JPH03284831A - Forming method for semiconductor thin-film - Google Patents

Forming method for semiconductor thin-film

Info

Publication number
JPH03284831A
JPH03284831A JP8598690A JP8598690A JPH03284831A JP H03284831 A JPH03284831 A JP H03284831A JP 8598690 A JP8598690 A JP 8598690A JP 8598690 A JP8598690 A JP 8598690A JP H03284831 A JPH03284831 A JP H03284831A
Authority
JP
Japan
Prior art keywords
semiconductor thin
film
thin film
laser
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8598690A
Other languages
Japanese (ja)
Inventor
Kenji Tomita
賢時 冨田
Yoshiteru Nitta
新田 佳照
Noritoshi Yamaguchi
文紀 山口
Kiyonari Tanaka
聖也 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP8598690A priority Critical patent/JPH03284831A/en
Publication of JPH03284831A publication Critical patent/JPH03284831A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To decompose and annihilate a thermal donor in a semiconductor thin-film, to form a thin-film transistor having the fast speed of response and to use a substrate having the comparatively low melting point by crystallizing the semiconductor thin-film and heating the semiconductor thin film by applying laser beams. CONSTITUTION:A first semiconductor thin-film 3 formed onto an insulating film 2 is irradiated with laser beams from the substrate 1 side or the semiconductor thin-film 3 side and crystallized. An argon laser, etc., are used preferably as laser beams. Second semiconductor thin-films 4a, 4b as a reverse conductivity type are formed onto the thin-film 3. Laser beams are applied from the substrate 1 side, and the first semiconductor thin-film 3 is heated. An excimer laser is employed preferably as the laser beams. Since the excimer laser is composed of short-wave length beams, the excimer laser is used in an extent that it is absorbed only by the extreme surface layer of the semiconductor thin-film 3, but a thermal donor is decomposed, and the mobility of electrons and holes is improved. Sections near joining sections with the layer 3 of the layers 4a, 4b are thermally annealed, thus improving joining characteristics while also lowering the interface level of a gate insulating film 5 and the layer 3.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体薄膜の形成方法に関し、特に半導体薄膜
を結晶化させた後に、再びレーザ光を照射して半導体薄
膜を加熱する半導体薄膜の形成方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for forming a semiconductor thin film, and in particular to a method for forming a semiconductor thin film, in which the semiconductor thin film is crystallized and then heated by irradiating the semiconductor thin film again with laser light. Regarding the method.

(従来の技術) 従来から、ガラスなどの絶縁基板上に酸化シリコン(S
iO2)などから成る熱!!衝膜と非晶質若しくは多結
晶の半導体薄膜とを形成して、この半導体薄膜に連続発
振アルゴンレーザなどを照射して、半導体薄膜を溶融・
固化させることにより半導体薄膜を結晶化させる半導体
薄膜の結晶化法があった。
(Prior art) Silicon oxide (S) has traditionally been deposited on an insulating substrate such as glass.
Heat consisting of iO2) and more! ! A bombardment film and an amorphous or polycrystalline semiconductor thin film are formed, and this semiconductor thin film is irradiated with a continuous wave argon laser or the like to melt and melt the semiconductor thin film.
There is a crystallization method for semiconductor thin films that crystallizes semiconductor thin films by solidifying them.

