JPH04132212A - Manufacture of semiconductor film - Google Patents

Manufacture of semiconductor film

Info

Publication number
JPH04132212A
JPH04132212A JP25196490A JP25196490A JPH04132212A JP H04132212 A JPH04132212 A JP H04132212A JP 25196490 A JP25196490 A JP 25196490A JP 25196490 A JP25196490 A JP 25196490A JP H04132212 A JPH04132212 A JP H04132212A
Authority
JP
Japan
Prior art keywords
amorphous
film
heat treatment
glass substrate
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25196490A
Other languages
Japanese (ja)
Other versions
JP2861345B2 (en
Inventor
Yoshio Nishihara
義雄 西原
Mario Fuse
マリオ 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP25196490A priority Critical patent/JP2861345B2/en
Publication of JPH04132212A publication Critical patent/JPH04132212A/en
Application granted granted Critical
Publication of JP2861345B2 publication Critical patent/JP2861345B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To form a good-quality semiconductor film on a glass substrate by a method wherein an amorphous Si film is formed so as to cover a single domain nucleus, a heat treatment is executed within a temperature range which is higher than the melting point of amorphous Si and which is lower than the melting point of crystal Si and the whole amorphous Si film is changed to polycrystalline Si. CONSTITUTION:An excimer laser beam is irradiated from the upper part of a glass substrate 1 to execute a heat treatment. When the glass substrate 1 is cooled and a liquid phase is changed to a solid phase, single-domain nuclei 2b composed of single crystals are formed. An amorphous Si film 3 is formed on the glass substrate 1 so as to cover the single-domain nucleui. An excimer laser beam is irradiated from the upper part of the glass substrate 1 to execute a heat treatment. When the heat treatment is executed, the energy density of the laser beam is controlled so as to be within a temperature range which is higher than the melting point of amorphous Si and which is lower than the melting point of crystal Si. A plurality of domains 3a are solid-grown around the individual single-domain nuclei 2b which exist in a solid phase. A large grain 4 having the domains 3a is formed; and the whole amorphous Si film 3 is changed to polycrystalline Si.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、絶縁基板上に薄膜トランジスタ等の素子を集
積化して電子デバイスを作製する際に、その半導体活性
層となる多結晶Si薄膜を形成するための製造方法に関
する。
Detailed Description of the Invention (Industrial Application Field) The present invention is directed to the formation of a polycrystalline Si thin film that will become a semiconductor active layer when manufacturing electronic devices by integrating elements such as thin film transistors on an insulating substrate. It relates to a manufacturing method for.

(従来の技術) 従来、絶縁基板上に多結晶Si薄膜を形成する製造方法
としては、絶縁基板上に非晶質Si薄膜を着膜し、ファ
ーネス・アニール法やレーザーアニール法等の熱処理を
行なうことにより、非晶質Si薄膜中に含まれる核を中
心として自然発生的に固相成長させて多結晶化する方法
が用いられている。しかしなから上記方法は、自然発生
的に固相成長させるため、多結晶化したグレインの位置
や個数の制御が困難であり、また、グレインとしての結
晶性が悪いため大きなグレインとすることが困難であっ
た。
(Prior art) Conventionally, as a manufacturing method for forming a polycrystalline Si thin film on an insulating substrate, an amorphous Si thin film is deposited on the insulating substrate, and heat treatment such as a furnace annealing method or a laser annealing method is performed. Accordingly, a method is used in which the amorphous Si thin film undergoes spontaneous solid-phase growth centering around nuclei contained in the amorphous Si thin film to become polycrystalline. However, since the above method uses spontaneous solid-phase growth, it is difficult to control the position and number of polycrystalline grains, and it is difficult to form large grains due to the poor crystallinity of the grains. Met.

そこで近年、複数に分離したSi薄膜に熱処理を施し、
凝集反応により結晶化させて核を形成し、この核を中心
として多結晶を成長させる方法が提案されている。
Therefore, in recent years, heat treatment has been applied to Si thin films separated into multiple parts.
A method has been proposed in which a nucleus is formed by crystallization through an aggregation reaction, and a polycrystal is grown around this nucleus.

この方法は、絶縁基板上に着膜したSi薄膜を複数のド
ツト分離形状に微細パターニングし、次に熱処理を行い
、凝集反応により結晶Siの核を形成し、更に個々の結
晶Siを核としてCVD法により気相成長させ、前記該
を中心として多結晶を成長させるものである。この方法
によると、結晶Siの核の個数及び位置の制御が容易で
あり、大きなグレインとすることができるという利点が
ある。
In this method, a Si thin film deposited on an insulating substrate is finely patterned into a plurality of separated dot shapes, then heat treated to form crystalline Si nuclei through an agglomeration reaction, and then CVD using individual crystalline Si as nuclei. This method uses vapor phase growth to grow polycrystals around the crystals. This method has the advantage that the number and position of crystalline Si nuclei can be easily controlled and large grains can be formed.

