JPS603148A - Substrate for single crystal silicon semiconductor device and manufacture thereof - Google Patents

Substrate for single crystal silicon semiconductor device and manufacture thereof

Info

Publication number
JPS603148A
JPS603148A JP11134783A JP11134783A JPS603148A JP S603148 A JPS603148 A JP S603148A JP 11134783 A JP11134783 A JP 11134783A JP 11134783 A JP11134783 A JP 11134783A JP S603148 A JPS603148 A JP S603148A
Authority
JP
Japan
Prior art keywords
film
substrate
single crystal
crystal silicon
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11134783A
Other languages
Japanese (ja)
Inventor
Koji Egami
江上 浩二
Masakazu Kimura
正和 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP11134783A priority Critical patent/JPS603148A/en
Publication of JPS603148A publication Critical patent/JPS603148A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2007Bonding of semiconductor wafers to insulating substrates or to semiconducting substrates using an intermediate insulating layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To produce a substrate for single crystal Si semiconductor device with even film thickness and large area on an insulating film by a method wherein an amorphous insulating film and a single crystal Si film are succesively deposited on a supporting substrate. CONSTITUTION:An epitaxial film 6 doped with dopant at low concentration is grown by thermal cracking on a surface (100) of a single crystal Si substrate 5 B-doped with another dopant at high concentration and furhter deposited with an SiO2 film 7 by CVD process and finally vacuum-evaporated with an Si film 8. On the other band, a CVDSiO2 film 2, an Si evaporated film 3, an Mo evaporated film 4 are laminated on a single crystal Si substrate 1 opposing to the Si film 8. An MoSi2 film 9 is formed between the Si film 3 and 8 holding the Mo film 4 by means of pressure-bonding in the atmosphere of N2. Next the sunstrate 5 is ground and selectively etched using mixed solution of fluoric acid 1, nitric acid 3, glacial acetic acid 9 for completion. The resultant single crystal Si film 6 may be provided with high quality extending to large area with less uneven film thickness and without any displacement, defective lamination etc. at all. The supporting substrate 1 may be made of glass utilizing any insulating film excluding SiO2 film.

Description

【発明の詳細な説明】 本発明は単結晶シリコン半導体装置用基板、特に絶縁体
膜上に形成された単結晶シリコン半導体装置用基板およ
びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a substrate for a single crystal silicon semiconductor device, particularly a substrate for a single crystal silicon semiconductor device formed on an insulating film, and a method for manufacturing the same.

LSI技術の進歩に伴い、絶縁体膜上に形成された単結
晶シリコン膜はデバイスの低消費電力化。
As LSI technology advances, single-crystal silicon films formed on insulator films reduce device power consumption.

高速化、更には三次元化に有用な半導体装置用基板とし
て注目されている。いわゆる、80I(8ion In
5ulator )技術においては、レーザビーム。
It is attracting attention as a substrate for semiconductor devices useful for speeding up and even three-dimensionalization. The so-called 80I (8ion In
5ulator) technology, a laser beam.

電子ビーム、加熱ランプにより、あらかじめ絶縁体基板
表面上に堆積させておいた非晶質もしくは多結晶シリコ
ン膜をアニールし、再結晶化させて得たシリコン膜を半
導体装置用基板として用いようとするものであるが、い
づれの方法においても、該再結晶化シリコン膜を大面積
に形成したり、完全な結晶学的方位を制御することは困
難であった。
An attempt is made to anneal and recrystallize an amorphous or polycrystalline silicon film previously deposited on the surface of an insulating substrate using an electron beam or a heating lamp, and use the resulting silicon film as a substrate for semiconductor devices. However, in either method, it is difficult to form the recrystallized silicon film over a large area or to completely control the crystallographic orientation.

本発明は従来のもののこのような欠点を除去し。The present invention eliminates these drawbacks of the prior art.

大面積に渡って均一な膜厚をもち結晶学的方位を制御し
た単結晶シリコン半導体装置用基板を提供するものであ
る。
The present invention provides a substrate for a single-crystal silicon semiconductor device that has a uniform film thickness over a large area and has controlled crystallographic orientation.

本発明単結晶シリコン半導体装置用基板は保持用基板本
体上に順次第1の非晶質絶縁体膜、金属シリサイド層、
第2の非晶質絶縁体膜、単結晶シリコン膜が形成されて
構成される。
The single-crystal silicon semiconductor device substrate of the present invention has an amorphous insulator film, a metal silicide layer,
A second amorphous insulator film and a single crystal silicon film are formed.