(発明が解決しようとする問題点) ところが、この従来の半導体薄膜の結晶化法では、半導
体薄膜にレーザ光を照射して半導体薄膜を溶融させた際
に、酸化シリコンなどから成る熱緩衝膜も加熱され、結
晶化した後の半導体薄膜に酸素原子が多数取り込まれて
しまうという問題があった0例えば、通常の単結晶シリ
コン基板では酸素原子は101′1個/cm’程度しか
存在しないのに対して、上述のような構成を有する半導
体薄膜をレーザ光で結晶化した場合、シリコン膜中には
、1019〜1020個/cm’程度酸素原子が存在し
ている。このような半導体薄膜でトランジスタを形成す
ると、過飽和の酸素原子が数個集合してクラスターとな
り、これがドナーを形成してしまう、イオン化したドナ
ーは、キャリアの散乱中心となるため、半導体膜中での
電子および正孔の移動度に悪影響を与える。したがって
、半導体特性を改善するには、上述のようなサーマルド
ナーを消滅させることが有効である。
(Problems to be Solved by the Invention) However, in this conventional method for crystallizing semiconductor thin films, when the semiconductor thin film is irradiated with laser light to melt the semiconductor thin film, the thermal buffer film made of silicon oxide etc. There was a problem that a large number of oxygen atoms were incorporated into the semiconductor thin film after it was heated and crystallized.For example, in a normal single crystal silicon substrate, there are only about 101'1 oxygen atoms/cm'. On the other hand, when a semiconductor thin film having the above-mentioned structure is crystallized by laser light, approximately 1019 to 1020 oxygen atoms/cm' exist in the silicon film. When a transistor is formed using such a semiconductor thin film, several supersaturated oxygen atoms gather together to form a cluster, which forms a donor.The ionized donor becomes a scattering center for carriers, so it becomes a cluster in the semiconductor film. Adversely affects electron and hole mobility. Therefore, in order to improve semiconductor characteristics, it is effective to eliminate the thermal donors as described above.

単結晶のシリコン基板を用いた半導体製造プロセスでは
、酸化膜の形成工程や不純物の拡散工程など1000℃
以上の高温工程があるため、サーマルドナーは分解して
しまうが、ガラス基板上に薄膜トランジスタを形成する
場合、高温プロセスがないため、最後までサーマルドナ
ーが残ってしまい、応答速度の速いトランジスタを得る
ことができないという問題があった。また、800℃で
10秒程度のRTP (ランプアニール法によるラビッ
ドサーマルプロセス)も有効であるが、ガラス基板をこ
のような高温の炉の中に入れることはできない。
In the semiconductor manufacturing process using single-crystal silicon substrates, temperatures such as oxide film formation and impurity diffusion processes are heated to 1000°C.
Due to the above high-temperature process, the thermal donor decomposes, but when forming a thin film transistor on a glass substrate, there is no high-temperature process, so the thermal donor remains until the end, making it difficult to obtain a transistor with a fast response speed. The problem was that it was not possible. Further, RTP (Rapid Thermal Process by Lamp Annealing) at 800° C. for about 10 seconds is also effective, but the glass substrate cannot be placed in such a high-temperature furnace.

本発明は、このような問題点に鑑みて案出されたもので
あり、結晶化した半導体薄膜中のサーマルドナーを分解
して消滅させることにより、電子および正孔の移動度の
速いトランジスタを得ることができる半導体薄膜を形成
することを目的とするものである。
The present invention was devised in view of these problems, and aims to obtain a transistor with high electron and hole mobility by decomposing and eliminating thermal donors in a crystallized semiconductor thin film. The purpose of this is to form a semiconductor thin film that can be used.

(問題点を解決するための手段) 本発明によれば、基板上に第1の絶縁膜と非晶質若し゛
くは多結晶の半導体薄膜とを形成してレーザ光を照射す
ることにより半導体薄膜を溶融・固化させて結晶化させ
る半導体薄膜の形成方法において、前記半導体薄膜を結
晶化させた後、さらに前記レーザ光よりも小エネルギー
のレーザ光を前記半導体薄膜に照射することを特徴とす
る半導体薄膜の形成方法が提供され、そのことにより上
記目的が達成される。
(Means for Solving the Problems) According to the present invention, a first insulating film and an amorphous or polycrystalline semiconductor thin film are formed on a substrate, and a semiconductor film is formed by irradiating laser light. The method for forming a semiconductor thin film in which the thin film is melted and solidified to crystallize the semiconductor thin film is characterized in that after the semiconductor thin film is crystallized, the semiconductor thin film is further irradiated with a laser beam having lower energy than the laser beam. A method of forming a semiconductor thin film is provided, thereby achieving the above objects.

(作用) 上記のように構成することにより、結晶化した半導体薄
膜中のサーマルドナーは著しく減少する。
(Function) By configuring as described above, the number of thermal donors in the crystallized semiconductor thin film is significantly reduced.

