JP2817613B2 - Method for forming crystalline silicon film - Google Patents

Method for forming crystalline silicon film

Info

Publication number
JP2817613B2
JP2817613B2 JP6024592A JP2459294A JP2817613B2 JP 2817613 B2 JP2817613 B2 JP 2817613B2 JP 6024592 A JP6024592 A JP 6024592A JP 2459294 A JP2459294 A JP 2459294A JP 2817613 B2 JP2817613 B2 JP 2817613B2
Authority
JP
Japan
Prior art keywords
silicon film
amorphous silicon
film
polycrystalline silicon
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6024592A
Other languages
Japanese (ja)
Other versions
JPH07235498A (en
Inventor
紀行 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6024592A priority Critical patent/JP2817613B2/en
Publication of JPH07235498A publication Critical patent/JPH07235498A/en
Application granted granted Critical
Publication of JP2817613B2 publication Critical patent/JP2817613B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は結晶シリコン膜の形成方
法に関し、特にレーザアニール法を用いる結晶シリコン
膜の形成方法に関する。
The present invention relates to a method for forming a crystalline silicon film, and more particularly to a method for forming a crystalline silicon film using a laser annealing method.

【0002】[0002]

【従来の技術】結晶シリコン膜、例えば多結晶シリコン
膜は、液晶表示装置,イメージセンサ,一般の半導体装
置等に多く用いられるようになってきている。
2. Description of the Related Art A crystalline silicon film, for example, a polycrystalline silicon film has been widely used in liquid crystal display devices, image sensors, general semiconductor devices, and the like.

【0003】液晶表示装置は、駆動回路として透明基板
上に形成した多結晶シリコン膜を活性層として薄膜トラ
ンジスタを形成するものであり、品質の高い液晶表示装
置を得るためには多結晶シリコン膜の結晶性を向上させ
ることが必須となっている。また、製造コストの面から
は耐熱温度600℃程度の安価なガラス基板を用いる必
要性から、プロセス温度を600℃以下とするいわゆる
低温プロセスが検討され実施されている。
In a liquid crystal display device, a thin film transistor is formed by using a polycrystalline silicon film formed on a transparent substrate as a driving circuit as an active layer. In order to obtain a high quality liquid crystal display device, the crystal of the polycrystalline silicon film is required. It is essential to improve the performance. Further, from the viewpoint of manufacturing cost, a so-called low-temperature process in which the process temperature is set to 600 ° C. or lower has been studied and implemented because it is necessary to use an inexpensive glass substrate having a heat-resistant temperature of about 600 ° C.

【0004】多結晶シリコン膜は主に減圧化学気相成長
(LPCVD)法で形成されるが、600℃以上の高温
プロセスとなるため、ガラス基板を用いることはできな
い。このため、非晶質シリコン膜にレーザ光を照射して
多結晶化する方法が一般に用いられている。以下図4を
用いて説明する。
A polycrystalline silicon film is mainly formed by a low pressure chemical vapor deposition (LPCVD) method, but a high-temperature process of 600 ° C. or more cannot be used, so that a glass substrate cannot be used. Therefore, a method of irradiating the amorphous silicon film with a laser beam to perform polycrystallization is generally used. This will be described below with reference to FIG.

【0005】まず図4(a)に示すように、耐熱温度が
約600℃のガラス基板1上にLPCVD法を用い50
0℃程度の成長温度で、非晶質シリコン膜2を厚さ約1
00nm堆積する。そののち、シリコン膜に対する消衰
係数の大きい短波長レーザ、例えば、XeClエキシマ
レーザ光を照射する。非晶質シリコン膜2では、膜表面
から10nm以内の表面領域3でレーザ光がほとんど吸
収され、この領域の温度が上昇して溶融が始まる。
First, as shown in FIG. 4 (a), a glass substrate 1 having a heat resistant temperature of about 600.degree.
At a growth temperature of about 0 ° C., the amorphous silicon film 2 is
Deposit 00 nm. After that, the silicon film is irradiated with a short-wavelength laser having a large extinction coefficient, for example, XeCl excimer laser light. In the amorphous silicon film 2, laser light is almost absorbed in a surface region 3 within 10 nm from the film surface, and the temperature in this region rises and melting starts.

