JP2861345B2 - Method for manufacturing semiconductor film - Google Patents

Method for manufacturing semiconductor film

Info

Publication number
JP2861345B2
JP2861345B2 JP25196490A JP25196490A JP2861345B2 JP 2861345 B2 JP2861345 B2 JP 2861345B2 JP 25196490 A JP25196490 A JP 25196490A JP 25196490 A JP25196490 A JP 25196490A JP 2861345 B2 JP2861345 B2 JP 2861345B2
Authority
JP
Japan
Prior art keywords
amorphous
heat treatment
film
crystalline
single domain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25196490A
Other languages
Japanese (ja)
Other versions
JPH04132212A (en
Inventor
義雄 西原
マリオ 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP25196490A priority Critical patent/JP2861345B2/en
Publication of JPH04132212A publication Critical patent/JPH04132212A/en
Application granted granted Critical
Publication of JP2861345B2 publication Critical patent/JP2861345B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、絶縁基板上に薄膜トランジスタ等の素子を
集積化して電子デバイスを作製する際に、その半導体活
性層となる多結晶Si薄膜を形成するための製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention forms a polycrystalline Si thin film to be a semiconductor active layer when an electronic device is manufactured by integrating elements such as thin film transistors on an insulating substrate. To a manufacturing method.

(従来の技術) 従来、絶縁基板上に多結晶Si薄膜を形成する製造方法
としては、絶縁基板上に非晶質Si薄膜を着膜し、ファー
ネス・アニール法やレーザーアニール法等の熱処理を行
なうことにより、非晶質Si薄膜中に含まれる核を中心と
して自然発生的に固相成長させて多結晶化する方法が用
いられている。しかしながら上記方法は、自然発生的に
固相成長させるため、多結晶化したグレインの位置や個
数の制御が困難であり、また、グレインとしての結晶性
が悪いため大きなグレインとすることが困難であった。
(Prior art) Conventionally, as a manufacturing method of forming a polycrystalline Si thin film on an insulating substrate, an amorphous Si thin film is deposited on the insulating substrate, and a heat treatment such as a furnace annealing method or a laser annealing method is performed. Accordingly, a method of polycrystallizing by spontaneously growing a solid phase around a nucleus contained in an amorphous Si thin film has been used. However, in the above method, the position and the number of polycrystallized grains are difficult to control because of the spontaneous solid phase growth, and it is difficult to make large grains due to poor crystallinity of the grains. Was.

そこで近年、複数に分離したSi薄膜に熱処理を施し、
凝集反応により結晶化させて核を形成し、この核を中心
として多結晶を成長させる方法が提案されている。
Therefore, in recent years, heat treatment has been performed on Si
A method has been proposed in which a nucleus is formed by crystallization by an aggregation reaction, and a polycrystal is grown around the nucleus.

この方法は、絶縁基板上に着膜したSi薄膜を複数のド
ット分離形状に微細パターニングし、次に熱処理を行
い、凝集反応により結晶Siの核を形成し、更に個々の結
晶Siを核としてCVD法により気相成長させ、前記核を中
心として多結晶を成長させるものである。この方法によ
ると、結晶Siの核の個数及び位置の制御が容易であり、
大きなグレインとすることができるという利点がある。
In this method, a Si thin film deposited on an insulating substrate is finely patterned into a plurality of dot-separated shapes, followed by heat treatment, nucleation of crystalline Si by an agglutination reaction, and CVD using individual crystalline Si as nuclei. A polycrystal is grown around the nucleus by vapor phase growth by a method. According to this method, it is easy to control the number and position of crystal Si nuclei,
There is an advantage that large grains can be obtained.

(発明が解決しようとする課題) しかしながら上記方法によれば、気相成長させる際
に、絶縁基板の温度を高温(700〜1000℃)にする高温
プロセスが必要になる。液晶ディスプレイ等の大面積デ
バイスにおいては、高温プロセスを施すことのできない
ガラス基板が絶縁基板として用いられるので、上記方法
ではガラス基板上に多結晶Si薄膜を形成することができ
ないという問題点があった。
(Problems to be Solved by the Invention) However, according to the above-described method, a high-temperature process for raising the temperature of the insulating substrate to a high temperature (700 to 1000 ° C.) is required when performing vapor phase growth. In a large-area device such as a liquid crystal display, since a glass substrate that cannot be subjected to a high-temperature process is used as an insulating substrate, there is a problem that the above method cannot form a polycrystalline Si thin film on a glass substrate. .