(実施例) 以下、本発明を添付図面に基づき詳細に説明する。(Example) Hereinafter, the present invention will be explained in detail based on the accompanying drawings.

第1図は、本発明をスタガー型の薄膜トランジスタに適
用した例を示す断面図であり、■は#7059基板など
から成るガラス基板、2は酸化シリコン(SiO2)な
どから成る絶縁膜である。
FIG. 1 is a cross-sectional view showing an example in which the present invention is applied to a staggered thin film transistor, where 2 is a glass substrate made of a #7059 substrate or the like, and 2 is an insulating film made of silicon oxide (SiO2) or the like.

この絶縁膜2は、プラズマCVD法、熱CVD法、光C
VD法などで厚み5000人程度に形成される。この絶
縁膜2は、ガラス基板1と後述する半導体薄膜3とのp
!!、膨張の相違を吸収する緩衝膜として、また基板1
から半導体薄膜3に不純物が混入するのを防止するため
に設けられる。
This insulating film 2 can be formed by plasma CVD, thermal CVD, photoC
It is formed to a thickness of about 5,000 layers using the VD method. This insulating film 2 is formed between the glass substrate 1 and a semiconductor thin film 3 to be described later.
! ! , as a buffer film to absorb differences in expansion, and also as a substrate 1
This is provided to prevent impurities from being mixed into the semiconductor thin film 3.

前記絶縁膜2上には、第1の半導体薄膜3が設けられる
。この第1の半導体薄膜3は、非晶質若しくは多結晶の
半導体薄膜で構成され、プラズマCVD法、熱CVD法
、光CVD法などで厚み5000λ程度に形成される。
A first semiconductor thin film 3 is provided on the insulating film 2 . This first semiconductor thin film 3 is composed of an amorphous or polycrystalline semiconductor thin film, and is formed to a thickness of about 5000λ by plasma CVD, thermal CVD, photoCVD, or the like.

この第1の半導体薄膜3を形成する際に、同時にボロン
やリンなどの不純物原子を10′5〜1018個/ c
 m ’程度あらかじめ含有させて置く。
When forming this first semiconductor thin film 3, impurity atoms such as boron and phosphorus are simultaneously added at 10'5 to 1018 atoms/c.
m' in advance.

前記第1の半導体膜M3に基板1側から若しくは半導体
薄膜3側からレーザ光を照射して結晶化させる。レーザ
光としては、例えば0.1〜2゜Wの出力でスポット径
が100μm程度の連続波アルゴンレーザなどが好適に
用いられ、走査速度05〜20cm/sec程度で走査
される。このようにして結晶化させた第1の半導体薄膜
には、サーマルドナーとなる酸素原子を1019〜10
20個/cm’程度含有している。
The first semiconductor film M3 is irradiated with laser light from the substrate 1 side or from the semiconductor thin film 3 side to crystallize it. As the laser light, for example, a continuous wave argon laser with an output of 0.1 to 2 degrees W and a spot diameter of about 100 μm is preferably used, and the laser beam is scanned at a scanning speed of about 05 to 20 cm/sec. The first semiconductor thin film crystallized in this manner contains 1019 to 10 oxygen atoms, which serve as thermal donors.
It contains about 20 pieces/cm'.

次に、第1の半導体薄膜3上に、逆導電型となる不純物
原子を含有する非晶質若しくは多結晶の第2の半導体薄
膜4a、4bを形成する。この第2の半導体膜M4a、
4b部分は、ソース領域とドレイン領域となり、プラズ
マCVD法、熱cVD法、或いは光CVD法などで厚み
500人程度に形成される。
Next, amorphous or polycrystalline second semiconductor thin films 4a and 4b containing impurity atoms of opposite conductivity type are formed on the first semiconductor thin film 3. This second semiconductor film M4a,
The portion 4b becomes a source region and a drain region, and is formed to a thickness of approximately 500 mm using a plasma CVD method, a thermal CVD method, a photo CVD method, or the like.

