JPS61179523A - Formation of single crystal thin film - Google Patents

Formation of single crystal thin film

Info

Publication number
JPS61179523A
JPS61179523A JP60019339A JP1933985A JPS61179523A JP S61179523 A JPS61179523 A JP S61179523A JP 60019339 A JP60019339 A JP 60019339A JP 1933985 A JP1933985 A JP 1933985A JP S61179523 A JPS61179523 A JP S61179523A
Authority
JP
Japan
Prior art keywords
film
single crystal
silicon
thin film
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60019339A
Other languages
Japanese (ja)
Inventor
Toshiaki Miyajima
利明 宮嶋
Katsuteru Awane
粟根 克昶
Masayoshi Koba
木場 正義
Atsushi Kudo
淳 工藤
Tadayuki Morishita
森下 賢幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60019339A priority Critical patent/JPS61179523A/en
Publication of JPS61179523A publication Critical patent/JPS61179523A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02683Continuous wave laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To form a large area single crystal thin film which has few defects due to heating with a heater of energy beam irradiation, a lamp, etc. by using a silicon oxide nitride film as an insulation film between a thin film to be crystallized to single crystal and a substrate. CONSTITUTION:After a silicon oxide nitride film 2 composed of 30-50atom% silicon, 5-50atom% oxygen and 14-53atom% nitrogen is formed on a silicon substrate 1 by reactive sputtering, a polycrystalline silicon film 3 is formed on the silicon oxide nitride film 2 by reduced pressure chemical vapor phase epitaxy, a silicon oxide film 4 is formed on the film 3 by chemical vapor phase epitaxy and a sample is made. If the sample is irradiated with argon laser light and the polycrystalline silicon film 3 is melted and recrystallized to single crystal, the single crystal silicon film has a small strain since the difference of the thermal expansion rates of the silicon oxide nitride film 2 and the polycrystalline silicon film 3 is small. Accordingly, the generation of defective crystal is reduced and good quality and great area single crystal can be obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は半導体装置を製造する分野で利用される単結晶
薄膜の形成方法に関し、更に詳細には非晶質下地上に形
成した非晶質あるいは多結晶等の非単結晶薄膜にエネル
ギービーム照射したり、ヒータやランプ等で加熱して、
非単結晶薄膜を単結晶化する方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for forming a single crystal thin film used in the field of manufacturing semiconductor devices, and more specifically relates to a method for forming a single crystal thin film formed on an amorphous substrate. Alternatively, a non-single crystal thin film such as polycrystalline film may be irradiated with an energy beam or heated with a heater or lamp.
The present invention relates to a method for converting a non-single crystal thin film into a single crystal.

〈従来の技術〉 従来より、結晶性を有しない基板材料の上に、非晶質あ
るいは多結晶等の非単結晶薄膜を形成し、この非単結晶
薄膜にエネルギービーム照射を行ったり、ヒータやラン
プ等による加熱等を行なって溶融再結晶化させることに
より単結晶薄膜を作製する方法が提案されている。この
従来より提案されている方法は、通常第3図に示すよう
に、シリコン基板10の上に酸化シリコン膜11を形成
し、更にその上に非晶質あるいは多結晶の非単結晶シリ
コン膜12を形成した後、表面保護用絶縁膜13を被覆
した構造の試料にエネルギービーム照射を行ったり、ヒ
ータやランプによる加熱を行って、シリコン膜12を単
結晶化している。
<Conventional technology> Conventionally, a non-single crystal thin film such as amorphous or polycrystalline is formed on a substrate material that does not have crystallinity, and this non-single crystal thin film is irradiated with an energy beam or exposed to a heater or the like. A method has been proposed in which a single crystal thin film is produced by melting and recrystallizing by heating with a lamp or the like. In this conventionally proposed method, as shown in FIG. 3, a silicon oxide film 11 is usually formed on a silicon substrate 10, and an amorphous or polycrystalline non-single crystal silicon film 12 is further formed on the silicon oxide film 11. After forming the silicon film 12, the silicon film 12 is made into a single crystal by irradiating the sample with the structure covered with the surface protection insulating film 13 or heating it with a heater or lamp.

