JPS5893224A - Preparation of semiconductor single crystal film - Google Patents

Preparation of semiconductor single crystal film

Info

Publication number
JPS5893224A
JPS5893224A JP56190632A JP19063281A JPS5893224A JP S5893224 A JPS5893224 A JP S5893224A JP 56190632 A JP56190632 A JP 56190632A JP 19063281 A JP19063281 A JP 19063281A JP S5893224 A JPS5893224 A JP S5893224A
Authority
JP
Japan
Prior art keywords
film
substrate
single crystal
semiconductor
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56190632A
Other languages
Japanese (ja)
Inventor
Toshio Yoshii
俊夫 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56190632A priority Critical patent/JPS5893224A/en
Publication of JPS5893224A publication Critical patent/JPS5893224A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02683Continuous wave laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam

Abstract

PURPOSE:To form a semiconductor single crystal thin film having excellent uniformity and flatness through epitaxial growth of a semiconductor film over an insulaing film form substrate by forming selectively a second insulating film on a semiconductor film of substrate surface and irradiating laser beams. CONSTITUTION:After forming a first SiO2 film 2 in the specified thickness by by thermal oxidation of an Si single crystal substrate 1, the film 2 is partly removed, exposing a part of the substrate 1. A polycrystalline Si film 3 is then deposited thereon by the CVD method under a reduced pressure and moreover a second SiO2 film 4 is deposited by the CVD method under a reduced pressure. Next, only the film 2 on the exposed substrate is selectively left by the photo- etching method and the remaining part is removed by the etching. Thereafter, a single crystal Si film 3' is formed from the substrate 1 to substrate 2 through the epitaxial growth by irradiating thereto a laser beam of the specified energy. The film 3' is formed as the semiconductor single crystal thin film having excellent uniformity and flatness, and an MOS transistor etc. is formed in the sperture of such film 3'.

Description

【発明の詳細な説明】 発明の属する技術分野 本発明は単結晶表面の一部に存在する絶縁性簿膜上に、
半導体表面から単結晶半導体薄膜を延在せしめる構造の
製造方法に関する。
[Detailed description of the invention] Technical field to which the invention pertains The present invention relates to an insulating film existing on a part of a single crystal surface.
The present invention relates to a method for manufacturing a structure in which a single crystal semiconductor thin film extends from a semiconductor surface.

従来技術とその問題点 絶縁基板上の単結晶薄膜はSOS (サファイア上のシ
リコン)の例でもわかるように、以下に述べるような利
徹をもつ。すなわち、■素子間分離金容易かつ完全に行
うことができる。■畜生浮遊容量が小さく、高速動作が
可能である。C)基板バイアス効果がないためMO8集
積回路においてはスイッチング速度が大きくなる。
Prior art and its problems Single crystal thin films on insulating substrates have the following advantages, as can be seen from the example of SOS (silicon on sapphire). That is, (1) isolation between elements can be easily and completely performed; ■The stray capacitance is small and high-speed operation is possible. C) Switching speeds are higher in MO8 integrated circuits due to the lack of body bias effects.

一方、SO8の間M aとして、基板となる単結晶サフ
ァイアのコストが高いことが挙げられる。
On the other hand, as for Ma during SO8, it can be mentioned that the cost of single crystal sapphire serving as the substrate is high.

そのだめSi基板を酸化して形成した5i02や、Si
基板に堆積した9i02乃至はSiN膜上に半導体膜を
さらに堆積させたものを用いることが検討されている。
However, 5i02, which is formed by oxidizing a Si substrate,
It is being considered to use a semiconductor film further deposited on a 9i02 or SiN film deposited on a substrate.

さらに、近年、レーザ光を細く絞り、半導体膜に照射す
るレーザアニール法が発達してきた。
Furthermore, in recent years, a laser annealing method has been developed in which a laser beam is focused narrowly and irradiated onto a semiconductor film.