【0006】レーザ光照射がさらに続くと、図4(b)
に示すように、溶融領域4が拡大し、レーザ光の照射エ
ネルギーが十分大きいと、膜全体が溶融し、図4(c)
のように、膜全体が溶融シリコン層となる。
[0006] When the laser beam irradiation further continues, FIG.
As shown in FIG. 4, when the melting region 4 is enlarged and the irradiation energy of the laser beam is sufficiently large, the entire film is melted, and FIG.
As shown in the above, the entire film becomes a molten silicon layer.

【0007】レーザ光の照射が終わると、図4(d)に
示すように、膜が冷却され溶融シリコンが結晶化して、
多結晶シリコン膜5が形成される。
When the laser beam irradiation is completed, the film is cooled and the molten silicon is crystallized, as shown in FIG.
A polycrystalline silicon film 5 is formed.

【0008】以上の工程を用いて作成した多結晶シリコ
ン膜5は、通常のLPCVD法で作成されたものに比べ
て結晶欠陥が少なく、これを薄膜トランジスタの活性層
に用いることにより、トランジスタ特性を大きく向上さ
せることができる。イメージセンサ等の場合においても
ほぼ同様の工程が用いられる。
The polycrystalline silicon film 5 formed by the above steps has fewer crystal defects than those formed by the ordinary LPCVD method, and by using this as an active layer of a thin film transistor, the transistor characteristics are improved. Can be improved. Almost the same process is used in the case of an image sensor or the like.

【0009】[0009]

【発明が解決しようとする課題】非晶質シリコン膜をレ
ーザアニールする場合には、溶融したシリコン層が結晶
化する時に移動するため、図4(d)に示したように、
多結晶シリコン膜5に30nm程の表面荒れやうねりが
生じる。
When the amorphous silicon film is laser-annealed, the molten silicon layer moves when it is crystallized, and as shown in FIG.
A surface roughness or undulation of about 30 nm occurs in the polycrystalline silicon film 5.

【0010】表面荒れを防ぐ方法として従来は、図5
(a)に示すように、非晶質シリコン膜2上に500℃
以下の低温で透明で除去が容易なシリコン酸化膜6を堆
積してキャップした後に、レーザアニールすることによ
り、表面での溶融シリコンの結晶化時の移動を防ぐ方法
が提案され実施されている。しかし、この方法では、図
5(b)にしめすように、非晶質シリコン膜の溶融時に
キャップ酸化膜6から酸素9が溶融シリコン層4内に拡
散して、多結晶シリコン膜中の酸素濃度が上昇し、トラ
ンジスタ特性を低下させるという問題がある。
Conventionally, as a method for preventing surface roughness, FIG.
(A) As shown in FIG.
A method has been proposed and implemented in which a silicon oxide film 6 which is transparent and easy to remove at a low temperature as described below is deposited, capped, and then laser-annealed to prevent molten silicon from moving on the surface during crystallization. However, in this method, as shown in FIG. 5B, when the amorphous silicon film is melted, oxygen 9 diffuses from the cap oxide film 6 into the molten silicon layer 4 and the oxygen concentration in the polycrystalline silicon film is reduced. Increases, and the transistor characteristics are degraded.

【0011】また、キャップ酸化膜6を用いた場合に
は、レーザ光の照射(ショット)回数が多くなるにつれ
て、溶融シリコンの移動度が大きく低下するので、ショ
ットを連続させ照射領域を移動させてウエハ全面を結晶
化する必要がある。照射領域の隅ではショットが4回重
なるが、このショットの重なる領域では酸素の拡散が多
くなるため多結晶シリコン膜の特性が低下し、トランジ
スタ特性のばらつきの原因となる。
When the cap oxide film 6 is used, the mobility of the molten silicon is greatly reduced as the number of laser beam irradiations (shots) is increased. It is necessary to crystallize the entire surface of the wafer. Shots overlap four times at the corners of the irradiation region. However, in the region where the shots overlap, the diffusion of oxygen increases, so that the characteristics of the polycrystalline silicon film are deteriorated, which causes variations in transistor characteristics.