前記第1の半導体薄膜3上の第2の半導体薄膜4aと4
bとの間には、酸化シリコン(SiO2)などから成る
ゲート絶縁M5が厚み1000人程度に形成される。
Second semiconductor thin films 4a and 4 on the first semiconductor thin film 3
A gate insulator M5 made of silicon oxide (SiO2) or the like is formed to a thickness of about 1000 mm between the gate electrode and the gate electrode b.

次に、基板1側がらレーザ光を照射して、第1の半導体
薄膜3を加熱する。このレーザ光としては、1〜2J/
cm2程度のエキシマレーザが好適に用いられる。すな
わち、エキシマレーザは短波長光であるため、半導体薄
膜3の極表面層のみで吸収される程度となるが、サーマ
ルドナーは分解され、電子および正孔の移動度は向上す
る。また、第2の半導体層4a、4bの第1の半導体層
3との接合部近傍が熱アニールされることによって接合
特性が改善されるとともに、ゲート絶縁膜5と第1の半
導体層3との界面準位も低下する。
Next, the first semiconductor thin film 3 is heated by irradiating laser light from the substrate 1 side. This laser light is 1 to 2 J/
An excimer laser of about cm2 is preferably used. That is, since the excimer laser is a short wavelength light, it is absorbed only in the extreme surface layer of the semiconductor thin film 3, but the thermal donor is decomposed and the mobility of electrons and holes is improved. Further, by thermally annealing the vicinity of the junction between the second semiconductor layers 4a and 4b and the first semiconductor layer 3, the junction characteristics are improved, and the junction between the gate insulating film 5 and the first semiconductor layer 3 is improved. The interface level also decreases.

また、半導体層4側からエキシマレーザを導入すれば、
サーマルドナーの解消とともに接合部近傍が溶融・結晶
化し、ホモのp−n接合となって接合特性がさらに改善
されるという副次的効果もある。なお、エキシマレーザ
の代わりに、低パワーのアルゴンレーザなどを用いても
よい。
Moreover, if an excimer laser is introduced from the semiconductor layer 4 side,
As the thermal donor is eliminated, the vicinity of the junction melts and crystallizes, forming a homogeneous p-n junction, which further improves the junction characteristics, which is a secondary effect. Note that a low power argon laser or the like may be used instead of the excimer laser.

最後に、ゲート絶縁膜5上、ソース領域4a上、および
ドレイン領域4b上にそれぞれAI=Ta、W、Ti、
Ni= Mo、Crなどから成る電極6a、6b、6c
を真空蒸着法やスパッタリング法などで形成してスタガ
ー型の薄膜トランジスタが完成する。
Finally, AI=Ta, W, Ti,
Ni = electrodes 6a, 6b, 6c made of Mo, Cr, etc.
A staggered thin film transistor is completed by forming the thin film transistor using a vacuum evaporation method or a sputtering method.

第2図は、本発明を逆スタガー型の薄膜トランジスタに
適用した例を示す断面図であり、11は#7059基板
などから成るガラス基板、12は酸化シリコン(S l
 02 )などから成る第1の絶縁膜である。
FIG. 2 is a cross-sectional view showing an example in which the present invention is applied to an inverted stagger type thin film transistor, in which 11 is a glass substrate made of #7059 substrate, etc., 12 is a silicon oxide (Sl
02) or the like.

この第1の絶縁膜12は、プラズマCVD法、熱CVD
法、光CVD法などで厚み5000人程度ロス成される
。この第1の絶縁膜12は、ガラス基板11と後述する
半導体薄膜13との熱膨張の相違を吸収する緩衝膜とし
て、また基板11がら半導体薄膜13に不純物が混入す
るのを防止するために設けられる。
This first insulating film 12 is formed by plasma CVD method, thermal CVD method,
A loss of about 5,000 layers is achieved using the optical CVD method. This first insulating film 12 is provided as a buffer film to absorb the difference in thermal expansion between the glass substrate 11 and a semiconductor thin film 13, which will be described later, and to prevent impurities from being mixed into the semiconductor thin film 13 from the substrate 11. It will be done.

前記第1の絶縁膜12上には、Ta、W、Ti、Ni、
Mo−Crなどから成るゲート電極16cが厚み300
0人程度ロスパッタリング法や真空蒸着法により形成さ
れる。
On the first insulating film 12, Ta, W, Ti, Ni,
The gate electrode 16c made of Mo-Cr or the like has a thickness of 300 mm.
It is formed by a loss sputtering method or a vacuum evaporation method.