本発明は上記実情に鑑みてなされたもので、ガラス基
板上に大きなグレインの集合体から成る多結晶Si薄膜を
形成することができる半導体膜の製造方法を提供するこ
とを目的とする。
The present invention has been made in view of the above circumstances, and has as its object to provide a method for manufacturing a semiconductor film capable of forming a polycrystalline Si thin film composed of a large aggregate of grains on a glass substrate.

(課題を解決するための手段) 上記従来例の問題点を解消するための本発明に係る半
導体膜の製造方法は、次の工程を具備することを特徴と
している。
(Means for Solving the Problems) A method for manufacturing a semiconductor film according to the present invention for solving the problems of the above conventional example is characterized by comprising the following steps.

第1の工程として、絶縁基板上に着膜されたSi薄膜を
複数のドット分離形状に微細パターニングし、熱処理を
行なうことによる凝集反応により結晶Siから成る単一ド
メイン核を形成する。
As a first step, a single domain nucleus made of crystalline Si is formed by an agglomeration reaction by finely patterning a Si thin film deposited on an insulating substrate into a plurality of dot-separated shapes and performing heat treatment.

第2の工程として、前記単一ドメイン核を覆うように
非晶質Siを着膜する。
As a second step, an amorphous Si film is formed so as to cover the single domain nucleus.

第3の工程として、非晶質Siの融点より高く結晶Siの
融点より低い温度の範囲で熱処理を行ない、前記単一ド
メイン核を中心とした溶融再結晶化により前記非晶質Si
の膜全体を多結晶Siとする。
As a third step, heat treatment is performed in a temperature range higher than the melting point of amorphous Si and lower than the melting point of crystalline Si, and the amorphous Si is melt-crystallized around the single domain nucleus.
The whole film is made of polycrystalline Si.

(作用) 本発明方法によれば、非晶質Siの融点と結晶Siの融点
が異なる点を利用し、単一ドメイン核を覆うように着膜
した非晶質Si膜を、非晶質Siの融点より高く結晶Siの融
点より低い温度の範囲で熱処理を行なう。このプロセス
により、一時的に液相となったSiが固相となるとき、固
相のまま存在する前記単一ドメイン核を中心として溶融
再結晶化し、前記非晶質Siの膜全体を大きなグレインを
有する多結晶Siとすることができる。
(Function) According to the method of the present invention, the amorphous Si film deposited so as to cover the single domain nucleus is made of amorphous Si by utilizing the fact that the melting point of amorphous Si is different from that of crystalline Si. Is performed in a temperature range higher than the melting point of the crystalline Si and lower than the melting point of the crystalline Si. According to this process, when Si that has temporarily become a liquid phase becomes a solid phase, it is melted and recrystallized around the single domain nucleus that remains as a solid phase, and the entire amorphous Si film becomes large grains. Polycrystalline Si having the following formula:

(実施例) 本発明の半導体膜の製造方法の実施例について第1図
及び第2図を参照しながら説明する。
Example An example of a method for manufacturing a semiconductor film according to the present invention will be described with reference to FIGS.

ガラス基板1上にLPCVD法を用いて非晶質Si膜2を厚
さ200Å着膜する(第1図(a),第2図(a))。次
いで、フォトリソ法により前記非晶質Si薄膜2を5μm
ピッチで3×3μmの大きさの複数のドット分離部2aが
複数列並ぶ形状に微細パターニングする(第1図
(b),第2図(b))。
An amorphous Si film 2 is deposited on a glass substrate 1 by LPCVD to a thickness of 200 ° (FIGS. 1 (a) and 2 (a)). Next, the amorphous Si thin film 2 is formed to a thickness of 5 μm by photolithography.
A plurality of dot separating portions 2a having a size of 3 × 3 μm at a pitch are finely patterned into a plurality of rows (FIGS. 1 (b) and 2 (b)).

