JPS6265410A - Formation of single crystal thin film - Google Patents

Formation of single crystal thin film

Info

Publication number
JPS6265410A
JPS6265410A JP20798985A JP20798985A JPS6265410A JP S6265410 A JPS6265410 A JP S6265410A JP 20798985 A JP20798985 A JP 20798985A JP 20798985 A JP20798985 A JP 20798985A JP S6265410 A JPS6265410 A JP S6265410A
Authority
JP
Japan
Prior art keywords
thin film
crystal
single crystal
substrate
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20798985A
Other languages
Japanese (ja)
Inventor
Hideyuki Tsuji
辻 秀行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP20798985A priority Critical patent/JPS6265410A/en
Publication of JPS6265410A publication Critical patent/JPS6265410A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a single-crystal thin film of high quality having crystal azimuth identical with a single-crystal substrate on an insulating film, by forming a non-single crystal thin film having a specific difference in film thickness with regard to the insulating film on an exposed area of the single crystal substrate, and making the thin film in this region become single-crystallized, and then forming the non-single crystal thin film as an active layer all over the surface and heating it. CONSTITUTION:Only an exposed region 1a of a single-crystal silicon substrate 1 is embedded with a non-single silicon thin film 3 having thickness nearly equal to that of an insulating film 2. And, the difference in thickness between the thin film 3 and the insulating film 2 is made to be 1.0mum or less. Then, energy beam radiation or heating 5 by a heater, a lamp, or the like is performed to obtain a thin film 4 having a crystal azimuth identical with the substrate 1, with the exposed part 1a serving as a core on the thin film 3. Then, after a non-single crystal silicon thin film 6 is formed as an active layer over both the upper part of the thin film 4 and that of the insulating film 2, heating 8 is performed again with the thin film 4 serving as a core so that the non-single crystal silicon thin film 6 as an active layer is made single-crystalline so as to obtain a single-crystal silicon thin film 7. Hence, the single-crystal thin film of high quality having a crystal azimuth identical with the substrate 1 even if the insulating film grows 1.0mum or more thick.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は半導体装置を製造する分野で利用される単結晶
薄膜の形成方法に関し、さらに詳細には非晶質下地上に
形成した非晶質あるいは多結晶等の非単結晶薄膜にCW
レーザ光や電子ビーム等のエネルギービームを照射した
り、ヒータやランプ等による加熱で非単結晶薄膜を単結
晶化する方法の改良に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for forming a single crystal thin film used in the field of manufacturing semiconductor devices, and more specifically relates to a method for forming a single crystal thin film formed on an amorphous substrate. Or CW on non-single crystal thin film such as polycrystalline.
This invention relates to improvements in methods for converting non-single crystal thin films into single crystals by irradiating energy beams such as laser beams and electron beams, or by heating with heaters, lamps, etc.

く従来の技術〉 従来より、結晶性を有しない絶縁膜の上に、非品質ある
いは多結晶等の非単結晶薄膜を形成し、この非単結晶薄
膜にエネルギービーム照射を行ったり、ヒータやランプ
等による加熱を行って溶融再結晶化させることにより単
結晶薄膜を作製する方法(いわゆる501(Silic
on On  In5ulator)技術)が提案され
ている。従来より提案されている方法として通常は第2
図(a)及び(b)に示すようにンリコン基板11の上
に絶縁膜I2を形成し、さらにその上に非晶質あるいは
多結晶の非単結晶シリコン薄膜13を形成した後(第2
図(a))、エネルギービーム照射を行ったリヒータや
ランプによる加熱14を行って、非単結晶シリコン薄膜
13を単結晶化して単結晶化膜15を得ている(第2図
(b))。
Conventional technology> Conventionally, a non-single-crystal thin film of poor quality or polycrystalline material is formed on an insulating film that does not have crystallinity, and this non-single-crystal thin film is irradiated with an energy beam or exposed to a heater or lamp. A method of producing a single crystal thin film by melting and recrystallizing it by heating with etc. (so-called 501 (Silic
On On In5ulator) technology) has been proposed. The conventionally proposed method is usually the second one.
As shown in FIGS. (a) and (b), an insulating film I2 is formed on the silicon substrate 11, and an amorphous or polycrystalline non-single crystal silicon thin film 13 is further formed thereon (a second
In Figure (a)), the non-single crystal silicon thin film 13 is single-crystallized by heating 14 using a reheater or lamp that irradiates energy beams to obtain a single-crystalline film 15 (Figure 2 (b)). .

