JPS58169905A - Preparation of single crystal thin film - Google Patents

Preparation of single crystal thin film

Info

Publication number
JPS58169905A
JPS58169905A JP57051235A JP5123582A JPS58169905A JP S58169905 A JPS58169905 A JP S58169905A JP 57051235 A JP57051235 A JP 57051235A JP 5123582 A JP5123582 A JP 5123582A JP S58169905 A JPS58169905 A JP S58169905A
Authority
JP
Japan
Prior art keywords
single crystal
layer
amorphous
polycrystalline
epitaxial growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57051235A
Other languages
Japanese (ja)
Inventor
Osamu Okura
理 大倉
Masanobu Miyao
正信 宮尾
Kiichiro Mukai
向 喜一郎
Mitsunori Ketsusako
光紀 蕨迫
Akira Haruta
亮 春田
Taijo Nishioka
西岡 泰城
Shinichiro Kimura
紳一郎 木村
Takashi Tokuyama
徳山 巍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57051235A priority Critical patent/JPS58169905A/en
Publication of JPS58169905A publication Critical patent/JPS58169905A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02683Continuous wave laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02689Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using particle beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To form a superior single crystal thin film without fusion by a method wherein ion implantation is carried out against a polycrystalline layer to make it amorphous and the bridge epitaxial growth of the solid phase is added. CONSTITUTION:An oxide film 2 is first formed in part of the surface of a single crystal silicon substrate 1 through the LOCOS method and the epitaxial growth of the silicon is produced thereon. The layers to be grown at this time are a single crystal layer 3 on the single crystal substrate 1 and a polycrystalline layer 4 on the oxide film 2. Subsequently, part of the single crystal layer 3 is covered with a mask 6 and silicon ions are implanted in the polycrystalline layer 4. Then continuously oscillating argon ion laser beams are radiated thereon while scanning is made from the single crystal layer 3 to an amorphous layer 7. By so doing, solid phase epitaxial growth occurs from the single crystal layer 3 to the amorphous layer 7 and the amorphous layer 7 is made a single crystal, so that a superior single crystal film can be formed without fusion.

Description

【発明の詳細な説明】 本発明は単結晶薄膜の製造方法に関し、詳しくは非晶質
層上に単結晶薄膜層を形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a single crystal thin film, and more particularly to a method for forming a single crystal thin film layer on an amorphous layer.

非晶質層上に単結晶層を形成する方法の1つとして、ブ
リ、ジングエビタキシー法が提案されている。(%開昭
56−73697)この方法は単結晶基板上に形成した
非晶質層の一部を除去して開口部を設け、この開口部と
非晶質層上に連続して形成された非晶質もしくは多結晶
層に、エネルギービームを照射し融解せしめ、再固化の
際に上記開口部から横方向に結晶成長を起こし非晶質層
上の多結晶もしくは非晶質層を単結晶化する方法である
。しかし、この方法は融解を伴う現象である為、(1)
再結晶化層に凹凸が生じる、(2)単結晶基板領域に形
成し九不純物層の不純物が融液中に拡散されてしまう等
といった欠点が存在した。
As one of the methods for forming a single crystal layer on an amorphous layer, a Buri-Jingebi taxi method has been proposed. (% 1986-73697) This method removes a part of the amorphous layer formed on a single crystal substrate to create an opening, and then forms a layer continuously on this opening and the amorphous layer. The amorphous or polycrystalline layer is irradiated with an energy beam to melt it, and upon re-solidification, crystals grow laterally from the openings, making the polycrystalline or amorphous layer on the amorphous layer into a single crystal. This is the way to do it. However, since this method involves melting, (1)
There were drawbacks such as unevenness occurring in the recrystallized layer and (2) impurities in the impurity layer formed in the single crystal substrate region being diffused into the melt.

本発明の目的は、上記従来の問題を解決し、融解を伴う
事なく、良好な単結晶薄膜を形成できる方法を行なう方
法を提供する事である。
An object of the present invention is to solve the above-mentioned conventional problems and to provide a method capable of forming a good single crystal thin film without melting.

本発明では液相エピタキシャル成長を用いず、固相エピ
タキシャル成長によりブリッジングエビタキシーを行な
うものである。固相エピタキシーによって良好な単結晶
化を行なう為に本発明は、多結晶層にイオン打込みを行
って非晶質化した後に、固相のブリ、ジングエビタキシ
ャル成長を行なう事を特徴としている。
In the present invention, bridging epitaxy is performed by solid phase epitaxial growth without using liquid phase epitaxial growth. In order to achieve good single crystallization by solid phase epitaxy, the present invention is characterized by performing ion implantation into the polycrystalline layer to make it amorphous, and then performing solid phase epitaxial growth.