ガラス基板1上方からエキシマレーザ光(KrF,波長24
8nm,エネルギー密度400mJ/cm2)を照射して熱処理を行
なうとドット分離部2aが解けて液相になる。その際、各
液相の体積が小さいので表面張力により凝集し、ガラス
基板1側から冷却されると、前記液相が固相となるとき
に直径0.7μm以下の単結晶から成る単一ドメイン核2b
を形成する(第1図(c),第2図(c))。熱処理前
のドット分離部2aは非晶質であるが、熱処理及び冷却後
は、体積が小さいので単結晶Siから構成される単一ドメ
イン核となる。
Excimer laser light (KrF, wavelength 24
When heat treatment is performed by irradiating 8 nm and an energy density of 400 mJ / cm 2 ), the dot separation part 2 a is melted and becomes a liquid phase. At this time, since the volume of each liquid phase is small, the liquid phase aggregates due to surface tension, and when cooled from the glass substrate 1 side, when the liquid phase becomes a solid phase, a single domain nucleus composed of a single crystal having a diameter of 0.7 μm or less is formed. 2b
(FIG. 1 (c), FIG. 2 (c)). Before the heat treatment, the dot separation part 2a is amorphous, but after the heat treatment and cooling, the dot separation part 2a becomes a single domain nucleus composed of single crystal Si because of its small volume.

次に、前記単一ドメイン核2bを覆うように、ガラス基
板1上にLPCVD法を用いて非晶質Si膜3を厚さ1000Å着
膜する(第1図(d),第2図(d))。
Next, an amorphous Si film 3 is deposited on the glass substrate 1 to a thickness of 1000 ° by LPCVD so as to cover the single domain nucleus 2b (FIGS. 1 (d) and 2 (d)). )).

ガラス基板1上方からエキシマレーザ光(KrF,波長24
8nm,エネルギー密度350mJ/cm2)を照射して熱処理を行
なう。この熱処理は、非晶質Siの融点(1350゜K)より
高く結晶Siの融点(1683゜K)より低い温度の範囲にな
るように、レーザ光のエネルギー密度を制御する。この
プロセスにより、単一ドメイン核2bを融解させずに非晶
質Si膜3のみを融解させ、一時的に液相となったSiがガ
ラス基板1側から冷却されて固相となる際、固相のまま
存在する各単一ドメイン核2bを中心として,複数のドメ
イン3aが溶融再結晶化する。この溶融再結晶化は、熱処
理後に急速冷却され、液相から固化した部分が凝固エネ
ルギを放出して、まわりの非晶質対を融解するメカニズ
ムであると考えられるので、結晶性の良い部分において
は液相からの結晶成長であるが、温度が低くなったドメ
イン粒界の部分は固相成長になっていると考えられる。
そして、この溶融再結晶化により、複数のドメイン3aを
有する2〜4μmの大きなグレイン4が形成されること
により、非晶質Si膜3全体にわたって多結晶Siとするこ
とができる(第1図(e),第2図(e))。
Excimer laser light (KrF, wavelength 24
Heat treatment is performed by irradiating 8 nm with an energy density of 350 mJ / cm 2 ). This heat treatment controls the energy density of the laser beam so that the temperature is higher than the melting point of amorphous Si (1350 ° K) and lower than the melting point of crystalline Si (1683 ° K). By this process, only the amorphous Si film 3 is melted without melting the single domain nucleus 2b, and when the temporarily liquid Si is cooled from the glass substrate 1 side to become a solid, A plurality of domains 3a melt and recrystallize around each single domain nucleus 2b existing in a phase. This melt recrystallization is considered to be a mechanism of rapid cooling after heat treatment, the solidified part from the liquid phase releases solidification energy, and the surrounding amorphous pair is melted. Is crystal growth from the liquid phase, and it is considered that the domain grain boundary portion at which the temperature is lowered is solid phase growth.
Then, by this melt recrystallization, large grains 4 of 2 to 4 μm having a plurality of domains 3a are formed, whereby polycrystalline Si can be formed over the entire amorphous Si film 3 (FIG. 1 ( e), FIG. 2 (e)).

