JPH06140321A - Method of crystallizing of semiconductor film - Google Patents

Method of crystallizing of semiconductor film

Info

Publication number
JPH06140321A
JPH06140321A JP30795692A JP30795692A JPH06140321A JP H06140321 A JPH06140321 A JP H06140321A JP 30795692 A JP30795692 A JP 30795692A JP 30795692 A JP30795692 A JP 30795692A JP H06140321 A JPH06140321 A JP H06140321A
Authority
JP
Japan
Prior art keywords
film
thin film
amorphous silicon
laser
excimer laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30795692A
Other languages
Japanese (ja)
Inventor
Eiichi Onaka
栄一 尾中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP30795692A priority Critical patent/JPH06140321A/en
Publication of JPH06140321A publication Critical patent/JPH06140321A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enlarge the grain size of a polysilicon film. CONSTITUTION:An amorphous silicon film 13 is crystallized and made a polysilicon film 16 by providing a buffer insulating film 14 consisting of silicon oxide and a laser reflecting film consisting of chromium, in stripe shape or in mosaic shape, on the topside of an amorphous silicon film 13, and applying excimer laser. In this case, the laser reflecting film 15 reflects an excimer laser, so the amorphous silicon film 13 in the section where the temperature of a laser reflecting film 15 does not exist within the application range of an excimer laser becomes high, but the temperature of the amorphous silicon film 13 in the section where the laser reflecting film 15 exists becomes low. As a result, the growth speed of crystals from the nuclei of crystals existing in high- temperature range becomes larger than the growth speed of the crystals from the nuclei of crystals existing in the low temperature range, and the crystal grains having grown from the high-temperature range widens to the low- temperature range, and the grain size becomes large.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は半導体薄膜の結晶化方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor thin film crystallization method.

【0002】[0002]

【従来の技術】例えばアモルファスシリコン薄膜を結晶
化して薄膜トランジスタを製造する方法には、図2
(A)に示すように、ガラス基板1の上面に酸化シリコ
ンからなる下地絶縁膜2を形成し、この下地絶縁膜2の
上面にアモルファスシリコン薄膜3を形成し、このアモ
ルファスシリコン薄膜3にエキシマレーザを照射するこ
とにより該アモルファスシリコン薄膜3を結晶化してポ
リシリコン薄膜4とし、このポリシリコン薄膜4を素子
分離して薄膜トランジスタ形成領域を形成する方法があ
る。この場合、エキシマレーザのスポットサイズが直径
数mm程度とかなり小さいので、エキシマレーザをx方
向にスキャンさせてアモルファスシリコン薄膜3全体を
照射するようにしている。
2. Description of the Related Art For example, a method for manufacturing a thin film transistor by crystallizing an amorphous silicon thin film is described in FIG.
As shown in (A), a base insulating film 2 made of silicon oxide is formed on the upper surface of a glass substrate 1, an amorphous silicon thin film 3 is formed on the upper surface of the base insulating film 2, and an excimer laser is formed on the amorphous silicon thin film 3. There is a method in which the amorphous silicon thin film 3 is crystallized into a polysilicon thin film 4 by irradiating with, and the polysilicon thin film 4 is separated into elements to form a thin film transistor forming region. In this case, since the spot size of the excimer laser is as small as about several mm in diameter, the excimer laser is scanned in the x direction to irradiate the entire amorphous silicon thin film 3.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
このような半導体薄膜の結晶化方法では、エキシマレー
ザを照射された直径数mmの範囲内におけるアモルファ
スシリコン薄膜3がほぼ均等に加熱され、このため図2
(B)に示すように、レーザ照射範囲内におけるアモル
ファスシリコン薄膜3の温度分布がほぼ均等となり、こ
の結果レーザ照射範囲内におけるアモルファスシリコン
薄膜3中に存在する結晶核から非選択的に結晶粒が成長
するが、非選択的であるので結晶成長がすぐに飽和して
しまい、したがってグレインサイズの大きなポリシリコ
ン薄膜4を得ることができないという問題があった。こ
の発明の目的は、グレインサイズを大きくすることので
きる半導体薄膜の結晶化方法を提供することにある。
However, in such a conventional method for crystallizing a semiconductor thin film, the amorphous silicon thin film 3 within a range of a few mm in diameter irradiated with an excimer laser is heated almost uniformly, which is why Figure 2
As shown in (B), the temperature distribution of the amorphous silicon thin film 3 within the laser irradiation range becomes substantially uniform, and as a result, crystal grains are non-selectively selected from the crystal nuclei present in the amorphous silicon thin film 3 within the laser irradiation range. Although it grows, there is a problem in that the crystal growth is saturated immediately because it is non-selective, so that the polysilicon thin film 4 having a large grain size cannot be obtained. An object of the present invention is to provide a method of crystallizing a semiconductor thin film which can increase the grain size.