すなわち、81基板上に被着しfC8iOz膜の一部を
除去することにより開孔部をもうけ、多結晶乃至は非結
晶S1を全面に被着し、81基板表向から5I02上ま
でSL膜が連続して延在せしめる。次に、レーザ光を開
孔部上のSL膜表面から5r(Jz上上納結晶Si向か
って走査しながら照射を行ない溶融再結晶化する。半導
体表面において溶融した多結晶Siは基板から液相エピ
タキシャル成長により単結晶化し、さらにこれが5i0
2上に延在する多結晶S1にも及びレーザ光の走査と共
に81の液相エピタキンヤル成侵がS iOz上を横方
向に向かって進行するというものである。しかしながら
、この方法には次のような欠へもある。すなわち、8区
と8102との熱伝導度の違いにより、レーザを照射し
た際の開孔部上の81膜の温度とS iOz上のSi膜
の高度が異なり、後者の方が前者よりも大きくなる。従
ってSi膜が溶融再結晶する際に、8I02七のSi膜
が開孔部81基板Hに集まるという現象が起こり、膜厚
の均一性、表面の平担性が維持できない。一方、これを
避けるために、レーザ光の照射エネルギーを少さくする
と、開孔部Si基板上の多結晶Si膜が溶融を起こさな
いため、多結晶3i膜が、単結晶化しないという不都合
が起きる。
That is, a hole is formed by removing a part of the fC8iOz film deposited on the 81 substrate, and polycrystalline or amorphous S1 is deposited on the entire surface, and the SL film is formed from the surface of the 81 substrate to the top of 5I02. Extend continuously. Next, the laser beam is irradiated while scanning from the surface of the SL film above the opening toward the crystalline Si above the opening to melt and recrystallize it. It is made into a single crystal by 5i0.
As the laser beam scans the polycrystal S1 extending on the SiOz layer, the liquid phase epitaxial growth 81 proceeds in the lateral direction on the SiOz layer. However, this method also has the following shortcomings. In other words, due to the difference in thermal conductivity between Section 8 and 8102, the temperature of the 81 film on the aperture and the altitude of the Si film on SiOz when irradiated with laser differ, and the temperature of the latter is larger than the former. Become. Therefore, when the Si film melts and recrystallizes, a phenomenon occurs in which the Si film of 8I027 gathers on the substrate H of the opening 81, and the uniformity of the film thickness and the flatness of the surface cannot be maintained. On the other hand, in order to avoid this, if the irradiation energy of the laser beam is reduced, the polycrystalline Si film on the Si substrate in the opening does not melt, resulting in the inconvenience that the polycrystalline 3i film does not become a single crystal. .

発明の目的 本発明Vjこのような事情に鑑みてなされたもので、均
−性及び平担性においてすぐれた半導体単結晶薄膜を絶
縁膜上に形成する方法を提供するものである□ 発明の概委 本発明にお・いては、レーザ照射による半導体膜の幌I
W上昇を半導体基板上においても絶縁膜トにおいても同
一にせしむるため、半導体基板りの半導体膜のみに絶縁
膜を被着し、これによってレーザ光の透過率をこの部分
だけ大きくする。
Purpose of the Invention The present invention has been made in view of the above circumstances, and provides a method for forming a semiconductor single crystal thin film with excellent uniformity and flatness on an insulating film. In the present invention, the hood I of the semiconductor film is formed by laser irradiation.
In order to make the increase in W the same on both the semiconductor substrate and the insulating film, an insulating film is applied only to the semiconductor film on the semiconductor substrate, thereby increasing the transmittance of laser light only in this portion.

発明の効果 この方法によって絶縁膜上に平担性のすぐれ、かつ、結
晶性も良好な半導体第結晶膜を形成することが出来、こ
の半導体層にすぐれた区気的特性をもつトランジスタな
どの素子を形成することかり能となった。このため、半
導体基板上に、立体的に集積回路を製造することができ
、集積度向上の効果が得られる。
Effects of the Invention By this method, it is possible to form a semiconductor crystalline film with excellent flatness and good crystallinity on an insulating film, and this semiconductor layer can be used for devices such as transistors with excellent spatial characteristics. It became Noh. Therefore, an integrated circuit can be manufactured three-dimensionally on a semiconductor substrate, and the effect of improving the degree of integration can be obtained.