〈発明が解決しようとする問題点〉 しかし、このような従来の方法によれば、酸化シリコン
膜11とシリコン膜12の熱膨張率の差によりシリコン
膜12が大きな引張り歪みを持つようになる。その結果
、試料が大きくそると共にシリコン膜12に多数の結晶
欠陥を生じ、良質で大面積の単結晶が得られない等の問
題点があった。
<Problems to be Solved by the Invention> However, according to such a conventional method, the silicon film 12 has a large tensile strain due to the difference in coefficient of thermal expansion between the silicon oxide film 11 and the silicon film 12. As a result, the sample was greatly warped and many crystal defects were generated in the silicon film 12, resulting in problems such as the inability to obtain a high-quality, large-area single crystal.

本発明はこのような点に鑑みて創案されたもので、エネ
ルギービーム照射やヒータ、ランプ等による加熱で欠陥
が少なく大面積の単結晶薄膜を形成するための最適な単
結晶薄膜の形成方法を提供することを目的としている。
The present invention was devised in view of these points, and it is an optimal method for forming a single crystal thin film with few defects and a large area by heating with energy beam irradiation, heaters, lamps, etc. is intended to provide.

〈問題点を解決するための手段〉 上記の問題点を解決するため、本発明は絶縁膜で被覆さ
れた基板の表面に形成された多結晶ないし、非晶質等の
非単結晶薄膜にエネルギービームを照射したり、ヒータ
やランプで加熱してこの薄膜を単結晶化する単結晶薄膜
形成方法において、単結晶化すべき薄膜と基板との間の
絶縁膜に酸窒化シリコン膜を用いるようになしている。
<Means for Solving the Problems> In order to solve the above problems, the present invention applies energy to a polycrystalline or amorphous non-single crystal thin film formed on the surface of a substrate covered with an insulating film. In the method of forming a single crystal thin film in which the thin film is made into a single crystal by irradiation with a beam or heating with a heater or lamp, a silicon oxynitride film is used as an insulating film between the thin film to be made into a single crystal and the substrate. ing.

〈作用〉 絶縁膜に酸窒化シリコン膜を用いることにより、絶縁膜
と単結晶化すべき薄膜の熱膨張率の差が小さくなり、単
結晶化した薄膜は歪みの小さな膜と。
<Operation> By using a silicon oxynitride film as an insulating film, the difference in thermal expansion coefficient between the insulating film and the thin film to be made into a single crystal becomes small, and the thin film made into a single crystal becomes a film with small distortion.

なる。Become.

〈実施例〉 以下、図面を参照して本発明の詳細な説明する。<Example> Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例を説明するための試料断面を
示す図である。
FIG. 1 is a diagram showing a cross section of a sample for explaining one embodiment of the present invention.

第1図において、シリコン基板lの上に反応性スパッタ
法でシリコン30〜50原子%(例えば37原子%)、
酸素5〜50原子%(例えば40原子%)、窒素14〜
53原子%(例えば23原子%)の組成の酸窒化シリコ
ン膜2を形成した後、この酸窒化シリコン膜2の上に多
結晶シリコン膜3を減圧化学気相成長法で形成し、更に
その上に酸化シリコン膜4を化学気相成長法で形成して
試料を作製する。
In FIG. 1, 30 to 50 atom% (for example, 37 atom%) of silicon is deposited on a silicon substrate l by reactive sputtering.
Oxygen 5-50 atomic% (e.g. 40 atomic%), nitrogen 14-50 atomic%
After forming a silicon oxynitride film 2 having a composition of 53 atomic % (for example, 23 atomic %), a polycrystalline silicon film 3 is formed on this silicon oxynitride film 2 by low pressure chemical vapor deposition, and then A silicon oxide film 4 is then formed by chemical vapor deposition to prepare a sample.

この試料にアルゴンレーザ光を照射して多結晶シリコン
膜3を溶融再結晶化して単結晶化すると、酸窒化シリコ
ン膜2と多結晶シリコン膜3の熱膨張率の差か小さいた
め、単結晶化したシリコン膜は歪みの小さな膜となる。
When this sample is irradiated with argon laser light to melt and recrystallize the polycrystalline silicon film 3 to form a single crystal, the difference in thermal expansion coefficient between the silicon oxynitride film 2 and the polycrystalline silicon film 3 is small, so that the polycrystalline silicon film 3 becomes a single crystal. The resulting silicon film has less strain.

その結果、結晶欠陥の発生か減少し、良質で大面積の単
結晶が得られ゛る。
As a result, the occurrence of crystal defects is reduced, and a high-quality, large-area single crystal can be obtained.

