JPS63299322A - Formation of single crystal silicon film - Google Patents

Formation of single crystal silicon film

Info

Publication number
JPS63299322A
JPS63299322A JP13552387A JP13552387A JPS63299322A JP S63299322 A JPS63299322 A JP S63299322A JP 13552387 A JP13552387 A JP 13552387A JP 13552387 A JP13552387 A JP 13552387A JP S63299322 A JPS63299322 A JP S63299322A
Authority
JP
Japan
Prior art keywords
layer
silicon film
single crystal
film
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13552387A
Other languages
Japanese (ja)
Inventor
Yasushi Morita
靖 森田
Takashi Noguchi
隆 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP13552387A priority Critical patent/JPS63299322A/en
Publication of JPS63299322A publication Critical patent/JPS63299322A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To prevent the generation of agglomeration, by forming a silicon film containing nitrogen and oxygen on at least one of the upper surface and the lower surface of a polycrystal or amorphous silicon film, and obtaining a single crystal silicon film by heat-treatment. CONSTITUTION:On an insulator 11 composed of quartz, an amorphous layer 1 of silicon nitride oxide Si1-x-yNxOy (0<y<=3) is stuck in thickness of 300-20Angstrom , and thereon a polycrystalline or amorphous silicon Si:H layer 2 is successively formed. Further, in succession, a silicon nitride layer 3 having the same composition and film thickness range as the layer 1 is continuously formed by a plasma CVD method or photo CVD method. Next, the silicon nitride layer 3 is coated with an SiO2 layer 4 of 1mum or beyond in thickness as a reinforcing layer, for example.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、単結晶シリコン膜の形成方法、特に、絶縁膜
、あるいは絶縁基板等の絶縁体上に単結晶シリコン膜を
形成するいわゆるSol技術による単結晶シリコン膜の
形成方法に係わる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for forming a single crystal silicon film, particularly a so-called Sol technology for forming a single crystal silicon film on an insulator such as an insulating film or an insulating substrate. The present invention relates to a method of forming a single crystal silicon film using a method of forming a single crystal silicon film.

〔発明の概要〕[Summary of the invention]

本発明はSol技術における単結晶シリコン膜の形成方
法において、多結晶または非晶質シリコン膜の上面また
はト面の一方に窒素と酸素とを含むシリコン膜を形成し
、熱処理することによって単結晶シリコン膜を得るもの
であり、このようにして結晶性および膜性状に優れた単
結晶シリコン膜を再現性よく得ることができるようにす
る。
The present invention relates to a method for forming a single crystal silicon film in the Sol technology, in which a silicon film containing nitrogen and oxygen is formed on one of the top or bottom surfaces of a polycrystalline or amorphous silicon film, and a single crystal silicon film is formed by heat treatment. In this way, a single crystal silicon film with excellent crystallinity and film properties can be obtained with good reproducibility.

〔従来の技術」 絶縁膜あるいは絶縁基板等の絶縁体上にシリコン単結晶
膜を形成するいわゆるSol技術は例えばプレスジャー
ナル社発行のセミコンダクタ・ワールド(Semico
nductor World ) 1985.4第10
8真〜第115頁に開丞されているところであり、この
Sol技術は各種半導体装置の製造において急速に広く
実用化されるに至っている。
[Prior art] The so-called Sol technology, which forms a silicon single crystal film on an insulator such as an insulating film or an insulating substrate, is described in, for example, Semiconductor World published by Press Journal.
ndductor World) 1985.4 No. 10
It is published on pages 8 to 115, and this Sol technology has rapidly come into widespread practical use in the manufacture of various semiconductor devices.