発明の実施列 以下実施例によりこれを説明する。第1図は本発明の一
実施例を示す図であるっS1単結晶(001)母基板t
l+を熱酸化し、1000大の第一のS io2膜(2
)を形成後、部分的にとiを除去し、81基板を露出さ
せる。このトに減圧CVD法を用いて多結晶S r +
3+を50(+13&堆積する。さらに減圧CV 1)
法を用いてfl、 二ノsiu2g (4) t 10
00! 堆44 L、 fc t、PiJ P INを
通してSL基板露出五のS iOzのみを選択的に践し
他はエツチングで取り去る(第1図(a))。次にCW
発振A「イオンレーザを照射する。このときのレーザパ
ワーは11 W、走査速度は10t1/secである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be explained by way of examples. FIG. 1 is a diagram showing an embodiment of the present invention. S1 single crystal (001) mother substrate t
The first S io2 film (2
) is partially removed to expose the substrate 81. In this process, polycrystalline S r +
3+ to 50 (+13 & deposit. Further reduced pressure CV 1)
Using the method fl, Ninosiu2g (4) t 10
00! Only the exposed SiOz of the SL substrate is selectively etched through the layers 44L, fct, and PiJPIN, and the rest is removed by etching (FIG. 1(a)). Next, CW
Oscillation A: Irradiate with ion laser. The laser power at this time is 11 W and the scanning speed is 10 t1/sec.

これによって、開孔部Si基板から隣接のS ioz膜
上に向かって堆積多結晶Siが単結晶化(3’)したl
1図(b))。第二のS iOz膜を除去後、この単結
晶膜上にチャネル長10μm、チャネル中間μmのSi
ゲートnチャネルMO8)ランラスタ(5)を試作し、
そのキャリア移動度を測定したところ800d/V−s
ecであり、バルク8i (001)面の場合とほぼ同
等であった(第1図(C) ) 。
As a result, the deposited polycrystalline Si becomes single crystallized (3') from the open Si substrate toward the adjacent SiOz film.
Figure 1 (b)). After removing the second SiOz film, Si with a channel length of 10 μm and a channel middle μm is deposited on this single crystal film.
Prototype gate n-channel MO8) run raster (5),
The carrier mobility was measured to be 800d/V-s.
ec, which was almost equivalent to that of the bulk 8i (001) plane (Fig. 1(C)).

発明の他の実施例 なお、上記実施例にち・いて基板及び半導体膜にSiを
用いたが、Ge、GaAs、Ga)’、AJz01 f
zどでも本発明の効果を挙げることが出来ることはもち
ろんである。また絶縁膜の材料、形成方法などは一実施
例に限られないことは明らかである。レーザ光としては
A「レーザに限らず、Krレーザ、Nd−YAGレーザ
、ルビーレーザなどであっても同様の効果を挙げること
ができる。
Other Embodiments of the Invention Although Si was used for the substrate and semiconductor film in the above embodiments, Ge, GaAs, Ga)', AJz01 f
It goes without saying that the effects of the present invention can be obtained in any case. Furthermore, it is clear that the material, formation method, etc. of the insulating film are not limited to the one embodiment. The laser light is not limited to the A laser, but similar effects can be achieved even with Kr laser, Nd-YAG laser, ruby laser, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)乃至<c>は本発明の詳細な説明する断面
図である0 1・・・S1単結晶基板、  2・・・第1のS iO
z膜。 3・・・多結晶1膜、   3′・・・単結晶8i膜、
4・・・第2の8102g%  4・・・MO8トラン
ジスタ、6・・・ドレイン、    7・・・ソース。 8・・ゲート5in2.   9・・・ゲートit極。
1(a) to <c> are cross-sectional views explaining the present invention in detail. 0 1... S1 single crystal substrate, 2... First SiO
z membrane. 3... Polycrystalline 1 film, 3'... Single crystal 8i film,
4...Second 8102g% 4...MO8 transistor, 6...Drain, 7...Source. 8...Gate 5in2. 9...Gate it pole.