【0004】[0004]

【課題を解決するための手段】この発明は、半導体薄膜
上にレーザ反射膜をストライプ状又はモザイク状に設
け、この状態でレーザを照射することにより、前記半導
体薄膜を結晶化するようにしたものである。
According to the present invention, a laser reflection film is provided on a semiconductor thin film in a stripe shape or a mosaic shape, and the semiconductor thin film is crystallized by irradiating a laser in this state. Is.

【0005】[0005]

【作用】この発明によれば、照射されたエキシマレーザ
の一部がレーザ反射膜によって反射されることになるの
で、エキシマレーザの照射範囲内においてレーザ反射膜
が存在しない部分における半導体薄膜が高温となり、レ
ーザ反射膜が存在する部分における半導体薄膜が低温と
なり、このため高温領域の半導体薄膜中に存在する結晶
核からの結晶成長速度が低温領域の半導体薄膜中に存在
する結晶核からの結晶成長速度よりも速くなり、この結
果高温領域から成長した結晶粒が低温領域まで広がるこ
ととなり、したがってグレインサイズを大きくすること
ができる。
According to the present invention, a part of the irradiated excimer laser is reflected by the laser reflection film, so that the semiconductor thin film becomes high in temperature in the part where the laser reflection film does not exist within the irradiation range of the excimer laser. The temperature of the semiconductor thin film in the portion where the laser reflection film is present becomes low, so that the crystal growth rate from the crystal nuclei existing in the semiconductor thin film in the high temperature region is the crystal growth rate from the crystal nuclei existing in the semiconductor thin film in the low temperature region. As a result, the crystal grains grown from the high temperature region spread to the low temperature region, so that the grain size can be increased.

【0006】[0006]

【実施例】図1(A)はこの発明の一実施例における半
導体薄膜の結晶化方法を説明するために示す断面図であ
る。この半導体薄膜の結晶化方法では、まず、ガラス基
板11の上面に酸化シリコンからなる下地絶縁膜12を
1000Å程度の厚さに堆積し、次いでその上面にアモ
ルファスシリコン薄膜13を500Å程度の厚さに堆積
する。次に、アモルファスシリコン薄膜13の上面全体
に酸化シリコンからなるバッファ絶縁膜14を数百Åの
厚さに堆積し、次いでその上面にクロムからなるレーザ
反射膜15を1000Å程度の厚さに堆積し、次いでこ
れらを周知のフォトリソグラフィにより幅および間隔が
共に数μmのピッチでストライプ状又はモザイク状にパ
ターンニングする。次に、波長308nmのXeClエ
キシマレーザをx方向にスキャンさせて照射すると、次
に詳述するように、アモルファスシリコン薄膜13が結
晶化してポリシリコン薄膜16となる。この後、レーザ
反射膜15およびバッファ絶縁膜14を除去する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1A is a sectional view shown for explaining a method of crystallizing a semiconductor thin film in an embodiment of the present invention. In this semiconductor thin film crystallization method, first, a base insulating film 12 made of silicon oxide is deposited on the upper surface of a glass substrate 11 to a thickness of about 1000 Å, and then an amorphous silicon thin film 13 is formed on the upper surface to a thickness of about 500 Å. accumulate. Next, a buffer insulating film 14 made of silicon oxide is deposited on the entire upper surface of the amorphous silicon thin film 13 to a thickness of several hundred Å, and then a laser reflection film 15 made of chromium is deposited on the upper surface to a thickness of about 1000 Å. Then, these are patterned by a well-known photolithography in a stripe shape or a mosaic shape with a pitch of several μm in both width and interval. Next, when a XeCl excimer laser having a wavelength of 308 nm is scanned and irradiated in the x direction, the amorphous silicon thin film 13 is crystallized to become a polysilicon thin film 16, as described in detail below. After that, the laser reflection film 15 and the buffer insulating film 14 are removed.