このようにSol技術によって単結晶シリコンl−を形
成するにあたりアニールすなわち加熱処理による再結晶
法を用いる場合、加熱処理時に際してシリコン層に剥が
れ、あるいはポールアップすなわち粒状ないしは塊状化
が発生して結晶性や膜性状を低下させるようなことが生
じないように、シリコン層上にキャップ層として5iC
h層とSbN+j―を積層形成することが行われる。あ
るいはシリコン層の上下に厚さ50Å以下のSi3N4
層を配したサンドインチ構造とし、これの上に上述のキ
ャップ層として例えば2μmの5i021@と、さらに
その上に厚さ600人のSi3N4層を被着形成し、サ
ントイ7チ構造の窒素Nを含むSi:+N4層によって
シリコンの再結晶化のアニール時における溶融状態でド
地のSi02層とのいわゆるぬれをよくし剥れ等による
シリコン層の粒状化ないしは塊状化の防止をより効果的
に1#て良質の単結晶シリコン膜を形成することの提案
が例えば、マティリアルズ・リサーチ・ソサイアティ・
シンポジウム・プロシーディング Vol、 53.1
986マテイリアルズ・リサーチ・’/サイアティ第4
5〜51頁(Matertals )lesearch
Society  Synposium  Proce
eding  Vol、  53+  1986+Ma
terials Re5earch 5ociety)
及び同第53〜58真においてなされている。
In this way, when a recrystallization method using annealing, that is, heat treatment, is used to form single crystal silicon l- using the Sol technology, the silicon layer may peel off during the heat treatment, or pole-up, that is, granulation or agglomeration may occur, resulting in crystallinity. 5iC was added as a cap layer on the silicon layer to prevent any deterioration of the film properties.
Lamination of the h layer and SbN+j- is performed. Or Si3N4 with a thickness of 50 Å or less above and below the silicon layer.
On top of this, for example, 2 μm of 5i021@ is deposited as the above-mentioned cap layer, and a Si3N4 layer with a thickness of 600 μm is deposited on top of this, and nitrogen N of the Santoy 7-chi structure is formed. The Si:+N4 layer improves wetting with the underlying Si02 layer in the molten state during silicon recrystallization annealing, and more effectively prevents graining or agglomeration of the silicon layer due to peeling etc.1 For example, a proposal to form high-quality single-crystal silicon films using
Symposium Proceedings Vol. 53.1
986 Materials Research'/Saiati No. 4
Pages 5-51 (Matertals) research
Society Symposium Process
eding Vol, 53+ 1986+Ma
terials Research 5ociety)
and in the same Nos. 53-58.

しかしながら、このようにキャップ層を設けて再結晶化
のアニール例えば、エキシマレーザ−(紫外線波長24
9na+ )の照射を行う場合、キャップ層としてのS
i3N+層でこのエキシマレーザ−光の吸収が高いため
にシリコン層での結晶化のだめの溶融が効果的に行われ
ずまた前者の方法では窒素Nのぬれの向上の効果かえら
れず、シリコン層の粒状ないしは塊状化いわゆるアグロ
マレイション(八Blomeration )の発生を
防止する効果が得がたい。また前述した後者の方法のS
i3N+によるサンドインチ構造をとる場合には、上述
したアグロマレイション防止効果は得られるものの、こ
の場合Si3N4層を使用することがらNの含有量が5
’/原子%に及ぶ大きな量であること、またその膜厚制
御が困難であることによって実質的に窒素Nの総量の制
御がむずかしいという問題があるものである。そして、
このような窒素Nが多量に含まれる場合、これがドナー
として作用することがら、得られた車結畠シリコン層が
n型化される仰向があり、またこの窒素Nの量が多くな
るとダングリングボンドが多く存在することによって例
えば(100)結晶面の単結晶シリコン層の出現を妨げ
るという不都合が生じる。またその窒化膜の厚さが大と
なればそれ自体のアニール時の亀裂等の問題が発生して
くる。
However, when a cap layer is provided in this way, recrystallization annealing is performed using, for example, an excimer laser (ultraviolet wavelength 24
9na+), S as a cap layer
Due to the high absorption of this excimer laser light in the i3N+ layer, the crystallization in the silicon layer is not effectively melted, and the former method does not improve the wetting of nitrogen N, resulting in grainy or It is difficult to obtain the effect of preventing the occurrence of clumping, so-called agglomeration. Also, the S of the latter method mentioned above
In the case of a sand inch structure using i3N+, the above-mentioned agglomeration prevention effect can be obtained, but in this case, since a Si3N4 layer is used, the N content is 5.
There is a problem in that it is difficult to control the total amount of nitrogen N because the amount is as large as 0/atomic % and it is difficult to control the film thickness. and,
When a large amount of such nitrogen N is contained, it acts as a donor, so that the resulting silicon layer becomes n-type, and when the amount of nitrogen N is large, dangling occurs. The presence of many bonds causes the disadvantage that, for example, the appearance of a single crystal silicon layer with a (100) crystal plane is hindered. Furthermore, if the thickness of the nitride film becomes large, problems such as cracks may occur during annealing of the nitride film itself.