以下、本発明の実施例を第1図により説明する。Embodiments of the present invention will be described below with reference to FIG.

まず、単結晶シリコン(100)基板(1)上の一部分
にLOOO8法により厚さ3500大の酸化膜(2)を
形成した。この構造の上にS i O/4の熱分解によ
り1100℃でシリコンのエピタキシャル成長ヲ行なっ
た(厚さ3500λ)。この時、成長層はその基板の結
晶構造と対応し、単結晶基板(1)上では単結晶層(3
)、酸化膜(2)上では多結晶層(4)が、それぞれ形
成された(以上 第1図(a))。
First, an oxide film (2) having a thickness of 3,500 mm was formed on a portion of a single crystal silicon (100) substrate (1) by the LOOO8 method. On this structure, epitaxial growth of silicon was performed at 1100° C. (thickness 3500λ) by thermal decomposition of S i O/4. At this time, the growth layer corresponds to the crystal structure of the substrate, and on the single crystal substrate (1), the single crystal layer (3
), and a polycrystalline layer (4) was formed on the oxide film (2) (see FIG. 1(a)).

つぎに周知の7オトレジストエ程により、上記単結晶層
(3)の少なくとも一部をマスク(6)で覆い、多結晶
層(4)にシリコンイオン(Si”)をイオン打込みし
た。(5)イオン打込み条件は300KeV、  lx
l 0” cm−”  とし、これによシ、多結晶層(
4)は非晶質化された。83イオンは?!’7xlOc
m  以上打込めば多結晶シリコシ膜は容易に非晶質化
できる。尚、この際、打込みイオンは得られる単結晶領
域に所望の伝導型に合わせれば良く、イントリンシック
の場合は上述の如(8j+とじ、p型とする場合はりん
Plひ索As等、p型とする場合はほうX (B)など
をイオン株として選ぶことも可能である。但し打込み条
件は何れのイオン種に対しても多結晶層(4)が非晶質
化するものを選び、多結晶(4)を非晶質化する。(以
上 第1図(b))。
Next, at least a portion of the single crystal layer (3) was covered with a mask (6), and silicon ions (Si") were ion-implanted into the polycrystalline layer (4) using a well-known 7-photoresist process. (5) Ions Implant conditions are 300KeV, lx
l 0"cm-", and a polycrystalline layer (
4) was amorphized. What about 83 ions? ! '7xlOc
If more than m is implanted, the polycrystalline silicon film can be easily made amorphous. At this time, the implanted ions may be matched to the desired conductivity type in the single crystal region obtained, and in the case of intrinsic, as described above (8j + binding, in the case of p-type, phosphorus Pl string As, etc., p-type In this case, it is also possible to select Hou The crystal (4) is made amorphous (see FIG. 1(b)).

Pイオン、A畠イオンもしくはBイオンを打込む場合、
それぞれ、はぼ7X10”、lXl014 もしくは1
xlQ  Cm  以上打込めば非晶質化することが可
能である。
When implanting P ions, A Hatake ions, or B ions,
respectively, 7X10”, 1X1014 or 1
If xlQ Cm or more is implanted, it is possible to make it amorphous.

単結晶層内にあまり多量の導電性イオンを含有させるこ
とが好ましくない場合は、これらの導電性イオンの打込
み量は少なくL、Siイオンを多量に打込んで非晶質と
してもよい。
If it is not preferable to contain too many conductive ions in the single crystal layer, the amount of these conductive ions implanted may be small and a large amount of L and Si ions may be implanted to make the single crystal layer amorphous.

以上の工程により表面に単結晶層(3)と非晶質層(7
)とが連続して混在する構造が形成された。(第1図(
C))。
Through the above steps, a single crystal layer (3) and an amorphous layer (7) are formed on the surface.
) was formed. (Figure 1 (
C)).

つぎに、この上から連続発振アルゴンイオンレーザ光を
単結晶層(3)から非晶質層(7)の方向へ走査しなが
ら照射した。照射条件は、種々に設定することができる
が、−例として試料全体を200”Oに保ちながら、ビ
ーム径30μmの上記レーザ光を照射パワー3〜6W、
ビーム走査速度0.1 mm /3〜10cm/sとす
れば良好な結果が得られた。
Next, continuous wave argon ion laser light was applied from above while scanning from the single crystal layer (3) to the amorphous layer (7). The irradiation conditions can be set in various ways. For example, while keeping the entire sample at 200"O, the above laser beam with a beam diameter of 30 μm is irradiated with a power of 3 to 6 W,
Good results were obtained when the beam scanning speed was set to 0.1 mm/3 to 10 cm/s.