上記半導体膜の製造方法の熱処理において用いられた
レーザ光は、着膜された非晶質Si膜3部分にまでしか到
達しないので、非晶質Si膜3部分が高温となってもガラ
ス基板1に熱的なダメージを与えることがない。従っ
て、ガラス基板1を劣化させることなくガラス基板1上
に多結晶Si薄膜を形成することができる。また、レーザ
アニール法以外にハロゲンランプの光を集光させて照射
するフラッシュアニール法を用いてもよい。
Since the laser beam used in the heat treatment in the above-described semiconductor film manufacturing method reaches only the deposited amorphous Si film 3 portion, the glass substrate 1 can be heated even if the amorphous Si film 3 portion becomes high temperature. Does not cause thermal damage. Therefore, a polycrystalline Si thin film can be formed on the glass substrate 1 without deteriorating the glass substrate 1. In addition to the laser annealing method, a flash annealing method in which light from a halogen lamp is condensed and irradiated may be used.

(発明の効果) 本発明方法によれば、非晶質Siの融点と結晶Siの融点
が異なる点を利用し、単一ドメイン核を覆うように着膜
した非晶質Si膜を、非晶質Siの融点より高く結晶Siの融
点より低い温度の範囲で熱処理を行なう。このプロセス
により、一時的に液相となったSiが固相となるとき、固
相のまま存在する前記単一ドメイン核を中心として溶融
再結晶化させるので、高温プロセスを施すことができな
いガラス基板に着膜された非晶質Siの膜全体を、大きな
グレインを有する多結晶Siとすることができる。従っ
て、ガラス基板上に品質の良い半導体膜を製造すること
ができる。
(Effects of the Invention) According to the method of the present invention, an amorphous Si film deposited to cover a single domain nucleus is made amorphous by utilizing the fact that the melting point of amorphous Si is different from that of crystalline Si. Heat treatment is performed in a temperature range higher than the melting point of crystalline Si and lower than the melting point of crystalline Si. According to this process, when Si that temporarily becomes a liquid phase becomes a solid phase, it is melted and recrystallized around the single domain nucleus existing as a solid phase, so that a glass substrate that cannot be subjected to a high-temperature process The entire amorphous Si film deposited on the substrate can be polycrystalline Si having large grains. Therefore, a high-quality semiconductor film can be manufactured over a glass substrate.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)乃至(e)は本発明方法実施例の半導体膜
の製造プロセスの断面説明図、第2図(a)乃至(e)
は本発明方法実施例の半導体膜の製造プロセスの平面説
明図である。 1……ガラス基板 2……非晶質Si膜 2a……ドット分離部 2b……単一ドメイン核 3……非晶質Si膜 3a……ドメイン 4……グレイン
1 (a) to 1 (e) are cross-sectional explanatory views of a manufacturing process of a semiconductor film according to a method embodiment of the present invention, and FIGS. 2 (a) to 2 (e).
FIG. 3 is an explanatory plan view of a manufacturing process of a semiconductor film according to a method embodiment of the present invention. DESCRIPTION OF SYMBOLS 1 ... Glass substrate 2 ... Amorphous Si film 2a ... Dot separation part 2b ... Single domain nucleus 3 ... Amorphous Si film 3a ... Domain 4 ... Grain

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絶縁基板上に着膜されたSi薄膜を複数のド
ット分離形状に微細パターニングし、熱処理を行なうこ
とによる凝集反応により結晶Siから成る単一ドメイン核
を形成する工程と、 前記単一ドメイン核を覆うように非晶質Siを着膜する工
程と、 非晶質Siの融点より高く結晶Siの融点より低い温度の範
囲で熱処理を行ない、前記単一ドメイン核を中心とした
溶融再結晶化により前記非晶質Siの膜全体を多結晶Siと
する工程と、 を具備する半導体膜の製造方法。
A step of finely patterning an Si thin film deposited on an insulating substrate into a plurality of dot-separated shapes, and forming a single domain nucleus made of crystalline Si by an agglutination reaction by performing a heat treatment; A step of depositing amorphous Si so as to cover one domain nucleus, and performing a heat treatment in a temperature range higher than the melting point of amorphous Si and lower than the melting point of crystalline Si to melt around the single domain nucleus Converting the entire amorphous Si film into polycrystalline Si by recrystallization.
JP25196490A 1990-09-25 1990-09-25 Method for manufacturing semiconductor film Expired - Lifetime JP2861345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25196490A JP2861345B2 (en) 1990-09-25 1990-09-25 Method for manufacturing semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25196490A JP2861345B2 (en) 1990-09-25 1990-09-25 Method for manufacturing semiconductor film