また、上述した窒素Nに変えて炭素Cを用いることが考
えられるが、この場合においても上述したドナーとして
の作用についての不都合が回避されるものの、他の問題
については同様の問題が残る。
It is also possible to use carbon C instead of the nitrogen N described above, but in this case as well, although the disadvantages regarding the donor function described above are avoided, other problems remain similar.

・〔発明が解決しようとする問題点〕 本発明は上述した諸問題を解決し、制御性よく且つ再現
性よく良質の膜性状および結晶性を有するSOlによる
単結晶シリコン膜の形成方法を提供するものである。
- [Problems to be Solved by the Invention] The present invention solves the above-mentioned problems and provides a method for forming a single crystal silicon film using SOI that has good film properties and crystallinity with good controllability and reproducibility. It is something.

〔問題点を解決するための手段」 本発明においては、非晶質シリコン膜の上面または下面
のうちの少なくとも一方に窒素と酸素とを含むシリコン
IQ 5iz−x−yNxOyよりなるシリコン膜を形
成し、熱処理して再結晶化処理を行って単結晶シリコン
膜を得る。
[Means for Solving the Problems] In the present invention, a silicon film made of silicon IQ 5iz-x-yNxOy containing nitrogen and oxygen is formed on at least one of the upper surface and the lower surface of the amorphous silicon film. , heat treatment and recrystallization treatment are performed to obtain a single crystal silicon film.

〔作用〕[Effect]

少なくとも一方の面に形成するようにしたことによって
、このシリコン膜の結晶化のための熱処理時におけるシ
リコン層の溶融時のぬれが良好に行なわれ、膜状の保護
、従って上述したアグロマレイションの発生を効果的に
防止することができて膜性状の向上と、結晶性の向上が
はかられることが確認された。
By forming it on at least one surface, wetting of the silicon layer during melting during the heat treatment for crystallization of the silicon film is performed well, and the film-like protection and therefore the above-mentioned agglomeration can be prevented. It was confirmed that it was possible to effectively prevent the occurrence of oxidation, thereby improving film properties and crystallinity.

〔実施例〕〔Example〕

例えば石英よりなる絶縁体(11)上に、非晶質のシリ
コンナイトライドオキサイド5i1−x−yNxOy(
0くy≦3)層(11を、300人から20人イ列えば
50人の厚さに被着形成し、続いてこれの上に多結晶と
同様の組成および膜厚範囲にあるシリコンナイトライド
層(3)を夫々連続的にプラズマCVD法あるいは光C
VD法によって形成する・ これら層(1)〜(3)の各原料気体は、Arあるいは
H2キャリヤガスに、窒素Nの原料としてN2あるいは
N H3を、またシリコンStの原料としてSiH4あ
るいはS i2Hεを、更に酸@ 02ガスとを用いそ
れぞれ所要の比率をもってこれら原料ガスの混入量を変
化させながら、気相成長させて被着する。
For example, amorphous silicon nitride oxide 5i1-x-yNxOy (
0xy≦3) layer (11) is deposited to a thickness of 300 to 20 people, 50 people, and then siliconite having the same composition and thickness range as the polycrystalline layer is formed on top of this. Each of the ride layers (3) is successively coated with plasma CVD or photoC.
Formed by the VD method. The raw material gases for these layers (1) to (3) are Ar or H2 carrier gas, N2 or NH3 as the raw material for nitrogen N, and SiH4 or Si2Hε as the raw material for silicon St. , and acid@02 gas, while changing the amounts of these raw material gases mixed in at the required ratios, and deposited by vapor phase growth.

その後N2雰囲気中で400〜500℃の5〜lO時間
の熱処理を行って各層に含まれる水素Hを排出する。
Thereafter, heat treatment is performed at 400 to 500° C. for 5 to 10 hours in an N2 atmosphere to discharge hydrogen H contained in each layer.

その後第2図に示すように、シリコンナイトライド層(
3)上に補強層として例えば1μ請以上、例えば2μ−
のSiO2層(4)を被着する。
Thereafter, as shown in Figure 2, a silicon nitride layer (
3) As a reinforcing layer on top, for example, 1 μm or more, for example 2 μ-
A layer of SiO2 (4) is deposited.