(発明が解決しようとする課題) しかしなから上記方法によれば、気相成長させる際に、
絶縁基板の温度を高温(700〜1000℃)ニスる高
温プロセスが必要になる。液晶デイスプレィ等の大面積
デバイスにおいては、高温プロセスを施すことのできな
いガラス基板が絶縁基板として用いられるので、上記方
法ではガラス基板上に多結晶Si薄膜を形成することが
できないという問題点があった。
(Problem to be solved by the invention) However, according to the above method, during vapor phase growth,
A high-temperature process is required to varnish the insulating substrate at a high temperature (700 to 1000°C). In large-area devices such as liquid crystal displays, glass substrates that cannot be subjected to high-temperature processes are used as insulating substrates, so the above method has the problem of not being able to form polycrystalline Si thin films on glass substrates. .

本発明は上記実情に鑑みてなされたもので、ガラス基板
上に大きなグレインの集合体から成る多結晶Si薄膜を
形成することができる半導体膜の製造方法を提供するこ
とを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a semiconductor film that can form a polycrystalline Si thin film consisting of a large grain aggregate on a glass substrate.

(課題を解決するための手段) 上記従来例の問題点を解消するため本発明に係る半導体
膜の製造方法は、次の工程を具備することを特徴として
いる。
(Means for Solving the Problems) In order to solve the problems of the conventional example described above, a method for manufacturing a semiconductor film according to the present invention is characterized by comprising the following steps.

第1の工程として、絶縁基板上に着膜されたSi薄膜を
複数のドツト分離形状に微細パターニングし、熱処理を
行なうことによる凝集反応により結晶Siから成る単一
ドメイン咳を形成する。
In the first step, a Si thin film deposited on an insulating substrate is finely patterned into a plurality of separated dot shapes, and a single domain composed of crystalline Si is formed by agglomeration reaction caused by heat treatment.

第2の工程として、前記単一ドメイン核を覆うように非
晶lsiを着膜する。
As a second step, amorphous lsi is deposited to cover the single domain core.

第3の工程として、非晶質Siの融点より高く結晶Si
の融点より低い温度の範囲て熱処理を行ない、前記単一
ドメイン核を中心とした固相成長により前記非晶質Si
の膜全体を多結晶Siとする。
As the third step, crystalline Si is heated to a temperature higher than the melting point of amorphous Si.
Heat treatment is performed in a temperature range lower than the melting point of the amorphous Si by solid phase growth centered on the single domain nucleus.
The entire film is made of polycrystalline Si.

(作用) 本発明方法によれば、非晶質Siの融点と結晶Siの融
点が異なる点を利用し、単一ドメイン核を覆うように着
膜した非晶質Si膜を、非晶質Siの融点より高く結晶
Siの融点より低い温度の範囲で熱処理を行なう。この
プロセスにより、時的に液相となったSiが同相となる
とき、固相のまま存在する前記単一ドメイン核を中心と
して固相成長し、前記非晶質Siの膜全体を大きなグレ
インを有する多結晶Siとすることかできる。
(Function) According to the method of the present invention, the melting points of amorphous Si and crystalline Si are different, and an amorphous Si film deposited to cover a single domain nucleus is The heat treatment is performed in a temperature range higher than the melting point of crystalline Si and lower than the melting point of crystalline Si. Through this process, when the Si, which has temporarily become a liquid phase, becomes the same phase, it grows in a solid phase centered on the single domain nucleus that remains in the solid phase, and the entire amorphous Si film is grown into large grains. It is also possible to use polycrystalline Si having the following properties.

(実施例) 本発明の半導体膜の製造方法の実施例について第1図及
び第2図を参照しなから説明する。
(Example) An example of the method for manufacturing a semiconductor film of the present invention will be described with reference to FIGS. 1 and 2.

ガラス基板1上にLPCVD法を用いて非晶質Si膜2
を厚さ200A着膜する(第1図(a)。
An amorphous Si film 2 is formed on a glass substrate 1 using the LPCVD method.
is deposited to a thickness of 200A (Fig. 1(a)).