【0012】本発明の目的は、トランジスタ特性のばら
つきを少くするための結晶シリコン膜の形成方法を提供
することにある。
An object of the present invention is to provide a method for forming a crystalline silicon film for reducing variations in transistor characteristics.

【0013】本発明の他の目的は、表面荒れのない結晶
シリコン膜の形成方法を提供することにある。
Another object of the present invention is to provide a method for forming a crystalline silicon film without surface roughness.

【0014】[0014]

【課題を解決するための手段】本願発明の参考例の結晶
シリコン膜、例えば多結晶シリコン膜の形成方法は、基
板上に形成された非晶質シリコン膜にレーザ光を照射し
て結晶化する結晶シリコン膜の形成方法において、非晶
質シリコン膜における消衰係数が結晶シリコン膜におけ
る消衰係数より大きな波長のレーザ光を用いることを特
徴とするものである。
According to a method of forming a crystalline silicon film, for example, a polycrystalline silicon film according to a reference example of the present invention, an amorphous silicon film formed on a substrate is crystallized by irradiating a laser beam. The method for forming a crystalline silicon film is characterized by using laser light having a wavelength whose extinction coefficient in an amorphous silicon film is larger than that in a crystalline silicon film.
It is a sign.

【0015】本発明の結晶シリコン膜、例えば多結晶シ
リコン膜の形成方法は、基板上に形成された非晶質シリ
コン膜にレーザ光を照射して結晶化する結晶シリコン膜
の形成方法において、非晶質シリコン膜における消衰係
数の大きなレーザ光を非晶質シリコン膜に照射して該非
晶質シリコン膜の表面のみを結晶化した後に、結晶シリ
コン膜における消衰係数が小さく非晶質シリコン膜にお
ける消衰係数が大きなレーザ光を照射して、前記非晶質
シリコン膜全体を結晶化することを特徴とするものであ
る。
The method for forming a crystalline silicon film, for example, a polycrystalline silicon film according to the present invention is the same as the method for forming a crystalline silicon film in which an amorphous silicon film formed on a substrate is irradiated with a laser beam to be crystallized. After irradiating the amorphous silicon film with a laser beam having a large extinction coefficient in the amorphous silicon film to crystallize only the surface of the amorphous silicon film, the amorphous silicon film has a small extinction coefficient in the crystalline silicon film. And irradiating a laser beam having a large extinction coefficient to crystallize the entire amorphous silicon film.

【0016】[0016]

【実施例】次に本発明を図面を用いて説明する。図1
(a),(b)は本発明の参考例を説明するための基板
の断面図である。
Next, the present invention will be described with reference to the drawings. FIG.
(A), (b) is sectional drawing of the board | substrate for demonstrating the reference example of this invention.

【0017】まず図1(a)に示すように、ガラス基板
上1にLPCVD法を用いて、非晶質シリコン膜2を1
00nmの厚さに堆積したのち、その上にキャップ酸化
膜6を100nmの厚さに堆積した。次に非晶質シリコ
ン膜における消衰係数の大きい波長のレーザ光を照射す
る。
First, as shown in FIG. 1A, an amorphous silicon film 2 is formed on a glass substrate 1 by LPCVD.
After depositing to a thickness of 00 nm, a cap oxide film 6 was deposited thereon to a thickness of 100 nm. Next, laser light having a wavelength with a large extinction coefficient in the amorphous silicon film is irradiated.

【0018】図2に結晶シリコン膜および非晶質シリコ
ン膜に対する消衰係数kをしめす。波長400nmから
500nmの間では、非晶質シリコン膜の消衰係数が結
晶シリコン膜の消衰係数に比べて大きいので、この波長
領域のレーザ光を多結晶シリコン膜に照射すると、ほと
んど吸収されずに下地の基板へ透過し、非晶質シリコン
膜に照射すると、表面から数10nm程度の深さでほと
んど吸収される。
FIG. 2 shows the extinction coefficient k for the crystalline silicon film and the amorphous silicon film. Since the extinction coefficient of the amorphous silicon film is larger than the extinction coefficient of the crystalline silicon film between the wavelengths of 400 nm and 500 nm, when the polycrystalline silicon film is irradiated with laser light in this wavelength region, it is hardly absorbed. When the light passes through the underlying substrate and irradiates the amorphous silicon film, it is almost absorbed at a depth of about several tens nm from the surface.