そして最終的に製造しようとする半導体装置において単
結晶層を部分的に所要のパターンをもって形成する場合
など、必要に応じて各シリコン層(41(31(21(
1)の不要部分をプラズマエツチング等によって除去し
、石英絶縁体(11)上に所定のパターンのシリコン層
を形成し、その後加熱処理すなゎちアニールを、例えば
ゾーンメルト法あるいは連続発振レーザー光もしくはパ
ルスレーザ−光例えばパルスエキシマレーザ−光を照射
して、各層(1)〜(3)が再結晶化された単結晶シリ
コン層を得る。
Then, when forming a single crystal layer partially with a desired pattern in a semiconductor device to be finally manufactured, each silicon layer (41 (31 (21)
Unnecessary portions of 1) are removed by plasma etching or the like, a silicon layer with a predetermined pattern is formed on the quartz insulator (11), and then heat treatment or annealing is performed using, for example, zone melting or continuous wave laser light. Alternatively, a single crystal silicon layer in which each layer (1) to (3) is recrystallized is obtained by irradiating with pulsed laser light, for example, pulsed excimer laser light.

その後、必要に応じてキャンピング層としての5L02
層(4)をエツチング除去し、各種半導体の製造例えば
トランジスタその他の半導体素子の形成を行い目的とす
る半導体装置を得る。
After that, 5L02 as a camping layer if necessary.
The layer (4) is removed by etching, and various semiconductors are manufactured, such as transistors and other semiconductor elements, to obtain the desired semiconductor device.

向、上述した例では、シリコン層(2)を5i1−x−
yNxOy層+1)及び(3)によって挟み込んだサン
ドウィッチ構造とした場合であるが、これらサンドウィ
ンナ構造によらず、シリコン層(2)の一方の面にのみ
5L1−x−yNxOy層の形成を行うとか、Jijl
 (1)〜(3)より成るサンドウィッチ構造上に、或
いは上層の層(3)を省略してこれの上に例えば100
0人の厚さの5h−x−yNxOy層を被着して、これ
の上ニ5i02補強層(4)の形成を行うこともできる
In the above example, the silicon layer (2) is 5i1-x-
This is a case of a sandwich structure in which the 5L1-x-yNxOy layer is sandwiched between the yNxOy layers +1) and (3), but the 5L1-x-yNxOy layer is formed only on one side of the silicon layer (2), regardless of these sandwich structures. , Jijl
On the sandwich structure consisting of (1) to (3), or omitting the upper layer (3), for example, 100
It is also possible to deposit a layer of 5h-x-yNxOy with a thickness of 0,000 yen and form the 5i02 reinforcing layer (4) on top of this.

また、上述の5i1−x−yNxOyより成る各層は、
プラズマCVD、光学的CVL)等によって形成できる
ものであるが、これら層はそのシリコン層(2)と接す
る界面に向って漸次Nの濃度を低めて5i(hの組成に
近づく組成とする厚さ方向の濃度プロファイルを有する
ようにすることもできる。
Moreover, each layer consisting of the above-mentioned 5i1-x-yNxOy is
These layers can be formed by plasma CVD, optical CVL), etc., but the thickness of these layers is such that the concentration of N is gradually lowered toward the interface in contact with the silicon layer (2) so that the composition approaches 5i (h). It is also possible to have a directional concentration profile.

また、上述した例においては、石英基板よりなる絶縁体
(11)上に単結晶シリコン膜の形成を行う場合につい
て説明したが、石英基板に限らずその他各種の絶縁基板
に通用することもできるし、また基板として単結晶シリ
コンあるいはサファイア等の単結晶基板上に5i02下
地膜を形成し、この5tO2下地膜に窓明けを行ってこ
れの上にシリコンl−の形成を行い単結晶基板をシード
としてこれより単結晶化を行う方法による従来周知の各
種Solに通用し得る。
Further, in the above example, a case was explained in which a single crystal silicon film was formed on an insulator (11) made of a quartz substrate, but it can be applied not only to a quartz substrate but also to various other insulating substrates. In addition, a 5i02 base film is formed on a single crystal substrate such as single crystal silicon or sapphire as a substrate, a window is opened in this 5tO2 base film, and silicon l- is formed on this, and the single crystal substrate is used as a seed. From this, it can be applied to various conventionally known Sol methods using single crystallization methods.

