JPS5939023A - Manufacture of semiconductor thin film - Google Patents

Manufacture of semiconductor thin film

Info

Publication number
JPS5939023A
JPS5939023A JP57147698A JP14769882A JPS5939023A JP S5939023 A JPS5939023 A JP S5939023A JP 57147698 A JP57147698 A JP 57147698A JP 14769882 A JP14769882 A JP 14769882A JP S5939023 A JPS5939023 A JP S5939023A
Authority
JP
Japan
Prior art keywords
film
semiconductor
single crystal
insular
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57147698A
Other languages
Japanese (ja)
Inventor
Hisaaki Aizaki
尚昭 相崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57147698A priority Critical patent/JPS5939023A/en
Publication of JPS5939023A publication Critical patent/JPS5939023A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02683Continuous wave laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02513Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline

Abstract

PURPOSE:To form a single crystal silicon thin film of excellnt quality over a sufficiently wide area on an insulative film, by applying a laser beam having a beam width larger than the width of an insular insulative film such that the insular insulative film and a polycrystalline semiconductor film therearound are within the beam width. CONSTITUTION:On a single crystal semiconductor layer 1, an insulating film 2 is formed such as to be insularly divided. A polycrystalline semiconductor film 3 is formed on the film 2 and the layer 1 exposed therearound. An amorphous semiconductor or insulator film 4 equal in type to the film 3 is formed on parts of the film 3 above a part of each insular film 2 and a part of the layer 1 continuous therewith. A laser beam 5 having a beam width larger than the width of each insular film 2 is applied such that each insular film 2 and the film 3 therearound are within the beam width. Thus, it is possible to obtain over a wide area a single crystal thin film of excellent quality having no projection or crystal defect in its central part, unlike the method in which the film 4 is not provided.

Description

【発明の詳細な説明】 本発明は半導体装置等の製造に用いられる半導体薄膜の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor thin film used for manufacturing semiconductor devices and the like.

近年、半導体集積回路の高密度化が進むに伴い、半導体
集積回路の各素子寸法の微細化をはかって一方向の集積
度を向上させる他に、いったん形成された素子構造の上
に絶縁膜を全面にわたって形、成し、さらにこの絶縁膜
上に半導体薄膜を設けて、この半導体薄膜を用いて素子
を形成するといったいわゆる三次元構造が盛んに研究さ
れている。とくに絶縁膜上に形成した多結晶シリコン膜
をレーザビームにより照射し、再結晶化させて単結晶化
するあるいは結晶粒径を増大させる方法が注目・されて
いる。また、半導体集積回路の高速化が進むに伴い半導
体集積回路の各素子あるいは配線部分と半導体基板との
間に形成される寄生容量を小さくすることが重要な課題
となっている。これすでによく用いられているpn接合
分離と比較すると、絶縁膜上に半導体膜を形成し、そこ
に集積回路を形成すれば寄生容量を小さくできるので、
この意味でもレーザビームによる再結晶化技術すなわち
レーザアニーリング技術が注目されている。なかでもシ
リコン基板表面に絶縁膜を形成しその一部をエツチング
除去して開孔部を設け、次いで全面に多結晶シリコン膜
を形成した試料をレーザアニール法グした場合にはシリ
コン単結晶基板を結晶得るに至っていない。
In recent years, as the density of semiconductor integrated circuits has increased, in addition to improving the degree of integration in one direction by reducing the size of each element in semiconductor integrated circuits, it is also becoming necessary to add an insulating film over the element structure once formed. A so-called three-dimensional structure in which a device is formed over the entire surface, a semiconductor thin film is provided on the insulating film, and an element is formed using this semiconductor thin film is being actively researched. In particular, a method of irradiating a polycrystalline silicon film formed on an insulating film with a laser beam to recrystallize it to form a single crystal or increase the crystal grain size is attracting attention. Furthermore, as the speed of semiconductor integrated circuits increases, it has become an important issue to reduce the parasitic capacitance formed between each element or wiring portion of the semiconductor integrated circuit and the semiconductor substrate. Compared to the already commonly used pn junction isolation, parasitic capacitance can be reduced by forming a semiconductor film on an insulating film and forming an integrated circuit there.
In this sense as well, recrystallization technology using a laser beam, ie, laser annealing technology, is attracting attention. In particular, when an insulating film is formed on the surface of a silicon substrate, a part of it is etched away to form an opening, and then a polycrystalline silicon film is formed on the entire surface, and a sample is laser annealed. I have not yet been able to obtain any crystals.