第2図は他の実施例を説明するための試料断面を示す図
である。
FIG. 2 is a diagram showing a cross section of a sample for explaining another embodiment.

第2図において、シリコン基板5の上に反応性スパッタ
法で酸窒化シリコン膜6を形成した後、この酸窒化シリ
コン膜6上に減圧化学気相成長法で比較的薄い酸化シリ
コン膜7.多結晶シリコン膜8をこの順に積層形成し、
更にこの多結晶シリコン膜8上に酸化シリコン膜9を化
学気相成長法で形成する。
In FIG. 2, after a silicon oxynitride film 6 is formed on a silicon substrate 5 by a reactive sputtering method, a relatively thin silicon oxide film 7 is formed on this silicon oxynitride film 6 by a low pressure chemical vapor deposition method. Polycrystalline silicon films 8 are laminated in this order,
Further, a silicon oxide film 9 is formed on this polycrystalline silicon film 8 by chemical vapor deposition.

ここで酸窒化シリコン膜6の組成を、酸窒化シリコン膜
6と酸化シリコン膜7の全体の熱膨張が多結晶シリコン
膜8と釣り合うように選ぶことにより、アルゴンレーザ
照射で多結晶シリコン膜8を単結晶化した後の、この単
結晶シリコン膜の歪みか低減する。その結果、上記した
第1の実施例の場合と同様、結晶欠陥の発生が減少し、
良質で大面積の単結晶が得られることになり、また酸窒
化シリコン膜6中の窒素のシリコン膜8への影響が比較
的薄い酸化シリコン膜7によって阻止されることになる
Here, by selecting the composition of the silicon oxynitride film 6 so that the overall thermal expansion of the silicon oxynitride film 6 and the silicon oxide film 7 is balanced with that of the polycrystalline silicon film 8, the polycrystalline silicon film 8 is grown by argon laser irradiation. The strain of this single crystal silicon film after being made into a single crystal is reduced. As a result, as in the case of the first embodiment described above, the occurrence of crystal defects is reduced,
A high-quality single crystal with a large area can be obtained, and the influence of nitrogen in the silicon oxynitride film 6 on the silicon film 8 can be prevented by the relatively thin silicon oxide film 7.

〈発明の効果〉 以上述べてきたように、本発明を実施して単結晶化を行
った結晶薄膜は従来の方法で作製したものに比して歪み
が小さく、その結果、結晶欠陥が少なく良質で大面積の
単結晶を得ることが出来る。
<Effects of the Invention> As described above, the crystalline thin film produced by carrying out single crystallization according to the present invention has less distortion than that produced by conventional methods, and as a result, has fewer crystal defects and is of high quality. It is possible to obtain a large-area single crystal.

【図面の簡単な説明】 第1図は本発明の一実施例を説明するための試料断面を
示す模式図、第2図は本発明の他の実施例を説明するた
めの試料断面を示す模式図、第3図は従来の単結晶薄膜
形成方法を説明するための試料断面を示す模式図である
。 l・・・シリコン基板、2・・・酸窒化シリコン膜、3
・・・多結晶シリコン膜、4・・・酸化シリコン膜。
[Brief Description of the Drawings] Fig. 1 is a schematic diagram showing a cross section of a sample for explaining one embodiment of the present invention, and Fig. 2 is a schematic diagram showing a cross section of a sample for explaining another embodiment of the present invention. 3 are schematic diagrams showing a cross section of a sample for explaining a conventional method for forming a single crystal thin film. l...Silicon substrate, 2...Silicon oxynitride film, 3
...Polycrystalline silicon film, 4...Silicon oxide film.

Claims (1)