前記ゲート電極16cと第1の絶縁膜12上には、ゲー
ト絶縁膜15が形成される。このゲート絶縁膜15は、
酸化シリコン(SiOz)などがち成り、プラズマCV
D法、熱CVD法、光CVD法などで厚み1000人程
度1形成される。
A gate insulating film 15 is formed on the gate electrode 16c and the first insulating film 12. This gate insulating film 15 is
Silicon oxide (SiOz) etc. are formed, and plasma CV
The film is formed to a thickness of about 1,000 layers using the D method, thermal CVD method, photo-CVD method, etc.

前記ゲート絶縁膜15上には、第1の半導体薄膜13が
設けられる。この第1の半導体薄膜13は、非晶質若し
くは多結晶の半導体薄膜で構成され、ブラズ?CVD法
、熱CVD法、光CVD法などで厚み5000人程度ロ
ス成される。この第1の半導体薄膜13を形成する際に
、同時にボロンやリンなどの不純物原子を1015〜1
018個/crn’程度あらかじめ含有させて置く。
A first semiconductor thin film 13 is provided on the gate insulating film 15 . This first semiconductor thin film 13 is composed of an amorphous or polycrystalline semiconductor thin film, and is made of a BLAZ? A loss of about 5,000 layers is achieved by CVD, thermal CVD, photo-CVD, etc. When forming this first semiconductor thin film 13, impurity atoms such as boron and phosphorus are added at the same time to 1015 to 1
Approximately 0.018 pieces/crn' are pre-contained.

前記第1の半導体薄膜13に基板11側から若しくは半
導体薄膜13(!lからレーザ光を照射して結晶化させ
る。レーザ光としては、例えば0.1〜20Wの出力で
スポット径が100μm程度の連続波アルゴンレーザな
どが好適に用いられ、走査速度0−5〜20cm/se
c程度で走査される。このようにして結晶化させた第1
の半導体薄膜13には、サーマルドナーとなる酸素原子
を101g〜1020個/Cm3程度含有している。
The first semiconductor thin film 13 is crystallized by irradiating laser light from the substrate 11 side or from the semiconductor thin film 13 (!l).The laser light has a spot diameter of about 100 μm with an output of 0.1 to 20 W, for example. Continuous wave argon laser etc. are preferably used, and the scanning speed is 0-5 to 20 cm/sec.
It is scanned at approximately c. The first crystallized in this way
The semiconductor thin film 13 contains approximately 101 g to 1020 oxygen atoms/Cm3, which serve as thermal donors.

前記第1の半導体薄膜13上の全面に、酸化シリコン膜
を成膜して、ゲート電極16cをマスクにして酸化シリ
コン膜をエツチング除去し、第1の半導体薄膜13上の
ゲート電極16cに対応する位置に酸化シリコン膜17
を形成する。
A silicon oxide film is formed on the entire surface of the first semiconductor thin film 13, and the silicon oxide film is etched away using the gate electrode 16c as a mask, so as to correspond to the gate electrode 16c on the first semiconductor thin film 13. Silicon oxide film 17 at position
form.

次に、第1の半導体薄膜13および酸化シリコン膜17
上に、逆導電型となる不純物原子を含有する非晶質若し
くは多結晶の第2の半導体薄膜14をプラズマCVD法
、熱CVD法、或いは光CVD法などで厚み500人程
ロス形成する。この第2の半導体薄膜14は、後に分割
されてソース領域とドレイン領域となる。
Next, the first semiconductor thin film 13 and the silicon oxide film 17 are
A second amorphous or polycrystalline semiconductor thin film 14 containing impurity atoms of the opposite conductivity type is formed thereon by a plasma CVD method, a thermal CVD method, a photo-CVD method, or the like to a thickness of about 500 layers. This second semiconductor thin film 14 is later divided into a source region and a drain region.

