JPH0411722A - Forming method of semiconductor crystallized film - Google Patents

Forming method of semiconductor crystallized film

Info

Publication number
JPH0411722A
JPH0411722A JP11481290A JP11481290A JPH0411722A JP H0411722 A JPH0411722 A JP H0411722A JP 11481290 A JP11481290 A JP 11481290A JP 11481290 A JP11481290 A JP 11481290A JP H0411722 A JPH0411722 A JP H0411722A
Authority
JP
Japan
Prior art keywords
film
semiconductor film
crystallized
melted
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11481290A
Other languages
Japanese (ja)
Inventor
Noritoshi Yamaguchi
文紀 山口
Kiyonari Tanaka
聖也 田中
Yoshiteru Nitta
新田 佳照
Kenji Tomita
賢時 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP11481290A priority Critical patent/JPH0411722A/en
Publication of JPH0411722A publication Critical patent/JPH0411722A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To reduce the taking-in of oxygen atoms into an amorphous or polycrystalline semiconductor film when the semiconductor film is melted and solidified by applying laser beams so that the upper layer section of the semiconductor film is melted but a lower section is not melted, CONSTITUTION:A foundation layer 2, an amorphous or polycrystalline semiconductor film 3 and a protective film 4 are formed successively on a substrate l, laser beams R are applied from the upper section of the film 14, and the film 3 is crystallized and a crystallized film 5 is formed. Beams R are applied under the state, in which the lower layer section of the film 3 is not melted, by properly adjusting the thickness of the film 3, the intensity of laser beams and the scanning speed of laser beams at that time. Consequently, the constituent elements of a silicon oxide film (the layer 2) shaped to the lower layer of the film 3 is not mixed into the film 5, and oxygen atoms in the film 5 are reduced only by approximately one figure. Accordingly, since no impurity mixes to the film 5 from the layer 2, the speed of response can be increased when a transistor is formed by the film 5 while a back channel can be prevented effective1y when the surface sections of the film 4 and the film 5 are removed partially and the thin-film transistor is formed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体結晶化膜の形成方法に関し、特に結晶化
膜中に混入する不純物を減少せしめた半導体結晶化膜の
形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for forming a semiconductor crystallized film, and more particularly to a method for forming a semiconductor crystallized film in which impurities mixed into the crystallized film are reduced.

(従来の技術およびその問題点) 従来から、基板上に形成した非晶質または多結晶半導体
膜にレーザ光を照射して溶融・固化させることにより半
導体膜を結晶化するレーザビーム結晶化法があり、不純
物の混入が少なくて粒径の大きな結晶化膜を作るために
種々の試みが為されている。
(Prior art and its problems) Conventionally, a laser beam crystallization method has been used to crystallize an amorphous or polycrystalline semiconductor film formed on a substrate by irradiating laser light to melt and solidify the semiconductor film. Various attempts have been made to create crystallized films with large grain sizes and less contamination of impurities.

例えば特公昭6m−16758号公報には、基板からの
汚染を防いだり、基板との熱膨張率の相違を緩和するた
めに、非晶質または多結晶半導体膜との間に、熱酸化法
で形成した酸化シリコン膜などから成る下地層を介在さ
せるとともに、大気中からの汚染を防いだり、結晶化膜
表面の平坦度を維持するために、非晶質または多結晶半
導体股上に、酸化シリコン膜などから成る保護層を形成
してレーザ光を照射することによって結晶化膜を形成す
ることが開示されている。
For example, in Japanese Patent Publication No. 6m-16758, in order to prevent contamination from the substrate and to alleviate the difference in coefficient of thermal expansion with the substrate, a thermal oxidation method is proposed between the film and the amorphous or polycrystalline semiconductor film. In addition to interposing a base layer made of silicon oxide film, etc., a silicon oxide film is placed on top of the amorphous or polycrystalline semiconductor in order to prevent contamination from the atmosphere and maintain the flatness of the surface of the crystallized film. It has been disclosed that a crystallized film is formed by forming a protective layer made of the following and irradiating it with laser light.