(第1図(d))。(Figure 1(d)).

この他にも、多結晶シリコン層の温度、照射光の出力も
しくは走査速度を必要に応じて檀々の値を選択できるこ
とはいうまでもない。
In addition to these, it goes without saying that the temperature of the polycrystalline silicon layer, the output of the irradiation light, or the scanning speed can be selected as necessary.

以上の工程により単結晶層(3)から非晶質層(7)へ
と固相エピタキシャル成長が生じ、非晶質層(7)は単
結晶化され、非晶質基板上の単結晶領域が形成された。
Through the above steps, solid phase epitaxial growth occurs from the single crystal layer (3) to the amorphous layer (7), the amorphous layer (7) is made into a single crystal, and a single crystal region is formed on the amorphous substrate. It was done.

尚、上記ビーム走査方向、走査速度は非晶質層(7)が
単結晶化する条件を満たすものとし、当該照射パワーよ
って非晶質層(7)が昇温される温度に於て照射領域の
少なくとも一部が単結晶化されるに十分な時間だけビー
ムが滞在する走査速度が選ばれる。又、走査方向は第1
図紙面垂直方向として紙面平行方向に重ね合わさせる方
法、もしくはその逆の何れかが選択できる。
The above beam scanning direction and scanning speed shall satisfy the conditions for the amorphous layer (7) to become single crystallized, and the irradiation area will be at a temperature where the amorphous layer (7) is heated by the irradiation power. A scanning speed is selected such that the beam remains long enough to cause at least a portion of the crystal to become single crystallized. Also, the scanning direction is the first
It is possible to select either a method of overlapping in a direction perpendicular to the drawing surface and a direction parallel to the drawing surface, or vice versa.

又、照射するビームは上記レーザ光のみならず電子線、
イオン線等のエネルギービーム、或いは線状のヒータを
用いても良い。しかしながら何れの場合も局所的な加熱
と、上記に示した走査速度条件の2つを満たすように選
ばれることはいうまで本ない。
In addition, the beam to be irradiated is not only the above-mentioned laser beam but also an electron beam,
An energy beam such as an ion beam or a linear heater may be used. However, in any case, it goes without saying that it is selected so as to satisfy the two conditions of local heating and scanning speed shown above.

本発明によれば、表面の形成層を融解する事なく、非晶
質基板上の単結晶領域形成が可能であり従来問題となっ
ていた表面の凹凸発生や、不純物層の散逸を防止できる
などの効果がある。
According to the present invention, it is possible to form a single crystal region on an amorphous substrate without melting the formation layer on the surface, and it is possible to prevent the generation of surface irregularities and the dissipation of the impurity layer, which have been problems in the past. There is an effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す工程図である。 l・・・・・・シリコン単結晶基板 2・・・・・・酸化膜 3・・・・・・単結晶層 4・・・・・・多結晶層 5・・・・・・イオン 6・・・・・・ホトレジスト 7・・・・・・非晶質層 第1頁の続き (7■発 明 者 春田亮 国分寺市東恋ケ窪1丁目280番 地株式会社日立製作所中央研究 所内 (?多発 明 者 西岡泰城 国分寺市東恋ケ窪1丁目280番 地株式会社日立製作所中央研究 所内 、7■発 明 者 木村紳一部 国分寺市東恋ケ窪1丁目280番 地株式会社日立製作所中央研究 所内 (塑発 明 者 徳山説 国分寺市東恋ケ窪1丁目280番 地株式会社日立製作所中央研究 所内 FIG. 1 is a process diagram showing an embodiment of the present invention. l...Silicon single crystal substrate 2...Oxide film 3... Single crystal layer 4... Polycrystalline layer 5...Ion 6...Photoresist 7...Amorphous layer Continuation of page 1 (7) Presented by Ryo Haruta 1-280 Higashikoigakubo, Kokubunji City Hitachi, Ltd. Central Research Inside the office (? Frequent Akira person Yasujo Nishioka 1-280 Higashikoigakubo, Kokubunji City Hitachi, Ltd. Central Research Inside the office , 7■ Presented by Shinichi Kimura 1-280 Higashikoigakubo, Kokubunji City Hitachi, Ltd. Central Research Inside the office (Tokuyama theory of plastic development 1-280 Higashikoigakubo, Kokubunji City Hitachi, Ltd. Central Research Inside the office