また、本発明単結晶シリコン半導体装置用基板の製造方
法は、第1の単結晶シリコン保持用基板なくとも表面に
絶縁体層が形成された第2の保持用基板を用意し、第1
の基板の絶縁体膜と、第2の基板の絶縁体層との間に金
属シリサイド膜を形成することによって接着して、然る
後前記第1の保持用基板を除去することを特徴とする。
Further, in the method for manufacturing a single crystal silicon semiconductor device substrate of the present invention, at least a second single crystal silicon holding substrate having an insulating layer formed on its surface is prepared;
The insulating film of the substrate and the insulating layer of the second substrate are bonded by forming a metal silicide film between them, and then the first holding substrate is removed. .

以下5本発明の実施例を図面を参照して詳細に説明する
。第1図は本発明の単結晶シリコン半導体装置用基板を
形成する工程を説明する模式図である。第1図(a)は
、直径75#Im、板厚450μmの単結晶シリコン基
板l上に化学気相成長法で堆積させt膜厚1μmの二酸
化シリコン膜2を用b1電子線加加熱式の真空蒸着装置
で該二酸化シリコン膜2上に、順次、蒸着シリコン膜3
を0.4μm堆積し、次いで、同一蒸着装置内で蒸着金
属モリブデン膜4を0.3μm堆積させた基板断面の模
式前記シリコン基板lは本発明における単結晶シリコン
膜を保持する保持用基板本体として用いた。
Hereinafter, five embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram illustrating the process of forming a substrate for a single-crystal silicon semiconductor device of the present invention. Figure 1(a) shows a silicon dioxide film 2 with a thickness of 1 μm deposited by chemical vapor deposition on a single-crystal silicon substrate 1 with a diameter of 75 mm and a thickness of 450 μm. A vapor-deposited silicon film 3 is sequentially deposited on the silicon dioxide film 2 using a vacuum evaporation device.
A schematic diagram of a cross section of a substrate on which a metal molybdenum film 4 of 0.3 μm was deposited in the same vapor deposition apparatus. Using.

前記蒸着シリコン膜3及び蒸着金属モリブデン膜4は多
重連式のターゲットを有する真空蒸着装置によハ真空系
を切ることなく、連続して蒸着を行った。なお蒸着中の
真空度は10TOrrであった。
The vapor-deposited silicon film 3 and the vapor-deposited metal molybdenum film 4 were continuously vapor-deposited using a vacuum vapor deposition apparatus having multiple targets without turning off the vacuum system. Note that the degree of vacuum during vapor deposition was 10 TOrr.

第1図(b)は第1図(a)で示した単結晶シリコン膜
保持用基板に保持させる単結晶シリコン膜を含む基板断
面の模式図である。5は高濃度(1019/Cl1)の
ボロンを有する直径76yri、板厚450μmの面方
位が(100)の単結晶シリコン基板である。
FIG. 1(b) is a schematic diagram of a cross section of a substrate including a single crystal silicon film held by the single crystal silicon film holding substrate shown in FIG. 1(a). Reference numeral 5 denotes a single crystal silicon substrate with a (100) plane orientation, having a diameter of 76 yri and a plate thickness of 450 μm, which contains boron at a high concentration (1019/Cl1).

6は該単結晶シリコン基板5上にホモエピタキシャル成
長させた低不純物濃度の単結晶シリコン膜であるっ該単
結晶シリコン膜6は成長温度を1050℃とし、シラン
ガス(5iHa ) の熱分解法により成長させたもの
で膜厚は1μmとした。7は前記単結晶シリコン膜6上
に化学気相成長法で堆積させた二酸化シリコン膜で、膜
厚は1μmとした。
6 is a low impurity concentration single crystal silicon film homoepitaxially grown on the single crystal silicon substrate 5. The single crystal silicon film 6 was grown by thermal decomposition of silane gas (5iHa) at a growth temperature of 1050°C. The film thickness was 1 μm. Reference numeral 7 denotes a silicon dioxide film deposited on the single crystal silicon film 6 by chemical vapor deposition, and the film thickness was 1 μm.

8は真空蒸着装置を用いて、該二酸化シリコン膜7上に
堆積させた蒸着シリコン膜で、膜厚は0.4μmである
Reference numeral 8 denotes a vapor-deposited silicon film deposited on the silicon dioxide film 7 using a vacuum evaporation apparatus, and the film thickness is 0.4 μm.