【0019】そこで、波長486nmのKrFエキシマ
レーザ光を用いて、非晶質シリコン膜2を結晶化した。
レーザ光7の照射は、照射領域が重なるようにした。つ
まり、レーザ光照射の重ね合わせ領域の多結晶シリコン
膜は溶融せず、非晶質シリコン膜2のみの溶融し結晶化
がおこるように、照射エネルギーを400mJ/cm2
程度に設定した。
Therefore, the amorphous silicon film 2 was crystallized using KrF excimer laser light having a wavelength of 486 nm.
The irradiation of the laser beam 7 was performed so that the irradiation areas overlapped. That is, the irradiation energy is set to 400 mJ / cm 2 so that the polycrystalline silicon film in the overlap region of the laser beam irradiation does not melt but only the amorphous silicon film 2 melts and crystallizes.
Set to about.

【0020】第1回目の照射によりその領域8Aの非晶
質シリコン膜2は多結晶シリコン膜5Aとなり、第2回
の照射によりその領域8Bの非晶質シリコン膜2は、図
1(b)に示すように、多結晶シリコン膜5Bとなる。
By the first irradiation, the amorphous silicon film 2 in the region 8A becomes the polycrystalline silicon film 5A, and by the second irradiation, the amorphous silicon film 2 in the region 8B becomes the polycrystalline silicon film 5A as shown in FIG. As shown in FIG. 6, a polycrystalline silicon film 5B is obtained.

【0021】この場合、レーザ照射の重なる領域の多結
晶シリコン膜は溶融しないために、キャップ酸化膜6か
ら、多結晶シリコン膜5A,5Bへの酸素の拡散は起こ
らず、多結晶シリコン膜の特性の低下は起こらない。つ
まり、レーザ照射領域が重なって照射されても、多結晶
シリコン膜の特性ばらつきは起こらないことになる。従
ってこの多結晶シリコン膜を用いて液晶表示装置やイメ
ージセンサのトランジスタを作った場合、トランジスタ
の特性のばらつきを小さくすることができる。
In this case, since the polycrystalline silicon film in the region where the laser irradiation overlaps does not melt, oxygen does not diffuse from the cap oxide film 6 to the polycrystalline silicon films 5A and 5B, and the characteristics of the polycrystalline silicon film Does not decrease. In other words, even if the laser irradiation regions are overlapped with each other, the characteristic variation of the polycrystalline silicon film does not occur. Therefore, when a transistor of a liquid crystal display device or an image sensor is manufactured using this polycrystalline silicon film, variations in transistor characteristics can be reduced.

【0022】図3(a)〜(c)は本発明の実施例を説
明するための基板の断面図である。
FIGS. 3A to 3C are cross-sectional views of a substrate for explaining an embodiment of the present invention .

【0023】まず図3(a)に示すように、ガラス基板
1上に、LPCVD法により非晶質シリコン膜2を10
0nmの厚さに堆積したのち、波長248nmのKrF
エキシマレーザを光7Aを照射した。この波長のレーザ
光では、図2に示したように、非晶質及び結晶シリコン
膜における消衰係数が大きく、エネルギーはほぼ表面か
ら10nm以内で全て吸収される。照射エネルギーを、
200mJ/cm2 程度に設定することにより非晶質シ
リコン膜2の表面から30nm程度を結晶化し、多結晶
シリコン膜5Cを形成した。この多結晶シリコン膜の表
面は、膜全体が溶融しないので、比較的平坦で荒れは少
ない。
First, as shown in FIG. 3A, an amorphous silicon film 2 is formed on a glass substrate 1 by LPCVD.
After depositing to a thickness of 0 nm, KrF with a wavelength of 248 nm
An excimer laser was irradiated with light 7A. In the laser light of this wavelength, as shown in FIG. 2, the extinction coefficients of the amorphous and crystalline silicon films are large, and the entire energy is absorbed within about 10 nm from the surface. Irradiation energy,
By setting it at about 200 mJ / cm 2, about 30 nm was crystallized from the surface of the amorphous silicon film 2 to form a polycrystalline silicon film 5C. The surface of this polycrystalline silicon film is relatively flat and less rough since the entire film does not melt.