1″以上説明した、絶縁膜上に形成して従来のレーザア
ニール法で結晶化させたシリコン膜の結晶性□力寸分良
好でない原因の一つは絶縁膜上の多結晶シリコン膜をパ
ルスレーザビームを照射してアニーリングする場合にシ
リコン単結晶と多結晶シリコン膜が相接するようにした
窓の端部から単結晶化が進行するがこの単結晶化領域は
該窓の端部からだかだか2〜3μmの領域に限られるた
めである。この欠点を回避する目的で、上記察2つを平
行に形成しその間に帯状に絶縁膜上の多結晶シリコン膜
を形成し、両側の窓からの単結晶化を利用する工夫がな
されている。この場合には、たしかに両側からの単結晶
化が進行するが、帯状の絶縁膜上の多結晶シリコン膜の
中央線近傍では結晶性はやはり悪く、また中央部表面に
突起が残るなどの欠点があり、そのため良好な特性を有
する半導体装置額造は困難である。
As explained above, one of the reasons why the crystallinity of the silicon film formed on the insulating film and crystallized by the conventional laser annealing method is not good is that the polycrystalline silicon film on the insulating film is not coated with a pulsed laser beam. When annealing is performed by irradiating silicon, single crystallization progresses from the edge of the window where the silicon single crystal and polycrystalline silicon film come into contact with each other. In order to avoid this drawback, the above two sensors are formed in parallel, and a polycrystalline silicon film on the insulating film is formed in a band shape between them. Efforts have been made to utilize crystallization.In this case, single crystallization progresses from both sides, but the crystallinity is still poor near the center line of the polycrystalline silicon film on the strip-shaped insulating film, and There are drawbacks such as a protrusion remaining on the surface of the central portion, which makes it difficult to frame a semiconductor device with good characteristics.

本発明の目的は、絶縁膜上ζこ十分広い面積にわたり良
質の単結晶シリコン薄膜を形成できるよう、絶縁膜上及
びその周囲の前記単結晶半導体層−ヒに多結晶半導体膜
を形成し、次いで該多結晶半導体膜と同種の非晶質半導
体膜あるいは絶縁体膜を、前記多結晶半導体膜を介した
前記各島状絶縁膜上の一部分及びそれに連なる前記単結
晶半導体層上の一部分に形成し、次いで前記島状絶縁膜
の幅より大きなビーム幅を有するレーザビームを前記島
状絶縁膜上及びその周囲の前記多結晶半導体膜を前記ビ
ーム幅内に含むように照射することを特徴とする半導体
薄膜の製造方法が得られる。
An object of the present invention is to form a polycrystalline semiconductor film on the insulating film and the single crystal semiconductor layer around it so that a high quality single crystal silicon thin film can be formed over a sufficiently wide area on the insulating film, and then An amorphous semiconductor film or an insulating film of the same type as the polycrystalline semiconductor film is formed on a portion of each of the island-shaped insulating films via the polycrystalline semiconductor film and a portion of the single-crystalline semiconductor layer connected thereto. Then, a laser beam having a beam width larger than the width of the island-shaped insulating film is irradiated onto the island-shaped insulating film and the polycrystalline semiconductor film around the island-shaped insulating film so that the polycrystalline semiconductor film is included within the beam width. A method for manufacturing a thin film is obtained.

次に、本発明をその一実施例を用いて図面を参照して説
明する。
Next, the present invention will be explained using one embodiment thereof with reference to the drawings.