次に、これら二つの基板をモリブデン膜4の表面と蒸着
シリコン膜8の表面が互いに向い合うように接着させた
。互いに接着させた基板を温度700℃、雰囲気が窒素
ガス中の炉内で、加圧接着させながら、30分間の熱処
理を施し、モリブデン膜4をはさんで蒸着シリコン膜3
.8との間で金属シリサイド形成化学反応を進行させ、
モリブデンシリサイド膜を形成させた。
Next, these two substrates were bonded together such that the surface of the molybdenum film 4 and the surface of the vapor-deposited silicon film 8 faced each other. The bonded substrates were heat-treated for 30 minutes while being bonded under pressure in a furnace at a temperature of 700° C. and in a nitrogen gas atmosphere, and the molybdenum film 4 was sandwiched between the vapor-deposited silicon films 3.
.. Proceeding a metal silicide forming chemical reaction with 8,
A molybdenum silicide film was formed.

第2図は、以上のごとく、モリブデンシリサイド膜9を
形成し接着させた保持用基板と単結晶シリコン膜を含む
基板において、第1図(b)で示した(100)単結晶
シリコン基板5を取り除いた基板断面の模式図である。
FIG. 2 shows the (100) single-crystal silicon substrate 5 shown in FIG. FIG. 3 is a schematic diagram of a cross section of a removed substrate.

次に、単結晶シリコン基板5を取り除く工程について説
明する。先ず、研摩加工により、保持用基板である単結
晶シリコン基板5の板厚を450μmから20μm程度
に減少さ一+!:たつ次いで、ダラシユニ・ソテ/ダ液
(組成はふつ酸l、硝酸3゜氷酢酸9の割合)により、
ボロンを高濃度に含む単結晶シリコン基板5を工・ソテ
ングして、その板厚を減少させた。ダッシュエツチング
液はボロンを高濃度に含むシリコンと低不純物濃度のシ
リコンに対して、低不純物濃度のシリコンのエツチング
速度elとすると、そのエツチング速度の選択比は50
にも達し、エツチングの最終工程において、ボロンを高
濃度に含むシリコンのみがエツチングされ、低不純物濃
度の単結晶シリコン膜6が得られる。
Next, a process for removing single crystal silicon substrate 5 will be described. First, by polishing, the thickness of the single-crystal silicon substrate 5, which is a holding substrate, was reduced from 450 μm to approximately 20 μm. : Then, with Darashi Uni Sote/Da liquid (composition is 1 part fluoric acid, 3 parts nitric acid, 9 parts glacial acetic acid),
A single crystal silicon substrate 5 containing a high concentration of boron was processed and sautéed to reduce its thickness. The dash etching solution has an etching rate el of silicon with a low impurity concentration compared to silicon with a high concentration of boron and silicon with a low impurity concentration, and the etching rate selectivity is 50.
In the final step of etching, only the silicon containing a high concentration of boron is etched, and a single crystal silicon film 6 with a low impurity concentration is obtained.

以上のごとく、第2図に示したように、保持用基板本体
であるシリコン基板1上に非晶質絶縁体膜である二酸化
シリコン膜2が形成され、該二酸化シリコン膜2上に金
属シリサイド形成化学反りにより形成されたモリブデン
シリサイド膜9を備え、更に該モリブデンシリサイド膜
9上に二酸化シリコン膜7を備え、該二酸化シリコン膜
7上に面方位が(100)である単結晶シリコン膜6が
形成された単結晶シリコン半導体装置用基板を得た。
As described above, as shown in FIG. 2, a silicon dioxide film 2 which is an amorphous insulating film is formed on the silicon substrate 1 which is the main body of the holding substrate, and metal silicide is formed on the silicon dioxide film 2. A molybdenum silicide film 9 formed by chemical warping is provided, a silicon dioxide film 7 is provided on the molybdenum silicide film 9, and a single crystal silicon film 6 having a plane orientation of (100) is formed on the silicon dioxide film 7. A substrate for a single crystal silicon semiconductor device was obtained.

本発明により得られた単結晶シリコン膜の結晶性をX線
回折、電子線回折、ラマン散乱法により評価したところ
、転位、積層欠陥、結晶欠陥が含ま九でおらず、また残
留歪がないことが明らかとな9、また膜厚むらが1μm
±0.03μm で直径761mの大面積に渡って、高
品質であることがわかった。
When the crystallinity of the single crystal silicon film obtained by the present invention was evaluated by X-ray diffraction, electron beam diffraction, and Raman scattering methods, it was found that there were no dislocations, stacking faults, or crystal defects, and there was no residual strain. 9, and the film thickness unevenness is 1 μm.
It was found to be of high quality with ±0.03 μm over a large area of 761 m in diameter.