Claims (1)

【特許請求の範囲】 下記の工程を含む単結晶薄膜の製造方法(1)単結晶基
板上の少なくとも一部に非晶質層それぞれ単結晶層およ
び多結晶層を連続して形成する工程。 (3)少なくと本上記多結晶層にイオンを打込み非晶質
化する工程。 (4)上記単結晶層から上記イオンを打込まれた領域へ
順次加熱することによシ、上記イオンを打込まれた領域
を単結晶化する工程0
[Scope of Claims] A method for manufacturing a single crystal thin film including the following steps: (1) A step of successively forming an amorphous layer, a single crystal layer and a polycrystalline layer, respectively, on at least a portion of a single crystal substrate. (3) A step of implanting ions into at least the polycrystalline layer to make it amorphous. (4) Step 0 of converting the ion-implanted region into a single crystal by sequentially heating the ion-implanted region from the single-crystal layer.
JP57051235A 1982-03-31 1982-03-31 Preparation of single crystal thin film Pending JPS58169905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57051235A JPS58169905A (en) 1982-03-31 1982-03-31 Preparation of single crystal thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57051235A JPS58169905A (en) 1982-03-31 1982-03-31 Preparation of single crystal thin film

Publications (1)

Publication Number Publication Date
JPS58169905A true JPS58169905A (en) 1983-10-06

Family

ID=12881279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57051235A Pending JPS58169905A (en) 1982-03-31 1982-03-31 Preparation of single crystal thin film

Country Status (1)

Country Link
JP (1) JPS58169905A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62101017A (en) * 1985-10-28 1987-05-11 Sony Corp Formation of semiconductor layer
EP0390607A2 (en) * 1989-03-31 1990-10-03 Canon Kabushiki Kaisha Process for forming crystalline semiconductor film
EP0390608A2 (en) * 1989-03-31 1990-10-03 Canon Kabushiki Kaisha Method for forming semiconductor thin-film and resulting semiconductor thin-film
US5457058A (en) * 1989-10-09 1995-10-10 Canon Kabushiki Kaisha Crystal growth method
JP2009123967A (en) * 2007-11-15 2009-06-04 Fuji Electric Device Technology Co Ltd Semiconductor device and method for manufacturing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62101017A (en) * 1985-10-28 1987-05-11 Sony Corp Formation of semiconductor layer
EP0390607A2 (en) * 1989-03-31 1990-10-03 Canon Kabushiki Kaisha Process for forming crystalline semiconductor film
EP0390608A2 (en) * 1989-03-31 1990-10-03 Canon Kabushiki Kaisha Method for forming semiconductor thin-film and resulting semiconductor thin-film
US5457058A (en) * 1989-10-09 1995-10-10 Canon Kabushiki Kaisha Crystal growth method
JP2009123967A (en) * 2007-11-15 2009-06-04 Fuji Electric Device Technology Co Ltd Semiconductor device and method for manufacturing same

Similar Documents

Publication Publication Date Title
JPS58115864A (en) Semiconductor device
JPS58127318A (en) Forming method for single-crystal film on insulating layer
JPS58169905A (en) Preparation of single crystal thin film
JPS5645047A (en) Manufacture of semiconductor monocrystal film
JPS5892213A (en) Manufacture of semiconductor single crystalline film
JPS58139423A (en) Lateral epitaxial growing method
JPS5833822A (en) Preparation of semiconductor substrate
JP2850319B2 (en) Method of forming silicon thin film
JP2771812B2 (en) Method for manufacturing semiconductor device
JPH02140916A (en) Crystal growth of semiconductor thin film
JPH0514414B2 (en)
JPS6038809A (en) Manufacture of semiconductor device
JPS6265410A (en) Formation of single crystal thin film
JPS61116821A (en) Formation of single crystal thin film
JP2001332494A (en) Semiconductor element and method of manufacturing the same
JPH01214110A (en) Manufacture of semiconductor device
JPS6083321A (en) Manufacture of semiconductor device
JPS5919312A (en) Manufacture of semiconductor device
JPS61179523A (en) Formation of single crystal thin film
JPS58115814A (en) Electron beam annealing method
JPS58176930A (en) Manufacture of semiconductor device
JPS6295859A (en) Manufacture of semiconductor device
JPS59202622A (en) Manufacture of single crystal thin film
JPS6265411A (en) Formation of single crystal thin film
JPS5860530A (en) Manufacture of semiconductor film