第1図〜第3図は本発明の一実施例を説明するための図
で絶縁膜上に半導体薄膜を形成するときの主要工程にお
りる断面略図を順次示したものである。まず、単結晶シ
リコン基板1の表面番こ熱酸化法等により酸化シリコン
膜2を形成し、この酸化シリコン膜2の不要部分を除去
し、帯状構造とする(第1図)。次いで、該帯状酸化シ
リコン膜2の上にCVD (Chernical Va
pour I)eposition)法該酸化シリコン
膜4の不要部分を除去し、前記帯状酸化シリコン膜2上
に一部分だけ残るようにする。このようにして得られた
試料にパルス発振Nd : YAGレーザ光5を照射す
るが、このときレーザビーム5の幅は前記帯状酸化シリ
コン膜2の幅よりも広くしておき前記多結晶シリコン膜
3のうち前記帯状酸化シリコン膜2上に位置する部分の
全体が一括して照射されるようにする。ここで主要な点
は、前記酸化シリコン膜4に対しNd:YA−0レーザ
光(波長1.06μm)は、はとんど透過するがこのと
きよく知られた多重反射現象により第4図に示すように
透過レーザ光強度は該酸化シリコン膜4の膜厚によって
変化することである。従ってレーザ光を照射したときの
前記ポリシリコン−3の前記帯状酸化シリコン膜2上で
の温度分布は左右対称とならず、前記酸化シリコン膜・
1が設けられた位置では設けられていない位置にくらべ
より高温となり、レーザ光照射が終了後の冷却過程にお
いでも温度分布は非対称となる。この結果、レーザ光照
射によりいったん溶融した前記ポリシリ″11 がほぼ全面にわたって進行し、該酸化シリコン膜4の設
けられている側からの単結晶化はほとんど進行しない。
FIGS. 1 to 3 are diagrams for explaining one embodiment of the present invention, and sequentially show schematic cross-sectional views of main steps in forming a semiconductor thin film on an insulating film. First, a silicon oxide film 2 is formed on the surface of a single crystal silicon substrate 1 by thermal oxidation or the like, and unnecessary portions of this silicon oxide film 2 are removed to form a band-like structure (FIG. 1). Next, on the band-shaped silicon oxide film 2, chemical vapor deposition (CVD) is applied.
Pour I) Eposition) An unnecessary portion of the silicon oxide film 4 is removed so that only a portion remains on the band-shaped silicon oxide film 2. The sample thus obtained is irradiated with a pulsed Nd:YAG laser beam 5. At this time, the width of the laser beam 5 is made wider than the width of the band-shaped silicon oxide film 2, and the width of the laser beam 5 is set to be wider than the width of the band-shaped silicon oxide film 2. Of these, the entire portion located on the band-shaped silicon oxide film 2 is irradiated at once. The main point here is that although the Nd:YA-0 laser beam (wavelength 1.06 μm) is mostly transmitted through the silicon oxide film 4, due to the well-known multiple reflection phenomenon, the As shown, the intensity of the transmitted laser beam changes depending on the thickness of the silicon oxide film 4. Therefore, when the laser beam is irradiated, the temperature distribution of the polysilicon-3 on the band-shaped silicon oxide film 2 is not symmetrical, and the silicon oxide film
1 is provided, the temperature is higher than that at a position where it is not provided, and the temperature distribution becomes asymmetric even in the cooling process after the laser beam irradiation is completed. As a result, the polysilicon "11" once melted by the laser beam irradiation progresses over almost the entire surface, and single crystallization from the side where the silicon oxide film 4 is provided hardly progresses.

このようにして、酸化シリコン膜4を設けない従来の方
法にくらべ中央部に突起あるいは結晶欠陥のない良質の
単結晶薄膜を広い面積にわたり、得ることができる。
In this way, compared to the conventional method in which the silicon oxide film 4 is not provided, a high-quality single crystal thin film without protrusions or crystal defects in the center can be obtained over a wider area.

以上の説明では、実効的な透過レーザ光強度を変化させ
る効果を有する薄膜として酸fヒシリコン膜を用いたが
、これは窒化シリコン膜でもよいしまたその他の透過膜
であっても、レーザ光に対し多重反射等によって、レー
ザ光の実動作IWを変化させる効果を有する薄膜であれ
ばよい。あるいは、該薄膜吉してレーザ光の吸収効率が
ポリシリコン膜よりも大であるような簿膜例えばアモル
ファスシリコン膜を用いても前述のとさき温度分布の非
対称性をもたらすことができる。
In the above explanation, an oxide arsenic film was used as a thin film that has the effect of changing the effective transmitted laser light intensity, but it may be a silicon nitride film or any other transparent film. On the other hand, any thin film that has the effect of changing the actual operating IW of laser light due to multiple reflections or the like may be used. Alternatively, the above-mentioned asymmetry in temperature distribution can be achieved by using a thin film, such as an amorphous silicon film, whose laser light absorption efficiency is higher than that of a polysilicon film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は本発明の一実施例を説明するだめの図
である。第4図は、酸化シリコン膜の膜厚によって透過
レーザ光強度が変化することを説明するための図である
。 図において、1・・単結晶シリコン基板、2.4酸化シ
リコン膜、3・・・ポリシリコン膜、5・レザ光。 −に′にtシ1(1院長 昇I図 第4面
1 to 3 are diagrams for explaining one embodiment of the present invention. FIG. 4 is a diagram for explaining that the intensity of transmitted laser light changes depending on the thickness of the silicon oxide film. In the figure, 1. Single crystal silicon substrate, 2. 4 Silicon oxide film, 3. Polysilicon film, 5. Laser light. −ni'nitsi 1 (1 director promotion I figure 4th page