本発明で保持基板と非晶質絶縁体膜をはさんで単結晶シ
リコン膜を接着しているモリブデンシリサイド膜はその
溶融温度は1870℃で、シリコンの溶融温度1420
℃よりも高く、その耐熱性は非常に優れており5通常の
デバイスプロセスにも十分に耐えうるう本実施例では金
属シリサイドとしてモリブデンシリサイドを用いた例を
示したが、一般に他の金属シリサイドも耐熱性に優れ、
他のタングステンシリサイド、メンタルシリ丈イド。
In the present invention, the melting temperature of the molybdenum silicide film used to bond the single crystal silicon film between the holding substrate and the amorphous insulator film is 1870°C, which is 1420°C, which is the melting temperature of silicon.
℃, its heat resistance is very excellent, and it can withstand normal device processes.Although molybdenum silicide was used as the metal silicide in this example, other metal silicides are generally also heat resistant. Excellent in sex,
Other tungsten silicides, mental silicides.

チタンシリサイドを用いても本発明は有効である。The present invention is also effective even when titanium silicide is used.

また、本実施例では保持用基板本体として単結晶シリコ
ン基板を用いたが、他のガラス基板、絶縁体基板を用い
ても良く、非晶質絶縁体膜として化学気相成長法で成長
させた二酸化シリコン膜以外にも、他の熱酸化膜、絶縁
体膜を用いても本発明は同様に達せられる。
Further, in this example, a single crystal silicon substrate was used as the holding substrate body, but other glass substrates or insulating substrates may be used, and an amorphous insulating film may be grown by chemical vapor deposition. In addition to the silicon dioxide film, the present invention can be similarly achieved using other thermal oxide films or insulating films.

本発明は、大面積に渡って均一な膜厚をもつ単結晶シリ
コン半導体装置用基板が得られ、80Iを用すた高集積
度回路デバイス形成に与える経済的効果は犬なるもので
ある。
According to the present invention, a single crystal silicon semiconductor device substrate having a uniform film thickness over a large area can be obtained, and the economical effects on the formation of highly integrated circuit devices using 80I are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)(b)は本発明の単結晶シリコン半導体装
置用基板製造方法を説明するために用いた基板断面の一
例の模式図っ第2図は本発明の基板の一実施例の模式図
である。 1.5・・・・・・単結晶シリコン基板、2.7・・・
・・・二酸化シリコ/膜、3,8・・・・・・蒸着シリ
コン膜、4・・・・・・蒸着モリブデン膜、9・・・・
・・モリブデン7リサイド膜、6・−・・・・単結晶シ
リコン膜。 皿 、′ 代理人 弁理士 内 原 ヨ( 栢 1 (a) (b)
FIGS. 1(a) and 1(b) are schematic diagrams of an example of a cross section of a substrate used to explain the method of manufacturing a substrate for a single-crystal silicon semiconductor device of the present invention. FIG. 2 is a schematic diagram of an example of a substrate of the present invention. It is a diagram. 1.5... Single crystal silicon substrate, 2.7...
...Silicon dioxide/film, 3,8...Vapour-deposited silicon film, 4...Vapor-deposited molybdenum film, 9...
... Molybdenum 7 silicide film, 6... Single crystal silicon film. Sara,' Agent Patent Attorney Yo Uchihara (Haka 1 (a) (b)

Claims (2)

【特許請求の範囲】[Claims] (1) 保持用基板本体上に順次第1の非晶質絶縁体膜
、金属シリサイド層、第2の非晶質絶縁体膜。 単結晶シリコン膜が形成されていることを特徴とする単
結晶シリコン半導体装置用基板。
(1) A first amorphous insulator film, a metal silicide layer, and a second amorphous insulator film are sequentially formed on the holding substrate main body. A substrate for a single-crystal silicon semiconductor device, characterized in that a single-crystal silicon film is formed.
(2)第1の単結晶シリコン保持用基板上に単結晶も表
面に絶縁体層が形成された第2の保持側基板金用意し第
1の基板の絶縁体膜と第2の基板の絶縁体層との間に金
属シリサイド膜を形成することによって接着して、然る
後前記第1の保持用基板を除去することを特徴とする単
結晶シリコン半導体装置用基板の製造方法。
(2) Prepare a second holding side substrate in which an insulating layer is formed on the surface of the single crystal on the first single crystal silicon holding substrate, and insulate the insulating film of the first substrate and the second substrate. A method of manufacturing a substrate for a single crystal silicon semiconductor device, characterized in that the first holding substrate is bonded to a body layer by forming a metal silicide film therebetween, and then the first holding substrate is removed.
JP11134783A 1983-06-21 1983-06-21 Substrate for single crystal silicon semiconductor device and manufacture thereof Pending JPS603148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11134783A JPS603148A (en) 1983-06-21 1983-06-21 Substrate for single crystal silicon semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11134783A JPS603148A (en) 1983-06-21 1983-06-21 Substrate for single crystal silicon semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS603148A true JPS603148A (en) 1985-01-09