【0007】ここで、アモルファスシリコン薄膜13の
結晶化について説明する。エキシマレーザが照射された
とき、レーザ反射膜15がエキシマレーザを反射するの
で、レーザ反射膜15が存在する部分におけるアモルフ
ァスシリコン薄膜13にはエキシマレーザが照射され
ず、レーザ反射膜15が存在しない部分におけるアモル
ファスシリコン薄膜13にはエキシマレーザが照射され
ることになる。しかも、レーザ反射膜15の幅および間
隔が共に数μmであって、エキシマレーザのスポットサ
イズ(直径数mm)よりもかなり小さくなっているの
で、一回のエキシマレーザの照射範囲内においてレーザ
反射膜15が存在しない部分におけるアモルファスシリ
コン薄膜13は高温となるが、レーザ反射膜15が存在
する部分におけるアモルファスシリコン薄膜13は低温
となる。このため、図1(B)に示すように、レーザ照
射範囲内におけるアモルファスシリコン薄膜13の温度
分布は高温と低温が交互に繰り返される温度分布とな
る。この結果、高温領域つまりレーザ反射膜15が存在
しない部分におけるアモルファスシリコン薄膜13中に
存在する結晶核からの結晶成長速度が低温領域つまりレ
ーザ反射膜15が存在する部分におけるアモルファスシ
リコン薄膜13中に存在する結晶核からの結晶成長速度
よりも速くなり、高温領域から成長した結晶粒が低温領
域まで広がることとなる。したがって、グレインサイズ
の大きなポリシリコン薄膜16を得ることができる。
Here, the crystallization of the amorphous silicon thin film 13 will be described. When the excimer laser is irradiated, the laser reflection film 15 reflects the excimer laser. Therefore, the amorphous silicon thin film 13 in the portion where the laser reflection film 15 exists is not irradiated with the excimer laser and the portion where the laser reflection film 15 does not exist. The amorphous silicon thin film 13 is irradiated with the excimer laser. Moreover, since the width and interval of the laser reflection film 15 are both several μm, which is considerably smaller than the spot size (diameter of several mm) of the excimer laser, the laser reflection film is within the irradiation range of one excimer laser. The amorphous silicon thin film 13 in the portion where the laser reflection film 15 does not exist has a high temperature, whereas the amorphous silicon thin film 13 in the portion where the laser reflection film 15 exists has a low temperature. Therefore, as shown in FIG. 1B, the temperature distribution of the amorphous silicon thin film 13 in the laser irradiation range is a temperature distribution in which high temperature and low temperature are alternately repeated. As a result, the crystal growth rate from the crystal nuclei existing in the amorphous silicon thin film 13 in the high temperature region, that is, the portion where the laser reflection film 15 does not exist is present in the amorphous silicon thin film 13 in the low temperature region, that is, the portion where the laser reflection film 15 exists. The crystal growth rate from the crystal nuclei becomes higher, and the crystal grains grown from the high temperature region spread to the low temperature region. Therefore, the polysilicon thin film 16 having a large grain size can be obtained.

