶領域をlJ記シード部から前記絶縁膜へ向かって1
通過するように照射することを特徴とする単結晶半導体
薄膜の製造方法が得られる。
According to the present invention, an insulating film is formed on a single crystal semiconductor substrate,
Next, a portion of the insulating film is removed to expose the substrate surface to serve as a seed portion, and then a polycrystalline or amorphous semiconductor thin film is formed at least in and around the seed portion,
Next, a first laser beam is irradiated from the seed part to its periphery to melt and recrystallize the semiconductor thin film in at least a region from the seed part to the end of the insulating film, so that crystals identical to those of the substrate are formed. A second laser beam having a multimodal medium intensity distribution is applied to the single crystal region from the seed portion to the insulating film so that a portion corresponding to the valley of the laser beam is applied to the single crystal region from the seed portion to the insulating film. towards 1
A method for manufacturing a single-crystal semiconductor thin film is obtained, which is characterized in that irradiation is performed so as to pass through the irradiation.

次に本発明の一実施例について図面を参照して説明する
。本発明の一実施例は、目IJ述の第3図のごとき試料
を用いる。すなわち単結晶シリコン基板200の表面忙
熱酸化法などにより酸化シリコン111%−,210を
形成し、次いで多結晶シリコツ11M220博全′面に
わたって形成する。このとき酸化シリコM’JIIK 
’210の一部は除去しておいて、シード部300シー
じ、このシード部300では多結晶シリコン膜220が
単結晶シリコン基板200Kilj接4投するようにし
ておく。一方レーザビームは第2図(alに示すような
方法で得られる双峰型強度分布を有するし300を含む
領域を矢印20の方向へ予備走査する。
Next, an embodiment of the present invention will be described with reference to the drawings. One embodiment of the present invention uses a sample as shown in FIG. 3 described above. That is, silicon oxide 111%-210 is formed on the surface of the single-crystal silicon substrate 200 by thermal oxidation, and then polycrystalline silicon 11M220 is formed over the entire surface. At this time, silicon oxide M'JIIK
A portion of 210 is removed so that the seed portion 300 is in contact with the polycrystalline silicon film 220 on the single crystal silicon substrate 200. On the other hand, the laser beam preliminarily scans in the direction of the arrow 20 an area including the laser beam 300 having a bimodal intensity distribution obtained by the method shown in FIG. 2(al).

このときのビームの強度は山の部分においてシード部3
00上及び絶縁膜上の多結晶シリコンが共に浴融ししか
も飛散しない範囲にする。すると少なビーム72を第1
のレーザビーム71と同じ方向20へしかも強朋分布の
谷の部分が予価走査で単結晶化した領域420を通るよ
うに主走査を行なう。
The intensity of the beam at this time is
The polycrystalline silicon on the 00 and the insulating film are both melted in the bath and not scattered. Then, the smaller beam 72 is
The main scan is performed in the same direction 20 as the laser beam 71 of , and in such a way that the valley portion of the Koho distribution passes through the region 420 that has been made into a single crystal by the preliminary scan.

このように主走査における再結晶化核として単結晶化領
域400及び420が用意されたことになるから、双峰
型レーザビーム72で主走査を位置をずらしながらくシ
かえし行えば、それぞれの走査で得られる 細長い単結
晶化領域83はいずれも単以上の説明では、レーザビー
ムとして予備走査および主走査のいずれにおいても双峰
型強度分布を有するレーザビームを用いた場合を例にと
って説明したが、これに限られることなく、予備走査に
おいては通常のガウス型強度分布を有するレーザビーム
あるいは、四節型またはへ峰型等の多峰型強度分布を有
するレーザビームを用いてもよい。
In this way, since the single crystallized regions 400 and 420 are prepared as recrystallization nuclei in the main scanning, if the main scanning is repeated with the bimodal laser beam 72 while shifting the position, each scanning The obtained elongated single crystallized region 83 has been explained above using a case where a laser beam having a bimodal intensity distribution in both preliminary scanning and main scanning is used as an example. However, the preliminary scanning may use a laser beam having a normal Gaussian intensity distribution or a laser beam having a multimodal intensity distribution such as a four-node type or a humpoid type.

また主走査においては、四節型またはへ峰型等の多峰型
強度分布を有するレーザビームを用いてもよい。
In addition, in the main scanning, a laser beam having a multimodal intensity distribution such as a four-node type or a peaked type may be used.