Claims (1)

【特許請求の範囲】[Claims] 少な(とも表面に単結晶半導体層を備えた基板の前記単
結晶半導体層上に絶縁膜を島状に分離形成し、次いで少
なくとも前記島状絶縁膜上及びその周囲の前記単結晶半
導体層上に多結晶半導体膜を形成し、次いで該多結晶半
導体膜と同種の非晶質半導体膜あるいは絶縁体膜を、前
記多結晶半導体膜を介した前記各島状絶縁膜上の一部分
及びそれに連なる前記単結晶半導体層上の一部分に形成
し、次いで前記島状絶縁膜の幅より大きなビーム幅を有
するレーザビームを前記島状絶縁膜上及びその周囲の前
記多結晶半導体膜を前記ヒーム幅内に含むように照射す
ることを特徴とする半導体薄膜の製造方法。
An insulating film is separately formed in an island shape on the single crystal semiconductor layer of a substrate having a single crystal semiconductor layer on the surface thereof, and then at least on the island-shaped insulating film and on the single crystal semiconductor layer around the island-shaped insulating film. A polycrystalline semiconductor film is formed, and then an amorphous semiconductor film or an insulating film of the same type as the polycrystalline semiconductor film is formed on a portion of each of the island-shaped insulating films through the polycrystalline semiconductor film and the unit connected thereto. A laser beam is formed on a portion of the crystalline semiconductor layer, and then a laser beam having a beam width larger than the width of the island-shaped insulating film is applied to the polycrystalline semiconductor film on and around the island-shaped insulating film so that the beam width includes the laser beam. A method for producing a semiconductor thin film, the method comprising: irradiating the semiconductor thin film with irradiation.
JP57147698A 1982-08-27 1982-08-27 Manufacture of semiconductor thin film Pending JPS5939023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57147698A JPS5939023A (en) 1982-08-27 1982-08-27 Manufacture of semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57147698A JPS5939023A (en) 1982-08-27 1982-08-27 Manufacture of semiconductor thin film

Publications (1)

Publication Number Publication Date
JPS5939023A true JPS5939023A (en) 1984-03-03

Family

ID=15436233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57147698A Pending JPS5939023A (en) 1982-08-27 1982-08-27 Manufacture of semiconductor thin film

Country Status (1)

Country Link
JP (1) JPS5939023A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183704A (en) * 1984-09-27 1986-04-28 大見工業株式会社 Surface peeling tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183704A (en) * 1984-09-27 1986-04-28 大見工業株式会社 Surface peeling tool

Similar Documents

Publication Publication Date Title
EP0178447A2 (en) A manufacturing method of an integrated circuit based on semiconductor-on-insulator technology
JPH0732124B2 (en) Method for manufacturing semiconductor device
JPS6281709A (en) Manufacture of semiconductor device
JP2002261015A (en) Semiconductor thin film, method of manufacturing it, manufacturing device, semiconductor element and method of manufacturing it
JPS60150618A (en) Manufacture of semiconductor device
JP2709591B2 (en) Method for manufacturing recrystallized semiconductor thin film
JPH027415A (en) Formation of soi thin film
US4678538A (en) Process for the production of an insulating support on an oriented monocrystalline silicon film with localized defects
JPH06140321A (en) Method of crystallizing of semiconductor film
JPS5939023A (en) Manufacture of semiconductor thin film
JP2817613B2 (en) Method for forming crystalline silicon film
JPS6342417B2 (en)
JPS6239068A (en) Manufacture of semiconductor device
JP2699325B2 (en) Method for manufacturing semiconductor device
JPS5928328A (en) Preparation of semiconductor device
JPH03284831A (en) Forming method for semiconductor thin-film
JPS5893224A (en) Preparation of semiconductor single crystal film
JP2003309068A (en) Semiconductor film and forming method therefor, and semiconductor device and manufacturing method therefor
JPH0693429B2 (en) Method for manufacturing multilayer semiconductor substrate
JPS6149411A (en) Single crystallizing method of silicon film
JPH0693428B2 (en) Method for manufacturing multilayer semiconductor substrate
JPH07131029A (en) Fabrication of thin film transistor
JPS60229330A (en) Manufacture of semiconductor device
JPH0410212B2 (en)
KR940006697B1 (en) Manufacturing method of soi mos