下地層と保護膜とで半導体膜を挟んでレーザ光を照射し
て結晶化すると、基板や大気中からの汚染は防止できる
ものの、半導体膜が溶融した際に、半導体膜と接してい
る下地層の上層部分と半導体膜と接している保護膜の下
層部分とが溶融して半導体膜と混然一体となり、半導体
膜中に多数の酸素原子が取り込まれてしまうという問題
があった。
If the semiconductor film is sandwiched between a base layer and a protective film and crystallized by irradiation with laser light, contamination from the substrate and the atmosphere can be prevented, but when the semiconductor film melts, the base layer in contact with the semiconductor film There is a problem in that the upper layer portion and the lower layer portion of the protective film that is in contact with the semiconductor film are melted and mixed together with the semiconductor film, and a large number of oxygen atoms are incorporated into the semiconductor film.

すなわち、従来のような構成と方法とで半導体膜を結晶
化すると、半導体膜中に5X10I9個cm3以上の酸
素原子が存在する。
That is, when a semiconductor film is crystallized using the conventional structure and method, 5×10I9 or more cm 3 of oxygen atoms are present in the semiconductor film.

このように多数の酸素原子が混入した半導体膜を使って
トランジスタなどを形成すると、過飽和の酸素原子が数
個集合してクラスターとなり、これがドナーを形成して
しまう。イオン化したドナーは、キャリアの散乱中心と
なるため、半導体膜中での電子および正孔の移動度に悪
影響を与える。
When a transistor or the like is formed using a semiconductor film in which a large number of oxygen atoms are mixed in this way, several supersaturated oxygen atoms gather together to form a cluster, which forms a donor. Ionized donors serve as scattering centers for carriers, and therefore adversely affect the mobility of electrons and holes in the semiconductor film.

従って、半導体特性を改善するには、上述のようなサー
マルドナーを消滅させておかなければならない。
Therefore, in order to improve semiconductor properties, the above-mentioned thermal donors must be eliminated.

単結晶のシリコン基板を用いた半導体製造プロセスでは
、酸化膜の形成工程や不純物の拡散工程など1000℃
以上の高温処理工程があるため、サーマルドナーは分解
してしまうが、ガラス基板上に薄膜トランジスタを形成
する場合、高温プロセスがないため、最後までサーマル
ドナーが残ってしまい、応答速度の速いトランジスタを
得ることができないという問題があった。また、800
℃で10秒程度のRTP(ランプアニールによるラビッ
トサーマルプロセス)も有効であるが、ガラス基板をこ
のような高温の炉の中に入れることはできない。
In the semiconductor manufacturing process using single-crystal silicon substrates, temperatures of 1000°C are used, including the oxide film formation process and impurity diffusion process.
Due to the high-temperature treatment process described above, the thermal donor decomposes, but when forming a thin film transistor on a glass substrate, there is no high-temperature process, so the thermal donor remains until the end, resulting in a transistor with a fast response speed. The problem was that I couldn't do it. Also, 800
Although RTP (rabbit thermal process using lamp annealing) at a temperature of about 10 seconds at .degree. C. is also effective, the glass substrate cannot be placed in such a high-temperature furnace.

また、半導体膜中の酸素原子を減少させるために、結晶
化した半導体膜の上半分をエツチング除去して、保護層
から混入した酸素原子の影響を少なくすることも考えら
れるが、下地層から結晶化膜の下層部分に混入した酸素
原子は取り除くことはできない。
Additionally, in order to reduce the amount of oxygen atoms in the semiconductor film, it is possible to remove the upper half of the crystallized semiconductor film by etching to reduce the effect of oxygen atoms mixed in from the protective layer. Oxygen atoms mixed into the lower layer of the chemical film cannot be removed.

本発明は、このような問題点に鑑みて案出されものであ
り、半導体膜を溶融 固化させる際に半導体膜に酸素原
子が取り込まれることを減少させた半導体結晶化膜の形
成方法を提供することを目的とするものである。
The present invention was devised in view of these problems, and provides a method for forming a semiconductor crystallized film that reduces the incorporation of oxygen atoms into the semiconductor film when melting and solidifying the semiconductor film. The purpose is to

(問題点を解決するための手段) 本発明によれば、基板上に、下地層、非晶質または多結
晶半導体膜、および保護膜を順次形成し、半導体膜の上
層部分は溶融するが下層部分は溶融しないような強度を
もっなレーザ光を照射して、半導体膜の下層部分以外を
結晶化する半導体結晶化膜の形成方法が提供され、その
ことにより上記目的が達成される。
(Means for Solving the Problems) According to the present invention, a base layer, an amorphous or polycrystalline semiconductor film, and a protective film are sequentially formed on a substrate, and the upper layer of the semiconductor film is melted, but the lower layer is melted. A method for forming a semiconductor crystallized film is provided in which a portion of the semiconductor film other than the lower layer portion is crystallized by irradiating a laser beam with such intensity that the portion does not melt, thereby achieving the above object.