なお、以上の説明では、主走査において強度分布の谷が
通過する部分のみを予備走査の際に溶融・再結晶化して
おく方法について説明したが、これに限られることなく
予備走査においては通常のガウス型強度分布を有するレ
ーザビームによってシー下部全体を溶融・再結晶化し、
基板単結晶シリコンと同一の結晶方位を有する単結晶化
領域を形成しておいてもよい。このとき予備走査に用い
るレーザビームとして双峰型あるいは四節型等の多蜂型
強度分廂を有するレーザビームを用い、強とを全く独立
した別々のビームを使って行う方法について説明したが
、これに限られるわけではなく、第6図に示すように千
鳥型強度分布[Jを有するレーザビーム73によって予
備走査および主走査を非常に短い時間間隔をおいて行っ
てもよい。第6図の千鳥型強度分布を有するレーザビー
ム73は例えば第7図に示すようカー波長板および複屈
折板の組み合わせによって1本のガウス型の分布のレー
ザビームから得ることができる。第7図において、通常
のガウス型強度分布を有するレーザビーム10は第1の
4波長板51によって円偏光になった後記1の複屈折板
61によって双峰型強度分布となりさらに第2の4波長
板52によって円偏光に変った後記2の複屈括板62に
よって四節型強度分布となる。さらにこの後記3の4波
長板53によって円偏光となった後、第3の複屈折板6
3によって分離されるが、このとき第3の複屈折板によ
る常光と異常光の複屈折分離方向および分離距離を第6
図に示すような分離方向75および分離距離76になる
ようにレーザビームの入射方向を軸とを非常に短い時間
間隔で行うことがn」能である。
In addition, in the above explanation, we have explained the method of melting and recrystallizing only the part where the valley of the intensity distribution passes during the main scanning during the preliminary scanning, but the method is not limited to this. The entire lower part of the sea is melted and recrystallized by a laser beam with a Gaussian intensity distribution,
A single crystallized region having the same crystal orientation as the single crystal silicon substrate may be formed. At this time, a method was explained in which a laser beam having a multi-bee type intensity distribution such as a bimodal type or a four-node type was used as the laser beam used for preliminary scanning, and the intensity was used as a separate beam that was completely independent. However, the present invention is not limited to this, and preliminary scanning and main scanning may be performed at very short time intervals using a laser beam 73 having a staggered intensity distribution [J, as shown in FIG. The laser beam 73 having the staggered intensity distribution shown in FIG. 6 can be obtained from one laser beam having a Gaussian distribution by combining a Kerr wavelength plate and a birefringent plate, as shown in FIG. 7, for example. In FIG. 7, a laser beam 10 having a normal Gaussian intensity distribution becomes circularly polarized by a first four-wavelength plate 51, and then becomes a bimodal intensity distribution by a birefringent plate 61 described in 1 below. The light is changed into circularly polarized light by the plate 52, and a four-node intensity distribution is created by the birefringent bracket plate 62 described in 2 below. Furthermore, after the light becomes circularly polarized by the four-wavelength plate 53 described later, the third birefringent plate 6
However, at this time, the birefringence separation direction and separation distance of the ordinary light and extraordinary light by the third birefringence plate are determined by the sixth birefringence plate.
It is possible to change the incident direction of the laser beam from the axis at very short time intervals so that the separation direction 75 and separation distance 76 as shown in the figure are obtained.

このとき、第3の一波長板53および第3の複屈折板6
3は第2の複屈折@62のあとに配置したがこれに限ら
れることはなく、第1の複屈拍&61と第2の一波長板
52の中間に配置してもよいし、第1の一波長板510
面前に配置しても同様の効果が得られる。
At this time, the third single-wavelength plate 53 and the third birefringent plate 6
3 is placed after the second birefringence @62, but it is not limited to this, and may be placed between the first birefringence &61 and the second single-wavelength plate 52, or the first One wavelength plate 510
A similar effect can be obtained by placing it in front of you.

なお以上の説明では、絶縁膜として、熱酸化法による酸
化シ゛リコン膜を用いた例について説明したが、これに
限られることはなく、CVD法な゛ど他の製法による絶
縁膜であってもよいし、また、窒化シリコン膜など他の
種類の絶縁膜であってもよい。
In the above description, an example has been described in which a silicon oxide film produced by a thermal oxidation method is used as an insulating film, but the invention is not limited to this, and an insulating film may be produced by other methods such as a CVD method. However, other types of insulating films such as silicon nitride films may also be used.