しかし、このような方法で得られるシリコン単結晶膜1
5の結晶方位を制御することは大変困難である。
However, the silicon single crystal film 1 obtained by such a method
It is very difficult to control the crystal orientation of 5.

そこで第3図(a)及び(b)に示すような単結晶シリ
コン基板11の一部11aを露出させた状態に絶縁膜1
6を形成した後、非単結晶シリコン膜17を形成し、エ
ネルギービーム照射やヒータやランプによる加熱14を
、非単結晶シリコン膜】7が単結晶シリコン基板11の
露出部分11aと直接液した領域から行うことにより単
結晶シリコン基板11を結晶成長の種として非単結晶シ
リコン薄膜17を単結晶化して単結晶シリコン基板11
と結晶方位の一致した、良質な単結晶シリコン薄膜18
を得ている。
Therefore, as shown in FIGS. 3(a) and 3(b), an insulating film 1 is placed with a part 11a of the single crystal silicon substrate 11 exposed.
After forming 6, a non-monocrystalline silicon film 17 is formed, and the area where the non-monocrystalline silicon film 7 is directly exposed to the exposed portion 11a of the single-crystal silicon substrate 11 is heated by energy beam irradiation or heating 14 using a heater or lamp. By performing the steps from
A high-quality single-crystal silicon thin film 18 whose crystal orientation matches that of
I am getting .

〈発明が解決しようとする問題点〉 しかし、上記した従来の方法では、単結晶シリコン基板
11と単結晶化しようとする非単結晶シリコン膜17と
の間の絶縁膜16の厚さが1μm以上になると単結晶シ
リコン基板11の露出部分11aに生じる急峻かつ大き
な段差のため、単結晶シリコン基板11と接した領域の
非単結晶シリコン薄膜17から絶縁膜16上の非単結晶
シリコン薄膜に結晶成長が連続して起こらなくなる。そ
のため単結晶基板11の結晶方位と一致した単結晶シリ
コン薄膜を得ることができない等の問題がある。
<Problems to be Solved by the Invention> However, in the conventional method described above, the thickness of the insulating film 16 between the single crystal silicon substrate 11 and the non-single crystal silicon film 17 to be single crystallized is 1 μm or more. Because of the steep and large step difference that occurs in the exposed portion 11a of the single crystal silicon substrate 11, crystal growth occurs from the non-single crystal silicon thin film 17 in the area in contact with the single crystal silicon substrate 11 to the non-single crystal silicon thin film on the insulating film 16. will no longer occur continuously. Therefore, there are problems such as not being able to obtain a single crystal silicon thin film that matches the crystal orientation of the single crystal substrate 11.

本発明はこのような点に鑑みて創案されたもので、エネ
ルギービーム照射やヒータ、ランプによる加熱で、結晶
方位の制御された良質な単結晶薄膜を形成する単結晶薄
膜形成方法を提供することを目的としている。
The present invention was devised in view of these points, and provides a single crystal thin film forming method for forming a high quality single crystal thin film with a controlled crystal orientation by energy beam irradiation or heating with a heater or lamp. It is an object.