【0024】更に2回目の照射では、波長486nmの
KrFエキシマレーザ光7を用いた。この波長では、結
晶シリコン膜での消衰係数が小さく、ほぼ透明なので、
レーザ光7は多結晶シリコン膜5Cを透過する。しか
し、非晶質シリコン膜での消衰係数は大きいため、レー
ザ光7は非晶質シリコン膜2と多結晶シリコン膜5Cの
界面から40nm以内の領域でほとんど全て吸収され
る。つまり、2回目の照射では、下地側の非晶質部分が
選択的に温度上昇でき、溶融、結晶化することになり、
図3(c)に示すように、表面荒れの小さい多結晶シリ
コン膜5Dが形成できる。
In the second irradiation, a KrF excimer laser beam 7 having a wavelength of 486 nm was used. At this wavelength, the extinction coefficient of the crystalline silicon film is small and almost transparent,
Laser light 7 passes through polycrystalline silicon film 5C. However, since the extinction coefficient of the amorphous silicon film is large, almost all of the laser light 7 is absorbed in a region within 40 nm from the interface between the amorphous silicon film 2 and the polycrystalline silicon film 5C. In other words, in the second irradiation, the temperature of the amorphous portion on the base side can be selectively increased, so that the amorphous portion melts and crystallizes.
As shown in FIG. 3C, a polycrystalline silicon film 5D with a small surface roughness can be formed.

【0025】以上述べたように、本実施例では、第1回
目の照射により形成された表面の多結晶シリコン膜5C
がキャップ層になり、表面荒れを10nm以下に抑制す
ることができる。しかも従来のキャップ酸化膜を用いた
とき問題となった、酸素のシリコン膜中への混入は起こ
らないという利点がある。また、1回目の照射に際し、
結晶シリコンでの消衰係数が高いレーザ光を用いると、
照射を繰り返しても、結晶化した領域が広がらないよう
にできるので、照射のかさなる領域での結晶性のばらつ
きを低減させることができる。
As described above, in this embodiment , the polycrystalline silicon film 5C on the surface formed by the first irradiation is used.
Becomes a cap layer, and surface roughness can be suppressed to 10 nm or less. In addition, there is an advantage that oxygen is not mixed into the silicon film, which is a problem when the conventional cap oxide film is used. Also, in the first irradiation,
Using laser light with a high extinction coefficient in crystalline silicon,
Even if the irradiation is repeated, the crystallized region can be prevented from spreading, so that the variation in crystallinity in the region where the irradiation is large can be reduced.

【0026】この本実施例の方法は、シリコンの非晶質
部分にのみ吸収されるレーザ光を用いるという特徴を生
かし、結晶性が良好でなく、非晶質相を持つ多結晶シリ
コン膜の膜質改善にも適用できる。例えばプラズマCV
D法で形成された多結晶シリコン膜では、下地基板側に
非晶質に近い結晶性の良好でない領域が存在する。この
多結晶シリコン膜に波長486nmのKrFエキシマレ
ーザを照射することにより、非晶質相に近い領域のみを
選択的にアニールして、結晶性を改善することができ
る。
The method of this embodiment takes advantage of the feature that laser light absorbed only in the amorphous portion of silicon is used, and the film quality of a polycrystalline silicon film having poor crystallinity and an amorphous phase is used. It can be applied to improvement. For example, plasma CV
In the polycrystalline silicon film formed by the method D, there is a region near the undersubstrate having poor crystallinity close to amorphous. By irradiating the polycrystalline silicon film with a KrF excimer laser having a wavelength of 486 nm, it is possible to selectively anneal only a region close to an amorphous phase and improve crystallinity.