また実施列では単結晶化すべき半導体薄膜として多結晶
シリコンを用いたが非晶質シリコン等でもよい。
Further, in the embodiment, polycrystalline silicon was used as the semiconductor thin film to be made into a single crystal, but amorphous silicon or the like may also be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第7図は本発明の詳細な説明′するだめの図で
ある。。 暑波長板、60・・・復古1(私版、61・・・第1の
複屈折板。 62、・・・第2の複屈折板、63・・・第3の複屈折
板、70・・・双峰型強度分布のレーザビーム、71・
・・予4mjL査用双峰型レーザビーム、72・・・主
走査用双峰型レーザビーム、73・・・千鳥型強度分布
のレーザビーム。 75・・・第3の複屈折板63における常光と異常光の
分離方向、76・・・第3の複屈折板63における常光
と異常光の分離距離、80・・走査中央部の単結晶化領
域、81・結晶方位は制御できていない単結晶化領域、
83・・・単結晶シリコン基板と同一の結晶方位を有す
る細長い単結晶化・山域、90・・・多結晶狽域。 100・・単結晶基板、110・・・絶縁膜、120・
・・多結晶あるいは非晶質半導体薄膜、200・・・単
結晶シリコン基板、210・・・酸化シリコン膜、22
0・・多結晶シリコン膜、300・・・シード部、40
0,420・・レーザ強度分布の谷が走査するシード部
後尾部分第 1 図 第 2 図 第3図 00 第4図 第5図 1100 第 6 図 第7図 □ρ ]]−′ 一一−レ ]− 二りし 〜−し/ 68− 51 /61 52 /62 53 /63 /′73
FIGS. 1 to 7 are diagrams for explaining the present invention in detail. . Heat wavelength plate, 60... Retrospective 1 (Private edition, 61... First birefringent plate. 62,... Second birefringent plate, 63... Third birefringent plate, 70.・Laser beam with bimodal intensity distribution, 71・
. . . Bimodal laser beam for pre-4mjL scanning, 72 . . . Bimodal laser beam for main scanning, 73 . . . Laser beam with staggered intensity distribution. 75...Separation direction of ordinary light and extraordinary light in the third birefringent plate 63, 76...Separation distance of ordinary light and extraordinary light in the third birefringence plate 63, 80...Single crystallization at the center of scanning Region, 81・Single crystallization region where crystal orientation is not controlled,
83...Elongated single crystalline mountain region having the same crystal orientation as the single crystal silicon substrate, 90...Polycrystalline region. 100... Single crystal substrate, 110... Insulating film, 120...
... Polycrystalline or amorphous semiconductor thin film, 200 ... Single crystal silicon substrate, 210 ... Silicon oxide film, 22
0...Polycrystalline silicon film, 300...Seed part, 40
0,420...Rear part of the seed section scanned by the valley of the laser intensity distribution Fig. 1 Fig. 2 Fig. 3 00 Fig. 4 Fig. 5 1100 Fig. 6 Fig. 7 ]- Nirishi ~-shi / 68- 51 /61 52 /62 53 /63 /'73

Claims (1)