(作用) 上記のように構成することにより、半導体膜にレーザ光
を照射して溶融させても、半導体膜の下層部分は溶融し
ないことから、下地層がら半導体膜に酸素原子などが混
入することはなくなる。
(Function) With the above configuration, even if the semiconductor film is irradiated with laser light and melted, the lower layer of the semiconductor film will not melt, so oxygen atoms etc. will not be mixed into the semiconductor film from the base layer. will disappear.

(実施例) 以下、本発明を添付図面に基づき詳細に説明する6 第1図く(支)〜(社)は、本発明に係る半導体結晶化
膜の形成方法を説明するための工程図である。
(Example) Hereinafter, the present invention will be explained in detail based on the attached drawings. 6 Figures 1 to 1 are process diagrams for explaining the method for forming a semiconductor crystallized film according to the present invention. be.

まず、#7059基板などからなる基板1上に、下地層
2を形成する(第1図(a)参照)。この下地層2は、
酸化シリコン膜、窒化シリコン膜、あるいは炭化シリコ
ン膜などで構成される。下地層2を酸化シリコン膜で構
成する場合は、プラズマCVD法、光CVD法、或いは
熱CVD法で形成される。プラズマCVD法で形成する
場合は、例えばプラズマ反応炉を01〜5torr、好
適には2torrに減圧して、絶縁基板を100〜50
Q″C2好適には400℃に維持しながら、N20ガス
とS iH4ガスとを流量比(N20/5iH4)が1
〜200程度、好適には37になるように反応炉内に供
給して約0.1W/cm2〜2W7cm2−好適には0
.5W/cm”の放電用電源でプラズマ反応を起こさせ
ることにより、絶縁基板l上に3000〜50000人
程度の厚みに形成する。
First, a base layer 2 is formed on a substrate 1 made of a #7059 substrate or the like (see FIG. 1(a)). This base layer 2 is
It is composed of a silicon oxide film, a silicon nitride film, a silicon carbide film, or the like. When the base layer 2 is made of a silicon oxide film, it is formed by a plasma CVD method, a photo CVD method, or a thermal CVD method. When forming by the plasma CVD method, for example, the pressure of the plasma reactor is reduced to 01 to 5 torr, preferably 2 torr, and the insulating substrate is heated to 100 to 50 torr.
Q″C2 Preferably, while maintaining the temperature at 400°C, the flow rate ratio (N20/5iH4) of N20 gas and SiH4 gas is 1.
- About 200, preferably 37, is supplied into the reactor to give about 0.1W/cm2 to 2W7cm2 - preferably 0.
.. By causing a plasma reaction with a discharge power source of 5 W/cm'', a thickness of about 3,000 to 50,000 layers is formed on an insulating substrate l.

次に、前記下地層2上に、非晶質または多結晶半導体膜
3を形成する。この非晶質または多結晶半導体膜3をシ
リコンで形成する場合、例えば従来周知のプラズマCV
D法などで1〜3μm程度の厚みに形成する。すなわち
、シリコン膜を例えばプラズマCVD法で形成する場合
、酸化シリコン膜2が被着された絶縁基板1をプラズマ
反応炉に搬入して、モノシラン(SiH,)などの水素
化シリコンガスを反応炉に導入し、基板1を150〜4
00℃に加熱しながら水素化シリコンガスをプラズマ中
で分解することによって酸化シリコン膜上に形成する。
Next, an amorphous or polycrystalline semiconductor film 3 is formed on the base layer 2. When this amorphous or polycrystalline semiconductor film 3 is formed of silicon, for example, a conventional plasma CV method is used.
It is formed to a thickness of about 1 to 3 μm using the D method or the like. That is, when forming a silicon film by, for example, a plasma CVD method, the insulating substrate 1 on which the silicon oxide film 2 is deposited is carried into a plasma reactor, and hydrogenated silicon gas such as monosilane (SiH) is introduced into the reactor. Introduce substrate 1 to 150~4
It is formed on a silicon oxide film by decomposing hydrogenated silicon gas in plasma while heating it to 00°C.