【特許請求の範囲】 1、絶縁膜で被覆された基板の表面に形成された非単結
晶薄膜にエネルギービームを照射、あるいはヒータ、ラ
ンプ等で加熱して上記薄膜を単結晶化する単結晶薄膜形
成方法において、 上記単結晶化すべき薄膜と基板との間の絶縁膜を酸窒化
シリコン膜となしたことを特徴とする単結晶薄膜形成方
法。 2、前記酸窒化シリコン膜の組成を酸素含有量5〜50
原子%、窒素含有量14〜53原子%となしたことを特
徴とする特許請求の範囲第1項記載の単結晶薄膜形成方
法。 3、前記単結晶化されるべき薄膜がシリコン薄膜である
ことを特徴とする特許請求の範囲第1項または第2項記
載の単結晶薄膜形成方法。
[Claims] 1. A single crystal thin film formed on the surface of a substrate covered with an insulating film, which is made into a single crystal by irradiating the non-single crystal thin film with an energy beam or heating it with a heater, lamp, etc. A method for forming a single crystal thin film, characterized in that the insulating film between the thin film to be made into a single crystal and the substrate is a silicon oxynitride film. 2. The composition of the silicon oxynitride film is adjusted to have an oxygen content of 5 to 50
%, and the nitrogen content is 14 to 53 atomic %. 3. The method for forming a single crystal thin film according to claim 1 or 2, wherein the thin film to be single crystallized is a silicon thin film.
JP60019339A 1985-02-05 1985-02-05 Formation of single crystal thin film Pending JPS61179523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60019339A JPS61179523A (en) 1985-02-05 1985-02-05 Formation of single crystal thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60019339A JPS61179523A (en) 1985-02-05 1985-02-05 Formation of single crystal thin film

Publications (1)

Publication Number Publication Date
JPS61179523A true JPS61179523A (en) 1986-08-12

Family

ID=11996640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60019339A Pending JPS61179523A (en) 1985-02-05 1985-02-05 Formation of single crystal thin film

Country Status (1)

Country Link
JP (1) JPS61179523A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63299322A (en) * 1987-05-29 1988-12-06 Sony Corp Formation of single crystal silicon film
WO2001023648A1 (en) * 1999-09-30 2001-04-05 Prowtech Inc. Apparatus and method for forming single crystalline nitride substrate using hydride vapor phase epitaxy and laser beam
US6414825B1 (en) * 1998-10-06 2002-07-02 Tdk Corporation Thin film device, thin film magnetic head and magnetoresistive element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57157519A (en) * 1981-03-23 1982-09-29 Fujitsu Ltd Manufacture of semiconductor device
JPS5814526A (en) * 1981-07-17 1983-01-27 Fujitsu Ltd Manufacturing semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57157519A (en) * 1981-03-23 1982-09-29 Fujitsu Ltd Manufacture of semiconductor device
JPS5814526A (en) * 1981-07-17 1983-01-27 Fujitsu Ltd Manufacturing semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63299322A (en) * 1987-05-29 1988-12-06 Sony Corp Formation of single crystal silicon film
US6414825B1 (en) * 1998-10-06 2002-07-02 Tdk Corporation Thin film device, thin film magnetic head and magnetoresistive element
WO2001023648A1 (en) * 1999-09-30 2001-04-05 Prowtech Inc. Apparatus and method for forming single crystalline nitride substrate using hydride vapor phase epitaxy and laser beam
US6750121B1 (en) 1999-09-30 2004-06-15 Protech Inc. Apparatus and method for forming single crystalline nitride substrate using hydride vapor phase epitaxy and laser beam

Similar Documents

Publication Publication Date Title
JPH084067B2 (en) Method for manufacturing semiconductor device
JPS6392012A (en) Laminated article and manufacture of the same
JP2765968B2 (en) Method for manufacturing crystalline silicon film
JPS61179523A (en) Formation of single crystal thin film
US4576676A (en) Thick crystalline films on foreign substrates
JPH027415A (en) Formation of soi thin film
JPH04132233A (en) Cuinse2 compound thin film formation method
JPS6119116A (en) Manufacture of semiconductor device
JPH04298020A (en) Manufacture of silicon thin film crystal
JP2779033B2 (en) Method for growing polycrystalline Si thin film
JP2706770B2 (en) Semiconductor substrate manufacturing method
JPS6265410A (en) Formation of single crystal thin film
JPS5898919A (en) Method for producing crystalline silicon carbide film
JPS61111517A (en) Silicon substrate
JPS6265411A (en) Formation of single crystal thin film
JPS60127745A (en) Semiconductor substrate
JPH02184594A (en) Production of single crystal thin film
JPH04314325A (en) Manufacture of semiconductor device
JPH03293720A (en) Manufacture of crystalline semiconductor thin film
JPS61201414A (en) Manufacture of semiconductor single crystal layer
JPS6126598A (en) Preparation of germanium thin film crystal
JPS60221385A (en) Manufacture of single crystal thin film
JPH0754796B2 (en) Thin film manufacturing method
JPS6234129B2 (en)
JPS61197492A (en) Method of forming semiconductor crystal