Publications (2)

Publication Number Publication Date
JPH04132212A JPH04132212A (en) 1992-05-06
JP2861345B2 true JP2861345B2 (en) 1999-02-24

Family

ID=17230611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25196490A Expired - Lifetime JP2861345B2 (en) 1990-09-25 1990-09-25 Method for manufacturing semiconductor film

Country Status (1)

Country Link
JP (1) JP2861345B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709160A (en) * 2012-03-01 2012-10-03 京东方科技集团股份有限公司 Low-temperature polycrystalline silicon thin film and production method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3156878B2 (en) * 1992-04-30 2001-04-16 株式会社東芝 Semiconductor device and method of manufacturing the same
TW303526B (en) * 1994-12-27 1997-04-21 Matsushita Electric Ind Co Ltd
JP4695777B2 (en) * 2001-06-01 2011-06-08 シャープ株式会社 Manufacturing method of semiconductor device
JP2009004629A (en) * 2007-06-22 2009-01-08 Semiconductor Energy Lab Co Ltd Method and apparatus for forming polycrystalline semiconductor film
CN104867812A (en) * 2015-03-27 2015-08-26 京东方科技集团股份有限公司 Preparation methods of polysilicon film and semiconductor device, and display substrate and apparatus
CN106229254B (en) * 2016-08-31 2019-11-26 京东方科技集团股份有限公司 A kind of production method and polysilicon membrane of polysilicon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709160A (en) * 2012-03-01 2012-10-03 京东方科技集团股份有限公司 Low-temperature polycrystalline silicon thin film and production method thereof
WO2013127223A1 (en) * 2012-03-01 2013-09-06 京东方科技集团股份有限公司 Process for manufacturing low temperature polycrystalline silicon film and low temperature polycrystalline silicon film

Also Published As

Publication number Publication date
JPH04132212A (en) 1992-05-06

Similar Documents

Publication Publication Date Title
TW480730B (en) Thin film semiconductor device, polycrystalline semiconductor thin film production process and production apparatus
US7144793B2 (en) Method of producing crystalline semiconductor material and method of fabricating semiconductor device
US6852609B2 (en) Method of forming a polycrystalline silicon layer
KR100818285B1 (en) Fabrication method of single crystal silicon rod
JP2861345B2 (en) Method for manufacturing semiconductor film
JP4237278B2 (en) Formation method of silicon single crystal using nucleation site
JPS5939790A (en) Production of single crystal
JP3221251B2 (en) Amorphous silicon crystallization method and thin film transistor manufacturing method
JP2731236B2 (en) Method of manufacturing semiconductor device having thin film crystal layer
JPS61260621A (en) Retreatment for amorphous silicon film or polycrystalline silicon film
Hara et al. Control of nucleation and solidification direction of polycrystalline silicon by excimer laser irradiation
WO2004064133A1 (en) Crystallized semiconductor thin film manufacturing method and its manufacturing apparatus
JP2004063478A (en) Thin film transistor and its manufacturing method
JPH08316485A (en) Formation of semiconductor crystal and manufacture of semiconductor device using this
JP2006196904A (en) Method for forming single-crystal silicon thin film and method for forming thin-film transistor
JP2817613B2 (en) Method for forming crystalline silicon film
JPH0354819A (en) Manufacture of soi substrate
JPS5939791A (en) Production of single crystal
JP2003017702A (en) Flat-panel display device and its manufacturing method
KR101032347B1 (en) Single crystal silicon rod
JPH0236052B2 (en)
JP2643204B2 (en) Method of forming single crystal thin film
JPS6083322A (en) Crystallizing method of semiconductor thin-film
JPS5978999A (en) Manufacture of semiconductor single crystal film
KR20080112879A (en) Fabrication method of single crystal silicon rod