第2図(a))。次いで、フォトリソ法により前記非晶
質Si薄膜2を5μmピッチで3×3μmの大きさの複
数のドツト分離部2aが複数列並ぶ形状に微細パターニ
ングする(第1図(b)、第2図(b))。
Figure 2(a)). Next, the amorphous Si thin film 2 is finely patterned by photolithography into a shape in which a plurality of dot separation parts 2a each having a size of 3×3 μm are lined up in multiple rows at a pitch of 5 μm (Fig. 1(b), Fig. 2(b)). b)).

ガラス基板1上方からエキシマレーザ光(KrF、波長
248nm、エネルギー密度400mJ/cm’)を照
射して熱処理を行なうとドツト分離部2aが解けて液相
になる。その際、各液相の体積が小さいので表面張力に
より凝集し、ガラス基板1側から冷却されると、前記液
相が同相となるときに直径0.7μm以下の単結晶から
成る単一ドメイン核2bを形成する(第1図(C)、第
2図(C))。熱処理前のドツト分離部2aは非晶質で
あるが、熱処理及び冷却後は、体積か小さいので単結晶
Siから構成される単一ドメイン核となる。
When heat treatment is performed by irradiating excimer laser light (KrF, wavelength 248 nm, energy density 400 mJ/cm') from above the glass substrate 1, the dot separation portions 2a are dissolved and become a liquid phase. At this time, since the volume of each liquid phase is small, they aggregate due to surface tension, and when the liquid phases are cooled from the glass substrate 1 side, when the liquid phases become the same phase, a single domain nucleus consisting of a single crystal with a diameter of 0.7 μm or less 2b (Fig. 1(C), Fig. 2(C)). The dot separation part 2a before heat treatment is amorphous, but after heat treatment and cooling, since the volume is small, it becomes a single domain nucleus composed of single crystal Si.

次に、前記単一ドメイン核2bを覆うように、ガラス基
板1上にLPCVD法を用いて非晶質Si膜3を厚さ1
00OA着膜する(第1図(d)。
Next, an amorphous Si film 3 is deposited to a thickness of 1 on the glass substrate 1 using the LPCVD method so as to cover the single domain nucleus 2b.
00OA film is deposited (Fig. 1(d)).

第2図(d))。Figure 2(d)).

ガラス基板1上方からエキシマレーザ光(KrF、波長
248nm、エネルギー密度350mJ/cm’)を照
射して熱処理を行なう。この熱処理は、非晶質S1の融
点(1350’ K)より高く結晶Siの融点(168
3@K)より低い温度の範囲になるように、レーザ光の
エネルギー密度を制御する。このプロセスにより、単一
ドメイン核2bを融解させずに非晶質Si膜3のみを融
解させ、−時的に液相となったSiがガラス基板1側か
ら冷却されて固相となる際、固相のまま存在する6単一
ドメイン核2bを中心として、複数のドメイン3aが固
相成長する。そして、複数のドメイン3aを有する2〜
4μmの大きなグレイン4が形成されることにより、非
晶質Si膜3全体にわたって多結晶Siとすることがで
きる(第1図(e)、第2図(e))。
Heat treatment is performed by irradiating the glass substrate 1 with excimer laser light (KrF, wavelength 248 nm, energy density 350 mJ/cm') from above. This heat treatment lowers the melting point of crystalline Si (168' K) higher than the melting point of amorphous S1 (1350' K).
3@K) Control the energy density of the laser beam so that it is in a lower temperature range. Through this process, only the amorphous Si film 3 is melted without melting the single domain core 2b, and - when the Si, which has temporarily become a liquid phase, is cooled from the glass substrate 1 side and becomes a solid phase, A plurality of domains 3a grow in a solid phase around a six single domain core 2b that remains in a solid phase. And 2~ having multiple domains 3a
By forming large grains 4 of 4 μm, polycrystalline Si can be formed over the entire amorphous Si film 3 (FIGS. 1(e) and 2(e)).

上記半導体膜の製造方法の熱処理において用いられたレ
ーザ光は、着膜された非晶質Si膜膜部部分までしか到
達しないので、非晶質Si膜膜部部分高温となってもガ
ラス基板1に熱的なダメージを与えることがない。従っ
て、ガラス基板1を劣化させることなくガラス基板1上
に多結晶Si薄膜を形成することができる。また、レー
ザアニール法以外にハロゲンランプの光を集光させて照
射するフラッシュアニール法を用いてもよい。
The laser light used in the heat treatment of the semiconductor film manufacturing method described above reaches only the deposited amorphous Si film portion, so even if the amorphous Si film portion reaches a high temperature, the glass substrate will not cause thermal damage. Therefore, a polycrystalline Si thin film can be formed on the glass substrate 1 without deteriorating the glass substrate 1. Further, instead of the laser annealing method, a flash annealing method in which light from a halogen lamp is focused and irradiated may be used.