【0027】尚、上記実施例においてはガラス基板上に
多結晶シリコン膜を形成する場合について説明したが、
石英等他の絶縁基板を用いてもよいことは勿論である。
In the above embodiment, the case where a polycrystalline silicon film is formed on a glass substrate has been described.
Of course, other insulating substrates such as quartz may be used.

【0028】[0028]

【発明の効果】以上述べたように本発明の参考例は、非
晶質シリコン膜におけるの消衰係数が結晶シリコン膜の
消衰係数より大きな波長のレーザ光を用いて、非晶質シ
リコンのみが溶融するエネルギー密度で、基板上に形成
された非晶質シリコン膜をレーザアニールすることによ
り、レーザ照射の重なる多結晶シリコン膜の領域は溶融
させずに、非晶質シリコン膜のみを結晶化できるため、
従来のようにキャップ酸化膜からの酸素のシリコン膜中
への拡散を防止できるため、特性のばらつきの少い多結
晶シリコン膜を容易に形成できる。この為トランジスタ
の特性のばらつきも小さくできる。
As described above, according to the reference example of the present invention, only the amorphous silicon is used by using laser light having a wavelength larger than the extinction coefficient of the crystalline silicon film in the amorphous silicon film. The amorphous silicon film formed on the substrate is laser annealed at the energy density at which it melts, so that only the amorphous silicon film is crystallized without melting the region of the polycrystalline silicon film where laser irradiation overlaps. Because you can
Since diffusion of oxygen from the cap oxide film into the silicon film can be prevented as in the related art, it is possible to easily form a polycrystalline silicon film having small variations in characteristics. Therefore, variations in transistor characteristics can be reduced.

【0029】また本発明は、非晶質シリコンを結晶化す
る工程で、非晶質シリコン膜の消衰係数の大きなレーザ
光を非晶質シリコン膜に照射して、その表面を結晶化し
た後に、結晶シリコン膜での消衰係数が小さく非晶質シ
リコン膜の消衰係数が大きなレーザ光を照射して、非晶
質シリコン膜を選択的にアニールし膜全体を結晶化する
ことにより、表面荒れの少い多結晶シリコン膜を容易に
形成できるという効果がある。
According to the present invention , in the step of crystallizing the amorphous silicon, the amorphous silicon film is irradiated with laser light having a large extinction coefficient to crystallize the surface of the amorphous silicon film. By irradiating a laser beam with a small extinction coefficient in the crystalline silicon film and a large extinction coefficient in the amorphous silicon film to selectively anneal the amorphous silicon film and crystallize the entire film, There is an effect that a polycrystalline silicon film with little roughness can be easily formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の参考例を説明するための基板の断面
図。
FIG. 1 is a cross-sectional view of a substrate for describing a reference example of the present invention.

【図2】結晶シリコン膜及び非晶質シリコン膜に対する
光の波長と消衰係数との関係を示す図。
FIG. 2 is a graph showing the relationship between the wavelength of light and the extinction coefficient for a crystalline silicon film and an amorphous silicon film.

【図3】本発明の実施例を説明するための基板の断面
図。
FIG. 3 is a cross-sectional view of a substrate for explaining an example of the present invention .

【図4】従来の多結晶シリコン膜の形成方法を説明する
ための基板の断面図。
FIG. 4 is a cross-sectional view of a substrate for describing a conventional method for forming a polycrystalline silicon film.

【図5】従来の他の多結晶シリコン膜の形成方法を説明
するための基板の断面図。
FIG. 5 is a cross-sectional view of a substrate for describing another conventional method for forming a polycrystalline silicon film.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 非晶質シリコン膜 3 表面領域 4 溶融領域 5,5A〜5D 多結晶シリコン膜 6 キャップ酸化膜 7,7A レーザ光 8A,8B 照射領域 9 酸素 DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Amorphous silicon film 3 Surface area 4 Melted area 5, 5A-5D polycrystalline silicon film 6 Cap oxide film 7, 7A Laser light 8A, 8B Irradiation area 9 Oxygen