【特許請求の範囲】 1、単結晶半導体基板上に絶縁膜を形成し、次いでこの
絶縁膜の一部分を除去して基板表面を露出させてシード
部となし、次いで少なくとも該シード部及びその周辺に
多結晶あるいは被晶質半導体薄膜を形成し、次いで第1
のレーザビームを前記と一ド部からその周辺にかけて照
射して少なくとも前記シード部から前記絶縁膜端部の上
にかけて?領域の前記半導体薄膜を溶融し再結晶化させ
1前記基板と同一の結晶方位を有する単結晶領域となし
、次いで強度分布が多峰型である第2のレーザビームを
その強度分布の谷に相当する部分が前記単結晶領域を前
記シード部から前記絶縁膜へ向かって通過するように照
射することを特徴とする単結晶半導体薄膜の製造方法。 2、第1のレーザビームの強度分布がガウス型あるいは
多峰型である特許請求の範囲第1項に記載の単結晶半導
体薄膜の製造方法。 3、複屈折板を単独あるいは多数組み合わせて多節型強
度分布のレーザビームを第1の列の多節型強度分布と第
2の列の多節型強度分布との複合された千鳥型強度分布
のレーザビーム釦変換し、レーザビーム走査において、
第1の列の多節型強度分布の山に相当する部分が走査し
た位置を続いて第2の列の多節型強度分布の谷に相当す
る部分が走査する特許請求の範囲第1項に記載の単結晶
半導体薄膜の製造方法。
[Claims] 1. An insulating film is formed on a single crystal semiconductor substrate, a portion of this insulating film is then removed to expose the substrate surface to serve as a seed portion, and then at least the seed portion and its surroundings are A polycrystalline or crystalline semiconductor thin film is formed, and then a first
Is the laser beam irradiated from the seed part to the periphery of the seed part and at least from the seed part to the top of the insulating film end part? The semiconductor thin film in the region is melted and recrystallized to form a single crystal region having the same crystal orientation as the substrate, and then a second laser beam having a multimodal intensity distribution is applied to the valleys of the intensity distribution. A method for producing a single crystal semiconductor thin film, characterized in that the irradiation is performed so that the portion passing through the single crystal region from the seed portion toward the insulating film. 2. The method for manufacturing a single crystal semiconductor thin film according to claim 1, wherein the intensity distribution of the first laser beam is Gaussian or multimodal. 3. A multi-node intensity distribution laser beam is created by using a single birefringent plate or a combination of multiple birefringent plates to create a staggered intensity distribution that is a composite of the multi-node intensity distribution in the first row and the multi-node intensity distribution in the second row. The laser beam button converts and the laser beam scans,
Claim 1, wherein the position scanned by the portion corresponding to the peak of the multi-node intensity distribution in the first column is subsequently scanned by the portion corresponding to the valley of the multi-node intensity distribution in the second column. The method for manufacturing the single crystal semiconductor thin film described above.
JP58097960A 1983-06-03 1983-06-03 Manufacture of single crystal semiconductor thin-film Granted JPS59224114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58097960A JPS59224114A (en) 1983-06-03 1983-06-03 Manufacture of single crystal semiconductor thin-film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58097960A JPS59224114A (en) 1983-06-03 1983-06-03 Manufacture of single crystal semiconductor thin-film

Publications (2)

Publication Number Publication Date
JPS59224114A true JPS59224114A (en) 1984-12-17
JPH0152888B2 JPH0152888B2 (en) 1989-11-10

Family

ID=14206235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58097960A Granted JPS59224114A (en) 1983-06-03 1983-06-03 Manufacture of single crystal semiconductor thin-film

Country Status (1)

Country Link
JP (1) JPS59224114A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158184A (en) * 2000-11-16 2002-05-31 Mitsubishi Electric Corp Laser optical system for laser heat treatment
JP2007311479A (en) * 2006-05-17 2007-11-29 Ulvac Japan Ltd Laser annealing device and its method
JP2008252064A (en) * 2007-03-05 2008-10-16 Ulvac Japan Ltd Laser annealing apparatus and laser annealing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158184A (en) * 2000-11-16 2002-05-31 Mitsubishi Electric Corp Laser optical system for laser heat treatment
JP2007311479A (en) * 2006-05-17 2007-11-29 Ulvac Japan Ltd Laser annealing device and its method
JP2008252064A (en) * 2007-03-05 2008-10-16 Ulvac Japan Ltd Laser annealing apparatus and laser annealing method

Also Published As

Publication number Publication date
JPH0152888B2 (en) 1989-11-10

Similar Documents

Publication Publication Date Title
EP0235819B1 (en) Process for producing single crystal semiconductor layer
JPS59161014A (en) Crystallization of semiconductor thin film
JPS59224114A (en) Manufacture of single crystal semiconductor thin-film
JPS62160712A (en) Manufacture of semiconductor device
JPS59155121A (en) Manufacture of semiconductor thin film
JPS61260621A (en) Retreatment for amorphous silicon film or polycrystalline silicon film
JPS60143624A (en) Manufacture of semiconductor device
JPH04132212A (en) Manufacture of semiconductor film
JPS6221207A (en) Manufacture of semiconductor device
JPS59148322A (en) Manufacture of semiconductor device
JPS6147627A (en) Manufacture of semiconductor device
JPH01168050A (en) Laminated type semiconductor device
JPS5939791A (en) Production of single crystal
JPH0236050B2 (en)
JPS59184517A (en) Manufacture of lamination-type semiconductor device
JPH0442358B2 (en)
JPH0410212B2 (en)
JPS62130510A (en) Manufacture of semiconductor substrate
JPS5946021A (en) Semiconductor device and its manufacture
JP2993107B2 (en) Semiconductor thin film manufacturing method
JPS5934626A (en) Method for formation of semiconductor film
JPS60191090A (en) Manufacture of semiconductor device
JPH0573324B2 (en)
JPS5831515A (en) Manufacture of semiconductor thin film
JPS5978999A (en) Manufacture of semiconductor single crystal film