(発明の効果) 本発明方法によれば、非晶質Siの融点と結晶Siの融
点が異なる点を利用し、単一ドメイン核を覆うように着
膜した非晶質Si膜を、非晶質Siの融点より高く結晶
Siの融点より低い温度の範囲て熱処理を行なう。この
プロセスにより、時的に液相となったSiか固相となる
とき、同相のまま存在する前記単一ドメイン核を中心と
して固相成長させるので、高温プロセスを施すことがで
きないガラス基板に着膜された非晶質Siの膜全体を、
大きなグレインを有する多結晶Siとすることができる
。従って、ガラス基板上に品質の良い半導体膜を製造す
ることかできる。
(Effects of the Invention) According to the method of the present invention, the melting points of amorphous Si and crystalline Si are different, and an amorphous Si film deposited to cover a single domain nucleus is The heat treatment is performed within a temperature range higher than the melting point of pure Si and lower than the melting point of crystalline Si. Through this process, when Si, which temporarily becomes a liquid phase, becomes a solid phase, it grows in a solid phase centering on the single domain nucleus that remains in the same phase, so it can attach to a glass substrate that cannot be subjected to high-temperature processes. The entire amorphous Si film is
It can be polycrystalline Si with large grains. Therefore, a high quality semiconductor film can be manufactured on a glass substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図Ca)乃至(e)は本発明方法実施例の半導体膜
の製造プロセスの断面説明図、第2図(a)乃至(e)
は本発明方法実施例の半導体膜の製造プロセスの平面説
明図である。 l・・・・・・ガラス基板 2・・・・・・非晶質Si膜 2a・・・ドツト分離部 2b−ソ・単一ドメイン核 3・・・・・・非晶質Si膜 3a・・・ドメイン 4・・・・・・グレイン 出 願 人 富士ゼロックス株式会社 代理人弁理士 阪  本  清  孝 代理人弁理士 船  津  暢  宏 第1図
Fig. 1 Ca) to (e) are cross-sectional explanatory diagrams of the manufacturing process of a semiconductor film according to an embodiment of the method of the present invention, and Fig. 2 (a) to (e)
FIG. 2 is a plan view illustrating a semiconductor film manufacturing process according to an embodiment of the method of the present invention. l...Glass substrate 2...Amorphous Si film 2a...Dot separation section 2b-Single domain nucleus 3...Amorphous Si film 3a... ...Domain 4...Grain Applicant Fuji Xerox Co., Ltd. Representative Patent Attorney Kiyotaka Sakamoto Representative Patent Attorney Nobuhiro Funatsu Figure 1

Claims (1)

【特許請求の範囲】 絶縁基板上に着膜されたSi薄膜を複数のドット分離形
状に微細パターニングし、熱処理を行なうことによる凝
集反応により結晶Siから成る単一ドメイン核を形成す
る工程と、前記単一ドメイン核を覆うように非晶質Si
を着膜する工程と、 非晶質Siの融点より高く結晶Siの融点より低い温度
の範囲で熱処理を行ない、前記単一ドメイン核を中心と
した固相成長により前記非晶質Siの膜全体を多結晶S
iとする工程と、 を具備する半導体膜の製造方法。
[Scope of Claims] A step of finely patterning a Si thin film deposited on an insulating substrate into a plurality of separated dot shapes, and forming a single domain nucleus made of crystalline Si through an agglomeration reaction by heat treatment; Amorphous Si covers single domain core
and heat treatment at a temperature higher than the melting point of amorphous Si and lower than the melting point of crystalline Si, and the entire film of amorphous Si is grown by solid phase growth centered on the single domain nucleus. Polycrystalline S
A method for manufacturing a semiconductor film, comprising a step of i.
JP25196490A 1990-09-25 1990-09-25 Method for manufacturing semiconductor film Expired - Lifetime JP2861345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25196490A JP2861345B2 (en) 1990-09-25 1990-09-25 Method for manufacturing semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25196490A JP2861345B2 (en) 1990-09-25 1990-09-25 Method for manufacturing semiconductor film

Publications (2)

Publication Number Publication Date
JPH04132212A true JPH04132212A (en) 1992-05-06
JP2861345B2 JP2861345B2 (en) 1999-02-24