次に、前記非晶質または多結晶半導体膜3上に、保護膜
4を形成する。この保護膜4は、酸化シリコン膜、窒化
シリコン膜、あるいは炭化シリコン膜などで構成される
。保護膜4を酸化シリコン膜で構成する場合は、プラズ
マCVD法、光CVD法、或いは熱CVD法で形成され
る。プラズマCVD法で形成する場合は、例えばプラズ
マ反応炉を0.1〜5torr、好適には2torrに
減圧して、絶縁基板を100〜500℃、好適には40
0℃に維持しながら、N2oガスとS z Haカスト
ラ流量比(N 20 / S z H−)が1〜200
程度、好適には37になるように反応炉内に供給して約
01IW/Cm2〜2W/Cm2、好適には0゜5 W
 / c m 2の放電用電源でプラズマ反応を起こさ
せることにより、絶縁基板1上に3000〜50000
人程度の厚みに形成する。
Next, a protective film 4 is formed on the amorphous or polycrystalline semiconductor film 3. This protective film 4 is made of a silicon oxide film, a silicon nitride film, a silicon carbide film, or the like. When the protective film 4 is made of a silicon oxide film, it is formed by a plasma CVD method, a photo CVD method, or a thermal CVD method. When forming by the plasma CVD method, for example, the pressure of the plasma reactor is reduced to 0.1 to 5 torr, preferably 2 torr, and the insulating substrate is heated to 100 to 500°C, preferably 40 torr.
While maintaining the temperature at 0°C, the N2o gas and SzHa castra flow rate ratio (N20/SzH-) was 1 to 200.
It is supplied into the reactor at a level of about 0.1 IW/Cm2 to 2 W/Cm2, preferably 0°5 W.
/cm2 by causing a plasma reaction with a discharge power supply, 3,000 to 50,000
Form to the thickness of a person.

次に、前記保護膜4上から、レーザ光Rを照射して非晶
質または多結晶半導体膜3を結晶化して結晶化膜5を形
成する(第1図((へ)(c)参照)、このレーザ光R
としては、0.1〜20Wの連続発振アルゴンレーザを
走査速度0.5〜20 c m / secで照射して
非晶質または多結晶半導体膜3を溶融・固化させて結晶
化する。この際〜非晶質または多結晶半導体膜3の下層
部分は溶融しないような状態でレーザ光を照射する。非
晶質または多結晶半導体膜3の下層部分は溶融しないよ
うにするには、半導体膜の厚み、レーザ光の強度、およ
びレーザ光の走査速度を適宜調節すればよい。非晶質ま
たは多結晶半導体膜3の下層部分が溶融しないような状
態でレーザ光を走査すると、非晶質または多結晶半導体
M3の下層に形成した酸化シリコンM2の構成元素が結
晶化膜5中に混入することはなく、結晶化膜5中の酸素
原子は1016個c m−’程度となり、半導体膜3を
完全に溶融させた場合の酸素濃度は5X10”〜2X1
0”個Cm−’程度であるから、本発明によれば約1桁
少なくなる。
Next, a laser beam R is irradiated from above the protective film 4 to crystallize the amorphous or polycrystalline semiconductor film 3 to form a crystallized film 5 (see FIG. 1(f)(c)). , this laser beam R
Specifically, the amorphous or polycrystalline semiconductor film 3 is melted and solidified by irradiation with a continuous wave argon laser of 0.1 to 20 W at a scanning speed of 0.5 to 20 cm/sec to crystallize it. At this time, the laser beam is irradiated in such a manner that the lower layer portion of the amorphous or polycrystalline semiconductor film 3 is not melted. In order to prevent the lower layer portion of the amorphous or polycrystalline semiconductor film 3 from melting, the thickness of the semiconductor film, the intensity of the laser beam, and the scanning speed of the laser beam may be adjusted as appropriate. When the laser beam is scanned in a state where the lower layer portion of the amorphous or polycrystalline semiconductor film 3 is not melted, the constituent elements of the silicon oxide M2 formed in the lower layer of the amorphous or polycrystalline semiconductor M3 are transferred into the crystallized film 5. The number of oxygen atoms in the crystallized film 5 is about 1016 cm-', and the oxygen concentration when the semiconductor film 3 is completely melted is 5X10'' to 2X1.
Since it is about 0''Cm-', the present invention reduces the number by about one order of magnitude.