【0008】[0008]

【発明の効果】以上説明したように、この発明によれ
ば、エキシマレーザの照射範囲内においてレーザ反射膜
が存在しない部分における半導体薄膜を高温とし、レー
ザ反射膜が存在する部分における半導体薄膜を低温とす
ることができるので、高温領域の半導体薄膜中に存在す
る結晶核からの結晶成長速度が低温領域の半導体薄膜中
に存在する結晶核からの結晶成長速度よりも速くなり、
高温領域から成長した結晶粒を低温領域まで広げること
ができ、したがってグレインサイズを大きくすることが
できる。
As described above, according to the present invention, the semiconductor thin film in the portion where the laser reflecting film does not exist within the irradiation range of the excimer laser is heated to a high temperature, and the semiconductor thin film in the portion where the laser reflecting film exists falls to a low temperature. Therefore, the crystal growth rate from the crystal nuclei present in the semiconductor thin film in the high temperature region becomes faster than the crystal growth rate from the crystal nuclei present in the semiconductor thin film in the low temperature region,
The crystal grains grown from the high temperature region can be spread to the low temperature region, and thus the grain size can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)はこの発明の一実施例における半導体薄
膜の結晶化方法を説明するために示す断面図、(B)は
レーザ照射範囲内におけるアモルファスシリコン薄膜の
温度分布を示す図。
FIG. 1A is a sectional view for explaining a method of crystallizing a semiconductor thin film according to an embodiment of the present invention, and FIG. 1B is a diagram showing a temperature distribution of an amorphous silicon thin film within a laser irradiation range.

【図2】(A)は従来の半導体薄膜の結晶化方法を説明
するために示す断面図、(B)はレーザ照射範囲内にお
けるアモルファスシリコン薄膜の温度分布を示す図。
2A is a cross-sectional view shown for explaining a conventional method for crystallizing a semiconductor thin film, and FIG. 2B is a view showing a temperature distribution of an amorphous silicon thin film within a laser irradiation range.

【符号の説明】[Explanation of symbols]

11 ガラス基板 12 下地絶縁膜 13 アモルファスシリコン薄膜 14 バッファ絶縁膜 15 レーザ反射膜 16 ポリシリコン薄膜 11 Glass Substrate 12 Base Insulating Film 13 Amorphous Silicon Thin Film 14 Buffer Insulating Film 15 Laser Reflecting Film 16 Polysilicon Thin Film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体薄膜上にレーザ反射膜をストライ
プ状又はモザイク状に設け、この状態でレーザを照射す
ることにより、前記半導体薄膜を結晶化することを特徴
とする半導体薄膜の結晶化方法。
1. A method of crystallizing a semiconductor thin film, comprising providing a laser reflecting film in a stripe shape or a mosaic shape on a semiconductor thin film, and irradiating a laser in this state to crystallize the semiconductor thin film.
【請求項2】 前記半導体薄膜と前記レーザ反射膜との
間にバッファ絶縁膜を設けたことを特徴とする請求項1
記載の半導体薄膜の結晶化方法。
2. A buffer insulating film is provided between the semiconductor thin film and the laser reflecting film.
A method for crystallizing a semiconductor thin film as described above.
JP30795692A 1992-10-23 1992-10-23 Method of crystallizing of semiconductor film Pending JPH06140321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30795692A JPH06140321A (en) 1992-10-23 1992-10-23 Method of crystallizing of semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30795692A JPH06140321A (en) 1992-10-23 1992-10-23 Method of crystallizing of semiconductor film

Publications (1)

Publication Number Publication Date
JPH06140321A true JPH06140321A (en) 1994-05-20

Family

ID=17975199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30795692A Pending JPH06140321A (en) 1992-10-23 1992-10-23 Method of crystallizing of semiconductor film

Country Status (1)