Family

ID=17230611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25196490A Expired - Lifetime JP2861345B2 (en) 1990-09-25 1990-09-25 Method for manufacturing semiconductor film

Country Status (1)

Country Link
JP (1) JP2861345B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5766989A (en) * 1994-12-27 1998-06-16 Matsushita Electric Industrial Co., Ltd. Method for forming polycrystalline thin film and method for fabricating thin-film transistor
US5879447A (en) * 1992-04-30 1999-03-09 Kabushiki Kaisha Toshiba Semiconductor device and its fabricating method
JP2002359195A (en) * 2001-06-01 2002-12-13 Fujitsu Ltd Method for manufacturing semiconductor device
JP2009004629A (en) * 2007-06-22 2009-01-08 Semiconductor Energy Lab Co Ltd Method and apparatus for forming polycrystalline semiconductor film
WO2016155149A1 (en) * 2015-03-27 2016-10-06 京东方科技集团股份有限公司 Preparation method for polycrystalline silicon thin film, semiconductor device, display substrate and display device
CN106229254A (en) * 2016-08-31 2016-12-14 京东方科技集团股份有限公司 The manufacture method of a kind of polysilicon and polysilicon membrane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709160B (en) * 2012-03-01 2018-06-22 京东方科技集团股份有限公司 The production method and low-temperature polysilicon film of a kind of low-temperature polysilicon film

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879447A (en) * 1992-04-30 1999-03-09 Kabushiki Kaisha Toshiba Semiconductor device and its fabricating method
US6066872A (en) * 1992-04-30 2000-05-23 Kabushiki Kaisha Toshiba Semiconductor device and its fabricating method
US6093243A (en) * 1992-04-30 2000-07-25 Kabushiki Kaisha Toshiba Semiconductor device and its fabricating method
US5766989A (en) * 1994-12-27 1998-06-16 Matsushita Electric Industrial Co., Ltd. Method for forming polycrystalline thin film and method for fabricating thin-film transistor
JP2002359195A (en) * 2001-06-01 2002-12-13 Fujitsu Ltd Method for manufacturing semiconductor device
JP2009004629A (en) * 2007-06-22 2009-01-08 Semiconductor Energy Lab Co Ltd Method and apparatus for forming polycrystalline semiconductor film
WO2016155149A1 (en) * 2015-03-27 2016-10-06 京东方科技集团股份有限公司 Preparation method for polycrystalline silicon thin film, semiconductor device, display substrate and display device
US10062566B2 (en) 2015-03-27 2018-08-28 Boe Technology Group Co., Ltd. Semiconductor device, display substrate, display device, and method for manufacturing polysilicon film
CN106229254A (en) * 2016-08-31 2016-12-14 京东方科技集团股份有限公司 The manufacture method of a kind of polysilicon and polysilicon membrane

Also Published As

Publication number Publication date
JP2861345B2 (en) 1999-02-24

Similar Documents

Publication Publication Date Title
US7091112B2 (en) Method of forming a polycrystalline silicon layer
JP2004087535A (en) Method for manufacturing crystalline semiconductor material and method for manufacturing semiconductor device
KR100818285B1 (en) Fabrication method of single crystal silicon rod
JPH04132212A (en) Manufacture of semiconductor film
JPS5939790A (en) Production of single crystal
JPS61260621A (en) Retreatment for amorphous silicon film or polycrystalline silicon film
JPH08316485A (en) Formation of semiconductor crystal and manufacture of semiconductor device using this
JPS6046539B2 (en) Method for manufacturing silicon crystal film
JPH0232527A (en) Formation of single-crystal thin film
JPS5939791A (en) Production of single crystal
JPH01248511A (en) Formation of polycrystal film
JPH0354819A (en) Manufacture of soi substrate
JPH0236052B2 (en)
JP2643204B2 (en) Method of forming single crystal thin film
JPS59224114A (en) Manufacture of single crystal semiconductor thin-film
KR101032347B1 (en) Single crystal silicon rod
JPH046823A (en) Manufacture of crystalline semiconductor thin film
JPH04196411A (en) Formation of polycrystalline silicon film
JPS6083322A (en) Crystallizing method of semiconductor thin-film
JPS5816522A (en) Manufacture of semiconductor device
JPH03286520A (en) Manufacture of thin crystalline semiconductor film
JPS61251114A (en) Manufacture of single crystal silicon film
JPS5928326A (en) Preparation of member for three-dimensional integrated circuit
JPS63142810A (en) Manufacture of semiconductor device
JPS6055614A (en) Manufacture of film of semiconductor single crystal