上述のようにして形成した結晶化膜5は、例えば保護層
4と結晶化Jl15の表面側部分0.5μm程度をエツ
チング除去して、スタガータイプの薄膜トランジスタを
形成する膜として用いられる(第1図(d)参照)。結
晶化膜5中の表面部分をエツチング除去することにより
、保護膜4から混入した酸素原子がリッチな部分は除去
される。また、結晶化しなかった半導体膜3の下層部分
はトランジスタの作用には影響しないことから、非晶質
のままであっても差支えない。
The crystallized film 5 formed as described above is used as a film for forming a stagger-type thin film transistor, for example, by etching away about 0.5 μm of the surface side portion of the protective layer 4 and the crystallized Jl 15 (see FIG. 1). (see (d)). By etching away the surface portion of the crystallized film 5, the portion rich in oxygen atoms mixed in from the protective film 4 is removed. Further, since the lower layer portion of the semiconductor film 3 that has not been crystallized does not affect the operation of the transistor, there is no problem even if the lower layer portion of the semiconductor film 3 remains amorphous.

(発明の効果) 以上のように、本発明に係る半導体結晶化膜の形成方法
によれば、半導体膜の表面側部分だけを溶融・固化させ
て結晶化することから、結晶化膜に下地層から不純物が
混入することはなく、もってこの結晶化膜でトランジス
タを形成した場合は、応答速度の速いトランジスタを形
成することがでる。
(Effects of the Invention) As described above, according to the method for forming a semiconductor crystallized film according to the present invention, since only the surface side portion of the semiconductor film is melted and solidified to be crystallized, a base layer is formed on the crystallized film. Therefore, when a transistor is formed using this crystallized film, a transistor with a high response speed can be formed.

また、半導体結晶化膜の下層に、非晶質または多結晶の
半導体膜が未溶融のまま残っているため、薄膜トランジ
スタを形成したときに、バックチャネルの防止に効果が
ある。
Furthermore, since the amorphous or polycrystalline semiconductor film remains unmelted under the semiconductor crystallized film, it is effective in preventing back channels when a thin film transistor is formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a>〜(社)は、それぞれ本発明に係る半導体
結晶化膜の形成方法を説明するための図である。 ■二基板       2:下地層 3:非晶質または多結晶半導体膜 4:保護膜      5 結晶化膜
Figures 1(a) to 1(a) are diagrams for explaining the method of forming a semiconductor crystallized film according to the present invention. ■Two substrates 2: Base layer 3: Amorphous or polycrystalline semiconductor film 4: Protective film 5 Crystallized film

Claims (1)

【特許請求の範囲】[Claims]  基板上に、下地層、非晶質または多結晶半導体膜、お
よび保護膜を順次形成し、半導体膜の上層部分は溶融す
るが下層部分は溶融しないような強度のレーザ光を照射
して、前記半導体膜の下層部分以外を結晶化する半導体
結晶化膜の形成方法。
A base layer, an amorphous or polycrystalline semiconductor film, and a protective film are sequentially formed on a substrate, and a laser beam is irradiated with such intensity that the upper layer of the semiconductor film is melted but the lower layer is not melted. A method for forming a semiconductor crystallized film in which parts other than the lower layer of the semiconductor film are crystallized.
JP11481290A 1990-04-28 1990-04-28 Forming method of semiconductor crystallized film Pending JPH0411722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11481290A JPH0411722A (en) 1990-04-28 1990-04-28 Forming method of semiconductor crystallized film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11481290A JPH0411722A (en) 1990-04-28 1990-04-28 Forming method of semiconductor crystallized film

Publications (1)

Publication Number Publication Date
JPH0411722A true JPH0411722A (en) 1992-01-16

Family

ID=14647302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11481290A Pending JPH0411722A (en) 1990-04-28 1990-04-28 Forming method of semiconductor crystallized film

Country Status (1)