Country Link
JP (1) JPH06140321A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5930609A (en) * 1996-03-22 1999-07-27 U.S. Philips Corporation Electronic device manufacture
KR100238211B1 (en) * 1996-10-30 2000-01-15 윤종용 Crystallization method for silicon film
KR100507553B1 (en) * 2001-09-25 2005-08-09 샤프 가부시키가이샤 Crystalline semiconductor film and production method thereof, and semiconductor device and production method thereof
JP2006032924A (en) * 2004-06-14 2006-02-02 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device
KR100682439B1 (en) * 2004-01-23 2007-02-15 샤프 가부시키가이샤 Method of manufacturing semiconductor thin film
US7184106B2 (en) * 2004-02-26 2007-02-27 Au Optronics Corporation Dielectric reflector for amorphous silicon crystallization
KR20170057909A (en) * 2015-11-17 2017-05-26 한국전자통신연구원 Method of fabricating a semiconductor package
US9768019B2 (en) 2015-11-03 2017-09-19 Samsung Display Co., Ltd. Laser crystallization method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5930609A (en) * 1996-03-22 1999-07-27 U.S. Philips Corporation Electronic device manufacture
KR100472157B1 (en) * 1996-03-22 2005-07-01 코닌클리케 필립스 일렉트로닉스 엔.브이. Electronic device manufacturing method
KR100238211B1 (en) * 1996-10-30 2000-01-15 윤종용 Crystallization method for silicon film
KR100507553B1 (en) * 2001-09-25 2005-08-09 샤프 가부시키가이샤 Crystalline semiconductor film and production method thereof, and semiconductor device and production method thereof
KR100682439B1 (en) * 2004-01-23 2007-02-15 샤프 가부시키가이샤 Method of manufacturing semiconductor thin film
US7184106B2 (en) * 2004-02-26 2007-02-27 Au Optronics Corporation Dielectric reflector for amorphous silicon crystallization
JP2006032924A (en) * 2004-06-14 2006-02-02 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device
US9768019B2 (en) 2015-11-03 2017-09-19 Samsung Display Co., Ltd. Laser crystallization method
KR20170057909A (en) * 2015-11-17 2017-05-26 한국전자통신연구원 Method of fabricating a semiconductor package

Similar Documents

Publication Publication Date Title
US5683935A (en) Method of growing semiconductor crystal
US6322625B2 (en) Crystallization processing of semiconductor film regions on a substrate, and devices made therewith
US4330363A (en) Thermal gradient control for enhanced laser induced crystallization of predefined semiconductor areas
JP2003022969A (en) Silicon crystallization method utilizing mask
JPH04307727A (en) Formation method of silicon semiconductor layer
JP4237278B2 (en) Formation method of silicon single crystal using nucleation site
JPS59161014A (en) Crystallization of semiconductor thin film
JPH06140321A (en) Method of crystallizing of semiconductor film
JP3321890B2 (en) Method of forming semiconductor crystal and semiconductor element
JP4410926B2 (en) Laser annealing method
JPH06140324A (en) Method of crystallizing semiconductor film
JP2817613B2 (en) Method for forming crystalline silicon film
JPH06140323A (en) Method of crystallizing semiconductor film
JPS61251115A (en) Growth of semiconductor single crystal on insulating film
JPH0652712B2 (en) Semiconductor device
JP2003309068A (en) Semiconductor film and forming method therefor, and semiconductor device and manufacturing method therefor
JPS62243314A (en) Manufacture of semiconductor device
JPS60161396A (en) Manufacture of silicon thin film
JP2005123475A (en) Semiconductor thin film, its manufacturing method, and thin film transistor using thin film
JPS62179112A (en) Formation of soi structure
JPH04337626A (en) Method of crystallizing amorphous silicon
JPH01147826A (en) Manufacture of multilayer semiconductor substrate
JPH0744149B2 (en) Method for single crystallization of silicon film
JPS6149411A (en) Single crystallizing method of silicon film
JPS5939023A (en) Manufacture of semiconductor thin film