〔発明の効果J 上述したように本発明においては、シリコン層の少くと
も一方の面に、いわばキャッピング用の5i02中にN
を導入した5i1−x−yNxOy層を配するようにし
たので、Si層のぬれを良(し、キャップ層として機能
、すなわちアグロマレイションの発生を効果的に回避で
きると共にこのように5tO2中にNを導入した構成と
したことによって、Nの濃度の選定の自由度が増し、例
えば冒頭に述べた5iiN4を用いる場合におけるエキ
シマ−レーザ光照射における吸収の問題を回避でき、更
にその厚さ方向の濃度分布を選定してSi層との界面で
は、Nの濃度を小さくしてSiO2の組成に近づけるよ
うにしてダングリングボンドの存在を少くし、単結晶シ
リコン膜が例えば(100)結晶面に沿う腺として良好
に育成できるなど再現性良く結晶性及び膜性状にすぐれ
た単結晶シリコン膜を形成できる。またNの濃度が必要
以上に高くしないことによるシリコン層ドナーとしての
機能によるn型化を回避できるなどの効果をもたらす。
[Effect of the invention J As described above, in the present invention, N is added to at least one surface of the silicon layer in 5i02 for capping.
By disposing the 5i1-x-yNxOy layer in which 5i1-x-yNxOy is introduced, it is possible to improve the wetting of the Si layer and function as a cap layer, that is, to effectively avoid the occurrence of agglomeration. By adopting a structure that introduces N, the degree of freedom in selecting the concentration of N increases, and for example, when using 5iiN4 mentioned at the beginning, the problem of absorption during excimer laser beam irradiation can be avoided, and furthermore, the problem of absorption in the excimer laser beam irradiation can be avoided. By selecting the concentration distribution and reducing the concentration of N at the interface with the Si layer so that it approaches the composition of SiO2, the presence of dangling bonds is reduced, and the single-crystal silicon film follows, for example, the (100) crystal plane. It is possible to form a single crystal silicon film with excellent crystallinity and film properties with good reproducibility, such as the ability to grow well as a gland.Also, by not increasing the concentration of N more than necessary, it can avoid becoming n-type due to its function as a silicon layer donor. It brings about effects such as being able to do things.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図およびNS 2図は本発明による単結晶シリコン
膜の形成方法の説明に供する各工程の路線的拡大断面図
である。 (11)は絶縁体、(1)〜(3)は第1〜第3の層で
ある。
FIG. 1 and FIG. NS2 are enlarged cross-sectional views showing each step of the method for forming a single-crystal silicon film according to the present invention. (11) is an insulator, and (1) to (3) are first to third layers.

Claims (1)

【特許請求の範囲】[Claims] 多結晶または非晶質シリコン膜の上面または下面のうち
の少なくとも一方に窒素と酸素とを含むシリコン膜を形
成し、熱処理して単結晶シリコン膜を得ることを特徴と
する単結晶シリコン膜の形成方法。
Formation of a single crystal silicon film characterized by forming a silicon film containing nitrogen and oxygen on at least one of the upper surface or the lower surface of a polycrystalline or amorphous silicon film and heat-treating it to obtain a single crystal silicon film. Method.
JP13552387A 1987-05-29 1987-05-29 Formation of single crystal silicon film Pending JPS63299322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13552387A JPS63299322A (en) 1987-05-29 1987-05-29 Formation of single crystal silicon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13552387A JPS63299322A (en) 1987-05-29 1987-05-29 Formation of single crystal silicon film

Publications (1)

Publication Number Publication Date
JPS63299322A true JPS63299322A (en) 1988-12-06

Family

ID=15153760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13552387A Pending JPS63299322A (en) 1987-05-29 1987-05-29 Formation of single crystal silicon film

Country Status (1)