Country Link
JP (1) JPH0411722A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5605846A (en) * 1994-02-23 1997-02-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US5637515A (en) * 1993-08-12 1997-06-10 Semiconductor Energy Laboratory Co., Ltd. Method of making thin film transistor using lateral crystallization
US5773309A (en) * 1994-10-14 1998-06-30 The Regents Of The University Of California Method for producing silicon thin-film transistors with enhanced forward current drive
US6201281B1 (en) 1993-07-07 2001-03-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for producing the same
US6285042B1 (en) 1993-10-29 2001-09-04 Semiconductor Energy Laboratory Co., Ltd. Active Matry Display
US6455875B2 (en) 1992-10-09 2002-09-24 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor having enhanced field mobility
US6624477B1 (en) 1992-10-09 2003-09-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6984550B2 (en) 2001-02-28 2006-01-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7235828B2 (en) 1994-02-23 2007-06-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with residual nickel from crystallization of semiconductor film

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7109108B2 (en) 1992-10-09 2006-09-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device having metal silicide
US8017506B2 (en) 1992-10-09 2011-09-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US7723788B2 (en) 1992-10-09 2010-05-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US7602020B2 (en) 1992-10-09 2009-10-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US6455875B2 (en) 1992-10-09 2002-09-24 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor having enhanced field mobility
US6624477B1 (en) 1992-10-09 2003-09-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6790749B2 (en) 1992-10-09 2004-09-14 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6201281B1 (en) 1993-07-07 2001-03-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for producing the same
US6569719B2 (en) 1993-07-07 2003-05-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for producing the same
US6784453B2 (en) 1993-07-07 2004-08-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for producing the same
US5637515A (en) * 1993-08-12 1997-06-10 Semiconductor Energy Laboratory Co., Ltd. Method of making thin film transistor using lateral crystallization
US6335541B1 (en) 1993-10-29 2002-01-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film transistor with crystal orientation
US6998639B2 (en) 1993-10-29 2006-02-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US6285042B1 (en) 1993-10-29 2001-09-04 Semiconductor Energy Laboratory Co., Ltd. Active Matry Display
US7998844B2 (en) 1993-10-29 2011-08-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US7235828B2 (en) 1994-02-23 2007-06-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with residual nickel from crystallization of semiconductor film
US5605846A (en) * 1994-02-23 1997-02-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7749819B2 (en) 1994-02-23 2010-07-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US5773309A (en) * 1994-10-14 1998-06-30 The Regents Of The University Of California Method for producing silicon thin-film transistors with enhanced forward current drive
US6984550B2 (en) 2001-02-28 2006-01-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7405115B2 (en) 2001-02-28 2008-07-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9330940B2 (en) 2001-02-28 2016-05-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPH05182923A (en) Laser annealing method
JP2001007024A (en) Method of forming of polycrystalline silicon film
JPH01187814A (en) Manufacture of thin film semiconductor device
JPH0411722A (en) Forming method of semiconductor crystallized film
JP2600827B2 (en) Method for manufacturing thin film transistor
JP2811762B2 (en) Method for manufacturing insulated gate field effect transistor
JPS63299322A (en) Formation of single crystal silicon film
JPS61174621A (en) Manufacture of semiconductor thin crystal
JPH04286318A (en) Polycrystalline semiconductor thin film and method and device for manufacture thereof
JP3390830B2 (en) Polycrystalline semiconductor film manufacturing equipment
JP2817613B2 (en) Method for forming crystalline silicon film
JPH03293719A (en) Manufacture of crystalline semiconductor thin film
JPS603148A (en) Substrate for single crystal silicon semiconductor device and manufacture thereof
JPH06333822A (en) Semiconductor device
JP3093762B2 (en) Method for manufacturing semiconductor device
JPH03284831A (en) Forming method for semiconductor thin-film
JPS5928330A (en) Vapor growth method of semiconductor
JPH0281421A (en) Forming method for polycrystalline silicon film
JPH0361335B2 (en)
JPH06140324A (en) Method of crystallizing semiconductor film
JPS5917529B2 (en) Manufacturing method of semiconductor device
JPS63299321A (en) Formation of single crystal silicon film
JPH03136320A (en) Manufacture of semiconductor device
JPH10116795A (en) Equipment for manufacturing semiconductor material
JPH05315362A (en) Manufacture of semiconductor device and liquid crystal display device