〈問題点を解決するための手段〉 上記の問題点を解決するため、本発明の単結晶薄膜形成
方法は単結晶基板の露出した領域上にのみ、まず絶縁膜
の厚さとほぼ同等膜厚で非単結晶薄膜を形成し、この領
域の非単結晶薄膜にエネルギービームを照射したり、ヒ
ータやランプ等で加熱してこの領域の薄膜を単結晶化し
た後、全面に活性層となる非単結晶薄膜を形成する。次
にこの上からエネルギービームを照射したり、ヒータや
ランプ等で加熱して絶縁膜上に単結晶薄膜を得るように
構成している。
<Means for Solving the Problems> In order to solve the above problems, the single crystal thin film forming method of the present invention first forms a film with a thickness approximately equal to the thickness of the insulating film only on the exposed area of the single crystal substrate. After forming a non-single crystal thin film, irradiating the non-single crystal thin film in this region with an energy beam or heating it with a heater or lamp, the thin film in this region is made into a single crystal. Forms a crystal thin film. Next, a single crystal thin film is formed on the insulating film by irradiating the insulating film with an energy beam or heating it with a heater, lamp, or the like.

く作用〉 単結晶基板露出領域上にのみ絶縁膜の厚さとほぼ等しい
厚さの単結晶薄膜をあらかじめ形成して単結晶しておく
ことにより、絶縁膜の厚さが1.0μm以上の例えば5
.0μm程度に厚くなっても上記の単結晶化された薄膜
を種として単結晶基板と結晶方位の揃った良質な単結晶
薄膜が得られる。
Effect> By forming in advance a single crystal thin film having a thickness almost equal to the thickness of the insulating film only on the exposed area of the single crystal substrate and forming a single crystal, it is possible to form a single crystal thin film with a thickness of 1.0 μm or more, for example, 5.
.. Even if the thickness is about 0 μm, a high-quality single-crystal thin film with the same crystal orientation as the single-crystal substrate can be obtained using the above-mentioned single-crystalline thin film as a seed.

〈実施例〉 以下、図面を参照して本発明の詳細な説明する。<Example> Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図(a)乃至(f)は本発明の一実施例を説明する
ための工程図である。
FIGS. 1(a) to 1(f) are process diagrams for explaining one embodiment of the present invention.

まず、第1図(a)に示す単結晶シリコン基板1上に第
X図(b)に示すように単結晶シリコン基板1を一部露
出させて(露出部分1a)絶縁膜2を形成する。次にこ
の単結晶シリコン基板lの露出した領域1aにのみ第1
図(c)に示すように絶縁膜2の厚さとほぼ等しい厚さ
の非単結晶シリコン薄膜3を埋め込み形成する。
First, an insulating film 2 is formed on a single crystal silicon substrate 1 shown in FIG. 1(a) with a portion of the single crystal silicon substrate 1 exposed (exposed portion 1a) as shown in FIG. 1(b). Next, a first film is applied only to the exposed region 1a of this single crystal silicon substrate 1.
As shown in FIG. 3(c), a non-single crystal silicon thin film 3 having a thickness substantially equal to that of the insulating film 2 is embedded.

なお、このとき形成する非単結晶シリコン薄膜3の厚さ
は絶縁膜2の厚さとの差が1.0μm以下であるように
する。
Note that the difference in thickness of the non-single crystal silicon thin film 3 formed at this time from the thickness of the insulating film 2 is set to be 1.0 μm or less.

次に、この状態で第1図(d)に示すようにエネルギー
ビーム照射あるいはヒータ、ランプ等による加熱5を行
なって単結晶シリコン基板1の露出部分la上の非単結
晶シリコン薄膜3を単結晶シリコン基板lの露出部分1
aを種として単結晶化して単結晶シリコン基板Iと結晶
方位の一致した薄膜4を得る。次に第1図(e)に示す
ように単結晶化した薄膜4上部及び絶縁膜2上部の画成
に活性層となる非単結晶シリコン薄膜6を形成した後、
再度第1図(f)に示すようにエネルギービーム照射あ
るいはヒータやランプ等による加熱8を単結晶化薄膜4
に接した領域から行い、単結晶シリコン薄膜4を種とし
て活性層となる非単結晶シリコン薄膜6を単結晶化して
単結晶シリコン薄膜7を得る。
Next, in this state, as shown in FIG. 1(d), energy beam irradiation or heating 5 using a heater, lamp, etc. is performed to convert the non-single crystal silicon thin film 3 on the exposed portion la of the single crystal silicon substrate 1 into a single crystal. Exposed portion 1 of silicon substrate 1
A is used as a seed for single crystallization to obtain a thin film 4 whose crystal orientation matches that of the single crystal silicon substrate I. Next, as shown in FIG. 1(e), after forming a non-single-crystal silicon thin film 6 that will become an active layer on the upper part of the monocrystalline thin film 4 and the upper part of the insulating film 2,
Again, as shown in FIG. 1(f), the monocrystalline thin film 4 is irradiated with an energy beam or heated 8 with a heater, lamp, etc.
The non-single-crystal silicon thin film 6, which will become the active layer, is single-crystallized using the single-crystal silicon thin film 4 as a seed to obtain a single-crystal silicon thin film 7.