Country Link
JP (1) JPS63299322A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02256227A (en) * 1988-11-30 1990-10-17 Ricoh Co Ltd Thin film semiconductor and its manufacture
JPH03109717A (en) * 1989-09-23 1991-05-09 Canon Inc Forming of semiconductor thin film
US5620910A (en) * 1994-06-23 1997-04-15 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device with a gate insulating film consisting of silicon oxynitride
JP2007288173A (en) * 2006-03-20 2007-11-01 Semiconductor Energy Lab Co Ltd Crystalline semiconductor film, semiconductor device and manufacturing method of these
JP2008085317A (en) * 2006-08-31 2008-04-10 Semiconductor Energy Lab Co Ltd Crystalline semiconductor film, and manufacturing method of semiconductor device
JP2008252076A (en) * 2007-03-02 2008-10-16 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor device
JP2008270780A (en) * 2007-03-23 2008-11-06 Semiconductor Energy Lab Co Ltd Method of manufacturing crystalline semiconductor film, and method of manufacturing thin-film transistor
JP2008270779A (en) * 2007-03-23 2008-11-06 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132120A (en) * 1983-01-18 1984-07-30 Fujitsu Ltd Manufacture of semiconductor device
JPS61179523A (en) * 1985-02-05 1986-08-12 Agency Of Ind Science & Technol Formation of single crystal thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132120A (en) * 1983-01-18 1984-07-30 Fujitsu Ltd Manufacture of semiconductor device
JPS61179523A (en) * 1985-02-05 1986-08-12 Agency Of Ind Science & Technol Formation of single crystal thin film

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02256227A (en) * 1988-11-30 1990-10-17 Ricoh Co Ltd Thin film semiconductor and its manufacture
JPH03109717A (en) * 1989-09-23 1991-05-09 Canon Inc Forming of semiconductor thin film
US5620910A (en) * 1994-06-23 1997-04-15 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device with a gate insulating film consisting of silicon oxynitride
JP2007288173A (en) * 2006-03-20 2007-11-01 Semiconductor Energy Lab Co Ltd Crystalline semiconductor film, semiconductor device and manufacturing method of these
JP2008085317A (en) * 2006-08-31 2008-04-10 Semiconductor Energy Lab Co Ltd Crystalline semiconductor film, and manufacturing method of semiconductor device
JP2008252076A (en) * 2007-03-02 2008-10-16 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor device
JP2008270780A (en) * 2007-03-23 2008-11-06 Semiconductor Energy Lab Co Ltd Method of manufacturing crystalline semiconductor film, and method of manufacturing thin-film transistor
JP2008270779A (en) * 2007-03-23 2008-11-06 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device
US9177811B2 (en) 2007-03-23 2015-11-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US10032919B2 (en) 2007-03-23 2018-07-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US10541337B2 (en) 2007-03-23 2020-01-21 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US6066516A (en) Method for forming crystalline semiconductor layers, a method for fabricating thin film transistors, and method for fabricating solar cells and active matrix liquid crystal devices
US6235563B1 (en) Semiconductor device and method of manufacturing the same
JP3306258B2 (en) Method for manufacturing semiconductor device
JPS62104117A (en) Manufacture of semiconductor thin film
TW515101B (en) Method for fabrication of field-effect transistor
JPH02181419A (en) Laser anneal method
US20020090772A1 (en) Method for manufacturing semiconductor lamination, method for manufacturing lamination, semiconductor device, and electronic equipment
US6486046B2 (en) Method of forming polycrystalline semiconductor film
JPS63299322A (en) Formation of single crystal silicon film
JPH0411722A (en) Forming method of semiconductor crystallized film
JPH07326769A (en) Plane display use thin film transistor
JP3281431B2 (en) Thin film transistor
JPH0336767A (en) Manufacture of semiconductor device
JP2550998B2 (en) Method for forming single crystal silicon film
JPS63119576A (en) Thin film transistor
JP2699329B2 (en) Method of forming single crystal thin film
US6794274B2 (en) Method for fabricating a polycrystalline silicon film
JPH0574704A (en) Semiconductor layer forming method
JPH0567782A (en) Thin film transistor and its manufacture
JPH04305940A (en) Manufacture of thin-film transistor
JPH0851218A (en) Method of forming thin film transistor
WO2007086442A1 (en) Method for manufacturing soi wafer
JP3093762B2 (en) Method for manufacturing semiconductor device
JPH10214790A (en) Production of thin silicon based semiconductor
JPH0336768A (en) Manufacture of semiconductor device