次に、第2の半導体薄膜14上からレーザ光を照射して
、第1の半導体薄膜13を加熱する。このレニザ光とし
ては、1〜2J/cm2程度のエキシマレーザが好適に
用いられる。すなわち、エキシマレーザは短波長光であ
るため、第1の半導体薄膜13の極表面層のみで吸収さ
れる。このため、レーザ結晶化した第1の半導体薄膜1
3と接触している第2の半導体薄膜14は溶融して結晶
化し、ホモのp−n接合となり、接合特性が改善される
。一方、セルファラインされた酸化シリコン膜17上の
第2の半導体層14は溶融して結晶化するが、酸化シリ
コン膜17で遮蔽されて、レーザ結晶化シリコン13と
は分離されるものの、熱は伝播する。下部のレーザ結晶
化シリコン13は溶融には至らないが、熱処理を受ける
ことになり、サーマルドナーを分離消滅させることとな
る。
Next, the first semiconductor thin film 13 is heated by irradiating the second semiconductor thin film 14 with laser light. As this laser light, an excimer laser with a power of about 1 to 2 J/cm2 is preferably used. That is, since the excimer laser is short-wavelength light, it is absorbed only by the extreme surface layer of the first semiconductor thin film 13. For this reason, the first semiconductor thin film 1 that has been laser crystallized
The second semiconductor thin film 14 in contact with 3 is melted and crystallized to form a homogeneous p-n junction, improving the junction characteristics. On the other hand, the second semiconductor layer 14 on the self-aligned silicon oxide film 17 melts and crystallizes, but although it is shielded by the silicon oxide film 17 and is separated from the laser-crystallized silicon 13, it does not receive heat. propagate. Although the lower laser crystallized silicon 13 is not melted, it is subjected to heat treatment, and the thermal donor is separated and eliminated.

最後に、第2の半導体層14上に、アルミニウムなどを
蒸着して、このアルミニウムの所定部分と酸化シリコン
膜17上の第2の半導体層14をエツチング除去してソ
ース電極16aとドレイン電極16bを形成して完成す
る。
Finally, aluminum or the like is deposited on the second semiconductor layer 14, and a predetermined portion of the aluminum and the second semiconductor layer 14 on the silicon oxide film 17 are removed by etching to form the source electrode 16a and the drain electrode 16b. Form and complete.

従来のように、レーザ光で加熱処理をしなかった場合は
、電子の移動度の平均は60V−C/cm2であったが
、上記実施例のようにパワー1〜2J/cm2のエキシ
マレーザを照射して半導体薄膜を加熱処理したところ、
電子の移動度は100V−07cm2以上になることを
確認した。
When heat treatment was not performed with a laser beam as in the past, the average electron mobility was 60 V-C/cm2, but when an excimer laser with a power of 1 to 2 J/cm2 was used as in the above example, When the semiconductor thin film was heat-treated by irradiation,
It was confirmed that the electron mobility was 100V-07cm2 or more.

(発明の効果) 以上のように、本発明に係る半導体薄膜の形成方法によ
れば、半導体薄膜を結晶化させた後、さらにレーザ光を
照射して半導体薄膜を加熱することから、半導体薄膜中
のサーマルドナーを分解して消滅させることができ、応
答速度の速い薄膜トランジスタを形成できる。
(Effects of the Invention) As described above, according to the method for forming a semiconductor thin film according to the present invention, after crystallizing the semiconductor thin film, the semiconductor thin film is further heated by irradiating laser light. Thermal donors can be decomposed and eliminated, making it possible to form thin film transistors with fast response speed.

また、レーザ光を照射することによって瞬時的に加熱す
ることから、薄膜半導体を形成する基板としてガラスの
ような比較的低融点の基板を用いることができる。
In addition, since it is instantaneously heated by irradiation with laser light, a substrate with a relatively low melting point, such as glass, can be used as a substrate on which a thin film semiconductor is formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る半導体薄膜の形成方法をスタガー
型の薄膜トランジスタに適用した例を示す断面図、第2
図は同じく逆スタガー型の薄膜トランジスタに適用した
例を示す断面図である。 1.11:基板   2.12:絶縁膜3.13ニ一導
電型半導体層 4.14:逆導電型半導体層 5.15:ゲート絶縁膜
FIG. 1 is a cross-sectional view showing an example in which the method for forming a semiconductor thin film according to the present invention is applied to a staggered thin film transistor;
The figure is a cross-sectional view showing an example in which the present invention is applied to an inverted staggered thin film transistor. 1.11: Substrate 2.12: Insulating film 3.13 Double conductivity type semiconductor layer 4.14: Opposite conductivity type semiconductor layer 5.15: Gate insulating film