このようにして単結晶シリコン基板lと結晶方位の一致
した単結晶シリコン薄膜7を得る。
In this way, a single-crystal silicon thin film 7 whose crystal orientation matches that of the single-crystal silicon substrate 1 is obtained.

〈発明の効果〉 以上のように、本発明によれば単結晶基板上に例えば1
.0μm以上の厚い絶縁膜が被覆されていても、その絶
縁膜上に単結晶基板と結晶方位の一致戸3/ 第1薗(a)乃至(f)はそれぞれ本発明の一実施例を
説明するための試料断面を示した工程図、第2図(a)
、(b)および第3図(a)、 (b)はそれぞれ従来
の単結晶薄膜形成法を説明するための試料断面を示す模
式図である。
<Effects of the Invention> As described above, according to the present invention, for example, one
.. Even if an insulating film with a thickness of 0 μm or more is coated, the insulating film can be coated with a crystal orientation that matches that of a single crystal substrate. Figure 2 (a) is a process diagram showing the sample cross section for
, (b) and FIGS. 3(a) and 3(b) are schematic diagrams showing a cross section of a sample for explaining the conventional single crystal thin film forming method, respectively.

l・・・単結晶シリコン基板、la・・・露出部分、2
・・・絶縁膜、3・・・非単結晶シリコン薄膜、4・・
・単結晶化シリコン薄膜、5及び8・・・エネルギービ
ーム照射あるいはヒータランプ等による加熱、6・・・
活性層となる非単結晶シリコン薄膜、7・・・活性層と
なる単結晶化シリコン薄膜。
l...Single crystal silicon substrate, la...Exposed portion, 2
...Insulating film, 3...Non-single crystal silicon thin film, 4...
・Single crystal silicon thin film, 5 and 8...Heating with energy beam irradiation or heater lamp, etc., 6...
Non-monocrystalline silicon thin film serving as an active layer; 7... Single-crystalline silicon thin film serving as an active layer.

代理人 弁理士 福 士 愛 彦 (他2名)第11 第2図 第3yIJAgent: Patent Attorney Fuku Aihiko (2 others) No. 11 Figure 2 3rd yIJ

Claims (1)