Family

ID=14558882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11134783A Pending JPS603148A (en) 1983-06-21 1983-06-21 Substrate for single crystal silicon semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS603148A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62216352A (en) * 1986-03-18 1987-09-22 Fujitsu Ltd Manufacture of semiconductor device
JPS6310376U (en) * 1986-07-08 1988-01-23
EP0371861A2 (en) * 1988-11-29 1990-06-06 Mcnc High density semiconductor structure and method of making the same
US5168078A (en) * 1988-11-29 1992-12-01 Mcnc Method of making high density semiconductor structure
FR2682811A1 (en) * 1991-09-10 1993-04-23 Mitsubishi Electric Corp STACKED SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD.
US7927975B2 (en) 2009-02-04 2011-04-19 Micron Technology, Inc. Semiconductor material manufacture

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62216352A (en) * 1986-03-18 1987-09-22 Fujitsu Ltd Manufacture of semiconductor device
JPS6310376U (en) * 1986-07-08 1988-01-23
JPH0541330Y2 (en) * 1986-07-08 1993-10-19
EP0371861A2 (en) * 1988-11-29 1990-06-06 Mcnc High density semiconductor structure and method of making the same
EP0371861A3 (en) * 1988-11-29 1991-04-10 Mcnc High density semiconductor structure and method of making the same
US5168078A (en) * 1988-11-29 1992-12-01 Mcnc Method of making high density semiconductor structure
FR2682811A1 (en) * 1991-09-10 1993-04-23 Mitsubishi Electric Corp STACKED SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD.
US5355022A (en) * 1991-09-10 1994-10-11 Mitsubishi Denki Kabushiki Kaisha Stacked-type semiconductor device
US5504376A (en) * 1991-09-10 1996-04-02 Mitsubishi Denki Kabushiki Kaisha Stacked-type semiconductor device
US7927975B2 (en) 2009-02-04 2011-04-19 Micron Technology, Inc. Semiconductor material manufacture
US8389385B2 (en) 2009-02-04 2013-03-05 Micron Technology, Inc. Semiconductor material manufacture

Similar Documents

Publication Publication Date Title
JPS58130517A (en) Manufacture of single crystal thin film
US5470619A (en) Method of the production of polycrystalline silicon thin films
JPS63133650A (en) Method of forming silicide adhesive layer on polycrystalline silicon layer
JPS603148A (en) Substrate for single crystal silicon semiconductor device and manufacture thereof
JPS60189922A (en) Method of producing single crystal layer
JPH02143415A (en) Formation of single crystal silicon film
JPH0411722A (en) Forming method of semiconductor crystallized film
KR19990013304A (en) How to crystallize amorphous membrane
JPS5840820A (en) Formation of silicon single crystal film
JPH11251241A (en) Manufacture of crystalline silicon layer, manufacture of solar battery, and manufacture of thin-film transistor
JPH0284772A (en) Manufacture of semiconductor device
KR19990023052A (en) How to crystallize amorphous membrane
JPS62124736A (en) Silicon thin-film and manufacture thereof
JPH05343685A (en) Manufacture of silicon thin film transistor
JPH05259458A (en) Manufacture of semiconductor device
JP3168655B2 (en) Method for manufacturing polycrystalline silicon thin film
JPH03284831A (en) Forming method for semiconductor thin-film
JP2592984B2 (en) Manufacturing method of silicon thin film
JPS59197129A (en) Manufacture of semiconductor device
JP2737152B2 (en) SOI forming method
JPS6248014A (en) Solid phase growth of semiconductor layer
JPH1167663A (en) Manufacture of semiconductor device
JPS62297289A (en) Formation of single crystal thin film
JPH0397698A (en) Formation of thin film
JPS61270294A (en) Method for forming si single crystal film