Claims (1)

【特許請求の範囲】[Claims] 半導体単結晶基板上に第1の絶縁膜を選択的に形成中る
工程と、前記基板表面及び絶縁膜上に半導体膜を被着す
る工程と、前記基板表面上に被着した牛4体膜に選択的
に第2の絶縁膜を形成する工程と、レーザ光を照射させ
ることにより、基板上から絶縁膜上にわたって前記半導
体膜tエピタキシャル成長せしめる工程とを具備してな
ることを特徴とする半導体単結晶膜の製造方法。
a step of selectively forming a first insulating film on a semiconductor single crystal substrate; a step of depositing a semiconductor film on the surface of the substrate and the insulating film; and a step of depositing a semiconductor film on the surface of the substrate. A semiconductor unit comprising the steps of: selectively forming a second insulating film on the substrate; and epitaxially growing the semiconductor film t over the insulating film from the substrate by irradiating laser light. Method for producing crystalline film.
JP56190632A 1981-11-30 1981-11-30 Preparation of semiconductor single crystal film Pending JPS5893224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56190632A JPS5893224A (en) 1981-11-30 1981-11-30 Preparation of semiconductor single crystal film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56190632A JPS5893224A (en) 1981-11-30 1981-11-30 Preparation of semiconductor single crystal film

Publications (1)

Publication Number Publication Date
JPS5893224A true JPS5893224A (en) 1983-06-02

Family

ID=16261291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56190632A Pending JPS5893224A (en) 1981-11-30 1981-11-30 Preparation of semiconductor single crystal film

Country Status (1)

Country Link
JP (1) JPS5893224A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60123019A (en) * 1983-12-07 1985-07-01 Agency Of Ind Science & Technol Manufacture of semiconductor device
JPS63215035A (en) * 1987-03-04 1988-09-07 Agency Of Ind Science & Technol Protective film for recrystallization treatment
US5950779A (en) * 1996-10-21 1999-09-14 Swany Corporation Bag mounted with casters

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57122534A (en) * 1981-01-22 1982-07-30 Mitsubishi Electric Corp Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57122534A (en) * 1981-01-22 1982-07-30 Mitsubishi Electric Corp Manufacture of semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60123019A (en) * 1983-12-07 1985-07-01 Agency Of Ind Science & Technol Manufacture of semiconductor device
JPS63215035A (en) * 1987-03-04 1988-09-07 Agency Of Ind Science & Technol Protective film for recrystallization treatment
US5950779A (en) * 1996-10-21 1999-09-14 Swany Corporation Bag mounted with casters

Similar Documents

Publication Publication Date Title
US5310446A (en) Method for producing semiconductor film
US4448632A (en) Method of fabricating semiconductor devices
JPS59161014A (en) Crystallization of semiconductor thin film
US5116768A (en) Fabrication method of a semiconductor integrated circuit having an SOI device and a bulk semiconductor device on a common semiconductor substrate
JPS5893224A (en) Preparation of semiconductor single crystal film
JPH0475649B2 (en)
JPS6342417B2 (en)
JPS5885520A (en) Manufacture of semiconductor device
JPH0282519A (en) Solid phase epitaxy method
JPS61117821A (en) Manufacture of semiconductor device
JP2857480B2 (en) Method for manufacturing semiconductor film
JPS5893216A (en) Manufacture of semiconductor device
JPS6043814A (en) Manufacture of semiconductor crystalline film
JPS63174308A (en) Manufacture of semiconductor thin film crystal layer
JPS58175844A (en) Manufacture of semiconductor device
JPS5893218A (en) Manufacture of semiconductor thin film structure
KR100293263B1 (en) Manufacturing Method of Thin Film Transistor
JPS5837916A (en) Manufacture of semiconductor device
JPS5893215A (en) Manufacture of semiconductor singlecrystal thin film
JPH0529214A (en) Manufacture of semiconductor substrate
JPS61116821A (en) Formation of single crystal thin film
JPH0243331B2 (en)
JPS62247518A (en) Manufacture of semiconductor device
JPS60123019A (en) Manufacture of semiconductor device
JPS58128770A (en) Manufacture of semiconductor device