Claims (1)

【特許請求の範囲】[Claims]  基板上に第1の絶縁膜と非晶質若しくは多結晶の半導
体薄膜とを形成してレーザ光を照射することにより半導
体薄膜を溶融・固化させて結晶化させる半導体薄膜の形
成方法において、前記半導体薄膜を結晶化させた後、さ
らに前記レーザ光よりも小エネルギーのレーザ光を前記
半導体薄膜に照射することを特徴とする半導体薄膜の形
成方法。
A method for forming a semiconductor thin film in which a first insulating film and an amorphous or polycrystalline semiconductor thin film are formed on a substrate, and the semiconductor thin film is melted and solidified to crystallize by irradiating the semiconductor thin film with laser light. A method for forming a semiconductor thin film, which comprises crystallizing the thin film and then irradiating the semiconductor thin film with a laser beam having lower energy than the laser beam.
JP8598690A 1990-03-30 1990-03-30 Forming method for semiconductor thin-film Pending JPH03284831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8598690A JPH03284831A (en) 1990-03-30 1990-03-30 Forming method for semiconductor thin-film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8598690A JPH03284831A (en) 1990-03-30 1990-03-30 Forming method for semiconductor thin-film

Publications (1)

Publication Number Publication Date
JPH03284831A true JPH03284831A (en) 1991-12-16

Family

ID=13874011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8598690A Pending JPH03284831A (en) 1990-03-30 1990-03-30 Forming method for semiconductor thin-film

Country Status (1)

Country Link
JP (1) JPH03284831A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786304A (en) * 1993-06-25 1995-03-31 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device
US6319761B1 (en) 1993-06-22 2001-11-20 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a thin film transistor
US6713330B1 (en) 1993-06-22 2004-03-30 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a thin film transistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319761B1 (en) 1993-06-22 2001-11-20 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a thin film transistor
US6713330B1 (en) 1993-06-22 2004-03-30 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a thin film transistor
JPH0786304A (en) * 1993-06-25 1995-03-31 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JP3586558B2 (en) Method for reforming thin film and apparatus used for implementing the method
JPS59195871A (en) Manufacture of metal oxide semiconductor field-effect transistor
JPS62104117A (en) Manufacture of semiconductor thin film
JPH01187814A (en) Manufacture of thin film semiconductor device
JPH03244136A (en) Manufacture of thin-film transistor
JPS6235571A (en) Manufacture of semiconductor device
JP3221251B2 (en) Amorphous silicon crystallization method and thin film transistor manufacturing method
JPH03284831A (en) Forming method for semiconductor thin-film
JPH0411722A (en) Forming method of semiconductor crystallized film
JPH0917729A (en) Manufacture of semiconductor device
JPH09283443A (en) Manufacture of semiconductor thin film
JPS6230314A (en) Manufacture of crystalline semiconductor thin film
JPH02295111A (en) Manufacture of semiconductor device having thin film crystal layer
JP3287834B2 (en) Heat treatment method for polycrystalline semiconductor thin film
JP2838155B2 (en) Method for manufacturing thin film transistor
JP2709376B2 (en) Method for manufacturing non-single-crystal semiconductor
JPS6342417B2 (en)
JP3031398B2 (en) Method for manufacturing MIS transistor
JPS5825220A (en) Manufacture of semiconductor substrate
JP2830718B2 (en) Method for manufacturing thin film transistor
JP3493160B2 (en) Method for manufacturing semiconductor device
JPS61116821A (en) Formation of single crystal thin film
JPH04206837A (en) Manufacture of semiconductor device
JPH027414A (en) Formation of soi thin film
JPH05315362A (en) Manufacture of semiconductor device and liquid crystal display device