【特許請求の範囲】 1、単結晶基板の一部が露出するように該単結晶基板上
に絶縁膜を被覆する工程と、 上記単結晶基板の一部露出した領域のみに非単結晶薄膜
を形成する工程と、 上記非単結晶薄膜にエネルギービームを照射あるいはヒ
ータ、ランプ等で加熱して該薄膜を上記単結晶基板露出
部を種として単結晶化する工程と、 該単結晶化した薄膜上部及び上記絶縁膜上部の両域に活
性層となる非単結晶薄膜を形成する工程と、 エネルギービームを照射あるいはヒータ、ランプ等で加
熱して上記単結晶基板露出部に形成した単結晶化した薄
膜を種として上記活性層となる非単結晶薄膜を単結晶化
する工程とを含んでなることを特徴とする単結晶薄膜形
成方法。 2、前記単結晶基板の露出した領域に形成する非単結晶
薄膜の厚さと、前記単結晶基板を被覆する絶縁膜の厚さ
との差が1.0μm以下であることを特徴とする特許請
求の範囲第1項記載の単結晶薄膜形成方法。 3、前記単結晶基板がシリコン単結晶でかつ単結晶化さ
れるべき前記薄膜がシリコン薄膜であることを特徴とす
る特許請求の範囲第1項記載の単結晶薄膜形成方法。
[Claims] 1. A step of coating an insulating film on the single crystal substrate so that a portion of the single crystal substrate is exposed, and a step of coating a non-single crystal thin film only on the partially exposed region of the single crystal substrate. a step of irradiating the non-single crystal thin film with an energy beam or heating it with a heater, a lamp, etc. to single-crystallize the thin film using the exposed portion of the single-crystal substrate as a seed; and an upper part of the single-crystal thin film. and a step of forming a non-single-crystalline thin film to serve as an active layer in both areas above the insulating film, and a single-crystalline thin film formed on the exposed portion of the single-crystal substrate by irradiating an energy beam or heating with a heater, lamp, etc. A method for forming a single-crystal thin film, comprising the step of single-crystallizing the non-single-crystal thin film to become the active layer using as a seed. 2. A patent claim characterized in that the difference between the thickness of the non-single-crystal thin film formed on the exposed region of the single-crystal substrate and the thickness of the insulating film covering the single-crystal substrate is 1.0 μm or less. A method for forming a single crystal thin film according to scope 1. 3. The method for forming a single crystal thin film according to claim 1, wherein the single crystal substrate is a silicon single crystal, and the thin film to be single crystallized is a silicon thin film.
JP20798985A 1985-09-18 1985-09-18 Formation of single crystal thin film Pending JPS6265410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20798985A JPS6265410A (en) 1985-09-18 1985-09-18 Formation of single crystal thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20798985A JPS6265410A (en) 1985-09-18 1985-09-18 Formation of single crystal thin film

Publications (1)

Publication Number Publication Date
JPS6265410A true JPS6265410A (en) 1987-03-24

Family

ID=16548836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20798985A Pending JPS6265410A (en) 1985-09-18 1985-09-18 Formation of single crystal thin film

Country Status (1)

Country Link
JP (1) JPS6265410A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6336515A (en) * 1986-07-30 1988-02-17 Sony Corp Manufacture of thin single-crystal semiconductor film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6336515A (en) * 1986-07-30 1988-02-17 Sony Corp Manufacture of thin single-crystal semiconductor film

Similar Documents

Publication Publication Date Title
JPH0360026A (en) Manufacture of crystalline silicon film
JPS6265410A (en) Formation of single crystal thin film
JPS6119116A (en) Manufacture of semiconductor device
JPS58139423A (en) Lateral epitaxial growing method
JPS6265411A (en) Formation of single crystal thin film
JPS5892213A (en) Manufacture of semiconductor single crystalline film
JPS58169905A (en) Preparation of single crystal thin film
JPS5983993A (en) Growth of semiconductor layer of single crystal
JP2714109B2 (en) Crystal film manufacturing method
JPH0810669B2 (en) Method of forming SOI film
JPH0236052B2 (en)
JPS61179523A (en) Formation of single crystal thin film
JPS58115814A (en) Electron beam annealing method
JPS59154016A (en) Formation of thin film crystal
JPS62226621A (en) Forming method for single crystal silicon thin film
JPS63315587A (en) Process for forming single crystal thin film
JPS60191090A (en) Manufacture of semiconductor device
JPH0795526B2 (en) Method for manufacturing single crystal thin film
JPS62145721A (en) Manufacture of single crystal thin film
JPH01721A (en) Manufacturing method of single crystal thin film
JPS5919311A (en) Manufacture of semiconductor device
JPS62165908A (en) Forming method for single crystal thin-film
JPS62145722A (en) Manufacture of single crystal thin film
JPS59202622A (en) Manufacture of single crystal thin film
JPS62208620A (en) Manufacture of semiconductor device