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上に形成された非晶質シリコン膜に
レーザ光を照射して結晶化する結晶シリコン膜の形成方
法において、非晶質シリコン膜における消衰係数の大き
なレーザ光を非晶質シリコン膜に照射して該非晶質シリ
コン膜の表面のみを結晶化した後に、結晶シリコン膜に
おける消衰係数が小さく非晶質シリコン膜における消衰
係数が大きなレーザ光を照射して、前記非晶質シリコン
膜全体を結晶化することを特徴とする結晶シリコン膜の
形成方法。
1. An amorphous silicon film formed on a substrate
Method of forming crystalline silicon film that crystallizes by irradiating laser light
The extinction coefficient of the amorphous silicon film
The amorphous silicon film is irradiated with
After crystallizing only the surface of the silicon film,
In amorphous silicon film with small extinction coefficient
Irradiation of laser light with a large coefficient
Crystallized silicon film characterized by crystallizing the entire film
Forming method.
JP6024592A 1994-02-23 1994-02-23 Method for forming crystalline silicon film Expired - Lifetime JP2817613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6024592A JP2817613B2 (en) 1994-02-23 1994-02-23 Method for forming crystalline silicon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6024592A JP2817613B2 (en) 1994-02-23 1994-02-23 Method for forming crystalline silicon film

Publications (2)

Publication Number Publication Date
JPH07235498A JPH07235498A (en) 1995-09-05
JP2817613B2 true JP2817613B2 (en) 1998-10-30

Family

ID=12142433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6024592A Expired - Lifetime JP2817613B2 (en) 1994-02-23 1994-02-23 Method for forming crystalline silicon film

Country Status (1)

Country Link
JP (1) JP2817613B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3658213B2 (en) * 1998-11-19 2005-06-08 富士通株式会社 Manufacturing method of semiconductor device
JP4986332B2 (en) * 2000-03-21 2012-07-25 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
TW544938B (en) * 2001-06-01 2003-08-01 Semiconductor Energy Lab Method of manufacturing a semiconductor device
US20050037550A1 (en) * 2001-10-15 2005-02-17 Myung-Koo Kang Thin film transistor using polysilicon and a method for manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04290443A (en) * 1991-03-19 1992-10-15 Seiko Epson Corp Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPH07235498A (en) 1995-09-05

Similar Documents

Publication Publication Date Title
TWI402989B (en) Method of forming polycrystalline silicon thin film and method of manufacturing thin film transistor using the method
JP3586558B2 (en) Method for reforming thin film and apparatus used for implementing the method
US20070290210A1 (en) Semiconductor device and method of fabricating a ltps film
JPS62104117A (en) Manufacture of semiconductor thin film
JP2000068520A (en) Semiconductor thin film, manufacture thereof and manufacturing device, and semiconductor element and manufacture thereof
KR20020032551A (en) Method of manufacturing thin-film semiconductor device
JP2002261015A (en) Semiconductor thin film, method of manufacturing it, manufacturing device, semiconductor element and method of manufacturing it
US7071083B2 (en) Method of fabricating polysilicon film by excimer laser crystallization process
US20040142582A1 (en) Thin film structure from LILAC annealing
JP2005197656A (en) Method for forming polycrystalline silicon film
JPH1050607A (en) Manufacture of semiconductor device
JP2997375B2 (en) Method for manufacturing polycrystalline silicon thin film
JP2817613B2 (en) Method for forming crystalline silicon film
JPH0343769B2 (en)
JP3221251B2 (en) Amorphous silicon crystallization method and thin film transistor manufacturing method
JPH07326769A (en) Plane display use thin film transistor
JPH06140321A (en) Method of crystallizing of semiconductor film
JPH10125923A (en) Semiconductor element and its manufacture
JP2005005381A (en) Method of manufacturing crystalline semiconductor material and semiconductor device
JP3210313B2 (en) Method for improving characteristics of polycrystalline silicon thin film
JPH08293464A (en) Manufacture of semiconductor substrate and semiconductor device
JPH09293872A (en) Manufacture of thin-film transistor
JPH0945926A (en) Formation of polycrystalline semiconductor thin film, thin film transistor and its manufacture
JPH03284831A (en) Forming method for semiconductor thin-film
JPH06216044A (en) Manufacture of semiconductor thin film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080324

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100324

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20120324

EXPY Cancellation because of completion of term